WorldWideScience

Sample records for accelerates central nervous

  1. Central nervous system

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  2. Central nervous system resuscitation

    McIntosh, T K; Garde, E; Saatman, K E;

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  3. Central nervous system diseases

    It is shown that roentgenological examination plays an important role in diagnosis of central nervous system diseases in children. The methods of roentgenological examinations are divided into 3 groups: roentgenography without contrast media (conventional roentgenography), roentgenography with artificial contrasting of liquor space (ventriculopneumoencelography, myelography) and contrasting of brain and spinal blood vessels (angiography). Conventional contrastless roentgenography of skull and vertebral column occupies leadership in diagnosis of brain neoplasms and some vascular diseases

  4. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

    Patzig, Julia; Erwig, Michelle S; Tenzer, Stefan; Kusch, Kathrin; Dibaj, Payam; Möbius, Wiebke; Goebbels, Sandra; Schaeren-Wiemers, Nicole; Nave, Klaus-Armin; Werner, Hauke B

    2016-01-01

    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. DOI: http://dx.doi.org/10.7554/eLife.17119.001 PMID:27504968

  5. Central nervous system tumors

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  6. PRIMARY CENTRAL NERVOUS SYSTEM LYMPHOMA

    S.S. Anvari

    2009-08-01

    Full Text Available ObjectivePrimary central nervous system lymphoma (PCNSL is an extremely rare condition in childhood. We report the first case of PCNSL in a child in Iran.Clinical presentationA nine-year-old boy was referred to Mofid Hospital with the history of headache of four months and seizure of 2 months duration. Magnetic resonance imaging of the brain revealed a hyper-intense lesion in left fronto-parietal area with secondary satellite lesions. Biopsy of the brain mass was performed. Pathologic findings showed brain lymphoma and immunohistochemistry confirmed this diagnosis. The treatment started with intrathecal and systemic chemotherapy in combination with radiotherapy.Keywords:Lymphoma, Primary central nervous system lymphoma (PCNSL, Children

  7. Central nervous system mesenchymal chondrosarcoma

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival

  8. Central nervous system tuberculosis: MRI

    The MRI findings of 18 proven cases of central nervous system (CNS) tuberculosis were reviewed; 10 patients were seropositive for HIV. All had medical, laboratory, or surgical proof of CNS tuberculosis. Eleven patients had meningitis, of whom two also had arachnoiditis. Five patients had focal intra-axial tuberculomas: four brain masses and one an intramedullary spinal lesion. Two patients had focal extra-axial tuberculomas: one in the pontine cistern, and one in the spine. In all 11 patients with meningitis MRI showed diffuse, thick, meningeal enhancement. All intraparenchymal tuberculomas showed low signal intensity on T2-weighted images and ring or nodular enhancement. The extra-axial tuberculomas had areas isointense or hypointense relative to normal brain and spinal cord on T2-weighted images. Although tuberculous meningitis cannot be differentiated from other meningitides on the basis of MR findings, intraparenchymal tuberculomas show characteristic T2 shortening, not found in most other space-occupying lesions. In the appropriate clinical setting, tuberculoma should be considered. (orig.)

  9. Staging Childhood Central Nervous System Embryonal Tumors

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  10. Focal lesions in the central nervous system

    This report reviews the animal and human studies currently in progress at LBL with heavy-ion beams to induce focal lesions in the central nervous system, and discusses the potential future prospects of fundamental and applied brain research with heavy-ion beams. Methods are being developed for producing discrete focal lesions in the central nervous system using the Bragg ionization peak to investigate nerve pathways and neuroendocrine responses, and for treating pathological disorders of the brain

  11. MRI of central nervous system anomalies

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions. (author)

  12. MRI of central nervous system anomalies

    Izawa, M.; Oikawa, A.; Matoba, A.

    1987-05-01

    MRI was very useful in the evaluation of congenital anomalies of central nervous system as well as other nervous system disease with three-dimensional spatial resolution. We had experienced MRI of central nervous system anomalies, demonstrated characterisitic findings in each anomaly. MRI is useful to observe the coronal, horizontal and sagittal images of the brain and spinal cord in order to discuss the etiological mechanisms of spinal dysraphysm and its associated anomalies. In case of spina bifida cystica MRI was available to decide operative indication for radical operation and tetherd cord developed from postoperative scar or accompanied intraspinal lesions.

  13. The Central Nervous System of Box Jellyfish

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more of...... behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part of this...... the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  14. [Parasitic diseases of the central nervous system].

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.). PMID:20111855

  15. Imaging of the fetal central nervous system

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our know

  16. Hypersensitivity Responses in the Central Nervous System

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen;

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive...

  17. Azole-Resistant Central Nervous System Aspergillosis

    J.W.M. van der Linden; R.R. Jansen; D. Bresters; C.E. Visser; S.E. Geerlings; E.J. Kuijper; W.J.G. Melchers; P.E. Verweij

    2009-01-01

    Three patients with central nervous system aspergillosis due to azole-resistant Aspergillus fumigatus (associated with a leucine substitution for histidine at codon 98 [L98H] and a 34-base pair repeat in tandem in the promoter region) are described. The patients were treated with combination therapy

  18. Azole-resistant central nervous system aspergillosis.

    Linden, J.W.M. van der; Jansen, R.R.; Bresters, D.; Visser, C.E.; Geerlings, S.E.; Kuijper, E.J.; Melchers, W.J.G.; Verweij, P.E.

    2009-01-01

    Three patients with central nervous system aspergillosis due to azole-resistant Aspergillus fumigatus (associated with a leucine substitution for histidine at codon 98 [L98H] and a 34-base pair repeat in tandem in the promoter region) are described. The patients were treated with combination therapy

  19. Time perception mechanisms at central nervous system

    Rhailana Fontes; Jéssica Ribeiro; Gupta, Daya S.; Dionis Machado; Fernando Lopes-Júnior; Francisco Magalhães; Victor Hugo Bastos; Kaline Rocha; Victor Marinho; Gildário Lima; Bruna Velasques; Pedro Ribeiro; Marco Orsini; Bruno Pessoa; Marco Antonio Araujo Leite

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms...

  20. Central nervous system tumors: a histopathological study

    Kailash Chand Jat; S. P. Vyas; Naseem A. Bihari; Kuldeep Mehra

    2016-01-01

    Background: Brain tumors can originate in almost any type of tissue, cell or mixture of cell types in the brain or spinal cord. Tumors in different areas of the central nervous system may be treated differently and have a different prognosis. Methods: In the period between 2011-2015, we studied on 59 patients diagnosed with CNS tumors according to the World Health Organization's diagnostic criteria. Patient data were retrieved from the archives of the department of Pathology, Sardar Patel...

  1. Central Nervous System Immune Reconstitution Inflammatory Syndrome

    Bahr, Nathan; Boulware, David R; Marais, Suzaan; Scriven, James; Wilkinson, Robert J.; Meintjes, Graeme

    2013-01-01

    Central nervous system immune reconstitution inflammatory syndrome (CNS-IRIS) develops in 9 %–47 % of persons with HIV infection and a CNS opportunistic infection who start antiretroviral therapy and is associated with a mortality rate of 13 %–75 %. These rates vary according to the causative pathogen. Common CNS-IRIS events occur in relation to Cryptococcus, tuberculosis (TB), and JC virus, but several other mycobacteria, fungi, and viruses have been associated with IRIS. IRIS symptoms often...

  2. Vasculitis Syndromes of the Central and Peripheral Nervous Systems

    ... About NINDS Vasculitis Syndromes of the Central and Peripheral Nervous Systems Fact Sheet See a list of all NINDS ... 496-5717 "Vasculitis Syndromes of the Central and Peripheral Nervous Systems Fact Sheet", NINDS, Publication date July 2011. NIH ...

  3. The Olig family affects central nervous system development and disease

    Botao Tan; Jing Yu; Ying Yin; Gongwei Jia; Wei Jiang; Lehua Yu

    2014-01-01

    Neural cell differentiation and maturation is a critical step during central nervous system devel-opment. The oligodendrocyte transcription family (Olig family) is known to be an important factor in regulating neural cell differentiation. Because of this, the Olig family also affects acute and chronic central nervous system diseases, including brain injury, multiple sclerosis, and even gliomas. Improved understanding about the functions of the Olig family in central nervous system development and disease will greatly aid novel breakthroughs in central nervous system diseases. This review investigates the role of the Olig family in central nervous system develop-ment and related diseases.

  4. Interferons in the central nervous system

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka;

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions, with...... focus specifically on the Type I IFNs in physiological and pathological conditions. IFN-α and IFN-β are the predominant Type I IFNs in the CNS. They are produced in the CNS by glial cells, mostly microglia and astrocytes, as well as by neurons. A variety of mechanisms stimulate IFN production in glial...

  5. Central Nervous System Complications of Oncologic Therapy.

    Hoeffner, Ellen G

    2016-08-01

    Traditional and newer agents used to treat cancer can cause significant toxicity to the central nervous system. MRI of the brain and spine is the imaging modality of choice for patients with cancer who develop neurologic symptoms. It is important to be aware of the agents that can cause neurotoxicity and their associated imaging findings so that patients are properly diagnosed and treated. In some instances conventional MRI may not be able to differentiate posttreatment effects from disease progression. In these instances advanced imaging techniques may be helpful, although further research is still needed. PMID:27444003

  6. Metastatic neoplasms of the central nervous system

    Metastatic neoplasms to the central nervous system are often encountered in the practice of surgical neuropathology. It is not uncommon for patients with systemic malignancies to present to medical attention because of symptoms from a brain metastasis and for the tissue samples procured from these lesions to represent the first tissue available to study a malignancy from an unknown primary. In general surgical pathology, the evaluation of a metastatic neoplasm of unknown primary is a very complicated process, requiring knowledge of numerous different tumor types, reagents, and staining patterns. The past few years, however, have seen a remarkable refinement in the immunohistochemical tools at our disposal that now empower neuropathologists to take an active role in defining the relatively limited subset of neoplasms that commonly metastasize to the central nervous system. This information can direct imaging studies to find the primary tumor in a patient with an unknown primary, clarify the likely primary site of origin in patients who have small tumors in multiple sites without an obvious primary lesion, or establish lesions as late metastases of remote malignancies. Furthermore, specific treatments can begin and additional invasive procedures may be prevented if the neuropathologic evaluation of metastatic neoplasms provides information beyond the traditional diagnosis of ''metastatic neoplasm.'' In this review, differential cytokeratins, adjuvant markers, and organ-specific antibodies are described and the immunohistochemical signatures of metastatic neoplasms that are commonly seen by neuropathologists are discussed

  7. The central nervous system of ascidian larvae.

    Hudson, Clare

    2016-09-01

    Ascidians are marine invertebrate chordates. Their tadpole larvae contain a dorsal tubular nervous system, resulting from the rolling up of a neural plate. Along the anterior-posterior (A-P) axis, the central nervous system (CNS) is organized into a sensory vesicle, neck, trunk ganglion, and tail nerve cord and consists of approximately only 330 cells, of which around 100 are thought to be neurons. The organization of distinct neuronal cell types and neurotransmitter gene expression within the CNS has been described. The unique developmental mode of ascidians, with a small number of cells and a fixed cell division pattern, allows individual cells to be traced throughout development. This feature has led to the complete documentation of the cell lineages of certain cell types in the CNS. Thus, a step-by-step understanding of nervous system development from the initial stages of neural induction to the neurogenesis of individual neurons is a feasible goal. The genetic control of neural fate induction and early neural plate patterning are now well understood. The molecular mechanisms specifying the cholinergic neurons of the trunk ganglion as well as the pigment cells of the sensory organs are also well elucidated. In addition, studies have begun on the morphogenetic processes of neurulation. Remaining challenges include building an embryonic atlas integrating gene expression patterns, cell lineage, and neuronal cell types as well as developing the gene regulatory networks of cell fate specification and integrating them with the genetic control of morphogenesis. WIREs Dev Biol 2016, 5:538-561. doi: 10.1002/wdev.239 For further resources related to this article, please visit the WIREs website. PMID:27328318

  8. Central nervous system involvement by multiple myeloma

    Jurczyszyn, Artur; Grzasko, Norbert; Gozzetti, Alessandro;

    2016-01-01

    The multicenter retrospective study conducted in 38 centers from 20 countries including 172 adult patients with CNS MM aimed to describe the clinical and pathological characteristics and outcomes of patients with multiple myeloma (MM) involving the central nervous system (CNS). Univariate and......, 97% patients received initial therapy for CNS disease, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. After a median follow-up of 3.5 years, the median overall survival (OS) from the onset of CNS involvement for the entire group was 7 months. Untreated and...... untreated patients and patients with favorable cytogenetic profile might be prolonged due to systemic treatment and/or radiotherapy. This article is protected by copyright. All rights reserved....

  9. Photoplethysmographic measurements from central nervous system tissue

    A new system for measuring the oxygen saturation of blood within tissue has been developed, for a number of potential patient monitoring applications. This proof of concept project aims to address the unmet need of real-time measurement of oxygen saturation in the central nervous system (CNS) for patients recovering from neurosurgery or trauma, by developing a fibre optic signal acquisition system for internal placement through small apertures. The development and testing of a two-wavelength optical fibre reflectance photoplethysmography (PPG) system is described together with measurements in rats and preliminary results from a clinical trial of the system in patients undergoing neurosurgery. It was found that good quality red and near-infrared PPG signals could be consistently obtained from the rat spinal cord (n=6) and human cerebral cortex (n=4) using the fibre optic probe. These findings justify further development and clinical evaluation of this fibre optic system

  10. Corticosteroids In Infections Of Central Nervous System

    Meena AK

    2003-01-01

    Full Text Available Infections of central nervous system are still a major problem. Despite the introduction of newer antimicrobial agents, mortality and long-term sequelace associated with these infections is unacceptably high. Based on the evidence that proinflammtory cytokines have a role in pathophysiology of bacterial and tuberculous meningitis, corticosteroids with a potent anti-inflammatory and immunomodulating effect have been tested and found to be of use in experimental and clinical studies, Review of the available literature suggests steroid administration just prior to antimicrobial therapy is effective in decreasing audiologic and neurologic sequelae in childern with H. influenzae nenigitis. Steroid use for bacterial meningitis in adults is found to be beneficial in case of S. pneumoniae. The value of adjunctive steroid therapy for other bacterial causes of meningitis remains unproven. Corticocorticoids are found to be of no benefit in viral meningitis, Role of steroids in HIV positive patients needs to be studied.

  11. Pediatric central nervous system vascular malformations

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  12. Emerging infections of the central nervous system.

    Lyons, Jennifer; McArthur, Justin

    2013-12-01

    Emerging infections affecting the central nervous system often present as encephalitis and can cause substantial morbidity and mortality. Diagnosis requires not only careful history taking, but also the application of newly developed diagnostic tests. These diseases frequently occur in outbreaks stemming from viruses that have mutated from an animal host and gained the ability to infect humans. With globalization, this can translate to the rapid emergence of infectious clusters or the establishment of endemicity in previously naïve locations. Since these infections are often vector borne and effective treatments are almost uniformly lacking, prevention is at least as important as prompt diagnosis and institution of supportive care. In this review, we focus on some of the recent literature addressing emerging and resurging viral encephalitides in the United States and around the world-specifically, West Nile virus, dengue, polio, and cycloviruses. We also discuss new, or "emerging," techniques for the precise and rapid diagnosis of encephalitides. PMID:24136412

  13. Scaffolds for central nervous system tissue engineering

    He, Jin; Wang, Xiu-Mei; Spector, Myron; Cui, Fu-Zhai

    2012-03-01

    Traumatic injuries to the brain and spinal cord of the central nervous system (CNS) lead to severe and permanent neurological deficits and to date there is no universally accepted treatment. Owing to the profound impact, extensive studies have been carried out aiming at reducing inflammatory responses and overcoming the inhibitory environment in the CNS after injury so as to enhance regeneration. Artificial scaffolds may provide a suitable environment for axonal regeneration and functional recovery, and are of particular importance in cases in which the injury has resulted in a cavitary defect. In this review we discuss development of scaffolds for CNS tissue engineering, focusing on mechanism of CNS injuries, various biomaterials that have been used in studies, and current strategies for designing and fabricating scaffolds.

  14. Pediatric central nervous system vascular malformations

    Burch, Ezra A. [Brigham and Women' s Hospital, Department of Radiology, Boston, MA (United States); Orbach, Darren B. [Boston Children' s Hospital, Neurointerventional Radiology, Boston, MA (United States)

    2015-09-15

    Pediatric central nervous system (CNS) vascular anomalies include lesions found only in the pediatric population and also the full gamut of vascular lesions found in adults. Pediatric-specific lesions discussed here include infantile hemangioma, vein of Galen malformation and dural sinus malformation. Some CNS vascular lesions that occur in adults, such as arteriovenous malformation, have somewhat distinct manifestations in children, and those are also discussed. Additionally, children with CNS vascular malformations often have associated broader vascular conditions, e.g., PHACES (posterior fossa anomalies, hemangioma, arterial anomalies, cardiac anomalies, eye anomalies and sternal anomalies), hereditary hemorrhagic telangiectasia, and capillary malformation-arteriovenous malformation syndrome (related to the RASA1 mutation). The treatment of pediatric CNS vascular malformations has greatly benefited from advances in endovascular therapy, including technical advances in adult interventional neuroradiology. Dramatic advances in therapy are expected to stem from increased understanding of the genetics and vascular biology that underlie pediatric CNS vascular malformations. (orig.)

  15. Central Nervous System Involvement by Multiple Myeloma

    Jurczyszyn, A.; Gozzetti, A.; Cerase, A.;

    2015-01-01

    Introduction: Central nervous system (CNS) involvement by multiple myeloma (MM) is a rare occurrence and is found in approximately 1% of MM patients at some time during the course of their disease. At the time of diagnosis, extramedullary MM is found in 7% of patients, and another 6% may develop...... survival. Results: The median time from MM diagnosis to CNS MM diagnosis was 3 years. Upon diagnosis, 97% patients with CNS MM received frontline therapy, of which 76% received systemic therapy, 36% radiotherapy and 32% intrathecal therapy. The most common symptoms at presentation were visual changes (36......%), radiculopathy (27%), headache (25%), confusion (21%), peripheral neuropathy (9%), dizziness (7%) and seizures (6%). MRI of the brain and/or spine were performed in 156 patients (91%), and showed evidence of disease in 145 (93%). After a median follow-up of 3.5 years, the median OS for the entire group was 7...

  16. Plants and the central nervous system.

    Carlini, E A

    2003-06-01

    This review article draws the attention to the many species of plants possessing activity on the central nervous system (CNS). In fact, they cover the whole spectrum of central activity such as psychoanaleptic, psycholeptic and psychodysleptic effects, and several of these plants are currently used in therapeutics to treat human ailments. Among the psychoanaleptic (stimulant) plants, those utilized by human beings to reduce body weight [Ephedra spp. (Ma Huang), Paullinia spp. (guaraná), Catha edulis Forssk. (khat)] and plants used to improve general health conditions (plant adaptogens) were scrutinized. Many species of hallucinogenic (psychodysleptic) plants are used by humans throughout the world to achieve states of mind distortions; among those, a few have been used for therapeutic purposes, such as Cannabis sativa L., Tabernanthe iboga Baill. and the mixture of Psychotria viridis Ruiz and Pav. and Banisteriopsis caapi (Spruce ex Griseb.) C.V. Morton. Plants showing central psycholeptic activities, such as analgesic or anxiolytic actions (Passiflora incarnata L., Valeriana spp. and Piper methysticum G. Forst.), were also analysed.Finally, the use of crude or semipurified extracts of such plants instead of the active substances seemingly responsible for their therapeutic effect is discussed. PMID:12895668

  17. Central nervous system toxicity of metallic nanoparticles

    Feng XL

    2015-07-01

    Full Text Available Xiaoli Feng,1 Aijie Chen,1 Yanli Zhang,1 Jianfeng Wang,2 Longquan Shao,1 Limin Wei2 1Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China; 2School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, People’s Republic of China Abstract: Nanomaterials (NMs are increasingly used for the therapy, diagnosis, and monitoring of disease- or drug-induced mechanisms in the human biological system. In view of their small size, after certain modifications, NMs have the capacity to bypass or cross the blood–brain barrier. Nanotechnology is particularly advantageous in the field of neurology. Examples may include the utilization of nanoparticle (NP-based drug carriers to readily cross the blood–brain barrier to treat central nervous system (CNS diseases, nanoscaffolds for axonal regeneration, nanoelectromechanical systems in neurological operations, and NPs in molecular imaging and CNS imaging. However, NPs can also be potentially hazardous to the CNS in terms of nano­neurotoxicity via several possible mechanisms, such as oxidative stress, autophagy, and lysosome dysfunction, and the activation of certain signaling pathways. In this review, we discuss the dual effect of NMs on the CNS and the mechanisms involved. The limitations of the current research are also discussed. Keywords: nanomaterials, neurotoxicity, blood–brain barrier, autophagy, ROS

  18. Time perception mechanisms at central nervous system

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  19. Time Perception Mechanisms at Central Nervous System

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S.; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks. PMID:27127597

  20. Congenital tumors of the central nervous system

    Severino, Mariasavina [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); Schwartz, Erin S. [The Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States); Thurnher, Majda M. [Medical University of Vienna, Department of Radiology, Vienna (Austria); Rydland, Jana [MR Center, St. Olav' s Hospital HF, Trondheim (Norway); Nikas, Ioannis [Agia Sophia Children' s Hospital, Imaging Department, Athens (Greece); Rossi, Andrea [G. Gaslini Children' s Hospital, Department of Neuroradiology, Genoa (Italy); G. Gaslini Children' s Hospital, Department of Pediatric Neuroradiology, Genoa (Italy)

    2010-06-15

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into ''definitely congenital'' (present or producing symptoms at birth), ''probably congenital'' (present or producing symptoms within the first week of life), and ''possibly congenital'' (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors

  1. Congenital tumors of the central nervous system

    Congenital tumors of the central nervous system (CNS) are often arbitrarily divided into ''definitely congenital'' (present or producing symptoms at birth), ''probably congenital'' (present or producing symptoms within the first week of life), and ''possibly congenital'' (present or producing symptoms within the first 6 months of life). They represent less than 2% of all childhood brain tumors. The clinical features of newborns include an enlarged head circumference, associated hydrocephalus, and asymmetric skull growth. At birth, a large head or a tense fontanel is the presenting sign in up to 85% of patients. Neurological symptoms as initial symptoms are comparatively rare. The prenatal diagnosis of congenital CNS tumors, while based on ultrasonography, has significantly benefited from the introduction of prenatal magnetic resonance imaging studies. Teratomas constitute about one third to one half of these tumors and are the most common neonatal brain tumor. They are often immature because of primitive neural elements and, rarely, a component of mixed malignant germ cell tumors. Other tumors include astrocytomas, choroid plexus papilloma, primitive neuroectodermal tumors, atypical teratoid/rhabdoid tumors, and medulloblastomas. Less common histologies include craniopharyngiomas and ependymomas. There is a strong predilection for supratentorial locations, different from tumors of infants and children. Differential diagnoses include spontaneous intracranial hemorrhage that can occur in the presence of coagulation factor deficiency or underlying vascular malformations, and congenital brain malformations, especially giant heterotopia. The prognosis for patients with congenital tumors is generally poor, usually because of the massive size of the tumor. However, tumors can be resected successfully if they are small and favorably located. The most favorable outcomes are achieved with choroid plexus tumors, where aggressive surgical treatment leads to disease

  2. Optimized optical clearing method for imaging central nervous system

    Yu, Tingting; Qi, Yisong; Gong, Hui; Luo, Qingming; Zhu, Dan

    2015-03-01

    The development of various optical clearing methods provides a great potential for imaging entire central nervous system by combining with multiple-labelling and microscopic imaging techniques. These methods had made certain clearing contributions with respective weaknesses, including tissue deformation, fluorescence quenching, execution complexity and antibody penetration limitation that makes immunostaining of tissue blocks difficult. The passive clarity technique (PACT) bypasses those problems and clears the samples with simple implementation, excellent transparency with fine fluorescence retention, but the passive tissue clearing method needs too long time. In this study, we not only accelerate the clearing speed of brain blocks but also preserve GFP fluorescence well by screening an optimal clearing temperature. The selection of proper temperature will make PACT more applicable, which evidently broaden the application range of this method.

