WorldWideScience

Sample records for accelerated wound healing

  1. Electrical stimulation to accelerate wound healing

    Gaurav Thakral

    2013-09-01

    Full Text Available Background: There are several applications of electrical stimulation described in medical literature to accelerate wound healing and improve cutaneous perfusion. This is a simple technique that could be incorporated as an adjunctive therapy in plastic surgery. The objective of this review was to evaluate the results of randomized clinical trials that use electrical stimulation for wound healing. Method: We identified 21 randomized clinical trials that used electrical stimulation for wound healing. We did not include five studies with treatment groups with less than eight subjects. Results: Electrical stimulation was associated with faster wound area reduction or a higher proportion of wounds that healed in 14 out of 16 wound randomized clinical trials. The type of electrical stimulation, waveform, and duration of therapy vary in the literature. Conclusion: Electrical stimulation has been shown to accelerate wound healing and increase cutaneous perfusion in human studies. Electrical stimulation is an adjunctive therapy that is underutilized in plastic surgery and could improve flap and graft survival, accelerate postoperative recovery, and decrease necrosis following foot reconstruction.

  2. Microbial Symbionts Accelerate Wound Healing via the Neuropeptide Hormone Oxytocin

    Theofilos Poutahidis; Kearney, Sean M.; Tatiana Levkovich; Peimin Qi; Varian, Bernard J.; Lakritz, Jessica R; Ibrahim, Yassin M.; Antonis Chatzigiagkos; Eric J Alm; Erdman, Susan E.

    2013-01-01

    Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobaci...

  3. Heme oxygenase-1 accelerates cutaneous wound healing in mice.

    Anna Grochot-Przeczek

    Full Text Available Heme oxygenase-1 (HO-1, a cytoprotective, pro-angiogenic and anti-inflammatory enzyme, is strongly induced in injured tissues. Our aim was to clarify its role in cutaneous wound healing. In wild type mice, maximal expression of HO-1 in the skin was observed on the 2(nd and 3(rd days after wounding. Inhibition of HO-1 by tin protoporphyrin-IX resulted in retardation of wound closure. Healing was also delayed in HO-1 deficient mice, where lack of HO-1 could lead to complete suppression of reepithelialization and to formation of extensive skin lesions, accompanied by impaired neovascularization. Experiments performed in transgenic mice bearing HO-1 under control of keratin 14 promoter showed that increased level of HO-1 in keratinocytes is enough to improve the neovascularization and hasten the closure of wounds. Importantly, induction of HO-1 in wounded skin was relatively weak and delayed in diabetic (db/db mice, in which also angiogenesis and wound closure were impaired. In such animals local delivery of HO-1 transgene using adenoviral vectors accelerated the wound healing and increased the vascularization. In summary, induction of HO-1 is necessary for efficient wound closure and neovascularization. Impaired wound healing in diabetic mice may be associated with delayed HO-1 upregulation and can be improved by HO-1 gene transfer.

  4. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin.

    Theofilos Poutahidis

    Full Text Available Wound healing capability is inextricably linked with diverse aspects of physical fitness ranging from recovery after minor injuries and surgery to diabetes and some types of cancer. Impact of the microbiome upon the mammalian wound healing process is poorly understood. We discover that supplementing the gut microbiome with lactic acid microbes in drinking water accelerates the wound-healing process to occur in half the time required for matched control animals. Further, we find that Lactobacillus reuteri enhances wound-healing properties through up-regulation of the neuropeptide hormone oxytocin, a factor integral in social bonding and reproduction, by a vagus nerve-mediated pathway. Bacteria-triggered oxytocin serves to activate host CD4+Foxp3+CD25+ immune T regulatory cells conveying transplantable wound healing capacity to naive Rag2-deficient animals. This study determined oxytocin to be a novel component of a multi-directional gut microbe-brain-immune axis, with wound-healing capability as a previously unrecognized output of this axis. We also provide experimental evidence to support long-standing medical traditions associating diet, social practices, and the immune system with efficient recovery after injury, sustained good health, and longevity.

  5. Hyaluronidase modulates inflammatory response and accelerates the cutaneous wound healing.

    Fronza, Marcio; Caetano, Guilherme F; Leite, Marcel N; Bitencourt, Claudia S; Paula-Silva, Francisco W G; Andrade, Thiago A M; Frade, Marco A C; Merfort, Irmgard; Faccioli, Lúcia H

    2014-01-01

    Hyaluronidases are enzymes that degrade hyaluronan an important constituent of the extracellular matrix. They have been used as a spreading agent, improving the absorption of drugs and facilitating the subcutaneous infusion of fluids. Here, we investigated the influence of bovine testes hyaluronidase (HYAL) during cutaneous wound healing in in vitro and in vivo assays. We demonstrated in the wound scratch assay that HYAL increased the migration and proliferation of fibroblasts in vitro at low concentration, e.g. 0.1 U HYAL enhanced the cell number by 20%. HYAL presented faster and higher reepithelialization in in vivo full-thickness excisional wounds generated on adult Wistar rats back skin already in the early phase at 2nd day post operatory compared to vehicle-control group. Wound closured area observed in the 16 U and 32 U HYAL treated rats reached 38% and 46% compared to 19% in the controls, respectively. Histological and biochemical analyses supported the clinical observations and showed that HYAL treated wounds exhibited increased granulation tissue, diminished edema formation and regulated the inflammatory response by modulating the release of pro and anti-inflammatory cytokines, growth factor and eicosanoids mediators. Moreover, HYAL increased gene expression of peroxisome proliferator-activated receptors (PPAR) γ and PPAR β/δ, the collagen content in the early stages of healing processes as well as angiogenesis. Altogether these data revealed that HYAL accelerates wound healing processes and might be beneficial for treating wound disorders. PMID:25393024

  6. Recombinant basic fibroblast growth factor accelerates wound healing.

    McGee, G S; Davidson, J M; Buckley, A; Sommer, A; Woodward, S C; Aquino, A M; Barbour, R; Demetriou, A A

    1988-07-01

    Basic fibroblast growth factor (bFGF) stimulates extracellular matrix metabolism, growth, and movement of mesodermally derived cells. We have previously shown that collagen content in polyvinyl alcohol sponges increased after bFGF treatment. We hypothesized that bFGF-treated incisional wounds would heal more rapidly. After intraperitoneal pentobarbital anesthesia, male, 200- to 250-g, Sprague-Dawley rats (n = 27) each underwent two sets of paired, transverse, dorsal incisions closed with steel sutures. On Day 3 postwounding, 0.4 ml of bFGF (recombinant, 400 ng. Synergen) or normal saline was injected into one of each paired incisions. Animals were killed with ether on postwounding Days 5, 6, and 7 and their dorsal pelts were excised. Fresh or formalin-fixed wound strips were subjected to tensile strength measurements using a tensiometer. Breaking energy was calculated. Wound collagen content (hydroxyproline) was measured in wound-edge samples following hydrolysis using high-performance liquid chromatography. There was an overall significant increase in fresh wound tensile strength (13.7 +/- 1.06 vs 19.1 +/- 1.99 g/mm, P less than 0.01) and wound breaking energy (476 +/- 47 vs 747 +/- 76 mm2, P less than 0.001) in bFGF-treated incisions. There was an increase in wound collagen content which was not statistically significant and there was no difference in fixed incisional tensile strength. Histologic examination showed better organization and maturation in bFGF wounds. Recombinant bFGF accelerates normal rat wound healing. This may be due to earlier accumulation of collagen and fibroblasts and/or to greater collagen crosslinking in bFGF-treated wounds. PMID:3392988

  7. Topical 5-azacytidine accelerates skin wound healing in rats.

    Gomes, Fabiana S; de-Souza, Gabriela F; Nascimento, Lucas F; Arantes, Eva L; Pedro, Rafael M; Vitorino, Daniele C; Nunez, Carla E; Melo Lima, Maria H; Velloso, Lício A; Araújo, Eliana P

    2014-01-01

    The development of new methods to improve skin wound healing may affect the outcomes of a number of medical conditions. Here, we evaluate the molecular and clinical effects of topical 5-azacytidine on wound healing in rats. 5-Azacytidine decreases the expression of follistatin-1, which negatively regulates activins. Activins, in turn, promote cell growth in different tissues, including the skin. Eight-week-old male Wistar rats were submitted to 8.0-mm punch-wounding in the dorsal region. After 3 days, rats were randomly assigned to receive either a control treatment or the topical application of a solution containing 5-azacytidine (10 mM) once per day. Photo documentation and sample collection were performed on days 5, 9, and 15. Overall, 5-azacytidine promoted a significant acceleration of complete wound healing (99.7% ± 0.7.0 vs. 71.2% ± 2.8 on day 15; n = 10; p < 0.01), accompanied by up to threefold reduction in follistatin expression. Histological examination of the skin revealed efficient reepithelization and cell proliferation, as evaluated by the BrdU incorporation method. 5-Azacytidine treatment also resulted in increased gene expression of transforming growth factor-beta and the keratinocyte markers involucrin and cytokeratin, as well as decreased expression of cytokines such as tumor necrosis factor-alpha and interleukin-10. Lastly, when recombinant follistatin was applied to the skin in parallel with topical 5-azacytidine, most of the beneficial effects of the drug were lost. Thus, 5-azacytidine acts, at least in part through the follistatin/activin pathway, to improve skin wound healing in rodents. PMID:25039304

  8. Engineered human vascularized constructs accelerate diabetic wound healing.

    Shen, Yu-I; Cho, Hongkwan; Papa, Arianne E; Burke, Jacqueline A; Chan, Xin Yi; Duh, Elia J; Gerecht, Sharon

    2016-09-01

    Stem cell-based therapy is emerging as a promising approach for chronic diabetic wounds, but strategies for optimizing both cellular differentiation and delivery remain as major obstacles. Here, we study bioengineered vascularized constructs as a therapeutic modality for diabetic wound healing. We developed a wound model in immunodeficient rodent and treated it with engineered vascularized constructs from endothelial progenitors or early vascular cells-derived from human induced pluripotent stem cells (hiPSCs) reprogrammed either from healthy donor or type-1 diabetic patient. We found that all vascularized constructs expedited wound closure and reperfusion, with endothelial progenitor constructs having the earliest maximum closure rate followed closely by healthy and diabetic hiPSC-derivative constructs. This was accompanied by rapid granulation layer formation and regression in all vascularized construct groups. Macrophage infiltration into the hydrogel matrix occurred during early stages of healing, seeming to facilitate rapid neovascularization of the wound that could then better persist in the vascularized constructs. Blood perfusion of the human vasculature could be detected after three days, indicating rapid integration with the host vasculature. Overall, we propose a potential therapeutic strategy using allograft or autologous vascularized constructs to treat type-1 diabetic wounds. This approach highlights the unprecedented prospects of designing patient-specific stem cell therapy. PMID:27328431

  9. Wound Healing Is Accelerated by Agonists of Adenosine A2 (Gα s-linked) Receptors

    Montesinos, M. Carmen; Gadangi, Pratap; Longaker, Michael; Sung, Joanne; Levine, Jamie; Nilsen, Diana; Reibman, Joan; Min LI; Jiang, Chuan-Kui; Hirschhorn, Rochelle; Recht, Phoebe A.; Ostad, Edward; Levin, Richard I.; Cronstein, Bruce N.

    1997-01-01

    The complete healing of wounds is the final step in a highly regulated response to injury. Although many of the molecular mediators and cellular events of healing are known, their manipulation for the enhancement and acceleration of wound closure has not proven practical as yet. We and others have established that adenosine is a potent regulator of the inflammatory response, which is a component of wound healing. We now report that ligation of the Gαs-linked adenosine receptors on the cells o...

  10. Biafine topical emulsion accelerates excisional and burn wound healing in mice.

    Krausz, Aimee E; Adler, Brandon L; Landriscina, Angelo; Rosen, Jamie M; Musaev, Tagai; Nosanchuk, Joshua D; Friedman, Adam J

    2015-09-01

    Macrophages play a fundamental role in wound healing; therefore, employing a strategy that enhances macrophage recruitment would be ideal. It was previously suggested that the mechanism by which Biafine topical emulsion improves wound healing is via enhanced macrophage infiltration into the wound bed. The purpose of this study was to confirm this observation through gross and histologic assessments of wound healing using murine full-thickness excisional and burn wound models, and compare to common standards, Vaseline and silver sulfadiazine (SSD). Full-thickness excisional and burn wounds were created on two groups of 60 mice. In the excisional arm, mice were divided into untreated control, Biafine, and Vaseline groups. In the burn arm, mice were divided into untreated control, Biafine, and SSD groups. Daily treatments were administered and healing was measured over time. Wound tissue was excised and stained to appropriately visualize morphology, collagen, macrophages, and neutrophils. Collagen deposition was measured and cell counts were performed. Biafine enhanced wound healing in murine full-thickness excisional and burn wounds compared to control, and surpassed Vaseline and SSD in respective wound types. Biafine treatment accelerated wound closure clinically, with greater epidermal/dermal maturity, granulation tissue formation, and collagen quality and arrangement compared to other groups histologically. Biafine application was associated with greater macrophage and lower neutrophil infiltration at earlier stages of healing when compared to other study groups. In conclusion, Biafine can be considered an alternative topical therapy for full-thickness excisional and burn wounds, owing to its advantageous biologically based wound healing properties. PMID:25794496

  11. Acceleration of skin wound healing with tragacanth (Astragalus preparation: an experimental pilot study in rats.

    Ehsan Fayazzadeh

    2014-01-01

    Full Text Available Gum tragacanth is a natural complex mixture of polysaccharides and alkaline minerals extracted from species of Astragalus plant, which is found widely in arid regions of the Middle East. In a pilot experimental study we examined the effects of its topical application on wound healing in ten albino adult male rats. Two similar parasagittal elliptical full-thickness wounds (control vs. test samples were created on the dorsum of each animal. Test group samples were fully covered by a thin layer of gum tragacanth daily. The extent of wound healing was evaluated by planimetric analysis on multiple occasions during the 10-day study period. On the 7th day of the study, the percent of wound closure was significantly higher in gum tragacanth-treated specimens compared to the control samples (87%±2% vs. 70%±4%, P<0.001. The majority of wounds in the test group were completely closed by the 10th day of the study. The difference in wound healing index measured by histological examination on day 10 of the study was also statistically meaningful between the two groups (0.624±0.097 vs. 0.255±0.063, P<0.05. The results of this study clearly showed the useful effects of topical application of gum tragacanth in acceleration of skin wound contraction and healing. More studies are encouraged to identify the implicating agents and precisely understand the mechanism by which they exert their wound healing effects.

  12. Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia.

    Smout, Michael J; Sotillo, Javier; Laha, Thewarach; Papatpremsiri, Atiroch; Rinaldi, Gabriel; Pimenta, Rafael N; Chan, Lai Yue; Johnson, Michael S; Turnbull, Lynne; Whitchurch, Cynthia B; Giacomin, Paul R; Moran, Corey S; Golledge, Jonathan; Daly, Norelle; Sripa, Banchob; Mulvenna, Jason P; Brindley, Paul J; Loukas, Alex

    2015-10-01

    Infection with the human liver fluke Opisthorchis viverrini induces cancer of the bile ducts, cholangiocarcinoma (CCA). Injury from feeding activities of this parasite within the human biliary tree causes extensive lesions, wounds that undergo protracted cycles of healing, and re-injury over years of chronic infection. We show that O. viverrini secreted proteins accelerated wound resolution in human cholangiocytes, an outcome that was compromised following silencing of expression of the fluke-derived gene encoding the granulin-like growth factor, Ov-GRN-1. Recombinant Ov-GRN-1 induced angiogenesis and accelerated mouse wound healing. Ov-GRN-1 was internalized by human cholangiocytes and induced gene and protein expression changes associated with wound healing and cancer pathways. Given the notable but seemingly paradoxical properties of liver fluke granulin in promoting not only wound healing but also a carcinogenic microenvironment, Ov-GRN-1 likely holds marked potential as a therapeutic wound-healing agent and as a vaccine against an infection-induced cancer of major public health significance in the developing world. PMID:26485648

  13. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing.

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R; Berns, Michael W

    2015-05-01

    Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation. PMID:25562608

  14. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R.; Berns, Michael W.

    2015-05-01

    Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation.

  15. An electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing

    Cassandra Chong

    2013-09-01

    Full Text Available Current dermal regenerative scaffolds provide wound coverage, and structural support and guidance for tissue repair, but usually lack enough bio-signals needed for speeding up skin cell growth, migration, wound closure, and skin regeneration. In this study, an androgen receptor (AR inhibitor called ASC-J9 is used to demonstrate the concept and feasibility of fabricating drug-loaded scaffolds via electrospinning. Inhibition of androgen is known to promote skin wound healing. The novel ASC-J9 - loaded porous scaffold was fabricated for skin wound repair using electrospun fibers of collagen and polycaprolactone (PCL blend. Our preliminary results indicated that ASC-J9 - loaded scaffolds facilitated more efficient attachment and ingrowth of dermal fibroblasts, compared to the control collagen-PCL scaffold. A significant increase of cell proliferation was observed with the drug-loaded scaffold over a 28-day period. The drug-loaded scaffold also accelerated keratinocyte migration and wound closure in a contraction-inhibited mouse wound model over 21 days. The data indicated a sustained release of ASC-J9 from the scaffold and its potential to accelerate wound healing by promoting cell proliferation and migration over an extended period of time. More importantly, our results proved the concept and feasibility of fabricating drug-releasing or bioactive dermal scaffolds for more effective wound healing.

  16. Promotion of accelerated repair in a radiation impaired wound healing model in murine skin

    therapeutic modalities investigated were unable to counteract any radiation damage and promote acceleration of repair in this impaired wound healing model. (author)

  17. Adipose-derived Stromal Cells Overexpressing Vascular Endothelial Growth Factor Accelerate Mouse Excisional Wound Healing

    Nauta, Allison; Seidel, Catharina; Deveza, Lorenzo; Montoro, Daniel; Grova, Monica; Ko, Sae Hee; Hyun, Jeong; Geoffrey C Gurtner; Longaker, Michael T.; Yang, Fan

    2012-01-01

    Angiogenesis is essential to wound repair, and vascular endothelial growth factor (VEGF) is a potent factor to stimulate angiogenesis. Here, we examine the potential of VEGF-overexpressing adipose-derived stromal cells (ASCs) for accelerating wound healing using nonviral, biodegradable polymeric vectors. Mouse ASCs were transfected with DNA plasmid encoding VEGF or green fluorescent protein (GFP) using biodegradable poly (β-amino) esters (PBAE). Cells transfected using Lipofectamine 2000, a c...

  18. Combination of adrenomedullin with its binding protein accelerates cutaneous wound healing.

    Juan-Pablo Idrovo

    Full Text Available Cutaneous wound continues to cause significant morbidity and mortality in the setting of diseases such as diabetes and cardiovascular diseases. Despite advances in wound care management, there is still an unmet medical need exists for efficient therapy for cutaneous wound. Combined treatment of adrenomedullin (AM and its binding protein-1 (AMBP-1 is protective in various disease conditions. To examine the effect of the combination treatment of AM and AMBP-1 on cutaneous wound healing, full-thickness 2.0-cm diameter circular excision wounds were surgically created on the dorsum of rats, saline (vehicle or AM/AMBP-1 (96/320 μg kg BW was topically applied to the wound daily and wound size measured. At days 3, 7, and 14, skin samples were collected from the wound sites. AM/AMBP-1 treated group had significantly smaller wound surface area than the vehicle group over the 14-day time course. At day 3, AM/AMBP-1 promoted neutrophil infiltration (MPO, increased cytokine levels (IL-6 and TNF-α, angiogenesis (CD31, VEGF and TGFβ-1 and cell proliferation (Ki67. By day 7 and 14, AM/AMBP-1 treatment decreased MPO, followed by a rapid resolution of inflammation characterized by a decrease in cytokines. At the matured stage, AM/AMBP-1 treatment increased the alpha smooth muscle actin expression (mature blood vessels and Masson-Trichrome staining (collagen deposition along the granulation area, and increased MMP-9 and decreased MMP-2 mRNA expressions. TGFβ-1 mRNA levels in AM/AMBP-1 group were 5.3 times lower than those in the vehicle group. AM/AMBP-1 accelerated wound healing by promoting angiogenesis, collagen deposition and remodeling. Treatment also shortened the days to reach plateau for wound closure. Thus, AM/AMBP-1 may be further developed as a therapeutic for cutaneous wound healing.

  19. Young coconut juice can accelerate the healing process of cutaneous wounds

    Radenahmad Nisaudah

    2012-12-01

    Full Text Available Abstract Background Estrogen has been reported to accelerate cutaneous wound healing. This research studies the effect of young coconut juice (YCJ, presumably containing estrogen-like substances, on cutaneous wound healing in ovairectomized rats. Methods Four groups of female rats (6 in each group were included in this study. These included sham-operated, ovariectomized (ovx, ovx receiving estradiol benzoate (EB injections intraperitoneally, and ovx receiving YCJ orally. Two equidistant 1-cm full-thickness skin incisional wounds were made two weeks after ovariectomy. The rats were sacrificed at the end of the third and the fourth week of the study, and their serum estradiol (E2 level was measured by chemiluminescent immunoassay. The skin was excised and examined in histological sections stained with H&E, and immunostained using anti-estrogen receptor (ER-α an ER-β antibodies. Results Wound healing was accelerated in ovx rats receiving YCJ, as compared to controls. This was associated with significantly higher density of immunostaining for ER-α an ER-β in keratinocytes, fibroblasts, white blood cells, fat cells, sebaceous gland, skeletal muscles, and hair shafts and follicles. This was also associated with thicker epidermis and dermis, but with thinner hypodermis. In addition, the number and size of immunoreactive hair follicles for both ER-α and ER-β were the highest in the ovx+YCJ group, as compared to the ovx+EB group. Conclusions This study demonstrates that YCJ has estrogen-like characteristics, which in turn seem to have beneficial effects on cutaneous wound healing.

  20. Sliver nanoparticles accelerate skin wound healing in mice (Mus musculus through suppression of innate immune system

    Mohammad Saeed Heydarnejad

    2013-09-01

    Full Text Available   Objective(s: This study aimed to find the effects of silver nanoparticles (Ag-NPs (40 nm on skin wound healing in mice Mus musculus when innate immune system has been suppressed.   Materials and Methods: A group of 50 BALB/c mice of about 8 weeks (weighting 24.2±3.0 g were randomly divided into two groups: Ag-NPs and control group, each with 25 mice. Once a day at the same time, a volume of 50 microliters from the nanosilver solution (10ppm was applied to the wound bed in the Ag-NPs group while in the untreated (control group no nanosilver solution was used but the wound area was washed by a physiological solution. The experiment lasted for 14. Transforming growth factor beta (TGF-β, complement component C3, and two other immune system factors involving in inflammation, namely C-reactive protein (CRP and rheumatoid factor (RF in sera of both groups were assessed and then confirmed by complement CH50 level of the blood. Results: The results show that wound healing is a complex process involving coordinated interactions between diverse immunological and biological systems and that Ag-NPs significantly accelerated wound healing and reduce scar appearance through suppression of immune system as indicated by decreasing levels of all inflammatory factors measured in this study. Conclusion: Exposure of mice to Ag-NPs can result in significant changes in innate immune function at the molecular levels. The study improves our understanding of nanoparticle interaction with components of the immune system and suggests that Ag-NPs have strong anti-inflammatory effects on skin wound healing and reduce scarring.

  1. Expectation-induced placebo responses fail to accelerate wound healing in healthy volunteers: results from a prospective controlled experimental trial.

    Vits, Sabine; Dissemond, Joachim; Schadendorf, Dirk; Kriegler, Lisa; Körber, Andreas; Schedlowski, Manfred; Cesko, Elvir

    2015-12-01

    Placebo responses have been shown to affect the symptomatology of skin diseases. However, expectation-induced placebo effects on wound healing processes have not been investigated yet. We analysed whether subjects' expectation of receiving an active drug accelerates the healing process of experimentally induced wounds. In 22 healthy men (experimental group, n = 11; control group, n = 11) wounds were induced by ablative laser on both thighs. Using a deceptive paradigm, participants in the experimental group were informed that an innovative 'wound gel' was applied on one of the two wounds, whereas a 'non-active gel' was applied on the wound of the other thigh. In fact, both gels were identical hydrogels without any active components. A control group was informed to receive a non-active gel on both wounds. Progress in wound healing was documented via planimetry on days 1, 4 and 7 after wound induction. From day 9 onwards wound inspections were performed daily accompanied by a change of the dressing and a new application of the gel. No significant differences could be observed with regard to duration or process of wound healing, either by intraindividual or by interindividual comparisons. These data document no expectation-induced placebo effect on the healing process of experimentally induced wounds in healthy volunteers. PMID:24373522

  2. Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing.

    Tummalapalli, Mythili; Berthet, Morgane; Verrier, Bernard; Deopura, B L; Alam, M S; Gupta, Bhuvanesh

    2016-05-30

    Biocomposite interactive wound dressings have been designed and fabricated using oxidized pectin (OP), gelatin and nonwoven cotton fabric. Due to their inherent virtues of antimicrobial activity and cytocompatibility, these composite structures are capable of redirecting the healing cascade and influencing cell attachment and proliferation. A novel in situ reduction process has been followed to synthesize oxidized pectin-gelatin-nanosilver (OP-Gel-NS) flower like nanohydrocolloids. This encapsulation technology controls the diffusion and permeation of nanosilver into the surrounding biological tissues. Ciprofloxacin hydrochloride has also been incorporated into the OP-Gel matrix to produce OP-Gel-Cipro dressings. While OP-Gel-NS dressings exhibited 100% antimicrobial activity at extremely low loadings of 3.75μg/cm(2), OP-Gel-Cipro dressings were highly antimicrobial at 1% drug loading. While NIH3T3 mouse fibroblasts proliferated remarkably well when cultured with OP-Gel and OP-Gel-Cipro dressings, OP-Gel-NS hindered cell growth and Bactigras(®) induced complete lysis. Full thickness excisional wounds were created on C57BL/6J mice and the wound healing potential of the OP-Gel-NS dressings led to accelerated healing within 12days, while OP-Gel-Cipro dressings healed wounds at a rate similar to that of Bactigras(®). Histological examination revealed that OP-Gel-NS and OP-Gel-Cipro treatment led to organized collagen deposition, neovascularization and nuclei migration, unlike Bactigras(®). Therefore, the OP-Gel-NS and OP-Gel-Cipro biocomposite dressings exhibiting good hydrophilicity, sustained antimicrobial nature, promote cell growth and proliferation, and lead to rapid healing, can be considered viable candidates for effective management. PMID:27063849

  3. Manganese superoxide dismutase expression in endothelial progenitor cells accelerates wound healing in diabetic mice

    Marrotte, Eric J.; Chen, Dan-Dan; Hakim, Jeffrey S.; Chen, Alex F.

    2010-01-01

    Amputation as a result of impaired wound healing is a serious complication of diabetes. Inadequate angiogenesis contributes to poor wound healing in diabetic patients. Endothelial progenitor cells (EPCs) normally augment angiogenesis and wound repair but are functionally impaired in diabetics. Here we report that decreased expression of manganese superoxide dismutase (MnSOD) in EPCs contributes to impaired would healing in a mouse model of type 2 diabetes. A decreased frequency of circulating...

  4. Electrospun tilapia collagen nanofibers accelerating wound healing via inducing keratinocytes proliferation and differentiation.

    Zhou, Tian; Wang, Nanping; Xue, Yang; Ding, Tingting; Liu, Xin; Mo, Xiumei; Sun, Jiao

    2016-07-01

    The development of biomaterials with the ability to induce skin wound healing is a great challenge in biomedicine. In this study, tilapia skin collagen sponge and electrospun nanofibers were developed for wound dressing. The collagen sponge was composed of at least two α-peptides. It did not change the number of spleen-derived lymphocytes in BALB/c mice, the ratio of CD4(+)/CD8(+) lymphocytes, and the level of IgG or IgM in Sprague-Dawley rats. The tensile strength and contact angle of collagen nanofibers were 6.72±0.44MPa and 26.71±4.88°, respectively. They also had good thermal stability and swelling property. Furthermore, the nanofibers could significantly promote the proliferation of human keratinocytes (HaCaTs) and stimulate epidermal differentiation through the up-regulated gene expression of involucrin, filaggrin, and type I transglutaminase in HaCaTs. The collagen nanofibers could also facilitate rat skin regeneration. In the present study, electrospun biomimetic tilapia skin collagen nanofibers were succesfully prepared, were proved to have good bioactivity and could accelerate rat wound healing rapidly and effectively. These biological effects might be attributed to the biomimic extracellular matrix structure and the multiple amino acids of the collagen nanofibers. Therefore, the cost-efficient tilapia collagen nanofibers could be used as novel wound dressing, meanwhile effectively avoiding the risk of transmitting animal disease in the future clinical apllication. PMID:27037778

  5. Effects of a low level laser on the acceleration of wound healing in rabbits

    Adel J Hussein

    2011-01-01

    Full Text Available Background : Tissue healing is a complex process that involves local and systemic responses. The use of low level laser therapy for wound healing has been shown to be effective in modulating both local and systemic response. Aim: The aim of this study was to accelerate and facilitate wound healing and reduce scar formation and wound contraction of an open wound by a low level laser. Materials & Methods: Twenty adult male rabbits, lepus cuniculus demostica, were brought from a Basrah local market and raised under proper management conditions in Basrah Veterinary Medicine College. The age of these rabbits ranged between 8-10 months and their body weight was 1.5-2 Kg. The rabbits were divided into two groups, group I (Control and group II (Treated. General anesthesia was provided by a mixture of Xylazine and Ketamine at a ratio of 1:0.5m intramuscularly. Selected sites were shaved, cleaned and disinfected. A wound of 4-cm length and 3-cm depth was made on the gluteal region; six hours later, the wound was treated with gallium aluminum and an arsenide diode laser with a power output of 10m at a wavelength of 890nm in pulsed nods, with a frequency of 20 KLTZ. The wound exposure to the laser was once a day at 890 nm wavelength for 5 minutes over a 7-day period. Histopathological study was obtained regarding the wound depth and edge of the skin on the 3 rd , 7 th and 14 th days. Results : The histopathological finding of group I at three days postoperative showed hemorrhage with inflammatory cell infiltration, mainly neutrophils as well as congested blood vessels in the gap. At seven days, the gap contained necrotized neutrophils together with hemolysis and granulation tissue under the dermis tissue. Hemolysis was seen between the muscle fibers. At 14 days, there was irregular fibrous connective tissue proliferation with congested blood vessels seen in the gap with mononuclear cell infiltration. In group II at three days postoperative, severe

  6. Factors Affecting Wound Healing

    Guo, S; DiPietro, L. A.

