WorldWideScience

Sample records for accelerated testing evaluation

  1. Evaluation of an Accelerated ELDRS Test Using Molecular Hydrogen

    Pease, Ronald L.; Adell, Philippe C.; Rax, Bernard; McClure, Steven; Barnaby, Hugh J.; Kruckmeyer, Kirby; Triggs, B.

    2011-01-01

    An accelerated total ionizing dose (TID) hardness assurance test for enhanced low dose rate sensitive (ELDRS) bipolar linear circuits, using high dose rate tests on parts that have been exposed to molecular hydrogen, has been proposed and demonstrated on several ELDRS part types. In this study several radiation-hardened "ELDRS-free" part types have been tested using this same approach to see if the test is overly conservative.

  2. Experimental evaluation of the Battelle accelerated test design for the solar array at Mead, Nebraska

    Frickland, P.O.; Repar, J.

    1982-04-06

    A previously developed test design for accelerated aging of photovoltaic modules was experimentally evaluated. The studies included a review of relevant field experience, environmental chamber cycling of full-size modules, and electrical and physical evaluation of the effects of accelerated aging during and after the tests. The test results indicated that thermally induced fatigue of the interconnects was the primary mode of module failure as measured by normalized power output. No chemical change in the silicone encapsulant was detectable after 360 test cycles.

  3. Evaluation of accelerated deterioration in NAPTF flexible test pavements

    Kasthurirangan GOPALAKRISHNAN

    2008-01-01

    Previous research studies have successfully demonstrated the use of artificial neural network(ANN)models for predicting critical structural responses and layer moduli of highway flexible pavements.The primary objective of this study was to develop an ANN-based approach for backcalculation of pavement moduli based on heavy weight deflectometer(HWD)test data,especially in the analysis of airport flexible pavements subjected to new generation aircraft(NGA).Two medium-strength subgrade flexible test sections,at the National Airport Pavement Test Facility(NAPTF),were modeled using a finite element(FE) based pavement analysis program,which can consider the non-linear stress-dependent behavior of pavement geomaterials.A multi-layer,feed-forward network which uses an error-backpropagation algorithm was trained to approximate the HWD backcalculation function using the FE program generated synthetic database.At the NAPTF,test sections were subjected to Boeing 777 (B777)trafficking on one lane and Boeing 747(B747)trafficking on the other lane using a test machine.To monitor the effect of traffic and climatic variations on pavement structural responses.HWD tests were conducted on the traffieked lanes and on the untraffieked centerline of test sections as trafficking progressed.The trained ANN models were successfully applied on the actual HWD test data acquired at the NAPTF to predict the asphalt concrete moduli and non-1inear subgrade moduli of the medium-strength subgrade flexible test sections.

  4. Ageing evaluation of low voltage cables and insulators with gamma ray irradiation and thermal accelerated ageing tests

    To optimize lifetime prediction method of cables and to understand cable ageing mechanism, ageing evaluation of low voltage cables and insulators with gamma ray irradiation and thermal accelerated ageing tests were conducted. Insulators had no indication of the ageing after 1000 hours of the accelerated ageing tests. (author)

  5. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  6. Accelerated cyclic corrosion tests

    Prošek T.

    2016-01-01

    Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS) test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical p...

  7. Radiation resistance of polymer materials. Degradation evaluation by accelerated testing for application condition

    This paper presents re-evaluated radiation resistance property data of polymer materials, which had been tested in past times in TAKASAKI Quantum Beam Science Directorate, for the future study of ageing evaluation of low voltage electric cable insulation materials used in light-water nuclear reactors. The radiation resistance of 25 types of plastics and rubbers materials applied in practical environments was evaluated by the accelerated testing of gamma-ray irradiation under oxygen pressure, and was compared with the radiation resistance determined from the traditional testing by irradiation with a high dose rate in air. The polymer materials were formulated to be similar or equivalent to practical materials, and the most of formulation (chemical compounds and quantities) were described. For all materials, the tensile properties (elongation at break, ultimate strength, 100% or 200% modulus), electric resistivity, gel-fraction, and density were measured after irradiation in oxidation conditions and irradiation in air with a high dose rate (non-oxidation conditions). The data of relations between each properties and total dose at various conditions were compiled, and the relations among the changes of mechanical properties, electrical properties, and radiation induced chemical reactions were discussed. (author)

  8. Evaluation of oxidative behavior of polyolefin geosynthetics utilizing accelerated aging tests based on temperature and pressure

    Li, Mengjia

    Polyolefin geosynthetics are susceptible to oxidation, which eventually leads to the reduction in their engineering properties. In the application of polyolefin geosynthetics, a major issue is an estimate of the materials durability (i.e. service lifetime) under various aging conditions. Antioxidant packages are added to the polyolefin products to extend the induction time, during which antioxidants are gradually depleted and polymer oxidation reactions are prevented. In this PhD study, an improved laboratory accelerating aging method under elevated and high pressure environments was applied to evaluate the combined effect of temperature and pressure on the depletion of the antioxidants and the oxidation of polymers. Four types of commercial polyolefn geosynthetic materials selected for aging tests included HDPE geogrid, polypropylene woven and nonwoven geotextiles. A total of 33 different temperature/pressure aging conditions were used, with the incubation duration up to 24 months. The applied oven temperature ranged from 35°C to 105°C and the partial oxygen pressure ranged from 0.005 MPa to 6.3 MPa. Using the Oxidative Induction Time (OIT) test, the antioxidant depletion, which is correlated to the decrease of the OIT value, was found to follow apparent first-order decay. The OIT data also showed that, the antioxidant depletion rate increased with temperature according to the Arrhenius equation, while under constant temperatures, the rate increased exponentially with the partial pressure of oxygen. A modified Arrhenius model was developed to fit the antioxidant depletion rate as a function of temperature and pressure and to predict the antioxidant lifetime under various field conditions. This study has developed new temperature/pressure incubation aging test method with lifetime prediction models. Using this new technique, the antioxidant lifetime prediction results are close to regular temperature aging data while the aging duration can be reduced considerably

  9. CESR Test Accelerator

    Rubin, David L

    2013-01-01

    The Cornell Electron Storage Ring (CESR) was reconfigured in 2008 as a test accelerator to investigate the physics of ultra-low emittance damping rings. During the approximately 40 days/year available for dedicated operation as a test accelerator, specialized instrumentation is used to measure growth and mitigation of the electron cloud, emittance growth due to electron cloud, intra-beam scattering, and ions, and single and multi-bunch instabilities generated by collective effects. The flexibility of the CESR guide field optics and the integration of accelerator modeling codes with the control system have made possible an extraordinary range of experiments. Findings at CesrTA with respect to electron cloud effects, emittance tuning techniques, and beam instrumentation for measuring electron cloud, beam sizes, and beam positions are the basis for much of the design of the ILC damping rings as documented in the ILC-Technical Design Report. The program has allowed the Cornell group to cultivate the kind of talen...

  10. Testing Gravity on Accelerators

    Kalaydzhyan, Tigran

    2016-01-01

    Weak equivalence principle (WEP) is one of the cornerstones of the modern theories of gravity, stating that the trajectory of a freely falling test body is independent of its internal structure and composition. Even though WEP is known to be valid for the normal matter with a high precision, it has never been experimentally confirmed for relativistic matter and antimatter. We make an attempt to constrain possible deviations from WEP utilizing the modern accelerator technologies. We analyze the (absence of) vacuum Cherenkov radiation, photon decay, anomalous synchrotron losses and the Compton spectra to put limits on the isotropic Lorentz violation and further convert them to the constraints on the difference between the gravitational and inertial masses of the relativistic electrons/positrons. Our main result is the 0.1% limit on the mentioned difference.

  11. Solid oxide materials research accelerated electrochemical testing

    Windisch, C.; Arey, B.

    1995-08-01

    The objectives of this work were to develop methods for accelerated testing of cathode materials for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

  12. In vitro evaluation of the bonding durability of self-adhesive resin cement to titanium using highly accelerated life test.

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Matinlinna, Jukka Pekka; Shinya, Akiyoshi

    2011-01-01

    The purpose of this in vitro study was to evaluate the bonding durability of three self-adhesive resin cements to titanium using the Highly Accelerated Life Test (HALT). The following self-adhesive resin cements were used to bond pairs of titanium blocks together according to manufacturers' instructions: RelyX Unicem, Breeze, and Clearfil SA Luting. After storage in water at 37°C for 24 h, bonded specimens (n=15) immersed in 37°C water were subjected to cyclic shear load testing regimes of 20, 30, or 40 kg using a fatigue testing machine. Cyclic loading continued until failure occurred, and the number of cycles taken to reach failure was recorded. The bonding durability of a self-adhesive resin cement to titanium was largely influenced by the weight of impact load. HALT showed that Clearfil SA Luting, which contained MDP monomer, yielded the highest median bonding lifetime to titanium. PMID:22123007

  13. Evaluation of solder joint reliability in flip-chip packages during accelerated testing

    Kim, Jong-Woong; Kim, Dae-Gon; Hong, Won Sik; Jung, Seung-Boo

    2005-12-01

    The microstructural investigation and thermomechanical reliability evaluation of the Sn-3.0Ag-0.5Cu solder bumped flip-chip package were carried out during the thermal shock test of the package. In the initial reaction, the reaction product between the solder and Cu mini bump of chip side was Cu6Sn5 intermetallic compound (IMC) layer, while the two phases which were (Cu,Ni)6Sn5 and (Ni,Cu)3Sn4 were formed between the solder and electroless Ni-P layer of the package side. The cracks occurred at the corner solder joints after the thermal shocks of 400 cycles. The primary failure mechanism of the solder joints in this type of package was confirmed to be thermally-activated solder fatigue failure. The premature brittle interfacial failure sometimes occurred in the package side, but nearly all of the failed packages showed the occurrence of the typical fatigue cracks. The finite-element analyses were conducted to interpret the failure mechanisms of the packages, and revealed that the cracks were induced by the accumulation of the plastic work and viscoplastic shear strains.

  14. The Brookhaven Accelerator Test Facility

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO2 laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs

  15. Advanced Superconducting Test Accelerator (ASTA)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  16. Application of the accelerated test Rancimat to evaluate oxidative stability of dried microencapsulated oils

    Márquez-Ruiz, G.

    2000-08-01

    Full Text Available The objective of this work was to apply the oxidative test Rancimat to dried microencapsulated oils (DMO, with special emphasis on assessing the efficacy of natural antioxidants. DMO were prepared by freeze-drying emulsions containing sodium caseinate, lactose and fish or sunflower oils, with and without added the antioxidant mixture ALT (ascorbic acid, lecithin and tocopherol. Under the Rancimat working conditions selected for testing DMO (5 g sample, 100ºC and 20 L air/h, excellent repeatability was obtained. The antioxidant effect of ALT was much higher in bulk fish oil than in its counterpart DMO, either in Rancimat or at 30ºC in the dark. Further experiments using Rancimat showed that the moderate increase in stability of DMO added ALT was only attributable to tocopherol while the synergistic actions of lecithin and ascorbic acid were not observed, their action probably depending on their location and orientation in these complex lipid systems. This test enabled to compare monophasic (bulk oils and DMO-extracted oils and heterophasic lipidic systems (DMO and DMO devoid of the accessible, free oil fraction, thus offering a rapid means to examine the influence of oil distribution and partitioning of antioxidants on oxidative stability.El objetivo de este trabajo es la aplicación del test Rancimat a aceites microencapsulados, con especial interés en el estudio de la eficacia de antioxidantes naturales. Los aceites microencapsulados en matriz seca (DMO se prepararon mediante liofilización de emulsiones constituidas por caseinato sódico, lactosa y aceite de pescado o girasol, con o sin la mezcla antioxidante ALT (ácido ascórbico, lecitina y tocoferol. En las condiciones seleccionadas en Rancimat (5 g de muestra, 100ºC y 20 L/h aire se obtuvo excelente repetitividad. La mezcla ALT fue mucho más efectiva en el aceite de pescado que en su correspondiente DMO, tanto en Rancimat como a 30ºC en la oscuridad. Otros experimentos en

  17. Accelerated Testing Validation

    Mukundan, Rangachary; James, Greg; Davey, John; Langlois, David; Torraco, Dennis; Yoon, Wonseok; Weber, Adam Z; Borup, Rodney L.

    2011-07-01

    The DOE Fuel Cell technical team recommended ASTs were performed on 2 different MEAs (designated P5 and HD6) from Ballard Power Systems. These MEAs were also incorporated into stacks and operated in fuel cell bus modules that were either operated in the field (three P5 buses) in Hamburg, or on an Orange county transit authority drive cycle in the laboratory (HD6 bus module). Qualitative agreement was found in the degradation mechanisms and rates observed in the AST and in the field. The HD6 based MEAs exhibited lower voltage degradation rates (due to catalyst corrosion) and slower membrane degradation rates in the field as reflected by their superior performance in the high potential hold and open-circuit potential AST tests. The quantitative correlation of the degradation rates will have to take into account the various stressors in the field including temperature, relative humidity, start/stops and voltage cycles.

  18. Accelerated tests of coil coatings

    Rosales, B. M.

    2003-12-01

    Full Text Available Accelerated laboratory tests on 12 materials in study in the Subgroup 6 of the PATINA Network (CYTED, are discussed for different exposition periods in salt spray, SO2 and Prohesion chambers. International standards used to evaluate failures caused by the different aggressive agents of these laboratory tests are the same as those applied for outdoor expositions. The results exposed contribute to a better understanding of the mechanisms occurred in the diverse natural environments, being mentioned the main analogies and differences respect to factors affecting natural tests. They also allowed to evidence the advantages and limitations in the application of these tests during several days, as compared to the years required to attain similar failure magnitudes through outdoor tests.

    En este trabajo se discuten los ensayos de laboratorio acelerados, realizados sobre 12 materiales de estudio en el Subgrupo 6 de la Red PATINA (CYTED, a diferentes periodos de exposición en cámaras de niebla salina, SO2 y Prohesion. Se utilizaron las normas internacionales para evaluar los fallos causados por los diferentes agentes agresivos de estos ensayos de laboratorio, las cuales se aplican también para los ensayos de exposición a la intemperie. Los resultados expuestos contribuyen a una mejor comprensión de los mecanismos ocurridos en los diversos ambientes naturales, mencionándose las principales analogías y diferencias respecto de los factores que afectan los ensayos naturales. También permitieron evidenciar las ventajas y limitaciones en la aplicación de estos ensayos durante varios días, en comparación con los años requeridos para alcanzar magnitudes de fallos similares por medio de ensayos a intemperie.

  19. Performance Evaluation of Graphics Accelerator

    Vanek, Juraj

    2010-01-01

    This paper deals with possibilities and functions of modern graphic accelerators and with measuring performance under OpenGL interface. Widespread algorithms to render scene in real-time are used. It focuses on how to test every part of accelerator's graphic pipeline as well as measure performance in rendering of advanced effects and theoretical speed at general purpose calculations through graphic processor. This testing is realized by implementing multiple test series and their further eval...

  20. Test accelerator for linear collider

    KEK has proposed to build Test Accelerator Facility (TAF) capable of producing a 2.5 GeV electron beam for the purpose of stimulating R ampersand D for linear collider in TeV region. The TAF consists of a 1.5 GeV S-band linear accelerator, 1.5 GeV damping ring and 1.0 GeV X-band linear accelerator. The TAF project will be carried forward in three phases. Through Phase-I and Phase-II, the S-band and X-band linacs will be constructed, and in Phase-III, the damping ring will be completed. The construction of TAF Phase-I has started, and the 0.2 GeV S-band injector linac has been almost completed. The Phase-I linac is composed of a 240 keV electron gun, subharmonic bunchers, prebunchers and traveling buncher followed by high-gradient accelerating structures. The SLAC 5045 klystrons are driven at 450 kV in order to obtain the rf-power of 100 MW in a 1 μs pulse duration. The rf-power from a pair of klystrons are combined into an accelerating structure. The accelerating gradient up to 100 MeV/m will be obtained in a 0.6 m long structure. 5 refs., 3 figs., 2 tabs

  1. Accelerated degradation testing of a photovoltaic module

    Charki, Abdérafi; Laronde, Rémi; Bigaud, David

    2013-01-01

    There are a great many photovoltaic (PV) modules installed around the world. Despite this, not enough is known about the reliability of these modules. Their electrical power output decreases with time mainly as a result of the effects of corrosion, encapsulation discoloration, and solder bond failure. The failure of a PV module is defined as the point where the electrical power degradation reaches a given threshold value. Accelerated life tests (ALTs) are commonly used to assess the reliability of a PV module. However, ALTs provide limited data on the failure of a module and these tests are expensive to carry out. One possible solution is to conduct accelerated degradation tests. The Wiener process in conjunction with the accelerated failure time model makes it possible to carry out numerous simulations and thus to determine the failure time distribution based on the aforementioned threshold value. By this means, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated.

  2. Evaluation of life of insulator materials for electric wires by accelerated deterioration test due to radiation and heat

    From the viewpoint of the safe operation and the extension of life of nuclear power stations, the secular deterioration of the machinery and equipment which compose nuclear reactors has become the problem. Also electric wires and cables are the important components of nuclear reactors, and organic materials are used as the insulator materials, the secular deterioration is an unavoidable subject to be investigated. In electric wires and cables, the kinds of insulator and sheath materials are many, and the compositions are diversified, therefore it is very difficult to estimate their life from the past data. In this study, as for the polymer materials which have been widely used for electric wires, the accelerated test by applying radiation and heat to them was carried out, and the method for estimating the secular deterioration was investigated. The testing method and the results are reported. The materials put to the test were ethylene propylene rubber and polyethylene chlorosulfonate, and the samples were the sheets of 1 mm thickness. The tests by the simultaneous application of radiation and heat and the successive application were carried out. The rate of lowering of fracture elongation increased in proportion to the magnification of acceleration. (K.I.)

  3. Stability of CIGS Solar Cells and Component Materials Evaluated by a Step-Stress Accelerated Degradation Test Method: Preprint

    Pern, F. J.; Noufi, R.

    2012-10-01

    A step-stress accelerated degradation testing (SSADT) method was employed for the first time to evaluate the stability of CuInGaSe2 (CIGS) solar cells and device component materials in four Al-framed test structures encapsulated with an edge sealant and three kinds of backsheet or moisture barrier film for moisture ingress control. The SSADT exposure used a 15oC and then a 15% relative humidity (RH) increment step, beginning from 40oC/40%RH (T/RH = 40/40) to 85oC/70%RH (85/70) as of the moment. The voluminous data acquired and processed as of total DH = 3956 h with 85/70 = 704 h produced the following results. The best CIGS solar cells in sample Set-1 with a moisture-permeable TPT backsheet showed essentially identical I-V degradation trend regardless of the Al-doped ZnO (AZO) layer thickness ranging from standard 0.12 μm to 0.50 μm on the cells. No clear 'stepwise' feature in the I-V parameter degradation curves corresponding to the SSADT T/RH/time profile was observed. Irregularity in I-V performance degradation pattern was observed with some cells showing early degradation at low T/RH < 55/55 and some showing large Voc, FF, and efficiency degradation due to increased series Rs (ohm-cm2) at T/RH ≥ 70/70. Results of (electrochemical) impedance spectroscopy (ECIS) analysis indicate degradation of the CIGS solar cells corresponded to increased series resistance Rs (ohm) and degraded parallel (minority carrier diffusion/recombination) resistance Rp, capacitance C, overall time constant Rp*C, and 'capacitor quality' factor (CPE-P), which were related to the cells? p-n junction properties. Heating at 85/70 appeared to benefit the CIGS solar cells as indicated by the largely recovered CPE-P factor. Device component materials, Mo on soda lime glass (Mo/SLG), bilayer ZnO (BZO), AlNi grid contact, and CdS/CIGS/Mo/SLG in test structures with TPT showed notable to significant degradation at T/RH ≥ 70/70. At T/RH = 85/70, substantial blistering of

  4. Test Stand for Linear Induction Accelerator Optimization

    Lawrence Livermore National Laboratory has designed and constructed a test stand to improve the voltage regulation in our Flash X-Ray (FXR) accelerator cell. The goal is to create a more mono-energetic electron beam that will create an x-ray source with a smaller spot size. Studying the interaction of the beam and pulse-power system with the accelerator cell will improve the design of high-current accelerators at Livermore and elsewhere. On the test stand, a standard FXR cell is driven by a flexible pulse-power system and the beam current is simulated with a switched center conductor. The test stand is fully instrumented with high-speed digitizers to document the effect of impedance mismatches when the cell is operated under various full-voltage conditions. A time-domain reflectometry technique was also developed to characterize the beam and cell interactions by measuring the impedance of the accelerator and pulse-power component. Computer models are being developed in parallel with the testing program to validate the measurements and evaluate different design changes. Both 3D transient electromagnetic and circuit models are being used

  5. Accelerated Leach Test(s) Program: Annual report

    A computerized data base of LLW leaching data has been developed. Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms containing simulated wastes are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms

  6. Accelerated Leach Test(s) Program: Annual report

    Dougherty, D.R.; Pietrzak, R.F.; Fuhrmann, M.; Colombo, P.

    1986-09-01

    A computerized data base of LLW leaching data has been developed. Long-term tests on portland cement, bitumen and vinyl ester-styrene (VES) polymer waste forms containing simulated wastes are underway which are designed to identify and evaluate factors that accelerate leaching without changing the mechanisms.

  7. The Brookhaven National Laboratory Accelerator Test Facility

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies

  8. Accelerators for Fusion Materials Testing

    Knaster, Juan; Okumura, Yoshikazu

    Fusion materials research is a worldwide endeavor as old as the parallel one working toward the long term stable confinement of ignited plasma. In a fusion reactor, the preservation of the required minimum thermomechanical properties of the in-vessel components exposed to the severe irradiation and heat flux conditions is an indispensable factor for safe operation; it is also an essential goal for the economic viability of fusion. Energy from fusion power will be extracted from the 14 MeV neutron freed as a product of the deuterium-tritium fusion reactions; thus, this kinetic energy must be absorbed and efficiently evacuated and electricity eventually generated by the conventional methods of a thermal power plant. Worldwide technological efforts to understand the degradation of materials exposed to 14 MeV neutron fluxes >1018 m-2s-1, as expected in future fusion power plants, have been intense over the last four decades. Existing neutron sources can reach suitable dpa (“displacement-per-atom”, the figure of merit to assess materials degradation from being exposed to neutron irradiation), but the differences in the neutron spectrum of fission reactors and spallation sources do not allow one to unravel the physics and to anticipate the degradation of materials exposed to fusion neutrons. Fusion irradiation conditions can be achieved through Li (d, xn) nuclear reactions with suitable deuteron beam current and energy, and an adequate flowing lithium screen. This idea triggered in the late 1970s at Los Alamos National Laboratory (LANL) a campaign working toward the feasibility of continuous wave (CW) high current linacs framed by the Fusion Materials Irradiation Test (FMIT) project. These efforts continued with the Low Energy Demonstrating Accelerator (LEDA) (a validating prototype of the canceled Accelerator Production of Tritium (APT) project), which was proposed in 2002 to the fusion community as a 6.7MeV, 100mA CW beam injector for a Li (d, xn) source to bridge

  9. Accelerated Test Method for Corrosion Protective Coatings Project

    Falker, John; Zeitlin, Nancy; Calle, Luz

    2015-01-01

    This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.

  10. New Accelerating Modules RF Test at TTF

    Kostin, D

    2004-01-01

    Five new accelerating modules were installed into the TTF tunnel as a part of the VUV FEL Linac. They are tested prior to the linac operation. The RF test includes processing of the superconducting cavities, as well as maximum module performance tests. The test procedure and the achieved performance together with the test statistical analysis are presented.

  11. RHIC sextant test: Accelerator systems and performance

    One sextant of the RHIC Collider was commissioned in early 1997 with beam. We describe here the performance of the accelerator systems, instrumentation subsystems and application software. We also describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems performance and their impact on the planning for RHIC installation and commissioning

  12. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report and Appendices, Alameda-Contra Costa Transit District (AC Transit)

    Chandler, K.; Eudy, L.

    2009-01-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006 compared to similar diesel buses operating from the same depot. This evaluation report includes results from November 2007 through October 2008. Evaluation results include implementation experience, fueling station operation, fuel cell bus operations at Golden Gate Transit, and evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and roadcalls).

  13. Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing

    Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.

    2011-01-01

    Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.

  14. Flame Acceleration Tests with Hydrogen Combustions

    According to the domestic and foreign regulations, a detonation or DDT (deflagration to detonation transition) by a hydrogen combustion should be prohibited to occur in a containment of a nuclear power plant. A hydrogen control in the IRWST(Incontainment Refueling Water Storage Tank) under a severe accident still remains a debatable issue to be solved in APR1400. The characteristics of the hydrogen flame in the IRWST expected during the station black-out (SBO) and total loss of feed water (LOFW) accidents have been evaluated based on a sigma-lambda criteria from the simulation results by the numerical codes such as GASFLOW. And it was found that hydrogen mixture was non-flammable most of the accident time when the non-condensed steam was released into the free volume of the IRWST, but there existed a small period of time with a high possibility of a flame acceleration during the SBO accident because most of the steam discharged from sparger was well condensed. Therefore, detail analysis and experiment of the hydrogen flame should be required to fix a DDT possibility by the hydrogen combustion in the IRWST of the APR1400. Most experiments on the hydrogen combustion have been limited only to straight pipes or channels. However, the hydrogen flame acceleration phenomena in the IRWST with a closed annular path may be different from those in the straight path in respect to a centrifugal force and degree of freedom in flame propagation etc. So, an experiment of hydrogen combustion in a closed annular chamber is needed to find out the geometrical effect on the flame propagation and to validate the numerical results. KAERI has been performing the experiments of the hydrogen combustion in the IRWST. As the fist stage, flame acceleration tests with the hydrogen combustions are studied preliminarily for a circular straight pipe to confirm the characteristics hydrogen flame propagation, and to evaluate flame detection systems

  15. Testing general relativity on accelerators

    Tigran Kalaydzhyan

    2015-11-01

    Full Text Available Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable – maximal energy of the scattered photons – would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.

  16. Testing general relativity on accelerators

    Kalaydzhyan, Tigran

    2015-11-01

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyze experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable - maximal energy of the scattered photons - would experience a significant shift in the ambient gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of resolution and expect our work to be a starting point of further high-precision studies on current and future accelerators, such as PETRA, European XFEL and ILC.

  17. Testing general relativity on accelerators

    Kalaydzhyan, Tigran

    2015-01-01

    Within the general theory of relativity, the curvature of spacetime is related to the energy and momentum of the present matter and radiation. One of the more specific predictions of general relativity is the deflection of light and particle trajectories in the gravitational field of massive objects. Bending angles for electromagnetic waves and light in particular were measured with a high precision. However, the effect of gravity on relativistic massive particles was never studied experimentally. Here we propose and analyse experiments devoted to that purpose. We demonstrate a high sensitivity of the laser Compton scattering at high energy accelerators to the effects of gravity. The main observable -- maximal energy of the scattered photons -- would experience a significant shift in the Earth's gravitational field even for otherwise negligible violation of the equivalence principle. We confirm predictions of general relativity for ultrarelativistic electrons of energy of tens of GeV at a current level of res...

  18. The electron test accelerator beam injector

    A beam chopper and buncher system has been designed to improve the capture efficiency and reduce the beam spill in the Electron Test Accelerator. The buncher increases the dc beam capture from 30 to 70%. 100% beam transmission through the accelerator structures is obtained with the chopper. This report describes results of experimental tests with the beam injector. Results from computer modeling and from measurements with prototypes that have led to the design of the beam chopper and buncher system are discussed

  19. National Fuel Cell Bus Program: Accelerated Testing Evaluation Report #2, Alameda-Contra Costa Transit District (AC Transit) and Appendices

    Eudy, L.; Chandler, K.

    2010-06-01

    This is an evaluation of hydrogen fuel cell transit buses operating at AC Transit in revenue service since March 20, 2006, comparing similar diesel buses operating from the same depot. It covers November 2007 through February 2010. Results include implementation experience, fueling station operation, evaluation results at AC Transit (bus usage, availability, fuel economy, maintenance costs, and road calls), and a summary of achievements and challenges encountered during the demonstration.

  20. A Comprehensive Review of Accelerated Life Test

    ZHANG Chun-hua; WANG Ya-shun; CHEN Xun; WEN Xi-sen

    2005-01-01

    Accelerated life test (ALT) is an important branch of reliability test and is a focus of research both for statisticians and reliability engineers. The paper outlines the four topics of study embodied in ALT: statistical analysis of constant-stress test, step-stress test and progressive stress test, and optimal design of ALT. It gives a general review of engineering applications of ALT, and points out some possible directions in ALT, gives some suggestions for further study.

  1. Teste de frio e envelhecimento acelerado na avaliação de vigor de sementes de feijão-frade Evaluation of the cowpea seeds vigour through of the coldtest and accelerated aging test

    Josiane Marlle Guiscem

    2010-12-01

    Full Text Available Este trabalho teve como objetivo avaliar o vigor de sementes de feijão-caupi ou feijão-frade por meio dos testes de frio e de envelhecimento acelerado. Utilizou-se as seguintes cultivares de feijão-frade: BRS Guariba, BR 17 Gurguéia, BRS Marataoã, Quarentão e Vinagre. O experimento foi conduzido na Universidade Estadual do Maranhão onde se utilizou para o teste de envelhecimento acelerado as temperaturas e tempo de exposição: 41ºC, 42ºC 43ºC e 45ºC durante 48 h e 42ºC durante 72 h e para o teste de frio: 10ºC, 13ºC e 15ºC com 3, 4 e 5 dias de exposição. Os resultados revelaram que o teste de envelhecimento acelerado com 43ºC/48 h e para o de frio 10º /3 dias foram os mais adequados e que os testes de envelhecimento 42ºC /48 h e de frio 10ºC/3dias se correlacionaram entre si coeficiente de correlação de 0,97%. Pelos resultados conclui-se que os testes estudados apresentaram sensibilidade para identificar diferenças no vigor de sementes de feijão-frade.Aiming to evaluate the efficiency of different methods of accelerated aging and cold test to determine the physiological quality of seed of five cultivars of cowpea: BRS Guariba, BR 17 Gurguéia, BRS Marataoã, Quarentão e Vinagre. The experiment was conducted at the laboratory of University State of Maranhão - UEMA. In the accelera-ted aging test were used the following temperature and time of exposure: 41ºC, 42°C , 43°C and 45°C for 48 hours and 42 ° C for 72 hours. In cold test were used 10ºC, 13°C and 15ºC for 3, 4 and 5 days of exposure. Tests showed that the accelerated aging test of the combination of 43ºC/48 hours and for cold test the combination 15ºC/ 5 days were the most appropriate for the evaluation of the potential of physiological cultivars of cowpea seed. The accelerated aging tests 42°C/48 hours and of cold test 15ºC/3 days were those that had greater consistency in the separation of lots of cultivars of seed cowpea because of correlation

  2. Next linear collider test accelerator injector upgrade

    Yeremian, A.D.; Miller, R.H. [Stanford Linear Accelerator Center, CA (United States)

    1995-12-31

    The Next Linear Collider Test Accelerator (NLCTA) is being constructed at SLAC to demonstrate multibunch beam loading compensation, suppression of higher order deflecting modes and measure transverse components of the accelerating fields in X-band accelerating structures. Currently a simple injector which provides the average current necessary for the beam loading compensations studies is under construction. An injector upgrade is planned to produce bunch trains similar to that of the NLC with microbunch intensity, separation and energy spread, identical to that of NLC. We discuss the design of the NLCTA injector upgrade.