  3. Statin therapy inhibits remyelination in the central nervous system

    Miron, Veronique E; Zehntner, Simone P; Kuhlmann, Tanja;

    2009-01-01

    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood...... OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating the...... need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes....

  4. Centralized digital control of accelerators

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors

  5. Childhood Central Nervous System Germ Cell Tumors Treatment

    ... the tumor responds to treatment. Newly Diagnosed CNS Teratomas Treatment of newly diagnosed mature and immature central nervous system (CNS) teratomas may include the following: Surgery to remove as ...

  6. Central nervous system stimulants and drugs that suppress appetite

    Aagaard, Lise

    2014-01-01

    of the January 2012 to June 2013 publications on central nervous system stimulants and drugs that suppress appetite covers amphetamines (including metamfetamine, paramethoxyamfetamine and paramethoxymetamfetamine), fenfluramine and benfluorex, atomoxetine, methylphenidate, modafinil and armodafinil...

  7. Treatment Option Overview (Childhood Central Nervous System Embryonal Tumors)

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  8. General Information about Childhood Central Nervous System Embryonal Tumors

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  9. A Rare Case of Central Nervous System Tuberculosis

    Ravish Parekh; Alexis Haftka; Ashleigh Porter

    2014-01-01

    Intracranial abscess is an extremely rare form of central nervous system (CNS) tuberculosis (TB). We describe a case of central nervous system tuberculous abscess in absence of human immunodeficiency virus (HIV) infection. A 82-year-old Middle Eastern male from Yemen was initially brought to the emergency room due to altered mental status and acute renal failure. Cross-sectional imaging revealed multiple ring enhancing lesions located in the left cerebellum and in bilateral frontal lobe as we...

  10. Regulation of Peripheral Inflammation by the Central Nervous System

    Waldburger, Jean-Marc; Firestein, Gary S.

    2010-01-01

    In inflammatory disorders such as rheumatoid arthritis, cytokines and danger signals are sensed by the central nervous system, which adapts behavior and physiologic responses during systemic stress. The central nervous system can also signal the periphery to modulate inflammation through efferent hormonal and neuronal pathways. The brain and spinal cord are involved in this bidirectional interaction. A variety of neuronal pathways that modulate synovial inflammation have been implicated, incl...

  11. Radiation therapy of tumours of the central nervous system

    The aim of this work is to present the principles of radiation therapy of tumours of the central nervous system, according to the experience of the Institute of Oncology in Krakow. The text was designed primarily for the radiotherapists involved in the treatment of tumours of the central nervous system, and may be used as an auxiliary textbook for those preparing for the examination in radiotherapy. (author)

  12. Central nervous system adaptation to exercise training

    Kaminski, Lois Anne

    Exercise training causes physiological changes in skeletal muscle that results in enhanced performance in humans and animals. Despite numerous studies on exercise effects on skeletal muscle, relatively little is known about adaptive changes in the central nervous system. This study investigated whether spinal pathways that mediate locomotor activity undergo functional adaptation after 28 days of exercise training. Ventral horn spinal cord expression of calcitonin gene-related peptide (CGRP), a trophic factor at the neuromuscular junction, choline acetyltransferase (Chat), the synthetic enzyme for acetylcholine, vesicular acetylcholine transporter (Vacht), a transporter of ACh into synaptic vesicles and calcineurin (CaN), a protein phosphatase that phosphorylates ion channels and exocytosis machinery were measured to determine if changes in expression occurred in response to physical activity. Expression of these proteins was determined by western blot and immunohistochemistry (IHC). Comparisons between sedentary controls and animals that underwent either endurance training or resistance training were made. Control rats received no exercise other than normal cage activity. Endurance-trained rats were exercised 6 days/wk at 31m/min on a treadmill (8% incline) for 100 minutes. Resistance-trained rats supported their weight plus an additional load (70--80% body weight) on a 60° incline (3 x 3 min, 5 days/wk). CGRP expression was measured by radioimmunoassay (RIA). CGRP expression in the spinal dorsal and ventral horn of exercise-trained animals was not significantly different than controls. Chat expression measured by Western blot and IHC was not significantly different between runners and controls but expression in resistance-trained animals assayed by IHC was significantly less than controls and runners. Vacht and CaN immunoreactivity in motor neurons of endurance-trained rats was significantly elevated relative to control and resistance-trained animals. Ventral

  13. [Spontaneous recovery of function in central nervous system lesions].

    Anghinah, A

    1975-12-01

    A rewiev of the mechanisms responsible for the spontaneous recuperation of function in patients with lesions of the central nervous sistem is made. The spontaneous reorganization theories of the nervous structures and the vicarious function are also referred to. In the last two decades experimental contributions have been accentuated, specially the one conducted by the group of researchers directed by Windle and Guth, who had shown the possibility of regeneration in the central nervous system, as well Lawrende and Kuypers, Brodal, Goldberger and others, which defended the vircarious function as the probable mechanisms of recuperation. PMID:1191098

  14. Histologic examination of the rat central nervous system after intrathecal administration of human beta-endorphin

    Hée, P.; Klinken, Leif; Ballegaard, Martin

    1992-01-01

    Neuropathology, analgesics - intrathecal, central nervous system, histology, human beta-endorphin, toxicity......Neuropathology, analgesics - intrathecal, central nervous system, histology, human beta-endorphin, toxicity...

  15. Evolution of bilaterian central nervous systems: a single origin?

    Carvalho, Joao E.; Escriva, Hector; Laudet, Vincent; Schubert, Michael; Shimeld, Sebastian M; Yu, Jr-Kai

    2013-01-01

    Abstract The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the ...

  16. Axon Regeneration in the Peripheral and Central Nervous Systems

    Huebner, Eric A.; Strittmatter, Stephen M

    2009-01-01

    Axon regeneration in the mature mammalian central nervous system (CNS) is extremely limited after injury. Consequently, functional deficits persist after spinal cord injury (SCI), traumatic brain injury, stroke, and related conditions that involve axonal disconnection. This situation differs from that in the mammalian peripheral nervous system (PNS), where long- distance axon regeneration and substantial functional recovery can occur in the adult. Both extracellular molecules and the intrinsi...

  17. Centralized digital control of accelerators

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  18. CT findings of central nervous system in congenital syphilis infant

    Objective: To investigate the CT features of the central nervous system in congenital syphilis infant. Methods: CT findings of central nervous system in 11 infants with clinically proved congenital syphilis were analyzed retrospectively. Results: CT findings in 10 syphilis neonates were diffuse hypodense lesions in the white matter, with subarachnoid and intra-encephalic hemorrhage in 3 and 1 cases, respectively. One 2-month-old syphilis infant case and 5 cases of follow-up after 45 days to 6 months of treatment demonstrated bilateral widened sulci and cistern with enlarged ventricles in 3 of them. Conclusion: CT findings of the central nervous system in congenital syphilis infant are similar to those of hypoxic-ischemic encephalopathy in neonates, and extra-encephalic hydrocephalus or brain hypogenesis ensues later on. (authors)

  19. Gait Rehabilitation Device in Central Nervous System Disease: A Review

    Kazuya Kubo

    2011-01-01

    Full Text Available Central nervous system diseases cause the gait disorder. Early rehabilitation of a patient with central nervous system disease is shown to be benefit. However, early gait training is difficult because of muscular weakness and those elderly patients who lose of leg muscular power. In the patient's walking training, therapists assist the movement of patient's lower limbs and control the movement of patient's lower limbs. However the assistance for the movement of the lower limbs is a serious hard labor for therapists. Therefore, research into and development of various gait rehabilitation devices is currently underway to identify methods to alleviate the physical burden on therapists. In this paper, we introduced the about gait rehabilitation devices in central nervous system disease.

  20. 21 CFR 882.5550 - Central nervous system fluid shunt and components.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of...

  1. Diagnosis of Fetal Central Nervous System Anomalies by Ultrasonography

    F. Tuncay Ozgunen

    2003-04-01

    Full Text Available During the last 30 years, one of the most important instruments in diagnosis is ultrasonograph. It has an indispensible place in obstetrics. Its it possible to evaluate normal fetal anatomy, to follow-up fetal growth and to diagnose fetal congenital anomalies by ultrasonography. Central nervous system anomalies is the one of the most commonly seen and the best time for screening is between 18- and 22-week of pregnancy. In this paper, it is presented the sonographic features of some outstanding Central Nervous System anomalies. [Archives Medical Review Journal 2003; 12(2.000: 77-89

  2. Isolated central nervous system Whipple's disease: Two cases.

    Vural, Atay; Acar, Nazire Pinar; Soylemezoglu, Figen; Oguz, Kader K; Dericioğlu, Neşe; Saka, Esen

    2015-12-01

    Although it is an orphan disease, isolated central nervous system Whipple's disease is one of the "must be known" conditions in neurology because it belongs to the list of "treatable disorders". Here, we present two cases which highlight the importance of early diagnosis. Additionally, we provide a discussion on up to date diagnostic approach to this life-threatening disorder. PMID:26407049

  3. Radiotherapy of the central nervous system in acute leukemia

    The central nervous system (CNS) is a site of occult and overt involvement with acute lymphoblastic leukemia (ALL) in children. Prophylactic treatment of the cranial and spinal meninges can significantly reduce the incidence of CNS relapse. This review addresses the issues associated with the role of radiation therapy in the treatment of the CNS in ALL.20 references

  4. Computed tomography of the central nervous system in small animals

    With computed tomography in 44 small animals some well defined anatomical structures and pathological processes of the central nervous system are described. Computed tomography is not only necessary for the diagnosis of tumors; malformations, inflammatory, degenerative and vascular diseases and traumas are also visible

  5. School Reentry for Children with Acquired Central Nervous Systems Injuries

    Carney, Joan; Porter, Patricia

    2009-01-01

    Onset of acquired central nervous system (CNS) injury during the normal developmental process of childhood can have impact on cognitive, behavioral, and motor function. This alteration of function often necessitates special education programming, modifications, and accommodations in the education setting for successful school reentry. Special…

  6. Nuclear magnetic resonance imaging of the central nervous system

    In this article a review is given of the use of magnetic resonance imaging for the central nervous system. An example of the screening of the population for multiple scelerosis is given. A good preliminary examination and the supply of relevant information to the person which performs the imaging is necessary. (R.B.). 9 figs.; 4 tabs

  7. Imaging in the infectious diseases of the central nervous system

    The basic signs of the major bacterial, viral, parasitic or mycotic infections of the central nervous system with CT and MRI are described. The problems arising from the presence of the HIV virus are emphasized and the attitude required according to the findings of imaging, is defined

  8. Central nervous system frontiers for the use of erythropoietin

    Olsen, Niels Vidiendal

    2003-01-01

    Recombinant human erythropoietin (r-HuEPO; epoetin alfa) is well established as safe and effective for the treatment of anemia. In addition to the erythropoietic effects of endogenous erythropoietin (EPO), recent evidence suggests that it may elicit a neuroprotective effect in the central nervous...

  9. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemoki

  10. Tuberculosis of the central nervous system : overview of neuroradiological findings

    Bernaerts, A; Vanhoenacker, FM; Parizel, PM; van Altena, R; Laridon, A; De Roeck, J; Coeman, [No Value; De Schepper, AM; Goethem, J.W.M.

    2003-01-01

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In

  11. The Role of Central Nervous System Plasticity in Tinnitus

    Saunders, James C.

    2007-01-01

    Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions.…

  12. Diverse roles of neurotensin agonists in the central nervous system

    Mona eBoules

    2013-03-01

    Full Text Available NT is a tridecapeptide that is found in the central nervous system and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several central nervous system (CNS disorders such as schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and Parkinson’s disease.

  13. Space radiation risks to the central nervous system

    Cucinotta, Francis A.; Alp, Murat; Sulzman, Frank M.; Wang, Minli

    2014-07-01

    Central nervous system (CNS) risks which include during space missions and lifetime risks due to space radiation exposure are of concern for long-term exploration missions to Mars or other destinations. Possible CNS risks during a mission are altered cognitive function, including detriments in short-term memory, reduced motor function, and behavioral changes, which may affect performance and human health. The late CNS risks are possible neurological disorders such as premature aging, and Alzheimer's disease (AD) or other dementia. Radiation safety requirements are intended to prevent all clinically significant acute risks. However the definition of clinically significant CNS risks and their dependences on dose, dose-rate and radiation quality is poorly understood at this time. For late CNS effects such as increased risk of AD, the occurrence of the disease is fatal with mean time from diagnosis of early stage AD to death about 8 years. Therefore if AD risk or other late CNS risks from space radiation occur at mission relevant doses, they would naturally be included in the overall acceptable risk of exposure induced death (REID) probability for space missions. Important progress has been made in understanding CNS risks due to space radiation exposure, however in general the doses used in experimental studies have been much higher than the annual galactic cosmic ray (GCR) dose (∼0.1 Gy/y at solar maximum and ∼0.2 Gy/y at solar minimum with less than 50% from HZE particles). In this report we summarize recent space radiobiology studies of CNS effects from particle accelerators simulating space radiation using experimental models, and make a critical assessment of their relevance relative to doses and dose-rates to be incurred on a Mars mission. Prospects for understanding dose, dose-rate and radiation quality dependencies of CNS effects and extrapolation to human risk assessments are described.

  14. Neurotropic Enterovirus Infections in the Central Nervous System

    Hsing-I Huang

    2015-11-01

    Full Text Available Enteroviruses are a group of positive-sense single stranded viruses that belong to the Picornaviridae family. Most enteroviruses infect humans from the gastrointestinal tract and cause mild symptoms. However, several enteroviruses can invade the central nervous system (CNS and result in various neurological symptoms that are correlated to mortality associated with enteroviral infections. In recent years, large outbreaks of enteroviruses occurred worldwide. Therefore, these neurotropic enteroviruses have been deemed as re-emerging pathogens. Although these viruses are becoming large threats to public health, our understanding of these viruses, especially for non-polio enteroviruses, is limited. In this article, we review recent advances in the trafficking of these pathogens from the peripheral to the central nervous system, compare their cell tropism, and discuss the effects of viral infections in their host neuronal cells.

  15. Spontaneous electrical activity recorded from the aphid central nervous system

    Nguyen, Dan-Thanh T.; Blacker, Melissa J.; Goodchild, James A.

    2012-01-01

    Whilst many classes of insecticides target the insect central nervous system (CNS), their effects in the CNS of pest aphids have not been demonstrated. In this report, we describe an electrophysiological method for recording spontaneous neuronal activity from the giant willow aphid (Tuberolachnus salignus). Using extracellular recording electrodes and two analysis methods (threshold and template search), spontaneous spike activity was shown to exhibit sensitivity to the neuroexcitatory insect...

  16. "Suicide" Gen Therapy for Malignant Central Nervous System Tumors

    Vincent, Arnoud

    1998-01-01

    textabstractDespite development in surgical techniques, chemotherapy and radiotherapy, most malignancies of the central nervous system are still devastating tumors with a poor prognosis. For example, median survival of patients with malignant gliomas (astrocytoma, oligodendroglioma or mixed rype) is roughly 12 months and only 5 % of the patients survive more than 5 years after diagnosis. Fifty % of astrocytomas are ryped as glioblastoma multiforme, the most malignant form of glioma. Glioblast...

  17. Heroin-associated lesions within the central nervous system

    Rare patterns of heroin-associated lesions within the central nervous systems are described. In one case, magnetic resonance imaging revealed the combination of a border zone infarct within the thoracal spinal cord and a bilateral lesion within the globus pallidus. In a second case, cerebral border zone infarctions were observed which were attributed to a vasospasm of the basal cerebral arteries. Drug-abuse should be considered as a potential cause of these unusual manifestations of ischemic lesions in young patients. (orig.)

  18. Chronic Viral Infection and Primary Central Nervous System Malignancy

    Saddawi-Konefka, Robert; Crawford, John R.

    2010-01-01

    Primary central nervous system (CNS) tumors cause significant morbidity and mortality in both adults and children. While some of the genetic and molecular mechanisms of neuro-oncogenesis are known, much less is known about possible epigenetic contributions to disease pathophysiology. Over the last several decades, chronic viral infections have been associated with a number of human malignancies. In primary CNS malignancies, two families of viruses, namely polyomavirus and herpesvirus, have be...

  19. Neurotrophic effects of neudesin in the central nervous system

    Kimura, Ikuo; Nakayama, Yoshiaki; Zhao, Ying; Konishi, Morichika; Itoh, Nobuyuki

    2013-01-01

    Neudesin (neuron-derived neurotrophic factor; NENF) was identified as a neurotrophic factor that is involved in neuronal differentiation and survival. It is abundantly expressed in the central nervous system, and its neurotrophic activity is exerted via the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways. Neudesin is also an anorexigenic factor that suppresses food intake in the hypothalamus. It is a member of the membrane-associated progesterone rece...

  20. Language disorders in children with central nervous system injury

    Dennis, Maureen

    2010-01-01

    Children with injury to the central nervous system (CNS) exhibit a variety of language disorders that have been described by members of different disciplines, in different journals, using different descriptors and taxonomies. This paper is an overview of language deficits in children with CNS injury, whether congenital or acquired after a period of normal development. It first reviews the principal CNS conditions associated with language disorders in childhood. It then describes a functional ...

  1. The central nervous system in childhood chronic kidney disease.

    Gipson, Debbie S; Duquette, Peter J; Icard, Phil F; Hooper, Stephen R

    2007-10-01

    Neurodevelopmental deficits in pediatric and adult survivors of childhood onset chronic kidney disease (CKD) have been documented for many years. This paper reviews the available literature on central nervous system involvement incurred in childhood CKD. The studies reviewed include recent work in neuroimaging, electrophysiology, and neuropsychology, along with commentary on school functioning and long-term outcomes. The paper concludes with suggestions for monitoring the neurodevelopmental status and pursuing appropriate early interventions for children with CKD. PMID:17072652

  2. The role of Pumilio2 in central nervous system

    Xu-ling WU; Yang-mei CHEN

    2014-01-01

    Pumilio2 (Pum2) is one of the newly discovered transcription regulatory factors in recent years, which exhibits similar function to microRNA (miRNA). Pumilio2 hinders the formation of translation initiation complexes and represses target gene expression from the combination of its specific structure domain with mRNA. Recent studies suggest that Pumilio2 is closely related to the morphogenesis and function of central nervous system. The different expression levels of Pumilio2 are involve...

  3. [VARICELLA ZOSTER VIRUS AND DISEASES OF CENTRAL NERVOUS SYSTEM VESSELS].

    Kazanova, A S; Lavrov, V F; Zverev, V V

    2015-01-01

    Systemized data on epidemiology, pathogenesis, clinical manifestation, diagnostics and therapy of VZV-vasculopathy--a disease, occurring due to damage of arteries of the central nervous system by Varicella Zoster virus, are presented in the review. A special attention in the paper is given to the effect of vaccine prophylaxis of chicken pox and herpes zoster on the frequency of development and course of VZV-vasculopathy. PMID:26259280

  4. Paracoccidioidomycosis case series with and without central nervous system involvement

    Vinicius Sousa Pietra Pedroso; Ana Claudia Lyon; Stanley de Almeida Araújo; Juliana Márcia Ribeiro Veloso; Enio Roberto Pietra Pedroso; Antônio Lucio Teixeira

    2012-01-01

    INTRODUCTION: Paracoccidioidomycosis (PCM) is the most important systemic mycosis in South America. Central nervous system involvement is potentially fatal and can occur in 12.5% of cases. This paper aims to contribute to the literature describing eight cases of neuroparacoccidioidomycosis (NPMC) and compare their characteristics with patients without neurological involvement, to identify unique characteristics of NPCM. METHODS: A cohort of 213 PCM cases was evaluated at the Infectious Diseas...

  5. Echography of congenital malformations of the central nervous system

    A descriptive and prospective study was conducted in 173 pregnant women attended at the Provincial Department of Clinical Genetics of Santiago de Cuba, from January, 2000 to December, 2004, to identify congenital malformations of the central nervous system detected by means of echography. The most frequent malformation was the hydrocephaly, followed by the fusion defects of the spine, associated with the hydrocephaly and the absence of cranial cavity. There was a prevalence of altered alpha fetoprotein and of elevated amniotic fluid

  6. Neuronal Chemokines: Versatile Messengers In Central Nervous System Cell Interaction

    de Haas, A. H.; van Weering, H. R. J.; Jong, E.K.; Boddeke, H. W. G. M.; Biber, K.P.H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemokines are generally found under both physiological and pathological conditions. Whereas many reports describe chemokine expression in astrocytes and microglia and their role in the migration of leuko...

  7. Pathogenesis of HIV in the Central Nervous System

    Valcour, Victor; Sithinamsuwan, Pasiri; Letendre, Scott; Ances, Beau

    2010-01-01

    HIV can infect the brain and impair central nervous system (CNS) function. Combination antiretroviral therapy (cART) has not eradicated CNS complications. HIV-associated neurocognitive disorders (HAND) remain common despite cART, although attenuated in severity. This may result from a combination of factors including inadequate treatment of HIV reservoirs such as circulating monocytes and glia, decreased effectiveness of cART in CNS, concurrent illnesses, stimulant use, and factors associated...

  8. The Glutamatergic Neurotransmission in the Central Nervous System

    Marmiroli, PL; Cavaletti, GA

    2012-01-01

    Glutamate is one of the major neurotrasmitters in mammalian brain and changes in its concentration have been associated with a number of neurological disorders, including neurodegenerative, cerebrovascular diseases and epilepsy. Moreover, recently a possible role for glutamatergic system dysfunction has been suggested also in the peripheral nervous system. This chapter will revise the current knowledge in the distribution of glutamate and of its receptors and transporters in the central nervo...

  9. Radiation induced effects in the developing central nervous system

    The embryo and the human foetus are particularly sensitive to ionizing radiation and this sensitivity presents various qualitative and quantitative functional changes during intra-uterine development. Apart from radiation induced carcinogenesis, the most serious consequence of prenatal exposure in human beings is severe mental retardation. The principal data on radiation effects on human beings in the development of the central nervous system come form epidemiological studies carried out in individuals exposed in utero during the atomic explosion at Hiroshima and Nagasaki. These observations demonstrate the existence of a time of maximum radiosensitivity between the weeks 8 and 15 of the gestational period, a period in which the proliferation and neuronal migration takes place. Determination of the characteristics of dose-response relationship and the possible existence of a threshold dose of radiation effects on the development of the central nervous system is relevant to radiation protection against low dose radiation and the establishment of dose limits for occupational exposure and the public. Studies were conducted on the generation of nitrous-oxide and its relation with the production of active species of oxygen in brains of exposed rats in utero exposed to doses of up to 1 Gy during their maximum radiosensitivity. The possible role of the mechanism of radiation induced damage in the development of the central nervous system is discussed

  10. Longitudinal analysis of hearing loss in a case of hemosiderosis of the central nervous system.

    Weekamp, H.; Huygen, P.L.M.; Merx, J.L.; Kremer, H.P.H.; Cremers, C.W.R.J.; Longridge, N.S.