    2010-01-01

    Wound healing, as a normal biological process in the human body, is achieved through four precisely and highly programmed phases: hemostasis, inflammation, proliferation, and remodeling. For a wound to heal successfully, all four phases must occur in the proper sequence and time frame. Many factors can interfere with one or more phases of this process, thus causing improper or impaired wound healing. This article reviews the recent literature on the most significant factors that affect cutane...

  7. How wounds heal

    ... PA: Mosby Elsevier; 2010: chap. 7. Richardson M. Acute wounds: an overview of the physiological healing process. Nursing Times . 2004; 100(4): 50. Von Der Heyde RL, Evans RB. Wound classification ...

  8. Rapid Recruitment and Activation of Macrophages by Anti-Gal/α-Gal Liposome Interaction Accelerates Wound Healing

    Wigglesworth, Kim M.; Racki, Waldemar J.; Mishra, Rabinarayan; Szomolanyi-Tsuda, Eva; Dale L Greiner; Galili, Uri

    2011-01-01

    Macrophages are pivotal in promoting wound healing. We hypothesized that topical application of liposomes with glycolipids that carry Gala1-3Galb1-4GlcNAc-R epitopes (α-gal liposomes) on wounds may accelerate the healing process by rapid recruitment and activation of macrophages in wounds. Immune complexes of the natural anti-Gal Ab (constituting ~1% of Ig in humans) bound to its ligand, the α-gal epitope on α-gal liposomes would induce local activation of complement and generation of complem...

  9. Diabetes and wound healing

    Svendsen, Rikke; Irakunda, Gloire; Knudsen List, Karoline Cecilie; Sønderstup-Jensen, Marie; Hölmich Rosca, Mette Maria

    2014-01-01

    Diabetes is a disease where the glucose level in the blood is high, due to either insulin resistance, impaired insulin sensitivity or no insulin production. The high glucose level causes several complications, one of them being an impaired wound healing process, which might lead to chronic wounds, ulcers. Several factors play a role in the development of ulcers, and recent research indicates that microRNA might play a significant role in skin development and wound healing. The purpose of this...

  10. Topical Aloe Vera (Aloe barbadensis Miller) Extract Does Not Accelerate the Oral Wound Healing in Rats.

    Coelho, Fernanda Hack; Salvadori, Gabriela; Rados, Pantelis Varvaki; Magnusson, Alessandra; Danilevicz, Chris Krebs; Meurer, Luise; Martins, Manoela Domingues

    2015-07-01

    The effect of topical application of Aloe Vera (Aloe barbadensis Miller) extract was assessed on the healing of rat oral wounds in an in vivo model using 72 male Wistar rats divided into three groups (n = 24): control, placebo and Aloe Vera (0.5% extract hydroalcoholic). Traumatic ulcers were caused in the dorsum of the tongue using a 3-mm punch tool. The Aloe Vera and placebo group received two daily applications. The animals were sacrificed after 1, 5, 10 and 14 days. Clinical analysis (ulcer area and percentage of repair) and histopathological analysis (degree of re-epithelialization and inflammation) were performed. The comparison of the differences between scores based on group and experimental period, both in quantitative and semi-quantitative analyses, was performed using the Kruskal-Wallis test. The significance level was 5%. On day 1, all groups showed predominantly acute inflammatory infiltrate. On day 5, there was partial epithelialization and chronic inflammatory infiltrate. On the days 10 and 14 total repair of ulcers was observed. There was no significant difference between groups in the repair of mouth ulcers. It is concluded that treatment using Aloe Vera as an herbal formulation did not accelerate oral wound healing in rats. PMID:25891093

  11. Topical Application of Sadat-Habdan Mesenchymal Stimulating Peptide (SHMSP Accelerates Wound Healing in Diabetic Rabbits

    Abdulmohsen H. Al-Elq

    2012-01-01

    Full Text Available Objective. Diminished wound healing is a common problem in diabetic patients due to diminished angiogenesis. SHMSP was found to promote angiogenesis. The present study was carried out to examine the effect of this peptide in healing of wounds in diabetic rabbits. Materials and Methods. Twenty male New Zealand rabbits were used in this study. Diabetes mellitus was induced and the rabbits were randomly divided into two equal groups: control group and peptide group. A-full thickness punch biopsy was made to create a wound of about 10 mm on the right ears of all rabbits. Every day, the wound was cleaned with saline in control groups. In the peptide group, 15 mg of SHMSP was applied after cleaning. On day 15th, all animals were sacrificed, and the wounds were excised with a rim of 5 mm of normal surrounding tissue. Histo-pathological assessment of wound healing, inflammatory cell infiltration, blood vessel proliferation, and collagen deposition was performed. Results. There were no deaths among the groups. There was significant increase in wound healing, blood vessel proliferation and collagen deposition, and significant decrease in inflammatory cell infiltration in the peptide group compared to the control group. Conclusion. Topical application of SHMSP improves wound healing in diabetic rabbits.

  12. Cold plasma on full-thickness cutaneous wound accelerates healing through promoting inflammation, re-epithelialization and wound contraction

    Nasruddin; Nakajima, Yukari; Mukai, Kanae; Rahayu, Heni Setyowati Esti; NUR, MUHAMMAD; Ishijima, Tatsuo; Enomoto, Hiroshi; Uesugi, Yoshihiko; Sugama, Junko; Nakatani, Toshio

    2014-01-01

    We investigated cold plasma effects on acute wounds of mice. The mice were classified into experimental and control groups. In the former, wounds were treated using cold plasma once daily for 1 min, and then covered with hydrocolloid dressing; wounds in the control were left to heal under hydrocolloid dressing. Daily evaluation was conducted for 15 days. General and specific staining was applied to evaluate re-epithelialization, neutrophil, macrophage, myofibroblast and transforming growth fa...

  13. Stress and Wound Healing

    Christian, Lisa M.; Graham, Jennifer E.; Padgett, David A.; Glaser, Ronald; Kiecolt-Glaser, Janice K.

    2006-01-01

    Over the past decade it has become clear that stress can significantly slow wound healing: stressors ranging in magnitude and duration impair healing in humans and animals. For example, in humans, the chronic stress of caregiving as well as the relatively brief stress of academic examinations impedes healing. Similarly, restraint stress slows healing in mice. The interactive effects of glucocorticoids (e.g. cortisol and corticosterone) and proinflammatory cytokines [e.g. interleukin-1β (IL-1β...

  14. Topical Application of Sadat-Habdan Mesenchymal Stimulating Peptide (SHMSP) Accelerates Wound Healing in Diabetic Rabbits

    Abdulmohsen H Al-Elq; Mir Sadat-Ali; Mohamed Elsharawy; Ibrahim Al-Habdan; Fatin Othman Al-Aqeel; Naim, Magda M.

    2012-01-01

    Objective. Diminished wound healing is a common problem in diabetic patients due to diminished angiogenesis. SHMSP was found to promote angiogenesis. The present study was carried out to examine the effect of this peptide in healing of wounds in diabetic rabbits. Materials and Methods. Twenty male New Zealand rabbits were used in this study. Diabetes mellitus was induced and the rabbits were randomly divided into two equal groups: control group and peptide group. A-full thickness punch biopsy...

  15. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R.; Berns, Michael W.

    2015-01-01

    Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2...

  16. An electrospun scaffold loaded with anti-androgen receptor compound for accelerating wound healing

    Cassandra Chong; Yiwei Wang; Peter K. M. Maitz; Ulla Simanainen; Zhe Li

    2013-01-01

    Current dermal regenerative scaffolds provide wound coverage, and structural support and guidance for tissue repair, but usually lack enough bio-signals needed for speeding up skin cell growth, migration, wound closure, and skin regeneration. In this study, an androgen receptor (AR) inhibitor called ASC-J9 is used to demonstrate the concept and feasibility of fabricating drug-loaded scaffolds via electrospinning. Inhibition of androgen is known to promote skin wound healing. The novel ASC-J9 ...

  17. HGF Accelerates Wound Healing by Promoting the Dedifferentiation of Epidermal Cells through β1-Integrin/ILK Pathway

    Jin-Feng Li

    2013-01-01

    Full Text Available Skin wound healing is a critical and complex biological process after trauma. This process is activated by signaling pathways of both epithelial and nonepithelial cells, which release a myriad of different cytokines and growth factors. Hepatocyte growth factor (HGF is a cytokine known to play multiple roles during the various stages of wound healing. This study evaluated the benefits of HGF on reepithelialization during wound healing and investigated its mechanisms of action. Gross and histological results showed that HGF significantly accelerated reepithelialization in diabetic (DB rats. HGF increased the expressions of the cell adhesion molecules β1-integrin and the cytoskeleton remodeling protein integrin-linked kinase (ILK in epidermal cells in vivo and in vitro. Silencing of ILK gene expression by RNA interference reduced expression of β1-integrin, ILK, and c-met in epidermal cells, concomitantly decreasing the proliferation and migration ability of epidermal cells. β1-Integrin can be an important maker of poorly differentiated epidermal cells. Therefore, these data demonstrate that epidermal cells become poorly differentiated state and regained some characteristics of epidermal stem cells under the role of HGF after wound. Taken together, the results provide evidence that HGF can accelerate reepithelialization in skin wound healing by dedifferentiation of epidermal cells in a manner related to the β1-integrin/ILK pathway.

  18. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts.

    Hu, Li; Wang, Juan; Zhou, Xin; Xiong, Zehuan; Zhao, Jiajia; Yu, Ran; Huang, Fang; Zhang, Handong; Chen, Lili

    2016-01-01

    Prolonged healing and scar formation are two major challenges in the treatment of soft tissue trauma. Adipose mesenchymal stem cells (ASCs) play an important role in tissue regeneration, and recent studies have suggested that exosomes secreted by stem cells may contribute to paracrine signaling. In this study, we investigated the roles of ASCs-derived exosomes (ASCs-Exos) in cutaneous wound healing. We found that ASCs-Exos could be taken up and internalized by fibroblasts to stimulate cell migration, proliferation and collagen synthesis in a dose-dependent manner, with increased genes expression of N-cadherin, cyclin-1, PCNA and collagen I, III. In vivo tracing experiments demonstrated that ASCs-Exos can be recruited to soft tissue wound area in a mouse skin incision model and significantly accelerated cutaneous wound healing. Histological analysis showed increased collagen I and III production by systemic administration of exosomes in the early stage of wound healing, while in the late stage, exosomes might inhibit collagen expression to reduce scar formation. Collectively, our findings indicate that ASCs-Exos can facilitate cutaneous wound healing via optimizing the characteristics of fibroblasts. Our results provide a new perspective and therapeutic strategy for the use of ASCs-Exos in soft tissue repair. PMID:27615560

  19. Human fibrocyte-derived exosomes accelerate wound healing in genetically diabetic mice.

    Geiger, Adolf; Walker, Audrey; Nissen, Erwin

    2015-11-13

    Diabetic ulcers represent a substantial societal and healthcare burden worldwide and scarcely respond to current treatment strategies. This study was addressed to evaluate the therapeutic potential of exosomes secreted by human circulating fibrocytes, a population of mesenchymal progenitors involved in normal wound healing via paracrine signaling. The exosomes released from cells sequentially stimulated with platelet-derived growth factor-BB and transforming growth factor-β1, in the presence of fibroblast growth factor 2, did not show potential immunogenicity. These exosomes exhibited in-vitro proangiogenic properties, activated diabetic dermal fibroblasts, induced the migration and proliferation of diabetic keratinocytes, and accelerated wound closure in diabetic mice in vivo. Important components of the exosomal cargo were heat shock protein-90α, total and activated signal transducer and activator of transcription 3, proangiogenic (miR-126, miR-130a, miR-132) and anti-inflammatory (miR124a, miR-125b) microRNAs, and a microRNA regulating collagen deposition (miR-21). This proof-of-concept study demonstrates the feasibility of the use of fibrocytes-derived exosomes for the treatment of diabetic ulcers. PMID:26454169

  20. A novel dimeric thymosin beta 4 with enhanced activities accelerates the rate of wound healing

    Xu TJ

    2013-10-01

    Full Text Available Tian-Jiao Xu,1,2,* Qi Wang,1,* Xiao-Wen Ma,1 Zhen Zhang,3 Wei Zhang,1 Xiao-Chang Xue,1 Cun Zhang,1 Qiang Hao,1 Wei-Na Li,1 Ying-Qi Zhang,1 Meng Li11State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi’an, People’s Republic of China; 2The Institute of Medicine, Qiqihar Medical University, Qiqihar, People’s Republic of China; 3Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA*These authors contributed equally to this workObjective: Thymosin beta 4 (Tβ4 is a peptide with 43 amino acids that is critical for repair and remodeling tissues on the skin, eye, heart, and neural system following injury. To fully realize its utility as a treatment for disease caused by injury, the authors constructed a cost-effective novel Tβ4 dimer and demonstrated that it was better able to accelerate tissue repair than native Tβ4.Methods: A prokaryotic vector harboring two complete Tβ4 genes with a short linker was constructed and expressed in Escherichia coli. A pilot-scale fermentation (10 L was performed to produce engineered bacteria and the Tβ4 dimer was purified by one-step hydrophobic interaction chromatography. The activities of the Tβ4 dimer to promote endothelial cell proliferation, migration, and sprouting were assessed by tetramethylbenzidine (methylthiazol tetrazolium, trans-well, scratch, and tube formation assays. The ability to accelerate dermal healing was assessed on rats.Results: After fermentation, the Tβ4 dimer accounted for about 30% of all the bacteria proteins. The purity of the Tβ4 dimer reached 98% after hydrophobic interaction chromatography purification. An average of 562.4 mg/L Tβ4 dimer was acquired using a 10 L fermenter. In each assay, the dimeric Tβ4 exhibited enhanced activities compared with native Tβ4. Notably, the ability of the dimeric Tβ4 to promote cell migration was almost two times higher

  1. Moderate intensity physical training accelerates healing of full-thickness wounds in mice

    F.G. Zogaib

    2011-10-01

    Full Text Available Physical training influences the cells and mediators involved in skin wound healing. The objective of this study was to determine the changes induced by different intensities of physical training in mouse skin wound healing. Ninety male C57BL6 mice (8 weeks old, 20-25 g were randomized into three physical training groups: moderate (70% VO2max, high (80% VO2max, and strenuous intensity (90% VO2max. Animals trained on a motorized treadmill for 8 weeks (Elesion: physical training until the day of excisional lesion, N = 10 or 10 weeks (Eeuthan: physical training for 2 additional weeks after excisional lesion until euthanasia, N = 10, five times/week, for 45 min. Control groups (CG trained on the treadmill three times/week only for 5 min (N = 10. In the 8th week, mice were anesthetized, submitted to a dorsal full-thickness excisional wound of 1 cm², and sacrificed 14 days after wounding. Wound areas were measured 4, 7, and 14 days after wounding to evaluate contraction (d4, d7 and d14 and re-epithelialization (d14. Fragments of lesion and adjacent skin were processed and submitted to routine histological staining. Immunohistochemistry against alpha-smooth muscle actin (α-SMA was performed. Moderate-intensity training (M until lesion (M/Elesion led to better wound closure 7 days after wounding compared to controls and M/Eeuthan (P < 0.05, and both moderate-intensity groups showed better re-epithelialization rates than controls (M/Elesion = 85.9%, M/Eeuthan = 96.4% and M/CG = 79.9%; P < 0.05. Sections of M/Elesion and M/Eeuthan groups stained with hematoxylin-eosin, Picrosirius red and α-SMA showed the most mature granulation tissues among all trained groups and controls. Thus, moderate-intensity physical training improves skin wound healing.

  2. Progress in corneal wound healing.

    Ljubimov, Alexander V; Saghizadeh, Mehrnoosh

    2015-11-01

    Corneal wound healing is a complex process involving cell death, migration, proliferation, differentiation, and extracellular matrix remodeling. Many similarities are observed in the healing processes of corneal epithelial, stromal and endothelial cells, as well as cell-specific differences. Corneal epithelial healing largely depends on limbal stem cells and remodeling of the basement membrane. During stromal healing, keratocytes get transformed to motile and contractile myofibroblasts largely due to activation of transforming growth factor-β (TGF-β) system. Endothelial cells heal mostly by migration and spreading, with cell proliferation playing a secondary role. In the last decade, many aspects of wound healing process in different parts of the cornea have been elucidated, and some new therapeutic approaches have emerged. The concept of limbal stem cells received rigorous experimental corroboration, with new markers uncovered and new treatment options including gene and microRNA therapy tested in experimental systems. Transplantation of limbal stem cell-enriched cultures for efficient re-epithelialization in stem cell deficiency and corneal injuries has become reality in clinical setting. Mediators and course of events during stromal healing have been detailed, and new treatment regimens including gene (decorin) and stem cell therapy for excessive healing have been designed. This is a very important advance given the popularity of various refractive surgeries entailing stromal wound healing. Successful surgical ways of replacing the diseased endothelium have been clinically tested, and new approaches to accelerate endothelial healing and suppress endothelial-mesenchymal transformation have been proposed including Rho kinase (ROCK) inhibitor eye drops and gene therapy to activate TGF-β inhibitor SMAD7. Promising new technologies with potential for corneal wound healing manipulation including microRNA, induced pluripotent stem cells to generate corneal

  3. Novel advancements in wound healing

    reza Ghaderi

    2014-05-01

    Full Text Available Maintaining skin integrity is vital in humans and animals to protect the organisms against dehydration, bleeding, and ingress of microorganisms. In order to do this, in Man and other evolved animals a sophisticated mechanism of wound healing occurs. At first the gap is quickly filled with a thin layer of fibrinous exudate, re-epithelialized, and rapidly replaced by new matrix. It is obvious that the speed of wound healing depends upon many factors such as the size of the wound, blood supply to the area, presence or absence of foreign bodies and microorganisms, age, health and nutritional status of the patient of the patient. Acute and chronic wounds care has extremely changed in recent years. Recenly, some traditional medications honey and other herbal medications( and new procedures are available that can be used to accelerate the healing of skin wounds.In the present article the most novel advances made in wound care and management in recent years were reviewed.

  4. Phytochemicals in Wound Healing

    Thangapazham, Rajesh L.; Sharad, Shashwat; Radha K. Maheshwari

    2016-01-01

    Significance: Traditional therapies, including the use of dietary components for wound healing and skin regeneration, are very common in Asian countries such as China and India. The increasing evidence of health-protective benefits of phytochemicals, components derived from plants is generating a lot of interest, warranting further scientific evaluation and mechanistic studies.

  5. Curcuma purpurascens BI. rhizome accelerates rat excisional wound healing: involvement of Hsp70/Bax proteins, antioxidant defense, and angiogenesis activity

    Rouhollahi E

    2015-10-01

    by downregulating Bax and upregulating Hsp70 protein at the wound site. The formation of new blood vessel was observed in Masson’s trichrome staining of wounds treated with HECP (100 and 200 mg/kg. In addition, HECP administration caused a significant surge in enzymatic antioxidant activities and a decline in lipid peroxidation.Conclusion: These findings suggested that HECP accelerated wound-healing process in rats via antioxidant activity, angiogenesis effect and anti-inflammatory responses involving Hsp70/Bax. Keywords: Zingiberaceae, wound closure, immunohistochemistry, antioxidant enzyme activity, inflammatory cells

  6. Propranolol attenuates hemorrhage and accelerates wound healing in severely burned adults

    Ali, Arham; Herndon, David N; Mamachen, Ashish; Hasan, Samir; Andersen, Clark R.; Grogans, Ro-Jon; Brewer, Jordan L.; Lee, Jong O; Heffernan, Jamie; Oscar E Suman; Finnerty, Celeste C.

    2015-01-01

    Introduction Propranolol, a nonselective β-blocker, exerts an indirect effect on the vasculature by leaving α-adrenergic receptors unopposed, resulting in peripheral vasoconstriction. We have previously shown that propranolol diminishes peripheral blood following burn injury by increasing vascular resistance. The purpose of this study was to investigate whether wound healing and perioperative hemodynamics are affected by propranolol administration in severely burned adults. Methods Sixty-nine...

  7. Mesenchymal stem cell-conditioned medium accelerates skin wound healing: An in vitro study of fibroblast and keratinocyte scratch assays

    We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-β1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.

  8. Cell Therapy for Wound Healing

    You, Hi-Jin; Han, Seung-Kyu

    2014-01-01

    In covering wounds, efforts should include utilization of the safest and least invasive methods with goals of achieving optimal functional and cosmetic outcome. The recent development of advanced wound healing technology has triggered the use of cells to improve wound healing conditions. The purpose of this review is to provide information on clinically available cell-based treatment options for healing of acute and chronic wounds. Compared with a variety of conventional methods, such as skin...

  9. Radiotherapy and wound healing.

    Devalia, Haresh L; Mansfield, Lucy

    2008-03-01

    This review article discusses basic radiation physics and effects of radiation on wounds. It examines various postulated hypothesis on the role of circulatory decrease and radiation-induced direct cellular damage. The new concept related to the radiation pathogenesis proposes that there is a cascade of cytokines initiated immediately after the radiation. Sustained activation of myofibroblasts in the wound accounts for its chronicity. Recent advances highlight that transforming growth factor beta1 is the master switch in pathogenesis of radiation fibrosis. This articles overviews its role and summarises the available evidences related to radiation damage. The goal of this article was to provide its modern understanding, as future research will concentrate on antagonising the effects of cytokines to promote wound healing. PMID:18081782

  10. Physics of Wound Healing I: Energy Considerations

    Apell, S Peter; Papazoglou, Elisabeth S; Pizziconi, Vincent

    2012-01-01

    Wound healing is a complex process with many components and interrelated processes on a microscopic level. This paper addresses a macroscopic view on wound healing based on an energy conservation argument coupled with a general scaling of the metabolic rate with body mass M as M^{\\gamma} where 0 <{\\gamma}<1. Our three main findings are 1) the wound healing rate peaks at a value determined by {\\gamma} alone, suggesting a concept of wound acceleration to monitor the status of a wound. 2) We find that the time-scale for wound healing is a factor 1/(1 -{\\gamma}) longer than the average internal timescale for producing new material filling the wound cavity in corresondence with that it usually takes weeks rather than days to heal a wound. 3) The model gives a prediction for the maximum wound mass which can be generated in terms of measurable quantities related to wound status. We compare our model predictions to experimental results for a range of different wound conditions (healthy, lean, diabetic and obses...

  11. PEDF promotes self-renewal of limbal stem cell and accelerates corneal epithelial wound healing.

    Ho, Tsung-Chuan; Chen, Show-Li; Wu, Ju-Yun; Ho, Mei-Ying; Chen, Lee-Jen; Hsieh, Jui-Wen; Cheng, Huey-Chuan; Tsao, Yeou-Ping

    2013-09-01

    Limbal epithelial stem cell (LSC) transplantation is a prevalent therapeutic method for patients with LSC deficiency. The maintenance of stem cell characteristics in the process of culture expansion is critical for the success of ocular surface reconstruction. Pigment epithelial-derived factor (PEDF) increased the numbers of holoclone in LSC monolayer culture and preserved the stemness of LSC in suspension culture by evidence of ΔNp63α, Bmi-1, and ABCG2 expression. BrdU pulse-labeling assay also demonstrated that PEDF stimulated LSCs proliferation. In air-lift culture of limbal equivalent, PEDF was capable of increasing the numbers of ΔNp63α-positive cells. The mitogenic effect of PEDF was found to be mediated by the phosphorylations of p38 MAPK and STAT3 in LSCs. Synthetic 44-mer PEDF (residues 78-121) was as effective as the full length PEDF in LSC expansion in suspension culture and limbal equivalent formation, as well as the activation of p38 MAPK and STAT3. In mice subjecting to mechanical removal of cornea epithelium, 44-mer PEDF facilitated corneal wound healing. Microscopically, 44-mer PEDF advanced the early proliferative response in limbus, increased the proliferation of ΔNp63α-positive cells both in limbus and in epithelial healing front, and assisted the repopulation of limbus in the late phase of wound healing. In conclusion, the capability of expanding LSC in cell culture and in animal indicates the potential of PEDF and its fragment (e.g., 44-mer PEDF) in ameliorating limbal stem cell deficiency; and their uses as therapeutics for treating corneal wound. PMID:23553951

  12. Inhibition of pathogenic bacterial growth on excision wound by green synthesized copper oxide nanoparticles leads to accelerated wound healing activity in Wistar Albino rats.

    Sankar, Renu; Baskaran, Athmanathan; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2015-07-01

    An impaired wound healing is one of the major health related problem in diabetic and non-diabetic patients around the globe. The pathogenic bacteria play a predominant role in delayed wound healing, owing to interaction in the wound area. In our previous work we developed green chemistry mediated copper oxide nanoparticles using Ficus religiosa leaf extract. In the present study we make an attempt to evaluate the anti-bacterial, and wound healing activity of green synthesized copper oxide nanoparticles in male Wistar Albino rats. The agar well diffusion assay revealed copper oxide nanoparticles have substantial inhibition activity against human pathogenic strains such as Klebsiella pneumoniae, Shigella dysenteriae, Staphylococcus aureus, Salmonella typhimurium and Escherichia coli, which were responsible for delayed wound healing process. Furthermore, the analyses results of wound closure, histopathology and protein profiling confirmed that the F. religiosa leaf extract tailored copper oxide nanoparticles have enhanced wound healing activity in Wistar Albino rats. PMID:26194977

  13. [Translation medicine in wound healing: successful cases and personal deliberation].

    Fu, Xiaobing

    2014-02-01

    Local wound care is the key step in wound management, and it is affected by many factors. The innovation and translation application of some new theories and skills may help accelerate local wound healing velocity and improve wound healing quality. In this paper, the translation medicine in wound healing, such as debridement, dressings, and tissue engineering products, are reviewed. In the meantime, personal consideration concerning their successful and future development is given. PMID:24684981

  14. WOUND HEALING IN DIABETIC ULCER

    Ida Bagus Putra Pramana; Ketut Putu Yasa

    2013-01-01

    The mechanism of wound healing is a complex mechanism and involves a variety of cells. Injury is defined as a disruption of normal structure and function. Various types of growth factors and cytokines such as platelet derived growth factor and transforming growth factor beta involved in the mechanism of wound healing. There are four phases of wound healing mechanisms : hemostasis, inflammatory, proliferative, and remodeling. Diabetic ulcers is one major complication, occurring in 15% of patie...

  15. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model.

    Tamaki, Naofumi; Orihuela-Campos, Rita Cristina; Fukui, Makoto; Ito, Hiro-O

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A circular excisional wound was created in the oral palatal region, and the wound healing process was observed. The rats were divided into two experimental groups in which either hydrogen-rich water or distilled water was consumed. In the drinking hydrogen-rich water, the palatal wound healing process was accelerated compared to that in the control group. As molecular hydrogen upregulated the Nrf2 pathway, systemic oxidative stresses were decreased by the activation of antioxidant activity. Furthermore, hydrogen-rich water intake reduced proinflammatory cytokine levels and promoted the expression of healing-associated factors in rat palatal tissue. In conclusion, hydrogen-rich water intake exhibited multiple beneficial effects through activation of the Nrf2/antioxidant defense pathway. The results of this study support the hypothesis that oral administration of hydrogen-rich water benefits the wound healing process by decreasing oxidative stress and inflammatory responses. PMID:26798423

  16. The acceleration of garlic (Allium sativum L ethanolic extract on gingival wound healing process in Wistar rats

    Indra Bramanti Ngatidjan Setyo Purwono

    2014-04-01

    Full Text Available Garlic (Allium sativum L is a medicinal plant traditionally used to relieve pain. Garlic’s active constituents, allicin and triacremonone, have been proven to have antibacterial and antiinflammatory activity. The aim of this study was to investigate the effect of garlic ethanolic extract gel in gingival wound healing process of rats. Thirty male Wistar rats aged 10 weeks with with body weight 200-250 g were subjected in this study. Rats were divided randomly into five groups with six rats in each group. Group I as negative control was given sodium carboxymethyl cellulose (Na CMC base gel. Group II as positive control was given Benzydamine® gel and Group IV-V were given garlic ethanolic extract gel at dose of 20, 40 and 80%, respectively. Each group was subdivided into two sub groups of three rats according to the decapitation period which were 5th (D-5 and 7th (D-7 day after the garlic extract gel application. Excisional wounds using punch biopsy, 2.5 mm in diameter, were created at the mandibular labial gingiva between right and left incisor teeth of the rats. The garlic extract gel of each preparation dose was then applied on the wound three times a day, starting at 0 day until 7th day. The decapitation was conducted on the D-5 and D-7. Histological slides of wounded tissue were prepared. Epithelial thickness, new blood vessel, and number of fibroblast were examined. The results showed that the epithelial thickness of garlic ethanolic extract gel groups was significantly higher than control group (p<0.05, especially after 5thday application. However, the number of new blood vessels and the amount of fibroblast of those groups were not significantly higher than control group (p>0.05. In conclusion, topical application of garlic ethanolic extract gel accelerates the gingival wound healing process in rats by increasing epithelial thickness.     Keywords: garlic ethanolic extract - gingival wound healing - epithelium thickness

  17. Accelerated wound healing and anti-inflammatory effects of physically cross linked polyvinyl alcohol-chitosan hydrogel containing honey bee venom in diabetic rats.