  3. Reliability evaluation of a photovoltaic module using accelerated degradation model

    Laronde, Rémi; Charki, Abdérafi; Bigaud, David; Excoffier, Philippe

    2011-09-01

    Many photovoltaic modules are installed all around the world. However, the reliability of this product is not enough really known. The electrical power decreases in time due mainly to corrosion, encapsulation discoloration and solder bond failure. The failure of a photovoltaic module is obtained when the electrical power degradation reaches a threshold value. Accelerated life tests are commonly used to estimate the reliability of the photovoltaic module. However, using accelerated life tests, few data on the failure of this product are obtained and the realization of this kind of tests is expensive. As a solution, an accelerated degradation test can be carried out using only one stress if parameters of the acceleration model are known. The Wiener process associated with the accelerated failure time model permits to carry out many simulations and to determine the failure time distribution when the threshold value is reached. So, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated.

  4. A Statistical Perspective on Highly Accelerated Testing.

    Thomas, Edward V.

    2015-02-01

    Highly accelerated life testing has been heavily promoted at Sandia (and elsewhere) as a means to rapidly identify product weaknesses caused by flaws in the product's design or manufacturing process. During product development, a small number of units are forced to fail at high stress. The failed units are then examined to determine the root causes of failure. The identification of the root causes of product failures exposed by highly accelerated life testing can instigate changes to the product's design and/or manufacturing process that result in a product with increased reliability. It is widely viewed that this qualitative use of highly accelerated life testing (often associated with the acronym HALT) can be useful. However, highly accelerated life testing has also been proposed as a quantitative means for "demonstrating" the reliability of a product where unreliability is associated with loss of margin via an identified and dominating failure mechanism. It is assumed that the dominant failure mechanism can be accelerated by changing the level of a stress factor that is assumed to be related to the dominant failure mode. In extreme cases, a minimal number of units (often from a pre-production lot) are subjected to a single highly accelerated stress relative to normal use. If no (or, sufficiently few) units fail at this high stress level, some might claim that a certain level of reliability has been demonstrated (relative to normal use conditions). Underlying this claim are assumptions regarding the level of knowledge associated with the relationship between the stress level and the probability of failure. The primary purpose of this document is to discuss (from a statistical perspective) the efficacy of using accelerated life testing protocols (and, in particular, "highly accelerated" protocols) to make quantitative inferences concerning the performance of a product (e.g., reliability) when in fact there is lack-of-knowledge and uncertainty concerning

  5. RHIC Sextant Test - Accelerator Systems and Performance

    Pilat, F.; Ahrens, L.; Brown, K.; Connolly, R.; dell, G. F.; Fischer, W.; Kewisch, J.; Mackay, W.; Mane, V.; Peggs, S.; Satogata, T.; Tepikian, S.; Thompson, P.; Trbojevic, D.; Tsoupas, N.; Wei, J.

    1997-05-01

    One sextant of the RHIC collider and the full AtR (AGS to RHIC) transfer line have been commissioned in early 1997 with beam. We describe here the design and performance of the accelerator systems during the test, such as the magnet and power supply systems, instrumentation subsystems and application software. After reviewing the main milestones of the commissioning we describe a ramping test without beam that took place after the commissioning with beam. Finally, we analyze the implications of accelerator systems preformance and their impact on the plannig for RHIC installation and commissioning.

  6. Effective acceptance evaluation of linear resonance accelerator

    One of the most important challenges for accelerators is to match an accelerating beam with an accelerator acceptance. It allows one reduce a particle loss. Effective acceptance evaluation of linear resonance accelerator with RF focusing is carried out with no taking into account a beam space charge; a model taking into account non-coherent bunch particle oscillations is considered with the use of an averaging technique over rapid oscillations. Analytical results obtained are verified. Computer simulations of self-consistent low-energy ion beam dynamics are performed.

  7. Seismic response evaluation for piping systems with support structures. Effect of input acceleration amplitude on resonance frequency and response reduction in the elastic vibration test

    larger than the design damping factor of 0.5% for all of the input accelerations. These results demonstrated that considering the input acceleration dependencies of damping factor is needed to evaluate the seismic response accurately of piping systems vibrating with large displacement of pipes during large scale earthquakes. (author)

  8. The BNL Accelerator Test Facility control system

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  9. Electrical performance characteristics of the SSC Accelerator System String Test

    The intent of the Accelerator System String Test (ASST) is to obtain data for model verification and information on the magnitudes of pressures and voltages encountered in an accelerator environment. The ASST milestone run was achieved during July and August, 1992 and consisted of demonstrating the accelerator components could be configured together as a system operating at full current. Following the milestone run, the string was warmed to counteract some design flaws that impeded the operational range. The string was again cooled to cryogenic temperatures in October, and a comprehensive power testing program was conducted through the end of January, 1993. This paper describes how the collider arc components operate in an accelerator environment during quenches induced by firing both strip heaters and spot heaters. Evaluation of the data illustrates how variations in the design parameters on magnets used in a string environment can impact system performance

  10. Electrical performance characteristics of the SSC accelerator system string test

    The intent of the Accelerator System String Test (ASST) is to obtain data for model verification and information on the magnitudes of pressures and voltages encountered in an accelerator environment. The ASST milestone run was achieved during July and August, 1992 and consisted of demonstrating that the accelerator components could be configured together as a system operating at full current. Following the milestone run, the string was warmed to counteract some design flaws that impeded the operational range. The string was again cooled to cryogenic temperatures in October, and a comprehensive power testing program was conducted through the end of January, 1993. This paper describes how the collider arc components operate in an accelerator environment during quenches induced by firing both strip heaters and spot heaters. Evaluation of the data illustrates how variations in the design parameters on magnets used in a string environment can impact system performance

  11. 导弹加速寿命试验及可靠性评估%Accelerated Life Test and Reliability Evaluation of Missile

    宋贵宝; 崔加鑫

    2016-01-01

    相对于导弹的常规贮存寿命试验,加速寿命试验可以提高试验效率,节省试验成本,具有很好的军事和经济效益。论文针对导弹部组件多、结构复杂,加速寿命试验难度大的问题,提出了通过对薄弱环节进行加速寿命试验推出导弹贮存寿命的方法,给出了加速寿命试验的基本流程和设计方案,并介绍了基于极大似然估计法的导弹可靠性评估方法。最后以弹上某电子部件为例,开展了加速寿命试验,并对试验数据进行评估,得出了导弹的贮存寿命。%Relative to conventional storage life test of missile ,accelerated life test can improve the test efficiency and save test cost ,has the very good military and economic benefits .In this paper ,aiming at the problem that missile has many units ,complex structure ,accelerated life test is difficult ,a method for accelerating the storage life of a missile is presented , which is based on the accelerated life test of the weak links .The basic processes and design of the accelerated life test are giv‐en ,and the method of missile reliability assessment based on the method of maximum likelihood estimation is introduced .Fi‐nally the paper takes an example of an electronic component on the missile ,and conducts accelerated life test ,and assess the test data ,obtains the storage life of the missile .

  12. The Accelerated Test of Chloride Permeability of Concrete

    TAN Ke-feng; ODD E Gjφrv

    2003-01-01

    The availability of accelerated chloride permeability test and the effect of w/c ratio, incorporation of silica fume, maximum aggregate size and aggregate type on the chloride permeability were studied. The mathematic analysis certifies that there is a linear relationship between accelerated test and natural diffusion. Test results show that the chloride permeability of concrete increases as w/c ratio increases whilst a limited amount of replacement of cement with silica fume, the chloride permeability decreases dramatically. The maximum aggregate size in the range of 8 to 25 mm seems also affect chloride permeability but with a much less significant level. The chloride permeability of silica fume lightweight aggregate concrete is very low, especially the concrete made with dry lightweight concrete. The chloride permeability can be evaluated by this accelerated test method.

  13. Test Particles with Acceleration-Dependent Lagrangian

    Toller, M

    2006-01-01

    We consider a classical test particle subject to electromagnetic and gravitational fields, described by a Lagrangian depending on the acceleration and on a fundamental length. We associate to the particle a moving local reference frame and we study its trajectory in the principal fibre bundle of all the Lorentz frames. We discuss in this framework the general form of the Lagrange equations and the connection between symmetries and conservation laws (Noether theorem). We apply these results to a model, already discussed by other authors, which implies an upper bound to the proper acceleration and to another new model in which a similar quantity, called ``pseudo-acceleration'', is bounded. With some simple choices of the fields, we illustrate some other interesting properties of the models and we show that unwanted features may appear, as instable run-away solutions and unphysical values of the energy-momentum or of the velocity.

  14. Manufacturing and Testing of Accelerator Superconducting Magnets

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  15. Tests of compressed geometry acceleration tubes in the Oak Ridge 25URC tandem accelerator

    In an effort to further improve voltage performance of the Oak Ridge 25URC accelerator, the original acceleration tubes will be replaced with NEC compressed geometry acceleration tubes. In this paper, we report on tests in the 25URC accelerator of two prototype compressed geometry acceleration tube designs. One of the designs utilizes a novel aperture which provides enhanced electron and ion trapping

  16. Test Particles with Acceleration-Dependent Lagrangian

    Toller, M.

    2005-01-01

    We consider a classical test particle subject to electromagnetic and gravitational fields, described by a Lagrangian depending on the acceleration and on a fundamental length. We associate to the particle a moving local reference frame and we study its trajectory in the principal fibre bundle of all the Lorentz frames. We discuss in this framework the general form of the Lagrange equations and the connection between symmetries and conservation laws (Noether theorem). We apply these results to...

  17. BNL ACCELERATOR TEST FACILITY CONTROL SYSTEM UPGRADE.

    MALONE,R.; BEN-ZVI,I.; WANG,X.; YAKIMENKO,V.

    2001-06-18

    Brookhaven National Laboratory's Accelerator Test Facility (ATF) has embarked on a complete upgrade of its decade old computer system. The planned improvements affect every major component: processors (Intel Pentium replaces VAXes), operating system (Linux/Real-Time Linux supplants OpenVMS), and data acquisition equipment (fast Ethernet equipment replaces CAMAC serial highway.) This paper summarizes the strategies and progress of the upgrade along with plans for future expansion.

  18. Vacuum system for Advanced Test Accelerator

    Denhoy, B.S.

    1981-09-03

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10/sup -6/ torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing.

  19. Vacuum system for Advanced Test Accelerator

    The Advanced Test Accelerator (ATA) is a pulsed linear electron beam accelerator designed to study charged particle beam propagation. ATA is designed to produce a 10,000 amp 50 MeV, 70 ns electron beam. The electron beam acceleration is accomplished in ferrite loaded cells. Each cell is capable of maintaining a 70 ns 250 kV voltage pulse across a 1 inch gap. The electron beam is contained in a 5 inch diameter, 300 foot long tube. Cryopumps turbomolecular pumps, and mechanical pumps are used to maintain a base pressure of 2 x 10-6 torr in the beam tube. The accelerator will be installed in an underground tunnel. Due to the radiation environment in the tunnel, the controlling and monitoring of the vacuum equipment, pressures and temperatures will be done from the control room through a computer interface. This paper describes the vacuum system design, the type of vacuum pumps specified, the reasons behind the selection of the pumps and the techniques used for computer interfacing

  20. Accelerated aging tests of liners for uranium mill tailings disposal

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  1. Accelerated aging tests of liners for uranium mill tailings disposal

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing

  2. Stripline kicker for integrable optics test accelerator

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-01-01

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an oute...

  3. Laboratory Test of Newton's Second Law for Small Accelerations

    We have tested the proportionality of force and acceleration in Newton's second law, F=ma, in the limit of small forces and accelerations. Our tests reach well below the acceleration scales relevant to understanding several current astrophysical puzzles such as the flatness of galactic rotation curves, the Pioneer anomaly, and the Hubble acceleration. We find good agreement with Newton's second law at accelerations as small as 5x10-14 m/s2

  4. Induction accelerator test module for HIF

    An induction linac test module suitable for investigating the drive requirements and the longitudinal coupling impedance of a high-power ion induction linac has been constructed by the Heavy Ion Fusion (HIF) group at LBL. The induction linac heavy ion driver for inertial confinement fusion (ICF) as presently envisioned uses multiple parallel beams which are transported in separate focusing channels but accelerated together in the induction modules. The resulting induction modules consequently have large beam apertures-1--2 meters in diameter- and correspondingly large outside diameters. The module geometry is related to a low-frequency ''gap capacity'' and high-frequency structural resonances, which are affected by the magnetic core loading and the module pulser impedance. A description of the test module and preliminary results are presented. 3 figs

  5. Experimental evaluation of 350 MHz RF accelerator windows for the low energy demonstration accelerator

    Cummings, K.; Rees, D.; Roybal, W. [and others

    1997-09-01

    Radio frequency (RF) windows are historically a point where failure occurs in input power couplers for accelerators. To obtain a reliable, high-power, 350 MHz RF window for the Low Energy Demonstration Accelerator (LEDA) project of the Accelerator Production of Tritium program, RF windows prototypes from different vendors were tested. Experiments were performed to evaluate the RF windows by the vendors to select a window for the LEDA project. The Communications and Power, Inc. (CPI) windows were conditioned to 445 kW in roughly 15 hours. At 445 kW a window failed, and the cause of the failure will be presented. The English Electronic Valve, Inc. (EEV) windows were conditioned to 944 kW in 26 hours and then tested at 944 kW for 4 hours with no indication of problems.

  6. Accelerated Strength Testing of Thermoplastic Composites

    Reeder, J. R.; Allen, D. H.; Bradley, W. L.

    1998-01-01

    Constant ramp strength tests on unidirectional thermoplastic composite specimens oriented in the 90 deg. direction were conducted at constant temperatures ranging from 149 C to 232 C. Ramp rates spanning 5 orders of magnitude were tested so that failures occurred in the range from 0.5 sec. to 24 hrs. (0.5 to 100,000 MPa/sec). Below 204 C, time-temperature superposition held allowing strength at longer times to be estimated from strength tests at shorter times but higher temperatures. The data indicated that a 50% drop in strength might be expected for this material when the test time is increased by 9 orders of magnitude. The shift factors derived from compliance data applied well to the strength results. To explain the link between compliance and strength, a viscoelastic fracture model was investigated. The model, which used compliance as input, was found to fit the strength data only if the critical fracture energy was allowed to vary with temperature reduced stress rate. This variation in the critical parameter severely limits its use in developing a robust time-dependent strength model. The significance of this research is therefore seen as providing both the indication that a more versatile acceleration method for strength can be developed and the evidence that such a method is needed.

  7. Hurricane Isabel gives accelerators a severe test

    Hurricane Isabel was at category five--the most violent on the Saffir-Simpson scale of hurricane strength--when it began threatening the central Atlantic seaboard of the US. Over the course of several days, precautions against the extreme weather conditions were taken across the Jefferson Lab site in south-east Virginia. On 18 September 2003, when Isabel struck North Carolina's Outer Banks and moved northward, directly across the region around the laboratory, the storm was still quite destructive, albeit considerably reduced in strength. The flood surge and trees felled by wind substantially damaged or even devastated buildings and homes, including many belonging to Jefferson Lab staff members. For the laboratory itself, Isabel delivered an unplanned and severe challenge in another form: a power outage that lasted nearly three-and-a-half days, and which severely tested the robustness of Jefferson Lab's two superconducting machines, the Continuous Electron Beam Accelerator Facility (CEBAF) and the superconducting radiofrequency ''driver'' accelerator of the laboratory's free-electron laser. Robustness matters greatly for science at a time when microwave superconducting linear accelerators (linacs) are not only being considered, but in some cases already being built for projects such as neutron sources, rare-isotope accelerators, innovative light sources and TeV-scale electron-positron linear colliders. Hurricane Isabel interrupted a several-week-long maintenance shutdown of CEBAF, which serves nuclear and particle physics and represents the world's pioneering large-scale implementation of superconducting radiofrequency (SRF) technology. The racetrack-shaped machine is actually a pair of 500-600 MeV SRF linacs interconnected by recirculation arc beamlines. CEBAF delivers simultaneous beams at up to 6 GeV to three experimental halls. An imminent upgrade will double the energy to 12 GeV and add an extra hall for ''quark confinement'' studies. On a smaller scale

  8. Planck scale gravity test with accelerators

    Gharibyan, Vahagn

    2012-07-15

    Quantum or torsion gravity models predict unusual properties of space-time at very short distances. In particular, near the Planck length, around 10{sup -35} m, empty space may behave as a crystal, singly or doubly refractive. However, this hypothesis remains uncheckable for any direct measurement since the smallest distance accessible in experiment is about 10{sup -19} m at the LHC. Here I propose a laboratory test to measure the space refractivity and birefringence induced by gravity. A sensitivity from 10{sup -31} m down to the Planck length could be reached at existent GeV and future TeV energy lepton accelerators using laser Compton scattering. There are already experimental hints for gravity signature at distances approaching the Planck length by 5-7 orders of magnitude, derived from SLC and HERA data.

  9. Stripline kicker for integrable optics test accelerator

    Antipov, Sergey A.; Didenko, Alexander; Lebedev, Valeri; Valishev, Alexander

    2016-06-30

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  10. Planck scale gravity test with accelerators

    Quantum or torsion gravity models predict unusual properties of space-time at very short distances. In particular, near the Planck length, around 10-35 m, empty space may behave as a crystal, singly or doubly refractive. However, this hypothesis remains uncheckable for any direct measurement since the smallest distance accessible in experiment is about 10-19 m at the LHC. Here I propose a laboratory test to measure the space refractivity and birefringence induced by gravity. A sensitivity from 10-31 m down to the Planck length could be reached at existent GeV and future TeV energy lepton accelerators using laser Compton scattering. There are already experimental hints for gravity signature at distances approaching the Planck length by 5-7 orders of magnitude, derived from SLC and HERA data.

  11. Stripline kicker for integrable optics test accelerator

    Antipov, Sergey A; Lebedev, Valeri; Valishev, Alexander

    2016-01-01

    We present a design of a stripline kicker for Integrable Optics Test Accelerator (IOTA). For its experimental program IOTA needs two full-aperture kickers, capable to create an arbitrary controllable kick in 2D. For that reason their strengths are variable in a wide range of amplitudes up to 16 mrad, and the pulse length 100 ns is less than a revolution period for electrons. In addition, the kicker should have a physical aperture of 40 mm for a proposed operation with proton beam, and an outer size of 70 mm to fit inside existing quadrupole magnets to save space in the ring. Computer simulations using CST Microwave Studio show high field uniformity and wave impedance close to 50 {\\Omega}.

  12. Klystron pulse modulator of linear electron accelerator: test results

    Z. Zimek

    2009-12-01

    Full Text Available Purpose: The purpose of the paper is to describe Klystron pulse modulator of linear electron accelerator.Design/methodology/approach: TH-2158 klystron modulator experimental model is based on semiconductor switch HTS 181-160 FI (acceptable current load 1600 A, and voltage up to 18 kV. The results of test measurements carried out during modulator starting up period are presented in this work. TH-2158 klystron was used as a load. The klystron was connected to the second winding of the pulse HV transformer with 1:10 windings turn ratio. The examined modulator is equipped with safety shutdown circuitry for protection against current overload that may appear at IGBT switch in the case of short-circuiting happened in klystron and waveguide system.Findings: Linear electron accelerator type LAE 10/15 with electron energy 10 MeV and beam power up to 15 kW was designed and completed at Institute of Nuclear Chemistry and Technology. This accelerator was installed in facility for radiation sterilization single use medical devices, implants and tissue grafts. The standing wave accelerating section was selected. Microwave energy used for accelerating process is provided by klystron type TH-2158 working at frequency 2856 MHz.Practical implications: Described HV pulse modulator which designed and constructed for klystron TH-2158 was preliminary tested to evaluate the quality of the klystron HV and load current pulses and optimized selected component parameters. Obtained experimental results are better than those which were predicted by computer simulation method.Originality/value: Description of Klystron pulse modulator of linear electron accelerator.

  13. Accelerated testing statistical models, test plans, and data analysis

    Nelson, Wayne B

    2009-01-01

    The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "". . . a goldmine of knowledge on accelerated life testing principles and practices . . . one of the very few capable of advancing the science of reliability. It definitely belongs in every bookshelf on engineering.""-Dev G.

  14. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  15. Beam Physics of Integrable Optics Test Accelerator at Fermilab

    Nagaitsev, S.; Valishev, A.; Danilov, V. V.; Shatilov, D. N.

    2013-01-01

    Fermilab's Integrable Optics Test Accelerator is an electron storage ring designed for testing advanced accelerator physics concepts, including implementation of nonlinear integrable beam optics and experiments on optical stochastic cooling. The machine is currently under construction at the Advanced Superconducting Test Accelerator facility. In this report we present the goals and the current status of the project, and describe the details of machine design. In particular, we concentrate on ...

  16. Operation of the Brookhaven National Laboratory Accelerator Test Facility

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program

  17. Operation of the Brookhaven national laboratory accelerator test facility

    Early operation of the 50 MeV high brightness electron linac of the Accelerator Test Facility is described along with experimental data. This facility is designed to study new linear acceleration techniques and new radiation sources based on linacs in combination with free electron lasers. The accelerator utilizes a photo-excited, metal cathode, radio frequency electron gun followed by two travelling wave accelerating sections and an Experimental Hall for the study program. (Author) 5 refs., 4 figs., tab

  18. Evaluation and Tests

    ... of these tests is to assess your neurological function, including your muscle strength, how your autonomic nerves are functioning, and ... causes for neuropathy. These include tests for: Vitamin B12 and folate levels Thyroid, liver and ... evaluation Oral glucose tolerance test Antibodies to ...

  19. Virtual accelerator concept, implementation and preliminary test

    A virtual accelerator is the coupling of a simulation code with the control system of a real machine. 3 operating modes are considered. First, the monitoring mode in which any action on the control system has an impact on both real and virtual machines. This mode allows a direct comparison between simulation results and the real behaviour of the accelerator. Secondly, the flight simulation mode, this mode allows the accelerator operators to simulate the effect of any change in the parameters of the control system before transferring them to the real machine. The main advantage of this mode is to allow the assessment of operating procedures before implementing them on the real machine. The third mode is the automatic steering mode in which the simulation code assumes the reins of the control system of the real machine. This mode allows the making of complex and time-consuming adjustment procedures in an automatic way. TraceWin is a simulation code dedicated to the behaviour of charged-particle beams in a linear accelerator. TraceWin is consistent with the EPICS technology on which the control system of most accelerators is based. A virtual accelerator composed of the SILHI injector combined to the TraceWin code via the EPICS environment has showed its efficiency in the automatic steering mode. (A.C.)

  20. Accelerated lifetime testing of energy storage capacitors used in particle accelerators power converters

    AUTHOR|(SzGeCERN)679542; Genton, Charles-Mathieu

    2015-01-01

    Energy storage capacitors are used in large quantities in high power converters for particle accelerators. In this application capacitors see neither a DC nor an AC voltage but a combination of the two. The paper presents a new power converter explicitly designed to perform accelerated testing on these capacitors and the results of the tests.

  1. Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint

    Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

    2009-07-01

    Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

  2. AREAL test facility for advanced accelerator and radiation source concepts

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  3. Terrestrial Photovoltaic Module Accelerated Test-To-Failure Protocol

    Osterwald, C. R.

    2008-03-01

    This technical report documents a test-to-failure protocol that may be used to obtain quantitative information about the reliability of photovoltaic modules using accelerated testing in environmental temperature-humidity chambers.

  4. Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area (in Polish)

    Romaniuk, R S

    2013-01-01

    TIARA (Test Infrastructure and Accelerator Research Area - Preparatory Phae) is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparato...

  5. The electron test accelerator safety in design and operation

    The Electron Test Accelerator is being designed as an experiment in accelerator physics and technology. With an electron beam power of up to 200 kW the operation of the accelerator presents a severe radiation hazard as well as rf and electrical hazards. The design of the safety system provides fail-safe protection while permitting flexibility in the mode of operation and minimizing administrative controls. (auth)

  6. Beam acceleration test of the HIMAC injector

    A heavy-ion synchrotron dedicated to medical use is under construction at National Institute of Radiological Sciences. The injector system, comprising a PIG source, an ECR source, an RFQ linac, and an Alvarez linac of 100MHz, accelerates heavy ions with a charge-to-mass ratio as small as 1/7, up to 6 MeV/u. First operation of the injector system has shown satisfactory performance. (author)

  7. Accelerators for Society - TIARA 2012 Test Infrastructure and Accelerator Research Area (in Polish)

    Romaniuk, R S

    2013-01-01

    TIARA (Test Infrastructure and Accelerator Research Area - Preparatory Phae) is an European Collaboration of Accelerator Technology, which by running research projects, technical, networks and infrastructural has a duty to integrate the research and technical communities and infrastructures in the global scale of Europe. The Collaboration gathers all research centers with large accelerator infrastructures. Other ones, like universities, are affiliated as associate members. TIARA-PP (preparatory phase) is an European infrastructural project run by this Consortium and realized inside EU-FP7. The paper presents a general overview of TIARA activities, with an introduction containing a portrait of contemporary accelerator technology and a digest of its applications in modern society.

  8. An Accelerated Stress Test Method for Electrostatically Driven MEMS Devices

    Ruan, Jinyu Jason; Monnereau, Nicolas; Trémouilles, David; Mauran, Nicolas; Coccetti, Fabio; Nolhier, Nicolas; Plana, Robert

    2012-01-01

    This paper addresses an innovative solution to develop a circuit to perform accelerated stress tests of capacitive microelectromechanical-system (MEMS) switches and shows the use of instruments and equipment to monitor physical aging phenomena. A dedicated test circuit was designed and fabricated in order to meet the need for accelerated techniques for those structures. It integrated an in-house miniaturized circuit connected to additional test equipment (e.g., oscilloscopes and capacitance m...

  9. Preliminary power test on C-band accelerator

    A C-band 2 MeV standing wave accelerator is under development for engineering research on accelerator miniaturization. At present, significant progress has been achieved. The accelerating tube has been fully sealed, and the hot test platform for the accelerator has been built. At the repetition rate of 50 Hz, preliminary power test has been performed. It used the ionization chamber dose monitor to test the dose rate of X-rays at 1 m before the target, and the steel absorption method to test the energy of the electron beam. The preliminary test results show that, the beam energy is about 2.5 MeV, and the dose rate can be over 330 mGy/(min · m). (authors)

  10. Scientists confirm delay in testing new CERN particle accelerator

    2007-01-01

    "Scientists seeking to uncover the secrets of the universe will have to wait a little longer after the CERN laboratory inswitzerland on Monday confirmed a delay in tests of a massive new particle accelerator." (1 page)

  11. Development of a new accelerated salt crystallization test

    Wijffels, T.J.; Lubelli, B.A.

    2006-01-01

    TNO Built Environment and Geosciences has developed, in cooperation with other institutes in the European project Compass1, a new accelerated salt crystallization test. In this paper the design process leading to the definition of this test is described. Preliminary tests studying the influence of t

  12. Testing of high-vacuum pumps for charged particle accelerators

    To study a possibility of employing different types of pumps in charged-particle accelerators the following pumps have been tested: electric-arc, turbomolecular and cryogenic. The research has been carried out on a test bench which made it possible to determine the pumping-out rate for different gases (constant-volume methods), measure their limiting pressure and study the spectra of different gases by using mass spectrometers. It was possible also to warm up the pumps and pumped-out volumes. From these tests it was concluded that: (1) the electric-arc pump does not meet the accelerator pumping-out requirements; (2) the turbomolecular pump with a nitrogen-sorption trap can be recommended for pumping-out accelerators but requires modification of the supply unit; (3) the cryogenic pump can be recommended for pumpimg-out of accelerators but requires modification of the automatic system for replenishment of the cryogenic fluid

  13. Recent progress of the advanced test accelerator

    Prono, D.S.

    1985-05-13

    Attempts to further improve the beam brightness from field emission cathodes are currently centered on the issue of how beam optics and phase mixing within the injector transport tend to ''average down'' the beam brightness. Particle simulation work indicates that beam brightness can be significantly improved by simply reducing the injector transport magnetic field and losing peak transport current, i.e., only transporting that high brightness portion of the total current. The simulation results shown in Figure 8 suggest that beam brightness can be increased perhaps a factor of 5 or more simply by ''tuning for brightness'' rather than tuning for peak transported current. If this can indeed be experimentally realized and the resulting beam matched onto accelerator transport (magnetic and/or laser guided) without emittance degradation then simple field emission cathodes would, at least in the immediately near term, saisfy the needs for 10 micron FEL experiments. 8 refs., 8 figs.

  14. Acceleration of the LHC commissioning tests

    2008-01-01

    The quadrupole and main dipole circuits have been powered up to 10,200 amps in Sector 4-5. Sector 5-6 is currently being cooled and will be the next to undergo electrical tests, which will be stepped up over the next few weeks.

  15. A Study on the Storage Reliability of LSINS Based on Step-stress Accelerated Life Test

    Teng Fei

    2015-01-01

    Full Text Available Based on the step-stress accelerated life test and the laser strap-down inertial navigation system, this paper studies the accelerated life model and the test method, provides the likelihood function, the likelihood equation and the two-order derivative when the stress level is k, evaluates the effectiveness of the method with the simulation test model established by MATLAB, applies the research findings in the storage reliability study of the XX laser strap-down inertial navigation system, and puts forward an effective evaluation method of the storage life of the inertial navigation system.

  16. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: Load alleviation/extended span development and flight tests

    Johnston, J. F.

    1979-01-01

    Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.