    2003-01-01

    OBJECTIVE: To describe cochleovestibular aspects of superficial hemosiderosis of the central nervous system. BACKGROUND: Superficial hemosiderosis of the central nervous system is a rare disease in which cochleovestibular impairment, cerebellar ataxia, and myelopathy are the most frequent signs. Chr

  11. 75 FR 75681 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    2010-12-06

    ... HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System Drugs... and circulation) of the central nervous system. The BBB is an area consisting of specialized...

  12. Masquerade Syndrome of Multicentre Primary Central Nervous System Lymphoma

    Silvana Guerriero

    2011-01-01

    Full Text Available Purpose. In Italy we say that the most unlucky things can happen to physicians when they get sick, despite the attention of colleagues. To confirm this rumor, we report the sad story of a surgeon with bilateral vitreitis and glaucoma unresponsive to traditional therapies. Methods/Design. Case report. Results. After one year of steroidal and immunosuppressive therapy, a vitrectomy, and a trabeculectomy for unresponsive bilateral vitreitis and glaucoma, MRI showed a multicentre primary central nervous system lymphoma, which was the underlying cause of the masquerade syndrome. Conclusions. All ophthalmologists and clinicians must be aware of masquerade syndromes, in order to avoid delays in diagnosis.

  13. Central nervous system relapse of treated stage IV neuroblastoma

    Palasis, S.; Egelhoff, J.C.; Koch, B.L.; Ball, W.S. Jr. [Department of Radiology, Children`s Hospital Medical Center, Cincinnati, OH (United States); Morris, J.D. [Department of Pediatrics, Children`s Hospital Medical Center, Cincinnati, OH (United States)

    1998-12-01

    Neuroblastoma is the most common extracranial solid tumor in pediatrics. The long-term survival of patients with advanced-stage neurobastoma has remarkably improved secondary to aggressive treatment protocols including autologous bone marrow transplant (BMT). As a result, a different natural history of this disease is being reported with unusual, late manifestations. The central nervous system (CNS), once a rare site of disease, is being involved with increasing frequency. Appropriate neuroimaging in these patients is important. Two cases of patients with treated stage IV neuroblastoma who developed isolated CNS metastases are presented. The proposed pathogenesis and neuroradiologic manifestations of this complication are reviewed. (orig.) With 2 figs., 23 refs.

  14. Systemic juvenile xanthogranuloma with multiple central nervous system lesions

    Ali Meshkini

    2012-01-01

    Full Text Available Juvenile xanthogranulomatosis (JXG is an uncommon histiocytic disorder that is usually benign and limited to the skin. The systemic form of JXG is rare and may be associated with severe morbidity and mortality especially in central nervous system (CNS involvement. Here, we describe a six-year-old boy with disseminated skin lesions and neurological signs and symptoms. Diagnostic work up revealed multiple brain lesions. A skin biopsy and a stereotactic brain biopsy considered suggestive of systemic JXG. Treatment with prednisolone, vinblastine and methotrexate was successful with regression of skin and CNS lesions. The patient has been in remission for almost three years.

  15. Isolated Central Nervous System Vasculitis Associated with Antiribonuclear Protein Antibody

    Amer M. Awad

    2011-01-01

    Full Text Available We describe the case of a young woman who was referred to a tertiary care center with unexplained subacute progressive encephalopathy preceded by long-standing severe headaches. Her extensive workup was remarkable for abnormal intracranial angiography suggestive of small- and medium-vessel vasculitis, persistently elevated protein in the cerebrospinal fluid and persistently high titers of antiribonuclear protein antibody. The patient showed a modest response to intravenous high-dose steroids. We propose that the patient's neurologic disease is secondary to immune-mediated central nervous system vasculitis, possibly as an initial manifestation of mixed connective tissue disease.

  16. Central Nervous System Aspergillosis causing Spinal Cord Compression

    Faraz Ahmed

    2010-07-01

    Full Text Available Central nervous system (CNS aspergillosis is a rare and uniformly fatal complication of disseminated disease, involving the cerebral hemispheres and cerebellum in the majority of cases. It is a ubiquitous mold and refers to a group of diseases caused by monomorphic mycelial fungi of the genus Aspergillosis fumigatus. Outbreaks of invasive aspergillosis are a problem in immunocompromized persons after they are exposed to air-borne spores.1 Aspergillosis causing spinal cord compression due to epidural abscess formation and hypertrophic pachymeningitis is a rare entity, thus such a case is presented herewith.

  17. Fulminant Demyelinating Diseases of the Central Nervous System.

    Bevan, Carolyn J; Cree, Bruce A

    2015-12-01

    Fulminant demyelinating diseases of the central nervous system include acute disseminated encephalomyelitis, the related acute hemorrhagic leukoencephalitis, multiple sclerosis variants, neuromyelitis optica spectrum disorders, and idiopathic transverse myelitis. These syndromes are often managed with similar acute treatments including high-dose corticosteroids and plasmapheresis; however, long-term management varies. Although the prognosis of fulminant demyelinating disease was historically poor, outcomes today may be improved due to earlier diagnosis, rapid implementation of anti-inflammatory therapies such as high-dose corticosteroids and plasmapheresis, and improved supportive care. PMID:26595866

  18. Tuberculosis of the central nervous system: overview of neuroradiological findings

    Bernaerts, A.; Vanhoenacker, F.M. [Department of Radiology, University of Antwerp, Wilrijkstraat 10, 2650 Edegem (Belgium); Department of Radiology, AZ St-Maarten, Campus Duffel, Rooienberg 25, 2750 Duffel (Belgium); Parizel, P.M.; Goethem, J.W.M. van; De Roeck, J.; De Schepper, A.M. [Department of Radiology, University of Antwerp, Wilrijkstraat 10, 2650 Edegem (Belgium); Altena, R. van [Tuberculosecentrum Beatrixoord, Dilgtweg 5, 9751 ND Haren (Netherlands); Laridon, A. [Department of Pediatrics, University of Antwerp, Wilrijkstraat 10, 2650 Edegem (Belgium); Coeman, V. [Department of Radiology, AZ St-Jan, Ruddershove 10, 8000 Brugge (Belgium)

    2003-08-01

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In addition to an extensive review of computed tomography and magnetic resonance features, the pathogenesis and the relevant clinical setting are discussed. Modern imaging is a cornerstone in the early diagnosis of CNS tuberculosis and may prevent unnecessary morbidity and mortality. Contrast-enhanced MR imaging is generally considered as the modality of choice in the detection and assessment of CNS tuberculosis. (orig.)

  19. Gemella morbillorum: an underestimated aetiology of central nervous system infection?

    Benedetti, Paolo; Rassu, Mario; Branscombe, Michele; Sefton, Armine; Pellizzer, Giampietro

    2009-12-01

    A case is reported of cerebellar abscess and diffuse cerebritis due to Gemella morbillorum. The clinical course was 'biphasic', developing with an acute meningeal infection followed shortly afterwards by suppuration in the cerebellar and cerebral parenchyma; this pattern seemed to suggest a latent survival of the aetiological agent, probably within the central nervous system (CNS), despite systemic antibiotic therapy. Based upon a review of cases so far described, infections of the CNS caused by G. morbillorum appear to be an emerging reality. PMID:19713361

  20. Tuberculosis of the central nervous system: overview of neuroradiological findings

    This article presents the range of manifestations of tuberculosis (TB) of the craniospinal axis. Central nervous system (CNS) infection with Mycobacterium tuberculosis occurs either in a diffuse form as basal exudative leptomeningitis or in a localized form as tuberculoma, abscess, or cerebritis. In addition to an extensive review of computed tomography and magnetic resonance features, the pathogenesis and the relevant clinical setting are discussed. Modern imaging is a cornerstone in the early diagnosis of CNS tuberculosis and may prevent unnecessary morbidity and mortality. Contrast-enhanced MR imaging is generally considered as the modality of choice in the detection and assessment of CNS tuberculosis. (orig.)

  1. Hypopituitarism as unusual sequelae to central nervous system tuberculosis

    S Mageshkumar

    2011-01-01

    Full Text Available Neurological tuberculosis can very rarely involve the hypophysis cerebri. We report a case of an eighteen year old female who presented with five months duration of generalised apathy, secondary amenorrhea and weight gain. She was on irregular treatment for tuberculosis of the central nervous system for the last five months. Neuroimaging revealed sellar and suprasellar tuberculomas and communicating hydrocephalus requiring emergency decompression. Endocrinological investigation showed hypopituitarism manifesting as pituitary hypothyroidism, hypocortisolism, hypogonadotropic hypogonadism, and hyperprolactinemia. Restarting anti-tuberculosis treatment, hormone replacement therapy, and a ventriculo-peritoneal shunt surgery led to remarkable improvement in the general condition of the patient.

  2. Involvement of central nervous system in the schistosomiasis

    Teresa Cristina de Abreu Ferrari

    2004-08-01

    Full Text Available The involvement of the central nervous system (CNS by schistosomes may or may not determine clinical manifestations. When symptomatic, neuroschistosomiasis (NS is one of the most severe presentations of schistosomal infection. Considering the symptomatic form, cerebral involvement is almost always due to Schistosoma japonicum and the spinal cord disease, caused by S. mansoni or S. haematobium. Available evidence suggests that NS depends basically on the presence of parasite eggs in the nervous tissue and on the host immune response. The patients with cerebral NS usually have the clinical manifestations of increased intracranial pressure associated with focal neurological signs; and those with schistosomal myeloradiculopathy (SMR present rapidly progressing symptoms of myelitis involving the lower cord, usually in association with the involvement of the cauda esquina roots. The diagnosis of cerebral NS is established by biopsy of the nervous tissue and SMR is usually diagnosed according to a clinical criterion. Antischistosomal drugs, corticosteroids and surgery are the resourses available for treating NS. The outcome is variable and is better in cerebral disease.

  3. Genetic perspectives on the ascidian central nervous system

    A Locascio

    2009-03-01

    Full Text Available In 2002, date of publication of the Ciona intestinalis genome, ascidians entered the post-genomic era. This tool had a fundamental role and has become the starting point for a series of new functional and genomic studies. Recently, great efforts have been done to characterize the genetic cascades of genes having a key role in early embryonic development and to draw the regulatory networks in which they are involved. In this review, we focused our attention on the last advances obtained in the attempt to clarify the complex molecular events governing ascidian central nervous system development with a special interest for anterior neural and sensory structures. We discussed the more recent theories on its early induction and late regionalization. In particular, we used some conserved genes fully or partially characterized as examples to compare ascidian and vertebrate central nervous system (CNS.By integrating the various results obtained with microarray, morpholino loss of function and promoter analyses, we showed that many progresses have been done to unravel the gene networks controlling early CNS induction and formation. Unfortunately, fewer advances have been done in the identification of the regulatory cascades controlling late CNS regionalization and sensory organs differentiation. Some results are discussed to point out the importance of fully characterizing also these specific regulatory cascades.

  4. Detection of BMAA in the human central nervous system.

    Berntzon, L; Ronnevi, L O; Bergman, B; Eriksson, J

    2015-04-30

    Amyotrophic lateral sclerosis (ALS) is an extremely devastating neurodegenerative disease with an obscure etiology. The amino acid β-N-methylamino-l-alanine (BMAA) produced by globally widespread phytoplankton has been implicated in the etiology of human motor neuron diseases [corrected]. BMAA was recently proven to be present in Baltic Sea food webs, ranging from plankton to larger Baltic Sea organisms, some serving as important food items (fish) for humans. To test whether exposure to BMAA in a Baltic Sea setting is reflected in humans, blood and cerebrospinal fluid (CSF) from individuals suffering from ALS were analyzed, together with sex- and age-matched individuals not inflicted with ALS. Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and multiple reaction monitoring (MRM), in conjunction with diagnostic transitions revealed BMAA in three (12%) of the totally 25 Swedish individuals tested, with no preference for those suffering from ALS. The three BMAA-positive samples were all retrieved from the CSF, while BMAA was not detected in the blood. The data show that BMAA, potentially originating from Baltic Sea phytoplankton, may reach the human central nervous system, but does not lend support to the notion that BMAA is resident specifically in ALS-patients. However, while dietary exposure to BMAA may be intermittent and, if so, difficult to detect, our data provide the first demonstration of BMAA in the central nervous system of human individuals ante mortem quantified with UHPLC-MS/MS, and therefore calls for extended research efforts. PMID:25725357

  5. A Rare Case of Central Nervous System Tuberculosis

    Ravish Parekh

    2014-01-01

    Full Text Available Intracranial abscess is an extremely rare form of central nervous system (CNS tuberculosis (TB. We describe a case of central nervous system tuberculous abscess in absence of human immunodeficiency virus (HIV infection. A 82-year-old Middle Eastern male from Yemen was initially brought to the emergency room due to altered mental status and acute renal failure. Cross-sectional imaging revealed multiple ring enhancing lesions located in the left cerebellum and in bilateral frontal lobe as well as in the inferior parietal lobe on the left. The patient was placed on an empiric antibiotic regimen. Preliminary testing for infectious causes was negative. Chest radiography and CT of chest showed no positive findings. He was not on any immunosuppressive medications and human immunodeficiency virus (HIV enzyme immunoassay (EIA test was negative. A subsequent MRI one month later showed profound worsening of the lesions with increasing vasogenic edema and newly found mass effect impinging on the fourth ventricle. Brain biopsy showed focal exudative cerebellitis and inflamed granulation tissue consistent with formation of abscesses. The diagnosis of CNS TB was finally confirmed by positive acid-fast bacilli (AFB cultures. The patient was started on standard tuberculosis therapy but expired due to renal failure and cardiac arrest.

  6. Prolactin gene expression in primary central nervous system tumors

    Mendes Graziella Alebrant

    2013-01-01

    Full Text Available Abstract Background Prolactin (PRL is a hormone synthesized in both the pituitary gland and extrapituitary sites. It has been associated with the occurrence of neoplasms and, more recently, with central nervous system (CNS neoplasms. The aim of this study was to evaluate prolactin expression in primary central nervous system tumors through quantitative real-time PCR and immunohistochemistry (IH. Results Patient mean age was 49.1 years (SD 15.43, and females accounted for 70% of the sample. The most frequent subtype of histological tumor was meningioma (61.5%, followed by glioblastoma (22.9%. Twenty cases (28.6% showed prolactin expression by immunohistochemistry, most of them females (18 cases, 90%. Quantitative real-time PCR did not show any prolactin expression. Conclusions Despite the presence of prolactin expression by IH, the lack of its expression by quantitative real-time PCR indicates that its presence in primary tumors in CNS is not a reflex of local production.

  7. Clinical application of MRI to fetal central nervous system

    Objective: To explore the value of MRI on fetal central nervous system. Methods: Twenty-four women with complicated pregnancies, aged from 22 to 32 years (average 27 years) and with gestation from 23-39 weeks (average 30 weeks) were studied with a 1.5T superconductive MR unit within 24 hours after ultrasound studies. T2-weighted MR imaging was performed using HASTE and T1-weighted MR imaging was using FLASH. Comparison of the diagnosis of MRI and ultrasound were done with autopsy or postnatal follow-up MRI. Results: Of the 24 cases, 24 fetus were found. The fetal brain, gyrus, sulcus, corpus callosum, thalamus, cerebellum, brain stem, and spinal cord were shown more clearly on MR T2-weighted images. T1-weighted images were not as good as T2-weighted images. Twenty-seven lesions were visualized by ultrasound and thirty-one by MRI in these twenty-four fetuses. By MRI study, two cases were conformed their ultrasound diagnosis, ten cases were completed their ultrasound diagnosis, and twelve cases were made the same diagnosis as ultrasound. Conclusion: MR has advantages in displaying fetal central nervous system anatomy over ultrasound, the quality of MR images is not affected by maternal somatotype, volume of amniotic fluid, fetal skull and the pelvic skeleton of pregnant women. Based on ultrasound, MR imaging is a valuable complement to sonography in difficult cases, it can conforming, completing, even more correcting the diagnosis made by ultrasound. (authors)

  8. Engineering Biomaterial Properties for Central Nervous System Applications

    Rivet, Christopher John

    Biomaterials offer unique properties that are intrinsic to the chemistry of the material itself or occur as a result of the fabrication process; iron oxide nanoparticles are superparamagnetic, which enables controlled heating in the presence of an alternating magnetic field, and a hydrogel and electrospun fiber hybrid material provides minimally invasive placement of a fibrous, artificial extracellular matrix for tissue regeneration. Utilization of these unique properties towards central nervous system disease and dysfunction requires a thorough definition of the properties in concert with full biological assessment. This enables development of material-specific features to elicit unique cellular responses. Iron oxide nanoparticles are first investigated for material-dependent, cortical neuron cytotoxicity in vitro and subsequently evaluated for alternating magnetic field stimulation induced hyperthermia, emulating the clinical application for enhanced chemotherapy efficacy in glioblastoma treatment. A hydrogel and electrospun fiber hybrid material is first applied to a rat brain to evaluate biomaterial interface astrocyte accumulation as a function of hybrid material composition. The hybrid material is then utilized towards increasing functional engraftment of dopaminergic progenitor neural stem cells in a mouse model of Parkinson's disease. Taken together, these two scenarios display the role of material property characterization in development of biomaterial strategies for central nervous system repair and regeneration.

  9. Radiobiology of Radiosurgery for the Central Nervous System

    Antonio Santacroce

    2013-01-01

    Full Text Available According to Leksell radiosurgery is defined as “the delivery of a single, high dose of irradiation to a small and critically located intracranial volume through the intact skull.” Before its birth in the early 60s and its introduction in clinical therapeutic protocols in late the 80s dose application in radiation therapy of the brain for benign and malignant lesions was based on the administration of cumulative dose into a variable number of fractions. The rationale of dose fractionation is to lessen the risk of injury of normal tissue surrounding the target volume. Radiobiological studies of cell culture lines of malignant tumors and clinical experience with patients treated with conventional fractionated radiotherapy helped establishing this radiobiological principle. Radiosurgery provides a single high dose of radiation which translates into a specific toxic radiobiological response. Radiobiological investigations to study the effect of high dose focused radiation on the central nervous system began in late the 50s. It is well known currently that radiobiological principles applied for dose fractionation are not reproducible when single high dose of ionizing radiation is delivered. A review of the literature about radiobiology of radiosurgery for the central nervous system is presented.

  10. Involvement of the central nervous system in myotonic dystrophy

    In order to evaluate the central nervous system involvement in myotonic dystrophy, intelligence quotient (IQ), brain CT scan, EEG and pattern-reversal visual evoked potential (VEP) were analyzed in 10 patients with myotonic dystrophy. Impaired intelligence was observed in 9 out of 10 patients, abnormal brain CT in 7, and EEG abnormality in 7. The brain CT showed a diffuse cortical atrophy, a dilatation of the ventricles, and a periventricular lucency, mainly around the anterior horn of the lateral ventricle. The EEG findings showed a tendency toward generalized slowing of the background activity. These abnormal findings were well related to the clinical severity of MD, indicating that there is a diffuse cerebral involvement in the majority of the MD patients. VEP showed a prolonged P100 latency in 5 out of 10 patints, or 7 out of 19 eyes examined. These prolonged latency of the P100 component was considered to be due to dysfunctions of the visual pathway in the cerebral hemisphere, rather than due to cataracts and retinal dysfunctions because it was observed only in moderate and severe cases. These severe and moderate cases showed abnormalities in all four examinations. It was concluded that combination of different parameters might be useful to evaluate the central nervous system involvement in patients with MD. (author)

  11. Focal lesions in the central nervous system: stereotaxic radioneurosurgery

    The application of heavy-ion beams for fundamental and applied brain research has unusual potential. Methods are being developed in our laboratory for producing focal lesions in the central nervous system (e.g., the hypothalamus, thalamus, pituitary gland) to investigate nerve pathways and neuroendocrine responses, and for treating certain pathological disorders of the brain with stereotaxic Bragg peak heavy-ion radiosurgery. Studies in animals are demonstrating the value of this neuroscience tool for investigating mammalian brain response to induction of discrete focal lesions in the hypothalamus or in the cerebral cortex. These studies are also elucidating the neuroendocrinological response follwing ablation of various portions of the midbrain, without requiring complex neurosurgical preparations. Clinical studies are demonstrating the feasibility of stereotaxic neurological radiosurgery for treating certain inoperable vascular disorders of the brain [e.g., arteriovenous malformations (AVM), internal carotid artery-cavernous sinus fistulas and other cerebrovascular disorders] in patients who are already demonstrating progressive neurological deficit. Further applications of focal lesion production with the Bragg ionization peak can be extended to include localized radiation to centers of the brain and spinal cord for treatment of such disorders as Parkinson's disease, pituitary microadenomas, acoustic neuromas, and the control of pain. The eventual application of radioactive beams will provide accurate localization of the stopping points of the beam, thereby making it feasible to stop the beam accurately at a defined depth within the central nervous system

  12. Astrocyte scar formation aids central nervous system axon regeneration.

    Anderson, Mark A; Burda, Joshua E; Ren, Yilong; Ao, Yan; O'Shea, Timothy M; Kawaguchi, Riki; Coppola, Giovanni; Khakh, Baljit S; Deming, Timothy J; Sofroniew, Michael V

    2016-04-14

    Transected axons fail to regrow in the mature central nervous system. Astrocytic scars are widely regarded as causal in this failure. Here, using three genetically targeted loss-of-function manipulations in adult mice, we show that preventing astrocyte scar formation, attenuating scar-forming astrocytes, or ablating chronic astrocytic scars all failed to result in spontaneous regrowth of transected corticospinal, sensory or serotonergic axons through severe spinal cord injury (SCI) lesions. By contrast, sustained local delivery via hydrogel depots of required axon-specific growth factors not present in SCI lesions, plus growth-activating priming injuries, stimulated robust, laminin-dependent sensory axon regrowth past scar-forming astrocytes and inhibitory molecules in SCI lesions. Preventing astrocytic scar formation significantly reduced this stimulated axon regrowth. RNA sequencing revealed that astrocytes and non-astrocyte cells in SCI lesions express multiple axon-growth-supporting molecules. Our findings show that contrary to the prevailing dogma, astrocyte scar formation aids rather than prevents central nervous system axon regeneration. PMID:27027288

  13. Applications of Nanotechnology to the Central Nervous System

    Blumling, James P., II

    Nanotechnology and nanomaterials, in general, have become prominent areas of academic research. The ability to engineer at the nano scale is critical to the advancement of the physical and medical sciences. In the realm of physical sciences, the applications are clear: smaller circuitry, more powerful computers, higher resolution intruments. However, the potential impact in the fields of biology and medicine are perhaps even grander. The implementation of novel nanodevices is of paramount importance to the advancement of drug delivery, molecular detection, and cellular manipulation. The work presented in this thesis focuses on the development of nanotechnology for applications in neuroscience. The nervous system provides unique challenges and opportunities for nanoscale research. This thesis discusses some background in nanotechnological applications to the central nervous system and details: (1) The development of a novel calcium nanosenser for use in neurons and astrocytes. We implemented the calcium responsive component of Dr. Roger Tsien's Cameleon sensor, a calmodulin-M13 fusion, in the first quantum dot-based calcium sensor. (2) The exploration of cell-penetrating peptides as a delivery mechanism for nanoparticles to cells of the nervous system. We investigated the application of polyarginine sequences to rat primary cortical astrocytes in order to assess their efficacy in a terminally differentiated neural cell line. (3) The development of a cheap, biocompatible alternative to quantum dots for nanosensor and imaging applications. We utilized a positively charged co-matrix to promote the encapsulation of free sulforhodamine B in silica nanoparticles, a departure from conventional reactive dye coupling to silica matrices. While other methods have been invoked to trap dye not directly coupled to silica, they rely on positively charged dyes that typically have a low quantum yield and are not extensively tested biologically, or they implement reactive dyes bound

  14. Materials directed to implants for repairing Central Nervous System

    Central Nervous System (CNS) can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as secondary injury. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon. (Author)

  15. Materials directed to implants for repairing Central Nervous System

    Canillas, M.; Moreno-Burriel, B.; Chinarro, E.