    Amin, Mohamed A; Abdel-Raheem, Ihab T

    2014-08-01

    Diabetes is one of the leading causes of impaired wound healing. The objective of this study was to develop a bee venom-loaded wound dressing with an enhanced healing and anti-inflammatory effects to be examined in diabetic rats. Different preparations of polyvinyl alcohol (PVA), chitosan (Chit) hydrogel matrix-based wound dressing containing bee venom (BV) were developed using freeze-thawing method. The mechanical properties such as gel fraction, swelling ratio, tensile strength, percentage of elongation and surface pH were determined. The pharmacological activities including wound healing and anti-inflammatory effects in addition to primary skin irritation and microbial penetration tests were evaluated. Moreover, hydroxyproline, glutathione and IL-6 levels were measured in the wound tissues of diabetic rats. The bee venom-loaded wound dressing composed of 10 % PVA, 0.6 % Chit and 4 % BV was more swellable, flexible and elastic than other formulations. Pharmacologically, the bee venom-loaded wound dressing that has the same previous composition showed accelerated healing of wounds made in diabetic rats compared to the control. Moreover, this bee venom-loaded wound dressing exhibited anti-inflammatory effect that is comparable to that of diclofenac gel, the standard anti-inflammatory drug. Simultaneously, wound tissues covered with this preparation displayed higher hydroxyproline and glutathione levels and lower IL-6 levels compared to control. Thus, the bee venom-loaded hydrogel composed of 10 % PVA, 0.6 % Chit and 4 % BV is a promising wound dressing with excellent forming and enhanced wound healing as well as anti-inflammatory activities. PMID:24293065

  18. Wound Healing Devices Brief Vignettes

    Anderson, Caesar A.; Hare, Marc A.; Perdrizet, George A.

    2016-01-01

    Significance: The demand for wound care therapies is increasing. New wound care products and devices are marketed at a dizzying rate. Practitioners must make informed decisions about the use of medical devices for wound healing therapy. This paper provides updated evidence and recommendations based on a review of recent publications.

  19. Chemokines and diabetic wound healing.

    Ochoa, Oscar; Torres, Francis M; Shireman, Paula K

    2007-01-01

    Chemokines are critical for white blood cell recruitment to injured tissues and play an important role in normal wound healing processes. In contrast, impaired wound healing in diabetic patients is accompanied by decreased early inflammatory cell infiltration but persistence of neutrophils and macrophages in the chronic, nonhealing wounds. These changes in inflammatory cell recruitment occur in conjunction with alterations in chemokine and growth factor expression. In addition to leukocyte trafficking, many different cell types, including endothelial cells, fibroblasts, and keratinocytes, produce and respond to chemokines, and these interactions are altered in diabetic wounds. Thus, the chemokine system may have both direct and inflammatory-mediated effects on many different aspects of diabetic wound healing. The potential roles of chemokines and inflammatory or immune cells in nonhealing diabetic wounds, including impairments in growth factor expression, angiogenesis, extracellular matrix formation, and reepithelialization, are examined. PMID:18053419

  20. Hierarchically micro-patterned nanofibrous scaffolds with a nanosized bio-glass surface for accelerating wound healing

    Xu, He; Lv, Fang; Zhang, Yali; Yi, Zhengfang; Ke, Qinfei; Wu, Chengtie; Liu, Mingyao; Chang, Jiang

    2015-11-01

    A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing.A composite scaffold with a controlled micro-pattern, nano-sized fiber matrix and surface-modified nanobioglass component was successfully prepared for skin wound healing by combining the patterning electrospinning with pulsed laser deposition strategies, and the hierarchical micro/nano structures and nano-sized bioglass in the scaffolds could synergistically improve the efficiency and re-epithelialization of wound healing. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04802h

  1. Loss of CAR promotes migration and proliferation of HaCaT cells, and accelerates wound healing in rats via Src-p38 MAPK pathway

    Su, Linlin; Fu, Lanqing; Li, Xiaodong; Zhang, Yue; Li, Zhenzhen; Wu, Xue; Li, Yan; Bai, Xiaozhi; Hu, Dahai

    2016-01-01

    The coxsackie and adenovirus receptor (CAR) is a cell adhesion molecule mostly localized to cell-cell contacts in epithelial and endothelial cells. CAR is known to regulate tumor progression, however, its physiological role in keratinocyte migration and proliferation, two essential steps in re-epithelialization during wound healing, has less been investigated. Here we showed that CAR was predominantly expressed in the epidermis of human skin, CAR knockdown by RNAi significantly accelerated HaCaT cell migration and proliferation. In addition, knockdown of CAR in vitro increased p-Src, p-p38, and p-JNK protein levels; however, Src inhibitor PP2 prevented the increase of p-Src and p-p38 induced by CAR RNAi, but not p-JNK, and decelerated cell migration and proliferation. More intriguingly, in vivo CAR RNAi on the skin area surrounding the wounds on rat back visually accelerated wound healing and re-epithelialization process, while treatment with PP2 or p38 inhibitor SB203580 obviously inhibited these effects. By contrast, overexpressing CAR in HaCaT cells significantly decelerated cell migration and proliferation. Above results demonstrate that suppression of CAR could accelerate HaCaT cell migration and proliferation, and promote wound healing in rat skin, probably via Src-p38 MAPK pathway. CAR thus might serve as a novel therapeutic target for facilitating wound healing. PMID:26804208

  2. Chitosan Dermal Substitute and Chitosan Skin Substitute Contribute to Accelerated Full-Thickness Wound Healing in Irradiated Rats

    Abu Bakar Mohd Hilmi

    2013-01-01

    Full Text Available Wounds with full-thickness skin loss are commonly managed by skin grafting. In the absence of a graft, reepithelialization is imperfect and leads to increased scar formation. Biomaterials can alter wound healing so that it produces more regenerative tissue and fewer scars. This current study use the new chitosan based biomaterial in full-thickness wound with impaired healing on rat model. Wounds were evaluated after being treated with a chitosan dermal substitute, a chitosan skin substitute, or duoderm CGF. Wounds treated with the chitosan skin substitute showed the most re-epithelialization (33.2 ± 2.8%, longest epithelial tongue (1.62 ± 0.13 mm, and shortest migratory tongue distance (7.11 ± 0.25 mm. The scar size of wounds treated with the chitosan dermal substitute (0.13 ± 0.02 cm and chitosan skin substitute (0.16 ± 0.05 cm were significantly decreased (P<0.05 compared with duoderm (0.45 ± 0.11 cm. Human leukocyte antigen (HLA expression on days 7, 14, and 21 revealed the presence of human hair follicle stem cells and fibroblasts that were incorporated into and surviving in the irradiated wound. We have proven that a chitosan dermal substitute and chitosan skin substitute are suitable for wound healing in full-thickness wounds that are impaired due to radiation.

  3. Stem Cells for Cutaneous Wound Healing

    Giles T. S. Kirby

    2015-01-01

    Full Text Available Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase. Cell therapies may be the solution. A range of cell based approaches have begun to cross the rift from bench to bedside and the supporting data suggests that the appropriate administration of stem cells can accelerate wound healing. This review examines the main cell types explored for cutaneous wound healing with a focus on clinical use. The literature overwhelmingly suggests that cell therapies can help to heal cutaneous wounds when used appropriately but we are at risk of clinical use outpacing the evidence. There is a need, now more than ever, for standardised methods of cell characterisation and delivery, as well as randomised clinical trials.

  4. What is New in Wound Healing?

    Kumar, Senthil; WONG, Peng Foo; LEAPER, David John

    2004-01-01

    Wound biology is complex. Wounds which were until recently seen only as defects in tissues are now increasingly interpreted in cellular and molecular terms. Growth factors, cytokines, proteases and adhesion molecules which participate in wound healing are discussed in this article. From a clinical perspective, conceptual shifts of importance, including moist wound healing, wound bed preparation and wound assessment, are presented. The frontiers of therapeutics employed in wound healing contin...

  5. Hemostatic and Wound Healing Properties of Chromolaena odorata Leaf Extract

    Seung Joon Baek; Wandee Gritsanapan; Kyung-Won Min; Jason Liggett; Xiaobo Zhang; Hataichanok Pandith

    2013-01-01

    Chromolaena odorata (L.) King and Robinson (Siam weed) extract has been used to stop bleeding and in wound healing in many tropical countries. However, its detailed mechanisms have not been elucidated. In this study, we examined the molecular mechanisms by which Siam weed extract (SWE) affected hemostatic and wound healing activities. SWE promoted Balb/c 3T3 fibroblast cell migration and proliferation. Subsequently, we found that heme oxygenase-1 (HO-1), the accelerating wound healing enzyme,...

  6. Wound Healing Activity of Elaeis guineensis Leaf Extract Ointment

    Sreenivasan Sasidharan

    2011-12-01

    Full Text Available Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Matrix metalloproteinases expression correlated well with the results thus confirming efficacy of E. guineensis in the treatment of the wound. E. guineensis accelerated wound healing in rats, thus supporting its traditional use. The result of this study suggested that, used efficiently, oil palm leaf extract is a renewable resource with wound healing properties.

  7. The Efficacy of Gelam Honey Dressing towards Excisional Wound Healing

    Mui Koon Tan

    2012-01-01

    Full Text Available Honey is one of the oldest substances used in wound management. Efficacy of Gelam honey in wound healing was evaluated in this paper. Sprague-Dawley rats were randomly divided into four groups of 24 rats each (untreated group, saline group, Intrasite Gel group, and Gelam honey group with 2 cm by 2 cm full thickness, excisional wound created on neck area. Wounds were dressed topically according to groups. Rats were sacrificed on days 1, 5, 10, and 15 of treatments. Wounds were then processed for macroscopic and histological observations. Gelam-honey-dressed wounds healed earlier (day 13 than untreated and saline treated groups, as did wounds treated with Intrasite Gel. Honey-treated wounds exhibited less scab and only thin scar formations. Histological features demonstrated positive effects of Gelam honey on the wounds. This paper showed that Gelam honey dressing on excisional wound accelerated the process of wound healing.

  8. Accelerated healing of diabetic wound using artificial dermis constructed with adipose stem cells and poly(L-glutamic acid)/chitosan scaffold

    SHEN Ting; PAN Zhi-gang; ZHOU Xiao; HONG Chao-yang

    2013-01-01

    Background Diabetic wound is one of the most serious complications of diabetes mellitus.There are no significantly effective therapies for chronic non-healing diabetes ulcer so far.This study aimed to explore the feasibility of healing impaired wound using artificial dermis constructed with human adipose derived stem cells (ASCs) and poly(L-glutamic acid)/chitosan (PLGA/CS) scaffold in streptozotocin-induced diabetic mice.Methods ASCs were isolated from fresh human lipoaspirates and expanded ex vivo for three passages,and then cells were seeded onto PLGA/CS scaffold to form artificial dermis.Expression of VEGF and TGFβ1 by ASCs presented in artificial dermis was determined.The artificial dermis was transplanted to treat the 20 mm × 20 mm full-thickness cutaneous wound created on the back of diabetic mice.Wound treated with scaffold alone and without treatment,and wound in normal non-diabetic mice served as control.Results Cells growing within scaffold showed great proliferation potential,depositing abundant collagen matrix.Meanwhile,expression of VEGF and TGF-β1 by seeded ASCs maintained at a consistent high level.After treated with ASC based artificial dermis,diabetic wounds exhibited significantly higher healing rate compared with wounds treated with scaffold alone or without treatment.Histological examination also demonstrated an improvement in cutaneous restoration with matrix deposition and organization.Further quantitative analysis showed that there was a significant increase in dermis thickness and collagen content on artificial dermis treated wounds.Conclusion ASC/PLGA artificial dermis can effectively accelerate diabetic wound healing by promoting angiogenic growth factors and dermal collagen synthesis.

  9. Vasculogenic Cytokines in Wound Healing

    Victor W. Wong

    2013-01-01

    Full Text Available Chronic wounds represent a growing healthcare burden that particularly afflicts aged, diabetic, vasculopathic, and obese patients. Studies have shown that nonhealing wounds are characterized by dysregulated cytokine networks that impair blood vessel formation. Two distinct forms of neovascularization have been described: vasculogenesis (driven by bone-marrow-derived circulating endothelial progenitor cells and angiogenesis (local endothelial cell sprouting from existing vasculature. Researchers have traditionally focused on angiogenesis but defects in vasculogenesis are increasingly recognized to impact diseases including wound healing. A more comprehensive understanding of vasculogenic cytokine networks may facilitate the development of novel strategies to treat recalcitrant wounds. Further, the clinical success of endothelial progenitor cell-based therapies will depend not only on the delivery of the cells themselves but also on the appropriate cytokine milieu to promote tissue regeneration. This paper will highlight major cytokines involved in vasculogenesis within the context of cutaneous wound healing.

  10. Current concepts in wound management and wound healing products.

    Davidson, Jacqueline R

    2015-05-01

    Current concepts in wound management are summarized. The emphasis is on selection of the contact layer of the bandage to promote a moist wound environment. Selection of an appropriate contact layer is based on the stage of wound healing and the amount of wound exudate. The contact layer can be used to promote autolytic debridement and enhance wound healing. PMID:25744144

  11. Polysaccharides-Rich Extract of Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst Accelerates Wound Healing in Streptozotocin-Induced Diabetic Rats.

    Cheng, Poh-Guat; Phan, Chia-Wei; Sabaratnam, Vikineswary; Abdullah, Noorlidah; Abdulla, Mahmood Ameen; Kuppusamy, Umah Rani

    2013-01-01

    Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst is a popular medicinal mushroom. Scientific reports had shown that the wound healing effects of G. lucidum were partly attributed to its rich polysaccharides. However, little attention has been paid to its potential effects on wounds associated with diabetes mellitus. In this study, we evaluated the wound healing activity of the hot aqueous extract of G. lucidum in streptozotocin-induced diabetic rats. The extract of G. lucidum was standardised based on chemical contents (w/w) of total polysaccharides (25.1%), ganoderic acid A (0.45%), and adenosine (0.069%). Six groups of six rats were experimentally wounded in the posterior neck region. Intrasite gel was used as a positive control and aqueous cream as the placebo. Topical application with 10% (w/w) of mushroom extract-incorporated aqueous cream was more effective than that with Intrasite gel in terms of wound closure. The antioxidant activity in serum of rats treated with aqueous extract of G. lucidum was significantly higher; whereas the oxidative protein products and lipid damage were lower when compared to those of the controls. These findings strongly support the beneficial effects of standardised aqueous extract of G. lucidum in accelerating wound healing in streptozotocin-induced diabetic rats. PMID:24348715

  12. Polysaccharides-Rich Extract of Ganoderma lucidum (M.A. Curtis:Fr. P. Karst Accelerates Wound Healing in Streptozotocin-Induced Diabetic Rats

    Poh-Guat Cheng

    2013-01-01

    Full Text Available Ganoderma lucidum (M.A. Curtis:Fr. P. Karst is a popular medicinal mushroom. Scientific reports had shown that the wound healing effects of G. lucidum were partly attributed to its rich polysaccharides. However, little attention has been paid to its potential effects on wounds associated with diabetes mellitus. In this study, we evaluated the wound healing activity of the hot aqueous extract of G. lucidum in streptozotocin-induced diabetic rats. The extract of G. lucidum was standardised based on chemical contents (w/w of total polysaccharides (25.1%, ganoderic acid A (0.45%, and adenosine (0.069%. Six groups of six rats were experimentally wounded in the posterior neck region. Intrasite gel was used as a positive control and aqueous cream as the placebo. Topical application with 10% (w/w of mushroom extract-incorporated aqueous cream was more effective than that with Intrasite gel in terms of wound closure. The antioxidant activity in serum of rats treated with aqueous extract of G. lucidum was significantly higher; whereas the oxidative protein products and lipid damage were lower when compared to those of the controls. These findings strongly support the beneficial effects of standardised aqueous extract of G. lucidum in accelerating wound healing in streptozotocin-induced diabetic rats.

  13. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo.

    Mendez, Julio J; Ghaedi, Mahboobe; Sivarapatna, Amogh; Dimitrievska, Sashka; Shao, Zhen; Osuji, Chinedum O; Steinbacher, Derek M; Leffell, David J; Niklason, Laura E

    2015-02-01

    Non-healing, chronic wounds are a growing public health problem and may stem from insufficient angiogenesis in affected sites. Here, we have developed a fibrin formulation that allows adipose-derived mesenchymal stromal cells (ADSCs) to form tubular structures in vitro. The tubular structures express markers of endothelium, including CD31 and VE-Cadherin, as well as the pericyte marker NG2. The ability for the MSCs to form tubular structures within the fibrin gels was directly dependent on the stoichiometric ratios of thrombin and fibrinogen and the resulting gel concentration, as well as on the presence of bFGF. Fibrin gel formulations that varied in stiffness were tested. ADSCs that are embedded in a stiff fibrin formulation express VE-cadherin and CD31 as shown by PCR, FACS and immunostaining. Confocal imaging analysis demonstrated that tubular structures formed, containing visible lumens, in the stiff fibrin gels in vitro. There was also a difference in the amounts of bFGF secreted by ADSCs grown in the stiffer gels as compared to softer gels. Additionally, hAT-MSCs gave rise to perfusable vessels that were VE-cadherin positive after subcutaneous injection into mice, whereas the softer fibrin formulation containing ADSCs did not. The application of ADSCs delivered in the stiff fibrin gels allowed for the wounds to heal more quickly, as assessed by wound size, amount of granulation tissue and collagen content. Interestingly, following 5 days of healing, the ADSCs remained within the fibrin gel and did not integrate into the granulation tissue of healing wounds in vivo. These data show that ADSCs are able to form tubular structures within fibrin gels, and may also contribute to faster wound healing, as compared with no treatment or to wounds treated with fibrin gels devoid of ADSCs. PMID:25433608

  14. Ciliary neurotrophic factor promotes the activation of corneal epithelial stem/progenitor cells and accelerates corneal epithelial wound healing.

    Zhou, Qingjun; Chen, Peng; Di, Guohu; Zhang, Yangyang; Wang, Yao; Qi, Xia; Duan, Haoyun; Xie, Lixin

    2015-05-01

    Ciliary neurotrophic factor (CNTF), a well-known neuroprotective cytokine, has been found to play an important role in neurogenesis and functional regulations of neural stem cells. As one of the most innervated tissue, however, the role of CNTF in cornea epithelium remains unclear. This study was to explore the roles and mechanisms of CNTF in the activation of corneal epithelial stem/progenitor cells and wound healing of both normal and diabetic mouse corneal epithelium. In mice subjecting to mechanical removal of corneal epithelium, the corneal epithelial stem/progenitor cell activation and wound healing were promoted by exogenous CNTF application, while delayed by CNTF neutralizing antibody. In cultured corneal epithelial stem/progenitor cells, CNTF enhanced the colony-forming efficiency, stimulated the mitogenic proliferation, and upregulated the expression levels of corneal epithelial stem/progenitor cell-associated transcription factors. Furthermore, the promotion of CNTF on the corneal epithelial stem/progenitor cell activation and wound healing was mediated by the activation of STAT3. Moreover, in diabetic mice, the content of CNTF in corneal epithelium decreased significantly when compared with that of normal mice, and the supplement of CNTF promoted the diabetic corneal epithelial wound healing, accompanied with the advanced activation of corneal epithelial stem/progenitor cells and the regeneration of corneal nerve fibers. Thus, the capability of expanding corneal epithelial stem/progenitor cells and promoting corneal epithelial wound healing and nerve regeneration indicates the potential application of CNTF in ameliorating limbal stem cell deficiency and treating diabetic keratopathy. PMID:25546438

  15. Chemokine Regulation of Angiogenesis During Wound Healing

    Bodnar, Richard J.

    2015-01-01

    Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds.

  16. Hyperbaric oxygen and wound healing

    Sourabh Bhutani

    2012-01-01

    Full Text Available Hyperbaric oxygen therapy (HBOT is the use of 100% oxygen at pressures greater than atmospheric pressure. Today several approved applications and indications exist for HBOT. HBOT has been successfully used as adjunctive therapy for wound healing. Non-healing wounds such as diabetic and vascular insufficiency ulcers have been one major area of study for hyperbaric physicians where use of HBOT as an adjunct has been approved for use by way of various studies and trials. HBOT is also indicated for infected wounds like clostridial myonecrosis, necrotising soft tissue infections, Fournier′s gangrene, as also for traumatic wounds, crush injury, compartment syndrome, compromised skin grafts and flaps and thermal burns. Another major area of application of HBOT is radiation-induced wounds, specifically osteoradionecrosis of mandible, radiation cystitis and radiation proctitis. With the increase in availability of chambers across the country, and with increasing number of studies proving the benefits of adjunctive use for various kinds of wounds and other indications, HBOT should be considered in these situations as an essential part of the overall management strategy for the treating surgeon.

  17. Principles of Wound Management and Wound Healing in Exotic Pets.

    Mickelson, Megan A; Mans, Christoph; Colopy, Sara A

    2016-01-01

    The care of wounds in exotic animal species can be a challenging endeavor. Special considerations must be made in regard to the animal's temperament and behavior, unique anatomy and small size, and tendency toward secondary stress-related health problems. It is important to assess the entire patient with adequate systemic evaluation and consideration of proper nutrition and husbandry, which could ultimately affect wound healing. This article summarizes the general phases of wound healing, factors that affect healing, and principles of wound management. Emphasis is placed on novel methods of treating wounds and species differences in wound management and healing. PMID:26611923

  18. An Immunomodulatory Protein (Ling Zhi-8 from a Ganoderma lucidum Induced Acceleration of Wound Healing in Rat Liver Tissues after Monopolar Electrosurgery

    Hao-Jan Lin

    2014-01-01

    Full Text Available The purpose of this study was to investigate the effect of an immunomodulatory protein (Ling Zhi-8, LZ-8 on wound healing in rat liver tissues after monopolar electrosurgery. Animals were sacrificed for evaluations at 0, 3, 7, and 28 days postoperatively. It was found that the wound with the LZ-8 treatment significantly increases wound healing. Western blot analysis clearly indicated that the expression of NF-κB was decreased at 3, 7, and 28 days when liver tissues were treated with LZ-8. Moreover, caspase-3 activity of the liver tissue also significantly decreases at 7 and 28 days, respectively. DAPI staining and TUNEL assays revealed that only a minimal dispersion of NF-κB was found on the liver tissue treated with LZ-8 at day 7 as compared with day 3 and tissues without LZ-8 treatment. Similarly, apoptosis was decreased on liver tissues treated with LZ-8 at 7 days when compared to the control (monopolar electrosurgery tissues. Therefore, the analytical results demonstrated that LZ-8 induced acceleration of wound healing in rat liver tissues after monopolar electrosurgery.

  19. Treatment of diabetic mice with undenatured whey protein accelerates the wound healing process by enhancing the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wounded tissue

    Badr Gamal

    2012-06-01

    Full Text Available Abstract Background Continuous diabetes-associated complications are a major source of immune system exhaustion and an increased incidence of infection. Diabetes can cause poor circulation in the feet, increasing the likelihood of ulcers forming when the skin is damaged and slowing the healing of the ulcers. Whey proteins (WPs enhance immunity during childhood and have a protective effect on some immune disorders. Therefore, in this study, we investigated the effects of camel WP on the healing and closure of diabetic wounds in a streptozotocin (STZ-induced type I diabetic mouse model. Results Diabetic mice exhibited delayed wound closure characterized by a significant decrease in an anti-inflammatory cytokine (namely, IL-10 and a prolonged elevation of the levels of inflammatory cytokines (TNF-α, IL-1β and IL-6 in wound tissue. Moreover, aberrant expression of chemokines that regulate wound healing (MIP-1α, MIP-2, KC and CX3CL1 and growth factors (TGF-β were observed in the wound tissue of diabetic mice compared with control nondiabetic mice. Interestingly, compared with untreated diabetic mice, supplementation with WP significantly accelerated the closure of diabetic wounds by limiting inflammatory stimuli via the restoration of normal IL-10, TNF-α, IL-1β and IL-6 levels. Most importantly, the supplementation of diabetic mice with WP significantly modulated the expression of MIP-1α, MIP-2, KC, CX3CL1 and TGF-β in wound tissue compared with untreated diabetic mice. Conclusion Our data demonstrate the benefits of WP supplementation for improving the healing and closure of diabetic wounds and restoring the immune response in diabetic mice.

  20. Wound healing and treating wounds: Chronic wound care and management.

    Powers, Jennifer G; Higham, Catherine; Broussard, Karen; Phillips, Tania J

    2016-04-01

    In the United States, chronic ulcers--including decubitus, vascular, inflammatory, and rheumatologic subtypes--affect >6 million people, with increasing numbers anticipated in our growing elderly and diabetic populations. These wounds cause significant morbidity and mortality and lead to significant medical costs. Preventative and treatment measures include disease-specific approaches and the use of moisture retentive dressings and adjunctive topical therapies to promote healing. In this article, we discuss recent advances in wound care technology and current management guidelines for the treatment of wounds and ulcers. PMID:26979353

  1. Advances in Wound Healing: A Review of Current Wound Healing Products

    Murphy, Patrick S.; Gregory R.D. Evans

    2012-01-01

    Successful wound care involves optimizing patient local and systemic conditions in conjunction with an ideal wound healing environment. Many different products have been developed to influence this wound environment to provide a pathogen-free, protected, and moist area for healing to occur. Newer products are currently being used to replace or augment various substrates in the wound healing cascade. This review of the current state of the art in wound-healing products looks at the latest appl...

  2. New trends in healing chronic wounds

    KREJSKOVÁ, Kamila

    2013-01-01

    Basic theoretical bases As a chronic wound is called a secondarily healing wound which despite adequate therapy does not tend to heal for a period of 6-9 weeks. The cause of the chronic wound occurrence and its transformation into an acute wound can be infection, influence of associated diseases, skin top layer microtraumatization or skin necrosis cavity. Among the most frequent types of chronic wounds there are aligned venous ulcerations, arterial rodent ulcers, decubitus ulcers and neuropat...

  3. Topical Insulin Accelerates Wound Healing in Diabetes by Enhancing the AKT and ERK Pathways: A Double-Blind Placebo-Controlled Clinical Trial

    Maria H M Lima; Caricilli, Andréa M.; Lélia L de Abreu; Araújo, Eliana P.; Pelegrinelli, Fabiana F.; Thirone, Ana C. P.; Daniela M Tsukumo; Pessoa, Ana Flávia M.; dos Santos, Marinilce F.; de Moraes, Maria A.; Carvalheira, José B. C.; Velloso, Lício A.; Saad, Mario J. A.

    2012-01-01

    BACKGROUND: Wound healing is impaired in diabetes mellitus, but the mechanisms involved in this process are virtually unknown. Proteins belonging to the insulin signaling pathway respond to insulin in the skin of rats. OBJECTIVE: The purpose of this study was to investigate the regulation of the insulin signaling pathway in wound healing and skin repair of normal and diabetic rats, and, in parallel, the effect of a topical insulin cream on wound healing and on the activation of this pathway. ...

  4. Cryptotanshinone downregulates the profibrotic activities of hypertrophic scar fibroblasts and accelerates wound healing: A potential therapy for the reduction of skin scarring.

    Li, Yan; Shi, Shan; Gao, Jianxin; Han, Shichao; Wu, Xue; Jia, Yanhui; Su, Linlin; Shi, Jihong; Hu, Dahai

    2016-05-01

    Hypertrophic scar (HS) is a skin fibrotic disease that causes major clinically problematic symptoms. Cryptotanshinone (CT) is an important ingredient of Danshen (Salvia miltiorrhiza Bunge extract) that has been used to treat cardio-cerebral vascular diseases. Its clinical efficacy in HS remains unclear. To investigate whether CT can inhibit HS fibrosis, HS-derived fibroblastic cells (HSFs) were established and treated with or without CT. Type-collagen-I (Col1), type-collagen-III (Col3) and α-smooth muscle actin (α-SMA) expression were measured by western blot and real-time quantitative polymerase chain reaction. HSFs migration and contraction were assessed with the scratch assay and the fibroblast-populated collagen lattice (FPCL) contraction assay, respectively. Wound healing in CT-treated Balb/c mice was assessed by immunohistochemical analysis of collagen expression and Masson's trichrome staining analysis of collagen deposition. CT treatment of HSFs down-regulated Col1, Col3 and α-SMA mRNA and protein expression, HSFs migration, and HSFs contraction, and improved FPCL architecture. In mice, CT treatment accelerated wound healing: the scar margins were narrow and there was less collagen deposition in the regenerated tissue. Thus, CT promotes wound healing and decreases excessive deposition of extracellular matrix components. CT may help to prevent and reduce scarring. PMID:27133042

  5. Chitosan as a starting material for wound healing applications.

    Patrulea, V; Ostafe, V; Borchard, G; Jordan, O

    2015-11-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo and clinical applications in wound healing are described. PMID:26614560

  6. Cutaneous wound healing: Current concepts and advances in wound care

    Kenneth C Klein; Somes Chandra Guha

    2014-01-01

    A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care. [1] It is a snapshot of a patient′s total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors. [2...