  17. The Next Linear Collider test accelerator: Status and results

    At SLAC, the authors are pursuing the design of a Next Linear Collider (NLC) which would begin with a center-of-mass energy of 0.5 TeV, and would be upgradable to 1.0 TeV and beyond. To achieve this high energy, for the past several years they have been working on the development of a high-gradient 11.4-GHz (X-band) linear accelerator for the main linac of the collider. In this paper, they present the status and initial results from the ''Next Linear Collider Test Accelerator'' (NLCTA). The goal of the NLCTA is to model the high gradient linac of the NLC. It incorporates the new technologies of X-band accelerator structures, rf pulse compression systems and high-power klystrons into a 0.5 to 1.0 GeV linac which is a test bed for beam dynamics issues related to high-gradient acceleration

  18. A comparative study of accelerated tests to simulate atmospheric corrosion

    In this study, specimens coated with five organic coating systems were exposed to accelerated tests for periods up to 2000 hours, and also to weathering for two years and six months. The accelerated tests consisted of the salt spray test, according to ASTM B-117; Prohesion (ASTM G 85-98 annex 5A); Prohesion combined with cyclic exposure to UV-A radiation and condensation; 'Prohchuva' a test described by ASTM G 85-98 using a salt spray with composition that simulated the acid rain of Sao Paulo, but one thousand times more concentrated, and 'Prohchuva' combined with cyclic exposure to UV-A radiation and condensation. The coated specimens were exposed with and without incision to expose the substrate. The onset and progress of corrosion at and of the exposed metallic surface, besides coating degradation, were followed by visual observation, and photographs were taken. The coating systems were classified according to the extent of corrosion protection given to the substrate, using a method based on ASTM standards D-610, D-714, D-1654 and D-3359. The rankings of the coatings obtained from accelerated tests and weathering were compared and contrasted with classification of the same systems obtained from literature, for specimens exposed to an industrial atmosphere. Coating degradation was strongly dependent on the test, and could be attributed to differences in test conditions. The best correlation between accelerated test and weathering was found for the test Prohesion alternated with cycles of exposure to UV-A radiation and condensation. (author)

  19. The Advanced Superconducting Test Accelerator at Fermilab: Science Program

    Piot, Philippe [Fermilab; Harms, Elvin [Fermilab; Henderson, Stuart [Fermilab; Leibfritz, Jerry [Fermilab; Nagaitsev, Sergei [Fermilab; Shiltsev, Vladimir [Fermilab; Valishev, Alexander [Fermilab

    2014-07-01

    The Advanced Superconducting Test Accelerator (ASTA) currently in commissioning phase at Fermilab is foreseen to support a broad range of beam-based experiments to study fundamental limitations to beam intensity and to develop novel approaches to particle-beam generation, acceleration and manipulation. ASTA incorporates a superconducting radiofrequency (SCRF) linac coupled to a flexible high-brightness photoinjector. The facility also includes a small-circumference storage ring capable of storing electrons or protons. This report summarizes the facility capabilities, and provide an overview of the accelerator-science researches to be enabled.

  20. Testing General Relativity With Laser Accelerated Electron Beams

    Gergely, L. Á.; Harko, T.

    2012-01-01

    Electron accelerations of the order of $10^{21} g$ obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a un...

  1. Nuclear-waste-package materials degradation modes and accelerated testing

    This report reviews the materials degradation modes that may affect the long-term behavior of waste packages for the containment of nuclear waste. It recommends an approach to accelerated testing that can lead to the qualification of waste package materials in specific repository environments in times that are short relative to the time period over which the waste package is expected to provide containment. This report is not a testing plan but rather discusses the direction for research that might be considered in developing plans for accelerated testing of waste package materials and waste forms

  2. Acceleration test of heavy-ion with TIT RFQ linac

    A heavy-ion acceleration system with the TIT-RFQ has been developed. The TIT-RFQ was designed to accelerate particles with a charge to mass ratio ε ≥ 1/16, as it was, the kind of particles was limited because of the insufficient withstanding voltage of the beam injection equipment. In order to solve this problem, the development of the new system was planed, and the work has been carried out since last year. By using this system, the first acceleration of N+ beam was observed in January this year; however, the beam intensity was insufficient. Some problems were pointed out, and the synchronous circuit of a RF pulse was constructed up to now. By using this circuit, the increase of the beam intensity was observed in the second acceleration test in this summer. (author)

  3. Automatic testing of medium-frequency acceleration transducers

    An automatic test bench for medium-frequency acceleration transducers employing a method of comparison is described. The following points are discussed: the measurement possibilities of this bench in the frequency range 10Hz-10kHz and for applied acceleration levels of 1000m.s-2 or below; the transducer parameters checked; the uncertainties on the measurement of these parameters. The test procedure is described in detail and illustrated by a concrete case showing the particular form of presentation of the results

  4. Mechanical stability study for Integrable Optics Test Accelerator at Fermilab

    McGee, M. W.; Andrews, R; Carlson, K.; Leibfritz, J.; Nobrega, L.; Valishev, A.

    2016-01-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p+) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 3.96 m and (2) 3.1 m long girders with identical cross secti...

  5. High current electron linacs (advanced test accelerator/experimental test accelerator)

    The high current induction accelerator development at the Lawrence Livermore National Laboratory is described. The ATA facility is designed for 10 kA peak currents, 50 nsec pulse lengths and 50 MeV energies. At this time, half of the design current has been accelerated through the entire machine to particle energies of about 45 MeV. Current problem areas and operational experience to date will be discussed. Several key technical areas required development for the ATA machine; this report will survey these developments. The control of transverse beam instabilities required an accelerating cavity design with very low Q. Electron sources capable of 10 kA operation at high rep rates were developed using a plasma sparkboard approach. The pulse power systems on ATA, using the same type of spark gap switches as ETA, have exhibited excellent operational reliability

  6. An accelerated test method for efflorescence in clay bricks

    An investigation into the creation of accelerated efflorescence in clay bricks was undertaken with a view to creating a viable test procedure for determining efflorescence potential. The testing programme incorporated ambient conditions similar to those which promote efflorescence growth in bricks in use. Theoretical investigations into the physical mechanism underlying the creation of efflorescence directed the attempts to accelerate the process. It was found that calcium sulphate efflorescence could not be sufficiently accelerated such that a useful efflorescence test procedure could be proposed. The inability to produce accelerated efflorescence in brick samples was attributed to limitations associated with time dependent salt diffusion in the efflorescence mechanism. The preliminary testing that was undertaken into the creation of efflorescence prompted the use of acid assisted methods to accelerate efflorescence. The acid assisted method that was adopted to provide a possible indication of efflorescence potential relies upon the transformation of low solubility calcium to a more soluble form. The movement of the transformed salt is then induced by cyclic temperature exposure at temperatures similar to those experienced in Spring. The appearance of the transformed calcium salt on the surface of the brick specimen provides an indication of the efflorescence potential. Brick piers constructed on an exposed site and monitored over a 12 month period provided information on the validity of the acid assisted test method. The efflorescence observed on the piers correlated well with that predicted by the acid assisted test, suggesting that the new test has the potential to accurately predict the efflorescence potential of clay bricks Relationships between other properties such as air permeability, sorptivity and tensile strength were investigated such that an alternative method of predicting efflorescence could be achieved. It was found that (within the bounds of the

  7. Quick setup of test unit for accelerator control system

    Testing a single hardware unit of an accelerator control system often requires the setup of a program with graphical user interface. Developing a dedicated application for a specific hardware unit test could be time consuming and the application may become obsolete after the unit tests. This paper documents a methodology for quick design and setup of an interface focused on performing unit tests of accelerator equipment with minimum programming work. The method has three components. The first is a generic accelerator device object (ADO) manager which can be used to setup, store, and log testing controls parameters for any unit testing system. The second involves the design of a TAPE (Tool for Automated Procedure Execution) sequence file that specifies and implements all te testing and control logic. The sting third is the design of a PET (parameter editing tool) page that provides the unit tester with all the necessary control parameters required for testing. This approach has been used for testing the horizontal plane of the Stochastic Cooling Motion Control System at RHIC.

  8. Conductivity testing and evaluation

    Lygita Makaravičiūtė

    2015-10-01

    Full Text Available Surface wastewater is consideredas effluents, which are formed on the surface of urbanized areas. Stormwater treatment is performed out using a variety of filters: sand, grass. Wastewater penetration into the deeper layers is called hydraulic conductivity. After evaluation of the hydraulic conductivity, it is possible to determine the ability of the investigated fillers to entrap the stormwater flow. The hydraulic conductivity tests can indicate which fillers of stormwater filters may influence the more effective stormwater cleaning. Four stormwater filters were tested: crushed autoclaved aerated concrete filter; crushed autoclaved aerated concrete with Meadow grass (Poa pratensis layer; silica sand filter with Meadow grass (Poa pratensis layer; silica sand filter. Under in-situ conditions hydraulic conductivity in filters is investigated using Constant-head method. Mathematical modeling program Hydrus-1D presentsthe changes of hydraulic conductivity in each filler layer of the filter. Assessed hydraulic conductivity in filters under in-situ conditions hasn‘t changed only in crushed autoclaved aerated concrete filter (30 000 mm/d. The smallest hydraulic conductivity in filters under in-situ conditions was estimated in silica sand filter with Meadow grass (Poa pratensis layer, here it was equal to 209.3 mm/d.With mathematical modeling program Hydrus-1D it was found that the hydraulic conductivity in each filter decreases, depending on the depth of filler in the filter.

  9. The BNL Accelerator Test Facility and experimental program

    The Accelerator Test Facility (ATF) at BNL is a users' facility for experiments in Accelerator and Beam Physics. The ATF provides high brightness electron beams and high power laser pulses synchronized to the electron beam, suitable for studies of new methods of high gradient acceleration and state of the art free electron lasers. The electrons are produced by a laser photocathode rf gun and accelerated to 50 to 100 MeV by two traveling wave accelerator sections. The lasers include a 10 mJ, 10 ps Nd:YAG laser and a 100 mJ, 10 ps CO2 laser. A number of users from National Laboratories, universities and industry take part in experiments at the ATF. The experimental program includes various acceleration schemes, Free-Electron Laser experiments and a program on the development of high brightness electron beams. The AFT's experimental program commenced in early 1991 at an energy of about 4 MeV. The full program, with 50 MeV and the High power laser will begin operation this year. 28 refs., 4 figs

  10. Experience on high voltage testing and conditioning of accelerator tube for 3 MeV DC accelerator

    In DC Electron Beam Accelerator, accelerating potentials are generated using high voltage multiplier column. Accelerating potentials are uniformly graded to the accelerator tubes for accelerating the electron to attain the required energy. 3 MeV DC Accelerator is in the advance stages of commissioning at Electron Beam Centre Kharghar, Navi Mumbai. It has 10 numbers of accelerating tube each rated for 335 kVdc in 6 kg/cm2 SF6 gas environment outside and vacuum better than 10-7 mbar inside the tube. For safe and reliable operation of the accelerator, all the dynode gaps have to be conditioned and tested for high voltage withstand capability. Accelerating Tube Test Facility (ATTF) was developed for the testing and HV Conditioning of the accelerator tube. Tubes are conditioned with plasma, baking and application of ascending high Voltages. This paper describes the experience on the high voltage conditioning and testing of the accelerator tube of 3 MeV DC Accelerator. The accelerator has been successfully tested at 1 MeV and 10 kW beam power and 1.8 MeV at no load. (author)

  11. Comment on "Testing Planck-Scale Gravity with Accelerators"

    Kalaydzhyan, Tigran

    2016-01-01

    We challenge the analysis and conclusions of the paper Phys. Rev. Lett. 109, 141103 (2012) by V. Gharibyan on the tests of Planck-scale gravity with accelerators. The main objective of the Comment is the observation that the explored domain of "quantum gravity" parameters is already ruled out experimentally from, e.g., absence of the vacuum Cherenkov radiation.

  12. Step-Stress Accelerated Degradation Testing for Solar Reflectors: Preprint

    Jones, W.; Elmore, R.; Lee, J.; Kennedy, C.

    2011-09-01

    To meet the challenge to reduce the cost of electricity generated with concentrating solar power (CSP) new low-cost reflector materials are being developed including metalized polymer reflectors and must be tested and validated against appropriate failure mechanisms. We explore the application of testing methods and statistical inference techniques for quantifying estimates and improving lifetimes of concentrating solar power (CSP) reflectors associated with failure mechanisms initiated by exposure to the ultraviolet (UV) part of the solar spectrum. In general, a suite of durability and reliability tests are available for testing a variety of failure mechanisms where the results of a set are required to understand overall lifetime of a CSP reflector. We will focus on the use of the Ultra-Accelerated Weathering System (UAWS) as a testing device for assessing various degradation patterns attributable to accelerated UV exposure. Depending on number of samples, test conditions, degradation and failure patterns, test results may be used to derive insight into failure mechanisms, associated physical parameters, lifetimes and uncertainties. In the most complicated case warranting advanced planning and statistical inference, step-stress accelerated degradation (SSADT) methods may be applied.

  13. Optical fiber feasibility study in Accelerated Pavement Testing facility

    Bueche, N.; Rychen, P.; Dumont, A.-G.; Santagata, E.

    2009-01-01

    The presented research has been carried out within the European project Intelligent Roads (INTRO). The major objective followed was to assess the potential of optical fiber for pavement monitoring in comparison with classical strain gauges. Thus, both measurement devices have been tested under the same conditions in a full scale Accelerated Pavement Testing (APT) at LAVOC. This facility allows the user to control different parameters such as loading configuration and temperature and, as a mat...

  14. Free-electron laser results from the Advanced Test Accelerator

    PALADIN is a 10.6-μm FEL amplifier experiment operating at the Lawrence Livermore National Laboratory's Advanced Test Accelerator, an induction linear accelerator designed to produce a 45-MeV, 10-kA electron beam. With a 15-m long wiggler, PALADIN demonstrated 27 dB of exponential gain from a 14-kW input signal. With a 5-MW input signal, the amplifier saturated after 10 dB of gain. The exponentially growing signal in the unsaturated amplifier was clearly seen to be gain guided by the electron beam. 7 refs., 8 figs

  15. Accelerating SPICE Model-Evaluation using FPGAs

    Kapre, Nachiket; DeHon, André

    2009-01-01

    Single-FPGA spatial implementations can provide an order of magnitude speedup over sequential microprocessor implementations for data-parallel, floating-point computation in SPICE model-evaluation. Model-evaluation is a key component of the SPICE circuit simulator and it is characterized by large irregular floating-point compute graphs. We show how to exploit the parallelism available in these graphs on single-FPGA designs with a low-overhead VLIW-scheduled architecture. ...

  16. Operation of the graded-β electron test accelerator

    The Electron Test Accelerator has been built to model the behaviour of the high energy portion of a proton linear accelerator which would be suitable for breeding fissile material. The test accelerator and its control systems have been tested at 100% duty factor producing a beam of electrons at 1.5 MeV and currents up to 20 mA where the incident rf power is shared equally between the structure dissipation and the beam loading. The structure has performed satisfactorily in all respects at dissipation power densities up to 5 kW/cell where the mean energy gradient was 1.1 MeV/m. Experiments have been done on the beam loading effects in the coupling of the transmission line to the cavity, the amplitude depression in and phase tilt along the structure, and the phase lag of the structure field. The phase acceptance, the variation of transmission with buncher-accelerator phase shift and the beam energy spread are in qualitative agreement with beam dynamics calculations. (author)

  17. High-Voltage Terminal Test of Test Stand for 1-MV Electrostatic Accelerator

    Park, Sae-Hoon

    2015-01-01

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source and accelerating tube will be installed in a high-pressure vessel. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. The results of the 300-kV high-voltage terminal tests are presented in this paper.

  18. A general Bayes weibull inference model for accelerated life testing

    This article presents the development of a general Bayes inference model for accelerated life testing. The failure times at a constant stress level are assumed to belong to a Weibull distribution, but the specification of strict adherence to a parametric time-transformation function is not required. Rather, prior information is used to indirectly define a multivariate prior distribution for the scale parameters at the various stress levels and the common shape parameter. Using the approach, Bayes point estimates as well as probability statements for use-stress (and accelerated) life parameters may be inferred from a host of testing scenarios. The inference procedure accommodates both the interval data sampling strategy and type I censored sampling strategy for the collection of ALT test data. The inference procedure uses the well-known MCMC (Markov Chain Monte Carlo) methods to derive posterior approximations. The approach is illustrated with an example

  19. Next Linear Collider Test Accelerator conceptual design report

    This document presents the scientific justification and the conceptual design for the open-quotes Next Linear Collider Test Acceleratorclose quotes (NLCTA) at SLAC. The goals of the NLCTA are to integrate the new technologies of X-band accelerator structures and rf systems being developed for the Next Linear Collider, to measure the growth of the open-quotes dark currentclose quotes generated by rf field emission in the accelerator, to demonstrate multi-bunch beam-loading energy compensation and suppression of higher-order deflecting modes, and to measure any transverse components of the accelerating field. The NLCTA will be a 42-meter-long beam line consisting, consecutively, of a thermionic-cathode gun, an X-band buncher, a magnetic chicane, six 1.8-meter-long sections of 11.4-GHz accelerator structure, and a magnetic spectrometer. Initially, the unloaded accelerating gradient will be 50 MV/m. A higher-gradient upgrade option eventually would increase the unloaded gradient to 100 MV/m

  20. Mechanical stability study for Integrable Optics Test Accelerator at Fermilab

    McGee, M W; Carlson, K; Leibfritz, J; Nobrega, L; Valishev, A

    2016-01-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p+) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 3.96 m and (2) 3.1 m long girders with identical cross section completely encompass the ring. This study focuses on the 3.96 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  1. European accelerator facilities for single event effects testing

    Adams, L.; Nickson, R.; Harboe-Sorensen, R. [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W.; Berger, G.

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  2. Mechanical Stability Study for Integrable Optics Test Accelerator at Fermilab

    McGee, Mike [Fermilab; Andrews, Richard [Fermilab; Carlson, Kermit [Fermilab; Leibfritz, Jerry [Fermilab; Nobrega, Lucy [Fermilab; Valishev, Alexander [Fermilab

    2016-07-01

    The Integrable Optics Test Accelerator (IOTA) is proposed for operation at Fermilab. The goal of IOTA is to create practical nonlinear accelerator focusing systems with a large frequency spread and stable particle motion. The IOTA is a 40 m circumference, 150 MeV (e-), 2.5 MeV (p⁺) diagnostic test ring. A heavy low frequency steel floor girder is proposed as the primary tier for IOTA device component support. Two design lengths; (8) 4 m and (2) 2.8 m long girders with identical cross section completely encompass the ring. This study focuses on the 4 m length girder and the development of a working prototype. Hydrostatic Level Sensor (HLS), temperature, metrology and fast motion measurements characterize the anticipated mechanical stability of the IOTA ring.

  3. Design of Accelerated Fatigue Tests for Flame Free Refrigeration Fittings

    Wilson, Michael; Bowers, Chad D.

    2014-01-01

    Refrigerant leakage from failed braze joints is a multi-billion dollar problem for the global HVAC&R industry. Leaks are typically caused due to mechanical fatigue from extreme pressure cycling, temperature cycling including exposure to freeze/thaw cycles, or vibrational wear induced from rotating electrical machinery. Three tests to accelerate mechanical fatigue were devised to simulate real world extreme conditions to determine possible failure modes of refrigerant components. The first tes...

  4. Brookhaven Accelerator Test Facility photocathode gun and transport beamline

    We present an analysis of the electron beam emitted from a laser driven photocathode injector (Gun, operating at 2856 MHZ), through a Transport beamline, to the LINAC entrance for the Brookhaven Accelerator Test Facility (ATF). The beam parameters including beam energy, and emittance are calculated. Some of our results, are tabulated and the phase plots of the beam parameters, from Cathode, through the Transport line elements, to the LINAC entrance, are shown

  5. Development of an accelerated test for Internal Sulfate Attack study

    Khelil Nacim

    2014-04-01

    Full Text Available Internal Sulfate Attack (ISA is a pathology that occurs under certain conditions in concrete having undergone heating above 70 °C at early age (through heating in pre-casting industry or due to hydration in large concrete parts. This reaction deemed very slow, numerous methods to speed up reactions leading to delayed ettringite formation have been developed. These methods are all based on the material damage. Another type of test is currently under development. It is based on rehabilitation techniques such as electrochemical chloride extraction (ECE in order to accelerate the leaching of alkalis that could be one of the triggers of the pathology. The study presented in this paper focused on concrete specimens prepared from cement (CEM I 52.5 N enriched with Na2SO4. These concretes have undergone a heat treatment typical of those used in precast plants (up to 24 hours with a maximum temperature of 80 °C. Various paths were explored for the development of the accelerated test. The first results showed that it was necessary to use a removable titanium anode ruthenium anode instead of stainless steel embedded in the concrete. Then tests with de-ionized water as the solute to the cathode did not accelerate the onset of expansions. The experiment has been modified and potassium carbonate was added to the solution. This modification didn’t show any significant improvement, and other experiments are being carried out to explain this result.

  6. Accelerated Creep Testing of High Strength Aramid Webbing

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  7. An Asset Test of the CLIC Accelerating Structure

    Transverse wakefield suppression in the CLIC (Compact Linear Collider) multibunch accelerating structure, called the TDS (Tapered Damped Structure), is achieved primarily through heavy damping. In order to verify the performance of the TDS design and the validity of the theoretical tools used to model it, a 15 GHz version of the TDS has been constructed and tested in the ASSET facility at SLAC. The test has directly demonstrated transverse wakefield suppression of over a factor 100, with an excellent agreement between the measured and the calculated wakefield

  8. Database requirements for the Advanced Test Accelerator project

    The database requirements for the Advanced Test Accelerator (ATA) project are outlined. ATA is a state-of-the-art electron accelerator capable of producing energetic (50 million electron volt), high current (10,000 ampere), short pulse (70 billionths of a second) beams of electrons for a wide variety of applications. Databasing is required for two applications. First, the description of the configuration of facility itself requires an extended database. Second, experimental data gathered from the facility must be organized and managed to insure its full utilization. The two applications are intimately related since the acquisition and analysis of experimental data requires knowledge of the system configuration. This report reviews the needs of the ATA program and current implementation, intentions, and desires. These database applications have several unique aspects which are of interest and will be highlighted. The features desired in an ultimate database system are outlined. 3 references, 5 figures

  9. Beam loading and cavity compensation for the Ground Test Accelerator

    The Ground Test Accelerator (GTA) will be heavily beam-loaded H- linac with tight tolerances on accelerating field parameters. The methods used in modeling the effects of beam loading in this machine are described. The response of the cavity to both beam and radio-frequency (RF) drive stimulus is derived, including the effects of cavity detuning. This derivation is not restricted to a small-signal approximation. An analytical method for synthesizing a predistortion network that decouples the amplitude and phase responses of the cavity is also outline. Simulation of performance, including beam loading, is achieved through use of a control system analysis software package. A straightforward method is presented for extrapolating this work to model large coupled structures with closely spaced parasitic modes. Results to date have enabled the RF control system designs for GTA to be optimized and have given insight into their operation. 6 refs., 10 figs

  10. Precise RF control system of the SCSS test accelerator

    We present development and performance of the low-level rf control system of the SCSS test accelerator. The low-level rf system consists of IQ modulators / demodulators and VME waveform generators / digitizers. Recent improvements of them established high-resolution phase and amplitude setting capabilities of 0.01 degree and 0.01%, respectively. In addition, temperature drifts of the injector acceleration cavities were reduced by tuning a precise temperature regulation system. The temperature fluctuation was improved to be 0.01 K rms. As a result, the rf phase and amplitude stabilities of sub-harmonic buncher cavities were achieved to be 0.02 degree rms and 0.03% rms, respectively. The saturated FEL radiation in the wavelength region of 50-60 nm is stably generated by this improvement. (author)

  11. Accelerated stress testing of amorphous silicon solar cells

    Stoddard, W. G.; Davis, C. W.; Lathrop, J. W.

    1985-01-01

    A technique for performing accelerated stress tests of large-area thin a-Si solar cells is presented. A computer-controlled short-interval test system employing low-cost ac-powered ELH illumination and a simulated a-Si reference cell (seven individually bandpass-filtered zero-biased crystalline PIN photodiodes) calibrated to the response of an a-Si control cell is described and illustrated with flow diagrams, drawings, and graphs. Preliminary results indicate that while most tests of a program developed for c-Si cells are applicable to a-Si cells, spurious degradation may appear in a-Si cells tested at temperatures above 130 C.

  12. Simulations and Vacuum Tests of a CLIC Accelerating Structure

    Garion, C

    2011-01-01

    The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.

  13. Testing of accelerator dipoles in pressurized superfluid helium

    Two superconducting accelerator dipole magnets, with different internal construction features, have been tested in pressurized superfluid helium (1.8K, 1.2 atmosphere) as well as in regular pool boiling helium (4.4K, 1.2 atmosphere) helium. The coils of one magnet were moderately pre-stressed, and 4.2K design performance was rapidly achieved in the superfluid. The other magnet had very low coil pre-stress, reduced helium ventilation, and displayed degraded performance, even in the superfluid helium

  14. Metal and elastomer seal tests for accelerator applications

    The vacuum system of the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory has more than a thousand metal vacuum seals. Also, numerous elastomer seals are used throughout the AGS to seal large beam component chambers. An accelerator upgrade program is being implemented to reduce the AGS operating pressure by x100 and improve the reliability of the vacuum system. This paper describes work in progress on metal and elastomer vacuum seals to help meet those two objectives. Tests are reported on the sealing properties of a variety of metal seals used on different sealing surfaces. Results are also given on reversible sorption properties of certain elastomers. 16 refs., 6 figs., 4 tabs

  15. Accelerated aging of IG units : North American test methods

    Both Canadian and American standards have been in place for decades to determine argon gas concentration in insulating glass (IG) units. Efforts are underway to harmonize the IG standards to have acceptable test methods for the durability of IG units and to implement a single certification program for both Canada and the United States. One way to test the durability and integrity of the edge seal on IG units is to subject them to accelerated aging cycles in a controlled environment. This paper summarizes the Canadian, American and the harmonized test methods used in testing the integrity of the seal and the determination of argon gas in IG units. The Canadian standard (CAN/CGSB 12.8) encompasses the following tests: initial seal of units, initial dew point, initial argon concentration, failure analysis (water immersion test), weather cycling, volatile fogging (UV), dew point measurement after weather cycling, high humidity cycling, and final argon concentration. American ASTM E773 and ASTM E774 differ from the Canadian standard in the sequence of testing and the rating of IG units, creating problems for certification of units being shipped across the border. It was noted that adopting a single certification program for Canada and the United States would bring economic benefits to both consumers and manufacturers. 7 refs., 5 figs

  16. Advanced Vehicle Testing and Evaluation

    Garetson, Thomas [The Clarity Group, Incorporated, Chicago, IL (United States)

    2013-03-31

    The objective of the United States (U.S.) Department of Energy's (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations.Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing.

  17. Bayesian optimal design of step stress accelerated degradation testing

    Xiaoyang Li; Mohammad Rezvanizaniani; Zhengzheng Ge; Mohamed Abuali; Jay Lee

    2015-01-01

    This study presents a Bayesian methodology for de-signing step stress accelerated degradation testing (SSADT) and its application to batteries. First, the simulation-based Bayesian de-sign framework for SSADT is presented. Then, by considering his-torical data, specific optimal objectives oriented Kul back–Leibler (KL) divergence is established. A numerical example is discussed to il ustrate the design approach. It is assumed that the degrada-tion model (or process) fol ows a drift Brownian motion;the accele-ration model fol ows Arrhenius equation; and the corresponding parameters fol ow normal and Gamma prior distributions. Using the Markov Chain Monte Carlo (MCMC) method and WinBUGS software, the comparison shows that KL divergence is better than quadratic loss for optimal criteria. Further, the effect of simulation outliers on the optimization plan is analyzed and the preferred sur-face fitting algorithm is chosen. At the end of the paper, a NASA lithium-ion battery dataset is used as historical information and the KL divergence oriented Bayesian design is compared with maxi-mum likelihood theory oriented local y optimal design. The results show that the proposed method can provide a much better testing plan for this engineering application.

  18. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Renato Altobelli Antunes; Rodrigo Uchida Ichikawa; Luis Gallego Martinez; Isolda Costa

    2014-01-01

    The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron micr...

  19. Evaluating the Power of GPU Acceleration for IDW Interpolation Algorithm

    2014-01-01

    We first present two GPU implementations of the standard Inverse Distance Weighting (IDW) interpolation algorithm, the tiled version that takes advantage of shared memory and the CDP version that is implemented using CUDA Dynamic Parallelism (CDP). Then we evaluate the power of GPU acceleration for IDW interpolation algorithm by comparing the performance of CPU implementation with three GPU implementations, that is, the naive version, the tiled version, and the CDP version. Experimental resul...

  20. Cost evaluation of irradiation system with electron accelerator

    The features of electron beam irradiation system using electron accelerator are direct energy pour into the irradiated material, no third material mixture such as catalyst, suitable for mass production and easy operation and maintenance work available. These features can bring the various applications such as cross-linking action, graft polymerization, radical polymerization and others. The selection of electron accelerator ratings is made under consideration of quality, width and thickness of irradiated material, production amount, dose required for reaction and irradiation atmosphere. Especially in a case of irradiation of wire with high insulation material such as polyethylene, the consideration of maximum thickness toward irradiation direction is necessary to avoid the discharge (Lichtenberg discharge) by charged-up electrons inside insulation material. Therefore, the acceleration voltage should be selected to make the maximum penetration larger than maximum irradiation thickness. The actual model case of estimate the irradiation cost was selected that the irradiation object was polyethylene insulated wire up to AWG no.14, irradiation amount was 5,000 km/month, necessary dose was 200 kGy, operation time was 22 d/month and 8 h/day and actual operation efficiency was considered loss time such as bobbin changing as 80%. The selected ratings of electron accelerator were acceleration voltage of 800 kV, beam current of 100 mA and irradiation width of 180 cm with irradiation pulleys stand of 60 turns x 3 lanes. The initial total cost was estimated as 3 M$(US) and operation cost was evaluated as 215 k$(US). Therefore, the irradiation cost of wire was evaluated as 0.0036 $/m. (author)

  1. A study of erosion in die casting dies by a multiple pin accelerated erosion test

    Shivpuri, R.; Yu, M.; Venkatesan, K.; Chu, Y.-L.

    1995-04-01

    An accelerated erosion test was developed to evaluate the erosion resistance of die materials and coatings for die casting application. An acceleration in wear was achieved by selecting pyramid-shaped core pins, hypereutectic aluminum silicon casting alloy, high melt temperatures and high gate velocities. Multiple pin design was selected to enable multiple test sites for comparative evaluation. Apilot run was conducted on a 300 ton commercial die casting machine at various sites (pins) to verify the thermal and flow similarities. Subsequently, campaigns were run on two different 300 ton commercial die casting machines to evaluate H13 die material and different coatings for erosive resistance. Coatings and surface treatments evaluated included surface micropeening, titanium nitride, boron carbide, vanadium carbide, and metallic coatings—tungsten, molybdenum, and platinum. Recent campaigns with different melt temperatures have indicated a possible link between soldering phenomena and erosive wear. This paper presents the details of the test set up and the results of the pilot and evaluation tests.

  2. Characterization of Corrosion Products on Carbon Steel Exposed to Natural Weathering and to Accelerated Corrosion Tests

    Renato Altobelli Antunes

    2014-01-01

    Full Text Available The aim of this work was to compare the corrosion products formed on carbon steel plates submitted to atmospheric corrosion in urban and industrial atmospheres with those formed after accelerated corrosion tests. The corrosion products were characterized by X-ray diffraction, Mössbauer spectroscopy, and Raman spectroscopy. The specimens were exposed to natural weathering in both atmospheres for nine months. The morphologies of the corrosion products were evaluated using scanning electron microscopy. The main product found was lepidocrocite. Goethite and magnetite were also found on the corroded specimens but in lower concentrations. The results showed that the accelerated test based on the ASTM B117 procedure presented poor correlation with the atmospheric corrosion tests whereas an alternated fog/dry cycle combined with UV radiation exposure provided better correlation.

  3. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  4. Evaluation of modal testing methods

    Chen, J.-C.