    2014-07-01

    Central Nervous System (CNS) can be damaged by a wide range of injuries and disorders which entail permanent disability in some cases. Moreover, CNS repairing process presents some complications. The natural repair mechanism, which consists on the glial scar formation, is triggered by the inflammatory process. Molecules delivered during these processes, inflammation and glial scar formation as well as oxygen and glucose deficiencies due to the injury, create an inhibitory environment for axon regeneration and remyelination which is known as secondary injury. Biomaterials are taking up an even more important role in repairing CNS. Physicochemical properties of some ceramic materials have inspired different applications to repair CNS as substrates, electrodes or molecule vehicles. Based on their biocompatibility, capability to neutralize reactive species involved in the inflammatory processes and their versatile processing to obtain scaffolds with different shapes and sizes, ceramics are a succulent offer in nervous tissue engineering. Furthermore, their possibilities have been increased with polymeric-ceramics composites development, which have given rise to new interesting horizon. (Author)

  16. Glycosaminoglycans and Glycomimetics in the Central Nervous System

    Dáire Rowlands

    2015-02-01

    Full Text Available With recent advances in the construction of synthetic glycans, selective targeting of the extracellular matrix (ECM as a potential treatment for a wide range of diseases has become increasingly popular. The use of compounds that mimic the structure or bioactive function of carbohydrate structures has been termed glycomimetics. These compounds are mostly synthetic glycans or glycan-binding constructs which manipulate cellular interactions. Glycosaminoglycans (GAGs are major components of the ECM and exist as a diverse array of differentially sulphated disaccharide units. In the central nervous system (CNS, they are expressed by both neurons and glia and are crucial for brain development and brain homeostasis. The inherent diversity of GAGs make them an essential biological tool for regulating a complex range of cellular processes such as plasticity, cell interactions and inflammation. They are also involved in the pathologies of various neurological disorders, such as glial scar formation and psychiatric illnesses. It is this diversity of functions and potential for selective interventions which makes GAGs a tempting target. In this review, we shall describe the molecular make-up of GAGs and their incorporation into the ECM of the CNS. We shall highlight the different glycomimetic strategies that are currently being used in the nervous system. Finally, we shall discuss some possible targets in neurological disorders that may be addressed using glycomimetics.

  17. GABA-ergic neurons in the leach central nervous system

    GABA is a candidate for an inhibitory neurotransmitter in the leech central nervous system because of the well-documented inhibitory action of GABA in other invertebrates. To demonstrate that GABA meets the criteria used to identify a substance as a neurotransmitter, the author examined GABA metabolism and synaptic interactions of inhibitory motor neurons in two leech species, Hirudo medicinalis and Haementeria ghilianii. Segmental ganglia of the leech ventral nerve cord and identified inhibitors have the capacity to synthesize GABA when incubated in the presence of the precursor glutamate. Application of GABA to cell bodies of excitatory motor neurons or muscle fibers innervated by the inhibitors hyperpolarizes the membrane potential of the target cell and activates a chloride ion conductance channel, similar to the inhibitory membrane response following intracellular stimulation of the inhibitor. Bicuculline methiodide (5 x 10-5M), GABA receptor antagonist, blocks reversibly the response to applied GABA and the inhibitory synaptic inputs onto the postsynaptic neurons or muscle fibers without interfering with their excitatory inputs. Furthermore, the inhibitors are included among approximately 25 neurons per segmental ganglion that take up GABA by a high affinity uptake system, as revealed by 3H-GABA-autoradiography. The development of the capacities to synthesize and to take up GABA were examined in leech embryos. The embryos are able to synthesize GABA at early stages of the development of the nervous system, before any neurons have extended neutrites

  18. Primary Central Nervous System Vasculitis With Optic Nerve Involvement.

    Benson, Christy E; Knezevic, Alexander; Lynch, Shannon C

    2016-06-01

    A 20-year-old woman presented with headache, decreased vision, eye pain, and urinary retention. During her clinical course, visual acuity declined to 20/800, right eye, and 20/50, left eye, associated with bilateral optic disc edema. Brain magnetic resonance imaging revealed enhancement of the leptomeninges, right optic nerve, and right side of the optic chiasm. Extensive evaluation of the central nervous system (CNS) for an infectious cause was negative. Brain biopsy showed a pattern consistent with vasculitis. The patient was treated with prednisone and cyclophosphamide, resulting in improvement of her vision and systemic symptoms. Primary CNS vasculitis is a rare condition that may affect the anterior visual pathways. PMID:26693942

  19. Primary angiitis of the central nervous system: a case report

    YU Xiao-lin; LIU Ai-fen; MA Lin; YAN Chuan-zhu; ZHAO Yu-ying; SHAN Pei-yan

    2011-01-01

    Primary angiitis of the central nervous system is a rare and difficult entity.Here we represented the clinical and pathological features of a patient with little response to steroid before definite diagnosis.The 50-year-old male had a fluctuating disease course for more than 3 years.He presented visual disorders,seizure,cognitive impairment,hypersomnia,unsteady gait,dysphasia,dysphagia,and incontinence.Magnetic resonance imaging showed multiple,supratentorial and infratentorial abnormal signals,while cerebrospinal fluid and cerebral angiography were normal.Magnetic resonance spectrum showed a decrease of N-acetyl-aspartate.Brain biopsy revealed nongranulomatous lymphatic vasculitis with reactive gliosis,cicatrization,demyelination and focal hemorrhages.

  20. Immune response induction in the central nervous system

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...... and/or demyelinating pathology. This article will review the molecular and cellular dynamics of immune responses in the CNS, with particular emphasis on autoimmune inflammation, as has been studied in the authors' laboratory....

  1. Multifaceted interactions between adaptive immunity and the central nervous system.

    Kipnis, Jonathan

    2016-08-19

    Neuroimmunologists seek to understand the interactions between the central nervous system (CNS) and the immune system, both under homeostatic conditions and in diseases. Unanswered questions include those relating to the diversity and specificity of the meningeal T cell repertoire; the routes taken by immune cells that patrol the meninges under healthy conditions and invade the parenchyma during pathology; the opposing effects (beneficial or detrimental) of these cells on CNS function; the role of immune cells after CNS injury; and the evolutionary link between the two systems, resulting in their tight interaction and interdependence. This Review summarizes the current standing of and challenging questions related to interactions between adaptive immunity and the CNS and considers the possible directions in which these aspects of neuroimmunology will be heading over the next decade. PMID:27540163

  2. Adult neural stem cells in the mammalian central nervous system

    Dengke K Ma; Michael A Bonaguidi; Guo-li Ming; Hongjun Song

    2009-01-01

    Neural stem cells (NSCs) are present not only during the embryonic development but also in the adult brain of all mammalian species, including humans. Stem cell niche architecture in vivo enables adult NSCs to continuously generate functional neurons in specific brain regions throughout life. The adult neurogenesis process is subject to dynamic regulation by various physiological, pathological and pharmacological stimuli. Multipotent adult NSCs also appear to be intrinsically plastic, amenable to genetic programing during normal differentiation, and to epigenetic reprograming during de-differentiation into pluripotency. Increasing evidence suggests that adult NSCs significantly contribute to specialized neural functions under physiological and pathological conditions. Fully understanding the biology of adult NSCs will provide crucial insights into both the etiology and potential therapeutic interventions of major brain disorders. Here, we review recent progress on adult NSCs of the mammalian central nervous system, in-cluding topics on their identity, niche, function, plasticity, and emerging roles in cancer and regenerative medicine.

  3. Breast cancer metastasis to the central nervous system.

    Weil, Robert J; Palmieri, Diane C; Bronder, Julie L; Stark, Andreas M; Steeg, Patricia S

    2005-10-01

    Clinically symptomatic metastases to the central nervous system (CNS) occur in approximately 10 to 15% of patients with metastatic beast cancer. CNS metastases are traditionally viewed as a late complication of systemic disease, for which few effective treatment options exist. Recently, patients with Her-2-positive breast tumors who were treated with trastuzumab have been reported to develop CNS metastases at higher rates, often while responding favorably to treatment. The blood:brain barrier and the unique brain microenvironment are hypothesized to promote distinct molecular features in CNS metastases that may require tailored therapeutic approaches. New research approaches using cell lines that reliably and preferentially metastasize in vivo to the brain have been reported. Using such model systems, as well as in vitro analogs of blood-brain barrier penetration and tissue-based studies, new molecular leads into this disease are unfolding. PMID:16192626

  4. Central nervous system hypoxia in children due to near drowning

    Fourteen children who experienced acute, profound central nervous system hypoxia secondary to near drowning, aspiration, or respiratory arrest underwent CT examination. During the first week after the episode, the most frequent finding was a loss of gray-white matter differentiation. Other findings included effacement of sulci and cisterns, focal areas of edema in the cerebral cortex or basal ganglia, and hemorrhagic infarctions of the basal ganglia. Subsequent CT scans obtained from two weeks to five months after the hypoxic episode showed progression of cerebral loss from cortical infarction with gyral hemorrhage and enhancement to global parenchymal atrophy. The prognosis is poor in these patients: seven children experienced severe neurologic deficits and seven died

  5. Studies on central nervous system serotonin receptors in mood disorders.

    Young, A; Goodwin, G M

    1991-01-01

    The evidence from studies of central nervous system serotonin (5-HT) receptors is reviewed and the role of these in the pathogenesis of mood disorders is discussed. Clinical evidence indicates that 5-HT function is abnormal in mood disorders. 5-HT precursors and selective inhibitors of 5-HT uptake are effective antidepressives and inhibition of 5-HT synthesis can block the action of antidepressives. Studies of 5-HT in experimental animals after chronic administration of antidepressive treatments suggest that intact 5-HT neurons are necessary for the action of these treatments. Multiple 5-HT receptor subtypes have recently been identified and the effects of chronic antidepressive treatment on some receptor subtypes function in experimental animals have been established. The increasing availability of powerful new in vivo imaging techniques like single photon emission tomography (SPET), and positron emission tomography (PET) may make possible a more direct examination of 5-HT receptor function in patients suffering from mood disorders. PMID:2029163

  6. Outcomes of persons with blastomycosis involving the central nervous system.

    Bush, Jonathan W; Wuerz, Terry; Embil, John M; Del Bigio, Marc R; McDonald, Patrick J; Krawitz, Sherry

    2013-06-01

    Blastomyces dermatitidis is a dimorphic fungus which is potentially life-threatening if central nervous system (CNS) dissemination occurs. Sixteen patients with proven or probable CNS blastomycosis are presented. Median duration of symptoms was 90 days; headache and focal neurologic deficit were the most common presenting symptoms. Magnetic resonance imaging (MRI) consistently demonstrated an abnormality, compared to 58% of computed tomography scans. Tissue culture yielded the pathogen in 71% of histology-confirmed cases. All patients who completed treatment of an amphotericin B formulation and extended azole-based therapy did not relapse. Initial nonspecific symptoms lead to delayed diagnosis of CNS blastomycosis. A high index of suspicion is necessary if there is history of contact with an area where B. dermatitidis is endemic. Diagnostic tests should include MRI followed by biopsy for tissue culture and pathology. Optimal treatment utilizes a lipid-based amphotericin B preparation with an extended course of voriconazole. PMID:23566338

  7. Radiation therapy for primary central nervous system lymphoma

    Yuta Shibamoto

    2013-09-01

    Full Text Available Up until the late 1970s, radiation therapy played an important role in the treatment of primary central nervous system lymphoma (PCNSL but more recently its role has changed due to the increased use of systemic chemotherapy. In this article, the current status of radiotherapy for PCNSL and optimal forms of radiotherapy, including the treatment volume and radiation dose, are discussed. Data from nationwide Japanese surveys of PCNSL patients treated with radiation therapy suggest that the prognosis of PCNSL patients improved during the 1990s, in part due to the use of high-dose methotrexate-containing chemotherapy. The prognosis of patients treated with radiation alone also improved. Radiotherapy still seems to play an important role in the attempt to cure this disease.

  8. Evolving character of chronic central nervous system HIV infection.

    Price, Richard W; Spudich, Serena S; Peterson, Julia; Joseph, Sarah; Fuchs, Dietmar; Zetterberg, Henrik; Gisslén, Magnus; Swanstrom, Ronald

    2014-02-01

    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS) begins early in systemic infection and continues throughout its untreated course. Despite a common cerebrospinal fluid inflammatory response, it is usually neurologically asymptomatic for much of this course, but can evolve in some individuals to HIV-associated dementia (HAD), a severe encephalopathy with characteristic cognitive and motor dysfunction. While widespread use of combination antiretroviral therapy (ART) has led to a marked decline in both the CNS infection and its neurologic severe consequence, HAD continues to afflict individuals presenting with advanced systemic infection in the developed world and a larger number in resource-poor settings where ART is more restricted. Additionally, milder CNS injury and dysfunction have broader prevalence, including in those treated with ART. Here we review the history and evolving nomenclature of HAD, its viral pathogenesis, clinical presentation and diagnosis, and treatment. PMID:24715483

  9. Central nervous system lymphoma: magnetic resonance imaging features at presentation

    Ricardo Schwingel

    2012-02-01

    Full Text Available OBJECTIVE: This paper aimed at studying presentations of the central nervous system (CNS lymphoma using structural images obtained by magnetic resonance imaging (MRI. METHODS: The MRI features at presentation of 15 patients diagnosed with CNS lymphoma in a university hospital, between January 1999 and March 2011, were analyzed by frequency and cross tabulation. RESULTS: All patients had supratentorial lesions; and four had infra- and supratentorial lesions. The signal intensity on T1 and T2 weighted images was predominantly hypo- or isointense. In the T2 weighted images, single lesions were associated with a hypointense signal component. Six patients presented necrosis, all of them showed perilesional abnormal white matter, nine had meningeal involvement, and five had subependymal spread. Subependymal spread and meningeal involvement tended to occur in younger patients. CONCLUSION: Presentations of lymphoma are very pleomorphic, but some of them should point to this diagnostic possibility.

  10. Cell fate control in the developing central nervous system

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals

  11. Central nervous system infections caused by varicella-zoster virus.

    Chamizo, Francisco J; Gilarranz, Raúl; Hernández, Melisa; Ramos, Diana; Pena, María José

    2016-08-01

    We carried out a clinical and epidemiological study of adult patients with varicella-zoster virus central nervous system infection diagnosed by PCR in cerebrospinal fluid. Twenty-six patients were included. Twelve (46.2 %) patients were diagnosed with meningitis and fourteen (53.8 %) with meningoencephalitis. Twelve (46.2 %) had cranial nerves involvement (mainly the facial (VII) and vestibulocochlear (VIII) nerves), six (23.1 %) had cerebellar involvement, fourteen (53.8 %) had rash, and four (15.4 %) developed Ramsay Hunt syndrome. Three (11.5 %) patients had sequelae. Length of stay was significantly lower in patients diagnosed with meningitis and treatment with acyclovir was more frequent in patients diagnosed with meningoencephalitis. We believe routine detection of varicella-zoster virus, regardless of the presence of rash, is important because the patient may benefit from a different clinical management. PMID:26769041

  12. Neuroinvasion and Inflammation in Viral Central Nervous System Infections

    Schroten, Horst

    2016-01-01

    Neurotropic viruses can cause devastating central nervous system (CNS) infections, especially in young children and the elderly. The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) have been described as relevant sites of entry for specific viruses as well as for leukocytes, which are recruited during the proinflammatory response in the course of CNS infection. In this review, we illustrate examples of established brain barrier models, in which the specific reaction patterns of different viral families can be analyzed. Furthermore, we highlight the pathogen specific array of cytokines and chemokines involved in immunological responses in viral CNS infections. We discuss in detail the link between specific cytokines and chemokines and leukocyte migration profiles. The thorough understanding of the complex and interrelated inflammatory mechanisms as well as identifying universal mediators promoting CNS inflammation is essential for the development of new diagnostic and treatment strategies. PMID:27313404

  13. Magnetic resonance imaging in central nervous system tuberculosis

    Tuberculosis (TB) in any form is a devastating disease, which in its most severe form involves the central nervous system (CNS), with a high mortality and morbidity. Early diagnosis of CNS TB is necessary for appropriate treatment to reduce this morbidity and mortality. Routine diagnostic techniques involve culture and immunological tests of the tissue and biofluids, which are time-consuming and may delay definitive management. Noninvasive imaging modalities such as computed tomography (CT) scan and magnetic resonance imaging (MRI) are routinely used in the diagnosis of neurotuberculosis, with MRI offering greater inherent sensitivity and specificity than CT scan. In addition to conventional MRI imaging, magnetization transfer imaging, diffusion imaging, and proton magnetic resonance spectroscopy techniques are also being evaluated for better tissue characterization in CNS TB. The current article reviews the role of various MRI techniques in the diagnosis and management of CNS TB

  14. Epidemiology of primary central nervous system tumors in Estonia.

    Liigant, A; Asser, T; Kulla, A; Kaasik, A E

    2000-01-01

    During the period from 1986 to 1996, 1,665 cases of primary central nervous system (CNS) tumors were identified in the resident population of Estonia. Histological verification was available in 81% of the cases. Gliomas were more common in men, while meningiomas and neurinomas were more common in women. No significant difference was observed between the sexes for all primary CNS tumors. The age-specific incidence increased from the age of 30, reached a maximum in the age range of 50-69 years and declined in the elderly which may reflect under-diagnosis. The age-adjusted incidence rate for CNS tumors was 8.5/100,000 population. A comparison of our results with those of a previous study carried out in Estonia revealed a significant histology-specific increase in incidence in all age groups. PMID:11060504

  15. Cell fate control in the developing central nervous system

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  16. Fungal Infections of the Central Nervous System: A Pictorial Review.

    Gavito-Higuera, Jose; Mullins, Carola Birgit; Ramos-Duran, Luis; Olivas Chacon, Cristina Ivette; Hakim, Nawar; Palacios, Enrique

    2016-01-01

    Fungal infections of the central nervous system (CNS) pose a threat to especially immunocompromised patients and their development is primarily determined by the immune status of the host. With an increasing number of organ transplants, chemotherapy, and human immunodeficiency virus infections, the number of immunocompromised patients as susceptible hosts is growing and fungal infections of the CNS are more frequently encountered. They may result in meningitis, cerebritis, abscess formation, cryptococcoma, and meningeal vasculitis with rapid disease progression and often overlapping symptoms. Although radiological characteristics are often nonspecific, unique imaging patterns can be identified through computer tomography as a first imaging modality and further refined by magnetic resonance imaging. A rapid diagnosis and the institution of the appropriate therapy are crucial in helping prevent an often fatal outcome. PMID:27403402

  17. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    Theodore S. Johnson

    2012-01-01

    Full Text Available Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.

  18. Radiologic findings of cysticercosis involving central nervous system

    The diagnosis of cysticercosis of central nervous system should be considered in patients with seizures, symptoms of increased I.C.P. or focal neurologic sign, with a history of having lived in an endemic area, particularly in Korea. Since these cysts usually continue to grew and medical treatment is very limited it is important to identify them and consider the feasibility of removing them surgically. 20 cases of surgically proven cysticercosis of the central nervous system were radiologically analyzed, experienced at Seoul National University Hospital. Radiologic studies include plain radiography of the skull, angiography, and CT scanning which is especially effective in diagnosis of diffuse parenchymal cysticercosis.The results are as follows: 1. Male to female ratio is 11 : 9 and mean age of the patients is 36 years. The cardinal symptoms and sign are seizures (50%), symptoms of increased I.C.P. (45%). mental change (20%) and focal neurologic sign (20%). 2. The distribution od cysts are cerebral parenchymal (40%), 4th ventricle (30%), 3rd ventricle (10%), leptomeningeal (30%), and intraspinal form (15%). 3. Simple skull film shows sign of increased I.C.P. (25%) but no case of calcification. In carotid angiography hydrocephalus is detected in all 13 cases. Displacement of adjacent vessels is seen n 2 cases of parenchymal form. Ventriculography shows dilated ventricles with free floating avoid filling defect in intraventricular form and 4th ventricle obstruction in leptomeningeal form. 4. Of spinal cysticercosis 2 cases are leptomeningeal and 1 case intramedullary form. 2 case are found in cervical portion and 1 case in cauda equina region. Myelography reveals filling defect not distinguishable from other tumorous condition.

  19. Radiologic findings of cysticercosis involving central nervous system

    Kim, Ki Hwan; Chang, Kee Hyun; Kang, Ik Won; Han, Man Chung; Choi, Kil Soo; Sim, Bo Sung [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1979-12-15

    The diagnosis of cysticercosis of central nervous system should be considered in patients with seizures, symptoms of increased I.C.P. or focal neurologic sign, with a history of having lived in an endemic area, particularly in Korea. Since these cysts usually continue to grew and medical treatment is very limited it is important to identify them and consider the feasibility of removing them surgically. 20 cases of surgically proven cysticercosis of the central nervous system were radiologically analyzed, experienced at Seoul National University Hospital. Radiologic studies include plain radiography of the skull, angiography, and CT scanning which is especially effective in diagnosis of diffuse parenchymal cysticercosis.The results are as follows: 1. Male to female ratio is 11 : 9 and mean age of the patients is 36 years. The cardinal symptoms and sign are seizures (50%), symptoms of increased I.C.P. (45%). mental change (20%) and focal neurologic sign (20%). 2. The distribution od cysts are cerebral parenchymal (40%), 4th ventricle (30%), 3rd ventricle (10%), leptomeningeal (30%), and intraspinal form (15%). 3. Simple skull film shows sign of increased I.C.P. (25%) but no case of calcification. In carotid angiography hydrocephalus is detected in all 13 cases. Displacement of adjacent vessels is seen n 2 cases of parenchymal form. Ventriculography shows dilated ventricles with free floating avoid filling defect in intraventricular form and 4th ventricle obstruction in leptomeningeal form. 4. Of spinal cysticercosis 2 cases are leptomeningeal and 1 case intramedullary form. 2 case are found in cervical portion and 1 case in cauda equina region. Myelography reveals filling defect not distinguishable from other tumorous condition.