  7. Bioelectrical Impedance Assessment of Wound Healing

    Lukaski, Henry C.; Moore, Micheal

    2012-01-01

    Objective assessment of wound healing is fundamental to evaluate therapeutic and nutritional interventions and to identify complications. Despite availability of many techniques to monitor wounds, there is a need for a safe, practical, accurate, and effective method. A new method is localized bioelectrical impedance analysis (BIA) that noninvasively provides information describing cellular changes that occur during healing and signal complications to wound healing. This article describes the ...

  8. Wound Healing Activity of Carallia brachiata Bark.

    Krishnaveni, B; Neeharika, V; Venkatesh, S; Padmavathy, R; Reddy, B Madhava

    2009-09-01

    The stem bark of Carallia brachiata was studied for wound healing activity. The bark was extracted with petroleum ether, ethyl acetate and methanol successively. All the extracts were screened for wound healing activity by excision and incision models in Wistar rats. The ethyl acetate and methanol extracts were found to possess significant wound healing activity. The extracts revealed the presence of sterols or triterpenoids, flavonoids, phenols, tannins, carbohydrates, fixed oils and fats. PMID:20502583

  9. Wound Healing Activity of Carallia brachiata Bark

    Krishnaveni, B.; V Neeharika; Venkatesh, S; R Padmavathy; Reddy, B. Madhava

    2009-01-01

    The stem bark of Carallia brachiata was studied for wound healing activity. The bark was extracted with petroleum ether, ethyl acetate and methanol successively. All the extracts were screened for wound healing activity by excision and incision models in Wistar rats. The ethyl acetate and methanol extracts were found to possess significant wound healing activity. The extracts revealed the presence of sterols or triterpenoids, flavonoids, phenols, tannins, carbohydrates, fixed oils and fats.

  10. Wound healing activity of Carallia brachiata bark

    Krishnaveni B

    2009-01-01

    Full Text Available The stem bark of Carallia brachiata was studied for wound healing activity. The bark was extracted with petroleum ether, ethyl acetate and methanol successively. All the extracts were screened for wound healing activity by excision and incision models in Wistar rats. The ethyl acetate and methanol extracts were found to possess significant wound healing activity. The extracts revealed the presence of sterols or triterpenoids, flavonoids, phenols, tannins, carbohydrates, fixed oils and fats.

  11. Acceleration of wound healing in acute full-thickness skin wounds using a collagen-binding peptide with an affinity for MSCs

    Huili Wang

    2014-10-01

    Full Text Available Mesenchymal stem cells (MSCs have been accepted as a promising cell source in tissue repair and regeneration. However, the inability to enrich MSCs in target areas limits their wide application. As a result, it has been a major goal to induce MSCs to be abundantly and specifically recruited to the injury site. In this study, a peptide with a specific affinity for MSCs (E7 peptide was immobilized to a collagen scaffold via a collagen-binding domain (CBD to construct a functional collagen scaffold. In addition, the hypothesis that this method could recruit MSCs specifically was evaluated in a porcine model. In vivo investigations indicated that due to the immunoreaction, the CBD-MSC-peptide collagen scaffold enhanced MSC adhesion and infiltration and promoted wound healing. At day 7 after surgery, we found more infiltrating cells and capillaries in the Collagen/CBD-E7 peptide group compared to the Scaffold group. At day 14, 21 and 28, a faster healing process was observed in the Collagen/CBD-E7 peptide group, with significant differences compared with the other groups (P < 0.05, P < 0.01. The results demonstrate the potential use of targeted therapy to rapidly heal skin wounds.

  12. Chitosan as a starting material for wound healing applications

    Patrulea, Viorica; Ostafe, V.; Borchard, Gerrit; Jordan, Olivier

    2015-01-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo a...

  13. Innate Defense Regulator Peptide 1018 in Wound Healing and Wound Infection

    Steinstraesser, Lars; Hirsch, Tobias; Schulte, Matthias;

    2012-01-01

    -1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL......-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no...... significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds...

  14. Current management of wound healing

    Gottrup, F; Karlsmark, T

    2009-01-01

    While the understanding of wound pathophysiology has progressed considerably over the past decades the improvements in clinical treatment has occurred to a minor degree. During the last years, however, new trends and initiatives have been launched, and we will continue to attain new information in...... the next decade. It is the hope that increasing parts of the new knowledge from basic wound healing research will be implemented in daily clinical practice. The development of new treatment products will also continue, and especially new technologies with combined types of dressing materials or...... dressing containing active substances will be accentuated. Further developments in the management structure and education will also continue and consensus of treatment guidelines, recommendations and organization models will hopefully be achieved....

  15. The effects of locally applied procaine on wound healing

    Arzu Akcal

    2015-02-01

    Materials and Methods: Thirty adult male Sprague-Dawley rats weighing between 250 and 350 g were used. Two full thickness defects were made on two sides of the midline 1 cm away from midline. The skin wound areas were approxi- mately 1.5 cm and times; 1.5 cm. The animals were randomly divided into three groups: Group 1 (control group, n = 8, Group 2 (injection directly into the base of wound, n = 8, and Group 3 (injection into healthy skin around the peripheral margins of the wound, n = 8. Mechanical analyses of wound tensile strength of were evaluated in all groups. Results: Wound closure was first seen in Group 3 on day 14. Mean wound healing times were 18.25 days, 16.25 days, and 15.62 days, and mean tensile strength was 777.13 cN, 988.25 cN, and 1068.25 cN in the Groups 1, 2, and 3 respectively. Conclusions: Procaine did not cause any necrosis around the wound, did not retard wound healing, did not cause circu- lation deficiency, and did not reduce the breaking strength of the wound. Therefore, it can be safely used to reduce pain around the wound and to accelerate the healing process of slow-to-heal wounds. [Arch Clin Exp Surg 2015; 4(1.000: 41-45

  16. Polysaccharides-Rich Extract of Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst Accelerates Wound Healing in Streptozotocin-Induced Diabetic Rats

    Poh-Guat Cheng; Chia-Wei Phan; Vikineswary Sabaratnam; Noorlidah Abdullah; Mahmood Ameen Abdulla; Umah Rani Kuppusamy

    2013-01-01

    Ganoderma lucidum (M.A. Curtis:Fr.) P. Karst is a popular medicinal mushroom. Scientific reports had shown that the wound healing effects of G. lucidum were partly attributed to its rich polysaccharides. However, little attention has been paid to its potential effects on wounds associated with diabetes mellitus. In this study, we evaluated the wound healing activity of the hot aqueous extract of G. lucidum in streptozotocin-induced diabetic rats. The extract of G. lucidum was standardised bas...

  17. Hydrogen-Rich Water Intake Accelerates Oral Palatal Wound Healing via Activation of the Nrf2/Antioxidant Defense Pathways in a Rat Model

    Naofumi Tamaki; Rita Cristina Orihuela-Campos; Makoto Fukui; Hiro-O Ito

    2016-01-01

    The wound healing process attempts to restore the integrity and function of the injured tissue. Additionally, proinflammatory cytokines, growth factors, and oxidative stress play important roles in wound healing. The aim of this study was to determine whether hydrogen-rich water intake induces the activation of the Nrf2/antioxidant defense pathway in rat palatal tissue, thereby reducing systemic oxidative stress and proinflammatory cytokine levels and promoting healing-associated genes. A cir...

  18. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  19. Wound healing and infection in surgery

    Sørensen, Lars Tue

    2012-01-01

    : The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved.......: The aim was to clarify how smoking and nicotine affects wound healing processes and to establish if smoking cessation and nicotine replacement therapy reverse the mechanisms involved....

  20. Stem Cells for Cutaneous Wound Healing

    Giles T. S. Kirby; Stuart J. Mills; Cowin, Allison J.; Smith, Louise E.

    2015-01-01

    Optimum healing of a cutaneous wound involves a well-orchestrated cascade of biological and molecular processes involving cell migration, proliferation, extracellular matrix deposition, and remodelling. When the normal biological process fails for any reason, this healing process can stall resulting in chronic wounds. Wounds are a growing clinical burden on healthcare systems and with an aging population as well as increasing incidences of obesity and diabetes, this problem is set to increase...

  1. Ultraviolet light and hyperpigmentation in healing wounds

    The concept of permanent hyperpigmentation in wounds following ultraviolet light exposure during the postoperative period has found a place in plastic surgical literature but has not been documented. This study evaluates the effect of ultraviolet light on healing wounds in paraplegics. It failed to confirm permanent alteration in pigmentation response to ultraviolet exposure and suggests that other factors are of greater importance in the development of hyperpigmentation in the healing wound

  2. The external microenvironment of healing skin wounds

    Kruse, Carla R; Nuutila, Kristo; Lee, Cameron Cy;

    2015-01-01

    The skin wound microenvironment can be divided into two main components that influence healing: the external wound microenvironment, which is outside the wound surface; and the internal wound microenvironment, underneath the surface, to which the cells within the wound are exposed. Treatment...... methods that directly alter the features of the external wound microenvironment indirectly affect the internal wound microenvironment due to the exchange between the two compartments. In this review, we focus on the effects of temperature, pressure (positive and negative), hydration, gases (oxygen and...

  3. Biomarkers for wound healing and their evaluation.

    Patel, S; Maheshwari, A; Chandra, A

    2016-01-01

    A biological marker (biomarker) is a substance used as an indicator of biological state. Advances in genomics, proteomics and molecular pathology have generated many candidate biomarkers with potential clinical value. Research has identified several cellular events and mediators associated with wound healing that can serve as biomarkers. Macrophages, neutrophils, fibroblasts and platelets release cytokines molecules including TNF-α, interleukins (ILs) and growth factors, of which platelet-derived growth factor (PDGF) holds the greatest importance. As a result, various white cells and connective tissue cells release both matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs). Studies have demonstrated that IL-1, IL-6, and MMPs, levels above normal, and an abnormally high MMP/TIMP ratio are often present in non-healing wounds. Clinical examination of wounds for these mediators could predict which wounds will heal and which will not, suggesting use of these chemicals as biomarkers of wound healing. There is also evidence that the application of growth factors like PDGF will alleviate the recuperating process of chronic, non-healing wounds. Finding a specific biomarker for wound healing status would be a breakthrough in this field and helping treat impaired wound healing. PMID:26762498

  4. NeutroPhase® in chronic non-healing wounds

    Crew, John; Varilla, Randell; Rocas, Thomas Allandale; Debabov, Dmitri; Wang, Lu; Najafi, Azar; Rani, Suriani Abdul; Najafi, Ramin (Ron); Anderson, Mark

    2012-01-01

    Chronic non-healing wounds, such as venous stasis ulcers, diabetic ulcers, and pressure ulcers are serious unmet medical needs that affect a patient’s morbidity and mortality. Common pathogens observed in chronic non-healing wounds are Staphylococcus including MRSA, Pseudomonas, Enterobacter, Stenotrophomonas, and Serratia spp. Topical and systemically administered antibiotics do not adequately decrease the level of bacteria or the associated biofilm in chronic granulating wounds and the use of sub-lethal concentrations of antibiotics can lead to resistant phenotypes. Furthermore, topical antiseptics may not be fully effective and can actually impede wound healing. We show 5 representative examples from our more than 30 clinical case studies using NeutroPhase® as an irrigation solution with chronic non-healing wounds with and without the technique of negative pressure wound therapy (NPWT). NeutroPhase® is pure 0.01% hypochlorous acid (i.e. >97% relative molar distribution of active chlorine species as HOCl) in a 0.9% saline solution at pH 4-5 and is stored in glass containers. NovaBay has three FDA cleared 510(k)s. Patients showed a profound improvement and marked accelerated rates of wound healing using NeutroPhase® with and without NPWT. NeutroPhase® was non-toxic to living tissues. PMID:23272294

  5. NeutroPhase(®) in chronic non-healing wounds.

    Crew, John; Varilla, Randell; Rocas, Thomas Allandale; Debabov, Dmitri; Wang, Lu; Najafi, Azar; Rani, Suriani Abdul; Najafi, Ramin Ron; Anderson, Mark

    2012-01-01

    Chronic non-healing wounds, such as venous stasis ulcers, diabetic ulcers, and pressure ulcers are serious unmet medical needs that affect a patient's morbidity and mortality. Common pathogens observed in chronic non-healing wounds are Staphylococcus including MRSA, Pseudomonas, Enterobacter, Stenotrophomonas, and Serratia spp. Topical and systemically administered antibiotics do not adequately decrease the level of bacteria or the associated biofilm in chronic granulating wounds and the use of sub-lethal concentrations of antibiotics can lead to resistant phenotypes. Furthermore, topical antiseptics may not be fully effective and can actually impede wound healing. We show 5 representative examples from our more than 30 clinical case studies using NeutroPhase(®) as an irrigation solution with chronic non-healing wounds with and without the technique of negative pressure wound therapy (NPWT). NeutroPhase(®) is pure 0.01% hypochlorous acid (i.e. >97% relative molar distribution of active chlorine species as HOCl) in a 0.9% saline solution at pH 4-5 and is stored in glass containers. NovaBay has three FDA cleared 510(k)s. Patients showed a profound improvement and marked accelerated rates of wound healing using NeutroPhase(®) with and without NPWT. NeutroPhase(®) was non-toxic to living tissues. PMID:23272294

  6. General concept of wound healing, revisited

    Theddeus O.H. Prasetyono

    2009-09-01

    Full Text Available Wound healing is a transition of processes which is also recognized as one of the most complex processes in human physiology. Complex series of reactions and interactions among cells and mediators take place in the healing process of wound involving cellular and molecular events. The inflammatory phase is naturally intended to remove devitalized tissue and prevent invasive infection. The proliferative phase is characterized by the formation of granulation tissue within the wound bed, composed of new capillary network, fibroblast, and macrophages in a loose arrangement of supporting structure. This second phase lasts from day 8 to 21 after the injury is also the phase for epithelialisation. The natural period of proliferative phase is a reflection for us in treating wound to reach the goal which ultimately defines as closed wound. The final maturation phase is also characterized by the balancing between deposition of collagen and its degradation. There are at least three prerequisites which are ideal local conditions for the nature of wound to go on a normal process of healing i.e. 1 all tissue involved in the wound and surrounding should be vital, 2 no foreign bodies in the wound, and 3 free from excessive contamination/infection. The author formulated a step ladder of thinking in regards of healing intentions covering all acute and chronic wounds. Regarding the “hierarchy” of healing intention, the fi rst and ideal choice to heal wounds is by primary intention followed by tertiary intention and lastly the secondary intention. (Med J Indones 2009;18:206-14Key words: inflammatory mediator, epithelialisation, growth factor, wound healing

  7. Mast Cells Regulate Wound Healing in Diabetes.

    Tellechea, Ana; Leal, Ermelindo C; Kafanas, Antonios; Auster, Michael E; Kuchibhotla, Sarada; Ostrovsky, Yana; Tecilazich, Francesco; Baltzis, Dimitrios; Zheng, Yongjun; Carvalho, Eugénia; Zabolotny, Janice M; Weng, Zuyi; Petra, Anastasia; Patel, Arti; Panagiotidou, Smaro; Pradhan-Nabzdyk, Leena; Theoharides, Theoharis C; Veves, Aristidis

    2016-07-01

    Diabetic foot ulceration is a severe complication of diabetes that lacks effective treatment. Mast cells (MCs) contribute to wound healing, but their role in diabetes skin complications is poorly understood. Here we show that the number of degranulated MCs is increased in unwounded forearm and foot skin of patients with diabetes and in unwounded dorsal skin of diabetic mice (P diabetic mice. Pretreatment with the MC degranulation inhibitor disodium cromoglycate rescues diabetes-associated wound-healing impairment in mice and shifts macrophages to the regenerative M2 phenotype (P diabetic mice deficient in MCs have delayed wound healing compared with their wild-type (WT) controls, implying that some MC mediator is needed for proper healing. MCs are a major source of vascular endothelial growth factor (VEGF) in mouse skin, but the level of VEGF is reduced in diabetic mouse skin, and its release from human MCs is reduced in hyperglycemic conditions. Topical treatment with the MC trigger substance P does not affect wound healing in MC-deficient mice, but improves it in WT mice. In conclusion, the presence of nondegranulated MCs in unwounded skin is required for proper wound healing, and therapies inhibiting MC degranulation could improve wound healing in diabetes. PMID:27207516

  8. Wound healing of intestinal epithelial cells

    Shiho Konno

    2011-01-01

    Full Text Available The intestinal epithelial cells (IECs form a selective permeability barrier separating luminal content from underlying tissues. Upon injury, the intestinal epithelium undergoes a wound healing process. Intestinal wound healing is dependent on the balance of three cellular events; restitution, proliferation, and differentiation of epithelial cells adjacent to the wounded area. Previous studies have shown that various regulatory peptides, including growth factors and cytokines, modulate intestinal epithelial wound healing. Recent studies have revealed that novel factors, which include toll-like receptors (TLRs, regulatory peptides, particular dietary factors, and some gastroprotective agents, also modulate intestinal epithelial wound repair. Among these factors, the activation of TLRs by commensal bacteria is suggested to play an essential role in the maintenance of gut homeostasis. Recent studies suggest that mutations and dysregulation of TLRs could be major contributing factors in the predisposition and perpetuation of inflammatory bowel disease. Additionally, studies have shown that specific signaling pathways are involved in IEC wound repair. In this review, we summarize the function of IECs, the process of intestinal epithelial wound healing, and the functions and mechanisms of the various factors that contribute to gut homeostasis and intestinal epithelial wound healing.

  9. Foxo1 Inhibits Diabetic Mucosal Wound Healing but Enhances Healing of Normoglycemic Wounds

    Xu, Fanxing; Othman, Badr; Lim, Jason; Batres, Angelika; Ponugoti, Bhaskar; Zhang, Chenying; Yi, Leah; Liu, Jian; Tian, Chen; Hameedaldeen, Alhassan; Alsadun, Sarah; Tarapore, Rohinton; Graves, Dana T.

    2014-01-01

    Re-epithelialization is an important part in mucosal wound healing. Surprisingly little is known about the impact of diabetes on the molecular events of mucosal healing. We examined the role of the transcription factor forkhead box O1 (Foxo1) in oral wounds of diabetic and normoglycemic mice with keratinocyte-specific Foxo1 deletion. Diabetic mucosal wounds had significantly delayed healing with reduced cell migration and proliferation. Foxo1 deletion rescued the negative impact of diabetes o...

  10. Cellular events and biomarkers of wound healing

    Shah Jumaat Mohd. Yussof

    2012-01-01

    Full Text Available Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth factors initiate fibroblast and keratinocyte proliferation. Inflammation is followed by the proliferation of fibroblasts, which lay down the extracellular matrix. Simultaneously, various white cells and other connective tissue cells release both the matrix metalloproteinases (MMPs and the tissue inhibitors of these metalloproteinases (TIMPs. MMPs remove damaged structural proteins such as collagen, while the fibroblasts lay down fresh extracellular matrix proteins. Fluid collected from acute, healing wounds contains growth factors, and stimulates fibroblast proliferation, but fluid collected from chronic, nonhealing wounds does not. Fibroblasts from chronic wounds do not respond to chronic wound fluid, probably because the fibroblasts of these wounds have lost the receptors that respond to cytokines and growth factors. Nonhealing wounds contain high levels of IL1, IL6, and MMPs, and an abnormally high MMP/TIMP ratio. Clinical examination of wounds inconsistently predicts which wounds will heal when procedures like secondary closure are planned. Surgeons therefore hope that these chemicals can be used as biomarkers of wounds which have impaired ability to heal. There is also evidence that the application of growth factors like PDGF will help the healing of chronic, nonhealing wounds.

  11. Mechanism of wound healing in annelids

    M Grdisa

    2010-09-01

    Full Text Available All animals possess some type of tissue repair mechanism. In some species, the capacity to repair tissues is limited to the healing of wounds, but others posses a striking repair capability to replace the entire organs. It has been reported that some mechanisms, namely extracellular matrix remodeling, appear to occur in most repair processes. However, it remains unclear to what extent the process of wound healing is similar to organ regeneration.

  12. Wound healing following radiation therapy: a review

    Radiation therapy may interrupt normal wound healing mechanisms. Changes in vasculature, effects on fibroblasts, and varying levels of regulatory growth factors result in the potential for altered wound healing whether radiation is given before or after surgery. Surgical factors, such as incision size, as well as radiation parameters, including dose and fractionation, are important considerations in developing overall treatment plans. Experience suggests that certain practical measures may diminish the risk of morbidity, and investigations are ongoing

  13. Therapeutic touch for healing acute wounds

    O'Mathuna, Donal; Ashford, Robert L

    2012-01-01

    Background Therapeutic Touch (TT) is an alternative therapy that has gained popularity over the past two decades for helping wounds to heal. Practitioners enter ameditative state and pass their hands above the patient’s body to find and correct any imbalances in the patient’s ’life energy’ or chi. Scientific instruments have been unable to detect this energy. The effect of TT on wound healing has been expounded in anecdotal publications. Objectives To identify and review all relevant...

  14. Innate defense regulator peptide 1018 in wound healing and wound infection.

    Lars Steinstraesser

    Full Text Available Innate defense regulators (IDRs are synthetic immunomodulatory versions of natural host defense peptides (HDP. IDRs mediate protection against bacterial challenge in the absence of direct antimicrobial activity, representing a novel approach to anti-infective and anti-inflammatory therapy. Previously, we reported that IDR-1018 selectively induced chemokine responses and suppressed pro-inflammatory responses. As there has been an increasing appreciation for the ability of HDPs to modulate complex immune processes, including wound healing, we characterized the wound healing activities of IDR-1018 in vitro. Further, we investigated the efficacy of IDR-1018 in diabetic and non-diabetic wound healing models. In all experiments, IDR-1018 was compared to the human HDP LL-37 and HDP-derived wound healing peptide HB-107. IDR-1018 was significantly less cytotoxic in vitro as compared to either LL-37 or HB-107. Furthermore, administration of IDR-1018 resulted in a dose-dependent increase in fibroblast cellular respiration. In vivo, IDR-1018 demonstrated significantly accelerated wound healing in S. aureus infected porcine and non-diabetic but not in diabetic murine wounds. However, no significant differences in bacterial colonization were observed. Our investigation demonstrates that in addition to previously reported immunomodulatory activities IDR-1018 promotes wound healing independent of direct antibacterial activity. Interestingly, these effects were not observed in diabetic wounds. It is anticipated that the wound healing activities of IDR-1018 can be attributed to modulation of host immune pathways that are suppressed in diabetic wounds and provide further evidence of the multiple immunomodulatory activities of IDR-1018.

  15. Accelerated Wound Healing Device Using Light Emitting Diodes (LEDs) Biostimulation to Support Long Term Human Exploration of Space Project

    National Aeronautics and Space Administration — Several cases of minor cuts in microgravity have been reported not being able to heal until return to Earth. While the exact cause for the slow healing in space...

  16. Non-healing wounds: the geriatric approach.

    Jaul, Efraim

    2009-01-01

    The most common types of non-healing wounds are four types: pressure ulcers, diabetic ulcers, ischemic ulcers and venous ulcers. Many of those wounds develop among the elderly, becoming non-healing to the extent that the patient may live with them all of his life, or even die because of them. Not enough attention is paid to the underlying contributing problems specific to the elderly patient. Those factors are physiologic (aging skin, immune state and atherosclerosis) and pathologic situation (diabetic disease, ischemia of leg). Therefore, the geriatric approach to a non-healing wound is comprehensive and multidisciplinary. Those including: patient's co-morbidities, functional state as measured by the activities of daily living (ADL) scale, nutritional status, social support, ethical beliefs and quality of life and not only the wound itself. Each discipline (the nursing staff, physician, dietitian, occupational, physical therapists and social worker) has its own task in preventing and treating such wounds. The ultimate goal therefore has been altered from healing of the wounds to symptom control, prevention of complications and to contribute to the patient's overall wellbeing. This review discusses all those items in a geriatric point of view, and how to deal with the non-healing wounds as a geriatric syndrome. PMID:18838182

  17. Curcumin as a wound healing agent.

    Akbik, Dania; Ghadiri, Maliheh; Chrzanowski, Wojciech; Rohanizadeh, Ramin

    2014-10-22

    Turmeric (Curcuma longa) is a popular Indian spice that has been used for centuries in herbal medicines for the treatment of a variety of ailments such as rheumatism, diabetic ulcers, anorexia, cough and sinusitis. Curcumin (diferuloylmethane) is the main curcuminoid present in turmeric and responsible for its yellow color. Curcumin has been shown to possess significant anti-inflammatory, anti-oxidant, anti-carcinogenic, anti-mutagenic, anti-coagulant and anti-infective effects. Curcumin has also been shown to have significant wound healing properties. It acts on various stages of the natural wound healing process to hasten healing. This review summarizes and discusses recently published papers on the effects of curcumin on skin wound healing. The highlighted studies in the review provide evidence of the ability of curcumin to reduce the body's natural response to cutaneous wounds such as inflammation and oxidation. The recent literature on the wound healing properties of curcumin also provides evidence for its ability to enhance granulation tissue formation, collagen deposition, tissue remodeling and wound contraction. It has become evident that optimizing the topical application of curcumin through altering its formulation is essential to ensure the maximum therapeutical effects of curcumin on skin wounds. PMID:25200875

  18. Ephrin-B2 is differentially expressed in the intestinal epithelium in Crohn's disease and contributes to accelerated epithelial wound healing in vitro

    Christian Hafner; Michael Landthaler; Thomas Vogt; Stefanie Meyer; Thomas Langmann; Gerd Schmitz; Frauke Bataille; Ilja Hagen; Bernd Becker; Alexander Roesch; Gerhard Rogler

    2005-01-01

    AIM: Eph receptor tyrosine kinases and their membrane bound receptor-like ligands, the ephrins, represent a bi-directional cell-cell contact signaling system that directs epithelial movements in development. The meaning of this system in the adult human gut is unknown. We investigated the Eph/ephrin mRNA expression in the intestinal epithelium of healthy controls and patients with inflammatory bowel disease (IBD).METHODS: mRNA expression profiles of all Eph/ephrin family members in normal small intestine and colon were established by real-time RT-PCR. In addition, differential expression in IBD was investigated by cDNA array technology, and validated by both real-time RT-PCR and immunohistochemistry. Potential effects of enhanced EphB/ephrin-B signaling were analyzed in an in vitro IEC-6 cell scratch wound model.RESULTS: Human adult intestinal mucosa exhibits a complex pattern of Eph receptors and ephrins. Beside the known prominent co-expression of EphA2 and ephrinA1,we found abundantly co-expressed EphB2 and ephrin-B1/2.Interestingly, cDNA array data, validated by real-time PCR and immunohistochemistry, showed upregulation of ephrin-B2 in both perilesional and lesional intestinal epithelial cells of IBD patients, suggesting a role in epithelial homeostasis. Stimulation of ephrin-B signaling in ephrinB1/2 expressing rat IEC-6-cells with recombinant EphB1Fc resulted in a significant dose-dependent acceleration of wound closure. Furthermore, fluorescence microscopy showed that EphB1-Fc induced coordinated migration of wound edge cells is associated with enhanced formation of lamellipodial protrusions into the wound, increased actin stress fiber assembly and production of laminin at the wound edge.CONCLUSION: EphB/ephrin-B signaling might represent a novel protective mechanism that promotes intestinal epithelial wound healing, with potential impact on epithelial restitution in IBD.

  19. Mechanoregulation of Wound Healing and Skin Homeostasis

    Joanna Rosińczuk

    2016-01-01

    Full Text Available Basic and clinical studies on mechanobiology of cells and tissues point to the importance of mechanical forces in the process of skin regeneration and wound healing. These studies result in the development of new therapies that use mechanical force which supports effective healing. A better understanding of mechanobiology will make it possible to develop biomaterials with appropriate physical and chemical properties used to treat poorly healing wounds. In addition, it will make it possible to design devices precisely controlling wound mechanics and to individualize a therapy depending on the type, size, and anatomical location of the wound in specific patients, which will increase the clinical efficiency of the therapy. Linking mechanobiology with the science of biomaterials and nanotechnology will enable in the near future precise interference in abnormal cell signaling responsible for the proliferation, differentiation, cell death, and restoration of the biological balance. The objective of this study is to point to the importance of mechanobiology in regeneration of skin damage and wound healing. The study describes the influence of rigidity of extracellular matrix and special restrictions on cell physiology. The study also defines how and what mechanical changes influence tissue regeneration and wound healing. The influence of mechanical signals in the process of proliferation, differentiation, and skin regeneration is tagged in the study.

  20. Trends in Surgical Wound Healing

    Gottrup, F.

    2008-01-01

    The understanding of acute and chronic wound pathophysiology has progressed considerably over the past decades. Unfortunately, improvement in clinical practice has not followed suit, although new trends and developments have improved the outcome of wound treatment in many ways. This review focuses...... on promising clinical development in major wound problems in general and on postoperative infections in particular Udgivelsesdato: 2008...

  1. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions.

    Yang, Dong Joo; Moh, Sang Hyun; Son, Dong Hwee; You, Seunghoon; Kinyua, Ann W; Ko, Chang Mann; Song, Miyoung; Yeo, Jinhee; Choi, Yun-Hee; Kim, Ki Woo

    2016-01-01

    Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound) on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK), c-Jun N-terminal kinases (JNK), and extracellular signal-regulated kinases (Erk), underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications. PMID:27399667

  2. Gender affects skin wound healing in plasminogen deficient mice.

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  3. Nutrient support of the healing wound.