    1984-01-01

    Modal tests are playing an increasingly important role in structural dynamics efforts which are in need of analytical model verification or trouble shootings. In the meantime, the existing modal testing methods are undergoing great changes as well as new methods are being created. Although devoted advocates of each method can be found to argue the relative advantages and disadvantages, the general superiority, if any, of one or the other is not yet evident. The Galileo spacecraft, a realistic, complex structural system, will be used as a test article for performing modal tests by various methods. The results will be used to evaluate the relative merits of the various modal testing methods.

  5. Power-conditioning system for the Advanced Test Accelerator

    The Advanced Test Accelerator (ATA) is a pulsed, linear induction, electron accelerator currently under construction and nearing completion at Lawrence Livermore National Laboratory's Site 300 near Livermore, California. The ATA is a 50 MeV, 10 kA machine capable of generating electron beam pulses at a 1 kHz rate in a 10 pulse burst, 5 pps average, with a pulse width of 70 ns FWHM. Ten 18 kV power supplies are used to charge 25 capacitor banks with a total energy storage of 8 megajoules. Energy is transferred from the capacitor banks in 500 microsecond pulses through 25 Command Resonant Charge units (CRC) to 233 Thyratron Switch Chassis. Each Thyratron Switch Chassis contains a 2.5 microfarad capacitor and is charged to 25 kV (780 joules) with voltage regulation of +- .05%. These capacitors are switched into 10:1 step-up resonant transformers to charge 233 Blumleins to 250 kV in 20 microseconds. A magnetic modulator is used instead of a Blumlein to drive the grid of the injector

  6. Cosmic acceleration without dark energy: background tests and thermodynamic analysis

    A cosmic scenario with gravitationally induced particle creation is proposed. In this model the Universe evolves from an early to a late time de Sitter era, with the recent accelerating phase driven only by the negative creation pressure associated with the cold dark matter component. The model can be interpreted as an attempt to reduce the so-called cosmic sector (dark matter plus dark energy) and relate the two cosmic accelerating phases (early and late time de Sitter expansions). A detailed thermodynamic analysis including possible quantum corrections is also carried out. For a very wide range of the free parameters, it is found that the model presents the expected behavior of an ordinary macroscopic system in the sense that it approaches thermodynamic equilibrium in the long run (i.e., as it nears the second de Sitter phase). Moreover, an upper bound is found for the Gibbons–Hawking temperature of the primordial de Sitter phase. Finally, when confronted with the recent observational data, the current 'quasi'-de Sitter era, as predicted by the model, is seen to pass very comfortably the cosmic background tests

  7. Remote control circuit breaker evaluation testing. [for space shuttles

    Bemko, L. M.

    1974-01-01

    Engineering evaluation tests were performed on several models/types of remote control circuit breakers marketed in an attempt to gain some insight into their potential suitability for use on the space shuttle vehicle. Tests included the measurement of several electrical and operational performance parameters under laboratory ambient, space simulation, acceleration and vibration environmental conditions.

  8. A flexible and configurable system to test accelerator magnets

    Jerzy M. Nogiec et al.

    2001-07-20

    Fermilab's accelerator magnet R and D programs, including production of superconducting high gradient quadrupoles for the LHC insertion regions, require rigorous yet flexible magnetic measurement systems. Measurement systems must be capable of handling various types of hardware and extensible to all measurement technologies and analysis algorithms. A tailorable software system that satisfies these requirements is discussed. This single system, capable of distributed parallel signal processing, is built on top of a flexible component-based framework that allows for easy reconfiguration and run-time modification. Both core and domain-specific components can be assembled into various magnet test or analysis systems. The system configured to comprise a rotating coil harmonics measurement is presented. Technologies as Java, OODB, XML, JavaBeans, software bus and component-based architectures are used.

  9. Linear Accelerator Test Facility at LNF Conceptual Design Report

    Valente, Paolo; Bolli, Bruno; Buonomo, Bruno; Cantarella, Sergio; Ceccarelli, Riccardo; Cecchinelli, Alberto; Cerafogli, Oreste; Clementi, Renato; Di Giulio, Claudio; Esposito, Adolfo; Frasciello, Oscar; Foggetta, Luca; Ghigo, Andrea; Incremona, Simona; Iungo, Franco; Mascio, Roberto; Martelli, Stefano; Piermarini, Graziano; Sabbatini, Lucia; Sardone, Franco; Sensolini, Giancarlo; Ricci, Ruggero; Rossi, Luis Antonio; Rotundo, Ugo; Stella, Angelo; Strabioli, Serena; Zarlenga, Raffaele

    2016-01-01

    Test beam and irradiation facilities are the key enabling infrastructures for research in high energy physics (HEP) and astro-particles. In the last 11 years the Beam-Test Facility (BTF) of the DA{\\Phi}NE accelerator complex in the Frascati laboratory has gained an important role in the European infrastructures devoted to the development and testing of particle detectors. At the same time the BTF operation has been largely shadowed, in terms of resources, by the running of the DA{\\Phi}NE electron-positron collider. The present proposal is aimed at improving the present performance of the facility from two different points of view: extending the range of application for the LINAC beam extracted to the BTF lines, in particular in the (in some sense opposite) directions of hosting fundamental physics and providing electron irradiation also for industrial users; extending the life of the LINAC beyond or independently from its use as injector of the DA{\\Phi}NE collider, as it is also a key element of the electron/...

  10. Tests for evaluating the physiological quality of pitaya seeds

    Thiago Alberto Ortiz; Aline Moritz; Lúcia Sadayo Assari Takahashi; Mariana Ragassi Urbano

    2015-01-01

    Germination test is used to assess the physiological quality of seeds; however, since it is carried out under ideal conditions, this test has not been shown sufficient for this purpose. Instead, it is possible to use vigor tests, although the lack of standardized methodologies has reduced their applicability and reproducibility. Thus, this study aimed to develop methodologies for conducting tests of germination, accelerated aging, and electrical conductivity for the evaluation of the physiolo...

  11. Development of an accelerated aging method for evaluation of long-term irradiation effects on UHMWPE implants

    A general scheme for developing an accelerated aging method for irradiated biomaterials is proposed. Using UHMWPE implants as an example, an accelerated thermal diffusion oxidative aging (ATDOA) method has been developed. The method requires an optimum initial heating rate and an optimum aging temperature to accelerate oxidation reactions. Based upon oxidation-induced material property changes (crystallinity by DSC, tensile properties by ASTM D638 tensile test, and oxidation index by FTIR), correlations between accelerated aging time, shelf aging time, and implantation time can be obtained. The new ATDOA method allows a rapid evaluation of long-term irradiation effects on the material properties of UHMWPE implants

  12. Life evaluation of insulating materials for electric cable by accelerated thermal-radiation combined aging. 2

    Radiation-and-thermal-combined degradation of some kinds of cable insulating and jacketing materials was evaluated by accelerated aging tests. Plasticized polyvinyl chloride (PVC), silicone rubber, crosslinked and non-crosslinked halogen-free flame-retardant polyolefins (NH-XLPO and NH-PO) and ethylene-propylene rubber (EP rubber) of experimental formulation were degraded at accelerated rates, that are 50-1000 times the degradation rate under standard conditions (e.g.; 1Gy/h, 50degC), and a method to assess the lifetime of these materials under standard conditions was studied. The degradation was investigated by measuring tensile properties. In the accelerated aging tests, rates of elongation decrease owing to degradation for these materials were in proportion to the increase in accelerated rate. The PVC lifetime estimated from sequential aging tests had a tendency to extend beyond that from simultaneous aging tests, while the lifetime of other materials estimated from both aging tests were coincident. Furthermore, the influence of antioxidant on the degradation in EP rubber under radiation-and-thermal combined condition was studied. A lifetime estimated for EP rubber improved γ-radiation resistance with a certain anti-oxidant extended remarkably even under such condition. (J.P.N.)

  13. Advanced Beamline Design for Fermilab's Advanced Superconducting Test Accelerator

    Prokop, Christopher [Northern Illinois Univ., DeKalb, IL (United States)

    2014-01-01

    The Advanced Superconducting Test Accelerator (ASTA) at Fermilab is a new electron accelerator currently in the commissioning stage. In addition to testing superconducting accelerating cavities for future accelerators, it is foreseen to support a variety of Advanced Accelerator R&D (AARD) experiments. Producing the required electron bunches with the expected flexibility is challenging. The goal of this dissertation is to explore via numerical simulations new accelerator beamlines that can enable the advanced manipulation of electron bunches. The work especially includes the design of a low-energy bunch compressor and a study of transverse-to-longitudinal phase space exchangers.

  14. Beam test of multi-bunch energy compensation system in the accelerator test facility at KEK

    A beam test of the multi-bunch energy compensation system (ECS) was performed using the ΔF method with the 2856±4.327 HMz accelerating structures in the accelerator test facility (ATF) at KEK. The 1.54 GeV S-band linac of the ATF was designed to accelerate a multi-bunch beam the consists of 20 bunches with 2.8 ns spacing. The multi-bunch beam with 2.0 x 1010 electrons/bunch has an energy deviation of about 8.5% at the end of the linac due to transient beam loading without ECS. The ATF linac is the injector of the ATF damping ring (DR), whose energy acceptance is ±0.5%. The beam loading compensation system is necessary in the ATF linac for the successful injection of multi-bunch into DR. The rf system of the linac consists of 8 regular rf units with the SLED system and 2 ECS rf units without the SLED system. The accelerating structures of the regular units are driven at 2856 MHz and the 2 ECS structures are operated with slightly different rf frequencies of 2856±4.327 MHz. In the beam test, we have succeeded in compressing the multi-bunch energy spread within the energy acceptance of the DR using ΔF ECS. The principle of the beam loading compensation system of KEK-ATF and the experimental results are described in this paper. (author)

  15. Accelerated atmospheric corrosion testing of electroplated gold mirror coatings

    Chu, C.-T.; Alaan, D. R.; Taylor, D. P.

    2010-08-01

    Gold-coated mirrors are widely used in infrared optics for industrial, space, and military applications. These mirrors are often made of aluminum or beryllium substrates with polished nickel plating. Gold is deposited on the nickel layer by either electroplating or vacuum deposition processes. Atmospheric corrosion of gold-coated electrical connectors and contacts was a well-known problem in the electronic industry and studied extensively. However, there is limited literature data that correlates atmospheric corrosion to the optical properties of gold mirror coatings. In this paper, the atmospheric corrosion of different electroplated gold mirror coatings were investigated with an accelerated mixed flowing gas (MFG) test for up to 50 days. The MFG test utilizes a combination of low-level air pollutants, humidity, and temperatures to achieve a simulated indoor environment. Depending on the gold coating thickness, pore corrosion started to appear on samples after about 10 days of the MFG exposure. The corrosion behavior of the gold mirror coatings demonstrated the porous nature of the electroplated gold coatings as well as the variation of porosity to the coating thickness. The changes of optical properties of the gold mirrors were correlated to the morphology of corrosion features on the mirror surface.

  16. Maintenance proficiency evaluation test bank

    The Maintenance Proficiency Evaluation Test Bank (MPETB) is an Electric Power Research Institute- (EPRJ-) operated, utility-sponsored means of developing, maintaining, and disseminating secure, high-quality written and performance maintenance proficiency tests. EPRTs charter is to ensure that all tests and test items that go into the Test Bank have been validated, screened for reliability, and evaluated to high standards of psychometric excellence. Proficiency tests of maintenance personnel.(mechanics, electricians, and instrumentation and control [I and C] technicians) are most often used to determine if an experienced employee is capable of performing maintenance tasks without further training. Such tests provide objective evidence for decisions to exempt an employee from what, for the employee, is unnecessary training. This leads to considerable savings in training costs and increased productivity because supervisors can assign personnel to tasks at which their competence is proven. The ultimate objective of proficiency evaluation is to ensure that qualified maintenance personnel are available to meet the maintenance requirements of the plant Numerous task-specific MPE tests (both written and performance) have been developed and validated using the EPRI MPE methodology by the utilities participating in the MPETB project A task-specific MPE consists of a multiple-choice written examination and a multi-step performance evaluation that can be used to assess an individual's present knowledge and skill level for a given maintenance task. The MPETB contains MPEs and test items for the mechanical, electrical, and I and C classifications that are readily available to participating utilities. Presently, utilities are placing emphasis on developing MPEs to evaluate outage-related maintenance tasks that demonstrate the competency and qualifications of plant and contractor personnel before the start of outage work. Utilities are also using the MPE methodology and process to

  17. Accelerator

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  18. 15-16 MeV electron linear accelerators for nondestructive testing

    15-16 MeV electron linear accelerators for nondestructive testing (ND) are described. The accelerators are intended for ND of the articles with great thickness by means of radiographic, introscopic and tomographic methods. Main characteristics of these accelerators are presented. The automatic control system based on the PC compatible controllers is described in details

  19. Demonstration recommendations for accelerated testing of concrete decontamination methods

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are 137Cs, 238U (and its daughters), 60Co, 90Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 x 108 ft2or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling

  20. LeRC rail accelerators: test designs and diagnostic techniques

    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed. 15 references

  1. Status and plans for a SRF accelerator test faciliy at Fermilab

    Leibfritz, J.; R. Andrews; Carlson, K.; Chase, B.; Church, M.; HARMS, E.; Klebaner, A.; Kucera, M.; Lackey, S.; Martinez, A.; Nagaitsev, S.; Nobrega, L.; Piot, P; Reid, J; Wendt, M

    2012-01-01

    A superconducting RF accelerator test facility is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of gen...

  2. Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)

    Lee, J.; Elmore, R.; Suh, C.; Jones, W.

    2010-10-01

    Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

  3. Evaluation of DNB test repeatability

    The repeatability of DNB tests was evaluated by carrying out DNB runs at the same conditions in two different test sections. The resulting matched pairs of DNB runs were then subjected to an extensive statistical analysis. This analysis indicates that individual runs using different test sections are repeatable within approximately 8 percent, and that the means of two different data sets should fall within approximately 2 percent of each other. The repeatability within a set, i.e., from the same test section, was found to be approximately 6.4 percent. An evaluation of the uncertainties by analysis of errors inherent in geometrical and physical parameters results in an estimated set-to-set repeatability for an individual run of 7.6 percent which is in good agreement with the 8 percent error found in the data analysis. For repeatability of an individual run within a set, 6.8 percent was estimated from the test parameters, compared to 6.4 percent determined by data analysis. (U.S.)

  4. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  5. Progress on High Power Tests of Dielectric-Loaded Accelerating Structures

    Jing, Chunguang; Gold, Steven H; Kinkead, Allen; Konecny, Richard; Power, John G

    2005-01-01

    This paper presents a progress report on a series of high-power rf experiments that were carried out to evaluate the potential of the Dielectric-Loaded Accelerating (DLA) structure for high-gradient accelerator operation. Since the last PAC meeting in 2003, we have tested DLA structures loaded with two different ceramic materials: Alumina (Al2O3) and MCT (MgxCa1-xTiO3). The alumina-based DLA experiments have concentrated on the effects of multipactor in the structures under high-power operation, and its suppression using TiN coatings, while the MCT experiments have investigated the dielectric joint breakdown observed in the structures due to local field enhancement. In both cases, physical models have been set up, and the potential engineering solutions are being investigated.

  6. Status and plans for a SRF accelerator test faciliy at Fermilab

    Leibfritz, J; Carlson, K; Chase, B; Church, M; Harms, E; Klebaner, A; Kucera, M; Lackey, S; Martinez, A; Nagaitsev, S; Nobrega, L; Piot, P; Reid, J; Wendt, M; Wesseln, S

    2012-01-01

    A superconducting RF accelerator test facility is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. Expansion plans of the facility are underway that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. In addition to testing accelerator components, this facility will be used to test RF power equipment, instrumentation, LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  7. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  8. Test of pixel detectors for laser-driven accelerated particle beams

    Laser-driven accelerated (LDA) particle beams have due to the unique acceleration process very special properties. In particular they are created in ultra-short bunches of high intensity exceeding more than 107 (particles)/cm2·ns per bunch. Characterization of these beams is very limited with conventional particle detectors. Non-electronic detectors such as imaging plates or nuclear track detectors are, therefore, conventionally used at present. Moreover, all these detectors give only offline information about the particle pulse position and intensity as they require minutes to hours to be processed, calling for a new highly sensitive online device. Here, we present tests of different pixel detectors for real time detection of LDA ion pulses. Experiments have been performed at the Munich 14MV Tandem accelerator with 8–20 MeV protons in dc and pulsed beam, the latter producing comparable flux as a LDA ion pulse. For detection tests we chose the position-sensitive quantum-counting semiconductor pixel detector Timepix which also provides per-pixel energy- or time-sensitivity. Additionally other types of commercially available pixel detectors are being evaluated such as the RadEye™1, a large area (25 x 50 mm2) CMOS image sensor. All of these devices are able to resolve individual ions with high spatial- and energy-resolution down to the level of μm and tens of keV, respectively. Various beam delivering parameters of the accelerator were thus evaluated and verified. The different readout modes of the Timepix detector which is operated with an integrated USB-based readout interface allow online visualization of single and time-integrated events. Therefore Timepix offers the greatest potential in analyzing the beam parameters.

  9. Operational status of the Brookhaven National Laboratory Accelerator Test Facility

    Initial design parameters and early operational results of a 50 MeV high brightness electron linear accelerator are described. The system utilizes a radio frequency electron gun operating at a frequency of 2.856 GHz and a nominal output energy of 4.5 MeV followed by two, 2π/3 mode, disc loaded, traveling wave accelerating sections. The gun cathode is photo excited with short (6 psec) laser pulses giving design peak currents of a few hundred amperes. The system will be utilized to carry out infra-red FEL studies and investigation of new high gradient accelerating structures

  10. Rapid estimation of lives of deficient superpave mixes and laboratory-based accelerated mix testing models

    Manandhar, Chandra Bahadur

    The engineers from the Kansas Department of Transportation (KDOT) often have to decide whether or not to accept non-conforming Superpave mixtures during construction. The first part of this study focused on estimating lives of deficient Superpave pavements incorporating nonconforming Superpave mixtures. These criteria were based on the Hamburg Wheel-Tracking Device (HWTD) test results and analysis. The second part of this study focused on developing accelerated mix testing models to considerably reduce test duration. To accomplish the first objective, nine fine-graded Superpave mixes of 12.5-mm nominal maximum aggregate size (NMAS) with asphalt grade PG 64-22 from six administrative districts of KDOT were selected. Specimens were prepared at three different target air void levels Ndesign gyrations and four target simulated in-place density levels with the Superpave gyratory compactor. Average number of wheel passes to 20-mm rut depth, creep slope, stripping slope, and stripping inflection point in HWTD tests were recorded and then used in the statistical analysis. Results showed that, in general, higher simulated in-place density up to a certain limit of 91% to 93%, results in a higher number of wheel passes until 20-mm rut depth in HWTD tests. A Superpave mixture with very low air voids Ndesign (2%) level performed very poorly in the HWTD test. HWTD tests were also performed on six 12.5-mm NMAS mixtures with air voids Ndesign of 4% for six projects, simulated in-place density of 93%, two temperature levels and five load levels with binder grades of PG 64-22, PG 64-28, and PG 70-22. Field cores of 150-mm in diameter from three projects in three KDOT districts with 12.5-mm NMAS and asphalt grade of PG 64-22 were also obtained and tested in HWTD for model evaluation. HWTD test results indicated as expected. Statistical analysis was performed and accelerated mix testing models were developed to determine the effect of increased temperature and load on the duration of

  11. Optical system for measurement of pyrotechnic test accelerations

    Lieberman, Paul; Czajkowski, John; Rehard, John

    1992-12-01

    This effort was directed at comparing the response of several different accelerometer and amplifier combinations to the pyrotechnic pulse simulating the ordnance separation of stages of multistage missiles. These pyrotechnic events can contain peak accelerations in excess of 100,000 G and a frequency content exceeding 100,000 Hz. The main thrust of this work was to compare the several accelerometer systems with each other and with a very accurate laser Doppler displacement meter in order to establish the frequency bands and acceleration amplitudes where the accelerometer systems are in error. The comparisons were made in simple sine-wave and low-acceleration amplitude environments, as well as in very severe pyroshock environments. An optical laser Doppler displacement meter (LDDM) was used to obtain the displacement velocity and acceleration histories, as well as the corresponding shock spectrum.

  12. Acceleration test of heavy ion RFQ linac at TIT

    An 80 MHz heavy ion RFQ Linac at Tokyo Institute of Technology (TIT) was constructed for researches on inertial fusion and plasma experiments. The first acceleration was accomplished with low intensity He+ ion beam in 1993. This four vane type RFQ accelerates particles with charge to mass ratio (q/A) of 1/16 from 5 keV/amu to 214 keV/amu. Two-dimensional (2D) machining was applied for cutting of the RFQ vane-tips. The vane parameters for the RFQ were optimized considering the effects of multipole components at inter-vane field. In order to increase the acceleration efficiency synchronous phase was gradually raised from -30 degrees to -20 degrees at the open-quotes accelerator sectionclose quotes. The beam transmission is expected to be 68.4% for the beam current of 10 mA. Details of the RFQ tuning and performance will be reported

  13. Evaluation of slice accelerations using multiband echo planar imaging at 3 Tesla

    Xu, Junqian; Moeller, Steen; Auerbach, Edward J.; Strupp, John; Stephen M Smith; Feinberg, David A.; Yacoub, Essa; Uğurbil, Kâmil

    2013-01-01

    We evaluate residual aliasing among simultaneously excited and acquired slices in slice accelerated multiband (MB) echo planar imaging (EPI). No in-plane accelerations were used in order to maximize and evaluate achievable slice acceleration factors at 3 Tesla. We propose a novel leakage (L-) factor to quantify the effects of signal leakage between simultaneously acquired slices. With a standard 32-channel receiver coil at 3 Tesla, we demonstrate that slice acceleration factors of up to eight...

  14. Accelerated stability testing of organic photovoltaics using concentrated sunlight

    Katz, Eugene A.; Manor, Assaf; Mescheloff, Asaf;

    2012-01-01

    We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported.......We suggest to use concentrated sunlight for accelerated studies of light-induced mechanisms in the degradation of organic photovoltaics (OPV) based on the polymer (P3HT)/fullerene (PCBM) bulk heterojunctions. Two particular cases of the degradation are reported....

  15. Acceleration test of heavy ion RFQ linac at TIT

    An 80 MHz heavy ion RFQ linac at Tokyo Institute of Technology (TIT) has been constructed for research on inertial fusion and plasma experiments. Equipment for beam acceleration has been fabricated and assembled to confirm the performance with low currents of the RFQ. The linac successfully accelerated He+ and C2+ ion beams to their final energies of 219 keV/u. The obtained beam transmission was more than 89% with currents of a few tens μA. (orig.)

  16. Evaluating the Power of GPU Acceleration for IDW Interpolation Algorithm

    Gang Mei

    2014-01-01

    Full Text Available We first present two GPU implementations of the standard Inverse Distance Weighting (IDW interpolation algorithm, the tiled version that takes advantage of shared memory and the CDP version that is implemented using CUDA Dynamic Parallelism (CDP. Then we evaluate the power of GPU acceleration for IDW interpolation algorithm by comparing the performance of CPU implementation with three GPU implementations, that is, the naive version, the tiled version, and the CDP version. Experimental results show that the tilted version has the speedups of 120x and 670x over the CPU version when the power parameter p is set to 2 and 3.0, respectively. In addition, compared to the naive GPU implementation, the tiled version is about two times faster. However, the CDP version is 4.8x∼6.0x slower than the naive GPU version, and therefore does not have any potential advantages in practical applications.

  17. Evaluating the power of GPU acceleration for IDW interpolation algorithm.

    Mei, Gang

    2014-01-01

    We first present two GPU implementations of the standard Inverse Distance Weighting (IDW) interpolation algorithm, the tiled version that takes advantage of shared memory and the CDP version that is implemented using CUDA Dynamic Parallelism (CDP). Then we evaluate the power of GPU acceleration for IDW interpolation algorithm by comparing the performance of CPU implementation with three GPU implementations, that is, the naive version, the tiled version, and the CDP version. Experimental results show that the tilted version has the speedups of 120x and 670x over the CPU version when the power parameter p is set to 2 and 3.0, respectively. In addition, compared to the naive GPU implementation, the tiled version is about two times faster. However, the CDP version is 4.8x ∼ 6.0x slower than the naive GPU version, and therefore does not have any potential advantages in practical applications. PMID:24707195

  18. Framework for a Comparative Accelerated Testing Standard for PV Modules: Preprint

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.; Miller, D.; Meakin, D.; Monokroussos, C.; TamizhMani, M.; Kempe, M.; Jordan, D.; Bosco, N.; Hacke, P.; Bermudez, V.; Kondo, M.

    2013-08-01

    As the photovoltaic industry has grown, the interest in comparative accelerated testing has also grown. Private test labs offer testing services that apply greater stress than the standard qualification tests as tools for differentiating products and for gaining increased confidence in long-term PV investments. While the value of a single international standard for comparative accelerated testing is widely acknowledged, the development of a consensus is difficult. This paper strives to identify a technical basis for a comparative standard.

  19. Lifetime Testing 700 MHz RF Windows for the Accelerator Production of Tritium Program

    Cummings, K.A.; Borrego, M. D.; DeBaca, J.; Harrison, J S; Rodriguez, M. B.; Roybal, D. M.; Roybal, W. T.; Ruggles, S. C.; Torrez, P. A.; White, G. D.

    2000-01-01

    Radio frequency (RF) windows are historically a point where failure occurs in input-power couplers for accelerators. To understand more about the reliability of high power RF windows, lifetime testing was done on 700 MHz coaxial RF windows for the Low Energy Demonstration Accelerator (LEDA) project of the Accelerator Production of Tritium (APT) program. The RF windows, made by Marconi Applied Technologies (formerly EEV), were tested at 800 kW for an extended period of time. Changes in the ref...

  20. Session: Test and Evaluation (Presentation)

    Marion, B.; Hanley, C.

    2008-04-01

    The overall goal of this presentation is: (1) provide test and evaluation of PV cells/modules/systems to TPP participants, other PV industry, labs, and universities in support of technology optimization efforts sponsored by DOE's Solar Program and the SAI; (2) support commercial and emerging technology development; (3) provide component and system performance data to improve and validate system performance models; (4) provide T and E support for reliability activities; and (5) priority is placed on TPP's and other solicitations.

  1. STATISTICAL INFERENCE OF WEIBULL DISTRIBUTION FOR TAMPERED FAILURE RATE MODEL IN PROGRESSIVE STRESS ACCELERATED LIFE TESTING

    WANG Ronghua; FEI Heliang

    2004-01-01

    In this note, the tampered failure rate model is generalized from the step-stress accelerated life testing setting to the progressive stress accelerated life testing for the first time. For the parametric setting where the scale parameter satisfying the equation of the inverse power law is Weibull, maximum likelihood estimation is investigated.

  2. Evaluating the RELM Test Results

    Michael K. Sachs

    2012-01-01

    Full Text Available We consider implications of the Regional Earthquake Likelihood Models (RELM test results with regard to earthquake forecasting. Prospective forecasts were solicited for M≥4.95 earthquakes in California during the period 2006–2010. During this period 31 earthquakes occurred in the test region with M≥4.95. We consider five forecasts that were submitted for the test. We compare the forecasts utilizing forecast verification methodology developed in the atmospheric sciences, specifically for tornadoes. We utilize a “skill score” based on the forecast scores λfi of occurrence of the test earthquakes. A perfect forecast would have λfi=1, and a random (no skill forecast would have λfi=2.86×10-3. The best forecasts (largest value of λfi for the 31 earthquakes had values of λfi=1.24×10-1 to λfi=5.49×10-3. The best mean forecast for all earthquakes was λ̅f=2.84×10-2. The best forecasts are about an order of magnitude better than random forecasts. We discuss the earthquakes, the forecasts, and alternative methods of evaluation of the performance of RELM forecasts. We also discuss the relative merits of alarm-based versus probability-based forecasts.

  3. Development of laboratory acceleration test method for service life prediction of concrete structures

    Service life prediction of nuclear power plants depends on the application of history of structures, field inspection and test, the development of laboratory acceleration tests, their analysis method and predictive model. In this study, laboratory acceleration test method for service life prediction of concrete structures and application of experimental test results are introduced. This study is concerned with environmental condition of concrete structures and is to develop the acceleration test method for durability factors of concrete structures e.g. carbonation, sulfate attack, freeze-thaw cycles and shrinkage-expansion etc

  4. Test and Evaluation of Autonomous Ground Vehicles

    Yang Sun; Guangming Xiong; Weilong Song; Jianwei Gong; Huiyan Chen

    2014-01-01

    A preestablished test and evaluation system will benefit the development of autonomous ground vehicles. This paper proposes a design method for a scientific and comprehensive test and evaluation system for autonomous ground vehicles competitions. It can better guide and regulate the development of China’s autonomous ground vehicles. The test and evaluation system includes the test contents, the test environment, the test methods, and the evaluation methods. Using a hierarchical design approac...

  5. Integrated Vibration and Acceleration Testing to Reduce Payload Mass, Cost and Mission Risk Project

    National Aeronautics and Space Administration — We propose to develop a capability to provide integrated acceleration, vibration, and shock testing using a state-of-the-art centrifuge, allowing for the test of...

  6. Experimental test accelerator: description and results of initial experiments

    The ETA is a high current (10,000 Amp) linear induction accelerator that produces short (30 ns) pulses of electrons at 5 MeV twice per second or in bursts of 5 pulses separated by as little as one millisecond. At this time the machine has operated at 65% of its design current and 90% of the design voltage. This report contains a description of the accelerator and its diagnostics; the results of the initial year of operation; a comparison of design codes with experiments on beam transport; and a discussion of some of the special problems and their status

  7. Evaluation of Experimental Parameters in the Accelerated Aging of Closed-Cell Foam Insulation

    Stovall, Therese K [ORNL; Vanderlan, Michael [ORNL; Atchley, Jerald Allen [ORNL

    2012-12-01

    The thermal conductivity of many closed-cell foam insulation products changes over time as production gases diffuse out of the cell matrix and atmospheric gases diffuse into the cells. Thin slicing has been shown to be an effective means of accelerating this process in such a way as to produce meaningful results. Efforts to produce a more prescriptive version of the ASTM C1303 standard test method led to the ruggedness test described here. This test program included the aging of full size insulation specimens for time periods of five years for direct comparison to the predicted results. Experimental parameters under investigation include: slice thickness, slice origin (at the surface or from the core of the slab), thin slice stack composition, product facings, original product thickness, product density, and product type. The test protocol has been completed and this report provides a detailed evaluation of the impact of the test parameters on the accuracy of the 5-year thermal conductivity prediction.

  8. Carbon ion and high intensity acceleration test of TIT heavy ion RFQ linac

    The RFQ Linac at Tokyo Institute of Technology (TIT-RFQ) was constructed and acceleration test of ion beams 4He+ and 12C2+ was performed. The linac was designed to accelerate particles with charge to mass ratio(q/A) of 1-1/16 injected at 5 keV/u up to 214 keV/u. As the result of acceleration test, beam transmission was 89% for a low beam current. It is nearly design data 91% and the acceleration characteristic agrees well with a computer simulation. (author)

  9. Life Prediction of DC Motor using Time Series Analysis based on Accelerated Degradation Testing

    Li Wang

    2013-12-01

    Full Text Available This study presents a method of life prediction for DC motor using time series modeling procedure based on DC motor accelerated degradation testing data. DC motor accelerated degradation data are treated as time series and stochastic process are utilized to describe the degradation process for life prediction. An accelerated degradation test is processed for DC motor until they failed and the accelerated degradation data are collected for life prediction. A comparison between the predicted lifetime and the real lifetime of DC motors is processed and the results show that the life prediction of DC motors using time series analysis is effective.