  20. Radiation therapy for histologically confirmed primary central nervous system germinoma

    Purpose: To evaluate survival and patterns of recurrence in patients with primary central nervous system germinoma treated with radiation therapy. Methods and Materials: Data regarding 48 patients with histologically confirmed, primary central nervous system germinoma were reviewed. All had been operated on at the Mayo Clinic between the years 1935 and 1993. Thirty-two patients (67%) were treated since 1973. The study group included 39 males and 9 females, with a median age at diagnosis of 17 years (range, 6-42 years). Twelve patients (25%) were treated with craniospinal axis irradiation, 11 (23%) received whole-brain irradiation without spinal axis irradiation, and 24 (50%) underwent partial-brain irradiation. Treatment volumes were unknown in one patient. The median dose to the primary tumor was 44.00 Gy (range, 7.44-59.40 Gy). The median follow-up was 5.5 years (range, 4 months to 37 years). Results: Actuarial 5-year and 10-year survival for the entire study group of patients was 80%. There was a trend toward improved survival in patients treated after 1973 (introduction of computed tomography) with 5-year and 10-year survival of 91% vs. 63% in prior years (p = 0.07). For the group of 31 patients treated since 1973 with known treatment volumes, the spinal axis failure rate at 5 years was 49% for patients treated with partial brain fields (11 patients) vs. 0% for those having undergone whole brain (10 patients) or craniospinal axis (10 patients) irradiation (p 0.007). The rate of brain failure was also significantly higher in patients receiving less than whole-brain irradiation; at 5 years, 45% of the patients treated with partial-brain fields had intracranial recurrence of disease compared to 6% of patients treated with craniospinal axis or whole-brain irradiation (p 0.01). Among the 32 modern era patients, the rate of brain failure was higher in patients who received doses less than 40 Gy (median dose, 48.55 Gy; range, 30.60-59.40 Gy) to the primary tumor (5

  1. Evolution of bilaterian central nervous systems: a single origin?

    Holland, Linda Z; Carvalho, João E; Escriva, Hector; Laudet, Vincent; Schubert, Michael; Shimeld, Sebastian M; Yu, Jr-Kai

    2013-01-01

    The question of whether the ancestral bilaterian had a central nervous system (CNS) or a diffuse ectodermal nervous system has been hotly debated. Considerable evidence supports the theory that a CNS evolved just once. However, an alternative view proposes that the chordate CNS evolved from the ectodermal nerve net of a hemichordate-like ancestral deuterostome, implying independent evolution of the CNS in chordates and protostomes. To specify morphological divisions along the anterior/posterior axis, this ancestor used gene networks homologous to those patterning three organizing centers in the vertebrate brain: the anterior neural ridge, the zona limitans intrathalamica and the isthmic organizer, and subsequent evolution of the vertebrate brain involved elaboration of these ancestral signaling centers; however, all or part of these signaling centers were lost from the CNS of invertebrate chordates. The present review analyzes the evidence for and against these theories. The bulk of the evidence indicates that a CNS evolved just once - in the ancestral bilaterian. Importantly, in both protostomes and deuterostomes, the CNS represents a portion of a generally neurogenic ectoderm that is internalized and receives and integrates inputs from sensory cells in the remainder of the ectoderm. The expression patterns of genes involved in medio/lateral (dorso/ventral) patterning of the CNS are similar in protostomes and chordates; however, these genes are not similarly expressed in the ectoderm outside the CNS. Thus, their expression is a better criterion for CNS homologs than the expression of anterior/posterior patterning genes, many of which (for example, Hox genes) are similarly expressed both in the CNS and in the remainder of the ectoderm in many bilaterians. The evidence leaves hemichordates in an ambiguous position - either CNS centralization was lost to some extent at the base of the hemichordates, or even earlier, at the base of the hemichordates

  2. The Central Nervous in system Rhabdoid tumor primitive

    Primitive Rhabdoid tumors of the Central Nervous system are entities of very low frequency and since 1942 is the first event observed in a total of 16,000 cases studied in the Laboratory of Neuropathology, Clinical Hospital. Until 2003 were described 118 case in the literature. The case is about the 3 years old child with no previous medical history consulted for 3 months with headaches, repeated vomiting, irritability and non specific abnormal gait. On examination is found a physical waking depression and great hydrocephalus in V I bilateral pair so is submitted to a emergency surgery. RMI CT and MRI performed reveals large frontal tumor that reaches the oval center with cystic and calcifications areas. Three days after is operates for the intraventricular tumor without post operative complications. Receive chemotherapy and the patient died 2 years later. The neuro pathological and ultrastructural study reveals a Rhabdoid malignancy brain tumor of grade IV as well as were analyzed histopathological and ultrastructural aspects of this entity

  3. Intranasal treatment of central nervous system dysfunction in humans.

    Chapman, Colin D; Frey, William H; Craft, Suzanne; Danielyan, Lusine; Hallschmid, Manfred; Schiöth, Helgi B; Benedict, Christian

    2013-10-01

    One of the most challenging problems facing modern medicine is how to deliver a given drug to a specific target at the exclusion of other regions. For example, a variety of compounds have beneficial effects within the central nervous system (CNS), but unwanted side effects in the periphery. For such compounds, traditional oral or intravenous drug delivery fails to provide benefit without cost. However, intranasal delivery is emerging as a noninvasive option for delivering drugs to the CNS with minimal peripheral exposure. Additionally, this method facilitates the delivery of large and/or charged therapeutics, which fail to effectively cross the blood-brain barrier (BBB). Thus, for a variety of growth factors, hormones, neuropeptides and therapeutics including insulin, oxytocin, orexin, and even stem cells, intranasal delivery is emerging as an efficient method of administration, and represents a promising therapeutic strategy for the treatment of diseases with CNS involvement, such as obesity, Alzheimer's disease, Parkinson's disease, Huntington's disease, depression, anxiety, autism spectrum disorders, seizures, drug addiction, eating disorders, and stroke. PMID:23135822

  4. Frequency of central nervous system tumors in delta region, Egypt

    Khaled R Zalata

    2011-01-01

    Full Text Available Introduction and Aim of Work: Central nervous system (CNS tumors represent a major public health problem, and their epidemiological data in Egypt have been rather incomplete except for some regional reports. There are no available frequency-based data on CNS tumors in our locality. The objective of this study was to estimate the frequency of CNS tumors in east delta region, Egypt. Materials and Methods: The data were collected during the 8-year period from January 1999 to December 2007 from Pathology Department, Mansoura University, and other referred pathology labs. Examination of HandE stained sections from retrieved paraffin blocks were done in all cases for histopathologic categorization of C.N.S. tumors. Immunohistochemical studies were applied to confirm final histopathologic diagnosis in problematic cases. Results: Intracranial tumors represented 86.7% of cases in comparison to only 13.3% for spinal tumors. Gliomas were the CNS tumors of the highest frequency (35.2%, followed by meningioma (25.6%, pituitary adenoma (11.6% and nerve sheath tumors (6.6%. 10.25% of tumors were of children <15 years. Conclusion: This study provides the largest series of the relative frequency of CNS tumors in Delta region in Egypt till now and may help to give insight into the epidemiology of CNS tumors in our locality.

  5. MRI findings of central nervous system granulocytic sarcoma (chloroma)

    To characterize MRI findings of central nervous system (CNS) granulocytic sarcoma (chloroma) and to analyse the points which differentiate it from other CNS tumors. We evaluated MRI in six patients with CNS granulocytic sarcoma proven by surgery or bone marrow biopsy (intracranical, one case and spine five cases). A 0.5T superconductive MR machine was used for diagnosis and, axial, coronal and sagittal T1- and T2-weighted spin echo images and Gd-DTPA enhanced T1-weighted images were obtained. We retrospectively analized the location, signal intensity, margin, contrast enhancement and homogeneity, and bony change around the tumor. MRI findings of CNS granulocytic sarcomas were as follows : one tumor was seen to be an extra-axial mass in the posterior fossa of the brain, four were epidural, and one was an epidural and presacral masses in the spine;tumor magins were lobulated and three were smooth. On T1-weighted images, all tumors were of isoignal intensity;on T2-weighted images, four were of isosignal intersity and two were of high signal intensity. Contrast enhancement was inhomogeneous in five of six cases. Bony change around the tumor was seen in two cases. On T1-weighted images, CNS granulocytic sarcomas (chloromas) were of isosignal intensity, relative to brain parenchyma or spinal cord;on T2-weighted images, they were of iso or high signal intensity, with relative contrast enhancement. These points could be useful in differentiating them from other CNS tumors

  6. Nanotechnologies for the study of the central nervous system.

    Ajetunmobi, A

    2014-12-01

    The impact of central nervous system (CNS) disorders on the human population is significant, contributing almost €800 billion in annual European healthcare costs. These disorders not only have a disabling social impact but also a crippling economic drain on resources. Developing novel therapeutic strategies for these disorders requires a better understanding of events that underlie mechanisms of neural circuit physiology. Studying the relationship between genetic expression, synapse development and circuit physiology in CNS function is a challenging task, involving simultaneous analysis of multiple parameters and the convergence of several disciplines and technological approaches. However, current gold-standard techniques used to study the CNS have limitations that pose unique challenges to furthering our understanding of functional CNS development. The recent advancement in nanotechnologies for biomedical applications has seen the emergence of nanoscience as a key enabling technology for delivering a translational bridge between basic and clinical research. In particular, the development of neuroimaging and electrophysiology tools to identify the aetiology and progression of CNS disorders have led to new insights in our understanding of CNS physiology and the development of novel diagnostic modalities for therapeutic intervention. This review focuses on the latest applications of these nanotechnologies for investigating CNS function and the improved diagnosis of CNS disorders.

  7. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    Matthias Orth

    2012-01-01

    Full Text Available Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules. We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

  8. [Malignant lymphoma in the central nervous system: overview].

    Namekawa, Michito

    2014-08-01

    Malignant lymphoma can affect the central nervous system (CNS) in three different ways: as a consequence (relapse or invasion) of systemic lymphoma, as a primary CNS lymphoma (PCNSL) without systemic involvement, and through intravascular lymphomatosis (IVL). It is essential to distinguish PCNSL from the others, since the therapeutic strategy for treating this disease differs. FDG-PET/CT fusion imagery is a powerful tool for detecting systemic lesions. If a marked elevation of lactate dehydrogenase and the soluble IL-2 receptor suggests IVL, a random skin biopsy can permit a differential diagnosis. It is not certain why PCNSL occurs solely in the CNS, where there is no lymphatic system. The special environment, so-called "sanctuary site", where is free from attack of the immune system and penetration of chemotherapeutic agents by blood-brain barrier is deeply related to malignant transformation. The prognoses for patients with CNS invasion of systemic lymphoma and those with PCNSL remain bleak in the post-rituximab era. Over half of the patients who received high-dose methotrexate will subsequently relapse. Therefore, novel therapeutic strategies are earnestly sought. PMID:25082313

  9. Drug/radiation interactions and central nervous system injury

    Central nervous system (CNS) injury caused by combined treatment with cranial radiation therapy (CRT) and chemotherapy is a complicated and difficult problem. Interactions between the two modalities at the cellular level, the effect of treatment sequencing, and chemotherapy and RT dosages are all poorly understood. While this is generally true and applicable to toxicities expressed in multiple organs and tissue types, it is particularly true for the brain. There are many clinical descriptions and situations that strongly implicate an enhanced neurotoxic potential for combined treatment compared to either therapy alone; there is a paucity of definitive experimental evidence, however, and few animal models that can be used to elucidate the nature and pathophysiology of this clinical association. This paper addresses the neurotoxic potential of a specific chemotherapeutic drug when combined with CRT; outlines whose drugs known to cause CNS injury when combined with CRT. Although many of the clinical situations are complicated because multiple cytotoxic agents have been used, usually only one is thought to contribute to the CNS injury. The authors discuss each drug separately

  10. Comprehensive Craniospinal Radiation for Controlling Central Nervous System Leukemia

    Walker, Gary V.; Shihadeh, Ferial [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kantarjian, Hagop [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Allen, Pamela [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Rondon, Gabriela; Kebriaei, Partow [Department of Stem Cell Transplantation, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); O' Brien, Susan [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Kedir, Aziza; Said, Mustefa; Grant, Jonathan D. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Thomas, Deborah A. [Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Gidley, Paul W. [Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Arzu, Isidora; Pinnix, Chelsea; Reed, Valerie [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dabaja, Bouthaina S., E-mail: bdabaja@mdanderson.org [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2014-12-01

    Purpose: To determine the benefit of radiation therapy (RT) in resolution of neurologic symptoms and deficits and whether the type of RT fields influences central nervous system (CNS) control in adults with CNS leukemia. Methods and Materials: A total of 163 adults from 1996 to 2012 were retrospectively analyzed. Potential associations between use of radiation and outcome were investigated by univariate and multivariate analysis. Results: The median survival time was 3.8 months after RT. Common presenting symptoms were headache in 79 patients (49%), cranial nerve VII deficit in 46 (28%), and cranial nerve II deficit in 44 (27%). RT was delivered to the base of skull in 48 patients (29%), to the whole brain (WB) in 67 (41%), and to the craniospinal axis (CS) in 48 (29%). Among 149 patients with a total of 233 deficits, resolution was observed in 34 deficits (15%), improvement in 126 deficits (54%), stability in 34 deficits (15%), and progression in 39 deficits (17%). The 12-month CNS progression-free survival was 77% among those receiving CS/WB and 51% among those receiving base of skull RT (P=.02). On multivariate analysis, patients who did not undergo stem cell transplantation after RT and base of skull RT were associated with worse CNS progression-free survival. Conclusions: Improvement or resolution of symptoms occurred in two thirds of deficits after RT. Comprehensive radiation to the WB or CS seems to offer a better outcome, especially in isolated CNS involvement.

  11. Imaging features of central nervous system fungal infections

    Jain Krishan

    2007-01-01

    Full Text Available Fungal infections of the central nervous system (CNS are rare in the general population and are invariably secondary to primary focus elsewhere, usually in the lung or intestine. Except for people with longstanding diabetes, they are most frequently encountered in immunocompromised patients such as those with acquired immunodeficiency syndrome or after organ transplantation. Due to the lack of inflammatory response, neuroradiological findings are often nonspecific and are frequently mistaken for tuberculous meningitis, pyogenic abscess or brain tumor. Intracranial fungal infections are being identified more frequently due to the increased incidence of AIDS patients, better radiological investigations, more sensitive microbiological techniques and better critical care of moribund patients. Although almost any fungus may cause encephalitis, cryptococcal meningoencephalitis is most frequently seen, followed by aspergillosis and candidiasis. The biology, epidemiology and imaging features of the common fungal infections of the CNS will be reviewed. The radiographic appearance alone is often not specific, but the combination of the appropriate clinical setting along with computed tomography or magnetic resonance may help to suggest the correct diagnosis.

  12. MRI in central nervous system infections: A simplified patterned approach

    Krithika; Rangarajan; Chandan; J; Das; Atin; Kumar; Arun; Kumar; Gupta

    2014-01-01

    Recognition and characterization of central nervous system infections poses a formidable challenge to the neuro-radiologist.Imaging plays a vital role,the lesions typically being relatively inaccessible to tisue sampling.The results of an accurate diagnosis are endlessly re-warding,given the availability of excellent pharmaco-logical regimen.The availability of numerous magnetic resonance(MR)sequences which provide functional and molecular information is a powerful tool in the hands of the radiologist.However,the plethora of se-quences and the possibilities on each sequence is also intimidating,and often confusing as well as time con-suming.While a large number of reviews have already described in detail the possible imaging findings in each infection,we intend to classify infections based on their imaging characteristics.In this review we describe an algorithm for first classifying the imaging findings into patterns based on basic MR sequences(T1,T2 and enhancement pattern with Gadolinium),and then sub-classify them based on more advanced molecular and functional sequences(Diffusion,Perfusion,Susceptibili-ty imaging,MR Spectroscopy).This patterned approachis intended as a guide to radiologists in-training and in-practice for quickly narrowing their list of differentials when faced with a clinical challenge.The entire content of the article has also been summarised in the form of flow-charts for the purpose of quick reference.

  13. Deoxyribozymes: New Therapeutics to Treat Central Nervous System Disorders

    Barbara Grimpe

    2011-09-01

    Full Text Available This mini-review focuses on a knockdown technology called deoxyribozymes, which has rarely been utilized in the field of neurobiology/neuroscience. Deoxyribozymes are catalytic DNA molecules, which are also entitled DNA enzyme or DNAzyme. This mini-review presents a description of their development, structure, function and therapeutic application. In addition, information on siRNA, ribozymes and antisense are given. Further information on two deoxyribozymes against c-Jun and xylosyltransferase (XT mRNA are summarized of which the first is important to influence many neurological disorders and the last potentially treats spinal cord injuries (SCIs. In particular, insults to the central nervous system (CNS such as SCI generate an inhibitory environment (lesion scar at the injury site that prevents the endogenous and therapy-induced axonal regeneration and thereby limits repair strategies. Presently, there are no treatments available. Hence, deoxyribozymes provide an opportunity for new therapeutics that alter the inhibitory nature of the lesion scar and thus promote axonal growth in the injured spinal cord. When used cautiously and within the limits of its ability the deoxyribozyme technology holds promise to become a major contributing factor in repair strategies of the CNS.

  14. Transport of diphenhydramine in the central nervous system

    The transport and metabolism of diphenhydramine was studied in vitro in the isolated rabbit choroid plexus and in vivo in New Zealand white rabbits and Sprague-Dawley rats. In vitro, [14C] diphenhydramine was accumulated by a saturable, energy-requiring system in choroid plexus. In vivo, 20 min after intraventricular injection into rabbits, [14C]diphenhydramine was cleared from cerebrospinal fluid much more rapidly than [3H]sucrose, a molecule transported in the central nervous system by simple diffusion. In vivo, employing the in situ rat brain perfusion technique, [14C]diphenhydramine was cleared from the cerebral perfusion fluid as rapidly as [14C]diazepam. However, the clearance of [14C]diphenhydramine, but not [14C]diazepam, was inhibited by the addition of 10 mM unlabeled diphenhydramine to the perfusate. These in vivo and in vitro results show that diphenhydramine, unlike diazepam, is transported between blood, brain and cerebrospinal fluid, in part, by saturable, carrier-mediated transport processes at both the blood-brain and blood-cerebrospinal fluid barriers

  15. Fetal central nervous system anomalies: fast MRI vs ultrasonography

    Objective: To evaluate the ability of fast MRI to detect fetal central nervous system (CNS) anomalies and to compare its performance with that of prenatal ultrasonography (US). Methods Forty-eight pregnant women were detected by conventional prenatal US and MRI. Twenty-two fetuses with CNS anomalies were conformed by autopsy and follow-up. The MR and US appearances of fetal CNS structure were compared to each other and to that of autopsy. Results: A total of 26 CNS anomalies were identified by autopsy (n=17) and follow-up (n=9) including anencephaly (n=6), rachischisis (n=2), encephalocele (n=3), congenital hydrocephalus (n=7), alobar holoprosencephaly (n=1), porencephalia (n=3), arachnoid cyst (n=2) and choroids plexus cyst (n=2). US diagnosed 24 CNS anomalies, the correct diagnostic rate was 92.3%, the false-positive rate was 3.8%, the missed-diagnostic rate was 3.8%. MRI diagnosed 23 CNS anomalies, the correct-diagnostic rate was 88.5%, the false-positive rate was 3.8% ,the missed-diagnostic rate was 7.7%. There was no difference between US and MRI (P>0.05), but MRI have larger FOV, higher tissues resolution, and can demonstrate gray-white matter in detail. Conclusions: MR imaging has a similar sensitivity to that of US in the detection of fetal CNS anomalies. (authors)

  16. Microglia in central nervous system repair after injury.

    Jin, Xuemei; Yamashita, Toshihide

    2016-05-01

    Accumulating evidence suggests that immune cells perform crucial inflammation-related functions including clearing dead tissue and promoting wound healing. Thus, they provide a conducive environment for better neuronal regeneration and functional recovery after adult mammalian central nervous system (CNS) injury. However, activated immune cells can also induce secondary damage of intact tissue and inhibit post-injury CNS repair. The inflammation response is due to the microglial production of cytokines and chemokines for the recruitment of peripheral immune cell populations, such as monocytes, neutrophils, dendritic cells and T lymphocytes. Interestingly, microglia and T lymphocytes can be detected at the injured site in both the early and later stages after nerve injury, whereas other peripheral immune cells infiltrate the injured parenchyma of the brain and spinal cord only in the early post-injury phase, and subsequently disappear. This suggests that microglia and T cells may play crucial roles in the post-injury functional recovery of the CNS. In this review, we summarize the current studies on microglia that examined neuronal regeneration and the molecular signalling mechanisms in the injured CNS. Better understanding of the effects of microglia on neural regeneration will aid the development of therapy strategies to enhance CNS functional recovery after injury. PMID:26861995

  17. Role of Wnt Signaling in Central Nervous System Injury.

    Lambert, Catherine; Cisternas, Pedro; Inestrosa, Nibaldo C

    2016-05-01

    The central nervous system (CNS) is highly sensitive to external mechanical damage, presenting a limited capacity for regeneration explained in part by its inability to restore either damaged neurons or the synaptic network. The CNS may suffer different types of external injuries affecting its function and/or structure, including stroke, spinal cord injury, and traumatic brain injury. These pathologies critically affect the quality of life of a large number of patients worldwide and are often fatal because available therapeutics are ineffective and produce limited results. Common effects of the mentioned pathologies involves the triggering of several cellular and metabolic responses against injury, including infiltration of blood cells, inflammation, glial activation, and neuronal death. Although some of the underlying molecular mechanisms of those responses have been elucidated, the mechanisms driving these processes are poorly understood in the context of CNS injury. In the last few years, it has been suggested that the activation of the Wnt signaling pathway could be important in the regenerative response after CNS injury, activating diverse protective mechanisms including the stimulation of neurogenesis, blood brain structure consolidation and the recovery of cognitive brain functions. Because Wnt signaling is involved in several physiological processes, the putative positive role of its activation after injury could be the basis for novel therapeutic approaches to CNS injury. PMID:25976365

  18. Prenatal irradiation: radioinduced apoptosis in developing central nervous system

    Severe mental retardation (SMR) is the most significant effect of prenatal irradiation. The high radiosensitivity of developing brain is related with the chronology of morpho genetic phenomena regarding neuroblast proliferation, neuronal differentiation and migration, synaptogenesis and dendritic arborization. Programmed cell death (apoptosis) normally occurs during development in central nervous system (CNS). Apoptosis is a direct result of the expression of specific genes with a final common pathway leading to a characteristic DNA fragmentation pattern. A wide variety of situations and toxic agents have been reported to result in apoptotic death in developing CNS. The aim of this work was the characterization and quantification of apoptosis using an in vitro model of prenatal irradiation. Primary cell cultures from rat brain cortex of 17 days g.a. were irradiated with a gamma source, with doses between 0.2 Gy to 2 Gy. Apoptosis was evaluated 4 hours and 20 hours after irradiation by hematoxylin/eosin, fluorescent microscopy, flow cytometry and DNA electrophoresis. It was also evaluated the neuro protective effect of L-NAME, SOD and glutathion. A dose-dependent increase in apoptotic cell fraction was observed. A protector effect related with the presence of glutathion was observed. (author)

  19. Central nervous system infections in the intensive care unit

    B. Vengamma

    2014-04-01

    Full Text Available Neurological infections constitute an uncommon, but important aetiological cause requiring admission to an intensive care unit (ICU. In addition, health-care associated neurological infections may develop in critically ill patients admitted to an ICU for other indications. Central nervous system infections can develop as complications in ICU patients including post-operative neurosurgical patients. While bacterial infections are the most common cause, mycobacterial and fungal infections are also frequently encountered. Delay in institution of specific treatment is considered to be the single most important poor prognostic factor. Empirical antibiotic therapy must be initiated while awaiting specific culture and sensitivity results. Choice of empirical antimicrobial therapy should take into consideration the most likely pathogens involved, locally prevalent drug-resistance patterns, underlying predisposing, co-morbid conditions, and other factors, such as age, immune status. Further, the antibiotic should adequately penetrate the blood-brain and blood- cerebrospinal fluid barriers. The presence of a focal collection of pus warrants immediate surgical drainage. Following strict aseptic precautions during surgery, hand-hygiene and care of catheters, devices constitute important preventive measures. A high index of clinical suspicion and aggressive efforts at identification of aetiological cause and early institution of specific treatment in patients with neurological infections can be life saving.