    Meyer, N A; Muller, M J; Herndon, D N

    1994-05-01

    Wound healing is a series of complex physicochemical interactions that require various micronutrients at every step. In the critically ill or severely injured patient, wound healing is impaired by the protein-catabolic, hypermetabolic response to stress. The hypothalamus responds to cytokine stimulation by increasing the thermoregulatory set-point and by augmenting elaboration of stress hormones (catecholamines, cortisol, and glucagon). In turn, the stress hormones induce thermogenic futile substrate cycling, lipolysis, and proteolysis. Increased glucose production results at the expense of skeletal muscle degradation, producing amino acid substrate for hepatic gluconeogenesis. Nutritional support of the hypermetabolic state is an essential part of ensuring efficient wound healing in these patients. Protein catabolism cannot be reversed by increased amino acid availability alone, due partly to a defect in amino acid transport. This defect can be reversed by anabolic agents, such as growth hormone and insulin-like growth factor-1. Growth hormone treatment dramatically improves wound healing in severely burned children. Supplementation with protein and vitamins, specifically arginine and vitamins A, B, and C, provides optimum nutrient support of the healing wound. PMID:7922445

  4. Vasculogenic Cytokines in Wound Healing

    Wong, Victor W.; Crawford, Jeffrey D.

    2013-01-01

    Chronic wounds represent a growing healthcare burden that particularly afflicts aged, diabetic, vasculopathic, and obese patients. Studies have shown that nonhealing wounds are characterized by dysregulated cytokine networks that impair blood vessel formation. Two distinct forms of neovascularization have been described: vasculogenesis (driven by bone-marrow-derived circulating endothelial progenitor cells) and angiogenesis (local endothelial cell sprouting from existing vasculature). Researc...

  5. Augmentation of cutaneous wound healing by pharmacologic mobilization of endogenous bone marrow stem cells.

    Tolar, Jakub; McGrath, John A

    2014-09-01

    Novel therapeutic tools to accelerate wound healing would have a major impact on the overall burden of skin disease. Lin et al. demonstrate in mice that endogenous bone marrow stem cell mobilization, produced by a pharmacologic combination of AMD3100 and tacrolimus, leads to faster and better-quality wound healing, findings that have exciting potential for clinical translation. PMID:25120149

  6. “Sugar-coating wound repair: A review of FGF-10 and dermatan sulfate in wound healing and their potential application in burn wounds”

    Plichta, Jennifer K.; Katherine A Radek

    2012-01-01

    Thousands of patients suffer from burn injuries each year, yet few therapies have been developed to accelerate the wound healing process. Most fibroblast growth factors (FGFs) have been extensively evaluated, but only a few have been found to participate in wound healing. In particular, FGF-10 is robustly increased in the wound microenvironment following injury and has demonstrated some ability to promote wound healing in vitro and in vivo. Glycosaminoglycans (GAGs) are linear carbohydrates t...

  7. Corneal wound healing after laser vision correction.

    Spadea, Leopoldo; Giammaria, Daniele; Trabucco, Paolo

    2016-01-01

    Any trauma can trigger a cascade of responses in tissues, with the purpose of safeguarding the integrity of the organ affected by the trauma and of preventing possible damage to nearby organs. Subsequently, the body tries to restore the function of the organ affected. The introduction of the excimer laser for keratorefractive surgery has changed the treatment landscape for correcting refractive errors, such as myopia, hyperopia, and astigmatism. In recent years, with the increased understanding of the basic science of refractive errors, higher-order aberrations, biomechanics, and the biology of corneal wound healing, a reduction in the surgical complications of keratorefractive surgery has been achieved. The understanding of the cascade of events involved in the corneal wound healing process and the examination of how corneal wound healing influences corneal biomechanics and optics are crucial to improving the efficacy and safety of laser vision correction. PMID:26405102

  8. Hemostatic and Wound Healing Properties of Chromolaena odorata Leaf Extract.

    Pandith, Hataichanok; Zhang, Xiaobo; Liggett, Jason; Min, Kyung-Won; Gritsanapan, Wandee; Baek, Seung Joon

    2013-01-01

    Chromolaena odorata (L.) King and Robinson (Siam weed) extract has been used to stop bleeding and in wound healing in many tropical countries. However, its detailed mechanisms have not been elucidated. In this study, we examined the molecular mechanisms by which Siam weed extract (SWE) affected hemostatic and wound healing activities. SWE promoted Balb/c 3T3 fibroblast cell migration and proliferation. Subsequently, we found that heme oxygenase-1 (HO-1), the accelerating wound healing enzyme, was increased at the transcriptional and translational levels by SWE treatments. The HO-1 promoter analyzed with luciferase assay was also increased by treatment of SWE in a dose-dependent manner. This induction may be mediated by several kinase pathways including MEK, p38MAPK, AKT, and JNK. Quantitative real-time PCR using undifferentiated promonocytic cell lines revealed that thromboxane synthase (TXS), a potent vasoconstrictor and platelet aggregator, was increased and MMP-9, an anti platelet aggregator, was decreased in the presence of SWE. Our studies presented that SWE accelerated hemostatic and wound healing activities by altering the expression of genes, including HO-1, TXS, and MMP-9. PMID:23984087

  9. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis

    Ma, Zhanjun; SHOU, KANGQUAN; LI, ZONGHUAN; Jian, Chao; QI, BAIWEN; Yu, Aixi

    2016-01-01

    Negative pressure wound therapy (NPWT) has been observed to accelerate the wound healing process in humans through promoting angiogenesis. However, the potential biological effect and relevant molecular mechanisms, including microvessel destabilization, regression and endothelial cell proliferation in the early stage (1–3 days), and the neovascular stabilization and maturation in the later stage (7–15 days), have yet to be fully elucidated. The current study aimed to research the potential ef...

  10. Endogenous N-acyl taurines regulate skin wound healing.

    Sasso, Oscar; Pontis, Silvia; Armirotti, Andrea; Cardinali, Giorgia; Kovacs, Daniela; Migliore, Marco; Summa, Maria; Moreno-Sanz, Guillermo; Picardo, Mauro; Piomelli, Daniele

    2016-07-26

    The intracellular serine amidase, fatty acid amide hydrolase (FAAH), degrades a heterogeneous family of lipid-derived bioactive molecules that include amides of long-chain fatty acids with taurine [N-acyl-taurines (NATs)]. The physiological functions of the NATs are unknown. Here we show that genetic or pharmacological disruption of FAAH activity accelerates skin wound healing in mice and stimulates motogenesis of human keratinocytes and differentiation of human fibroblasts in primary cultures. Using untargeted and targeted lipidomics strategies, we identify two long-chain saturated NATs-N-tetracosanoyl-taurine [NAT(24:0)] and N-eicosanoyl-taurine [NAT(20:0)]-as primary substrates for FAAH in mouse skin, and show that the levels of these substances sharply decrease at the margins of a freshly inflicted wound to increase again as healing begins. Additionally, we demonstrate that local administration of synthetic NATs accelerates wound closure in mice and stimulates repair-associated responses in primary cultures of human keratinocytes and fibroblasts, through a mechanism that involves tyrosine phosphorylation of the epidermal growth factor receptor and an increase in intracellular calcium levels, under the permissive control of transient receptor potential vanilloid-1 receptors. The results point to FAAH-regulated NAT signaling as an unprecedented lipid-based mechanism of wound-healing control in mammalian skin, which might be targeted for chronic wound therapy. PMID:27412859

  11. DIABETIC WOUND HEALING MANAGEMENT- A PEER REVIEW

    Harshavardhan Pathapati; T.E. Gopala Krishna Murthy; B. Ramanaiah; Davu Srinivas

    2014-01-01

    Objectives: Diabetes is a metabolic disorder mainly impairs the body glucose utilization capacity due to this perforcely repressing the immuno-dysfunction (decreases chemotaxis, phagocytosis and intracellular killing actions) and collagen synthesis which are essential in wound debridement management of diabetic patients. Delayed wound healing is considered as one of the most repulsive disabling and costly complication of diabetes. People with diabetes have extenuated circulation, poor resista...

  12. Roles of Antioxidative Enzymes in Wound Healing

    Toshihiro Kurahashi; Junichi Fujii

    2015-01-01

    Since skin is the first barrier separating the body from the external environment, impaired wound healing can be life threatening to living organisms. Delayed healing processes are observed in animals under certain circumstances, such as advanced age, diabetes, and immunosuppression, but the underlying mechanisms of the abnormality remain elusive. Redox homeostasis is defined as the balance between the levels of reactive oxygen species (ROS) and antioxidants in which antioxidative enzymes pla...

  13. Cellular events and biomarkers of wound healing

    Shah Jumaat Mohd Yussof; Effat Omar; Pai, Dinker R.; Suneet Sood

    2012-01-01

    Researchers have identified several of the cellular events associated with wound healing. Platelets, neutrophils, macrophages, and fibroblasts primarily contribute to the process. They release cytokines including interleukins (ILs) and TNF-α, and growth factors, of which platelet-derived growth factor (PDGF) is perhaps the most important. The cytokines and growth factors manipulate the inflammatory phase of healing. Cytokines are chemotactic for white cells and fibroblasts, while the growth f...

  14. [Enhance the connotation of establishment of wound healing department].

    Lu, Shu-liang

    2012-02-01

    Following the development of social economy, the acceleration of aging problem, and the changes in disease spectrum, the incidence of various chronic wound diseases increased significantly, and it has become one of the most frequently encountered diseases that affect the people's health. The contradiction between the increase of medical need of wound diseases and the insufficiency of the medical service in our country is becoming increasingly conspicuous. Wound healing department, as a new cross subject that has emerged as the times require, needs to be perfected in its diagnostic and treatment strategies and methods. At present time, how to explore the new theory and pathologic mechanism of various chronic wounds, in order to establish the clinical guidelines in diagnosis and treatment that conform to national conditions of our country, and to establish efficient clinical pathway and medical-seeking model have become serious challenges to the establishment of wound healing department in our country. Thus, it is imperative for us to enhance the connotation of establishment of wound healing department. For this purpose, this article mainly elaborates on three aspects, including "enriching traditional diagnostic system with new theory and new technology", "improving treatment effect by ameliorating traditional methods and absorbing new technology from relating subspecialty", "establishing a new medical-seeking model by applying digital technology and vertically integrating medical resources". PMID:22490530

  15. Cutaneous wound healing: Current concepts and advances in wound care

    Kenneth C Klein

    2014-01-01

    Full Text Available A non-healing wound is defined as showing no measurable signs of healing for at least 30 consecutive treatments with standard wound care. [1] It is a snapshot of a patient′s total health as well as the ongoing battle between noxious factors and the restoration of optimal macro and micro circulation, oxygenation and nutrition. In practice, standard therapies for non-healing cutaneous wounds include application of appropriate dressings, periodic debridement and eliminating causative factors. [2] The vast majority of wounds would heal by such approach with variable degrees of residual morbidity, disability and even mortality. Globally, beyond the above therapies, newer tools of healing are selectively accessible to caregivers, for various logistical or financial reasons. Our review will focus on the use of hyperbaric oxygen therapy (HBOT, as used at our institution (CAMC, and some other modalities that are relatively accessible to patients. HBOT is a relatively safe and technologically simpler way to deliver care worldwide. However, the expense for including HBOT as standard of care for recognized indications per UHMS(Undersea and Hyperbaric Medical Society may vary widely from country to country and payment system. [3] In the USA, CMS (Centers for Medicare and Medicaid Services approved indications for HBOT vary from that of the UHMS for logistical reasons. [1] We shall also briefly look into other newer therapies per current clinical usage and general acceptance by the medical community. Admittedly, there would be other novel tools with variable success in wound healing worldwide, but it would be difficult to include all in this treatise.

  16. Alpha-Lipoic acid supplementation inhibits oxidative damage, accelerating chronic wound healing in patients undergoing hyperbaric oxygen therapy

    Alleva, R.; Nasole, E.; Di Donato, F.; Borghi, B.; Neužil, Jiří; Tomasetti, M.

    2005-01-01

    Roč. 333, č. 2 (2005), s. 404-410. ISSN 0006-291X Institutional research plan: CEZ:AV0Z50520514 Keywords : alpha-lipoic acid * chronic wound * ROS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.000, year: 2005

  17. Cold Temperature Delays Wound Healing in Postharvest Sugarbeet Roots.

    Fugate, Karen K; Ribeiro, Wellington S; Lulai, Edward C; Deckard, Edward L; Finger, Fernando L

    2016-01-01

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots stored at 6 and 12°C for 28 days. Surface abrasions are common injuries of stored roots, and the storage temperatures used are typical of freshly harvested or rapidly cooled roots. Transpiration rate from the wounded surface and root weight loss were used to quantify wound healing. At 12°C, transpiration rate from the wounded surface declined within 14 days and wounded roots lost weight at a rate similar to unwounded controls. At 6°C, transpiration rate from the wounded surface did not decline in the 28 days after injury, and wounded roots lost 44% more weight than controls after 28 days storage. Melanin formation, lignification, and suberization occurred more rapidly at 12°C than at 6°C, and a continuous layer of lignified and suberized cells developed at 12°C, but not at 6°C. Examination of enzyme activities involved in melanin, lignin, and suberin formation indicated that differences in melanin formation at 6 and 12°C were related to differences in polyphenol oxidase activity, although no relationships between suberin or lignin formation and phenylalanine ammonia lyase or peroxidase activity were evident. Wound-induced respiration was initially greater at 12°C than at 6°C. However, with continued storage, respiration rate of wounded roots declined more rapidly at 12°C, and over 28 days, the increase in respiration due to injury was 52% greater in roots stored at 6°C than in roots stored at 12°C. The data indicate that storage at 6°C severely slowed and impaired wound-healing of surface-abraded sugarbeet roots relative to roots stored at 12°C and suggest that postharvest losses may be accelerated if freshly harvested roots are cooled too quickly. PMID

  18. Wound healing and hyper-hydration - a counter intuitive model

    Ousey, Karen; Cutting, Keith

    2016-01-01

    Winters seminal work in the 1960s relating to providing an optimal level of moisture to aid wound healing (granulation and re-epithelialisation) has been the single most effective advance in wound care over many decades. As such the development of advanced wound dressings that manage the fluidic wound environment have provided significant benefits in terms of healing to both patient and clinician. Although moist wound healing provides the guiding management principle confusion may arise betwe...

  19. Wound healing property of paroxetine in immunosuppressed albino rats

    Dwajani S; Ranjana Gurumurthy

    2013-01-01

    Background: The objectives of this study were to evaluate the wound healing activity of Paroxetine in different wound models in wistar rats and to study its effects on dexamethasone suppressed wound healing. Methods: For assessment of wound healing activity, excision and incision wound models were used. Group I was assigned as control, orally, Group II received Paroxetine, i.p, Group III received Dexamethasone intramuscularly (i.m) and Group IV received Dexamethasone i.m and Paroxetine, i....

  20. Cold temperature delays wound healing in postharvest sugarbeet roots

    Storage temperature affects the rate and extent of wound-healing in a number of root and tuber crops. The effect of storage temperature on wound-healing in sugarbeet (Beta vulgaris L.) roots, however, is largely unknown. Wound-healing of sugarbeet roots was investigated using surface-abraded roots s...

  1. Mucopolysaccharides from psyllium involved in wound healing.

    Westerhof, W; Das, P K; Middelkoop, E; Verschoor, J; Storey, L; Regnier, C

    2001-01-01

    Mucopolysaccharides derived from the husk of psyllium (Plantago ovata) have properties beneficial for wound cleansing and wound healing. Recent studies indicate that these mucopolysaccharides also limit scar formation. Our in vitro and in vivo studies aimed to investigate the mechanisms involved, e.g., fluid absorption, bacterial adherence and in vitro stimulatory effects on macrophages, which are pivotal in wound healing. The mucopolysaccharides contained in a sachet (Askina Cavity) or in a hydrocolloid mixture (Askina Hydro) were found to have a gradual and sustained absorbency over a period of 7 days, amounting to 4-6 times their weight in water. The swelling index was 9 mm after 312 h. Adherence of wound bacteria to the mucopolysaccharides started after 2 h and was more pronounced after 3 h. Semiquantitative measurements of bacterial adherence used centrifugation and subsequent optical density determinations of supernatant. These confirmed the strong adherence potential of psyllium particles. Lactic acid dehydrogenase staining of pretreated cultured human skin explants did not reveal toxicity of the mucopolysaccharides derived from psyllium husk. Langerhans' cell migration from the epidermis was negligible and interleukin-1 beta expression in the explants was not significant, supporting the very low allergenic potential of psyllium. The characteristics of mucopolysaccharide granulate derived from psyllium husk in Askina Cavity and Askina Hydro related to fluid absorption, bacterial adherence, biocompatibility, stimulation of macrophages, irritancy response and allergenicity showed an optimal profile, supporting the good clinical performance of wound healing products containing psyllium husk. PMID:11951574

  2. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Vasile Nastuta, Andrei; Topala, Ionut; Grigoras, Constantin; Pohoata, Valentin; Popa, Gheorghe

    2011-03-01

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  3. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  4. Stimulation of wound healing by helium atmospheric pressure plasma treatment

    Nastuta, Andrei Vasile; Topala, Ionut; Pohoata, Valentin; Popa, Gheorghe [Faculty of Physics, Alexandru Ioan Cuza University, Bd. Carol No. 11, 700506, Iasi (Romania); Grigoras, Constantin, E-mail: andrei.nastuta@uaic.ro [Physiopathology Department, Grigore T. Popa University of Medicine and Pharmacy, 700115, Iasi (Romania)

    2011-03-16

    New experiments using atmospheric pressure plasma have found large application in treatment of living cells or tissues, wound healing, cancerous cell apoptosis, blood coagulation on wounds, bone tissue modification, sterilization and decontamination. In this study an atmospheric pressure plasma jet generated using a cylindrical dielectric-barrier discharge was applied for treatment of burned wounds on Wistar rats' skin. The low temperature plasma jet works in helium and is driven by high voltage pulses. Oxygen and nitrogen based impurities are identified in the jet by emission spectroscopy. This paper analyses the natural epithelization of the rats' skin wounds and two methods of assisted epithelization, a classical one using polyurethane wound dressing and a new one using daily atmospheric pressure plasma treatment of wounds. Systemic and local medical data, such as haematological, biochemical and histological parameters, were monitored during entire period of study. Increased oxidative stress was observed for plasma treated wound. This result can be related to the presence in the plasma volume of active species, such as O and OH radicals. Both methods, wound dressing and plasma-assisted epithelization, provided positive medical results related to the recovery process of burned wounds. The dynamics of the skin regeneration process was modified: the epidermis re-epitelization was accelerated, while the recovery of superficial dermis was slowed down.

  5. The Role of Neuromediators and Innervation in Cutaneous Wound Healing.

    Ashrafi, Mohammed; Baguneid, Mohamed; Bayat, Ardeshir

    2016-06-15

    The skin is densely innervated with an intricate network of cutaneous nerves, neuromediators and specific receptors which influence a variety of physiological and disease processes. There is emerging evidence that cutaneous innervation may play an important role in mediating wound healing. This review aims to comprehensively examine the evidence that signifies the role of innervation during the overlapping stages of cutaneous wound healing. Numerous neuropeptides that are secreted by the sensory and autonomic nerve fibres play an essential part during the distinct phases of wound healing. Delayed wound healing in diabetes and fetal cutaneous regeneration following wounding further highlights the pivotal role skin innervation and its associated neuromediators play in wound healing. Understanding the mechanisms via which cutaneous innervation modulates wound healing in both the adult and fetus will provide opportunities to develop therapeutic devices which could manipulate skin innervation to aid wound healing. PMID:26676806

  6. The effects of Ankaferd, a hemostatic agent, on wound healing

    Sevgi Özbaysar Sezgin

    2015-09-01

    Full Text Available Background and Design: There have been a lot of topical and systemic agents to provide an ideal scar formation and to decrease the periods of wound healing process by affecting the factors of healing (inflammatory cells, thrombocytes, extracellular matrix etc.. In this study, we investigated the effects of Ankaferd on wound healing. Materials and Methods: Wounds were created with 8 mm punch biopsy knots on the back of 32 rats which were separated into 4 groups of 9 rats. No treatment was done in group D which was the control group while group A received topical Ankaferd treatment twice a day; group B treated with silver sulfadiazine twice a day, and group C put on base cream, which did not include any active agent, twice a day. The rats were followed for 15 days macroscopically and examined histopathologically on days 0., 3., 7., and 15. by taking biopsy specimens. Result: At the end of our study, it was detected that Ankaferd accelerated the healing process in comparison to control and base cream groups according to the macroscopic and histopathologic results. Additionally, similar to this situation, it was observed that the healing process in silver sulfadiazine group was faster than in control and base cream groups. Conclusion: More experimental and clinical studies in larger populations are needed to prove and confirm its efficacy.

  7. Grand challenge in Biomaterials-wound healing.

    Salamone, Joseph C; Salamone, Ann Beal; Swindle-Reilly, Katelyn; Leung, Kelly Xiaoyu-Chen; McMahon, Rebecca E

    2016-06-01

    Providing improved health care for wound, burn and surgical patients is a major goal for enhancing patient well-being, in addition to reducing the high cost of current health care treatment. The introduction of new and novel biomaterials and biomedical devices is anticipated to have a profound effect on the future improvement of many deleterious health issues. This publication will discuss the development of novel non-stinging liquid adhesive bandages in healthcare applications developed by Rochal Industries. The scientists/engineers at Rochal have participated in commercializing products in the field of ophthalmology, including rigid gas permeable contact lenses, soft hydrogel contact lenses, silicone hydrogel contact lenses, contact lens care solutions and cleaners, intraocular lens materials, intraocular controlled drug delivery, topical/intraocular anesthesia, and in the field of wound care, as non-stinging, spray-on liquid bandages to protect skin from moisture and body fluids and medical adhesive-related skin injuries. Current areas of entrepreneurial activity at Rochal Industries pertain to the development of new classes of biomaterials for wound healing, primarily in regard to microbial infection, chronic wound care, burn injuries and surgical procedures, with emphasis on innovation in product creation, which include cell-compatible substrates/scaffolds for wound healing, antimicrobial materials for opportunistic pathogens and biofilm reduction, necrotic wound debridement, scar remediation, treatment of diabetic ulcers, amelioration of pressure ulcers, amelioration of neuropathic pain and adjuvants for skin tissue substitutes. PMID:27047680

  8. A comprehensive review of advanced biopolymeric wound healing systems.

    Mayet, Naeema; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Tyagi, Charu; Du Toit, Lisa C; Pillay, Viness

    2014-08-01

    Wound healing is a complex and dynamic process that involves the mediation of many initiators effective during the healing process such as cytokines, macrophages and fibroblasts. In addition, the defence mechanism of the body undergoes a step-by-step but continuous process known as the wound healing cascade to ensure optimal healing. Thus, when designing a wound healing system or dressing, it is pivotal that key factors such as optimal gaseous exchange, a moist wound environment, prevention of microbial activity and absorption of exudates are considered. A variety of wound dressings are available, however, not all meet the specific requirements of an ideal wound healing system to consider every aspect within the wound healing cascade. Recent research has focussed on the development of smart polymeric materials. Combining biopolymers that are crucial for wound healing may provide opportunities to synthesise matrices that are inductive to cells and that stimulate and trigger target cell responses crucial to the wound healing process. This review therefore outlines the processes involved in skin regeneration, optimal management and care required for wound treatment. It also assimilates, explores and discusses wound healing drug-delivery systems and nanotechnologies utilised for enhanced wound healing applications. PMID:24985412

  9. Water-filtered infrared A (wIRA) for the improvement of wound healing

    Hoffmann, Gerd

    2006-01-01

    Water-filtered infrared A (wIRA), a special form of heat radiation with a high tissue penetration and with a low thermal load to the skin surface, is able, through thermal and non-thermal effects, to essentially improve even energetically specific factors of the wound healing. This has been proven by measurements. wIRA can considerably alleviate the pain and accelerate the wound healing or improve a stagnating wound healing and diminish an elevated wound secretion and inflammation both in acu...

  10. Effects of bone marrow mesenchymal stem cells on healing of wound combined with local radiation injury

    Objective: To explore the effects of bone marrow mesenchymal stem cells (MSC) on healing of wounds combined with local skin irradiation injury. Methods: MSC were injected into the wound combined with local skin irradiation injury. Light and electron microscopy, fibroblast and capillary vessel counts, detection of hydroxyproline content in the wound and demonstration of MSC distribution by fluorescence examination were carried out. Results: MSC could accelerate the speed of wound healing. The number of fibroblasts and capillary vessels increased obviously during 5 to 20 days after wounding. Granular tissues were abundant in the wound, and the content of hydroxyproline increased in the MSC-treated groups. The fluorescence labelling showed that MSC could be found during 1 to 20 days after injection. Conclusion: MSC can remain alive in the wound for a long time and surely promote wound healing

  11. Wound healing Agents from Medicinal Plants:A Review

    ShivaniRawat; Ramandeep Singh; Preeti Thakur; SatinderKaur; AlokSemwal

    2012-01-01

    This paper presents a review of plants identified from various ethno botanical surveys and folklore medicinal survey with Wound healing activity. Wound is defined as the disruption of the cellular and anatomic continuity of a tissue. Wound may be produced by physical, chemical, thermal, microbial or immunological insult to the tissues. The process of wound healing consists of integrated cellular and biochemical events leading to re-establishment of structural and functional integrity with regain of strength in injured tissues.This review discuss about Wound healing potential of plants, its botanicalname, Common name, family, part used and references, which are helpful for researcher to development new Wound healing formulations for human use.

  12. Muscle wound healing in rainbow trout (Oncorhynchus mykiss)

    Schmidt, Jacob Günther; Andersen, Elisabeth Wreford; Ersbøll, Bjarne Kjær;

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In...... until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis...

  13. Quantifying cell behaviors during embryonic wound healing

    Mashburn, David; Ma, Xiaoyan; Crews, Sarah; Lynch, Holley; McCleery, W. Tyler; Hutson, M. Shane

    2011-03-01

    During embryogenesis, internal forces induce motions in cells leading to widespread motion in tissues. We previously developed laser hole-drilling as a consistent, repeatable way to probe such epithelial mechanics. The initial recoil (less than 30s) gives information about physical properties (elasticity, force) of cells surrounding the wound, but the long-term healing process (tens of minutes) shows how cells adjust their behavior in response to stimuli. To study this biofeedback in many cells through time, we developed tools to quantify statistics of individual cells. By combining watershed segmentation with a powerful and efficient user interaction system, we overcome problems that arise in any automatic segmentation from poor image quality. We analyzed cell area, perimeter, aspect ratio, and orientation relative to wound for a wide variety of laser cuts in dorsal closure. We quantified statistics for different regions as well, i.e. cells near to and distant from the wound. Regional differences give a distribution of wound-induced changes, whose spatial localization provides clues into the physical/chemical signals that modulate the wound healing response. Supported by the Human Frontier Science Program (RGP0021/2007 C).

  14. Wound Healing Potential of Formulated Extract from Hibiscus Sabdariffa Calyx

    P F Builders; Kabele-Toge, B.; M Builders; Chindo, B. A.; Patricia A Anwunobi; Yetunde C Isimi

    2013-01-01

    Wound healing agents support the natural healing process, reduce trauma and likelihood of secondary infections and hasten wound closure. The wound healing activities of water in oil cream of the methanol extract of Hibiscus sabdariffa L. (Malvaceae) was evaluated in rats with superficial skin excision wounds. Antibacterial activities against Pseudomonas aeroginosa, Staphylococcus aureus and Echerichia coli were determined. The total flavonoid content, antioxidant properties and thin layer chr...

  15. Biologic Therapeutics and Molecular Profiling to Optimize Wound Healing

    Menke, Marie N.; Menke, Nathan B.; Boardman, Cecelia H.; Diegelmann, Robert F

    2008-01-01

    Non-healing wounds represent a significant cause of morbidity and mortality for a large portion of the adult population. Wounds that fail to heal are entrapped in a self-sustaining cycle of chronic inflammation leading to the destruction of the extracellular matrix. Among cancer patients, malnutrition, radiation, physical dehabilitation, chemotherapy, and the malignancy itself increase the likelihood of chronic wound formation, and these co-morbidity factors inhibit the normal wound healing p...

  16. Effect of Dietary Conjugated Linoleic Acid Supplementation on Early Inflammatory Responses during Cutaneous Wound Healing

    Na-Young Park

    2010-01-01

    Full Text Available Inflammatory response is considered the most important period that regulates the entire healing process. Conjugated linoleic acid (CLA, a class of linoleic acid positional and geometric isomers, is well known for its antioxidant and anti-inflammatory properties. We hypothesized that dietary CLA supplementation accelerates cutaneous wound healing by regulating antioxidant and anti-inflammatory functions. To investigate wound closure rates and inflammatory responses, we used a full-thickness excisional wound model after 2-week treatments with control, 0.5%, or 1% CLA-supplemented diet. Mice fed dietary CLA supplementation had reduced levels of oxidative stress and inflammatory markers. Moreover, the wound closure rate was improved significantly in mice fed a 1% CLA-supplemented diet during early stage of wound healing (inflammatory stage. We conclude that dietary CLA supplementation enhances the early stage of cutaneous wound healing as a result of modulating oxidative stress and inflammatory responses.

  17. A REVIEW OF GENE AND STEM CELL THERAPY IN CUTANEOUS WOUND HEALING

    Branski, Ludwik K.; Gauglitz, Gerd G; Herndon, David N.; Jeschke, Marc G.