  10. Estimation in Step-Stress Accelerated Life Tests for Power Generalized Weibull Distribution with Progressive Censoring

    M. M. Mohie EL-Din

    2015-01-01

    Full Text Available Based on progressive censoring, step-stress partially accelerated life tests are considered when the lifetime of a product follows power generalized Weibull distribution. The maximum likelihood estimates (MLEs and Bayes estimates (BEs are obtained for the distribution parameters and the acceleration factor. In addition, the approximate and bootstrap confidence intervals (CIs of the estimators are presented. Furthermore, the optimal stress change time for the step-stress partially accelerated life test is determined by minimizing the asymptotic variance of MLEs of the model parameters and the acceleration factor. Simulation results are carried out to study the precision of the MLEs and BEs for the parameters involved.

  11. Long-term storage life of light source modules by temperature cycling accelerated life test

    Light source modules are the most crucial and fragile devices that affect the life and reliability of the interferometric fiber optic gyroscope (IFOG). While the light emitting chips were stable in most cases, the module packaging proved to be less satisfactory. In long-term storage or the working environment, the ambient temperature changes constantly and thus the packaging and coupling performance of light source modules are more likely to degrade slowly due to different materials with different coefficients of thermal expansion in the bonding interface. A constant temperature accelerated life test cannot evaluate the impact of temperature variation on the performance of a module package, so the temperature cycling accelerated life test was studied. The main failure mechanism affecting light source modules is package failure due to solder fatigue failure including a fiber coupling shift, loss of cooling efficiency and thermal resistor degradation, so the Norris-Landzberg model was used to model solder fatigue life and determine the activation energy related to solder fatigue failure mechanism. By analyzing the test data, activation energy was determined and then the mean life of light source modules in different storage environments with a continuously changing temperature was simulated, which has provided direct reference data for the storage life prediction of IFOG. (semiconductor devices)

  12. Comparative field evaluation of vehicle cruise speed and acceleration level impacts on hot stabilized emissions

    The main objectives of this paper are two fold. First, the paper evaluates the impact of vehicle cruise speed and acceleration levels on vehicle fuel-consumption and emission rates using field data gathered under real-world driving conditions. Second, it validates the VT-Micro model for the modeling of real-world conditions. Specifically, an on-board emission-measurement device was used to collect emissions of oxides of nitrogen, hydrocarbons, carbon monoxide, and carbon dioxide using a light-duty test vehicle. The analysis demonstrates that vehicle fuel-consumption and emission rates per-unit distance are optimum in the range of 60-90 km/h, with considerable increase outside this optimum range. The study demonstrates that as the level of aggressiveness for acceleration maneuvers increases, the fuel-consumption and emission rates per maneuver decrease because the vehicle spends less time accelerating. However, when emissions are gathered over a sufficiently long fixed distance, fuel-consumption and mobile-source emission rates per-unit distance increase as the level of acceleration increases because of the history effects that accompany rich-mode engine operations. In addition, the paper demonstrates the validity of the VT-Micro framework for modeling steady-state vehicle fuel-consumption and emission behavior. Finally, the research demonstrates that the VT-Micro framework requires further refinement to capture non-steady-state history behavior when the engine operates in rich mode. (Author)

  13. Accelerated high-temperature creep tests for assessment of service life of power engineering steels

    Principles of accelerated constant stress - variable temperature and constant temperature - variable stress creep tests are discussed. Numerous accelerated creep tests of low-alloy Cr-Mo and Cr-Mo-V steels and high-alloy ferritic 12Cr1Mo-V steel carried out at higher-than-service temperatures and constant further service stress produced results which were in satisfactory agreement with conventional long-term creep tests. Such accelerated tests are used for practical purposes including estimation of service life, residual life and available residual life. On the other hand accelerated creep rupture tests carried out at constant service temperatures and variable stress trend to overestimate service life, create danger of unexpected failures of components under consideration and are seldom used for practical purposes. At comparable temperatures and stress levels accelerated creep tests using miniature test pieces tend to produce shorter rupture times than tests using standard specimens. The estimated life therefore shorter than that estimated on the basis of long-term tests and standard specimens. Service life estimated by means of accelerated creep tests using miniature test pieces must be calculated with the use of a corrective factor selected individually for the given type of steel. (author)

  14. Optical diagnostics in the advanced test accelerator (ATA) environment

    The ATA is a 50-MeV, 10-kA, 70-ns pulsed electron beam accelerator that generates an extremely harsh environment for diagnostic measurements. Diagnostic targets placed in the beamline are subject to damage, frequently being destroyed by a single pulse. High radiation (x-ray, gamma, and neutron) and electromagnetic interference levels preclude placing components near the beamline that are susceptible to radiation damage. Examples of such components are integrated circuit elements, hydrocarbons such as Teflon insulation, and optical components that darken, resulting in transmission loss. Optical diagnostics play an important part in measuring experimental parameters such as the beam current density profile. A large number of optical lines of sight (LOS) are routinely deployed along the experimental beamlines that use the ATA beam. Gated TV cameras are located outside the accelerator tunnel, because the tunnel is inaccessible during operations. We will describe and discuss the difficulties, problems, and solutions encountered in making optical measurements in the ATA environment

  15. Design and Simulation of IOTA - a Novel Concept of Integrable Optics Test Accelerator

    Nagaitsev, S.; Valishev, A.; Danilov, V. V.; Shatilov, D. N.

    2013-01-01

    The use of nonlinear lattices with large betatron tune spreads can increase instability and space charge thresholds due to improved Landau damping. Unfortunately, the majority of nonlinear accelerator lattices turn out to be nonintegrable, producing chaotic motion and a complex network of stable and unstable resonances. Recent advances in finding the integrable nonlinear accelerator lattices have led to a proposal to construct at Fermilab a test accelerator with strong nonlinear focusing whic...

  16. Accelerated electrochemical test of 14Kh17N2 steel susceptibility to ICC

    Description of the accelerated electrochemical technique used to determine susceptibility 14Kh17N2 steel of ferrite-martensite type to intercrystallite corrosion under the drop of electrolyte, is given. Convergence of the results obtained due to accelerated techniques with those of tests using the All-Union Standards 6032-84 constitutes 95%. These results demonstrate possibility to use data of the accelerated techniques for rapid estimation of susceptibility to ICC of martensite-ferrite steel-14Kh17N2

  17. WAN environment test for joint development of accelerator control programs

    By the heightening of the processing capability of personal computers, also in the field of accelerator control, the system using personal computers as the main body can be constructed. Also it has become possible to supplement functions by combining different applications and offering the means of communication between applications by operating systems. At present, new accelerators are planned in Laboratory of Nuclear Science, Tohoku University, and National Laboratory for High Energy Physics, and the development environment using WAN was prepared for the purposes of the OMT analysis of accelerator domain from the viewpoint of control, the joint verification of the programs being made, and the efficient exchange of information. Windows NT was adopted, and its features are shown. The environment was constructed by using the personal computer on which Windows NT functions, and the specification of the used personal computer is shown. The performance was measured by using this environment, and its method and the results are reported. The operation mode for hereafter is explained. The construction of the development environment using Windows NT was completed with good results. (K.I.)

  18. Understanding and evaluating bovine testes.

    Kastelic, John P

    2014-01-01

    The objective is to briefly review bovine testes and how they are assessed, with an emphasis on articles from Theriogenology. Scrotal circumference (SC) is the most common method to assess testicular size; it varies among individual bulls and breeds and is highly heritable. In general, a large SC is associated with early puberty, more sperm, a higher percentage of morphologically normal sperm, and better reproductive performance in closely related females. Consequently, there are minimum requirements for SC for breeding soundness. In prepubertal bull calves, there is an early rise (10-20 weeks of age) in LH, which is critically related to onset of puberty and testicular development. Feeding bulls approximately 130% of maintenance requirements of energy and protein from approximately 8 to 30 weeks of age increased LH release during the early rise, hastened puberty (approximately 1 month), and increased mature testis size and sperm production (approximately 20%-30%). However, high-energy diets after weaning (>200 days) often reduced sperm production and semen quality. A bull's testes and scrotum have opposing (complementary) temperature gradients, which keep the testicular temperature 2 °C to 6 °C cooler than core body temperature for production of fertile sperm (increased testicular temperature reduces semen quality). Infrared thermography, a quick and noninvasive method of assessing scrotal surface temperature, may be beneficial for evaluations of breeding soundness. The primary clinical use of ultrasonography in assessment of reproductive function in the bull is characterization of grossly detectable lesions in the testes and scrotum. In conclusion, testis size and function are critical for bull fertility, affected by nutrition, and readily assessed clinically. PMID:24274406

  19. Design, fabrication and first beam tests of the C-band RF acceleration unit at SINAP

    Fang, Wencheng; Gu, Qiang; Sheng, Xing; Wang, Chaopeng; Tong, Dechun; Chen, Lifang; Zhong, Shaopeng; Tan, Jianhao; Lin, Guoqiang; Chen, Zhihao; Zhao, Zhentang

    2016-07-01

    C-band RF acceleration is a crucial technology for the compact Free Electron Laser (FEL) facility at the Shanghai Institute of Applied Physics (SINAP), Chinese Academy of Sciences. A project focusing on C-band RF acceleration technology was launched in 2008, based on high-gradient accelerating structures powered by klystron and pulse compressor units. The target accelerating gradient is 40 MV/m or higher. Recently one prototype of C-band RF unit, consisting of a 1.8 m accelerating structure and a klystron with a TE0115 mode pulse compressor, has been tested with high-power and electron beam. Stable operation at 40 MV/m was demonstrated and, 50 MV/m approached by the end of the test. This paper introduces the C-band R&D program at SINAP and presents the experiment results of high-power and beam tests.

  20. Lifetime Testing 700 MHz RF Windows for the Accelerator Production of Tritium Program

    Cummings, K A; De Baca, J; Harrison, J S; Rodríguez, M B; Roybal, D M; Roybal, W T; Ruggles, S C; Torrez, P A; White, G D

    2000-01-01

    Radio frequency (RF) windows are historically a point where failure occurs in input-power couplers for accelerators. To understand more about the reliability of high power RF windows, lifetime testing was done on 700 MHz coaxial RF windows for the Low Energy Demonstration Accelerator (LEDA) project of the Accelerator Production of Tritium (APT) program. The RF windows, made by Marconi Applied Technologies (formerly EEV), were tested at 800 kW for an extended period of time. Changes in the reflected power, vacuum, air outlet temperature, and surface temperature were monitored over time. The results of the life testing are summarized.

  1. History of Accelerated and Qualification Testing of Terrestrial Photovoltaic Modules: A Literature Review

    Osterwald, C. R.; McMahon, T. J.

    2009-01-01

    We review published literature from 1975 to the present for accelerated stress testing of flat-plate terrestrial photovoltaic (PV) modules. An important facet of this subject is the standard module test sequences that have been adopted by national and international standards organizations, especially those of the International Electrotechnical Commission (IEC). The intent and history of these qualification tests, provided in this review, shows that standard module qualification test results cannot be used to obtain or infer a product lifetime. Closely related subjects also discussed include: other limitations of qualification testing, definitions of module lifetime, module product certification, and accelerated life testing.

  2. The Evaluator Effect in Usability Tests

    Jacobsen, Niels Ebbe; Hertzum, Morten; John, Bonnie E.

    1998-01-01

    Usability tests are applied in industry to evaluate systems and in research as a yardstick for other usability evaluation methods. However, one potential threat to the reliability of usability tests has been left unaddressed: the evaluator effect. In this study, four evaluators analyzed four...

  3. Tests for evaluating the physiological quality of pitaya seeds

    Thiago Alberto Ortiz

    2015-12-01

    Full Text Available Germination test is used to assess the physiological quality of seeds; however, since it is carried out under ideal conditions, this test has not been shown sufficient for this purpose. Instead, it is possible to use vigor tests, although the lack of standardized methodologies has reduced their applicability and reproducibility. Thus, this study aimed to develop methodologies for conducting tests of germination, accelerated aging, and electrical conductivity for the evaluation of the physiological quality of pitaya seeds. For this purpose, seeds from ripe Hylocereus undatus fruits were used. A completely randomized experimental design was used with four replications. The physiological quality of the seeds was assessed using germination, accelerated aging, and electrical conductivity tests, and the speed of germination index (SGI and mean germination time (MGT were determined for both the germination test and accelerated aging test. For the statistical analysis, we performed regression model adjustments and calculated the Pearson correlation coefficient (p < 0.05. The germination test for H. undatus seeds can be performed at 25 °C, with the aim of reaching the highest SGI and lowest MGT values. The accelerated aging test can be conducted at 43 °C for 48 h, because combining these factors favors the expression of seed vigor, allowing seeds to achieve the maximum SGI and minimum MGT, while reducing the time of the assay. The electrical conductivity test can be performed using 25 seeds at a temperature of 30 °C and a water volume of 10 mL, since under these conditions there is less interference from external factors on the leachate content of the solution.

  4. Evaluation of the electrode performance for PAFC by using acid absorption, acceleration and ac-impedance measurement

    Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo [Korea Institute of Energy Research, Taejon (Korea, Republic of)] [and others

    1996-12-31

    In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.

  5. EVALUATING SOFTWARE MAINTENANCE TESTING APPROACHES TO SUPPORT TEST CASE EVOLUTION

    Othman Mohd Yusop; Suhaimi Ibrahim

    2011-01-01

    Software Maintenance Testing is essential during software testing phase. All defects found during testing must undergo a re-test process in order to eliminate the flaws. By doing so, test cases are absolutely needed to evolve and change accordingly. In this paper, several maintenance testing approaches namely regression test suite approach, heuristic based approach, keyword based approach, GUI based approach and model based approach are evaluated based on software evolution taxonomy framework...

  6. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    Congedo, Giuseppe

    2014-01-01

    The basic constituent of interferometric gravitational wave detectors -- the test mass to test mass interferometric link -- behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as non-gravitational spurious forces. This last contribution is going to be characterised by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system free evolution dominating the slow displacement dynamics of low-...

  7. CERN Technical training 2008 - Learning for the LHC: Special Workshop demonstrating reliability with accelerated testing

    2008-01-01

    Larry Edson’s workshop will show examples of quantitative reliability predictions based upon accelerated testing and demonstrate that reliability testing during the prototyping phase will help ascertain product shortcomings. When these weak points are addressed and the redesigned product is re-tested, the reliability of that product will become much higher. These methodologies successfully used in industry might be exceedingly useful also for component development in particle physics where reliability is of the utmost importance. This training will provide participants with the skills necessary to demonstrate reliability requirements using accelerated testing methods. The workshop will focus on accelerated test design that employs increased stress levels. This approach has the advantage of reducing test time, sample size and test facility resources. The methodologies taught are applicable to all types of stresses, spanning the elec...

  8. CERN Technical training 2008 - Learning for the LHC: Special Workshop demonstrating reliability with accelerated testing

    2008-01-01

    Larry Edson’s workshop will show examples of quantitative reliability predictions based upon accelerated testing and demonstrates that reliability testing during the prototyping phase will help ascertain product shortcomings. When these weak points are addressed and the redesigned product is re-tested, the reliability of that product will become much higher. These methodologies successfully used in industry might be exceedingly useful also for component development in particle physics where reliability is of utmost importance. This training will provide participants with the skills necessary to demonstrate reliability requirements using accelerated testing methods. The workshop will focus on accelerated test design that employs increased stress levels. This approach has the advantage of reducing test time, sample size and test facility resources. The methodologies taught are applicable to all types of stresses, spanning the electro...

  9. CERN Technical training 2008 - Learning for the LHC: Special workshop demonstrating reliability with accelerated testing

    2008-01-01

    Larry Edson’s workshop will show examples of quantitative reliability predictions based upon accelerated testing and demonstrate that reliability testing during the prototyping phase will help ascertain product shortcomings. When these weak points are addressed and the redesigned product is re-tested, the reliability of that product will become much higher. These methodologies successfully used in industry might be exceedingly useful also for component development in particle physics where reliability is of the utmost importance. This training will provide participants with the skills necessary to demonstrate reliability requirements using accelerated testing methods. The workshop will focus on accelerated test design that employs increased stress levels. This approach has the advantage of reducing test time, sample size and test facility resources. The methodologies taught are applicable to all types of stresses, spanning the elec...

  10. Development of an accelerated reliability test schedule for terrestrial solar cells

    Lathrop, J. W.; Prince, J. L.

    1981-01-01

    An accelerated test schedule using a minimum amount of tests and a minimum number of cells has been developed on the basis of stress test results obtained from more than 1500 cells of seven different cell types. The proposed tests, which include bias-temperature, bias-temperature-humidity, power cycle, thermal cycle, and thermal shock tests, use as little as 10 and up to 25 cells, depending on the test type.

  11. The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models

    Abdalla Ahmed Abdel-Ghaly; Hanan Mohamed Aly; Elham Abdel-Malik Abde-Rahman

    2016-01-01

    This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of t...

  12. Cold test results of a side-coupled standing-wave electron-accelerating structure

    Song, Ki Baek; Li, Yonggui; Lee, Sanghyun; Lee, Byeong-No; Park, Hyung Dal; Cha, Sung-Su; Lee, Byung Cheol

    2013-07-01

    The radio-frequency (RF) cavity for the dual-energy S-band electron linear accelerator (LINAC) is designed for a cargo inspection system (CIS) at the Korea Atomic Energy Research Institute (KAERI). The cold test results of the electron accelerator structure, which has a side-coupled standing-wave interlaced-pulse dual-energy mode, are described. The design concept, basic structure, microwave-tuning method, and cold-test procedure are described as well. The measured dispersion curve, spectrum characteristics, ρ-f relation of the power coupler, and axial field distribution of the accelerating gradient are provided.

  13. Accelerated gravity testing of aquitard core permeability and implications at formation and regional scale

    Timms, W. A.; Crane, R.; Anderson, D. J.; Bouzalakos, S.; Whelan, M.; McGeeney, D.; Rahman, P. F.; Acworth, R. I.

    2016-01-01

    Evaluating the possibility of leakage through low-permeability geological strata is critically important for sustainable water supplies, the extraction of fuels from coal and other strata, and the confinement of waste within the earth. The current work demonstrates that relatively rapid and realistic vertical hydraulic conductivity (Kv) measurements of aquitard cores using accelerated gravity can constrain and compliment larger-scale assessments of hydraulic connectivity. Steady-state fluid velocity through a low-K porous sample is linearly related to accelerated gravity (g level) in a centrifuge permeameter (CP) unless consolidation or geochemical reactions occur. A CP module was custom designed to fit a standard 2 m diameter geotechnical centrifuge (550 g maximum) with a capacity for sample dimensions up to 100 mm diameter and 200 mm length, and a total stress of ˜ 2 MPa at the base of the core. Formation fluids were used as influent to limit any shrink-swell phenomena, which may alter the permeability. Kv results from CP testing of minimally disturbed cores from three sites within a clayey-silt formation varied from 10-10 to 10-7 m s-1 (number of samples, n = 18). Additional tests were focussed on the Cattle Lane (CL) site, where Kv within the 99 % confidence interval (n = 9) was 1.1 × 10-9 to 2.0 × 10-9 m s-1. These Kv results were very similar to an independent in situ Kv method based on pore pressure propagation though the sequence. However, there was less certainty at two other core sites due to limited and variable Kv data. Blind standard 1 g column tests underestimated Kv compared to CP and in situ Kv data, possibly due to deionised water interactions with clay, and were more time-consuming than CP tests. Our Kv results were compared with the set-up of a flow model for the region, and considered in the context of heterogeneity and preferential flow paths at site and formation scale. Reasonable assessments of leakage and solute transport through

  14. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  15. ADS-Lib/V1.0. A test library for Accelerator Driven Systems. Summary documentation

    The report describes the generation of a test library for a number of code systems used in the analysis of Accelerator Driven Systems (ADS). The generation of the ADS library was undertaken by IAEA-NDS and the data files are available to users at http://wwwnds. iaea.org/ads/ and also as CD-ROM (upon request).The source of the evaluated nuclear data was the JEFF-3.1 library. Processing was carried out using NJOY-99.90 with the local updates at IAEA-NDS. The resulting processed files are available in ACE format for MCNP and in MATXS format for multi-group transport calculations. (author)

  16. Testing of a Loop Heat Pipe Subjective to Variable Accelerations. Part 1; Start-up

    Ku, Jentung; Rogers, Paul; Hoff, Craig

    2000-01-01

    The effect of accelerating forces on the performance of loop heat pipes (LHP) is of interest and importance to terrestrial and space applications. They are being considered for cooling of military combat vehicles and for spinning spacecraft. In order to investigate the effect of an accelerating force on LHP operation, a miniature LHP was installed on a spin table. Variable accelerating forces were imposed on the LHP by spinning the table at different angular speeds. Several patterns of accelerating forces were applied, i.e. continuous spin at different speeds and periodic spin at different speeds and frequencies. The resulting accelerations ranged from 1.17 g's to 4.7 g's. This paper presents the first part of the experimental study, i.e. the effects of a centrifugal force on the LHP start-up. Tests were conducted by varying the heat load to the evaporator, sink temperature, magnitude and frequency of centrifugal force, and LHP orientation relative to the direction of the accelerating force. The accelerating force seems to have little effect on the loop start-up in terms of temperature overshoot and superheat at boiling incipience. Changes in these parameters seem to be stochastic with or without centrifugal accelerating forces. The LHP started successfully in all tests.

  17. Accelerated UV Test Methods for Encapsulants of Photovoltaic Modules: Preprint

    Kempe, M. D.

    2008-05-01

    This paper asserts that materials used for PV encapsulation must be evaluated for their ability to transmit light and to maintain mechanical integrity for extended periods of time under long term UV exposure.

  18. Evaluation of wall thinning profile by flow accelerated corrosion in separation and union pipe

    Flow Accelerated Corrosion (FAC) is a pipe wall thinning phenomena to be monitored and managed in power plants with high priority. At present, its management has been conducted with conservative evaluation of thinning rate and residual lifetime of the piping based on wall thickness measurements. However, noticeable case of wall thinning was occurred at separation and union pipe. In such pipe system, it is a problem to manage section beneath reinforcing plate of T-tube pipe and 'crotch' of T-joint pipe; the region where wall thickness measurement is difficult to conduct with ordinary ultrasonic testing device. In this study, numerical analysis for separation and union part of T-tube and T-joint pipe was conducted, and wall thinning profile by Flow Accelerated Corrosion was evaluated by calculating mass transfer coefficient and geometry factor. Based on these results, we considered applicable wall thinning management for T-tube and T-joint pipe. In the case of union flow from main and branch pipe, the wall thinning profile of T-tube showed the tendency of increase at main pipe like semielliptical region. On the other hand, noticeable profile appeared at 'crotch' in T-joint. Although it was found that geometry factor of T-joint in this case was half the value of T-tube, an alternative evaluation method to previous one might be needed for the profiles of 'semielliptical region' and 'crotch'. (author)

  19. Status and Plans for an SRF Accelerator Test Facility at Fermilab

    Church, M; Nagaitsev, S

    2012-01-01

    A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  20. Status and Plans for an SRF Accelerator Test Facility at Fermilab

    Church, M.; Leibfritz, J.; Nagaitsev, S.; /Fermilab

    2011-07-29

    A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  1. Evaluating the RELM Test Results

    Sachs, Michael K.; Ya-Ting Lee; Turcotte, Donald L.; Holliday, James R.; Rundle, John B.

    2012-01-01

    We consider implications of the Regional Earthquake Likelihood Models (RELM) test results with regard to earthquake forecasting. Prospective forecasts were solicited for M≥4.95 earthquakes in California during the period 2006–2010. During this period 31 earthquakes occurred in the test region with M≥4.95. We consider five forecasts that were submitted for the test. We compare the forecasts utilizing forecast verification methodology developed in the atmospheric sciences, specifically for torn...

  2. On selection of optimal stochastic model for accelerated life testing

    This paper deals with the problem of proper lifetime model selection in the context of statistical reliability analysis. Namely, we consider regression models describing the dependence of failure intensities on a covariate, for instance, a stressor. Testing the model fit is standardly based on the so-called martingale residuals. Their analysis has already been studied by many authors. Nevertheless, the Bayes approach to the problem, in spite of its advantages, is just developing. We shall present the Bayes procedure of estimation in several semi-parametric regression models of failure intensity. Then, our main concern is the Bayes construction of residual processes and goodness-of-fit tests based on them. The method is illustrated with both artificial and real-data examples. - Highlights: • Statistical survival and reliability analysis and Bayes approach. • Bayes semi-parametric regression modeling in Cox's and AFT models. • Bayes version of martingale residuals and goodness-of-fit test

  3. Novel accelerated corrosion test for LY12CZ and LC4CS aluminum alloys

    CAI Jian-ping; LIU Ming

    2006-01-01

    A new accelerated corrosion test-comprehensive environmental test (CET) was developed in order to estimate the outdoor corrosion of aluminum alloys in marine environment. The environmental characteristics in CET were studied by atmospheric corrosion monitor (ACM), and the morphology of corrosion product was observed by SEM. The correlation between the accelerated corrosion tests and outdoor exposure was discussed. The results show that the anti-corrosion ranking for LY12CZ, LC4CS, clad LY12CZ, and clad LC4CS in CET is the same as that of the alloys exposed outdoor, and ACM study shows that CET demonstrates the same environmental characteristics as that exposed outdoor. CET is a more accurate accelerated corrosion test, and a mathematical relation was obtained to describe the relation between CET and outdoor test.

  4. Accelerated fatigue testing of LM 19.1 blades

    Kristensen, Ole Jesper Dahl; Jørgensen, E.

    2003-01-01

    material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges. This report presents the temperature duringtest, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause of the...

  5. Poisson simulation for high voltage terminal of test stand for 1MV electrostatic accelerator

    KOMAC provide ion beam to user which energy range need to expand to MeV range and develop 1 MV electrostatic accelerator. The specifications of the electrostatic accelerator are 1MV acceleration voltage, 10 mA peak current and variable gas ion. We are developing test stand before set up 1 MV electrostatic accelerator. The test stand voltage is 300 kV and operating time is 8 hours. The test stand is consist of 300 kV high voltage terminal, DC-AC-DC inverter, power supply device inside terminal, 200MHz RF power, 5 kV extraction power supply, 300 kV accelerating tube and vacuum system.. The beam measurement system and beam dump will be installed next to accelerating tube. Poisson code simulation results of the high voltage terminal are presented in this paper. Poisson code has been used to calculate the electric field for high voltage terminal. The results of simulation were verified with reasonable results. The poisson code structure could be apply to the high voltage terminal of the test stand

  6. Enabling More than Moore: Accelerated Reliability Testing and Risk Analysis for Advanced Electronics Packaging

    Ghaffarian, Reza; Evans, John W.

    2014-01-01

    For five decades, the semiconductor industry has distinguished itself by the rapid pace of improvement in miniaturization of electronics products-Moore's Law. Now, scaling hits a brick wall, a paradigm shift. The industry roadmaps recognized the scaling limitation and project that packaging technologies will meet further miniaturization needs or ak.a "More than Moore". This paper presents packaging technology trends and accelerated reliability testing methods currently being practiced. Then, it presents industry status on key advanced electronic packages, factors affecting accelerated solder joint reliability of area array packages, and IPC/JEDEC/Mil specifications for characterizations of assemblies under accelerated thermal and mechanical loading. Finally, it presents an examples demonstrating how Accelerated Testing and Analysis have been effectively employed in the development of complex spacecraft thereby reducing risk. Quantitative assessments necessarily involve the mathematics of probability and statistics. In addition, accelerated tests need to be designed which consider the desired risk posture and schedule for particular project. Such assessments relieve risks without imposing additional costs. and constraints that are not value added for a particular mission. Furthermore, in the course of development of complex systems, variances and defects will inevitably present themselves and require a decision concerning their disposition, necessitating quantitative assessments. In summary, this paper presents a comprehensive view point, from technology to systems, including the benefits and impact of accelerated testing in offsetting risk.

  7. Evaluation of College English Test

    郭奕奕

    2003-01-01

    There has been much heated discussion on College English Test for non-English majors Band 4 and Band 6 because it has exerted great influence on English teaching in Chinese universities. This essay is intended to explore the reliability, validity,practicality and washback of this large-scale test by focusing on CET Band 4. The author of this report discusses the merits as well as some existing problems of this test and offers some suggestions at the end of the essay.

  8. Life Prediction on a T700 Carbon Fiber Reinforced Cylinder with Limited Accelerated Life Testing Data

    Ma Xiaobing

    2015-01-01

    Full Text Available An accelerated life testing investigation was conducted on a composite cylinder that consists of aluminum alloy and T700 carbon fiber. The ultimate failure stress predictions of cylinders were obtained by the mixing rule and verified by the blasting static pressure method. Based on the stress prediction of cylinder under working conditions, the constant stress accelerated life test of the cylinder was designed. However, the failure data cannot be sufficiently obtained by the accelerated life test due to the time limitation. Therefore, most of the data presented to be high censored in high stress level and zero-failure data in low stress level. When using the traditional method for rupture life prediction, the results showed to be of lower confidence. In this study, the consistency of failure mechanism for carbon fiber and cylinder was analyzed firstly. According to the analysis result, the statistical test information of carbon fiber could be utilized for the accelerated model constitution. Then, rupture life prediction method for cylinder was proposed based on the accelerated life test data and carbon fiber test data. In this way, the life prediction accuracy of cylinder could be improved obviously, and the results showed that the accuracy of this method increased by 35%.

  9. Development of an accelerated test for Internal Sulfate Attack study

    Khelil Nacim; Aubert Jean-Emmanuel; Escadeillas Gilles

    2014-01-01

    Internal Sulfate Attack (ISA) is a pathology that occurs under certain conditions in concrete having undergone heating above 70 °C at early age (through heating in pre-casting industry or due to hydration in large concrete parts). This reaction deemed very slow, numerous methods to speed up reactions leading to delayed ettringite formation have been developed. These methods are all based on the material damage. Another type of test is currently under development. It is based on rehabilitation...

  10. Design and Factory Test of the e+/e- Frascati Linear Accelerator for DAFNE

    The electron-positron accelerator for the DAFNE project has been built and is in test at Titan Beta in Dublin, CA. This S-Band RF linac system utilizes four 45 MW sledded klystrons and 16-3 m accelerating structures to achieve the required performance. It delivers a 4 ampere electron beam to the positron converter and accelerates the resulting positrons to 550 MeV. The converter design uses a 4.3T pulsed tapered flux compressor along with a pseudo-adiabatic tapered field to a 5 KG solenoid over the first two positron accelerating sections. Quadrupole focusing is used after 100 MeV. The system performance is given in Table 1. This paper briefly describes the design and development of the various subassemblies in this system and gives the initial factory test data.