  20. [Dementia in Patients with Central Nervous System Mycosis].

    Morita, Akihiko; Ishihara, Masaki; Konno, Michiko

    2016-04-01

    Central nervous system (CNS) mycosis is a potentially life-threatening but treatable neurological emergency. CNS mycoses progress slowly and are sometimes difficult to distinguish from dementia. Though most patients with CNS mycosis have an underlying disease, such as human immunodeficiency virus (HIV) infection, cancer, diabetes mellitus, and/or use of immunosuppressants, cryptococcosis can occur in non-immunosuppressed persons. One of the major difficulties in accurate diagnosis is to detect the pathogen in patients' cerebrospinal fluid (CSF) cultures. Thus, the clinical diagnosis is often made by combining circumstantial evidence, including mononuclear cell-dominant pleocytosis with low glucose and protein elevation in the CSF, as well as positive results from an antigen-based assay and a (1-3)-beta-D-glucan assay using plasma and/or CSF. Polymerase chain reaction (PCR)-based diagnostics, which are not performed as routine examinations and are mostly performed as part of academic research in Japan, are sensitive tools for the early diagnosis of CNS mycosis. Mognetic resonance imaging (MRI) is useful to assess the complications of fungal meningitis, such as abscess, infarction, and hydrocephalus. Clinicians should realize the advantages and disadvantages of these diagnostic tools. Early and accurate diagnosis, including identification of the particular fungal species, enables optimal antifungal treatment that produces good outcomes in patients with CNS mycosis. PMID:27056851

  1. Microparticles: A New Perspective in Central Nervous System Disorders

    Stephanie M. Schindler

    2014-01-01

    Full Text Available Microparticles (MPs are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer’s disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.

  2. MRI in central nervous system infections: A simplified patterned approach.

    Rangarajan, Krithika; Das, Chandan J; Kumar, Atin; Gupta, Arun Kumar

    2014-09-28

    Recognition and characterization of central nervous system infections poses a formidable challenge to the neuro-radiologist. Imaging plays a vital role, the lesions typically being relatively inaccessible to tisue sampling. The results of an accurate diagnosis are endlessly rewarding, given the availability of excellent pharmacological regimen. The availability of numerous magnetic resonance (MR) sequences which provide functional and molecular information is a powerful tool in the hands of the radiologist. However, the plethora of sequences and the possibilities on each sequence is also intimidating, and often confusing as well as time consuming. While a large number of reviews have already described in detail the possible imaging findings in each infection, we intend to classify infections based on their imaging characteristics. In this review we describe an algorithm for first classifying the imaging findings into patterns based on basic MR sequences (T1, T2 and enhancement pattern with Gadolinium), and then sub-classify them based on more advanced molecular and functional sequences (Diffusion, Perfusion, Susceptibility imaging, MR Spectroscopy). This patterned approach is intended as a guide to radiologists in-training and in-practice for quickly narrowing their list of differentials when faced with a clinical challenge. The entire content of the article has also been summarised in the form of flow-charts for the purpose of quick reference. PMID:25276314

  3. Diffusion imaging in pediatric central nervous system infections

    Our purpose was to investigate the role of diffusion imaging (DI) in central nervous system (CNS) infections in pediatric patients. It was anticipated that DI would be more sensitive than conventional MRI in the detection of the infarctive complications of infection, and possibly, in the detection of the infectious process as well. Seventeen pediatric patients, eight having meningitis'' five with herpes encephalitis, three with brain abscess or cerebritis and one with sepsis, were evaluated at 1.5-T with DI. All herpes patients had positive DI at the site of herpetic involvement, and two had the addition of watershed infarctions. DI demonstrated more lesions in three of the four cases of herpetic encephalitis. Half the meningitis cases had watershed infarction where DI was better and half had vasculitic infarctions in which DI was equal to or better than conventional MRI. Diffusion imaging was more sensitive than conventional MRI alone in detection of changes due to infections and ischemic lesions, but did not differentiate between them by DI or apparent diffusion coefficient (ADC), although anatomic distribution of lesions proved useful. (orig.)

  4. Diffusion imaging in pediatric central nervous system infections

    Teixeira, J. [Dept. de Imagiologia, Hospital Geral De Santo Antonio, Porto (Portugal); Zimmerman, R.A.; Haselgrove, J.C.; Bilaniuk, L.T.; Hunter, J.V. [Dept. of Radiology, Children' s Hospital of Philadelphia, PA (United States)

    2001-12-01

    Our purpose was to investigate the role of diffusion imaging (DI) in central nervous system (CNS) infections in pediatric patients. It was anticipated that DI would be more sensitive than conventional MRI in the detection of the infarctive complications of infection, and possibly, in the detection of the infectious process as well. Seventeen pediatric patients, eight having meningitis'' five with herpes encephalitis, three with brain abscess or cerebritis and one with sepsis, were evaluated at 1.5-T with DI. All herpes patients had positive DI at the site of herpetic involvement, and two had the addition of watershed infarctions. DI demonstrated more lesions in three of the four cases of herpetic encephalitis. Half the meningitis cases had watershed infarction where DI was better and half had vasculitic infarctions in which DI was equal to or better than conventional MRI. Diffusion imaging was more sensitive than conventional MRI alone in detection of changes due to infections and ischemic lesions, but did not differentiate between them by DI or apparent diffusion coefficient (ADC), although anatomic distribution of lesions proved useful. (orig.)

  5. Systematic review of central nervous system anomalies in incontinentia pigmenti

    Minić Snežana

    2013-02-01

    Full Text Available Abstract The objective of this study was to present a systematic review of the central nervous system (CNS types of anomalies and to consider the possibility to include CNS anomalies in Incontinentia pigmenti (IP criteria. The analyzed literature data from 1,393 IP cases were from the period 1993–2012. CNS anomalies were diagnosed for 30.44% of the investigated IP patients. The total number of CNS types of anomalies per patient was 1.62. In the present study there was no significantly higher number of anomalies per patient in females than males. The most frequent CNS types of anomalies were seizures, motor impairment, mental retardation, and microcephaly. The most frequently registered CNS lesions found using brain imaging methods were brain infarcts or necrosis, brain atrophies, and corpus callosum lesions. IKBKG exon 4–10 deletion was present in 86.00% of genetically confirmed IP patients. The frequency of CNS anomalies, similar to the frequency of retinal anomalies in IP patients, concurrent with their severity, supports their recognition in the list of IP minor criteria.

  6. Database mining applied to central nervous system (CNS) activity.

    Pintore, M; Taboureau, O; Ros, F; Chrétien, J R

    2001-04-01

    A data set of 389 compounds, active in the central nervous system (CNS) and divided into eight classes according to the receptor type, was extracted from the RBI database and analyzed by Self-Organizing Maps (SOM), also known as Kohonen Artificial Neural Networks. This method gives a 2D representation of the distribution of the compounds in the hyperspace derived from their molecular descriptors. As SOM belongs to the category of unsupervised techniques, it has to be combined with another method in order to generate classification models with predictive ability. The fuzzy clustering (FC) approach seems to be particularly suitable to delineate clusters in a rational way from SOM and to get an automatic objective map interpretation. Maps derived by SOM showed specific regions associated with a unique receptor type and zones in which two or more activity classes are nested. Then, the modeling ability of the proposed SOM/FC Hybrid System tools applied simultaneously to eight activity classes was validated after dividing the 389 compounds into a training set and a test set, including 259 and 130 molecules, respectively. The proper experimental activity class, among the eight possible ones, was predicted simultaneously and correctly for 81% of the test set compounds. PMID:11461760

  7. Headache and inflammatory disorders of the central nervous system.

    La Mantia, L; Erbetta, A

    2004-10-01

    The subcommittee of the International Headache Society for headache classification (ICHD-II) has recently recognised that secondary headaches may occur in patients affected by inflammatory diseases (ID) of the central nervous system (CNS), classifying them among the headaches attributed to non-vascular intracranial disorders. The aim of the study was to verify the association between headache and inflammatory non-infectious diseases of the CNS, by a review of the literature data on the topic, integrated by personal cases and data. Secondary headaches may occur in four main disorders: neurosarcoidosis (sec 7.3.1), aseptic (non-infectious) meningitis (7.3.2), other non-infectious ID (7.3.3) and lymphocytic hypophysitis (7.3.4). Headache and/or primary headaches are frequently reported in patients with neurosarcoidosis (30%), Behcet's syndrome (BS) (55%) and acute disseminated encephalomyelitis (45-58%). Recent data show a high incidence of headache also in multiple sclerosis (MS) (58%) (not mentioned in ICHD-II). The association between headache and inflammatory dysimmune diseases of the CNS, in particular BS and MS, might suggest a pathogenetic relationship. PMID:15549526

  8. Growth Cone Biomechanics in Peripheral and Central Nervous System Neurons

    Urbach, Jeffrey; Koch, Daniel; Rosoff, Will; Geller, Herbert

    2012-02-01

    The growth cone, a highly motile structure at the tip of an axon, integrates information about the local environment and modulates outgrowth and guidance, but little is known about effects of external mechanical cues and internal mechanical forces on growth-cone mediated guidance. We have investigated neurite outgrowth, traction forces and cytoskeletal substrate coupling on soft elastic substrates for dorsal root ganglion (DRG) neurons (from the peripheral nervous system) and hippocampal neurons (from the central) to see how the mechanics of the microenvironment affect different populations. We find that the biomechanics of DRG neurons are dramatically different from hippocampal, with DRG neurons displaying relatively large, steady traction forces and maximal outgrowth and forces on substrates of intermediate stiffness, while hippocampal neurons display weak, intermittent forces and limited dependence of outgrowth and forces on substrate stiffness. DRG growth cones have slower rates of retrograde actin flow and higher density of localized paxillin (a protein associated with substrate adhesion complexes) compared to hippocampal neurons, suggesting that the difference in force generation is due to stronger adhesions and therefore stronger substrate coupling in DRG growth cones.

  9. 75 FR 17417 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    2010-04-06

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  10. Doppler colour flow mapping of fetal intracerebral arteries in the presence of central nervous system anomalies

    J.W. Wladimiroff (Juriy); R. Heydanus (Rogier); P.A. Stewart (Patricia)

    1993-01-01

    textabstractThe adjunctive role of Doppler colour flow mapping in the evaluation of intracerebral morphology and arterial blood flow in the presence of normal and abnormal central nervous system morphology was determined. A total of 59 fetuses with suspected central nervous system pathology between

  11. 78 FR 63481 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  12. 76 FR 3912 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    2011-01-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  13. 77 FR 20037 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    2012-04-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  14. 75 FR 12768 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    2010-03-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  15. 78 FR 63478 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  16. 75 FR 36428 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    2010-06-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  17. 76 FR 44595 - Peripheral and Central Nervous System Drugs Advisory Committee; Notice of Meeting

    2011-07-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Peripheral and Central Nervous System Drugs Advisory...). The meeting will be open to the public. Name of Committee: Peripheral and Central Nervous System...

  18. Primary central nervous system B-cell lymphoma in a young dog

    Kim, Na-Hyun; Ciesielski, Thomas; Kim, Jung H; Yhee, Ji-Young; Im, Keum-Soon; Nam, Hae-Mi; Kim, Il-Hwan; Kim, Jong-Hyuk; Sur, Jung-Hyang

    2012-01-01

    This report describes a primary central nervous system B-cell lymphoma in a 3-year-old intact female Maltese dog. Canine primary central nervous system lymphomas constitute about 4% of all intracranial primary neoplasms, but comprehensive histopathologic classifications have rarely been carried out. This is the first report of this disease in a young adult dog.

  19. Early exposure of rotating magnetic fields promotes central nervous regeneration in planarian Girardia sinensis.

    Chen, Qiang; Lin, Gui-Miao; Wu, Nan; Tang, Sheng-Wei; Zheng, Zhi-Jia; Lin, Marie Chia-Mi; Xu, Gai-Xia; Liu, Hao; Deng, Yue-Yue; Zhang, Xiao-Yun; Chen, Si-Ping; Wang, Xiao-Mei; Niu, Han-Ben

    2016-05-01

    Magnetic field exposure is an accepted safe and effective modality for nerve injury. However, it is clinically used only as a supplement or salvage therapy at the later stage of treatment. Here, we used a planarian Girardia sinensis decapitated model to investigate beneficial effects of early rotary non-uniform magnetic fields (RMFs) exposure on central nervous regeneration. Our results clearly indicated that magnetic stimulation induced from early RMFs exposure significantly promoted neural regeneration of planarians. This stimulating effect is frequency and intensity dependent. Optimum effects were obtained when decapitated planarians were cultured at 20 °C, starved for 3 days before head-cutting, and treated with 6 Hz 0.02 T RMFs. At early regeneration stage, RMFs exposure eliminated edema around the wound and facilitated subsequent formation of blastema. It also accelerated cell proliferation and recovery of neuron functionality. Early RMFs exposure up-regulated expression of neural regeneration related proteins, EGR4 and Netrin 2, and mature nerve cell marker proteins, NSE and NPY. These results suggest that RMFs therapy produced early and significant benefit in central nervous regeneration, and should be clinically used at the early stage of neural regeneration, with appropriate optimal frequency and intensity. Bioelectromagnetics. Bioelectromagnetics. 37:244-255, 2016. © 2016 Wiley Periodicals, Inc. PMID:27061713

  20. Central nervous system tumors: Radiologic pathologic correlation and diagnostic approach

    Ishita Pant

    2015-01-01

    Full Text Available Objective: This study was conducted to formulate location-wise radiologic diagnostic algorithms and assess their concordance with the final histopathological diagnosis so as to evaluate their utility in a rural setting where only basic facilities are available. Materials and Methods: A retrospective analysis to assess the concordance of radiology (primarily MRI with final histopathology report was done. Based on the most common incidence of tumor location and basic radiology findings, diagnostic algorithms were prepared. Results: For supratentorial intraaxial parenchymal location concordance was seen in all high-grade astrocytomas, low- and high-grade oligodendrogliomas, metastatic tumors, primitive neuroectodermal tumors, high-grade ependymomas, neuronal and mixed neuro-glial tumors and tumors of hematopoietic system. Lowest concordance was seen in low-grade astrocytomas. In the supratentorial intraaxial ventricular location, agreement was observed in choroid plexus tumors, ependymomas, low-grade astrocytomas and meningiomas; in the supratentorial extraaxial location, except for the lack of concordance in the only case of metastatic tumor, concordance was observed in meningeal tumors, tumors of the sellar region, tumors of cranial and paraspinal nerves; the infratentorial intraaxial parenchymal location showed agreement in low- as well as high-grade astrocytomas, metastatic tumors, high-grade ependymoma, embryonal tumors and hematopoietic tumors; in the infratentorial intraaxial ventricular location, except for the lack of concordance in one case of low-grade astrocytoma and two cases of medulloblastomas, agreement was observed in low- and high-grade ependymoma; infratentorial extraaxial tumors showed complete agreement in all tumors of cranial and paraspinal nerves, meningiomas, and hematopoietic tumors. Conclusion: A location-based approach to central nervous system (CNS tumors is helpful in establishing an appropriate differential diagnosis.

  1. Control of the Cutaneous Circulation by the Central Nervous System.

    Blessing, William; McAllen, Robin; McKinley, Michael

    2016-01-01

    The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016. PMID:27347889

  2. The pleiotropic effects of erythropoietin in the central nervous system.

    Buemi, M; Cavallaro, E; Floccari, F; Sturiale, A; Aloisi, C; Trimarchi, M; Corica, F; Frisina, N

    2003-03-01

    Erythropoietin (Epo) is a hydrophobic sialoglycoproteic hormone produced by the kidney and responsible for the proliferation, maturation, and differentiation of the precursors of the erythroid cell line. Human recombinant erythropoietin (rHuEpo) is used to treat different types of anemia, not only in uremic patients but also in newborns with anemia of prematurity, in patients with cancer-related anemia or myeloproliferative disease, thalassemias, bone marrow transplants, or those with chronic infectious diseases. The pleiotropic functions of Epo are well known. It has been shown that this hormone can modulate the inflammatory and immune response, has direct hemodynamic and vasoactive effects, could be considered a proangiogenic factor because of its interaction with vascular endothelial growth factor, and its ability to stimulate mitosis and motility of endothelial cells. The multifunctional role of Epo has further been confirmed by the discovery in the central nervous system of a specific Epo/Epo receptor (EpoR) system. Both Epo and EpoR are expressed by astrocytes and neurons and Epo is present in the cerebrospinal fluid (CSF). Therefore, novel functions of Epo, tissue-specific regulation, and the mechanisms of action have been investigated. In this review we have tried to summarize the current data on the role of Epo on brain function. We discuss the different sites of cerebral expression and mechanisms of regulation of Epo and its receptor and its role in the development and maturation of the brain. Second, we discuss the neurotrophic and neuroprotective function of Epo in different conditions of neuronal damage, such as hypoxia, cerebral ischemia, and subarachnoid hemorrhage, and the consequent possibility that rHuEpo therapy could soon be used in clinical practice to limit neuronal damage induced by these diseases. PMID:12638727

  3. Current opinions on radiotherapy of pediatric central nervous system tumors

    Primary central nervous system (CNS) neoplasms are the most frequent solid tumors in childhood accounting for 20% of all pediatric malignancies. Despite developments in neurosurgery, radiotherapy and chemotherapy, a significant proportion of these patients suffer progressive disease. A good treatment management strategy should consider not only survival but also the quality of life of the child. Irradiation is ann essential part of the management of the majority of CNS tumors. During then last decade, there significant advances in the technology of planning and delivery of radiation treatment. These new radiotherapy techniques such as conformal, intensity modulated photon beam and stereotactic methods allow a high homogenous dose to the tumor region with minimal doses to normal tissue. This is particularly important in children with localized low-grade tumors, whose prognosis of long-term survival is often excellent and should be accompanied by smallest risk of treatment toxicity. For small tumors fractionated radiotherapy stereotactic radiotherapy using multiple fixed non-coplanar beams is an appropriate treatment. Modification of craniospinal technique, lowering of the total craniospinal dose with adjuvant chemotherapy, new radiotherapy modalities to treat the posterior fossa may be employed to possibly decrease the late rectifies of radiation therapy. For malignant glioma and brain stem tumors we need new approaches, as chemo sensitization, angiogenesis inhibitors and gene therapies. These new methods in therapy of pediatric brain tumors and our experience in treatment of children with medulloblastoma, low-grade astrocytoma, craniopharyngioma and brain stem tumors are presented. We summarize therapeutic aspects of most childhood brain tumors. (author)

  4. Paracoccidioidomycosis case series with and without central nervous system involvement

    Vinicius Sousa Pietra Pedroso

    2012-10-01

    Full Text Available INTRODUCTION: Paracoccidioidomycosis (PCM is the most important systemic mycosis in South America. Central nervous system involvement is potentially fatal and can occur in 12.5% of cases. This paper aims to contribute to the literature describing eight cases of neuroparacoccidioidomycosis (NPMC and compare their characteristics with patients without neurological involvement, to identify unique characteristics of NPCM. METHODS: A cohort of 213 PCM cases was evaluated at the Infectious Diseases Clinic of the University Hospital, Federal University of Minas Gerais, Brazil, from October 1976 to August 2008. Epidemiological, clinical, laboratory, therapeutic and follow-up data were registered. RESULTS: Eight patients presented NPCM. The observed NPCM prevalence was 3.8%. One patient presented the subacute form of PCM and the other seven presented the chronic form of the disease. The parenchymatous form of NPCM occurred in all patients. 60% of the patients who proceeded from the north/ northeast region of Minas Gerais State developed NPCM. The neurological involvement of a mother and her son was observed. NPCM patients exhibited demographical and clinical profiles similar to what is described in the literature. When NPCM cases were compared to PCM patients, there were differences in relation to origin and positive PCM family history. CONCLUSIONS: The results corroborate the clinical view that the neurological findings are extremely important in the evaluation of PCM patients. Despite the limitations of this study, the differences in relation to patient's origins and family history point to the need of further studies to determine the susceptibility factors involved in the neurological compromise.

  5. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    Rovira Canellas, A. [Vall d' Hebron University Hospital, Magnetic Resonance Unit (I.D.I.), Department of Radiology, Barcelona (Spain); Rovira Gols, A. [Parc Tauli University Institute - UAB, UDIAT, Diagnostic Centre, Sabadell (Spain); Rio Izquierdo, J.; Tintore Subirana, M.; Montalban Gairin, X. [Vall d' Hebron University Hospital, Neuroimmunology Unit, Department of Neurology, Barcelona (Spain)

    2007-05-15

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  6. Idiopathic inflammatory-demyelinating diseases of the central nervous system

    Idiopathic inflammatory-demyelinating diseases (IIDDs) include a broad spectrum of central nervous system disorders that can usually be differentiated on the basis of clinical, imaging, laboratory and pathological findings. However, there can be a considerable overlap between at least some of these disorders, leading to misdiagnoses or diagnostic uncertainty. The relapsing-remitting and secondary progressive forms of multiple sclerosis (MS) are the most common IIDDs. Other MS phenotypes include those with a progressive course from onset (primary progressive and progressive relapsing) or with a benign course continuing for years after onset (benign MS). Uncommon forms of IIDDs can be classified clinically into: (1) fulminant or acute IIDDs, such as the Marburg variant of MS, Balo's concentric sclerosis, Schilder's disease, and acute disseminated encephalomyelitis; (2) monosymptomatic IIDDs, such as those involving the spinal cord (transverse myelitis), optic nerve (optic neuritis) or brainstem and cerebellum; and (3) IIDDs with a restricted topographical distribution, including Devic's neuromyelitis optica, recurrent optic neuritis and relapsing transverse myelitis. Other forms of IIDD, which are classified clinically and radiologically as pseudotumoral, can have different forms of presentation and clinical courses. Although some of these uncommon IIDDs are variants of MS, others probably correspond to different entities. MR imaging of the brain and spine is the imaging technique of choice for diagnosing these disorders, and together with the clinical and laboratory findings can accurately classify them. Precise classification of these disorders may have relevant prognostic and treatment implications, and might be helpful in distinguishing them from tumoral or infectious lesions, avoiding unnecessary aggressive diagnostic or therapeutic procedures. (orig.)

  7. Cerebrospinal fluid interleukin-6 in central nervous system inflammatory diseases.

    Alexandre Wullschleger

    Full Text Available BACKGROUND: Interleukin (IL-6 is recognised as an important cytokine involved in inflammatory diseases of the central nervous system (CNS. OBJECTIVE: To perform a large retrospective study designed to test cerebrospinal fluid (CSF IL-6 levels in the context of neurological diseases, and evaluate its usefulness as a biomarker to help discriminate multiple sclerosis (MS from other inflammatory neurological diseases (OIND. PATIENTS AND METHODS: We analyzed 374 CSF samples for IL-6 using a quantitative enzyme-linked immunosorbent assay. Groups tested were composed of demyelinating diseases of the CNS (DD, n = 117, including relapsing-remitting MS (RRMS, n = 65, primary progressive MS (PPMS, n = 11, clinically isolated syndrome (CIS, n = 11, optic neuritis (ON, n = 30; idiopathic transverse myelitis (ITM, n = 10; other inflammatory neurological diseases (OIND, n = 35; and non-inflammatory neurological diseases (NIND, n = 212. Differences between groups were analysed using Kruskal-Wallis test and Mann-Whitney U-test. RESULTS: CSF IL-6 levels exceeded the positivity cut-off of 10 pg/ml in 18 (51.4% of the 35 OIND samples, but in only three (3.9% of the 76 MS samples collected. CSF IL-6 was negative for all NIND samples tested (0/212. IL-6 cut-off of 10 pg/ml offers 96% sensitivity to exclude MS. CONCLUSION: CSF IL-6 may help to differentiate MS from its major differential diagnosis group, OIND.