    2008-01-01

    Different therapies that modulate wound repair have been proposed over the last few decades. This article reviews the two emerging fields of gene and stem cell therapy in wound healing. Gene therapy, initially developed for treatment of congenital defects, is a new option for enhancing wound repair. In order to accelerate wound closure, genes encoding for growth factors or cytokines have showed the most potential. The majority of gene delivery systems are based on viral transfection, naked DN...

  18. Effect of Topical Rambutan Honey Pharmaceutical Grade on Oral Mucosa Wound Healing Based on Tissue Wound Closure and Fibroblasts Proliferation in vivo

    E.R. Yuslianti; B.M. Bachtiar; D.F. Suniarti; A.B. Sutjiatmo; Euis Reni Yuslianti; Boy M. Bachtiar; Dewi F. Suniarti; Afifah B. Sutjiatmo

    2015-01-01

    Rambutan honey often used for topical treatment sores in the oral, because it has a good taste and fragrant. The use of rambutan honey empirically efficacious in wound healing has been scientifically proven yet, as a product or stimulant that serves to accelerate oral mucosa wound healing is still very limited. This study aimed to analyze topical Rambutan Honey Pharmaceuticals Grades (RHPG) in influencing wound closure and stimulation of the fibroblasts proliferation in the oral mucosa wound ...

  19. Matrix metalloproteinases in impaired wound healing

    auf dem Keller, Ulrich

    2015-01-01

    Fabio Sabino, Ulrich auf dem Keller Institute of Molecular Health Sciences, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland Abstract: Cutaneous wound healing is a complex tissue response that requires a coordinated interplay of multiple cells in orchestrated biological processes to finally re-establish the skin's barrier function upon injury. Proteolytic enzymes and in particular matrix metalloproteinases (MMPs) contribute to all phas...

  20. Using Light to Treat Mucositis and Help Wounds Heal

    Ignatius, Robert W.; Martin, Todd S.; Kirk, Charles

    2008-01-01

    A continuing program of research and development is focusing on the use of controlled illumination by light-emitting diodes (LEDs) to treat mucositis and to accelerate healing of wounds. The basic idea is to illuminate the affected area of a patient with light of an intensity, duration, and wavelength (or combination of wavelengths) chosen to produce a therapeutic effect while generating only a minimal amount of heat. This method of treatment was originally intended for treating the mucositis that is a common complication of chemotherapy and radiation therapy for cancer. It is now also under consideration as a means to accelerate the healing of wounds and possibly also to treat exposure to chemical and radioactive warfare agents. Radiation therapy and many chemotherapeutic drugs often damage the mucosal linings of the mouth and gastrointestinal tract, leading to mouth ulcers (oral mucositis), nausea, and diarrhea. Hyperbaric-oxygen therapy is currently the standard of care for ischemic, hypoxic, infected, and otherwise slowlyhealing problem wounds, including those of oral mucositis. Hyperbaric-oxygen therapy increases such cellular activities as collagen production and angiogenesis, leading to an increased rate of healing. Biostimulation by use of laser light has also been found to be effective in treating mucositis. For hyperbaricoxygen treatment, a patient must remain inside a hyperbaric chamber for an extended time. Laser treatment is limited by laser-wavelength capabilities and by narrowness of laser beams, and usually entails the generation of significant amounts of heat.

  1. Wound healing properties of Hylocereus undatus on diabetic rats.

    Perez G, R M; Vargas S, R; Ortiz H, Y D

    2005-08-01

    Aqueous extracts of leaves, rind, fruit pulp and flowers of Hylocereus undatus were studied for their wound healing properties. Wound healing effects were studied on incision (skin breaking strength), excision (percent wound contraction) and the nature of wound granulation tissues, which were removed on day 7 and the collagen, hexosamine, total proteins and DNA contents were determined, in addition to the rates of wound contraction and the period of epithelialization. In streptozotocin diabetic rats, where healing is delayed, topical applications of H. undatus produced increases in hydroxyproline, tensile strength, total proteins, DNA collagen content and better epithelization thereby facilitating healing. H. undatus had no hypoglycemic activity. PMID:16177967

  2. Evaluation of wound healing activity of Tecomaria capensis leaves

    Saini NK; Singhal M; Srivastava B

    2012-01-01

    The aim of the present study was to evaluate the potential wound healing activity of Tecomaria capensis leaves extract (TCLE) using different models in rats.(a) Excision wound model,(b) Incision wound model and (c) Dead space wound model.TCLE (100,300,1 000 and 2 000 mg.kg-1) was given to rats to observe acute toxicity.No toxicity was found in animals till 14 days.TCLE 5% and 10% ointment were applied topically in excision wound model and incision wound model.TCLE 200 and 400 mg·kg-1 were given orally in dead space wound model.It improved healing in excision wound model,increased breaking strength of tissue in incision wound model,and increased granuloma breaking strength and hydroxyproline content in dead space wound model.These results showed that TCLE presents significant wound healing activity.

  3. Crosstalk between platelets and PBMC: New evidence in wound healing.

    Nami, Niccolò; Feci, Luca; Napoliello, Luca; Giordano, Antonio; Lorenzini, Sauro; Galeazzi, Mauro; Rubegni, Pietro; Fimiani, Michele

    2016-01-01

    Platelet-derived products have proven useful in accelerating healing processes and tissue regeneration. However, despite their widespread use in clinical practice, the cellular and molecular mechanisms involved have not yet been completely clarified. Recent studies show that interaction between platelet gel (PG) and peripheral blood mononuclear cells (PBMC) can result in activation of PBMC and production of several cytokines involved in wound healing and tissue repair. The aim of our study was to analyze whether crosstalk between platelets and PBMC can influence wound healing by modulating release of VEGF, bFGF and IL-10 by PBMC. Cultures of PBMC alone and co-cultures with autologous PG of 24 healthy volunteers were incubated under normoxia for 24 h. VEGF, bFGF and IL-10 concentration and expression were then analyzed in supernatants by ELISA and by real-time RT-PCR. We observed a down-regulation of VEGF and bFGF release and an up-regulation of IL-10 release in co-cultures of PBMC and PG. Platelets are not only important in the early stages of the healing process (clot formation, direct release of growth factors), but also can influence the whole process of tissue regeneration by modulating synthesis and release of VEGF, bFGF and IL-10 by PBMC. These effects could give platelets a new key role in the control of healing processes and provide insights into the clinical success of platelet-derived products in many medical fields. PMID:26030799

  4. Understanding the role of nutrition and wound healing.

    Stechmiller, Joyce K

    2010-02-01

    Optimal wound healing requires adequate nutrition. Nutrition deficiencies impede the normal processes that allow progression through stages of wound healing. Malnutrition has also been related to decreased wound tensile strength and increased infection rates. Malnourished patients can develop pressure ulcers, infections, and delayed wound healing that result in chronic nonhealing wounds. Chronic wounds are a significant cause of morbidity and mortality for many patients and therefore constitute a serious clinical concern. Because most patients with chronic skin ulcers suffer micronutrient status alterations and malnutrition to some degree, current nutrition therapies are aimed at correcting nutrition deficiencies responsible for delayed wound healing. This review provides current information on nutrition management for simple acute wounds and complex nonhealing wounds and offers some insights into innovative future treatments. PMID:20130158

  5. In vitro electrical-stimulated wound-healing chip for studying electric field-assisted wound-healing process

    Sun, Yung-Shin; Peng, Shih-Wei; Cheng, Ji-Yen

    2012-01-01

    The wound-healing assay is an easy and economical way to quantify cell migration under diverse stimuli. Traditional assays such as scratch assays and barrier assays are widely and commonly used, but neither of them can represent the complicated condition when a wound occurs. It has been suggested that wound-healing is related to electric fields, which were found to regulate wound re-epithelialization. As a wound occurs, the disruption of epithelial barrier short-circuits the trans-epithelial ...

  6. The Four-Herb Chinese Medicine Formula Tuo-Li-Xiao-Du-San Accelerates Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats through Reducing Inflammation and Increasing Angiogenesis

    Xiao-na Zhang; Ze-jun Ma; Ying Wang; Yu-zhu Li; Bei Sun; Xin Guo; Cong-qing Pan; Li-ming Chen

    2015-01-01

    Impaired wound healing in diabetic patients is a serious complication that often leads to amputation or even death with limited effective treatments. Tuo-Li-Xiao-Du-San (TLXDS), a traditional Chinese medicine formula for refractory wounds, has been prescribed for nearly 400 years in China and shows good efficacy in promoting healing. In this study, we explored the effect of TLXDS on healing of diabetic wounds and investigated underlying mechanisms. Four weeks after intravenous injection of st...

  7. Autologous keratinocyte suspension in platelet concentrate accelerates and enhances wound healing – a prospective randomized clinical trial on skin graft donor sites: platelet concentrate and keratinocytes on donor sites

    Guerid S.; Darwiche S.E.; Berger M.M.; Applegate L.A.; Benathan M.; Raffoul W.

    2013-01-01

    BACKGROUND: Wound healing involves complex mechanisms, which, if properly chaperoned, can enhance patient recovery. The abilities of platelets and keratinocytes may be harnessed in order to stimulate wound healing through the formation of platelet clots, the release of several growth factors and cytokines, and cell proliferation. The aim of the study was to test whether autologous keratinocyte suspensions in platelet concentrate would improve wound healing. The study was conducted at the Laus...

  8. A Bilayer Engineered Skin Substitute for Wound Repair in an Irradiation-Impeded Healing Model on Rat

    Mohd Hilmi, A.B.; Hassan, Asma; Halim, Ahmad Sukari

    2015-01-01

    Objective: An engineered skin substitute is produced to accelerate wound healing by increasing the mechanical strength of the skin wound via high production of collagen bundles. During the remodeling stage of wound healing, collagen deposition is the most important event. The collagen deposition process may be altered by nutritional deficiency, diabetes mellitus, microbial infection, or radiation exposure, leading to impaired healing. This study describes the fabrication of an engineered bila...

  9. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    Zhigang Mao; Wu, Jeffrey H.; Tingting Dong; Wu, Mei X.

    2016-01-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster th...

  10. Effects of genistein on early-stage cutaneous wound healing

    Highlights: → We examine the effect of genistein on cutaneous wound healing. → Genistein enhanced wound closure during the early stage of wound healing. → These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-κB and TNF-α expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results suggest that genistein

  11. Effects of genistein on early-stage cutaneous wound healing

    Park, Eunkyo [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Seung Min [Research Institute of Health Sciences, Korea University, Seoul 136-701 (Korea, Republic of); Jung, In-Kyung [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lim, Yunsook [Department of Foods and Nutrition, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Jung-Hyun, E-mail: jjhkim@cau.ac.kr [Department of Home Economics Education, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2011-07-08

    Highlights: {yields} We examine the effect of genistein on cutaneous wound healing. {yields} Genistein enhanced wound closure during the early stage of wound healing. {yields} These genistein effects on wound closure were induced by reduction of oxidative stress through increasing antioxidant capacity and modulation of pro-inflammatory cytokine expression. -- Abstract: Wound healing occurs in three sequential phases: hemostasis and inflammation, proliferation, and remodeling. Inflammation, the earliest phase, is considered a critical period for wound healing because immune cells remove damaged tissues, foreign debris, and remaining dead tissue. Wound healing would be delayed without inflammation, and this phase is affected by antioxidation capacity. Therefore, we hypothesized that genistein, which has an antioxidant effect, might modulate the wound healing process by altering the inflammatory response. After three days of acclimation, mice were divided into three groups: control, 0.025% genistein, and 0.1% genistein. After two weeks of an experimental diet, skin wounds were induced. Wounded skin areas were imaged, and the healing rate calculated. To measure lipid peroxidation, antioxidant enzyme expression and activity, and pro-inflammatory cytokine expression, skin and liver tissues were harvested at 12, 24, 48, and 72 h. Genistein did not affect body weight. The rate of wound closure in mice fed genistein was significantly faster than in the control group during the early stage of wound healing, especially in first three days. Cu, Zn-SOD and Mn-SOD expression in wound skin tissue in the 0.1% genistein group was lower than in the control group. However, CAT expression did not differ among groups. We also found that genistein modulated NF-{kappa}B and TNF-{alpha} expression during the early stage of wound healing. The genistein group had significantly lower hepatic lipid peroxidation and higher SOD, CAT, and GPx activities than the control group. These results

  12. Complements and the Wound Healing Cascade: An Updated Review

    Hani Sinno

    2013-01-01

    Full Text Available Wound healing is a complex pathway of regulated reactions and cellular infiltrates. The mechanisms at play have been thoroughly studied but there is much still to learn. The health care system in the USA alone spends on average 9 billion dollars annually on treating of wounds. To help reduce patient morbidity and mortality related to abnormal or prolonged skin healing, an updated review and understanding of wound healing is essential. Recent works have helped shape the multistep process in wound healing and introduced various growth factors that can augment this process. The complement cascade has been shown to have a role in inflammation and has only recently been shown to augment wound healing. In this review, we have outlined the biology of wound healing and discussed the use of growth factors and the role of complements in this intricate pathway.

  13. Inflammation and Neuropeptides: The Connection in Diabetic Wound Healing

    Pradhan, Leena; Nabzdyk, Christoph; Andersen, Nicholas D.; LoGerfo, Frank W; Veves, Aristidis

    2009-01-01

    This article provides a broad overview of the interaction between neuropeptides and inflammatory mediators as it pertains to diabetic wound healing. Abnormal wound healing is a major complication of both type I and type II diabetes and is the most frequent cause of non-traumatic lower limb amputation. Wound healing requires the orchestrated integration of complex biological and molecular events. Inflammation, proliferation and migration of cells followed by angiogenesis and re-epithelization ...

  14. Tumors: Wounds that do not heal--Redux

    Dvorak, Harold F.

    2015-01-01

    Similarities between tumors and the inflammatory response associated with wound healing have been recognized for more than 150 years and continue to intrigue. Some years ago, based on our then recent discovery of vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF), I suggested that tumors behaved as wounds that do not heal. More particularly, I proposed that tumors co-opted the wound healing response in order to induce the stroma they required for maintenance and grow...

  15. Stem cells in skin wound healing: are we there yet?

    Cerqueira, M. T.; Pirraco, Rogério P.; Marques, A. P.

    2015-01-01

    Significance: Cutaneous wound healing is a serious problem worldwide that affects patients with various wound types, resulting from burns, traumatic injuries, and diabetes. Despite the wide range of clinically available skin substitutes and the different therapeutic alternatives, delayed healing and scarring are often observed. Recent Advances: Stem cells have arisen as powerful tools to improve skin wound healing, due to features such as effective secretome, self-renewal, low immunogenicity,...

  16. Substance P combined with epidermal stem cells promotes wound healing and nerve regeneration in diabetes mellitus

    Fei-bin Zhu; Xiang-jing Fang; De-wu Liu; Ying Shao; Hong-yan Zhang; Yan Peng; Qing-ling Zhong; Yong-tie Li; De-ming Liu

    2016-01-01

    Exogenous substance P accelerates wound healing in diabetes, but the mechanism remains poorly understood. Here, we established a rat model by intraperitoneally injecting streptozotocin. Four wounds (1.8 cm diameter) were drilled using a self-made punch onto the back, bilateral to the vertebral column, and then treated using amniotic membrane with epidermal stem cells and/or substance P around and in the middle of the wounds. With the combined treatment the wound-healing rate was 100% at 14 da...

  17. Regenerative Medicine: Charting a New Course in Wound Healing

    Geoffrey C Gurtner; Chapman, Mary Ann

    2016-01-01

    Significance: Chronic wounds are a prevalent and costly problem in the United States. Improved treatments are needed to heal these wounds and prevent serious complications such as infection and amputation.

  18. Case 5: non-healing traumatic wound colonised with MRSA.

    Simon, Deborah

    2016-03-01

    A traumatic wound colonised with MRSA failed to respond to topical antimicrobial dressings. Following the combined use of octenilin Wound Gel and octenilin Wound Irrigation Solution, the MRSA was removed in 4 weeks, the necrotic tissue was debrided and the wound started healing. PMID:26949849

  19. SKIN-SET, WOUND-HEALING AND RELATED DEFECTS

    The physiology and biochemistry of resistance and susceptibility to tuber skinning/excoriation wounds, wound-healing and wound-related defects are of global importance because of the magnitude of the resulting food and financial losses. Wound related losses are difficult to determine because of the...

  20. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

    Kazuo Azuma; Ryotaro Izumi; Tomohiro Osaki; Shinsuke Ifuku; Minoru Morimoto; Hiroyuki Saimoto; Saburo Minami; Yoshiharu Okamoto

    2015-01-01

    Chitin (β-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review,...

  1. Effect of Dietary Conjugated Linoleic Acid Supplementation on Early Inflammatory Responses during Cutaneous Wound Healing

    Yunsook Lim; Na-Young Park; Giuseppe Valacchi

    2010-01-01

    Inflammatory response is considered the most important period that regulates the entire healing process. Conjugated linoleic acid (CLA), a class of linoleic acid positional and geometric isomers, is well known for its antioxidant and anti-inflammatory properties. We hypothesized that dietary CLA supplementation accelerates cutaneous wound healing by regulating antioxidant and anti-inflammatory functions. To investigate wound closure rates and inflammatory responses, we used a full-thickness e...

  2. Platelet-Rich Plasma Combined With Skin Substitute for Chronic Wound Healing: A Case Report

    Knox, Rebecca L.; Hunt, Allen R.; Collins, John C.; DeSmet, Marie; Barnes, Sara

    2006-01-01

    Contemporary management of chronic wounds focuses on improving natural healing and individualization of treatment. Incorporating multiple therapies has become increasingly common. Of interest are autologous growth factors, which are especially important in chronic wound healing and may contribute to tissue formation and epithelialization. Autologous platelet concentrate or platelet-rich plasma (PRP) is a concentration of at least five autologous growth factors and has been shown to accelerate...

  3. Wound Healing Activity of Elaeis guineensis Leaf Extract Ointment

    Sreenivasan Sasidharan; Lachimanan Yoga Latha; Selvarasoo Logeswaran

    2011-01-01

    Elaeis guineensis of the Arecaceae family is widely used in the traditional medicine of societies in West Africa for treating various ailments. To validate the ethnotherapeutic claims of the plant in skin diseases, wound healing activity was studied. The results showed that E. guineensis leaf extract had potent wound healing capacity as evident from the better wound closure (P < 0.05), improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to...

  4. Stem Cell-Based Therapeutics to Improve Wound Healing

    Hu, Michael S.; Tripp Leavitt; Samir Malhotra; Dominik Duscher; Pollhammer, Michael S.; Walmsley, Graham G.; Zeshaan N. Maan; Alexander T. M. Cheung; Manfred Schmidt; Georg M. Huemer; Longaker, Michael T.; Peter Lorenz, H.

    2015-01-01

    Issues surrounding wound healing have garnered deep scientific interest as well as booming financial markets invested in novel wound therapies. Much progress has been made in the field, but it is unsurprising to find that recent successes reveal new challenges to be addressed. With regard to wound healing, large tissue deficits, recalcitrant wounds, and pathological scar formation remain but a few of our most pressing challenges. Stem cell-based therapies have been heralded as a promising mea...

  5. Wound Healing in Patients With Impaired Kidney Function

    Maroz, Natallia; Simman, Richard

    2014-01-01

    Renal impairment has long been known to affect wound healing. However, information on differences in the spectrum of wound healing depending on the type of renal insufficiency is limited. Acute kidney injury (AKI) may be observed with different wound types. On one hand, it follows acute traumatic conditions such as crush injury, burns, and post-surgical wounds, and on the other hand, it arises as simultaneous targeting of skin and kidneys by autoimmune-mediated vasculitis. Chronic kidney dise...

  6. Investigating the role of acellular skin substitutes in wound healing

    Greaves, Nicholas Stuart

    2015-01-01

    After cutaneous injury, wound healing is an essential process that restores barrier and homeostatic function to the skin. Tissue restoration is classically grouped into four phases, involving the dynamic, regulated and sequential interaction of multiple cells types, effector molecules and extracellular matrix components. While most wounds heal in a timely fashion, local and systemic factors can prevent wound resolution resulting in chronic wound formation. Examples include diabetic and venous...

  7. Healing effect of bioactive glass ointment on full-thickness skin wounds

    This study aimed to investigate the effect of bioactive glasses on cutaneous wound healing in both normal rats and streptozotocin-induced diabetic rats. Bioactive glass ointments, prepared by mixing the sol–gel bioactive glass 58S (SGBG-58S), nanobioactive glass (NBG-58S) and the melt-derived 45S5 bioactive glass (45S5) powder with Vaseline (V) at 18% weight percentage, were used to heal full thickness excision wounds. Pure V was used as control in this study. Compared to SGBG-58S, NBG-58S consists of relatively dispersible nanoparticles with smaller size. The analysis of wound healing rate and wound healing time showed that bioactive glasses promoted wound healing. The ointments containing SGBG-58S and NBG-58S healed the wounds more quickly and efficiently than the ointment containing 45S5. Histological examination indicated that bioactive glasses promoted the proliferation of fibroblasts and growth of granulation tissue. Immunohistochemical staining showed that the production of two growth factors, VEGF and FGF2, which are beneficial to wound healing, was also stimulated during the healing process. Transmission electron microscope observations showed that fibroblasts in wounds treated with bioactive glasses contained more rough endoplasmic reticula and had formed new capillary microvessels by the seventh day. The effects of SGBG-58S and NBG-58S were better than those of 45S5. All results suggest that bioactive glasses, especially SGBG-58S and NBG-58S, can accelerate the recovery of skin wounds in both normal and diabetes-impaired healing models and have a great potential for use in wound repair in the future. (paper)

  8. Platelet gel for healing cutaneous chronic wounds.

    Crovetti, Giovanni; Martinelli, Giovanna; Issi, Marwan; Barone, Marilde; Guizzardi, Marco; Campanati, Barbara; Moroni, Marco; Carabelli, Angelo

    2004-04-01

    Wound healing is a specific host immune response for restoration of tissue integrity. Experimental studies demonstrated an alteration of growth factors activity due to their reduced synthesis, increased degradation and inactivation. In wound healing platelets play an essential role since they are rich of alpha-granules growth factors (platelet derived growth factor--PDGF; transforming growth factor-beta--TGF-beta; vascular endothelial growth factor--VEGF). Topical use of platelet gel (PG), hemocomponent obtained from mix of activated platelets and cryoprecipitate, gives the exogenous and in situ adding of growth factors (GF). The hemocomponents are of autologous or homologous origin. We performed a technique based on: multicomponent apheretic procedure to obtain plasma rich platelet and cryoprecipitate; manual processing in an open system, in sterile environment, for gel activation. Every step of the gel synthesis was checked by a quality control programme. The therapeutic protocol consists of the once-weekly application of PG. Progressive reduction of the wound size, granulation tissue forming, wound bed detersion, regression and absence of infective processes were considered for evaluating clinical response to hemotherapy. 24 patients were enrolled. They had single or multiple cutaneous ulcers with different ethiopathogenesis. Only 3 patients could perform autologous withdrawal; in the others homologous hemocomponent were used, always considering suitability and traceability criteria for transfusional use of blood. Complete response was observed in 9 patients, 2 were subjected to cutaneous graft, 4 stopped treatment, 9 had partial response and are still receiving the treatment. In each case granulation tissue forming increased following to the first PG applications, while complete re-epithelization was obtained later. Pain was reduced in every treated patient. Topical haemotherapy with PG may be considered as an adjuvant treatment of a multidisciplinary process

  9. Wound Healing Potential of Elaeis guineensis Jacq Leaves in an Infected Albino Rat Model

    Sreenivasan Sasidharan

    2010-04-01

    Full Text Available Ethnopharmacological relevance:Elaeis guineensisJacq (Arecaceae is one of the plants that are central to the lives of traditional societies in West Africa. It has been reported as a traditional folkloric medicine for a variety of ailments. The plant leaves are also used in some parts of Africa for wound healing, but there are no scientific reports on any wound healing activity of the plant. Aim of the study:To investigate the effects of E. guineensis leaf on wound healing activity in rats. Methods: A phytochemical screening was done to determine the major phytochemicals in the extract. The antimicrobial activity of the extract was examined using the disk diffusion technique and broth dilution method. The wound healing activity of leaves of E. guineensiswas studied by incorporating the methanolic extract in yellow soft paraffin in concentration of 10% (w/w. Wound healing activity was studied by determining the percentage of wound closure, microbial examination of granulated skin tissue and histological analysis in the control and extract treated groups. Results: Phytochemical screening reveals the presence of tannins, alkaloids, steroids, saponins, terpenoids, and flavonoids in the extract. The extract showed significant activity against Candida albicans with an MIC value of 6.25 mg/mL. The results show that the E. guineensis extract has potent wound healing capacity, as evident from better wound closure, improved tissue regeneration at the wound site, and supporting histopathological parameters pertaining to wound healing. Assessment of granulation tissue every fourth day showed a significant reduction in microbial count. Conclusions: E. guineensis accelerated wound healing in rats, thus supporting this traditional use.

  10. Conditioned Media From Adipose-Derived Stromal Cells Accelerates Healing in 3-Dimensional Skin Cultures.

    Collawn, Sherry S; Mobley, James A; Banerjee, N Sanjib; Chow, Louise T

    2016-04-01

    Wound healing involves a number of factors that results in the production of a "closed" wound. Studies have shown, in animal models, acceleration of wound healing with the addition of adipose-derived stromal cells (ADSC). The cause for the positive effect which these cells have on wound healing has not been elucidated. We have previously shown that addition of ADSC to the dermal equivalent in 3-dimensional skin cultures accelerates reepithelialization. We now demonstrate that conditioned media (CM) from cultured ADSC produced a similar rate of healing. This result suggests that a feedback from the 3-dimensional epithelial cultures to ADSC was not necessary to effect the accelerated reepithelialization. Mass spectrometry of CM from ADSC and primary human fibroblasts revealed differences in secretomes, some of which might have roles in the accelerating wound healing. Thus, the use of CM has provided some preliminary information on a possible mode of action. PMID:26954733

  11. Wound healing properties and kill kinetics of Clerodendron splendens G. Don, a Ghanaian wound healing plant

    Stephen Y Gbedema

    2010-01-01

    Full Text Available As part of our general objective of investigating indigenous plants used in wound healing in Ghana, we hereby report our findings from some in vitro and in vivo studies related to wound healing activities of Clerodendron splendens G. Don (Verbanaceae. Methanolic extract of the aerial parts of the plant was tested for antimicrobial activity against Gram positive bacteria (Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, Micrococcus flavus, as well as resistant strains of Staph. aureus SA1199B, RN4220 and XU212, Gram negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Proteous mirabilis, Klebsiella pneumoniae and Candida albicans using the micro-well dilution method. Survivor-time studies of the microorganisms, radical scavenging activity using 2,2′-diphenylpicrylhydrazyl (DPPH and various in vivo wound healing activity studies were also conducted on the extract. The extract exhibited biostatic action against all the test microorganisms with a Minimum Inhibition Concentration (MIC ranging between 64 and 512 μg/ml and a free radical scavenging property with an IC 50 value of 103.2 μg/ml. The results of the in vivo wound healing tests showed that upon application of C. splendens ointment, there was a reduction in the epithelization period from 26.7 days (control to 13.6 days along with a marked decrease in the scar area from 54.2 mm 2 (control to 25.2 mm 2 . Significant increase in the tensile strength and hydroxyproline content were also observed as compared to the control and was comparable to nitrofurazone. The above results appear to justify the traditional use of C. splendens in wound healing and treatment of skin infections in Ghana.

  12. Traditional Therapies for Skin Wound Healing

    Pereira, Rúben F.; Bártolo, Paulo J.

    2016-01-01

    Significance: The regeneration of healthy and functional skin remains a huge challenge due to its multilayer structure and the presence of different cell types within the extracellular matrix in an organized way. Despite recent advances in wound care products, traditional therapies based on natural origin compounds, such as plant extracts, honey, and larvae, are interesting alternatives. These therapies offer new possibilities for the treatment of skin diseases, enhancing the access to the healthcare, and allowing overcoming some limitations associated to the modern products and therapies, such as the high costs, the long manufacturing times, and the increase in the bacterial resistance. This article gives a general overview about the recent advances in traditional therapies for skin wound healing, focusing on the therapeutic activity, action mechanisms, and clinical trials of the most commonly used natural compounds. New insights in the combination of traditional products with modern treatments and future challenges in the field are also highlighted. Recent Advances: Natural compounds have been used in skin wound care for many years due to their therapeutic activities, including anti-inflammatory, antimicrobial, and cell-stimulating properties. The clinical efficacy of these compounds has been investigated through in vitro and in vivo trials using both animal models and humans. Besides the important progress regarding the development of novel extraction methods, purification procedures, quality control assessment, and treatment protocols, the exact mechanisms of action, side effects, and safety of these compounds need further research. Critical Issues: The repair of skin lesions is one of the most complex biological processes in humans, occurring throughout an orchestrated cascade of overlapping biochemical and cellular events. To stimulate the regeneration process and prevent the wound to fail the healing, traditional therapies and natural products have been used

  13. A small peptide with potential ability to promote wound healing.

    Jing Tang

    Full Text Available Wound-healing represents a major health burden, such as diabetes-induced skin ulcers and burning. Many works are being tried to find ideal clinical wound-healing biomaterials. Especially, small molecules with low cost and function to promote production of endogenous wound healing agents (i.e. transforming growth factor beta, TGF-β are excellent candidates. In this study, a small peptide (tiger17, c[WCKPKPKPRCH-NH2] containing only 11 amino acid residues was designed and proved to be a potent wound healer. It showed strong wound healing-promoting activity in a murine model of full thickness dermal wound. Tiger17 exerted significant effects on three stages of wound healing progresses including (1 the induction of macrophages recruitment to wound site at inflammatory reaction stage; (2 the promotion of the migration and proliferation both keratinocytes and fibroblasts, leading to reepithelialization and granulation tissue formation; and (3 tissue remodeling phase, by promoting the release of transforming TGF-β1 and interleukin 6 (IL-6 in murine macrophages and activating mitogen-activated protein kinases (MAPK signaling pathways. Considering its easy production, store and transfer and function to promote production of endogenous wound healing agents (TGF-β, tiger17 might be an exciting biomaterial or template for the development of novel wound-healing agents.