  11. Isolation of a piezoresistive accelerometer used in high acceleration tests

    Bateman, V. I.; Brown, F. A.; Davie, N. T.

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of -50 to +186 F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of -50 to 70 F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer's operational limits of -30 and +150 F, required the calibration of accelerometers at high shock levels and at the temperature extremes of -50 and +160 F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 - 15,000 g for the temperature extremes of -50 and +160 F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is +\\-5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  12. Test Ion Acceleration in the Field of Expanding Planar Electron Cloud

    Basko, M. M.

    2006-01-01

    New exact results are obtained for relativistic acceleration of test positive ions in the non-Boltzmann laminar zone of a planar electron sheath evolving from an initially mono-energetic electron distribution. The electron dynamics is analyzed against the background of motionless foil ions. The limiting gamma-factor of accelerated ions is shown to be determined primarily by the values of the ion-electron charge-over-mass ratio and the initial gamma-factor of the accelerated electrons: there e...

  13. On the application of design of experiments to accelerated life testing

    Today, there is an increasing demand for improved quality and reliability due to increasing system complexity and increasing demands from customer. Continuous improvement of quality is not only a means of competition but also a matter of staying in the market. Accelerated life testing and statistical design of experiments are two needed methods for improvement of quality. The combined use of them is very advantageous and increases the test efficiency. Accelerated life testing is a quick way to provide information on the life distribution of materials and products. By subjecting the test unit to conditions more severe than those at normal usage, the test time can be highly reduced. Estimates of life at normal stress levels are obtained by extrapolating the available information through a reasonable acceleration model. Accelerated life testing has mostly been used to measure reliability but it is high time to use it for improvement of quality. Design of experiments serves to find out the effect of design parameters and other interesting factors on performance measure and its variability. The obtained information is essential for a continuous improvement of quality. As an illustration, two sets of experiment are designed and performed at highly increased stress levels. The results are analysed and discussed and a time saving alternative is proposed. The combination of experimental design and accelerated life testing is discussed and illustrated. The combined use of these methods can be argued for in two different cases. One is for an exploratory improvement investigation and the other is for verification of reliability. In either case, the combined use is advantageous and improves the testing efficiency. Some general conclusions are drawn to be used for planning and performance of statistically designed accelerated life testing experiments. (70 refs.) (au)

  14. A Proposed Experimental Test of Proton-Driven Plasma Wakefield Acceleration Based on CERN SPS

    Xia, G X; Lotov, K; Pukhov, A; Assmann, R; Zimmermann, F; Huang, C; Vieira, J; Lopes, N; Fonseca, RA; Silva, LO; An, W; Joshi, C; Mori, W; Lu, W; Muggli, P

    2011-01-01

    Proton-bunch driven plasma wakefield acceleration (PDPWA) has been proposed as an approach to accelerate electron beam to TeV energy regime in a single plasma section. An experimental test has recently proposed to demonstrate the capability of PDPWA by using proton beams from the CERN SPS. The layout of the experiment is introduced. Particle-in-cell simulation results based on the realistic beam parameters are presented. Presented at PAC2011 New York, 28 March - 1 April 2011.

  15. Electron lenses and cooling for the Fermilab Integrable Optics Test Accelerator

    Stancari, G; Burov, A.; Lebedev, V.; Nagaitsev, S.; Prebys, E.; Valishev, A.

    2015-01-01

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle d...

  16. Revised evaluation of steam generator testing alternatives

    A scoping evaluation was made of various facility alternatives for test of LMFBR prototype steam generators and models. Recommendations are given for modifications to EBR-II and SCTI (Sodium Components Test Installation) for prototype SG testing, and for few-tube model testing

  17. Evaluating an accelerated nursing program: a dashboard for diversity.

    Schmidt, Bonnie J; MacWilliams, Brent R

    2015-01-01

    Diversity is a topic of increasing attention in higher education and the nursing workforce. Experts have called for a nursing workforce that mirrors the population it serves. Students in nursing programs in the United States do not reflect our country's diverse population; therefore, much work is needed before that goal can be reached. Diversity cannot be successfully achieved in nursing education without inclusion and attention to quality. The Inclusive Excellence framework can be used by nurse educators to promote inclusion, diversity, and excellence. In this framework, excellence and diversity are linked in an intentional metric-driven process. Accelerated programs offer a possible venue to promote diversity, and one accelerated program is examined using a set of metrics and a dashboard approach commonly used in business settings. Several recommendations were made for future assessment, interventions, and monitoring. Nurse educators are called to examine and adopt a diversity dashboard in all nursing programs. PMID:25839946

  18. Million revolution accelerator beam instrument for logging and evaluation

    A data acquisition and analysis instrument for the processing of accelerator beam position monitor (BPM) signals has been assembled and used preliminarily for beam diagnosis of the Fermilab accelerators. Up to eight BPM (or other analogue) channels are digitized and transmitted to an acquisition Sun workstation and from there both to a monitor workstation and a workstation for off-line (but immediate) data analysis. A coherent data description format permits fast data object transfers to and from memory, disk and tape, across the Sun ethernet. This has helped the development of both general purpose and experiment-specific data analysis, presentation and control tools. Flexible software permits immediate graphical display in both time and frequency domains. The instrument acts simultaneously as a digital oscilloscope, as a network analyzer and as a correlating, noise-reducing spectrum analyzer. 2 refs., 3 figs

  19. Constant-stress partially accelerated life tests for inverted Weibull distribution with multiple censored data

    Amal S. Hassan

    2015-04-01

    Full Text Available Testing the lifetime of items under normal use condition often requires a long period of time, especially for products having high reliability. To minimize the costs involved in testing without reducing the quality of the data obtained, the items run at higher than usual level of stresses to induce early failures in a short time. This article concerns with constant–stress partially accelerated life test with multiple censored data. The life time of test item is assumed to follow inverted Weibull distribution. Maximum likelihood estimates are obtained for the model parameters and acceleration factor. In addition, asymptotic variance and covariance matrix of the estimators is given. The confidence intervals of the unknown parameters and acceleration factor are constructed for large sample sizes. Simulation studies are performed to investigate the performance of the estimators.

  20. Isolation of a piezoresistive accelerometer used in high acceleration tests

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1992-12-31

    Both uniaxial and triaxial shock isolation techniques for a piezoresistive accelerometer have been developed for pyroshock and impact tests. The uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. The triaxial shock isolation technique has demonstrated acceptable results for a temperature range of {minus}50{degree}F to 70{degree}F and a frequency bandwidth of DC to 10 kHz. These temperature ranges, that are beyond the accelerometer manufacturer`s operational limits of {minus}30{degree}F and +150{degree}F, required the calibration of accelerometers at high shock levels and at the temperature extremes of {minus}50{degree}F and +160{degree}F. The purposes of these calibrations were to insure that the accelerometers operated at the field test temperatures and to provide an accelerometer sensitivity at each test temperature. Since there is no NIST-traceable (National Institute of Standards and Technology traceable) calibration capability at shock levels of 5,000 g - 15,000 g for the temperature extremes of {minus}50{degree}F and +160{degree}F, a method for calibrating and certifying the Hopkinson bar with a transfer standard was developed. Time domain and frequency domain results are given that characterize the Hopkinson bar. The NIST-traceable accuracy for the standard accelerometer in shock is {plus_minus}5%. The Hopkinson bar has been certified by the Sandia Secondary Standards Division with an uncertainty of 6%.

  1. Constant-stress partially accelerated life tests for inverted Weibull distribution with multiple censored data

    Amal S. Hassan; Salwa M. Assar; Ahmed N. Zaky

    2015-01-01

    Testing the lifetime of items under normal use condition often requires a long period of time, especially for products having high reliability. To minimize the costs involved in testing without reducing the quality of the data obtained, the items run at higher than usual level of stresses to induce early failures in a short time. This article concerns with constant–stress partially accelerated life test with multiple censored data. The life time of test item is assumed to follow inverted Weib...

  2. HIV testing, staging, and evaluation.

    Rodriguez, Carla V; Horberg, Michael A

    2014-09-01

    HIV testing and incidence are stable, but trends for certain populations are concerning. Primary prevention must be reinvigorated and target vulnerable populations. Science and policy have progressed to improve the accuracy, speed, privacy, and affordability of HIV testing. More potent and much better tolerated HIV treatments and a multidisciplinary approach to care have increased adherence and viral suppression. Changes to health care law in the United States seek to expand the affordability and access of improved HIV diagnostics and treatment. Continued challenges include improving long-term outcomes in people on lifetime regimens, reducing comorbidities associated with those regimens, and preventing further transmission. PMID:25151560

  3. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-01-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration of...

  4. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detector front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on the development of a technique for testing analog to digital converters for radiation effects, in particular for single event effects. A total of seventeen commercial ADCs were evaluated for ionizing dose tolerance and extensive SEU measurements performed on a twelve and fourteen bit ADCs. Mitigation strategies for single event effects (SEE) are discussed for their use in the large hadron collider environment

  5. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    Chen, K.; Chen, H.; Kierstead, J.; Takai, H.; Rescia, S.; Hu, X.; Xu, H.; Mead, J.; Lanni, F.; Minelli, M.

    2015-08-01

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detector front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on the development of a technique for testing analog to digital converters for radiation effects, in particular for single event effects. A total of seventeen commercial ADCs were evaluated for ionizing dose tolerance and extensive SEU measurements performed on a twelve and fourteen bit ADCs. Mitigation strategies for single event effects (SEE) are discussed for their use in the large hadron collider environment.

  6. From Inspection to School Improvement? Evaluating the Accelerated Inspection Programme in Waltham Forest.

    Hopkins, David; Harris, Alma; Watling, Rob; Beresford, John

    1999-01-01

    Outlines the main findings from the evaluation of the Accelerated Inspection Programme (AIP) in Waltham Forest under three main phases (pre-inspection, inspection, and post inspection). Focuses on the relationship between inspection and school improvement. Discusses the recommendations. (CMK)

  7. Kerr black holes as accelerators of spinning test particles

    Guo, Minyong; Gao, Sijie

    2016-04-01

    It has been shown that ultraenergetic collisions can occur near the horizon of an extremal Kerr black hole. Previous studies mainly focused on geodesic motions of particles. In this paper, we consider spinning test particles whose orbits are nongeodesic. By employing the Mathisson-Papapetrou-Dixon equation, we find the critical angular momentum satisfies J =2 E for extremal Kerr black holes. Although the conserved angular momentum J and energy E have been redefined in the presence of spin, the critical condition remains the same form. If a particle with this angular momentum collides with another particle arbitrarily close to the horizon of the black hole, the center-of-mass energy can be arbitrarily high. We also prove that arbitrarily high energies cannot be obtained for spinning particles near the horizons of nonextremal Kerr black holes.

  8. Kerr black holes as accelerators of spinning test particles

    Guo, Minyong

    2016-01-01

    It has been shown that ultraenergetic collisions can occur near the horizon of an extremal Kerr black hole. Previous studies mainly focused on geodesic motions of particles. In this paper, we consider spinning test particles whose orbits are non-geodesic. By employing the Mathisson-Papapetrou-Dixon equation, we find the critical angular momentum satisfies $J=2E$ for extremal Kerr black holes. Although the conserved angular momentum $J$ and energy $E$ have been redefined in the presence of spin, the critical condition remains the same form. If a particle with this angular momentum collides with another particle arbitrarily close to the horizon of the black hole, the center-of-mass energy can be arbitrarily high. We also prove that arbitrarily high energies cannot be obtained for spinning particles near the horizons of non-extremal Kerr black holes.

  9. Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder

    Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work

  10. Sustainable test cell : performance evaluation

    Silva, Pedro Correia Pereira da; Bragança, L.; Mendonça, Paulo; Almeida, Manuela Guedes de

    2006-01-01

    Energy is one of the main causes of the environmental pollution. In the European Union, buildings are responsible for 40% of the final energy demand and 1/3 of the emissions of greenhouse gases. Therefore, in order to promote the energy consumption reduction, it is fundamental to employ sustainable development principles in the construction sector. In order to demonstrate and show the potentialities of Sustainable building technologies two Test Cells were built. Comparing the solutions obtain...

  11. Performing and evaluating creep tests

    Dvořák, Jiří; Blum, W.; Král, Petr; Eisenlohr, P.; Sklenička, Václav

    Toulouse: Institut Carnot CIRIMAT, 2015. s. 303-304. [CREEP 2015 - International Conference on Creep and Fracture of Engineering Materials and Structures /13./. 31.05.2015-04.06.2015, Toulouse] R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : creep test * inelastic strain rate * crystallite boundaries * coper * dynamic recovery Subject RIV: JG - Metallurgy

  12. Life prediction of OLED for constant-stress accelerated degradation tests using luminance decaying model

    In order to acquire the life information of organic light emitting diode (OLED), three groups of constant stress accelerated degradation tests are performed to obtain the luminance decaying data of samples under the condition that the luminance and the current are respectively selected as the indicator of performance degradation and the test stress. Weibull function is applied to describe the relationship between luminance decaying and time, least square method (LSM) is employed to calculate the shape parameter and scale parameter, and the life prediction of OLED is achieved. The numerical results indicate that the accelerated degradation test and the luminance decaying model reveal the luminance decaying law of OLED. The luminance decaying formula fits the test data very well, and the average error of fitting value compared with the test data is small. Furthermore, the accuracy of the OLED life predicted by luminance decaying model is high, which enable rapid estimation of OLED life and provide significant guidelines to help engineers make decisions in design and manufacturing strategy from the aspect of reliability life. - Highlights: • We gain luminance decaying data by accelerated degradation tests on OLED. • The luminance decaying model objectively reveals the decaying law of OLED luminance. • The least square method (LSM) is employed to calculate Weibull parameters. • The plan designed for accelerated degradation tests proves to be feasible. • The accuracy of the OLED life and the luminance decaying fitting formula is high

  13. X-band klystron modulator for the Accelerator Test Facility

    An X-band Klystron Modulator has been designed and constructed to drive two kinds of prototype X-band pulsed klystrons: (1) 30 MW klystron ( XB-50K) requiring a 450 kV beam voltage with a 0.5 μs flat top and (2) 120 MW klystron ( XB-72K) requiring a 550 kV beam voltage with a 0.5 μs flat top. The modulator generates 2.0 μs pulses with 37 kV voltage and 7,300 A peak current for the operation of the XB-72K. It is a conventional line-type modulator with a 6 section pulse forming network (PFN) which is resonantly charged and discharged by a thyratron switch at up to 200 pps. In order to reduce the size of the modulator, a special low inductance capacitors using a film coated thin Al-electrodes of 300 angstrom thickness has been developed for the PFN. Its output pulse voltage is stepped up to 15 times by a pulse transformer. The design, specifications and results of performance tests of the modulator are described in this paper

  14. An accelerated electrochemical MIC test for stainless alloys

    Previous work in our laboratory and elsewhere has suggested that microbially influenced corrosion (MIC) of stainless steels and nickel-base alloys occurs in locally anaerobic regions that support the growth of sulfate-reducing bacteria (SRB). The cathodic reaction is provided by oxygen reduction at remote sites. Such a coupling between anode and cathode is difficult to reproduce in the laboratory, but can be simulated indirectly using a double electrochemical cell, as in previous work. A more realistic simulation using a single aerated electrochemical cell has now been developed, in which a second organism (P. aeruginosa) is used to provide an anoxic habitat for SRB growth and possible a source of organic carbon, within a layer of silt. A bare alloy electrode is used as the oxygen cathode. Tests of this kind using rigorous microbiological procedures have generated pitting corrosion of several alloys in low chloride media simulating freshwater heat exchanger conditions. This report discusses the adaption of these procedures to study corrosion of nuclear waste containers. (author). 20 refs., 2 tabs., 7 figs

  15. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning

  16. Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

    J. Francfort (INEEL); J. Argueta; M. Wehrey (Southern California Edison); D. Karner; L. Tyree (Electric Transportation Applications)

    1999-07-01

    This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

  17. 3.9 GHz superconducting accelerating 9-cell cavity vertical test results

    Khabiboulline, Timergali; Cooper, Charles; Dhanaraj, Nandhini; Edwards, Helen; Foley, Mike; Harms, Elvin; Mitchell, Donald; Rowe, Allan; Solyak, Nikolay; /Fermilab; Moeller, Wolf-Dietrich; /DESY

    2007-06-01

    The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the FLASH (TTF/DESY) facility [1]. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first 9-cell Nb cavities were tested in a vertical setup and they didn't reach the designed accelerating gradient [2]. The main problem was a multipactor in the HOM couplers, which lead to overheating and quenching of the HOM couplers. New HOM couplers with improved design are integrated in the next 9-cell cavities. In this paper we present all results of the vertical tests.

  18. High Power RF Test of the Digital Feedback Control System for the PEFP Accelerator

    To control the RF field in the accelerating cavity for the PEFP (Proton Engineering Frontier Project) proton accelerator, a digital feedback control system has been developed. The stability requirements of the RF field are ±1% in amplitude and ± .deg. in phase. The digital feedback control system is based on the commercial FPGA PMC board hosted in VME board. The analog front-end was also developed which contains the IQ modulator, RF mixer, attenuators etc. To check the performance of the digital feedback control system, low power test with a dummy cavity has been performed with an intentional perturbation and shown that the feedback system rejected the perturbation as expected. High power RF test with a klystron has been performed and an accelerating field profile was measured. In addition, the pulse-to-pulse stability was checked by pulse operation with 0.1 Hz repetition rate. The detailed high power test results will be given in this paper

  19. Test method for position of accelerate grid of megawatt level high current ion source

    Background: Accelerate grid for producing several tens of MW ion beams is a critical component of the megawatt level high current ion source for the high power neutral beam injection, Purpose: To measure and analyze the position of accelerate grid. Methods: Taking the exit grid module of EAST-NBI high current ion source as the measurement object, the observation point coordinates of accelerate grid rail's actual axis are obtained by using 3 quadrant points sampling method and the point coordinates are analyzed by using MATLAB optimal function. Results: The position error that tallies with minimum zone and the distribution regularities of accelerate grid rails are obtained. Conclusions: This method has simple and stable course of evaluating, can realize automatic measurement and provide the basis for improving and finalizing the grid module's processing technic. (authors)

  20. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    Leibfritz, J; Baffes, C M; Carlson, K; Chase, B; Church, M D; Harms, E R; Klebaner, A L; Kucera, M; Martinez, A; Nagaitsev, S; Nobrega, L E; Piot, P; Reid, J; Wendt, M; Wesseln, S J

    2013-01-01

    The Advanced Superconducting Test Acccelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beamlines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750-MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5-GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF a...

  1. Including test errors in evaluating surveillance test intervals

    To evaluate the risk impact of surveillance requirements defined in Technical Specifications, both the beneficial and negative effects of surveillance should be considered. The negative effect of surveillance testing can be caused by test errors, e.g., human errors of omission or commission including potential for common cause failures. As a consequence of the negative effect, the performance of periodic testing can have adverse impact on safety. This paper defines the various negative effects of surveillance testing from a risk perspective, and then presents a methodology to quantify the negative risk impact, i.e., the risk penalty or risk increase caused by the test. The paper presents a PRA-based method to evaluate the negative risk impact due to test-caused plant transients and a method based on a test-caused equipment degradation model and PRA to assess the negative risk impact associated with equipment wear-out. Also described in the paper are illustrative applications of the methods to specific surveillance tests conducted at boiling water reactors (BWRs) such as the tests of main steam isolation valves (MSIVs), turbine overspeed protection system, and diesel generators. Evaluation results of the risk effectiveness of the tests are presented along with the insights from the sensitivity analysis of the risk impact versus test interval

  2. Metodologia para o teste de envelhecimento acelerado em sementes de ervilha Accelerated aging test on pea seeds

    Warley Marcos Nascimento

    2007-06-01

    ível identificar os lotes de melhor qualidade.Pea production in Brazil uses seeds produced in the country. The objective of this study was to examine the efficiency of the accelerated aging test for vigor evaluation of pea seeds. Five seed lots of cultivar Axé (wrinkled seeds and five seed lots of cultivar Mikado (smooth seeds were used. The initial quality of each seed lot was evaluated by germination test, first counting, and seedling emergence in the field. Seed moisture content was also assessed. The accelerated aging test was set at 41ºC for periods of 24; 48; and 72 hours, with and without saturated NaCl solution. The experiment was carried out in a completely randomized design. The accelerated aging test was efficient for vigor evaluation of pea seeds, and the period of 48 hours at 41ºC, using saturated NaCl solution was the most adequate procedure to indicate vigor levels of pea seeds. However, the seed germination after this period was very low when compared to 24 hour-period (80% for both cultivars, even in higher vigor seed lots (35% for Axé and 38% for Mikado. In the saturated NaCl solution, the period of 48 hours at 41ºC was the most adequate for separate seeds through vigor levels. In these conditions, seed lots of highest vigor showed germination of 68% and 79% for Axé and Mikado, respectively. Results of the germination test, first counting, and seedling emergence were not effective in discriminating physiological seed quality when used individually. Nevertheless, when results from these tests were used all together, it was possible to identify the best seed lots.

  3. Hardness evaluation of prosthetic silicones containing opacifiers following chemical disinfection and accelerated aging

    Marcelo Coelho Goiato

    2010-09-01

    Full Text Available We evaluated the effects of disinfection and aging on the hardness of silicones containing opacifiers and intended for use in facial prosthetics. A total of 90 samples were produced using a cylindrical metal mold 3 mm in height and 30 mm in diameter. The samples were fabricated from Silastic MDX 4-4210 silicone in three groups: GI contained no opacifier, GII contained barium sulfate (Ba, and GIII contained titanium dioxide (Ti. The samples were disinfected using effervescent tablets (Ef, neutral soap (Ns, or 4% chlorhexidine (Cl 3 times a week for 60 days. After this period the samples underwent 1,008 hours of accelerated aging. The hardness was measured using a durometer immediately following the disinfection period and after 252, 504, and 1,008 hours of aging. The data were statistically analyzed using 3-way ANOVA and the Tukey test (p < .05. The GIII group exhibited the greatest variation in hardness regardless of elapsed time. All groups displayed greater hardness after 1,008 hours of accelerated aging independent of disinfectant type. All of the hardness values were within the clinically acceptable range.

  4. Soil susceptibility to accelerated hydric erosion: geotechnical evaluation of cut slopes in residual soil profiles

    Taciano Oliveira da Silva

    2015-10-01

    Full Text Available The experimental research program was developed in the Alto Paraopeba region, state of Minas Gerais, Southeastern Brazil. The main objective was to promote the geotechnical evaluation of soil samples from four cut slopes in residual soil profiles of highways and local secondary roads in order to assess the potential of the anthropic impact on the soil susceptibility to accelerated erosion processes. Soil samples were named: red residual soil (RRS; pink residual soil (PRS; yellow residual soil (YRS; and white residual soil (WRS. The methodology used consisted of geotechnical characterization tests, infiltration rate and modified mass loss by immersion tests performed on soil samples from these profiles, using the physical parameters and indirect assessment of erodibility proposed in 2000 by Bastos et al. The results of indirect assessment of erodibility, which were derived from tests based on the MCT methodology, highlighted the different susceptibility of the investigated soils to hydric erosion. The parameters proposed by the referred authors were complementary to conventional criteria for an adequate classification of tropical soils into their respective classes of erodibility. Among the tested soil samples, the highest erodibility was associated with the YRS and PRS, respectively, in the natural and pre-moistened conditions, as well as it was not detected erodibility in the RRS and WRS.

  5. A high-gradient test of a 30 GHz copper accelerating structure

    Corsini, Roberto; Fandos, Raquel; Grudiev, Alexei; Jensen, Erk; Mete, Oznur; Ramsvik, Trond; Rodríguez, José Alberto; Sladen, Jonathan P H; Syratchev, Igor V; Taborelli, Mauro; Tecker, Frank A; Urschütz, Peter; Wilson, Ian H; Wuensch, Walter

    2006-01-01

    The CLIC study is investigating a number of different materials at different frequencies in order to find ways to increase achievable accelerating gradient and to understand what are the important parameters for high-gradient operation. So far a series of rf tests have been made with a set of identical-geometry 30 GHz and X-band structures in copper, tungsten and molybdenum. A new test of a 30 GHz copper accelerating structure has been completed in CTF3 with pulse lengths up to 70 ns. The new results are presented and compared to the previous structures to determine dependencies of quantities such accelerating gradient, material, frequency, pulse length, conditioning rate, breakdown rate and surface damage.

  6. Testing and interfacing intelligent power supplies for the Los Alamos National Laboratory Accelerator Complex

    New high-current, high precision microprocessor-controlled power supplies, built by Alpha Scientific Electronics of Hayward, CA, have been installed at the Los Alamos National Laboratory Accelerator Complex. Each unit has sophisticated microprocessor control on-board and communicates via RS-422 (serial communications). The units use a high level ASCII-based control protocol. Performance tests were conducted to verify adherence to specification and to ascertain ultimate long-term stability. The front-end software used by the accelerator control system has been written to accommodate these new devices. The supplies are interfaced to the control system through a terminal server port connected to the site-wide ethernet backbone. Test design and results as well as details of the software implementation for the analog and digital control of the supplies through the accelerator control system are presented

  7. Design and beam test of a high intensity continuous wave RFQ accelerator

    Zhang, Zhouli, E-mail: zhangzhouli@impcas.ac.cn; Sun, Liepeng; Jia, Huan; He, Yuan; Shi, Aimin; Du, Xiaonan; Wang, Jing; Jin, Xiaofeng; Pan, Gang; Xu, Xianbo; Li, Chenxing; Shi, Longbo; Lu, Liang; Zhang, Zimin; Wu, Junxia; Wang, Haoning; Zhu, Tieming; Wang, Xianwu; Guo, Yuhui; Liu, Yong; and others

    2014-11-01

    A four-vane continuous wave (CW) RFQ has been designed for the injector II LINAC of China ADS project. To acquire the experience of a CW RFQ on design, tuning, conditioning, running, etc., a 1-m-long RFQ accelerator prototype has been built. Working at 162.5 MHz, the RFQ prototype accelerates protons of 10 mA from 20 keV to 560 keV in one meter length with a low inter-vane voltage of 65 kV and a safe Kilpatric factor of 1.3. Conditioning and beam test of the accelerator prototype have been completed, and it shows the transmission efficiency can reach 90% with a 10 mA CW proton beam. Design, fabrication and tests of the RFQ prototype will be presented in detail in the paper.

  8. Test-particle acceleration in a hierarchical three-dimensional turbulence model

    Dalena, S.; Rappazzo, A. F.; Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE 19716 (United States); Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Greco, A., E-mail: serena.dalena@fis.unical.it [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy)

    2014-03-10

    The acceleration of charged particles is relevant to the solar corona over a broad range of scales and energies. High-energy particles are usually detected in concomitance with large energy release events like solar eruptions and flares. Nevertheless, acceleration can occur at smaller scales, characterized by dynamical activity near current sheets. To gain insight into the complex scenario of coronal charged particle acceleration, we investigate the properties of acceleration with a test-particle approach using three-dimensional magnetohydrodynamic (MHD) models. These are obtained from direct solutions of the reduced MHD equations, well suited for a plasma embedded in a strong axial magnetic field, relevant to the inner heliosphere. A multi-box, multiscale technique is used to solve the equations of motion for protons. This method allows us to resolve an extended range of scales present in the system, namely, from the ion inertial scale of the order of a meter up to macroscopic scales of the order of 10 km (1/100th of the outer scale of the system). This new technique is useful to identify the mechanisms that, acting at different scales, are responsible for acceleration to high energies of a small fraction of the particles in the coronal plasma. We report results that describe acceleration at different stages over a broad range of time, length, and energy scales.

  9. Design and test results of the Low Energy Demonstration Accelerator (LEDA) RF systems

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos will serve as the prototype for the low energy section of the Accelerator Production of Tritium (APT) accelerator. The APT accelerator requires over 200 RF systems each with a continuous wave output power of 1 MW. The reliability and availability of these RF systems is critical to the successful operation of the APT plant and prototypes of these systems are being developed and demonstrated on LEDA. The RF system design for LEDA includes three, 1.2 MW, 350 MHz continuous wave (CW), RF systems driving a radio frequency quadrupole (RFQ) and one, 1.0 MW, CW, RF system driving a coupled-cavity drift tube linac (CCDTL). This paper presents the design and test results for these RF systems including the klystrons, cathode power supply, circulators, RF vacuum windows, accelerator field and resonance control system, and RF transmission components. The three RF systems driving the RFQ use the accelerating structure as a power combiner, and this places some unique requirements on the RF system. These requirements and corresponding operational implications will be discussed

  10. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview

    Billing, M. G.

    2015-07-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers.

  11. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 1: overview

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CESRTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CESRTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESRTA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions. This paper contains the outline and the basis for a set of papers documenting the reconfiguration of the storage ring and the associated instrumentation required for the studies described above. Further details may be found in these papers

  12. Equipment for controlling test benches charged particle accelerator pulse power supply systems

    Composition of the off-line and manual control device system designed for experimental testing the pulse supply systems of charged particle accelereators is considered. The system includes following devices: a manual remote control desk, a sysnchronization device with fibre-optical commutation programmed pulse shape generator digital sources of reference voltage. Performances of all these devices are presented. 1 ref

  13. Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)

    Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

    2011-09-01

    This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

  14. Beam Extraction for 1-MV Electrostatic Accelerator at the 300 kV Test Stand

    The Korea Multipurpose Accelerator Complex (KOMAC) has been developing a 300-kV test stand for a 1-MV electrostatic accelerator ion source. The ion source in the high-pressure vessel is required to have a high reliability. The test stand has been proposed and developed to confirm the stable operating conditions of the ion source. The ion source will be tested at the test stand to verify the long-time operating conditions. The test stand comprises a 300-kV high-voltage terminal, a battery for the ion-source power, a 60-Hz inverter, 200-MHz RF power, a 5-kV extraction power supply, a 300-kV accelerating tube, and a vacuum system. A beam extraction experiment for the test stand was performed, and the beam current was measured using a faraday cup in the chamber. A beam extraction results for the RF ion source will be presented. Beam extraction from the RF ion source of the test stand is verified by measuring the beam current with a faraday cup in the chamber. Thus far NI Labview, PLC and faraday cup have been used to measure the beam current. The OPC server is useful for monitoring the PLC values. The average beam current of (a), (b) and (c) shown in figure 2 are 110.241µA, 105.8597µA and 103.5278µA respectively

  15. First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab

    Crawford, Darren; et al.

    2015-06-01

    The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.

  16. NDT for concrete under accelerated freeze/thaw tests and surface scaling

    Romero Mendoza, Héctor Leonardo; Casati Calzada, María Jesús; Gálvez Ruíz, Jaime

    2011-01-01

    Freezing of water or salt solution in concrete pores is a main cause for severe damage and significant reduction of the service life. Most of the freeze-thaw (F-T) accelerated tests measure the scaling of concrete by weighting. This paper presents complementary procedures based on the use of strain gages and ultrasonic pulse velocity (UPV) for measuring the deterioration of concrete due to freezing and thawing. These non-destructive testing (NDT) procedures are applied to two types of con...