  8. Hox gene regulation in the central nervous system of Drosophila

    Maheshwar Gummalla

    2014-04-01

    Full Text Available Hox genes specify the structures that form along the anteroposterior (AP axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called “posterior dominance”, states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS. While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92kb long non-coding RNA (lncRNA encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA. Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The 1st mechanism is mediated by a microRNA (mir-iab-8 encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila hox complexes

  9. Central nervous system involvement in childhood HIV: CT findings

    To determine the neuroradiological findings disclosed by CT on children infected by the human immunodeficiency virus (HIV) and to analyze the different radiological changes observed in the presence and absence of HIV encephalopathy. Fifty-one children with vertically transmitted HIV infection were divided into two groups according to the presence or absence of neurological changes (groups I and II, respectively). All the patients underwent cranial CT at different phases during the course of the disease. The presence of cerebral atrophy, calcifications of the basal ganglia, lesions involving white matter, opportunistic infections, vascular lesions and tumors of the central nervous system (CNS) was assessed. Neurological signs were observed in 17 patients (group I) and were absent in 34 (group II). Seventy percent of the patients in group I presented abnormal cranial CT findings, the most common of which were cerebral atrophy (58.8%) and calcifications of the basal ganglia (47%). One patient presented focal white matte lesions, another had hemorrhagic infarction and subdural hematoma and a third presented aneurysmal dilation of the intracerebral arteries. The rate of mortality in children with encephalopathy was 82.3%. Of the 34 patients in group II, Three (8.8%) presented an increase in the size of the ventricular system and of the subarachnoid space. Neuroradiological changes are frequently observed in children with HIV encephalopathy. Diffuse cerebral atrophy and calcification of the basal ganglia and periventricular white matter are the most common findings. Although cerebral atrophy can precede the development of encephalopathy, its presence generally coincides with neurological deterioration. The onset of neurological signs in HIV-infected patients indicates a very poor prognosis for the outcome of the disease. (Author) 32 refs

  10. Candida infection of the central nervous system following neurosurgery: a 12-year review.

    O'Brien, Deirdre

    2011-06-01

    Candida infection of the central nervous system (CNS) following neurosurgery is relatively unusual but is associated with significant morbidity and mortality. We present our experience with this infection in adults and discuss clinical characteristics, treatment options, and outcome.

  11. Effect of insulin-induced hypoglycaemia on the central nervous system

    Jensen, Vivi Flou Hjorth; Bøgh, I. B.; Lykkesfeldt, Jens

    2014-01-01

    normoglycaemia. Brain glucose concentrations, being approximately 15-20% of the blood glucose concentration in humans, are rigorously maintained during hypoglycaemia through adaptions such as increased cerebral glucose transport, decreased cerebral glucose utilisation and, possibly, by using central nervous...

  12. Radiologic studies in two outbreaks of isolated vasculitis in the central nervous system

    Cerebral vasculitis is only occasionally diagnosed with angiography. Two outbreaks of isolated central nervous system vasculitis permitted a comparison of the accuracy of diagnostic radiologic studies. Two new radiologic features and methods of diagnosis are discussed

  13. Treatment Options for Childhood Central Nervous System Embryonal Tumors and Childhood Pineoblastoma

    ... children. See the PDQ summary on Adult Central Nervous System Tumors Treatment for more information on the treatment of adults. There are different types of CNS embryonal tumors. Enlarge Anatomy of the inside of the brain, showing the ...

  14. New model to determine the central nervous system reaction to peripheral trauma

    Monitoring the activity of the central nervous system with the 14C-2-deoxyglucose method of Sokoloff was utilized to explore the possibility to develop a model for the study of central nervous system reaction to peripheral trauma. Preliminary evidence indicates that the activation caused by tactile stimuli to one hindlimb nerve is that expected from earlier physiologic studies. However, an increase of stimulation intensity to recruit nociceptive (pain) fibers seems to abolish the changes, indicating that inhibitory systems have been activated

  15. Central nervous system involvement in acute lymphoblastic leukemia: diagnosis by immunophenotyping

    Camila Silva Peres Cancela

    2013-08-01

    Full Text Available The central nervous system is the most commonly affected extramedullary site in acute lymphoblastic leukemia. Although morphologic evaluation of the cerebrospinal fluid has been traditionally used for diagnosing central nervous system involvement, it is a method of low sensitivity. The present study aimed at evaluating the use of immunophenotyping in the detection of blasts in the cerebrospinal fluid from children and adolescents with acute lymphoblastic leukemia.

  16. Multiple myeloma invasion of the central nervous system

    Marjanović Slobodan

    2012-01-01

    Full Text Available Introduction. Multiple myeloma (MM is characterized by the presence of neoplastic proliferating plasma cells. The tumor is generally restricted to the bone marrow. The most common complications include renal insufficiency, hypercalcemia, anemia and reccurent infections. The spectrum of MM neurological complications is diverse, however, involvement of MM in the cerebrospinal fluid (CSF and leptomeningeal infiltration are rare considered. In about 1% of the cases, the disease affects the central nervous system (CNS and presents itself in the form of localized intraparenchymal lesions, solitary cerebral plasmocytoma or CNS myelomatosis (LMM. Case report. We presented the clinical course of a 55-year-old man with MM and LMM proven by malignant plasma cells in the CSF, hospitalized with the pain in the thoracic spine. His medical history was uneventful. There had been no evidence of mental or neurological impairment prior to the seizures. Physical examination showed no abnormalities. After a complete staging, the diagnosis of MM type biclonal gammopathia IgG lambda and free lambda light chains in the stage III was confirmed. The treatment started with systemic chemotherapy (with vincristine, doxorubicin plus high-dose dexamethasone - VAD protocol, radiotherapy and bisphosphonate. The patient developed weakness, nausea, febrility, dispnea, bilateral bronchopneumonia, acute renal insufficiency, confusions, headaches and soon thereafter sensomotor aphasias and right hemiparesis. The patient was treated with the adequate therapy including one hemodyalisis. His neurological status was deteriorated, so Multislice Computed Tomography (MSCT of the head was performed and the findings were normal. Analysis of CSF showed pleocytosis, 26 elements/ mL and increased concentrations of proteins. Cytological analysis revealed an increased number of plasma cells (29%. Electrophoretic analysis of proteins disclosed the existance of monoclonal components in the serum

  17. Lipomas of the central nervous system in childhood. Apropos of 3 cases

    Lipomas of the central nervous system occur as a phenomenon consequences developmental malformations of the central nervous system (CNS) and are not considered neoplasms . It is often associated with other congenital malformations. Representing 0.5 percent of intracranial tumors. Imaging studies are central CT or MRI for diagnosis. They are generally associated with other malformations of the CNS. The surgical treatment is always discussed by the high morbidity associated with it. We present three cases of children with lipomas of different topography. (author)

  18. MRT of the central nervous system. 2. rev. and enl. ed.

    The book on MRT of the central nervous system includes the following chapters: anatomy, vascular diseases, brain tumors, craniocerebral injuries, infectious diseases, multiple sclerosis and related diseases, metabolic diseases, degenerative diseases, malformations and developmental disorders, hydrocephalus and intracranial hypertension, spinal marrow, degenerative caused spinal and foraminal stenosis, traumata, tumors and tumor-like neoplasm, vascular diseases, inflammations, infections and related diseases, diseases of the peripheral nervous system.

  19. Kynurenines and Multiple Sclerosis: The Dialogue between the Immune System and the Central Nervous System

    Cecilia Rajda; Zsófia Majláth; Dániel Pukoli; László Vécsei

    2015-01-01

    Multiple sclerosis is an inflammatory disease of the central nervous system, in which axonal transection takes place in parallel with acute inflammation to various, individual extents. The importance of the kynurenine pathway in the physiological functions and pathological processes of the nervous system has been extensively investigated, but it has additionally been implicated as having a regulatory function in the immune system. Alterations in the kynurenine pathway have been described in ...

  20. MRT of the central nervous system. 2. rev. and enl. ed.; MRT des Zentralnervensystems

    Forsting, Michael [Universitaetsklinikum Essen (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie und Neuroradiologie; Jansen, Olav (ed.) [Universitaetsklinikum Schleswig-Holstein, Kiel (Germany). Klinik fuer Radiologie und Neuroradiologie

    2014-11-01

    The book on MRT of the central nervous system includes the following chapters: anatomy, vascular diseases, brain tumors, craniocerebral injuries, infectious diseases, multiple sclerosis and related diseases, metabolic diseases, degenerative diseases, malformations and developmental disorders, hydrocephalus and intracranial hypertension, spinal marrow, degenerative caused spinal and foraminal stenosis, traumata, tumors and tumor-like neoplasm, vascular diseases, inflammations, infections and related diseases, diseases of the peripheral nervous system.

  1. Turning sex inside-out: Peripheral contributions to sexual differentiation of the central nervous system

    Swift-Gallant Ashlyn; Niel Lee; Monks D

    2012-01-01

    Abstract Sexual differentiation of the nervous system occurs via the interplay of genetics, endocrinology and social experience through development. Much of the research into mechanisms of sexual differentiation has been driven by an implicit theoretical framework in which these causal factors act primarily and directly on sexually dimorphic neural populations within the central nervous system. This review will examine an alternative explanation by describing what is known about the role of p...

  2. Central nervous system tumors and related intracranial pathologies in radium dial workers

    Stebbings, J.H.; Semkiw, W.

    1988-01-01

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs.

  3. Central nervous system tumors and related intracranial pathologies in radium dial workers

    Among the female radiation workers in the radium dial industry there is no overall excess of brain or central nervous system tumors. A significant excess did appear, however, in one of three major cohorts; the excess was not due to an excess of gliomas and cannot be ascribed with certainty to radium or external radiation. A significant proportional excess of tumors outside the brain was observed, and is consistent with irradiation of nervous system tissue from adjacent bone. Early deaths from brain abscess or mastoiditis, which are coded as diseases of the nervous system and sense organs, were observed. 12 refs., 11 tabs

  4. Research progress of central nervous system lymphatic circulation and related diseases

    Tian-ming LÜ; Xiao-yu HUANG; Shi, Cui-Li

    2015-01-01

    In this paper, we have reviewed the central nervous system (CNS) lymphatic circulation and related diseases. The lymphatic system is an important component of circulatory system. However, classic lymphatic vessels consisted of endotheliocytes are not found within CNS. Indeed, the central lymphatic circulation exists. Virchow-Robin space (VRS) is regarded as main component of the central lymphatic circulation, which resembles peripheral lymphatic system functionally and plays an important role...

  5. Effects of physical exercise on central nervous system functions: a review of brain region specific adaptations

    Morgan, Julie A; Corrigan, Frances; Baune, Bernhard T

    2015-01-01

    Pathologies of central nervous system (CNS) functions are involved in prevalent conditions such as Alzheimer’s disease, depression, and Parkinson’s disease. Notable pathologies include dysfunctions of circadian rhythm, central metabolism, cardiovascular function, central stress responses, and movement mediated by the basal ganglia. Although evidence suggests exercise may benefit these conditions, the neurobiological mechanisms of exercise in specific brain regions involved in these important ...

  6. Glial biomarkers in human central nervous system disease.

    Garden, Gwenn A; Campbell, Brian M

    2016-10-01

    There is a growing understanding that aberrant GLIA function is an underlying factor in psychiatric and neurological disorders. As drug discovery efforts begin to focus on glia-related targets, a key gap in knowledge includes the availability of validated biomarkers to help determine which patients suffer from dysfunction of glial cells or who may best respond by targeting glia-related drug mechanisms. Biomarkers are biological variables with a significant relationship to parameters of disease states and can be used as surrogate markers of disease pathology, progression, and/or responses to drug treatment. For example, imaging studies of the CNS enable localization and characterization of anatomical lesions without the need to isolate tissue for biopsy. Many biomarkers of disease pathology in the CNS involve assays of glial cell function and/or response to injury. Each major glia subtype (oligodendroglia, astroglia and microglia) are connected to a number of important and useful biomarkers. Here, we describe current and emerging glial based biomarker approaches for acute CNS injury and the major categories of chronic nervous system dysfunction including neurodegenerative, neuropsychiatric, neoplastic, and autoimmune disorders of the CNS. These descriptions are highlighted in the context of how biomarkers are employed to better understand the role of glia in human CNS disease and in the development of novel therapeutic treatments. GLIA 2016;64:1755-1771. PMID:27228454

  7. Nerve Regeneration in the Peripheral Nervous System versus the Central Nervous System and the Relevance to Speech and Hearing after Nerve Injuries

    Gordon, Tessa; Gordon, Karen

    2010-01-01

    Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…

  8. Local Nitric Oxide Production in Viral and Autoimmune Diseases of the Central Nervous System

    Hooper, D. Craig; Tsuyoshi Ohnishi, S.; Kean, Rhonda; Numagami, Yoshihiro; Dietzschold, Bernhard; Koprowski, Hilary

    1995-06-01

    Because of the short half-life of NO, previous studies implicating NO in central nervous system pathology during infection had to rely on the demonstration of elevated levels of NO synthase mRNA or enzyme expression or NO metabolites such as nitrate and nitrite in the infected brain. To more definitively investigate the potential causative role of NO in lesions of the central nervous system in animals infected with neurotropic viruses or suffering from experimental allergic encephalitis, we have determined directly the levels of NO present in the central nervous system of such animals. Using spin trapping of NO and electron paramagnetic resonance spectroscopy, we confirm here that copious amounts of NO (up to 30-fold more than control) are elaborated in the brains of rats infected with rabies virus or borna disease virus, as well as in the spinal cords of rats that had received myelin basic protein-specific T cells.

  9. Invasive central nervous system aspergillosis in bone marrow transplantation recipients: an overview

    Invasive central nervous system aspergillosis is being seen with an increased frequency, particularly due to the increased number of immunosuppressed patients. The major cause of invasive central nervous system aspergillosis is bone marrow transplantation. In most cases, aspergillosis develops in the paranasal sinuses and in the lungs, and secondarily spreads to the brain. Imaging of cerebral aspergillosis may present different patterns depending on the lesion's age and the immunologic status of the patient. Lesions of the spinal cord are far less common but has been encountered in our series. In this article we review the clinical and radiologic features of aspergillosis affecting the central nervous system in patients who underwent bone marrow transplantation. Different CT and MR patterns are presented, including pertinent clinical and pathologic material. Significant morbidity and mortality can be associated with this fungal infection, and it is therefore incumbent upon the radiologist to identify intracranial aspergillosis as early as possible so that appropriate therapy can be administered. (orig.)

  10. The central nervous system sites mediating the orexigenic actions of ghrelin.

    Mason, B L; Wang, Q; Zigman, J M

    2014-01-01

    The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the central nervous system. This review discusses those central nervous system sites that have been found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons. Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry controlling eating and body weight. PMID:24111557

  11. Role of taurine in the central nervous system

    Wu Jang-Yen; Prentice Howard

    2010-01-01

    Abstract Taurine demonstrates multiple cellular functions including a central role as a neurotransmitter, as a trophic factor in CNS development, in maintaining the structural integrity of the membrane, in regulating calcium transport and homeostasis, as an osmolyte, as a neuromodulator and as a neuroprotectant. The neurotransmitter properties of taurine are illustrated by its ability to elicit neuronal hyperpolarization, the presence of specific taurine synthesizing enzyme and receptors in t...

  12. Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse.

    Darius Moharregh-Khiabani

    Full Text Available BACKGROUND: Fumaric acid esters (FAE are a group of compounds which are currently under investigation as an oral treatment for relapsing-remitting multiple sclerosis. One of the suggested modes of action is the potential of FAE to exert a neuroprotective effect. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the impact of monomethylfumarate (MMF and dimethylfumaric acid (DMF on de- and remyelination using the toxic cuprizone model where the blood-brain-barrier remains intact and only scattered T-cells and peripheral macrophages are found in the central nervous system (CNS, thus excluding the influence of immunomodulatory effects on peripheral immune cells. FAE showed marginally accelerated remyelination in the corpus callosum compared to controls. However, we found no differences for demyelination and glial reactions in vivo and no cytoprotective effect on oligodendroglial cells in vitro. In contrast, DMF had a significant inhibitory effect on lipopolysaccharide (LPS induced nitric oxide burst in microglia and induced apoptosis in peripheral blood mononuclear cells (PBMC. CONCLUSIONS: These results contribute to the understanding of the mechanism of action of fumaric acids. Our data suggest that fumarates have no or only little direct protective effects on oligodendrocytes in this toxic model and may act rather indirectly via the modulation of immune cells.

  13. Primary central nervous system lymphoma presenting as isolated oculomotor nerve palsy

    Terence Tan, MBBS

    2014-09-01

    Full Text Available The authors report an unusual case of primary central nervous system lymphoma presenting with isolated pupil-involved oculomotor nerve palsy. Magnetic resonance imaging demonstrated leptomeningeal involvement of the midbrain and interpeduncular cistern, a single hypothalamic lesion, and intraventricular involvement. Diffuse large B-cell lymphoma was confirmed by stereotactic intraventricular biopsy. Combination chemotherapy with methotrexate, vincristine, procarbazine and rituximab was instituted with resolution of oculomotor nerve palsy and complete disease remission. An interdisciplinary approach involving neurosurgeons, neuroradiologists, neuropathologists and neurologists is crucial in the management of primary central nervous system lymphoma.

  14. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  15. Telegamatherapy of the central nervous system in acute lymphoblastic leucosis

    Dosimetric investigations in water phantom on telegamatherapeutic device ROKUS were carried out with a small ionizing chamber. Two opposite lateral fields were used, outlined with lead blocks. The dose was calculated in the middle of the volume designed for irradiation, in applyng 24 Gy for 16 fractions. A comparative evaluation of the dose distribution was made at different distance of the protective screens from the central rays of the flux. Discussion is made of the possibilities for application of adequate dose in the full volume and for optimizing the dose distribution into the retrobulbar tissues by the best possible protection of the occular lens

  16. Localization of Reversion-Induced LIM Protein (RIL) in the Rat Central Nervous System

    Reversion-induced LIM protein (RIL) is a member of the ALP (actinin-associated LIM protein) subfamily of the PDZ/LIM protein family. RIL serves as an adaptor protein and seems to regulate cytoskeletons. Immunoblotting suggested that RIL is concentrated in the astrocytes in the central nervous system. We then examined the expression and localization of RIL in the rat central nervous system and compared it with that of water channel aquaporin 4 (AQP4). RIL was concentrated in the cells of ependyma lining the ventricles in the brain and the central canal in the spinal cord. In most parts of the central nervous system, RIL was expressed in the astrocytes that expressed AQP4. Double-labeling studies showed that RIL was concentrated in the cytoplasm of astrocytes where glial fibrillary acidic protein was enriched as well as in the AQP4-enriched regions such as the endfeet or glia limitans. RIL was also present in some neurons such as Purkinje cells in the cerebellum and some neurons in the brain stem. Differential expression of RIL suggests that it may be involved in the regulation of the central nervous system

  17. An altered form of pp60c-src is expressed primarily in the central nervous system.

    Le Beau, J M; Wiestler, O D; Walter, G.

    1987-01-01

    The expression of two forms of pp60c-src, pp60 and pp60+, was measured in the central nervous system (CNS) and the peripheral nervous system. Both forms were expressed in the CNS, whereas only pp60 was primarily detected in the peripheral nervous system. Our findings suggest that pp60+ may play a role in events important to the CNS.

  18. Radiotherapy applied to tumours of the intracranial central nervous systems in the dog

    As domestic animals such as dogs are living older because of a better life quality and better cares, they may more frequently develop tumours in their intracranial central nervous system. In this research thesis, the author addresses this specific topic. He first recalls fundamental physical and biological aspects for the understanding of radiotherapy action mechanisms, and the modalities of such a treatment. He addresses the general study of intracranial central nervous system tumours in dogs: brief recall on anatomic and histological aspects, presentation of their classification and their prevalence, and precise descriptions of their characteristics. In the third part, the author reports clinical and para-clinical data which allow the diagnosis of an intracranial nervous tissue tumour. The last part presents different available therapeutic modalities, more particularly addresses the interest of radiotherapy in neuro-oncology, and compares published results

  19. Central Gi(2) proteins, sympathetic nervous system and blood pressure regulation

    Zicha, Josef

    2016-01-01

    Roč. 216, č. 3 (2016), s. 258-259. ISSN 1748-1708 Institutional support: RVO:67985823 Keywords : inhibitory G proteins * sympathetic nervous system * central blood pressure control Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 4.382, year: 2014

  20. Mild hypothermia as a treatment for central nervous system injuries Positive or negative effects?

    Rami Darwazeh; Yi Yan

    2013-01-01

    Besides local neuronal damage caused by the primary insult, central nervous system injuries may secondarily cause a progressive cascade of related events including brain edema, ischemia, oxida-tive stress, excitotoxicity, and dysregulation of calcium homeostasis. Hypothermia is a beneficial strategy in a variety of acute central nervous system injuries. Mild hypothermia can treat high intra-cranial pressure fol owing traumatic brain injuries in adults. It is a new treatment that increases sur-vival and quality of life for patients suffering from ischemic insults such as cardiac arrest, stroke, and neurogenic fever fol owing brain trauma. Therapeutic hypothermia decreases free radical produc-tion, inflammation, excitotoxicity and intracranial pressure, and improves cerebral metabolism after traumatic brain injury and cerebral ischemia, thus protecting against central nervous system dam-age. Although a series of pathological and physiological changes as wel as potential side effects are observed during hypothermia treatment, it remains a potential therapeutic strategy for central nervous system injuries and deserves further study.

  1. Trends in tumors in the central nervous system in elderly in Denmark, 2008-2012

    Dahlrot, Rikke H; Poulsen, Frantz R; Nguyen, Nina N T T;

    2016-01-01

    Background Tumors in the central nervous system (CNS) comprise a heterogeneous group of tumors with different treatment strategies and prognoses. Current treatment regimens are based on studies on patients mainly younger than 70 years. The aim of the present study was to analyze and describe trends...

  2. Primary melanocytic tumors of the central nervous system: a review with focus on molecular aspects

    Kusters-vandevelde, H.V.; Kusters, B.; Grunsven, A.C.H. van; Groenen, P.J.T.A.; Wesseling, P.; Blokx, W.A.M.

    2015-01-01

    Primary melanocytic tumors of the central nervous system (CNS) represent a spectrum of rare tumors. They can be benign or malignant and occur in adults as well as in children, the latter often in the context of neurocutaneous melanosis. Until recently, the genetic alterations in these tumors were la

  3. Cognitive functions in primary central nervous system lymphoma: Literature review and assessment guidelines

    D.D. Correa; L. Maron; H. Harder (Helena); M. Klein (Martin); C.L. Armstrong; P. Calabrese; J.E.C. Bromberg (Jacolien); L.E. Abrey (Lauren); T.T. Batchelor (Tracy); D. Schiff (David)

    2007-01-01

    textabstractBackground: Treatment-related neurotoxicity has been recognized as a significant problem in patients with primary central nervous system lymphoma (PCNSL) as effective treatment has increased survival rates. There is, however, a paucity of research on cognitive functions in this populatio

  4. Dysfunctional astrocytes as key players in the pathogenesis of central nervous system disorders

    De Keyser, Jacques; Mostert, Jop P.; Koch, Marcus W.