  14. Antimycotic ciclopirox olamine in the diabetic environment promotes angiogenesis and enhances wound healing.

    Sae Hee Ko

    Full Text Available Diabetic wounds remain a major medical challenge with often disappointing outcomes despite the best available care. An impaired response to tissue hypoxia and insufficient angiogenesis are major factors responsible for poor healing in diabetic wounds. Here we show that the antimycotic drug ciclopirox olamine (CPX can induce therapeutic angiogenesis in diabetic wounds. Treatment with CPX in vitro led to upregulation of multiple angiogenic genes and increased availability of HIF-1α. Using an excisional wound splinting model in diabetic mice, we showed that serial topical treatment with CPX enhanced wound healing compared to vehicle control treatment, with significantly accelerated wound closure, increased angiogenesis, and increased dermal cellularity. These findings offer a promising new topical pharmacologic therapy for the treatment of diabetic wounds.

  15. Advanced Therapeutic Dressings for Effective Wound Healing--A Review.

    Boateng, Joshua; Catanzano, Ovidio

    2015-11-01

    Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing because of the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer-reviewed literature and other publicly available sources such as the US FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, and surgical and traumatic wounds (e.g., accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue-engineered substitutes, biomaterials-based biological dressings, biological and naturally derived dressings, medicated sutures, and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging physical approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care. PMID:26308473

  16. Influence of Helium-Neon Laser Photostimulation on Excision Wound Healing in Wistar Rats

    B. S. Nayak

    2007-01-01

    Full Text Available The importance of laser photostimulation is now accepted generally but the laser light facilitates wound healing and tissue repair remains poorly understood. So we have examined the hypothesis that the laser photo stimulation can enhances the collagen production in excision wounds using excision wound model in Wister rat model. The circular wounds were created on the dorsum of the back of the animals. The animals were divided into two groups. The experimental group (n = 12 wound was treated with 632.8 nm He-Ne laser at a dose of 2.1J cm-2 for five days a week until the complete healing. The control group was sham irradiated. The parameters studied were wound area, period of epithelization and hydroxyproline. Significant increase in the hydroxyproline content (p<0.001 and reduction in the wound size (p<0.001 was observed in study group when compared to controls. The significant epithelization (p<0.001 was noticed. The experimental wounds were, on average, fully healed by the 15th day, whereas the control group healed, on average by 22nd day. Wound contraction together with the hydroxyproline and experimental observations suggested that low intensity Helium-Neon laser photo stimulation facilitates the tissue repair process by accelerating collagen production in chronic wounds.

  17. Stem Cells in Skin Wound Healing: Are We There Yet?

    Cerqueira, Mariana Teixeira; Pirraco, Rogério Pedro; Marques, Alexandra Pinto

    2016-01-01

    Significance: Cutaneous wound healing is a serious problem worldwide that affects patients with various wound types, resulting from burns, traumatic injuries, and diabetes. Despite the wide range of clinically available skin substitutes and the different therapeutic alternatives, delayed healing and scarring are often observed.

  18. Diabetes medications: Impact on inflammation and wound healing.

    Salazar, Jay J; Ennis, William J; Koh, Timothy J

    2016-01-01

    Chronic wounds are a common complication in patients with diabetes that often lead to amputation. These non-healing wounds are described as being stuck in a persistent inflammatory state characterized by accumulation of pro-inflammatory macrophages, cytokines and proteases. Some medications approved for management of type 2 diabetes have demonstrated anti-inflammatory properties independent of their marketed insulinotropic effects and thus have underappreciated potential to promote wound healing. In this review, the potential for insulin, metformin, specific sulfonylureas, thiazolidinediones, and dipeptidyl peptidase-4 inhibitors to promote healing is evaluated by reviewing human and animal studies on inflammation and wound healing. The available evidence indicates that diabetic medications have potential to prevent wounds from becoming arrested in the inflammatory stage of healing and to promote wound healing by downregulating pro-inflammatory cytokines, upregulating growth factors, lowering matrix metalloproteinases, stimulating angiogenesis, and increasing epithelization. However, no clinical recommendations currently exist on the potential for specific diabetic medications to impact healing of chronic wounds. Thus, we encourage further research that may guide physicians on providing personalized diabetes treatments that achieve glycemic goals while promoting healing in patients with chronic wounds. PMID:26796432

  19. Effects of the Four-Herb Compound ANBP on Wound Healing Promotion in Diabetic Mice.

    Hou, Qian; He, Wen-Jun; Chen, Li; Hao, Hao-Jie; Liu, Jie-Jie; Dong, Liang; Tong, Chuan; Li, Mei-Rong; Zhou, Zhong-Zhi; Han, Wei-Dong; Fu, Xiao-Bing

    2015-12-01

    Wound healing is a troublesome problem in diabetic patients. Besides, there is also an increased risk of postsurgical wound complications for diabetic patient. It has been revealed that traditional Chinese medicine may promote healing and inhibit scar formation, while the changes of morphology and physiology of wounds on such medicine treatment still remain elusive. In this study, we first used the ultralow temperature preparation method to produce mixed superfine powder from Agrimonia pilosa (A), Nelumbo nucifera (N), Boswellia carteri (B), and Pollen typhae (P), named as ANBP. Applying ANBP on 40 streptozotocin (STZ)-induced diabetic C57BL/6 mice (4-6 weeks, 20 ± 2 g), we observed that the wound healing process was accelerated and the wound healing time was shortened (14 days, P Sirius red staining showed that, at the early stage of trauma, the expressions of Col I and Col III, especially Col III, were increased in the ANBP group (P < .05). Studies in vitro demonstrated that tubular formation was significantly increased after ANBP treatment on human vascular endothelial cells in a dose-dependent way. Taken together, our studies revealed that ANBP treatment could accelerate wound healing, promote vascularization, and inhibit inflammation, suggesting the potential clinic application of ANBP for diabetes mellitus and refractory wounds. PMID:25795279

  20. Connexins in wound healing; perspectives in diabetic patients.

    Becker, D. L.; Thrasivoulou, C.; Phillips, A. R.

    2012-01-01

    Skin lesions are common events and we have evolved to rapidly heal them in order to maintain homeostasis and prevent infection and sepsis. Most acute wounds heal without issue, but as we get older our bodies become compromised by poor blood circulation and conditions such as diabetes, leading to slower healing. This can result in stalled or hard-to-heal chronic wounds. Currently about 2% of the Western population develop a chronic wound and this figure will rise as the population ages and dia...

  1. Effects of low-level laser therapy on wound healing

    Fabiana do Socorro da Silva Dias Andrade

    2014-04-01

    Full Text Available OBJECTIVE: To gather and clarify the actual effects of low-level laser therapy on wound healing and its most effective ways of application in human and veterinary medicine. METHODS: We searched original articles published in journals between the years 2000 and 2011, in Spanish, English, French and Portuguese languages, belonging to the following databases: Lilacs, Medline, PubMed and Bireme; Tey should contain the methodological description of the experimental design and parameters used. RESULTS: doses ranging from 3 to 6 J/cm2 appear to be more effective and doses 10 above J/cm2 are associated with deleterious effects. The wavelengths ranging from 632.8 to 1000 nm remain as those that provide more satisfactory results in the wound healing process. CONCLUSION: Low-level laser can be safely applied to accelerate the resolution of cutaneous wounds, although this fact is closely related to the election of parameters such as dose, time of exposure and wavelength.

  2. Otostegia persica extraction on healing process of burn wounds

    Amin Ganjali

    2013-06-01

    Full Text Available PURPOSE: To investigate if the methanolic extract of the Otostegia persica can accelerating healing process of burn wound because of its anti-inflammatory and antioxidant effects. METHODS:Forty eight male Wistar rats were randomized into three study groups of 16 rats each. Burn wounds were created on dorsal part of shaved rats using a metal rod. In group I the burn wound was left without any treatment. Group was treated with topical silver sulfadiazine pomade. In group III, ointment containing the OP extract was administered. Skin biopsies were harvested from burn area on the 3rd, 5th, 14th and 21st days after burn and examined histologically. RESULTS: Re-epithelialization in the control group and in group II was lower than in group III. Re-epithelialization in groups II and III was significantly different from that in the control group. On the 5th day of the experiment, we assessed lower inflammation in the burn area compared to control group. This means that the inflammation was suppressed by methanolic extract of OP. From day 5 to 14; the fibroblast proliferation peaked and was associated with increased collagen accumulation. It was obvious that angiogenesis improved more in the groups II and III, which facilitated re-epithelialisation. CONCLUSION:Methanolic extract of Otostegia persica exhibited significant healing activity when topically applied on rats. OP is an effective treatment for saving the burn site.

  3. A Novel Three-Dimensional Wound Healing Model

    Zhuo J. Chen

    2014-12-01

    Full Text Available Wound healing is a well-orchestrated process, with various cells and growth factors coming into the wound bed at a specific time to influence the healing. Understanding the wound healing process is essential to generating wound healing products that help with hard-to-heal acute wounds and chronic wounds. The 2D scratch assay whereby a wound is created by scratching a confluent layer of cells on a 2D substrate is well established and used extensively but it has a major limitation—it lacks the complexity of the 3D wound healing environment. Established 3D wound healing models also have many limitations. In this paper, we present a novel 3D wound healing model that closely mimics the skin wound environment to study the cell migration of fibroblasts and keratinocytes. Three major components that exist in the wound environment are introduced in this new model: collagen, fibrin, and human foreskin fibroblasts. The novel 3D model consists of a defect, representing the actual wound, created by using a biopsy punch in a 3D collagen construct. The defect is then filled with collagen or with various solutions of fibrinogen and thrombin that polymerize into a 3D fibrin clot. Fibroblasts are then added on top of the collagen and their migration into the fibrin—or collagen—filled defect is followed for nine days. Our data clearly shows that fibroblasts migrate on both collagen and fibrin defects, though slightly faster on collagen defects than on fibrin defects. This paper shows the visibility of the model by introducing a defect filled with fibrin in a 3D collagen construct, thus mimicking a wound. Ongoing work examines keratinocyte migration on the defects of a 3D construct, which consists of collagen-containing fibroblasts. The model is also used to determine the effects of various growth factors, delivered in the wound defects, on fibroblasts’ and keratinocytes’ migration into the defects. Thus this novel 3D wound healing model provides a more

  4. Cellular and genetic analysis of wound healing in Drosophila larvae.

    Michael J Galko

    2004-08-01

    Full Text Available To establish a genetic system to study postembryonic wound healing, we characterized epidermal wound healing in Drosophila larvae. Following puncture wounding, larvae begin to bleed but within an hour a plug forms in the wound gap. Over the next couple of hours the outer part of the plug melanizes to form a scab, and epidermal cells surrounding the plug orient toward it and then fuse to form a syncytium. Subsequently, more-peripheral cells orient toward and fuse with the central syncytium. During this time, the Jun N-terminal kinase (JNK pathway is activated in a gradient emanating out from the wound, and the epidermal cells spread along or through the wound plug to reestablish a continuous epithelium and its basal lamina and apical cuticle lining. Inactivation of the JNK pathway inhibits epidermal spreading and reepithelialization but does not affect scab formation or other wound healing responses. Conversely, mutations that block scab formation, and a scabless wounding procedure, provide evidence that the scab stabilizes the wound site but is not required to initiate other wound responses. However, in the absence of a scab, the JNK pathway is hyperinduced, reepithelialization initiates but is not always completed, and a chronic wound ensues. The results demonstrate that the cellular responses of wound healing are under separate genetic control, and that the responses are coordinated by multiple signals emanating from the wound site, including a negative feedback signal between scab formation and the JNK pathway. Cell biological and molecular parallels to vertebrate wound healing lead us to speculate that wound healing is an ancient response that has diversified during evolution.

  5. Healing times and prediction of wound healing in neuropathic diabetic foot ulcers: a prospective study.

    Zimny, S; Pfohl, M

    2005-02-01

    Time line of wound healing and prediction of healing times in diabetic foot ulcers is an important issue. Usually, the percentage of wounds healed within a defined period is used for characterization of wound healing. R=sqrtA/pi (R, radius; A, planimetric wound area; pi, constant 3.14), and the wound radius reduction was 0.39 mm/week which was previously established. The initial average wound area was 96.9+/-13.1 mm2 (mean+/-SEM), and 3.61+/-1.6 mm 2 after ten weeks with an average healing time of 75.9 (95 %-CI 71-81) days. Using the equation mentioned above and the calculated weekly wound radius reduction, the predicted healing time in the test group was 86.9 (95 %-CI 73-101) days. The predicted and the observed healing times were significantly correlated with each other (r=0.55, p=0.0002). Providing standard care, the time needed for wound healing can reliably be predicted in neuropathic diabetic foot ulcers. This may be a useful tool in daily clinical practice to predict wound healing and recognize ulcers who do not respond adequately to the treatment. PMID:15772900

  6. Secretome of Peripheral Blood Mononuclear Cells Enhances Wound Healing

    Mildner, Michael; Hacker, Stefan; Haider, Thomas; Gschwandtner, Maria; Werba, Gregor; Barresi, Caterina; Zimmermann, Matthias; Golabi, Bahar; Tschachler, Erwin; Ankersmit, Hendrik Jan

    2013-01-01

    Non-healing skin ulcers are often resistant to most common therapies. Treatment with growth factors has been demonstrated to improve closure of chronic wounds. Here we investigate whether lyophilized culture supernatant of freshly isolated peripheral blood mononuclear cells (PBMC) is able to enhance wound healing. PBMC from healthy human individuals were prepared and cultured for 24 hours. Supernatants were collected, dialyzed and lyophilized (SECPBMC). Six mm punch biopsy wounds were set on ...

  7. Electrical Stimulation and Cutaneous Wound Healing: A Review of Clinical Evidence

    Sara Ud-Din

    2014-10-01

    Full Text Available Electrical stimulation (ES has been shown to have beneficial effects in wound healing. It is important to assess the effects of ES on cutaneous wound healing in order to ensure optimization for clinical practice. Several different applications as well as modalities of ES have been described, including direct current (DC, alternating current (AC, high-voltage pulsed current (HVPC, low-intensity direct current (LIDC and electrobiofeedback ES. However, no one method has been advocated as the most optimal for the treatment of cutaneous wound healing. Therefore, this review aims to examine the level of evidence (LOE for the application of different types of ES to enhance cutaneous wound healing in the skin. An extensive search was conducted to identify relevant clinical studies utilising ES for cutaneous wound healing since 1980 using PubMed, Medline and EMBASE. A total of 48 studies were evaluated and assigned LOE. All types of ES demonstrated positive effects on cutaneous wound healing in the majority of studies. However, the reported studies demonstrate contrasting differences in the parameters and types of ES application, leading to an inability to generate sufficient evidence to support any one standard therapeutic approach. Despite variations in the type of current, duration, and dosing of ES, the majority of studies showed a significant improvement in wound area reduction or accelerated wound healing compared to the standard of care or sham therapy as well as improved local perfusion. The limited number of LOE-1 trials for investigating the effects of ES in wound healing make critical evaluation and assessment somewhat difficult. Further, better-designed clinical trials are needed to improve our understanding of the optimal dosing, timing and type of ES to be used.

  8. Effect of Wound Dressing with Fresh Kiwifruit on healing of Cutaneous Wound in Rats

    Iran Goudarzi; Taghi Lashkarbolouki; Mahdi Khorshidi; Mohammad Taghi Ghorbanian

    2015-01-01

    Background: The kiwi fruit is known to have dramatic antibacterial, debridement, wound contracture, and angiogenic effects. We propose that kiwifruit is an ideal candidate to enhance the process of wound healing. The present study assessed the effects of wound kiwifruit dressing on cutaneous wound healing in rat. Materials and Methods: In this experimental study, 30 male Wistar rats were randomly divided into 2 groups of control and kiwifruit group. A full-thickness dermal incision (35mm l...

  9. Topically Applied Connective Tissue Growth Factor/CCN2 Improves Diabetic Preclinical Cutaneous Wound Healing: Potential Role for CTGF in Human Diabetic Foot Ulcer Healing

    F. R. Henshaw

    2015-01-01

    Full Text Available Aims/Hypothesis. Topical application of CTGF/CCN2 to rodent diabetic and control wounds was examined. In parallel research, correlation of CTGF wound fluid levels with healing rate in human diabetic foot ulcers was undertaken. Methods. Full thickness cutaneous wounds in diabetic and nondiabetic control rats were treated topically with 1 μg rhCTGF or vehicle alone, on 2 consecutive days. Wound healing rate was observed on day 14 and wound sites were examined for breaking strength and granulation tissue. In the human study across 32 subjects, serial CTGF regulation was analyzed longitudinally in postdebridement diabetic wound fluid. Results. CTGF treated diabetic wounds had an accelerated closure rate compared with vehicle treated diabetic wounds. Healed skin withstood more strain before breaking in CTGF treated rat wounds. Granulation tissue from CTGF treatment in diabetic wounds showed collagen IV accumulation compared with nondiabetic animals. Wound α-smooth muscle actin was increased in CTGF treated diabetic wounds compared with untreated diabetic wounds, as was macrophage infiltration. Endogenous wound fluid CTGF protein rate of increase in human diabetic foot ulcers correlated positively with foot ulcer healing rate (r=0.406; P<0.001. Conclusions/Interpretation. These data collectively increasingly substantiate a functional role for CTGF in human diabetic foot ulcers.

  10. 830 nm light-emitting diode low level light therapy (LED-LLLT) enhances wound healing: a preliminary study

    Min, Pok Kee; Goo, Boncheol Leo

    2013-01-01

    Background and aims: The application of light-emitting diodes in a number of clinical fields is expanding rapidly since the development in the late 1990s of the NASA LED. Wound healing is one field where low level light therapy with LEDs (LED-LLLT) has attracted attention for both accelerating wound healing and controlling sequelae. The present study evaluated LED-LLLT in 5 wounds of various etiologies.

  11. Assessment of the effect of diode laser therapy on incisional wound healing and expression of iNOS and eNOS on rat oral tissue

    Parichehr Ghalayani

    2013-01-01

    Conclusion: Histological findings showed that diode laser needs several repeated irradiations for the acceleration of wound healing. The iNOS amount showed that increases are associated with better healing.

  12. Kruppel-like factor KLF4 facilitates cutaneous wound healing by promoting fibrocyte generation from myeloid-derived suppressor cells.

    Ou, Lingling; Shi, Ying; Dong, Wenqi; Liu, Chunming; Schmidt, Thomas J; Nagarkatti, Prakash; Nagarkatti, Mitzi; Fan, Daping; Ai, Walden

    2015-05-01

    Pressure ulcers (PUs) are serious skin injuries whereby the wound healing process is frequently stalled in the inflammatory phase. Myeloid-derived suppressor cells (MDSCs) accumulate as a result of inflammation and promote cutaneous wound healing by mechanisms that are not fully understood. Recently, MDSCs have been shown to differentiate into fibrocytes, which serve as emerging effector cells that enhance cell proliferation in wound healing. We postulate that in wound healing MDSCs not only execute their immunosuppressive function to regulate inflammation but also stimulate cell proliferation once they differentiate into fibrocytes. In the current study, by using full-thickness and PU mouse models, we found that Kruppel-like factor 4 (KLF4) deficiency resulted in decreased accumulation of MDSCs and fibrocytes, and wound healing was significantly delayed. Conversely, KLF4 activation by the plant-derived product Mexicanin I increased the number of MDSCs and fibrocytes and accelerated the wound healing. Collectively, our study revealed a previously unreported function of MDSCs in cutaneous wound healing and identified Mexicanin I as a potential agent to accelerate PU wound healing. PMID:25581502

  13. TOPICAL ESTROGEN IN WOUND HEALING: A DOUBLE BLIND RANDOMIZED CLINICAL TRIAL ON YOUNG HEALTHY PEOPLE

    A ASILIAN

    2001-03-01

    Full Text Available Introduction: Acceleration of wounf healing is intrested because of decreasing the risk of wound complication and infections as well as reducing the cost of treatment. In animal models, it has been proved that estrogen can accelerate wound healing. It has been also suggested that topical estrogen can eliminate effect of aging on wound healing and can increase the speed of wound healing in old people. Methods: We selected 16 young healthy people who developed symmetrical and ulcers (regarding size and depths after dermabrasion, shave and electrocoagulouzon and CO2 laser. Primary lesions of patients were benign and noninfective. Identical and symmetrical lesions of each patient were randomly divided into two groups (A and B. Topical estrogen with concentration of 0.625 mg/g in the base of silver sulfadiazine cream was applied to A ulcers and silver sulfadiazine cream alone was applied on B ulcers. Ulcers were dressed by Telfa gauzes. The A ulcers of each patients were compared to counterpart B ulcers in regard of redness, size, depth, general appearance of ulcers and wound healing duration at three days intervals by a physician. Results: Average time of healing was 10.8 days and 8.5 days for B (n=29 and A (n=29 ulcers, respectively (P < 0.001. In 78 percent of cases, the A ulcers were judged better than B ulcers by physician (P < 0.01. Discussion: It seems that estrogen not only accelerate healing of acute ulcers but also it is efficient in young healthy people who don"t have any hormonal or wound healing problems.

  14. The Effect of Nitric Oxide Donor in Diabetic Wound Healing

    N Dashti; Ansari, M.; M. Shabani; S Vardasti; Mirsalehian, A.; MH Noori Mughehi; Hatmi ZN

    2003-01-01

    Diabetes is characterized by a nitric oxide deficiency at the wound site. Diabetes is a factor that influences all stages of wound healing. In animals with acute experimental diabetes induced by streptozotocin (STZ), the early inflammatory responses after wounding is impaired, fibroblast and endothelial cell proliferation is reduced as well as accumulation of reparative collagen and gain in wound breaking strenght. This study investigated whether exogenous nitric oxide supplimentation with ni...

  15. Correction of MFG-E8 Resolves Inflammation and Promotes Cutaneous Wound Healing in Diabetes.

    Das, Amitava; Ghatak, Subhadip; Sinha, Mithun; Chaffee, Scott; Ahmed, Noha S; Parinandi, Narasimham L; Wohleb, Eric S; Sheridan, John F; Sen, Chandan K; Roy, Sashwati

    2016-06-15

    Milk fat globule epidermal growth factor-factor 8 (MFG-E8) is a peripheral glycoprotein that acts as a bridging molecule between the macrophage and apoptotic cells, thus executing a pivotal role in the scavenging of apoptotic cells from affected tissue. We have previously reported that apoptotic cell clearance activity or efferocytosis is compromised in diabetic wound macrophages. In this work, we test the hypothesis that MFG-E8 helps resolve inflammation, supports angiogenesis, and accelerates wound closure. MFG-E8(-/-) mice displayed impaired efferocytosis associated with exaggerated inflammatory response, poor angiogenesis, and wound closure. Wound macrophage-derived MFG-E8 was recognized as a critical driver of wound angiogenesis. Transplantation of MFG-E8(-/-) bone marrow to MFG-E8(+/+) mice resulted in impaired wound closure and compromised wound vascularization. In contrast, MFG-E8(-/-) mice that received wild-type bone marrow showed improved wound closure and improved wound vascularization. Hyperglycemia and exposure to advanced glycated end products inactivated MFG-E8, recognizing a key mechanism that complicates diabetic wound healing. Diabetic db/db mice suffered from impaired efferocytosis accompanied with persistent inflammation and slow wound closure. Topical recombinant MFG-E8 induced resolution of wound inflammation, improvements in angiogenesis, and acceleration of closure, upholding the potential of MFG-E8-directed therapeutics in diabetic wound care. PMID:27194784

  16. Gene expression profiling of cutaneous wound healing

    Wang Ena

    2007-02-01

    Full Text Available Abstract Background Although the sequence of events leading to wound repair has been described at the cellular and, to a limited extent, at the protein level this process has yet to be fully elucidated. Genome wide transcriptional analysis tools promise to further define the global picture of this complex progression of events. Study Design This study was part of a placebo-controlled double-blind clinical trial in which basal cell carcinomas were treated topically with an immunomodifier – toll-like receptor 7 agonist: imiquimod. The fourteen patients with basal cell carcinoma in the placebo arm of the trial received placebo treatment consisting solely of vehicle cream. A skin punch biopsy was obtained immediately before treatment and at the end of the placebo treatment (after 2, 4 or 8 days. 17.5K cDNA microarrays were utilized to profile the biopsy material. Results Four gene signatures whose expression changed relative to baseline (before wound induction by the pre-treatment biopsy were identified. The largest group was comprised predominantly of inflammatory genes whose expression was increased throughout the study. Two additional signatures were observed which included preferentially pro-inflammatory genes in the early post-treatment biopsies (2 days after pre-treatment biopsies and repair and angiogenesis genes in the later (4 to 8 days biopsies. The fourth and smallest set of genes was down-regulated throughout the study. Early in wound healing the expression of markers of both M1 and M2 macrophages were increased, but later M2 markers predominated. Conclusion The initial response to a cutaneous wound induces powerful transcriptional activation of pro-inflammatory stimuli which may alert the host defense. Subsequently and in the absence of infection, inflammation subsides and it is replaced by angiogenesis and remodeling. Understanding this transition which may be driven by a change from a mixed macrophage population to predominately M2

  17. Advances in research on mechanisms of the effect of negative pressure wound treatment in wound healing

    Li, Lei(Beijing Institute of Petrochemical Technology, Beijing, 102617, People's Republic of China); Kai-yang LV; Wu, Guo-Sheng; Zhu, Shi-hui

    2014-01-01

    Negative pressure wound treatment (NPWT) refers to apply a highly porous material between the wound and a semipermeable membrane, and it is then connected to a suction apparatus, leading to a minimal deformation of wound, resulting in promoting cell proliferation and wound repair. These devices may significantly expedite wound healing, facilitate the formation of granulation tissue, and reduce the complexity of subsequent reconstructive operations. In recent years, along with wide clinical us...

  18. Application of Antrodia camphorata Promotes Rat’s Wound Healing In Vivo and Facilitates Fibroblast Cell Proliferation In Vitro

    Zahra A. Amin

    2015-01-01

    Full Text Available Antrodia camphorata is a parasitic fungus from Taiwan, it has been documented to possess a variety of pharmacological and biological activities. The present study was undertaken to evaluate the potential of Antrodia camphorata ethanol extract to accelerate the rate of wound healing closure and histology of wound area in experimental rats. The safety of Antrodia camphorata was determined in vivo by the acute toxicity test and in vitro by fibroblast cell proliferation assay. The scratch assay was used to evaluate the in vitro wound healing in fibroblast cells and the excision model of wound healing was tested in vivo using four groups of adult Sprague Dawley rats. Our results showed that wound treated with Antrodia camphorata extract and intrasite gel significantly accelerates the rate of wound healing closure than those treated with the vehicle. Wounds dressed with Antrodia camphorata extract showed remarkably less scar width at wound closure and granulation tissue contained less inflammatory cell and more fibroblast compared to wounds treated with the vehicle. Masson’s trichrom stain showed granulation tissue containing more collagen and less inflammatory cell in Antrodia camphorata treated wounds. In conclusion, Antrodia camphorata extract significantly enhanced the rate of the wound enclosure in rats and promotes the in vitro healing through fibroblast cell proliferation.

  19. Wound Healing Potential of Formulated Extract from Hibiscus Sabdariffa Calyx

    P F Builders

    2013-01-01

    Full Text Available Wound healing agents support the natural healing process, reduce trauma and likelihood of secondary infections and hasten wound closure. The wound healing activities of water in oil cream of the methanol extract of Hibiscus sabdariffa L. (Malvaceae was evaluated in rats with superficial skin excision wounds. Antibacterial activities against Pseudomonas aeroginosa, Staphylococcus aureus and Echerichia coli were determined. The total flavonoid content, antioxidant properties and thin layer chromatographic fingerprints of the extract were also evaluated. The extract demonstrated antioxidant properties with a total flavonoid content of 12.30±0.09 mg/g. Six reproducible spots were obtained using methanol:water (95:5 as the mobile phase. The extract showed no antimicrobial activity on the selected microorganisms, which are known to infect and retard wound healing. Creams containing H. sabdariffa extract showed significant (P<0.05 and concentration dependent wound healing activities. There was also evidence of synergism with creams containing a combination of gentamicin and H. sabdariffa extract. This study, thus, provides evidence of the wound healing potentials of the formulated extract of the calyces of H. sabdariffa and synergism when co-formulated with gentamicin.