  17. Accelerated Test Method to Identify Freeze-Thaw Durability of Aggregates

    Desta, Belayneh B.; Whiting, Nancy

    2015-01-01

    INDOT currently identifies freeze-thaw durable aggregate using ITM210, a 90-day concrete beam freeze-thaw test. To accelerate this procedure, the 8-day Hydraulic Fracture Test (HFT) was investigated and modified. Samples from 18 quarries and six RCA sources were subjected to HFT and ITM210. Statistical analysis demonstrated that HFT can predict the ITM210 results with reasonable accuracy. The modified HFT procedures and equipment are recommended as a quick screening tool for predicting ITM210...

  18. Accelerated swell testing of artificial sulfate bearing lime stabilised cohesive soils

    Buttress, A.J.; Grenfell, J.R.A.; Airey, G.D.

    2014-01-01

    This paper reports on the physico-chemical response of two lime stabilised sulfate bearing artificial soils subject to the European Accelerated Volumetric Swell Test (EN13286-49). At various intervals during the test, a specimen was removed and subject to compositional and microstructural analysis. Ettringite was formed by both soils types, but with significant differences in crystal morphology. Ettringite crystals formed from kaolin based soils were very small, colloidal in size and tended t...

  19. Testing of a low pressure multiwire avalanche counter with heavy ions from the Pelletron accelerator, Mumbai

    The motivation is to investigate eta-nucleus interaction for which the available experimental information is scarce. The new system consists of two multiwire avalanche counters (MWAC) to be operated at low pressure (10-20 mbar) followed by two layers of thin plastic scintillators. The MWACs will provide position information for track reconstruction. The chambers were tested with heavy ions from the pelletron accelerator, Mumbai. The test measurement is reported here

  20. ACCELERATED LABORATORY TEST OF RUBBERWOOD ORIENTED STRANDBOARD EXPOSED TO WOOD DECAY FUNGI

    Esmeralda Yoshico Arakaki Okino

    2009-10-01

    Full Text Available This work aimed to evaluate the natural durability of oriented strandboards (OSB manufactured with strands of Hevea brasiliensis Müll.Arg. bonded with 5% and 8% of urea-formaldehyde (UF and phenol-formadehyde (FF resins, exposed to xilophagous fungi under laboratory conditions. In accelerated laboratory test decay, samples of OSB were exposed to the following fungi: the brown-rot fungi Gloeophyllum trabeum (Pers. ex Fries Murr., Coniophora puteana (Schumach. : Fr.P. Karst., Meruliporia incrassata (Berk. & M.A. Curtis Murrill as well as the white-rot fungi Fomes annosus (Fr. : Fr. Cooke, Trametes versicolor (L. : Fr. Pilát, Ganoderma applanatum (Pers. Pat., Bjerkandera fumosa (Pers. : Fr. P. Karst. and Phanerochaete chrysosporium Burds. Among the brown-rot fungi, the Gloeophyllum trabeum was the most aggressive, showing the highest loss of mass. Trametes versicolor and Ganoderma applanatum confirmed the preference for broadleave species. All oriented strandboards at lower UF resin contents were more degraded by Phanerochaete chrysosporium, Trametes versicolor, Ganoderma applanatum, Merulia incrassata, Coniophora puteana and Gloeophyllum trabeum, with high rate of loss of mass. Coniophora puteana showed small loss of mass when FF resin was applied. Bjerkandera fumosa showed low loss of mass only at higher resin content. Oriented strandboards exposed to Coniophora puteana showed insignificant OSB degradation.

  1. Recovery mechanisms in proton exchange membrane fuel cells after accelerated stress tests

    Zhang, Xu; Guo, Liejin; Liu, Hongtan

    2015-11-01

    The mechanisms of performance recovery after accelerated stress test (AST) in proton exchange membrane fuel cells (PEMFCs) are systematically studied. Experiments are carried out by incorporating a well-designed performance recovery procedure right after the AST protocol. The experiment results show that the cell performance recovers significantly from the degraded state after the AST procedure. The results from cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements further show that the performance recovery can be divided into kinetic and mass transport recoveries. It is further determined that the kinetic recovery, i.e. the recovery of electrochemical active area (ECA), is due to two distinct mechanisms: the reduction of platinum oxide and the re-attachment of detached platinum nanoparticles onto the carbon surface. The mass transport resistance is probably due to reduction of hydrophilic oxide groups on the carbon surface and the microstructure change that alleviates flooding. Performance comparisons show that the recovery procedure is highly effective, indicating the results of AST significantly over-estimate the true degradation in a PEM fuel cell. Therefore, a recovery procedure is highly recommended when an AST protocol is used to evaluate cell degradations to avoid over-estimating true performance degradations in PEMFCs.

  2. The Ground Test Accelerator control system database: Configuration, run-time operation, and access

    A database is used to implement the interface between the control system and the accelerator and to provide flexibility in configuring the I/O. This flexibility is necessary to allow the control system to keep pace with the changing requirements that are inherent in an experimental environmental environment. This is not achieved without cost. Problems often associated with using databases are painful data entry, poor performance, and embedded knowledge of the database structure in code throughout the control system. This report describes how the database configuration, access, conversion, and execution in the Ground Test Accelerator (GTA) Control System overcome these problems. 2 figs

  3. LED照明产品加速衰减试验方法研究%Accelerated Luminous Depreciation Testing for LED Lighting Products

    钱诚; 孙博; 曹峻松

    2014-01-01

    With the application of energy-saving, environmental and durable LED lighting products, the reliability testing has become a pivot point for the large scale industrialization and popularization. The paper briefly introduces two methods to be respectively applied in the accelerated depreciation testing for the luminous flex of LED lighting products and the life of outdoor LED-driving power, which can sharply shorten the time for lifetime test, providing references for the LED lighting products’ reliability evaluation.

  4. ACCELERATED AGING TEST IN DETERMINING THE VIGOUR OF SUNFLOWER SEEDS WITH AND WITHOUT PERICARP

    K. R. Ducatti

    2014-09-01

    Full Text Available The standard germination test alone is insufficient to attest the quality of seeds, making necessary correlation’s with vigour tests, to determine more accurately the physiological potential of a seeds lot. The accelerated aging test is an option for determine the vigour and consists in submits seeds to high temperatures and humidity, for different periods of time, has not yet standardized. The objective of this work was to analyze the efficiency of the accelerated aging test in the assessment of the effect of a lot of sunflower seed, by three periods of aging (48, 56 and 72 hours in 42 °C temperature, in seeds with and without pericarp (manually removed and relate the results with electrical conductivity test and germination first count. The experimental design was a completely randomized design and the comparison of averages made using Tukey's test at 5% probability. The results showed that standard germination, electrical conductivity and germination first count, the seeds without pericarp showed better performance. In relation to the accelerated aging, only in the period of 72 hours of aging there was no significant difference between the treatments. In this way, the appropriate period to identify differences in force between the treatments was 72 hours, which showed a positive correlation with the germination first count and electrical conductivity.

  5. Corrosion Testing in Support of the Accelerator Production of Tritium Program

    The Accelerator Production of Tritium Project is part of the United States Department of Energy strategy to meet the nation's tritium needs. The project involves the design of a proton beam accelerator, which will produce tritium through neutron/proton interaction with helium-3. Design, construction and operation of this one-of-a-kind facility will involve the utilization of a wide variety of materials exposed to unique conditions, including elevated temperature and high-energy mixed-proton and -neutron spectra. A comprehensive materials test program was established by the APT project which includes the irradiation of structural materials by exposure to high-energy protons and neutrons at the Los Alamos Neutron Science Center at the Los Alamos National Laboratory. Real-time corrosion measurements were performed on specially designed corrosion probes in water irradiated by an 800 MeV proton beam. The water test system provided a means for measuring water chemistry, dissolved hydroge n concentration, and the effects of water radiolysis and water quality on corrosion rate. The corrosion probes were constructed of candidate APT materials alloy 718, 316L stainless steel, 304L stainless steel, and 6061 Aluminum (T6 heat treatment), and alternate materials 5052 aluminum alloy, alloy 625, and C276. Real-time corrosion rates during proton irradiation increased with proton beam current. Efforts are continuing to determine the effect of proton beam characteristics and mixed-particle flux on the corrosion rate of materials located directly in the proton beam. This paper focuses on the real-time corrosion measurements of materials located in the supply stream and return stream of the water flow line to evaluate effects of long-lived radiolysis products and water chemistry on the corrosion rates of materials. In general, the corrosion rates for the out-of-beam probes were low and were affected mainly by water conductivity. The data indicate a water conductivity threshold e xists

  6. Thermal vacuum accelerated life test of the unit qualification model msds 3 marconi low speed mechanism

    Appleton, D.A.

    1975-01-01

    The thermal vacuum accelerated life test of a solar array unit qualification mechanism (MSDS 3) is described. Most of the test was conducted with the shaft of the mechanism rotating at one revolution per hour, which is 24 times normal speed. The test was conducted at two different temperature conditions, and included additional thermal cycling of the shaft temperature to simulate conditions of earth eclipse of a satellite in a geostationary orbit. Throughout the test there was no change in the motor power required to drive the shaft, and the electrical noise levels on the slip rings showed no significant deterioration.

  7. Travinfo Field Operational Test Evaluation Plan

    Hall, Randolph; Yim, Y. B.; Khattak, Asad; Miller, Mark; Weissenberger, Stein

    1995-01-01

    TravInfo is a Field Operational Test (FOT) sponsored by the U.S. Federal Highway Administration. The goal of the project is to implement a centralized traveler information center to collect, integrate, and broadly disseminate timely and accurate traveler information in the San Francisco Bay Area. This evaluation plan describes the scope, methods, and procedures to measure the effectiveness of the project. The TravInfo evaluation will contain four evaluation elements: institutional, technology...

  8. Data Testing CIELO Evaluations with ICSBEP Benchmarks

    We review criticality data testing performed at Los Alamos with a combination of ENDF/B-VII.1 + potential CIELO nuclear data evaluations. The goal of CIELO is to develop updated, best available evaluated nuclear data files for 1H, 16O, 56Fe, 235,238U and 239Pu. because the major international evaluated nuclear data libraries don't agree on the internal cross section details of these most important nuclides.

  9. Tests, testing, and tested - we need to critically evaluate the meaning of tests in psychiatry.

    Berger, Douglas M

    2013-04-01

    This article describes clinical pitfalls in our concepts of what it means for an illness, diagnosis, or evaluation and treatment methods to say that they have been "tested". This articles begins with the problems encountered in newborn testing for Krabbe Disease of the nervous system in New York State over the last few years as an example of a test that did not live up to its promise to help the society. Next, the article gives 3 examples of testing in psychiatry, 1. Psychological testing to make treatment decisions in children with depression, 2. Patient's and parents who have been told, or believe, that they have Asperger's disorder, and 3. The conclusions made about the efficacy of cognitive behavioral therapy based on clinical studies. The article's conclusion sums up these examples as reasons why we need to have a more practical and scientific approach to our understanding and implementation of tests used in our field. PMID:23825862

  10. Testing and evaluation of light ablation decontamination

    This report details the testing and evaluation of light ablation decontamination. It details WINCO contracted research and application of light ablation efforts by Ames Laboratory. Tests were conducted with SIMCON (simulated contamination) coupons and REALCON (actual radioactive metal coupons) under controlled conditions to compare cleaning effectiveness, speed and application to plant process type equipment

  11. Overview of the Beam diagnostics in the Medaustron Accelerator:Design choices and test Beam commissioning

    Osmic, F; Gyorgy, A; Kerschbaum, A; Repovz, M; Schwarz, S; Neustadt, W; Burtin, G

    2012-01-01

    The MedAustron centre is a synchrotron based accelerator complex for cancer treatment and clinical and non-clinical research with protons and light ions, currently under construction in Wiener Neustadt, Austria. The accelerator complex is based on the CERN-PIMMS study [1] and its technical implementation by the Italian CNAO foundation in Pavia [2]. The MedAustron beam diagnostics system is based on sixteen different monitor types (153 devices in total) and will allow measuring all relevant beam parameters from the source to the irradiation rooms. The monitors will have to cope with large intensities and energy ranges. Currently, one ion source, the low energy beam transfer line and the RFQ are being commissioned in the Injector Test Stand (ITS) at CERN. This paper gives an overview of all beam monitors foreseen for the MedAustron accelerator, elaborates some of the design choices and reports the first beam commissioning results from the ITS.

  12. Design, Construction and Test Arrangement of a Fast-Cycling HTS Accelerator Magnet

    Piekarz, H; Hays, Steven; Shiltsev, Vladimir

    2014-01-01

    Design, fabrication and assembly of a novel fast-cycling accelerator magnet is presented. A short-sample magnet is powered with a single-turn HTS cable capable to carry 80 kA current at 20 K and generate 1.75 T field in a 40 mm magnet gap. The applied conventional leads and the power supply, however, allow only for a sin-wave 24 kA, 20 Hz current limiting test magnet to a B-field of 0.5 T and to a maximum cycling rate of 20 T/s. The critical aspects of the cable construction and the splicing connection to the power leads are described. Tentative power losses of the proposed HTS accelerator magnet in a possible application for proton and muon accelerators are presented.

  13. Limited streamer chamber testing and quality evaluation in ASTRA

    Limited streamer chambers are extensively used for high-energy and nuclear physics experiments in accelerator and underground laboratories. The tracking system of LVD, an underground experiment to study muons and nutrino astronomy, will use roughly 15000 limited streamer chambers and 100000 external pickup strips with digital readout electronics. In the article the different aspects of chamber operation that serve to establish a testing procedure and to define acceptance criteria for selecting reliable and long-life devices, are discussed. The procedures and the results obtained from a long-term test to evaluate streamer chamber quality, based upon a sample of 2900 items, are described. The selection tests and the long-term observations have been performed in the ASTRA laboratory, established at the Laboratori Nazionali di Frascati to carry out quality control procedures for streamer chambers on a large scale and in a controlled environment

  14. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. PMID:27025293

  15. Biodegradable nanocomposite coatings accelerate bone healing: In vivo evaluation

    Mehdi Mehdikhani-Nahrkhalaji; Mohammad Hossein Fathi; Vajihesadat Mortazavi; Sayed Behrouz Mousavi; Ali Akhavan; Abbas Haghighat; Batool Hashemi-Beni; Sayed Mohammad Razavi; Fatemeh Mashhadiabbas

    2015-01-01

    Background: The aim of this study was to evaluate the interaction of bioactive and biodegradable poly (lactide-co-glycolide)/bioactive glass/hydroxyapatite (PBGHA) and poly (lactide-co-glycolide)/bioactive glass (PBG) nanocomposite coatings with bone. Materials and Methods: Sol-gel derived 58S bioactive glass nanoparticles, 50/50 wt% poly (lactic acid)/poly (glycolic acid) and hydroxyapatite nanoparticles were used to prepare the coatings. The nanocomposite coatings were characterized by ...

  16. Evaluation of an accelerated mineralization process for ashes - feasibility study; Evaluering av jordmaansbildande askbehandlingsprocess (EJA) - foerstudie

    Ecke, Holger; Bjurstroem, Henrik

    2005-03-01

    In Japan, expenses for landfilling yield about 400 USD per ton of ash, which gives an incentive to reduce the amount of landfilled ash. At NIES (National Institute for Environmental Studies) in Tsukuba, Japan, the AMT process (Accelerated Mineralization Technology) was developed aiming at the treatment of ashes and production of soil-like material for reuse. The objective of the project EJA was to evaluate the AMT process on the basis of available information and the possibilities the process could offer with respect to the conditions present in Sweden. With support of researchers at NIES, available literature including unpublished manuscripts on the AMT process was compiled, translated and evaluated. During treatment, the ashes are washed, aged and mixed with up to 5 % by weight of biodegradable organic matter. The material is stabilized at landfill. During up to several decades, metals are demobilized through a combination of three mechanisms, viz. carbonation, clay formation, and humification. Also persistent organic pollutants (POP) are demobilized due to humification products or they are degraded anaerobically. When the treatment is completed, the reuse of the material is envisaged. Due to the long treatment period, the AMT method might not be favored by ash producers in Sweden. In the future, landfill companies could be interested in the technology, since they are experienced to handle waste at long sight. This, however, requires that the legislation does not pose any hindrance for the implementation of the method, e.g. regarding the requirement to add organic matter to the ash. Above all, it remains several years of research on the AMT process to fully understand and evaluate the underlying biological and chemical processes as well as their interaction.

  17. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    Congedo, Giuseppe

    2015-03-01

    The basic constituent of interferometric gravitational wave detectors—the test-mass-to-test-mass interferometric link—behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as nongravitational spurious forces. This last contribution is going to be characterized by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system's free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalize over nuisance parameters. The F statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalized to marginalize over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  18. Correlating outdoor exposure with accelerated aging tests for aluminum solar reflectors

    Wette, Johannes; Sutter, Florian; Fernández-García, Aránzazu

    2016-05-01

    Guaranteeing the durability of concentrated solar power (CSP) components is crucial for the success of the technology. The reflectors of the solar field are a key component of CSP plants, requiring reliable methods for service lifetime prediction. So far, no proven correlations exist to relate accelerated aging test results in climate chambers with relevant CSP exposure sites. In this work, correlations have been derived for selected testing conditions that excite the same degradation mechanisms as for outdoor exposure. Those testing conditions have been identified by performing an extensive microscopic comparison of the appearing degradation mechanisms on reference samples that have been weathered outdoors with samples that underwent a high variety of accelerated aging experiments. The herein developed methodology is derived for aluminum reflectors and future work will study its applicability to silvered-glass mirrors.

  19. The Conversion of CESR to Operate as the Test Accelerator, CesrTA, Part 1: Overview

    Billing, M G

    2015-01-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CesrTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CesrTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CesrTA is a very flexible storage ring, capabl...

  20. Performance degradation, polymer encapsulant degradation, and estimating lifetimes for photovoltaic modules from accelerated testing

    Czanderna, A.W.; Pern, F.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purposes of this paper are to provide background information about encapsulants for photovoltaic (PV) modules and to evaluate estimates of the durability of different materials used in PV modules. The authors summarize the field-deployed module degradation in performance, the established degradation mechanisms of ethylene vinyl acetate (EVA) copolymer, and potential degradation mechanisms in other module components and at materials interfaces. Most of the emphasis is on estimates for the commercially used EVA formulations A9918 and 15295. These formulations have degraded in field-deployed modules to produce acetic acid and a yellow to brown color from polyenes and the module efficiencies have been reduced by 10% to 70% in 4 to 12 years. Yet, projections were made by several different research groups in the 1980s that the EVA lifetime could range from 20 to 100 years, the production of acetic acid would only be 0.006% in 20 years, and that silver metallization would survive attack from acetic acid for 300 years at 55 C. Those authors did not use appropriate variables or specimen configurations that simulate reality, and based their projections using the generalization that chemical reaction rates double for every 10 C increase in T. The authors review the inherent errors in their assumptions about the Arrhenius relation. They also show how degradation in efficiency (from current-voltage data) comparable to field experience is obtained using minimodules with a construction that simulates reality and by using appropriate variables in accelerated testing, i.e., UV, T, and RH. A test protocol is outlined that simulates reality and permits making suitable service lifetime projections.

  1. A cosmic speed-trap: a gravity-independent test of cosmic acceleration using baryon acoustic oscillations

    Sutherland, Will

    2011-01-01

    We propose a new and highly model-independent test of cosmic acceleration by comparing observations of the baryon acoustic oscillation (BAO) scale at low and intermediate redshifts: we derive a new inequality relating BAO observables at two distinct redshifts, which must be satisfied for any reasonable homogeneous non-accelerating model, but is violated by models similar to LambdaCDM, due to acceleration in the recent past. This test is fully independent of the theory of gravity (GR or otherw...

  2. A Parallel Particle Swarm Optimization Algorithm Accelerated by Asynchronous Evaluations

    Venter, Gerhard; Sobieszczanski-Sobieski, Jaroslaw

    2005-01-01

    A parallel Particle Swarm Optimization (PSO) algorithm is presented. Particle swarm optimization is a fairly recent addition to the family of non-gradient based, probabilistic search algorithms that is based on a simplified social model and is closely tied to swarming theory. Although PSO algorithms present several attractive properties to the designer, they are plagued by high computational cost as measured by elapsed time. One approach to reduce the elapsed time is to make use of coarse-grained parallelization to evaluate the design points. Previous parallel PSO algorithms were mostly implemented in a synchronous manner, where all design points within a design iteration are evaluated before the next iteration is started. This approach leads to poor parallel speedup in cases where a heterogeneous parallel environment is used and/or where the analysis time depends on the design point being analyzed. This paper introduces an asynchronous parallel PSO algorithm that greatly improves the parallel e ciency. The asynchronous algorithm is benchmarked on a cluster assembled of Apple Macintosh G5 desktop computers, using the multi-disciplinary optimization of a typical transport aircraft wing as an example.

  3. Evaluation of commercial ADC radiation tolerance for accelerator experiments

    Chen, Kai; Kierstead, James; Takai, Helio; Rescia, Sergio; Hu, Xueye; Xu, Hao; Mead, Joseph; Lanni, Francesco; Minelli, Marena

    2014-01-01

    Electronic components used in high energy physics experiments are subjected to a radiation background composed of high energy hadrons, mesons and photons. These particles can induce permanent and transient effects that affect the normal device operation. Ionizing dose and displacement damage can cause chronic damage which disable the device permanently. Transient effects or single event effects are in general recoverable with time intervals that depend on the nature of the failure. The magnitude of these effects is technology dependent with feature size being one of the key parameters. Analog to digital converters are components that are frequently used in detector front end electronics, generally placed as close as possible to the sensing elements to maximize signal fidelity. We report on radiation effects tests conducted on 17 commercially available analog to digital converters and extensive single event effect measurements on specific twelve and fourteen bit ADCs that presented high tolerance to ionizing d...

  4. Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results

    The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 1250C, 54,000 at 1650C, 48,000 at 1850C, and 8500 at 2250C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 1250C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 1250C. It was concluded that, for a heat pipe temperature of 1250C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 1250C) and 98% (based on 1,430,000 accelerated pipe-h at 1250C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport

  5. Optimum Accelerated Degradation Tests for the Gamma Degradation Process Case under the Constraint of Total Cost

    Heonsang Lim

    2015-04-01

    Full Text Available An accelerated degradation test (ADT is regarded as an effective alternative to an accelerated life test in the sense that an ADT can provide more accurate information on product reliability, even when few or no failures may be expected before the end of a practical test period. In this paper, statistical methods for optimal designing ADT plans are developed assuming that the degradation characteristic follows a gamma process (GP. The GP-based approach has an advantage that it can deal with more frequently encountered situations in which the degradation should always be nonnegative and strictly increasing over time. The optimal ADT plan is developed under the total experimental cost constraint by determining the optimal settings of variables such as the number of measurements, the measurement times, the test stress levels and the number of units allocated to each stress level such that the asymptotic variance of the maximum likelihood estimator of the q-th quantile of the lifetime distribution at the use condition is minimized. In addition, compromise plans are developed to provide means to check the adequacy of the assumed acceleration model. Finally, sensitivity analysis procedures for assessing the effects of the uncertainties in the pre-estimates of unknown parameters are illustrated with an example.

  6. ADVANCED X-BAND TEST ACCELERATOR FOR HIGH BRIGHTNESS ELECTRON AND GAMMA RAY BEAMS

    Marsh, R A; Anderson, S G; Barty, C P; Chu, T S; Ebbers, C A; Gibson, D J; Hartemann, F V; Adolphsen, C; Jongewaard, E N; Raubenheimer, T; Tantawi, S G; Vlieks, A E; Wang, J W

    2010-05-12

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  7. Advanced X-Band Test Accelerator for High Brightness Electron and Gamma Ray Beams

    Marsh, Roark; /LLNL, Livermore; Anderson, Scott; /LLNL, Livermore; Barty, Christopher; /LLNL, Livermore; Chu, Tak Sum; /LLNL, Livermore; Ebbers, Chris; /LLNL, Livermore; Gibson, David; /LLNL, Livermore; Hartemann, Fred; /LLNL, Livermore; Adolphsen, Chris; /SLAC; Jongewaard, Erik; /SLAC; Raubenheimer, Tor; /SLAC; Tantawi, Sami; /SLAC; Vlieks, Arnold; /SLAC; Wang, Juwen; /SLAC

    2012-07-03

    In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test stand is being developed to investigate accelerator optimization for future upgrades. This test stand will enable work to explore the science and technology paths required to boost the current 10 Hz monoenergetic gamma-ray (MEGa-Ray) technology to an effective repetition rate exceeding 1 kHz, potentially increasing the average gamma-ray brightness by two orders of magnitude. Multiple bunches must be of exceedingly high quality to produce narrow-bandwidth gamma-rays. Modeling efforts will be presented, along with plans for a multi-bunch test stand at LLNL. The test stand will consist of a 5.5 cell X-band rf photoinjector, single accelerator section, and beam diagnostics. The photoinjector will be a high gradient standing wave structure, featuring a dual feed racetrack coupler. The accelerator will increase the electron energy so that the emittance can be measured using quadrupole scanning techniques. Multi-bunch diagnostics will be developed so that the beam quality can be measured and compared with theory. Design will be presented with modeling simulations, and layout plans.

  8. Accelerated corrosion test and corrosion failure distribution model of aircraft structural aluminum alloy

    LIU Wen-lin; MU Zhi-tao; JIN Ping

    2006-01-01

    Based on corrosion damage data of 10 years for a type of aircraft aluminum alloy, the statistical analysis was conducted by Gumbel, Normal and two parameters Weibull distribution function. The results show that aluminum alloy structural member has the corrosion history of pitting corrosion-intergranular corrosion-exfoliation corrosion, and the maximum corrosion depth is in conformity to normal distribution. The accelerated corrosion test was carried out with the complied equivalent airport accelerated environment spectrum. The corrosion damage failure modes of aluminum alloy structural member indicate that the period of validity of the former protective coating is about 2.5 to 3 years, and that of the novel protective coating is about 4.0 to 4.5 years. The corrosion kinetics law of aluminum spar flange was established by fitting corrosion damage test data. The law indicates two apparent corrosion stages of high strength aluminum alloy section material: pitting corrosion and intergranular corrosion/exfoliation corrosion.The test results agree with the statistical fit result of corrosion data collected from corrosion member in service. The fractional error is 5.8% at the same calendar year. The accelerated corrosion test validates the corrosion kinetics law of aircraft aluminum alloy in service.

  9. 78 FR 76410 - Request for Information on Strategies To Accelerate the Testing and Adoption of Pay for Success...

    2013-12-17

    ... Strategies to Accelerate the Testing and Adoption of Pay for Success (PFS) Financing Models (78 FR 60998... Request for Information on Strategies To Accelerate the Testing and Adoption of Pay for Success (PFS... information; reopening of comment period. SUMMARY: The Department of the Treasury is reopening the...

  10. Current state of X-band accelerating structure high gradient test. Be held at high energy accelerator organization on April 15, 2005

    XTF (X-band Test Facility, Old name is GLCTA) is the high gradient test facility for X-band acceleration. We have installed an X-band 60cm structure (KX01) in the April 2004 and have been processing it for more than 10 months. Now it is under test on long-term operation. We report here the high gradient test result to date. (author)

  11. LLRF and timing system for the SCSS test accelerator at SPring-8

    Otake, Yuji; Ohshima, Takashi; Hosoda, Naoyasu; Maesaka, Hirokazu; Fukui, Toru; Kitamura, Masanobu; Shintake, Tsumoru

    2012-12-01

    The 250 MeV SCSS test accelerator as an extreme-ultra violet (EUV) laser source has been built at SPring-8. The accelerator comprises a 500 kV thermionic gun, a velocity bunching system using multi-sub-harmonic bunchers (SHB) in an injector and a magnetic bunch compressor using a chicane of 4 bending magnets, a 5712 MHz main accelerator to accelerate an electron beam up to 250 MeV, and undulators to radiate the EUV laser. These bunch compression processes make short bunched electrons with a 300 A peak current and a 300 fs pulse width. The pulse width and peak current of an electron beam, which strongly affect the pulse width and intensity of the laser light, are mainly decided by the pulse compression ratio of the velocity bunching and the magnetic bunch compressing processes. The compression ratio is also determined due to an energy chirp along the beam bunch generated by an off-crest rf field at the SHB and cavities before the chicane. To constantly keep the beam pulse-width conducted by rf and timing signals, which are temporally controlled within subpicoseconds of the designed value, the low-level rf and timing system of the test accelerator has been developed. The system comprises a very low-noise and temporally stable reference signal source, in-phase and quadrature (IQ) modulators and demodulators, as well as VME type 12 bits analog-to-digital and digital-to-analog converter modules to manipulate an rf phase and amplitude by IQ functions for the cavity. We achieved that the SSB noise of the 5712 MHz reference signal source was less than -120 dBc/Hz at 1 kHz offset from the reference frequency; the phase setting and detecting resolution of the IQ-modulators and demodulators were within +/-0.5° at 5712 MHz. A master trigger VME module and a trigger delay VME module were also developed to activate the components of the test accelerator. The time jitter of the delay module was less than 0.7 ps, sufficient for our present requirement. As a result, a beam energy

  12. LLRF and timing system for the SCSS test accelerator at SPring-8

    The 250 MeV SCSS test accelerator as an extreme-ultra violet (EUV) laser source has been built at SPring-8. The accelerator comprises a 500 kV thermionic gun, a velocity bunching system using multi-sub-harmonic bunchers (SHB) in an injector and a magnetic bunch compressor using a chicane of 4 bending magnets, a 5712 MHz main accelerator to accelerate an electron beam up to 250 MeV, and undulators to radiate the EUV laser. These bunch compression processes make short bunched electrons with a 300 A peak current and a 300 fs pulse width. The pulse width and peak current of an electron beam, which strongly affect the pulse width and intensity of the laser light, are mainly decided by the pulse compression ratio of the velocity bunching and the magnetic bunch compressing processes. The compression ratio is also determined due to an energy chirp along the beam bunch generated by an off-crest rf field at the SHB and cavities before the chicane. To constantly keep the beam pulse-width conducted by rf and timing signals, which are temporally controlled within subpicoseconds of the designed value, the low-level rf and timing system of the test accelerator has been developed. The system comprises a very low-noise and temporally stable reference signal source, in-phase and quadrature (IQ) modulators and demodulators, as well as VME type 12 bits analog-to-digital and digital-to-analog converter modules to manipulate an rf phase and amplitude by IQ functions for the cavity. We achieved that the SSB noise of the 5712 MHz reference signal source was less than −120 dBc/Hz at 1 kHz offset from the reference frequency; the phase setting and detecting resolution of the IQ-modulators and demodulators were within +/−0.5° at 5712 MHz. A master trigger VME module and a trigger delay VME module were also developed to activate the components of the test accelerator. The time jitter of the delay module was less than 0.7 ps, sufficient for our present requirement. As a result, a beam

  13. Atomic oxygen ground-based accelerated tests of spacecraft materials and structures for long-term LEO missions

    Chernik, Vladimir; Novikov, Lev; Smirnova, Tatyana; Shumov, Andrey

    Spacecraft materials are degradated during long-term low earth orbit (LEO) flight. The Internation Space Station (ISS) is planed to be prolonged the term of action up to 20-25 years. To specify so long life one requires a validation of spacecraft material behaviour conservation for the period. The LEO environment includes atomic oxygen (AO) destructive incident flow. The appropriate AO fluence is proposed to be as high as 10E22-10E23 atom O/sq cm. The simulative ground-based test is evident to be acceptable if its duration is not too long usually under several hundreds of hours. In that case the rate of the test acceleration exceeds 100-200. One way to accelerate test is to increase oxygen particles energy. We test materials under oxygen plasma beam, formed by a magnetoplasmadynamic accelerator, with the oxygen particle energy of 20 -30 eV. In this way we determine an AO effective fluence by a kapton equivalent technique. The beam varies from LEO incident flow by energy, flux and rates of the oxygen dissociation / ionization/ excitation. To evaluate the test adequacy we measured and compared with LEO data erosion yields of a number of polymer materials, applied on spacecraft external surfaces. There were: polyimide (kapton), polyamide (nylon), polyethylene, polyvinyl fluoride (tedlar), polysteren, polymethyl methacrylate, epoxy, polyethylene terephthalate (mylar), graphite. Their relative erosion yields, measured and normalized by polyimide in this way, practically coincide with the data of flight experiments on the ISS. The results ground to use our plasma mode for accelerated tests of spacecraft material durability for long-term LEO flights. We tested quite a number of polymer-based materials and structures usable on ISS and another LEO spacecrafts. The effective AO fluencies ran up to 3,5 10E22 atom O/sq cm corresponding to the ISS flight duration about 20 years. We studied material behaviors like mass and thickness losses, erosion yield, surface morphology

  14. Accelerated Testing of UH-60 Viscous Bearings for Degraded Grease Fault

    Dykas, Brian; Hood, Adrian; Krantz, Timothy; Klemmer, Marko

    2015-01-01

    An accelerated aging investigation of critical aviation bearings lubricated with MIL-PRF- 81322 grease was conducted to derive an understanding of the mechanisms of grease degradation and loss of lubrication over time. The current study focuses on UH-60 Black Hawk viscous damper bearings supporting the tail rotor driveshaft, which were subjected to more than 5800 hours of testing in a heated environment to accelerate the deterioration of the grease. The mechanism of grease degradation is a reduction in the oil/thickener ratio rather than the expected chemical degradation of grease constituents. Over the course of testing, vibration and temperature monitoring of bearings was conducted and trends for failing bearings are presented.