    2008-01-01

    Once considered little more than the glue that holds neurons in place, astrocytes are now becoming appreciated for the key roles they play in central nervous system functions. They supply neurons and oligodendrocytes with substrates for energy metabolism, control extracellular water and electrolyte

  5. An adult case of chronic myelogenous leukemia with myeloblastic involvement of the central nervous system.

    Watanabe,Akiharu

    1984-06-01

    Full Text Available A 31-year-old female with chronic myelogenous leukemia, who developed myeloblastic involvement of the central nervous system during acute myeloblastic transformation of the disease, was treated with methotrexate intrathecally. The therapy produced prompt clinical response and complete reversal of abnormal cerebrospinal fluid findings. However, the patient expired 10 months following the acute blastic crisis.

  6. Primary central nervous system T-cell lymphoma mimicking meningoencephalomyelitis in a cat.

    Guil-Luna, Silvia; Carrasco, Librado; Gómez-Laguna, Jaime; Hilbe, Monika; Mínguez, Juan J; Köhler, Kernt; de las Mulas, Juana Martín

    2013-06-01

    A cat was presented with right head tilt and circling. The lack of expression of virus antigens did not support the postmortem diagnosis of encephalomyelitis pointing to a diffuse primary central nervous system T-cell lymphoma on the basis of CD3 and CD45R co-expression with absence of CD79α staining. PMID:24155454

  7. Consequences for central nervous system functional state of exposure to ionizing radiation modification with antioxidants

    Aim: to estimate the pattern of ionizing radiation effects modification by antioxidants using central nervous system functional state indices. The studies were carried out using 84 rats. Beta-carotene and alpha-tocopherol were found to significantly improve conditioned activity indices level of the animals exposed to ionizing radiation and emotional-pain stress

  8. Targeting the chemokine receptor CXCR3 and its ligand CXCL10 in the central nervous system

    Sørensen, Torben Lykke

    2004-01-01

    focuses on the present data regarding CXCL10 (previously known as IP-10) and CXRC3 in multiple sclerosis, since consistent data has suggested that this chemokine/chemokine receptor pair has a pivotal role in leukocyte recruitment into the central nervous system (CNS) in multiple sclerosis....

  9. Herpes simplex virus type 2 infections of the central nervous system

    Omland, Lars Haukali; Vestergaard, Bent Faber; Wandall, Johan

    2008-01-01

    Herpes simplex virus type 2 (HSV-2) infections of the central nervous system (CNS) are rare with meningitis as the most common clinical presentation. We have investigated the clinical spectrum of CNS infections in 49 adult consecutive patients with HSV-2 genome in the cerebrospinal fluid (CSF). HSV...

  10. Metallothionein expression in the central nervous system of multiple sclerosis patients

    Penkowa, M; Espejo, C; Ortega-Aznar, A;

    2003-01-01

    Multiple sclerosis (MS) is a major chronic demyelinating and inflammatory disease of the central nervous system (CNS) in which oxidative stress likely plays a pathogenic role in the development of myelin and neuronal damage. Metallothioneins (MTs) are antioxidant proteins induced in the CNS by ti...

  11. Primary central nervous system lymphoma in the elderly : a multicentre retrospective analysis

    Schuurmans, Mascha; Bromberg, Jacoline E. C.; Doorduijn, Jeanette; Poortmans, Philip; Taphoorn, Martin J. B.; Seute, Tatjana; Enting, Roeline; van Imhoff, Gustaaf; van Norden, Yvette; van den Bent, Martin J.

    2010-01-01

    Elderly patients with primary central nervous ystem lymphoma (PCNSL) do not tolerate treatment with combined radio-chemotherapy well because of leuco-encephalopathy; they are usually treated initially with chemotherapy or radiotherapy alone. Little is known about the efficacy and toxicity of these t

  12. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients

    Sørensen, Torben Lykke; Tani, M; Jensen, J;

    1999-01-01

    Chemokines direct tissue invasion by specific leukocyte populations. Thus, chemokines may play a role in multiple sclerosis (MS), an idiopathic disorder in which the central nervous system (CNS) inflammatory reaction is largely restricted to mononuclear phagocytes and T cells. We asked whether sp...

  13. Diagnostic and Therapeutic Challenges in a Liver Transplant Recipient with Central Nervous System Invasive Aspergillosis

    Dionissios, Neofytos; Shmuel, Shoham; Kerry, Dierberg; Katharine, Le; Simon, Dufresne; Sean, Zhang X; Kieren, Marr A

    2012-01-01

    This is a case report of central nervous system (CNS) invasive aspergillosis (IA) in a liver transplant recipient, which illustrates the utility of enzyme-based diagnostic tools for the timely and accurate diagnosis of IA, the treatment challenges and poor outcomes associated with CNS IA in liver transplant recipients.

  14. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS)

    Asgari, N; Owens, T; Frøkiaer, J;

    2010-01-01

    Asgari N, Owens T, Frøkiaer J, Stenager E, Lillevang ST, Kyvik KO. Neuromyelitis optica (NMO) - an autoimmune disease of the central nervous system (CNS).
Acta Neurol Scand: DOI: 10.1111/j.1600-0404.2010.01416.x.
© 2010 John Wiley & Sons A/S. In the past 10 years, neuromyelitis optica (NMO) has...

  15. Pancreatic Metastasis from a Solitary Fibrous Tumor of the Central Nervous System

    Takahiro Osuga

    2014-01-01

    Full Text Available Context Solitary fibrous tumor of the central nervous system is uncommon, with only around 200 reported cases. Further, extracranial metastasis is extremely rare, and only 5 cases of hematogenous metastases have been reported so far. To the best of our knowledge, there have been no reports of solitary fibrous tumor of the central nervous system metastasizing to the pancreas. Case report A 62-year-old woman was referred for evaluation of a pancreatic mass, which was strongly suspected to be a neuroendocrine tumor. However, the histological findings and immunohistochemical profile indicated the presence of a solitary fibrous tumor. Because the medical history revealed previous transcranial resection for intracranial meningioma 16 years ago, we conducted a pathological review of the brain specimen obtained by the first operation and found that it had the same histology and immunohistochemical profile as the current endoscopic ultrasound-guided fineneedle aspiration specimen. Consequently, the final diagnosis, on the basis of the brain specimen, was changed from meningioma to solitary fibrous tumor of the central nervous system, and the pancreatic mass was diagnosed as metastasis from solitary fibrous tumor of the central nervous system. The patient underwent middle pancreatectomy; the pancreatic specimen also had the same histology and immunohistochemical profile as the brain specimen. Conclusion Histological findings and immunohistochemical profile obtained by EUS-FNA are invaluable for the correct diagnosis to avoid excessive surgical procedures.

  16. Epilepsy and other central nervous system diseases in atypical autism: a case control study

    Mouridsen, Svend Erik; Rich, Bente; Isager, Torben

    2011-01-01

    There is an increased but variable risk of epilepsy in autism spectrum disorders. The objective of this study is to compare the prevalence and types of epilepsy and other central nervous system (CNS) diseases in a clinical sample of 89 individuals diagnosed as children with atypical autism (AA...

  17. CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System

    Drummond, Rebecca A.; Collar, Amanda L.; Muthulekha Swamydas; Rodriguez, Carlos A.; Jean K. Lim; Laura M Mendez; Fink, Danielle L.; Hsu, Amy P.; Bing Zhai; Hatice Karauzum; Mikelis, Constantinos M.; Rose, Stacey R.; Ferre, Elise M. N.; Lynne Yockey; Kimberly Lemberg

    2015-01-01

    Author Summary CARD9 is a molecule expressed by mammalian immune cells and is centrally positioned downstream of several C-type lectin receptors, which sense fungi. The critical role of CARD9 in the activation of antifungal host defense has been highlighted by the demonstration that human mutations that disrupt the function of CARD9 are associated with the development of spontaneous life-threatening fungal infections, many of which target the central nervous system (CNS). However, why CARD9-d...

  18. Central nervous system aspergillus infection complicating renal transplantation

    A case of catastrophic intracerebral haemorrhage secondary to aspergillus infection in an immunocompromised renal transplant patient is presented. The pathological features and related images are described and the radiology of CNS aspergillus infection is reviewed. A 37-year-old woman was admitted with abdominal pain. She had recently received a cadaveric renal transplant following failure of the previous live donor kidney. Gastroscopy showed changes suspicious of cytomegalovirus (CMV) gastroduodenitis and she was treated with gancyclovir, with resolution of her symptoms. While in hospital her creatinine began to rise. The renal biopsy was suggestive of cyclosporin toxicity and the cyclosporin level was raised 537 mg/mL (normal 160-360 mg/mL). Several days later, she developed slurred speech and weakness in her right arm. Non-contrast CT showed multifocal regions of low attenuation over the right temporal convexity, within the basal ganglia, inferior frontal lobe and corona radiata on the left side. Magnetic resonance imaging on the same day showed multiple areas of high signal on the FLAIR images, some of which contained central areas of low signal. There was no significant enhancement post gadolinium but several of the lesions showed increased signal on the diffusion-weighted images, reflecting cytotoxic oedema. Repeat CT showed an increase in the size of the cerebral lesions with haemorrhagic transformation of the right basal ganglia mass. A further lesion with a peripheral dense rim on the non-contrast images was identified in the right cerebellar hemisphere. The possibility of a vasculitis secondary to a fungal infection was raised. Two days later the patient became comatose with CT showing a large intracerebral haematoma in the left basal ganglia, intraventricular blood and hydrocephalus. The patient died soon afterwards. Post-mortem examination showed multifocal cerebral haemorrhage associated with necrotizing vasculitis and aspergillus infection

  19. Diagnostic accuracy of frozen section in Central nervous system lesions, a 10-year study.

    Maliheh KHODDAMI*

    2015-01-01

    Full Text Available How to Cite This Article: Khoddami M, Akbarzadeh A, Mordai A, Bidari Zerehpoush F, Alipour H, Samadzadeh S, Alipour B.Diagnostic Accuracy of Frozen Section of Central Nervous System Lesions: A 10-Year Study. Iran J Child Neurol. 2015 Winter;9(1:25-30. AbstractObjectiveDefinitive diagnosis of the central nervous system (CNS lesions is unknown prior to histopathological examination. To determine the method and the endpoint for surgery, intraoperative evaluation of the lesion helps the surgeon.In this study, the diagnostic accuracy and pitfalls of using frozen section (FS ofCNS lesions is determined.Materials & MethodsIn this retrospective study, we analyzed the results of FS and permanent diagnoses of all CNS lesions by reviewing reports from 3 general hospitals between March 2001 and March 2011.Results273 cases were reviewed and patients with an age range from 3 to 77 years of age were considered. 166 (60.4% had complete concordance between FS and permanent section diagnosis, 83 (30.2% had partial concordance, and 24 cases (9.5% were discordant. Considering the concordant and partially concordant cases, the accuracy rate was 99.5%, sensitivity was 91.4%, specificity was 99.7%, and positive and negative predictive values were 88.4% and 99.8%, respectively.ConclusionOur results show high sensitivity and specificity of FS diagnosis in the evaluation of CNS lesions. A Kappa agreement score of 0.88 shows high concordance for FS results with permanent section. Pathologist’s misinterpretation, small biopsy samples (not representative of the entire tumor, suboptimal slides, and inadequate information about tumor location and radiologic findings appear to be the major causes for these discrepancies indicated from our study. ReferencesTaxy JB, Anthony G. Biopsy interpretation: the frozen section. 1st ed. China: Lippincott Williams & Wilkins; 2010. P.301-3.Somerset HL, Kleinschmidt-DeMasters BK. Approach to the intraoperative consultation for

  20. Cardiovascular and autonomic modulation by the central nervous system after aerobic exercise training

    M.C. Martins-Pinge

    2011-09-01

    Full Text Available The autonomic nervous system plays a key role in maintaining homeostasis under normal and pathological conditions. The sympathetic tone, particularly for the cardiovascular system, is generated by sympathetic discharges originating in specific areas of the brainstem. Aerobic exercise training promotes several cardiovascular adjustments that are influenced by the central areas involved in the output of the autonomic nervous system. In this review, we emphasize the studies that investigate aerobic exercise training protocols to identify the cardiovascular adaptations that may be the result of central nervous system plasticity due to chronic exercise. The focus of our study is on some groups of neurons involved in sympathetic regulation. They include the nucleus tractus solitarii, caudal ventrolateral medulla and the rostral ventrolateral medulla that maintain and regulate the cardiac and vascular autonomic tonus. We also discuss studies that demonstrate the involvement of supramedullary areas in exercise training modulation, with emphasis on the paraventricular nucleus of the hypothalamus, an important area of integration for autonomic and neuroendocrine responses. The results of these studies suggest that the beneficial effects of physical activity may be due, at least in part, to reductions in sympathetic nervous system activity. Conversely, with the recent association of physical inactivity with chronic disease, these data may also suggest that increases in sympathetic nervous system activity contribute to the increased incidence of cardiovascular diseases associated with a sedentary lifestyle.

  1. Secondary infiltration of the central nervous system in patients with diffuse large B-cell lymphoma

    Talita Maira Bueno da Silveira da Rocha

    2013-01-01

    Full Text Available OBJECTIVE: To investigate the incidence and risk factors of infiltration of the central nervous system after the initial treatment of diffuse large B-cell lymphoma in patients treated at Santa Casa de Misericórdia de São Paulo. METHODS: A total of 133 patients treated for diffuse large B-cell lymphoma from January 2001 to April 2008 were retrospectively analyzed in respect to the incidence and risk factors of secondary central nervous system involvement of lymphoma. Intrathecal prophylaxis was not a standard procedure for patients considered to be at risk. This analysis includes patients whether they received rituximab as first-line treatment or not. RESULTS: Nine of 133 (6.7% patients developed central nervous system disease after a mean observation time of 29 months. The median time to relapse or progression was 7.9 months after diagnosis and all but one patient died despite the treatment administered. Twenty-six (19.5% patients of this cohort received rituximab as first-line treatment and nine (7.1% received intrathecal chemoprophylaxis. Of the nine patients that relapsed, seven (77.7% had parenchymal central nervous system involvement; seven (77.7% had stage III or IV disease; one (11.1% had bone marrow involvement; two (22.2% had received intrathecal chemoprophylaxis; and 3 (33.3% had taken rituximab. In a multivariate analysis, the risk factors for this infiltration were being male, previous use of intrathecal chemotherapy and patients that were refractory to initial treatment. CONCLUSION: Central nervous system infiltration in this cohort is similar to that of previous reports in the literature. As this was a small cohort with a rare event, only three risk factors were important for this infiltration

  2. 75 FR 56548 - Joint Meeting of the Peripheral and Central Nervous System Drugs Advisory Committee and the Drug...

    2010-09-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Joint Meeting of the Peripheral and Central Nervous System... the public. Name of Committees: Peripheral and Central Nervous System Drugs Advisory Committee and...

  3. Immunohistochemical distribution of Calbindin D-28K immunoreactivity in the central nervous system of adult cat

    LIU Tao; LI Jin-lian; XIONG Kang-hui; LI Ji-shuo

    2002-01-01

    Objective: In order to get more information about the possible functions of Calbindin D-28K in the central nervous system of adult cat, the distribution of Calbindin D-28K in the central nervous system of adult cat was examined. Methods: Immunohistochemical staining techniques were used, and immunostained sections were observed under a light microscopy. Results: A high density of both immunoreactive perikarya and fibers were observed in the basal ganglia, amygdaloid complex, nucleus of the fields of Forel, subthalamic nucleus, paracentral nucleus, pulvinar nucleus, subthalamus, dorsal hypothalamic area, lateral hypothalamic area, anterior hypothalamus, suprachiasmatic nucleus, superior colliculus, inferior colliculus, oculomo-tor nucleus, superior olivary complex, marginal nucleus of the brachium conjunctivum, vestibular nuclei, the spinal trigeminal nucleus, nucleus of the solitary tract, cuneate nucleus, inferior olivary complex, dorsal motor nucleus of the vagus nerve, the molecular layer of the cerebellum, the purkinje cell layer of the cerebellum and in the laminae Ⅱ of the spinal cord, whereas the dentate gyrus, the central medial nucleus of the thalamus, the paracentral and central lateral nucleus of the thalamus, the lateral dorsal nucleus of the thalamus,the ventrolateral complex of the thalamus, the medioventral nucleus of the thalamus, the posterior hypothalamic area, the dorsal hypothalamic area, the infundibular nucleus, the dorsomedial hypothalamic nucleus and the interfascicular nucleus had just a high density of immunoreactive perikarya, and no positive fibres were detected in these areas. Conclusion: The present results showed that Calbindin D-28K-like immunoreactivity was widely distributed throughout the central nervous system of adult cat and might play an important role in the activities of the neurons in the central nervous system of adult cat.

  4. Incontinence and psychological problems in children: a common central nervous pathway?

    Van Herzeele, Charlotte; Vande Walle, Johan

    2016-05-01

    Nocturnal enuresis is caused by a mismatch between the nocturnal bladder capacity and the nocturnal diuresis rate, in the presence of a deficient arousability in the majority of patients, according to the pediatric and urologic literature. Psychiatric and psychologic literature are still concentrating on the potential role of psychological factors and central nervous mechanisms in the pathogenesis, as is reflected in the DMS-5 criteria. However, research has clearly shown several important comorbidities between neuropsychological dysfunctions and nocturnal enuresis. Due to the increased comorbidity of (neuro)psychological problems, sleep problems, circadian rhythms, and enuresis, the question arises as to whether there is a possible common central pathway in the pathogenesis. It is likely that the coexistence of these problems can be attributed to a common central nervous system involvement. The specific role of the central nervous system remains unclear, but several pathways are possible. The high comorbidity between enuresis, sleep, and (neuro)psychological functioning is probably attributable to a common pathogenetic pathway, emphasizing the importance of a multidisciplinary focus in screening and treatment in children with nocturnal enuresis. PMID:26872485

  5. Cardiac biopotentials influence on central nervous system functioning: first steps in hypothesis verification

    Kondal'skaya Yu.O.

    2012-12-01

    Full Text Available The research goal is to verify the hypothesis on influence of cardiac biopotentials on central nervous system. Materials: 20 healthy individuals aged 18-26 years old have been participated in the investigations. Two groups composed of 10 patients each have been formed. Double increase in heart biopotentials by means of artificial impulse insertion between natural cardiac contractions has been modeled. Artificial impulses have been similar to unaffected ones, produced in a normal heart work. Additional impulses have been generated using external pacemaker and have been linked up with electrodes on the chest. They have been synchronized with the heart rhythm and located in-between R waves. The duration of those impulses has been fully matched to ventricular complex. Their amplitude has been adjusted individually depending on the height of R wave. Nervous system mobility has been used as the indicator reflecting the central nervous system functioning. Degree of mobility has been defined on the basis of tapping test results. The test has been repeated at specific intervals. Groups have been exposed to two adverse testing modes. Additional impulses have been conducted to the patients of group I within an hour over a period of the first and the third 15-minute intervals and to the patients of group II over a period of the second and the fourth 15-minute intervals. In the middle and in the end of each time interval tapping test has been carried out. After preliminary analysis two other modes of stimulation have been tested. The stimulation has been performed within the 40-minute course: over a period of the first 20-minute interval and vice versa. Results: Detailed evaluation has revealed that short-time increase of nervous processes has been checked in combination with decrease in their stability. Conclusion: The data obtained have shown that there is possible influence on central nervous system functioning. The article ends with prospects of further

  6. Ramsay Hunt Syndrome Associated with Central Nervous System Involvement in an Adult.

    Chan, Tommy L H; Cartagena, Ana M; Bombassaro, Anne Marie; Hosseini-Moghaddam, Seyed M

    2016-01-01

    Ramsay Hunt syndrome associated with varicella zoster virus reactivation affecting the central nervous system is rare. We describe a 55-year-old diabetic female who presented with gait ataxia, right peripheral facial palsy, and painful vesicular lesions involving her right ear. Later, she developed dysmetria, fluctuating diplopia, and dysarthria. Varicella zoster virus was detected in the cerebrospinal fluid by polymerase chain reaction. She was diagnosed with Ramsay Hunt syndrome associated with spread to the central nervous system. Her facial palsy completely resolved within 48 hours of treatment with intravenous acyclovir 10 mg/kg every 8 hours. However, cerebellar symptoms did not improve until a tapering course of steroid therapy was initiated. PMID:27366189

  7. Connexin:a potential novel target for protecting the central nervous system?

    Hong-yan Xie; Yu Cui; Fang Deng; Jia-chun Feng

    2015-01-01

    Connexin subunits are proteins that form gap junction channels, and play an important role in communication between adjacent cells. This review article discusses the function of connexins/hemichannels/gap junctions under physiological conditions, and summarizes the findings re-garding the role of connexins/hemichannels/gap junctions in the physiological and pathological mechanisms underlying central nervous system diseases such as brain ischemia, traumatic brain and spinal cord injury, epilepsy, brain and spinal cord tumor, migraine, neuroautoimmune disease, Alzheimer’s disease, Parkinson’s disease, X-linked Charcot-Marie-Tooth disease, Peli-zaeus-Merzbacher-like disease, spastic paraplegia and maxillofacial dysplasia. Connexins are considered to be a potential novel target for protecting the central nervous system.

  8. Physical Basis of Magnetic Resonance Spectroscopy and its Application to Central Nervous System Diseases

    Nicolás Fayed

    2006-01-01

    Full Text Available Magnetic Resonance Spectroscopy is based on the chemical shift property of the atom nuclei when a magnetic field is applied. This technique offers invaluable information about living tissues with special contribution to the diagnosis and prognosis of the central nervous system diseases. Concentration of several metabolites can be assessed in a reproducible manner by means of modern clinical scanners. N-acetyl-aspartate is regarded as a neuronal marker and its levels reflect the neuronal density with significant decreases in degenerative disease such as Alzheimer's disease. Choline-compounds reflect the cell's membrane turnover and degradation. Myo-inositol has emerged as a glial marker with increases in degenerative diseases. The major usefulness of MRS has been reported in brain tumors, degenerative disorders, myelination defects and encephalopathies. In this review we report the physical basis and the contribution of MR spectroscopy to the diagnosis and prognosis of several diseases of the Central Nervous System.

  9. Medical management of primary central nervous system lymphoma refractory or resistant to standard of care treatment

    Primary central nervous system lymphoma (PCNSL) is a non-Hodgkin's lymphoma arising in the central nervous system. Combined irradiation and methotrexate-based chemotherapy is the standard of care treatment for PCNSL. The median overall survival achieved with this therapy is 25 to 51 months. Failure after first-line treatment has been reported in most patients with PCNSL. Salvage therapy is known to improve outcome, and although many different treatment modes have been attempted the optimal treatment schedule remains to be determined. This review analyses the efficacy of salvage therapy by focusing on data obtained from reports reporting on salvage therapy. Well-designed, randomized trials will help clarify issues such as the best chemotherapy regimen for second-line treatment. (author)

  10. White-matter abnormalities in unirradiated patients cured of primary central nervous system lymphoma

    On MRI, primary brain tumors are commonly seen as contrast-enhancing masses surrounded by areas of abnormal signal on T2-weighted images. Following successful treatment tumors may no longer show contrast enhancement. The residual abnormalities are assumed to be represent ''edema'' and infiltrating tumor cells. We report nine patients with primary lymphoma of the central nervous system who had complete responses to intravenous methotrexate, but did not receive intrathecal chemotherapy or cranial irradiation. After complete resolution of contrast-enhancing lesions, persistent abnormalities on T2-weighted images in the region of prior tumor were initially assumed to reflect residual viable tumor. As they remained unchanged for years, however, this may not hold true in the cases in which primary central nervous system lymphoma responds to chemotherapy alone. (orig.)