  20. Plasminogen is a critical regulator of cutaneous wound healing.

    Sulniute, Rima; Shen, Yue; Guo, Yong-Zhi; Fallah, Mahsa; Ahlskog, Nina; Ny, Lina; Rakhimova, Olena; Broden, Jessica; Boija, Hege; Moghaddam, Aliyeh; Li, Jinan; Wilczynska, Malgorzata; Ny, Tor

    2016-05-01

    Wound healing is a complicated biological process that consist of partially overlapping inflammatory, proliferation and tissue remodelling phases. A successful wound healing depends on a proper activation and subsequent termination of the inflammatory phase. The failure to terminate the inflammation halts the completion of wound healing and is a known reason for formation of chronic wounds. Previous studies have shown that wound closure is delayed in plasminogen-deficient mice, and a role for plasminogen in dissection of extracellular matrix was suggested. However, our finding that plasminogen is transported to the wound by inflammatory cells early during the healing process, where it potentiates inflammation, indicates that plasminogen may also have other roles in the wound healing process. Here we report that plasminogen-deficient mice have extensive fibrin and neutrophil depositions in the wounded area long after re-epithelialisation, indicating inefficient debridement and chronic inflammation. Delayed formation of granulation tissue suggests that fibroblast function is impaired in the absence of plasminogen. Therefore, in addition to its role in the activation of inflammation, plasminogen is also crucial for subsequent steps, including resolution of inflammation and activation of the proliferation phase. Importantly, supplementation of plasminogen-deficient mice with human plasminogen leads to a restored healing process that is comparable to that in wild-type mice. Besides of being an activator of the inflammatory phase during wound healing, plasminogen is also required for the subsequent termination of inflammation. Based on these results, we propose that plasminogen may be an important future therapeutic agent for wound treatment. PMID:26791370

  1. New Guar Biopolymer Silver Nanocomposites for Wound Healing Applications

    Runa Ghosh Auddy

    2013-01-01

    Full Text Available Wound healing is an innate physiological response that helps restore cellular and anatomic continuity of a tissue. Selective biodegradable and biocompatible polymer materials have provided useful scaffolds for wound healing and assisted cellular messaging. In the present study, guar gum, a polymeric galactomannan, was intrinsically modified to a new cationic biopolymer guar gum alkylamine (GGAA for wound healing applications. Biologically synthesized silver nanoparticles (Agnp were further impregnated in GGAA for extended evaluations in punch wound models in rodents. SEM studies showed silver nanoparticles well dispersed in the new guar matrix with a particle size of ~18 nm. In wound healing experiments, faster healing and improved cosmetic appearance were observed in the new nanobiomaterial treated group compared to commercially available silver alginate cream. The total protein, DNA, and hydroxyproline contents of the wound tissues were also significantly higher in the treated group as compared with the silver alginate cream (P<0.05. Silver nanoparticles exerted positive effects because of their antimicrobial properties. The nanobiomaterial was observed to promote wound closure by inducing proliferation and migration of the keratinocytes at the wound site. The derivatized guar gum matrix additionally provided a hydrated surface necessary for cell proliferation.

  2. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

    Schmidt, J G; Andersen, E W; Ersbøll, B K; Nielsen, M E

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to

  3. Chemical Composition and Anti-Candidiasis Mediated Wound Healing Property of Cymbopogon nardus Essential Oil on Chronic Diabetic Wounds.

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Dash, Suvakanta; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Poor wound healing is one of the major complication of diabetic patients which arises due to different factors like hyperglycemia, oxidative stress, vascular insufficiency and microbial infections. Candidiasis of diabetic wounds is a difficult to treat condition and potentially can lead to organ amputation. There are a few number of medications available in market to treat this chronic condition; which demands for alternative treatment options. In traditional system of medicine like Ayurveda, essential oil extracted from leaves of Cymbopogon nardus L. (Poaceae) has been using for the treatment of microbial infections, inflammation and pain. In this regard, we have evaluated anti-Candida and anti-inflammatory activity mediated wound healing property of C. nardus essential oil (EO-CN) on candidiasis of diabetic wounds. EO-CN was obtained through hydro-distillation and subjected to Gas chromatography-mass spectroscopy (GC-MS) analysis for chemical profiling. Anti-Candida activity of EO-CN was tested against Candida albicans, C. glabrata and C. tropicalis by in vitro zone of inhibition and minimum inhibitory concentration (MIC) assays. Anti-candidiasis ability of EO-CN was evaluated on C. albicans infected diabetic wounds of mice through measuring candida load on the 7th, 14th, and 21st day of treatment. Further progression in wound healing was confirmed by measuring the inflammatory marker levels and histopathology of wounded tissues on last day of EO-CN treatment. A total of 95 compounds were identified through GC-MS analysis, with major compounds like citral, 2,6-octadienal-, 3,7-dimethyl-, geranyl acetate, citronellal, geraniol, and citronellol. In vitro test results demonstrated strong anti-Candida activity of EO-CN with a MIC value of 25 μg/ml against C. albicans, 50 μg/ml against C. glabrata and C. tropicalis. EO-CN treatment resulted in significant reduction of candida load on diabetic wounds. Acceleration in wound healing was indicated by declined levels of

  4. Chemical Composition and Anti-Candidiasis Mediated Wound Healing Property of Cymbopogon nardus Essential Oil on Chronic Diabetic Wounds

    Kandimalla, Raghuram; Kalita, Sanjeeb; Choudhury, Bhaswati; Dash, Suvakanta; Kalita, Kasturi; Kotoky, Jibon

    2016-01-01

    Poor wound healing is one of the major complication of diabetic patients which arises due to different factors like hyperglycemia, oxidative stress, vascular insufficiency and microbial infections. Candidiasis of diabetic wounds is a difficult to treat condition and potentially can lead to organ amputation. There are a few number of medications available in market to treat this chronic condition; which demands for alternative treatment options. In traditional system of medicine like Ayurveda, essential oil extracted from leaves of Cymbopogon nardus L. (Poaceae) has been using for the treatment of microbial infections, inflammation and pain. In this regard, we have evaluated anti-Candida and anti-inflammatory activity mediated wound healing property of C. nardus essential oil (EO-CN) on candidiasis of diabetic wounds. EO-CN was obtained through hydro-distillation and subjected to Gas chromatography–mass spectroscopy (GC–MS) analysis for chemical profiling. Anti-Candida activity of EO-CN was tested against Candida albicans, C. glabrata and C. tropicalis by in vitro zone of inhibition and minimum inhibitory concentration (MIC) assays. Anti-candidiasis ability of EO-CN was evaluated on C. albicans infected diabetic wounds of mice through measuring candida load on the 7th, 14th, and 21st day of treatment. Further progression in wound healing was confirmed by measuring the inflammatory marker levels and histopathology of wounded tissues on last day of EO-CN treatment. A total of 95 compounds were identified through GC–MS analysis, with major compounds like citral, 2,6-octadienal-, 3,7-dimethyl-, geranyl acetate, citronellal, geraniol, and citronellol. In vitro test results demonstrated strong anti-Candida activity of EO-CN with a MIC value of 25 μg/ml against C. albicans, 50 μg/ml against C. glabrata and C. tropicalis. EO-CN treatment resulted in significant reduction of candida load on diabetic wounds. Acceleration in wound healing was indicated by declined

  5. Wound healing activity of Abroma augusta in Wistar rats

    Shanbhag T; Dattachaudhuri A; Shenoy S; Bairy KL

    2009-01-01

    Objective:The study was undertaken to evaluate the wound healing profile of alcoholic extract of Abroma au-gusta and its effect on dexamethasone suppressed wound healing in Wistar rats.Methods:An alcoholic extract of Abroma augusta was prepared.Three models were used -incision,excision and dead space wound models. Four groups of animals were used for each model.They were administered 2% gum acacia (orally),alcoholic extract of Abroma augusta (orally),dexamethasone (intramuscularly)and combination of Abroma augusta (o-rally)with dexamethasone (intramuscularly)respectively.The parameters studied included breaking strength of incision wound,period of epithelization and wound contraction rate in the excision wound,breaking strength,dry weight and hydroxyproline content of granulation tissue in dead space wound.Results:The breaking strength of incision wound of Abroma augusta treated group was significantly increased (P <0.001) while that of dexamethasone treated animals was significantly decreased (P <0.001)as compared to control. Coadministration of dexamethasone and Abroma augusta significantly reversed the dexamethasone suppressed wound healing in incision wound model (P <0.001).Animals treated with both dexamethasone and Abroma augusta also showed significant (P <0.004)increase in the breaking strength of granulation tissue in the dead space wound and a significant (P <0.011)reduction in the period of epithelization in the excision wound as compared to rats treated with dexamethasone alone.The rate of wound contraction was not significantly altered in any of the groups.Conclusion:The alcoholic extract of Abroma augusta was found to reverse dexametha-sone suppressed wound healing.

  6. Therapeutic potential of bone marrow-derived mesenchymal stem cells in cutaneous wound healing

    Jerry S Chen

    2012-07-01

    Full Text Available Despite advances in wound care, many wounds never heal and become chronic problems that result in significant morbidity and mortality to the patient. Cellular therapy for cutaneous wounds has recently come under investigation as a potential treatment modality for impaired wound healing. Bone marrow-derived mesenchymal stem cells (MSCs are a promising source of adult progenitor cells for cytotherapy as they are easy to isolate and expand and have been shown to differentiate into various cell lineages. Early studies have demonstrated that MSCs may enhance epithelialization, granulation tissue formation, and neovascularization resulting in accelerated wound closure. It is currently unclear if these effects are mediated through cellular differentiation or by secretion of cytokines and growth factors. This review discusses the proposed biological contributions of MSCs to cutaneous repair and their clinical potential in cell-based therapies.

  7. The Effect of Nitric Oxide Donor in Diabetic Wound Healing

    N Dashti

    2003-10-01

    Full Text Available Diabetes is characterized by a nitric oxide deficiency at the wound site. Diabetes is a factor that influences all stages of wound healing. In animals with acute experimental diabetes induced by streptozotocin (STZ, the early inflammatory responses after wounding is impaired, fibroblast and endothelial cell proliferation is reduced as well as accumulation of reparative collagen and gain in wound breaking strenght. This study investigated whether exogenous nitric oxide supplimentation with nitric oxide donor DETA NONOate could reverse impaired healing in diabetes. The results suggest nitric oxide donor DETA NONOate can reverse impaired healing associated with diabetes (P<0.001 and urinary nitrate (NO-3 output may reflect the extent of repair in this wound model (P<0.001.

  8. MicroRNAs as regulators of cutaneous wound healing

    Wing-Fu Lai; Parco M Siu

    2014-06-01

    MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression, and have displayed important roles in areas spanning from embryonic development to skin physiology. Despite this, till now little is known about the significance of miRNAs in cutaneous wound healing. In this mini-review, we discuss the existing evidence on the roles of miRNAs in physiological processes relevant to cutaneous wound healing, followed by a highlight of the prospects and challenges of future development of miRNA-based wound therapies. With existing technologies of nucleic acid transfer and miRNA modulation, it is anticipated that once the roles of miRNAs in wound healing have been clarified, there will be a vast new vista of opportunities brought up for development of miRNA-targeted therapies for wound care.

  9. Vitamin E and wound healing: an evidence-based review.

    Hobson, Rachel

    2016-06-01

    Vitamin E has been demonstrated to modulate cellular signalling, gene expression and affect wounds infected with methicillin-resistant Staphylococcus aureus (MRSA), thus influencing wound healing. This evidence-based review aimed to identify and evaluate current research assessing the properties of vitamin E in relation to wound healing, through its role as an antioxidant and its influence on connective tissue growth factor (CTGF), MRSA and gene transcription. Literature dated from 1996 to 2012, published in English, involving either animals or adult humans with an acute or chronic wound were included. The databases that contained relevant articles were narrowed down to four, and a total of 33 identified studies were included. The literature review revealed that there is a significant dearth of robust studies establishing the effects of vitamin E on wound healing, and further research is clearly warranted. PMID:25124164

  10. Human umbilical mesenchymal stem cells conditioned medium promote primary wound healing regeneration

    Dwi Liliek Kusindarta

    2016-06-01

    Full Text Available Aim: This research was conducted to clarify the capability of human umbilical mesenchymal stem cells conditioned medium (HU-MSCM to promote regenerations of primary wound healing on the incision skin injury. Materials and Methods: In this study, two approaches in vitro and in vivo already done. On in vitro analysis, tube formation was performed using HU vein endothelial cells in the presence of HU-MSCM, in some experiments cells line was incubated prior the presence of lipopolysaccharide and HU-MSCM then apoptosis assay was performed. Furthermore, in vivo experiments 12 female rats (Rattus norvegicus were used after rats anesthetized, 7 mm wound was made by incision on the left side of the body. The wound was treated with HU-MSCM containing cream, povidone iodine was run as a control. Wound healing regenerations on the skin samples were visualized by hematoxylin-eosin staining. Results: In vitro models elucidate HU-MSCM may decreasing inflammation at the beginning of wound healing, promote cell migration and angiogenesis. In addition in vivo models show that the incision length on the skin is decreasing and more smaller, HE staining describe decreasing of inflammation phase, increasing of angiogenesis, accelerate fibroplasia, and maturation phase. Conclusions: Taken together our observation indicates that HU-MSCM could promote the acceleration of skin tissue regenerations in primary wound healing process.

  11. Wound healing activity of Ipomoea batatas tubers (sweet potato)

    Madhav Sonkamble; Vandana Panda

    2011-01-01

    Background: Ipomoea batatas (L.) Lam. from the family Convolvulaceae is the world’s sixth largest food crop. The tubers of Ipomoea batatas commonly known as sweet potato are consumed as a vegetable globally. The tubers contain high levels of polyphenols such as anthocyanins and phenolic acids and vitamins A, B and C, which impart a potent antioxidant activity that can translate well to show wound healing effects. To check their effects on wound healing, the peels and peel bandage were tested ...

  12. Adenosine receptor agonists for promotion of dermal wound healing

    Valls, María D.; Cronstein, Bruce N.; Montesinos, M. Carmen

    2009-01-01

    Wound healing is a dynamic and complex process that involves a well coordinated, highly regulated series of events including inflammation, tissue formation, revascularization and tissue remodeling. However, this orderly sequence is impaired in certain pathophysiological conditions such as diabetes mellitus, venous insufficiency, chronic glucocorticoid use, aging and malnutrition. Together with proper wound care, promotion of the healing process is the primary objective in the management of ch...

  13. Glucocorticoid dynamics and impaired wound healing in diabetes mellitus.

    Bitar, M S

    1998-01-01

    The aim of the present study was to examine corticosterone dynamics and its role in the pathogenesis of impaired wound healing in diabetes mellitus (DM). The streptozotocin-treated rat was used as an animal model for type I DM. A linear skin incision and subcutaneously implanted polyvinyl alcohol sponge disks were considered as wound-healing models. The data regarding corticosterone dynamics revealed diabetes-related increments in plasma corticosterone concentrations at various time intervals...

  14. Abnormal pigmentation within cutaneous scars: a complication of wound healing

    Sarah Chadwick; Rebecca Heath; Mamta Shah

    2012-01-01

    Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutan...

  15. Wound healing after radiation therapy: Review of the literature

    Radiation therapy is an established modality in the treatment of head and neck cancer patients. Compromised wound healing in irradiated tissues is a common and challenging clinical problem. The pathophysiology and underlying cellular mechanisms including the complex interaction of cytokines and growth factors are still not understood completely. In this review, the current state of research regarding the pathomechanisms of compromised wound healing in irradiated tissues is presented. Current and possible future treatment strategies are critically reviewed

  16. Biofilm delays wound healing: A review of the evidence

    Metcalf, Daniel G.; Philip G Bowler

    2014-01-01

    Biofilm is the predominant mode of life for bacteria and today it is implicated in numerous human diseases. A growing body of scientific and clinical evidence now exists regarding the presence of biofilm in wounds. This review summarizes the clinical experiences and in vivo evidence that implicate biofilm in delayed wound healing. The various mechanisms by which biofilm may impede healing are highlighted, including impaired epithelialization and granulation tissue formation, and reduced susce...

  17. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and crit...

  18. Multigenerational Epigenetic Adaptation of the Hepatic Wound-Healing Response

    Zeybel, Müjdat; Hardy, Timothy; Wong, Yi K.; Mathers, John C; Fox, Christopher R.; Gackowska, Agata; Oakley, Fiona; Burt, Alastair D; Wilson, Caroline L.; Anstee, Quentin M.; Barter, Matt J; Masson, Steven; Elsharkawy, Ahmed M.; Mann, Derek A.; Mann, Jelena

    2012-01-01

    We asked if ancestral liver damage leads to heritable reprogramming of hepatic wound-healing. We discovered that male rats with a history of liver damage transmit epigenetic suppressive adaptation of the fibrogenic component of wound-healing through male F1 and F2 generations. Underlying this adaptation was reduced generation of liver myofibroblasts, increased hepatic expression of antifibrogenic PPAR-γ and decreased expression of profibrogenic TGF-β1. Remodelling of DNA methylation and histo...

  19. Aloe vera and Vitis vinifera improve wound healing in an in vivo rat burn wound model.

    Lin, Li-Xin; Wang, Peng; Wang, Yu-Ting; Huang, Yong; Jiang, Lei; Wang, Xue-Ming

    2016-02-01

    Aloe vera and Vitis vinifera have been traditionally used as wound healing agents. The present study aimed to investigate the effects of aloe emodin and resveratrol in the burn wound healing procedure. Burn wounds are common in developed and developing countries, however, in developing countries, the incidence of severe complications is higher and financial resources are limited. The results of the present study demonstrated that neither aloe emodin or resveratrol were cytotoxic to THP-1 macrophages at concentrations of 1, 100 and 500 ng/ml. A significant increase in wound-healing activity was observed in mice treated with the aloe emodin and resveratrol, compared with those which received control treatments. The levels of IL-1β in the exudates of the burn wound area of the treated mice increased in a time-dependent manner over 7 days following burn wound injury. At 10 days post-injury, steady and progressive wound healing was observed in the control animals. The present study confirmed that increased wound healing occurs following treatment with aloe emodin,, compared with resveratrol, providing support for the use of Aloe vera plants to improve burn wound healing. PMID:26677006

  20. Wound-healing potential of the fruit extract of Phaleria macrocarpa

    Walaa Najm Abood

    2015-05-01

    Full Text Available The wound-healing potential of Phaleria macrocarpa was evaluated by monitoring the levels of inflammatory mediators, collagen, and antioxidant enzymes. Experimentally, two-centimeter-wide full-thickness-deep skin excision wounds were created on the posterior neck area of the rats. The wounds were topically treated with gum acacia as a vehicle in the control group, intrasite gel in the reference group, and 100 and 200 mg/mL P. macrocarpa ‎fruit extract in the treatment group. Granulation tissues were excised on the 15th day and were further processed for histological and biochemical analyzes. Wound healing was evaluated by measuring the contractions and protein contents of the wounds. Cellular redistribution and collagen deposition were assessed morphologically using Masson’s trichrome stain. Superoxide dismutase (SOD and catalase (CAT activities, along with malondialdehyde (MDA level were determined in skin tissue homogenates of the dermal wounds. Serum levels of transforming growth factor beta 1 (TGF-β1 and tumor necrosis factor alpha (TNF-α were evaluated in all the animals. A significant decrease in wound area was caused by a significant increase in TGF-β1 level in the treated groups. Decrease in TNF-α level and increase in the collagen formation were also observed in the treated groups. Topical treatment with P. macrocarpa fruit extract increased the SOD and CAT activities in the healing wounds, thereby significantly increasing MDA level. The topical treatment with P. macrocarpa fruit extract showed significant healing effect on excision wounds and demonstrated an important role in the inflammation process by increasing antioxidant enzyme activities, thereby accelerating the wound healing process and reducing tissue injury.

  1. EVALUATION OF WOUND HEALING ACTIVITY OF HELIOTROPIUM INDICUM LEAVES

    Shenoy Ashoka M

    2011-01-01

    Full Text Available Present study is about the wound healing activity of ethanol and aqueous extracts of H.indicum leaves in wistar rats. Three wound models viz incision, excision and dead space wound were used in this study. The biophysical parameters studied were breaking strength in case of incision wounds and granulation tissue dry weight, breaking strength and hydroxyproline content in dead space wound model. In excision wound model, rate of contraction and number of days for epithelialization and also the granulation tissue formed on day 4, 8 and 12 were used to estimate some biochemical parameters like protein, DNA, collagen and lipid peroxides. For tropical application, 2% w/w sodium alginate ointment was prepared with 5% of aqueous and ethanol extracts of leaves. For oral administration 1% gum tragacanth suspension with 500mg/ml of extract was used. In excision and incision wound models, the control groups of animals were left untreated and in dead space wound model the animals were treated with 1 ml of 1% gum tragacanth per Kg, body weight orally.Aqueous and ethanol leaf extracts induced significant wound-healing activity against all the wound models studied. High rate of wound contraction, decrease in the period for epithelialisation, high skin breaking strength and granulation strength, increase in dry granulation tissue weight were observed in treated animals when compared to the control group of animals. There was significant increase in hydroxyproline, protein, collagen contents and decrease in lipid peroxide level in treated animals. Results of the study confirmed the prominent wound healing activity of the test extracts. Ethanol extract of H.indicum possesses better wound healing property compared to the aqueous extract.

  2. Quantitative stain-free and continuous multimodal monitoring of wound healing in vitro with digital holographic microscopy.

    Dominik Bettenworth

    Full Text Available Impaired epithelial wound healing has significant pathophysiological implications in several conditions including gastrointestinal ulcers, anastomotic leakage and venous or diabetic skin ulcers. Promising drug candidates for accelerating wound closure are commonly evaluated in in vitro wound assays. However, staining procedures and discontinuous monitoring are major drawbacks hampering accurate assessment of wound assays. We therefore investigated digital holographic microscopy (DHM to appropriately monitor wound healing in vitro and secondly, to provide multimodal quantitative information on morphological and functional cell alterations as well as on motility changes upon cytokine stimulation. Wound closure as reflected by proliferation and migration of Caco-2 cells in wound healing assays was studied and assessed in time-lapse series for 40 h in the presence of stimulating epidermal growth factor (EGF and inhibiting mitomycin c. Therefore, digital holograms were recorded continuously every thirty minutes. Morphological changes including cell thickness, dry mass and tissue density were analyzed by data from quantitative digital holographic phase microscopy. Stimulation of Caco-2 cells with EGF or mitomycin c resulted in significant morphological changes during wound healing compared to control cells. In conclusion, DHM allows accurate, stain-free and continuous multimodal quantitative monitoring of wound healing in vitro and could be a promising new technique for assessment of wound healing.

  3. Biological properties and therapeutic activities of honey in wound healing: A narrative review and meta-analysis.

    Oryan, Ahmad; Alemzadeh, Esmat; Moshiri, Ali

    2016-05-01

    For thousands of years, honey has been used for medicinal applications. The beneficial effects of honey, particularly its anti-microbial activity represent it as a useful option for management of various wounds. Honey contains major amounts of carbohydrates, lipids, amino acids, proteins, vitamin and minerals that have important roles in wound healing with minimum trauma during redressing. Because bees have different nutritional behavior and collect the nourishments from different and various plants, the produced honeys have different compositions. Thus different types of honey have different medicinal value leading to different effects on wound healing. This review clarifies the mechanisms and therapeutic properties of honey on wound healing. The mechanisms of action of honey in wound healing are majorly due to its hydrogen peroxide, high osmolality, acidity, non-peroxide factors, nitric oxide and phenols. Laboratory studies and clinical trials have shown that honey promotes autolytic debridement, stimulates growth of wound tissues and stimulates anti-inflammatory activities thus accelerates the wound healing processes. Compared with topical agents such as hydrofiber silver or silver sulfadiazine, honey is more effective in elimination of microbial contamination, reduction of wound area, promotion of re-epithelialization. In addition, honey improves the outcome of the wound healing by reducing the incidence and excessive scar formation. Therefore, application of honey can be an effective and economical approach in managing large and complicated wounds. PMID:26852154

  4. Wound healing and hyper-hydration: a counterintuitive model.

    Rippon, M G; Ousey, K; Cutting, K F

    2016-02-01

    Winter's seminal work in the 1960s relating to providing an optimal level of moisture to aid wound healing (granulation and re-epithelialisation) has been the single most effective advance in wound care over many decades. As such the development of advanced wound dressings that manage the fluidic wound environment have provided significant benefits in terms of healing to both patient and clinician. Although moist wound healing provides the guiding management principle, confusion may arise between what is deemed to be an adequate level of tissue hydration and the risk of developing maceration. In addition, the counter-intuitive model 'hyper-hydration' of tissue appears to frustrate the moist wound healing approach and advocate a course of intervention whereby tissue is hydrated beyond what is a normally acceptable therapeutic level. This paper discusses tissue hydration, the cause and effect of maceration and distinguishes these from hyper-hydration of tissue. The rationale is to provide the clinician with a knowledge base that allows optimisation of treatment and outcomes and explains the reasoning behind wound healing using hyper-hydration. Declaration of interest: K. Cutting is a Clinical Research Consultant to the medical device and biotechnology industry. M. Rippon is Visiting Clinical Research Fellow, University of Huddersfield and K. Ousey provides consultancy for a range of companies through the University of Huddersfield including consultancy services for Paul Hartmann Ltd on HydroTherapy products. PMID:26878298

  5. The Efficacy of Gelam Honey Dressing towards Excisional Wound Healing

    Mui Koon Tan; Durriyyah Sharifah Hasan Adli; Mohd Amzari Tumiran; Mahmood Ameen Abdulla; Kamaruddin Mohd Yusoff

    2012-01-01

    Honey is one of the oldest substances used in wound management. Efficacy of Gelam honey in wound healing was evaluated in this paper. Sprague-Dawley rats were randomly divided into four groups of 24 rats each (untreated group, saline group, Intrasite Gel group, and Gelam honey group) with 2 cm by 2 cm full thickness, excisional wound created on neck area. Wounds were dressed topically according to groups. Rats were sacrificed on days 1, 5, 10, and 15 of treatments. Wounds were then processed ...

  6. Nitric oxide: a newly discovered function on wound healing

    Jian-dong LUO; Alex F CHEN

    2005-01-01

    Wound healing impairment represents a particularly challenging clinical problem to which no efficacious treatment regimens currently exist. The factors ensuring appropriate intercellular communication during wound repair are not completely understood. Although protein-type mediators are well-established players in this process, emerging evidence from both animal and human studies indicates that nitric oxide (NO) plays a key role in wound repair. The beneficial effects of NO on wound repair may be attributed to its functional influences on angiogenesis,inflammation, cell proliferation, matrix deposition, and remodeling. Recent findings from in vitro and in vivo studies of NO on wound repair are summarized in this review. The unveiled novel mechanisms support the use of NO-containing agents and/or NO synthase gene therapy as new therapeutic regimens for impaired wound healing.

  7. Effect of novel blend nanofibrous scaffolds on diabetic wounds healing.

    Gholipour-Kanani, Adeleh; Bahrami, S Hajir; Rabbani, Shahram

    2016-02-01

    Chitosan-poly (vinyl alcohol) (Cs: PVA) (2:3) and poly (caprolactone)-chitosan-poly (vinyl alcohol) (PCL: Cs: PVA) (2:1:1.5) nanofibrous blend scaffolds were fabricated using the electrospinning technique in the authors' previous studies. The results of the previous studies confirmed the high biological properties of the scaffolds and their ability in healing of burn and excision wounds on rat model. In the present study, the biological scaffolds were applied on diabetic dorsum skin wounds and diabetic foot wound on rat models (n = 16). Macroscopic and microscopic investigations were carried out using digital images and haematoxylin and eosin (H&E) staining respectively, to measure the wound areas and to track wound healing rate. It was found that at all time points the areas of wounds treated with nanofibrous scaffolds were smaller compared with the controls. Pathological results showed much better healing efficacy for the test samples compared with the control ones. Pathological investigations proved the presence of more pronounced granulation tissues in the scaffold-treated wounds compared with the control ones. At 20 days post excision, the scaffold-treated groups achieved complete repair. The results indicated that Cs: PVA and PCL: Cs: PVA nanofibrous webs could be considered to be promising materials for burn, excision and diabetic wounds healing. PMID:26766866

  8. Gender affects skin wound healing in plasminogen deficient mice

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge; Hald, Andreas

    2013-01-01

    functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or......The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking...... if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin...

  9. Pro-healing effects of bilirubin in open excision wound model in rats.

    Ahanger, Azad A; Leo, Marie D; Gopal, Anu; Kant, Vinay; Tandan, Surendra K; Kumar, Dinesh

    2016-06-01

    Bilirubin, a by-product of heme degradation, has an important role in cellular protection. Therefore, we speculated that bilirubin could be of potential therapeutic value in wound healing. To validate the hypothesis, we used a full-thickness cutaneous wound model in rats. Bilirubin (30 mg/kg) was administered intraperitoneally every day for 9 days. The surface area of the wound was measured on days 0, 2, 4, 7 and 10 after the creation of the wound. The granulation tissue was collected on day 10 post-wounding for analysing various parameters of wound healing. Bilirubin treatment accelerated wound contraction and increased hydroxyproline and glucosamine contents. mRNA expression of pro-inflammatory factors such as intercellular cell adhesion molecule-1 (ICAM-1) and tumour necrosis factor-α (TNF-α) were down-regulated and that of anti-inflammatory cytokine interleukin-10 (IL-10) was up-regulated. The findings suggest that bilirubin could be a new agent for enhancing cutaneous wound healing. PMID:24947136

  10. Abnormal pigmentation within cutaneous scars: A complication of wound healing

    Sarah Chadwick

    2012-01-01

    Full Text Available Abnormally pigmented scars are an undesirable consequence of cutaneous wound healing and are a complication every single individual worldwide is at risk of. They present a challenge for clinicians, as there are currently no definitive treatment options available, and render scars much more noticeable making them highly distressing for patients. Despite extensive research into both wound healing and the pigment cell, there remains a scarcity of knowledge surrounding the repigmentation of cutaneous scars. Pigment production is complex and under the control of many extrinsic and intrinsic factors and patterns of scar repigmentation are unpredictable. This article gives an overview of human skin pigmentation, repigmentation following wounding and current treatment options.