  15. The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models

    Abdalla Ahmed Abdel-Ghaly

    2016-06-01

    Full Text Available This paper suggests the use of the conditional probability integral transformation (CPIT method as a goodness of fit (GOF technique in the field of accelerated life testing (ALT, specifically for validating the underlying distributional assumption in accelerated failure time (AFT model. The method is based on transforming the data into independent and identically distributed (i.i.d Uniform (0, 1 random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.

  16. Requirements for an evaluated nuclear data file for accelerator-based transmutation

    The importance of intermediate-energy nuclear data files as part of a global calculation scheme for accelerator-based transmutation of radioactive waste systems (for instance with an accelerator-driven subcritical reactor) is discussed. A proposal for three intermediate-energy data libraries for incident neutrons and protons is presented: - a data library from 0 to about 100 MeV (first priority), - a reference data library from 20 to 1500 MeV, - an activation/transmutation library from 0 to about 100 MeV. Furthermore, the proposed ENDF-6 structure of each library is given. The data needs for accelerator-based transmutation are translated in terms of the aforementioned intermediate-energy data libraries. This could be a starting point for an ''International Evaluated Nuclear Data File for Transmutation''. This library could also be of interest for other applications in science and technology. Finally, some conclusions and recommendations concerning future evaluation work are given. (orig.)

  17. Real time data acquisition system for the High Current Test Facility proton accelerator

    A real time data acquisition system was developed to monitor and control the High Current Test Facility Proton Accelerator. It is a PDP-8/E computer system with virtual memory capability that is fully interrupt driven and operates under a real-time, multi-tasking executive. The application package includes mode selection to automatically modify programs and optimize operation under varying conditions. (U.S.)

  18. Reliability Estimation based on Step-Stress Accelerated Degradation Testing by Unequal Interval Time Series Analysis

    Li Wang; Zaiwen Liu; Chongchong Yu

    2013-01-01

    This paper proposes a reliability estimation method based on Step-Stress Accelerated Degradation Testing (SSADT) data analysis using unequal interval time series analysis. A Multi-Regression Time Varying Auto-Regressive (MRTVAR) degradation time series model is proposed. Product SSADT data are treated as unequal interval composite time series and described using MRTVAR time series model and utilized to predict long-term trend of degradation. By using the suggested method, product reliability ...

  19. An experimental test of Newton's law of gravitation for small accelerations

    The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10-10 m/s2. These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a0 ∼ 1.2.10-10 m/s2, where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)

  20. Evaluation of pressure transducers. Dynamic tests

    The evaluation of a pressure transducer consists in checking its specifications. The tests of rapidity with a shock tube are important because they allow to find out transducer response time under a pressure step and also its natural frequency and damping. These last two data define the whole dynamic work of a fast transducer as the accuracy of the amplitude versus frequency function, the phase rotation, limit of use, overload. Several tests carried out on ETCA shock tube are described

  1. Evaluation of rapid diagnostic test for influenza

    Tiziano Allice

    2009-06-01

    Full Text Available In high risk patients such as in eldery, newborns and immunosuppressed subjects, a timely diagnosis of influenza is required for the most appropriate antiviral strategy in order to avoid severe secondary respiratory complications and viral spreading. Influenza is preventable by vaccination and chemoprophylaxis and is treatable by specific antiviral indications. The need for a timely diagnosis has led to the introduction of numerous rapid diagnostic tests.These are mostly antigen detection test giving results within 30 minutes, a clinically relevant time-frame to complement with the use of antiviral medications or chemoprophylaxis strategy. When evaluating performances of rapid test for influenza viruses, it is important to consider the type and quality of specimen to be tested, as well as sensitivity and specificity of the assays. Nasal/nasopharyngeal swabs are the most frequently submitted specimens, but nasal/nasopharingeal aspirates and washs can improve the diagnostic sensitivity of the test. Only some rapid assays can be successful used with broncoalveolar washings. In this review,we evaluated the sensitivity, specificity, reproducibility and feasibility of the most currently licensed rapid tests for influenza virus A and B. A flow-chart for the laboratory diagnosis of influenza with rapid test in combination with confirmatory test is proposed.

  2. Proficiency Testing for Evaluating Aerospace Materials Test Anomalies

    Hirsch, D.; Motto, S.; Peyton, S.; Beeson, H.

    2006-01-01

    ASTM G 86 and ASTM G 74 are commonly used to evaluate materials susceptibility to ignition in liquid and gaseous oxygen systems. However, the methods have been known for their lack of repeatability. The inherent problems identified with the test logic would either not allow precise identification or the magnitude of problems related to running the tests, such as lack of consistency of systems performance, lack of adherence to procedures, etc. Excessive variability leads to increasing instances of accepting the null hypothesis erroneously, and so to the false logical deduction that problems are nonexistent when they really do exist. This paper attempts to develop and recommend an approach that could lead to increased accuracy in problem diagnostics by using the 50% reactivity point, which has been shown to be more repeatable. The initial tests conducted indicate that PTFE and Viton A (for pneumatic impact) and Buna S (for mechanical impact) would be good choices for additional testing and consideration for inter-laboratory evaluations. The approach presented could also be used to evaluate variable effects with increased confidence and tolerance optimization.

  3. Data Testing CIELO Evaluations with ICSBEP Benchmarks

    Kahler, Albert Comstock [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-09

    We review criticality data testing performed at Los Alamos with a combination of ENDF/B-VII.1 + potential CIELO nuclear data evaluations. The goal of CIELO is to develop updated, best available evaluated nuclear data files for 1H, 16O, 56Fe, 235,238U and 239Pu. because the major international evaluated nuclear data libraries don’t agree on the internal cross section details of these most important nuclides.

  4. Method for the Accelerated Testing of the Durability of a Construction Binder using the Arrhenius Approach

    Fridrichová Marcela

    2016-03-01

    Full Text Available The single most reliable indicator of a material’s durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C and two different relative humidities (14 and 100% were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite’s decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed

  5. Method for the Accelerated Testing of the Durability of a Construction Binder using the Arrhenius Approach

    Fridrichová, Marcela; Dvořák, Karel; Gazdič, Dominik

    2016-03-01

    The single most reliable indicator of a material's durability is its performance in long-term tests, which cannot always be carried out due to a limited time budget. The second option is to perform some kind of accelerated durability tests. The aim of the work described in this article was to develop a method for the accelerated durability testing of binders. It was decided that the Arrhenius equation approach and the theory of chemical reaction kinetics would be applied in this case. The degradation process has been simplified to a single quantifiable parameter, which became compressive strength. A model hydraulic binder based on fluidised bed combustion ash (FBC ash) was chosen as the test subject for the development of the method. The model binder and its hydration products were tested by high-temperature X-ray diffraction analysis. The main hydration product of this binder was ettringite. Due to the thermodynamic instability of this mineral, it was possible to verify the proposed method via long term testing. In order to accelerate the chemical reactions in the binder, four combinations of two temperatures (65 and 85°C) and two different relative humidities (14 and 100%) were used. The upper temperature limit was chosen because of the results of the high-temperature x-ray testing of the ettringite's decomposition. The calculation formulae for the accelerated durability tests were derived on the basis of data regarding the decrease in compressive strength under the conditions imposed by the four above-mentioned combinations. The mineralogical composition of the binder after degradation was also described. The final degradation product was gypsum under dry conditions and monosulphate under wet conditions. The validity of the method and formula was subsequently verified by means of long-term testing. A very good correspondence between the calculated and real values was achieved. The deviation of these values did not exceed 5 %. The designed and verified method

  6. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    Hosseinpour, M., E-mail: hosseinpour@tabrizu.ac.ir; Mehdizade, M.; Mohammadi, M. A. [Plasma Physics Department, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2014-10-15

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

  7. Comparison of test particle acceleration in torsional spine and fan reconnection regimes

    Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100 MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory

  8. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  9. TEST QUALITY EVALUATION FOR COMPLEX DIGITAL SYSTEMS

    VLADIMIR HAHANOV; STANLEY HYDUKE; IGOR CHUGUROV

    2003-01-01

    A high performance Back-traced Deductive-Parallel (BDP) fault simulation method based on the superposition procedure is oriented on a using large digital designs processing. Evaluation of RT and gate level design description is proposed in this work. The data structure and program are developed for algorithms realization of proposed method and integration with automatic test pattern generation systems.

  10. CMOS test and evaluation a physical perspective

    Bhushan, Manjul

    2015-01-01

    This book extends test structure applications described in Microelectronic Test Struc­tures for CMOS Technology (Springer 2011) to digital CMOS product chips. Intended for engineering students and professionals, this book provides a single comprehensive source for evaluating CMOS technology and product test data from a basic knowledge of the physical behavior of the constituent components. Elementary circuits that exhibit key properties of complex CMOS chips are simulated and analyzed, and an integrated view of design, test and characterization is developed. Appropriately designed circuit monitors embedded in the CMOS chip serve to correlate CMOS technology models and circuit design tools to the hardware and also aid in test debug. Impact of silicon process variability, reliability, and power and performance sensitivities to a range of product application conditions are described. Circuit simulations exemplify the methodologies presented, and problems are included at the end of the chapters.

  11. Limitations of predicting in vivo biostability of multiphase polyurethane elastomers using temperature-accelerated degradation testing.

    Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James

    2015-01-01

    Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials. PMID:24810790

  12. An electrochemical method for accelerated testing of chloride diffusivity in concrete

    Zhang, T.; Gjoerv, O.E. (Norwegian Inst. of Tech., Trondheim (Norway). Div. of Building Materials)

    1994-01-01

    In the present paper an electrochemical method for accelerated testing of chloride diffusivity in concrete is presented. The method is based on a theoretical relationship between chloride diffusivity and observed steady-state rate of chloride migration through the concrete. The concentration of the chloride source solution has a significant influence on the rate of chloride migration and, therefore, a correction factor for ionic interaction in the relationship is introduced. It is shown that the relationship can be used for calculation of chloride diffusivity under various testing conditions. Some experimental results are also presented.

  13. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  14. Liquid nitrogen tests of a Torus coil for the Jefferson Lab 12GeV accelerator upgrade

    Fair, Ruben J. [JLAB; Ghoshal, Probir K. [JLAB; Bruhwel, Krister B. [JLAB; Kashy, David H. [JLAB; Machie, Danny [JLAB; Bachimanchi, Ramakrishna [JLAB; Taylor, William; Fischer, John W. [JLAB; Legg, Robert A. [JLAB; Powers, Jacob R. [JLAB

    2015-06-01

    A magnet system consisting of six superconducting trapezoidal racetrack-type coils is being built for the Jefferson Lab 12-GeV accelerator upgrade project. The magnet coils are wound with Superconducting Super Collider-36 NbTi strand Rutherford cable soldered into a copper channel. Each superconducting toroidal coil is force cooled by liquid helium, which circulates in a tube that is in good thermal contact with the inside of the coil. Thin copper sheets are soldered to the helium cooling tube and enclose the superconducting coil, providing cooling to the rest of the coil pack. As part of a rigorous risk mitigation exercise, each of the six coils is cooled with liquid nitrogen (LN2) to 80 K to validate predicted thermal stresses, verify the robustness and integrity of electrical insulation, and evaluate the efficacy of the employed conduction cooling method. This paper describes the test setup, the tests performed, and the findings.

  15. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-12-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge from testing at constant conditions to dynamic operation. 7.5 times more cycles than required for 80,000 h lifetime as micro CHP are achieved on one-cell-stack level. The results also suggest that degradation mechanisms that proceed on a longer time-scale, such as creep, might have a more dominating effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set of dynamic conditions etc.

  16. Power Test of the Ladder IH-RFQ Accelerator at Peking University

    LU Yuan-Rong; CHEN Wei; NIE Yuan-Cun; LIU Ge; GAO Shu-Li; ZENG Hong-Jin; YAN Xue-Qing; CHEN Jia-Er

    2011-01-01

    A 104-MHz ladder interdigital-H radio frequency quadrupole accelerator (T-IH-RFQ) is developed for applying RFQs to heavy ion implantation and accelerator-based mass spectroscopy in recent years at the Institute of Heavy Ion Physics,Peking University.It could accelerate ions with a mass-to-charge ratio of less than 14,from 2.9 ke V/u to 35.7keV/u within a length of 1.1 m.The T-IH-RFQ cavity operating at H21(0) mode was constructed successfully.Based on a well designed rf power feeding system,the cavity was cold measured and tested with high rf power.In the case of cold measurement,the rf properties were obtained using a vector network analyzer with the help of a perturbation capacitor. During a high power test,the inter-electrode voltage was derived from the energy spectrum of x-rays measured by a high purity Ge detector.The results show that the specific shunt impedance of the T-IH-RFQ cavity reaches 178kΩm,which could meet the requirements of beam dynamics design.

  17. Seismic-fragility tests of new and accelerated-aged Class 1E battery cells

    The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components

  18. Development of a quantitative accelerated sulphate attack test for mine backfill

    Shnorhokian, Shahe

    Mining operations produce large amounts of tailings that are either disposed of in surface impoundments or used in the production of backfill to be placed underground. Their mineralogy is determined by the local geology, and it is not uncommon to come across tailings with a relatively high sulphide mineral content, including pyrite and pyrrhotite. Sulphides oxidize in the presence of oxygen and water to produce sulphate and acidity. In the concrete industry, sulphate is known to produce detrimental effects by reacting with the cement paste to produce the minerals ettringite and gypsum. Because mine backfill uses tailings and binders---including cement---it is therefore prone to sulphate attack where the required conditions are met. Currently, laboratory tests on mine backfill mostly measure mechanical properties such as strength parameters, and the study of the chemical aspects is restricted to the impact of tailings on the environment. The potential of sulphate attack in mine backfill has not been studied at length, and no tests are conducted on binders used in backfill for their resistance to attack. Current ASTM guidelines for sulphate attack tests have been deemed inadequate by several authors due to their measurement of only expansion as an indicator of attack. Furthermore, the tests take too long to perform or are restricted to cement mortars only, and not to mixed binders that include pozzolans. Based on these, an accelerated test for sulphate attack was developed in this work through modifying and compiling procedures that had been suggested by different authors. Small cubes of two different binders were fully immersed in daily-monitored sodium sulphate and sulphuric acid solutions for a total of 28 days, after 7 days of accelerated curing at 50°C. In addition, four binders were partially immersed in the same solutions for 8 days for an accelerated attack process. The two procedures were conducted in tandem with leach tests using a mixed solution of

  19. Evaluation of 14C abundance in soil respiration using accelerator mass spectrometry

    To clarify the behavior of 14C in terrestrial ecosystems, 14C abundance in soil respiration was evaluated in an urban forest with a new method involving a closed chamber technique and 14C measurement by accelerator mass spectrometry (AMS). Soil respiration had a higher Δ14C than the contemporary atmosphere. This indicates that a significant portion of soil respiration is derived from the decomposition of soil organic matter enriched in 14C by atmospheric nuclear weapons tests, with a notable time lag between atmospheric 14C addition and re-emission from soil. On the other hand, δ14C in soil respiration demonstrated that 14C abundance ratio itself in soil-respired CO2 is not always high compared with that in atmospheric CO2 because of the isotope fractionation during plant photosynthesis and microbial decomposition of soil organic matter. The Δ14C in soil respiration was slightly lower in August than in March, suggesting a relatively high contribution of plant root respiration and decomposition of newly accumulated and/or 14C-depleted soil organic matter to the total soil respiration in August

  20. WindoWorks: A flexible program for computerized testing of accelerator control system electronic circuit boards

    Since most accelerator control system circuit boards reside in a commercial bus architecture, such as CAMAC or VMEbus, a computerized test station is needed for exercising the boards. This test station is needed for the development of newly designed prototypes, for commissioning newly manufactured boards, for diagnosing boards which have failed in service, and for long term testing of boards with intermittent failure problems. WindoWorks was created to address these needs. It is a flexible program which runs on a PC compatible computer and uses a PC to bus crate interface. WindoWorks was designed to give the user a flexible way to test circuit boards. Each test is incapsulated into a window. By bringing up several different windows the user can run several different tests simultaneously. The windows are sizable, and moveable. They have data entry boxes so that the test can be customized to the users preference. The windows can be used in conjunction with each other in order to create supertests. There are several windows which are generic. They can be used to test basic functions on any VME (or CAMAC) board. There are other windows which have been created to test specific boards. New windows for testing specific boards can be easily created by a Pascal programmer using the WindoWorks framework

  1. Generation of laser pulse trains for tests of multi-pulse laser wakefield acceleration

    Shalloo, R. J.; Corner, L.; Arran, C.; Cowley, J.; Cheung, G.; Thornton, C.; Walczak, R.; Hooker, S. M.

    2016-09-01

    In multi-pulse laser wakefield acceleration (MP-LWFA) a plasma wave is driven by a train of low-energy laser pulses separated by the plasma period, an approach which offers a route to driving plasma accelerators with high efficiency and at high pulse repetition rates using emerging technologies such as fibre and thin-disk lasers. Whilst these laser technologies are in development, proof-of-principle tests of MP-LWFA require a pulse train to be generated from a single, high-energy ultrafast pulse. Here we demonstrate the generation of trains of up to 7 pulses with pulse separations in the range 150-170 fs from single 40 fs pulses produced by a Ti:sapphire laser.

  2. Electron lenses and cooling for the Fermilab Integrable Optics Test Accelerator

    Stancari, G; Lebedev, V; Nagaitsev, S; Prebys, E; Valishev, A

    2015-01-01

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whet...

  3. Methodology to improve design of accelerated life tests in civil engineering projects.

    Jing Lin

    Full Text Available For reliability testing an Energy Expansion Tree (EET and a companion Energy Function Model (EFM are proposed and described in this paper. Different from conventional approaches, the EET provides a more comprehensive and objective way to systematically identify external energy factors affecting reliability. The EFM introduces energy loss into a traditional Function Model to identify internal energy sources affecting reliability. The combination creates a sound way to enumerate the energies to which a system may be exposed during its lifetime. We input these energies into planning an accelerated life test, a Multi Environment Over Stress Test. The test objective is to discover weak links and interactions among the system and the energies to which it is exposed, and design them out. As an example, the methods are applied to the pipe in subsea pipeline. However, they can be widely used in other civil engineering industries as well. The proposed method is compared with current methods.

  4. High-Gradient test results from a CLIC prototype accelerating structure : TD26CC

    Degiovanni, A; Farabolini, W; Grudiev, A; Kovermann, J; Montessinos, E; Riddone, G; Syratchev, I; Wegner, R; Wuensch, W; Solodko, A; Woolley, B

    2014-01-01

    The CLIC study has progressively tested prototype accelerating structures which incorporate an ever increasing number of features which are needed for a final version ready to be installed in a linear collider. The most recent high power test made in the CERN X-band test stand, Xbox-1, is of a CERN-built prototype which includes damping features but also compact input and output power couplers, which maximize the overall length to active gradient ratio of the structure. The structure’s high-gradient performance, 105 MV/m at 250 ns pulse length and low breakdown rate, matches previously tested structures validating both CERN fabrication and the compact coupler design.

  5. Evaluation of influence of an earthquake acceleration upon boiling two phase flow behavior

    The analysis of boiling two-phase flow in a simulated fuel channel under the condition that earthquake acceleration is imposed on was performed in order to evaluate the influence of earthquake acceleration upon the boiling two-phase flow behavior in fuel bundles of nuclear reactors. From a series of numerical simulations, the following summaries were derived: when the earthquake acceleration is given to the horizontal direction, time change of the predicted void fraction aries a time lag depending on an oscillation period of earthquake and the time lag is maintained; and, the fluctuation characteristic of the predicted void fraction receives strongly the influence of lift force and turbulent force to the oscillation period of earthquake. (author)

  6. Testing Einstein's time dilation under acceleration using Mössbauer spectroscopy

    The Einstein time dilation formula was tested in several experiments. Many trials have been conducted to measure the transverse second-order Doppler shift by Mössbauer spectroscopy using a rotating absorber, to test the validity of this formula. Such experiments are also able to test if the time dilation depends only on the velocity of the absorber, as assumed by Einstein's clock hypothesis, or whether the present centripetal acceleration contributes to the time dilation. We show here that because the experiment requires γ-ray emission and detection slits of finite size, the absorption line is broadened, by geometric longitudinal first-order Doppler shifts immensely. Moreover, the absorption line is non-Lorentzian. We obtain an explicit expression for the absorption line for any angular velocity of the absorber. The analysis of the experimental results in all previous experiments which did not observe the full absorption line itself were wrong and the conclusions doubtful. The only proper experiment was done by Kündig (1963 Phys. Rev. 129 2371), who observed the broadening, but associated it with random vibrations of the absorber. We establish necessary conditions for the successful measurement of a transverse second-order Doppler shift by Mössbauer spectroscopy. We indicate how the results of such an experiment can be used to verify the existence of a Doppler shift due to acceleration and to test the validity of Einstein's clock hypothesis. (paper)

  7. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies

    Schou-Pedersen, Anne Marie V; Østergaard, Jesper; Cornett, Claus;

    2015-01-01

    , if a microwave oven is applicable for accelerated drug stability testing. Chemical interactions were investigated in three selected model formulations of drug and excipients regarding the formation of ester and amide reaction products. The accelerated stability studies performed in the microwave oven using......, and sorbic acid. The model formulations were representative for oral solutions (co-solvents), parenteral solutions (buffer species) and solid dosage forms (organic acids applicable for solubility enhancement). The DoE studies showed overall that the same impurities were generated by microwave oven heating...... leading to temperatures between 150°C and 180°C as compared to accelerated stability studies performed at 40°C and 80°C using a conventional oven. Ranking of the reactivity of the excipients could be made in the DoE studies performed at 150-180°C, which was representative for the ranking obtained after...

  8. Evaluation of the alignment for long linear accelerators using a level

    We have studied to adopt a level, which is a gravity referenced precise inclinometer, for evaluating alignment of large linear accelerators, which is several hundred meters or larger. It has advantages for evaluating large objects because it is hardly affected by shape references, which becomes difficult to be defined enough accurate as the objects becomes large. We had already evaluated the vertical aligning straightness of the reference plates for the 70-m-long part of the KEK injector linear accelerator (KEK linac) with the standard deviations of less than 49 μm by using a level on a straight bar. The results are fairly reliable having good agreement within sub-mm range with those by the other methods; however, the evaluation distances were limited by obstacles which block the measurement path. Here, we devised new method which adopts two offset bars for avoiding the obstacles. Their one ends are placed on the measurement points with their axis directed perpendicular to the measurement path. One can avoid the obstacles by measuring the slope angles between the far ends of each offset bars instead of measuring directly those between the measurement points. Error arises from the offset bars can be eliminated by reversal measurement, which considers slope angles of the offset bars. As a result, straightness for the 206-m-long part of the linac, which corresponds to the three successive accelerator sectors of the linac, could be evaluated with our new method. The reproducibility expressed by the standard deviation of the slope angles for the arbitrarily sampled measurement point was 15 μrad, which is comparable with the average of our former measurements of 10 μrad. Moreover, the result agrees with those by the alignment telescope and our laser-based alignment system partially within sub-mm range. They indicate that our new method can be applicable for evaluating alignment of large accelerators in spite of its complexity caused by the offset bars. (author)

  9. 78 FR 60998 - Strategies To Accelerate the Testing and Adoption of Pay for Success (PFS) Financing Models

    2013-10-02

    ... Strategies To Accelerate the Testing and Adoption of Pay for Success (PFS) Financing Models AGENCY: Office of... publicly available on the Internet. FOR FURTHER INFORMATION CONTACT: Cara Camacho by email: cara.camacho... achievement of program outcomes by accelerating adoption of PFS to improve program outcomes. What is...

  10. A modified PMMA cement (Sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone.

    Race, Amos; Miller, Mark A; Mann, Kenneth A

    2008-10-20

    Pre-clinical screening of cemented implant systems could be improved by modeling the longer-term response of the implant/cement/bone construct to cyclic loading. We formulated bone cement with degraded fatigue fracture properties (Sub-cement) such that long-term fatigue could be simulated in short-term cadaver tests. Sub-cement was made by adding a chain-transfer agent to standard polymethylmethacrylate (PMMA) cement. This reduced the molecular weight of the inter-bead matrix without changing reaction-rate or handling characteristics. Static mechanical properties were approximately equivalent to normal cement. Over a physiologically reasonable range of stress-intensity factor, fatigue crack propagation rates for Sub-cement were higher by a factor of 25+/-19. When tested in a simplified 2 1/2-D physical model of a stem-cement-bone system, crack growth from the stem was accelerated by a factor of 100. Sub-cement accelerated both crack initiation and growth rate. Sub-cement is now being evaluated in full stem/cement/femur models. PMID:18774136

  11. The Performance of Multileaf Collimators Evaluated by the Stripe Test

    The performance of 3 multileaf collimator (MLC) systems (Varian Medical Systems, Elekta, and Siemens Medical Solutions) mounted on 7 different radiotherapy linear accelerators was investigated by a stripe test. The stripe test consisted of 8 adjacent multileaf segments of 2.5 x 40 cm2, enclosed by all leaf pairs. With 6-MV photons, the segments were used to irradiate Agfa CR films. The optical density profile of the irradiated film in the travel direction of the MLC was used to estimate the short- and long-term leaf positioning reproducibility. The short-term reproducibility was found by analyzing 6 consecutive stripe tests. The long-term reproducibility was obtained by performing 3 to 5 stripe tests over 2 months. The short-term reproducibility was mainly within 0.3 mm for all systems. For the long-term reproducibility, the Varian and Elekta MLCs were within 0.4 to 0.5 mm, while the Siemens MLC showed a wider distribution, with values up to 1 mm for some leaf pairs. The inferior long-term reproducibility of the Siemens MLCs was mainly due to a decrease of the segment size with time. In conclusion, the stripe test is a useful method for evaluating MLC performance. Furthermore, the long-term reproducibility varied among the MLC systems investigated.

  12. The performance of multileaf collimators evaluated by the stripe test.

    Sastre-Padro, Maria; Lervåg, Christoffer; Eilertsen, Karsten; Malinen, Eirik

    2009-01-01

    The performance of 3 multileaf collimator (MLC) systems (Varian Medical Systems, Elekta, and Siemens Medical Solutions) mounted on 7 different radiotherapy linear accelerators was investigated by a stripe test. The stripe test consisted of 8 adjacent multileaf segments of 2.5 x 40 cm(2), enclosed by all leaf pairs. With 6-MV photons, the segments were used to irradiate Agfa CR films. The optical density profile of the irradiated film in the travel direction of the MLC was used to estimate the short- and long-term leaf positioning reproducibility. The short-term reproducibility was found by analyzing 6 consecutive stripe tests. The long-term reproducibility was obtained by performing 3 to 5 stripe tests over 2 months. The short-term reproducibility was mainly within 0.3 mm for all systems. For the long-term reproducibility, the Varian and Elekta MLCs were within 0.4 to 0.5 mm, while the Siemens MLC showed a wider distribution, with values up to 1 mm for some leaf pairs. The inferior long-term reproducibility of the Siemens MLCs was mainly due to a decrease of the segment size with time. In conclusion, the stripe test is a useful method for evaluating MLC performance. Furthermore, the long-term reproducibility varied among the MLC systems investigated. PMID:19647629

  13. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; Shapiro, Michael A.; Temkin, Richard J.

    2016-03-01

    We report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power of up to 4 MW from a klystron supplied via a TM01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV /m at a breakdown probability of 1.19 ×10-1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV /m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV /m at a breakdown probability of 1.09 ×10-1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.

  14. Extensive multiple test centre evaluation of the VecTest malaria antigen panel assay.

    Ryan, J R; Davé, K; Collins, K M; Hochberg, L; Sattabongkot, Jetsumon; Coleman, R E; Dunton, R F; Bangs, M J; Mbogo, C M; Cooper, R D; Schoeler, G B; Rubio-Palis, Y; Magris, M; Romer, L I; Padilla, N; Quakyi, I A; Bigoga, J; Leke, R G; Akinpelu, O; Evans, B; Walsey, M; Patterson, P; Wirtz, R A; Chan, A S T

    2002-09-01

    To determine which species and populations of Anopheles transmit malaria in any given situation, immunological assays for malaria sporozoite antigen can replace traditional microscopical examination of freshly dissected Anopheles. We developed a wicking assay for use with mosquitoes that identifies the presence or absence of specific peptide epitopes of circumsporozoite (CS) protein of Plasmodium falciparum and two strains of Plasmodium vivax (variants 210 and 247). The resulting assay (VecTest Malaria) is a rapid, one-step procedure using a 'dipstick' test strip capable of detecting and distinguishing between P. falciparum and P. vivax infections in mosquitoes. The objective of the present study was to test the efficacy, sensitivity, stability and field-user acceptability of this wicking dipstick assay. In collaboration with 16 test centres world-wide, we evaluated more than 40 000 units of this assay, comparing it to the standard CS ELISA. The 'VecTest Malaria' was found to show 92% sensitivity and 98.1% specificity, with 97.8% accuracy overall. In accelerated storage tests, the dipsticks remained stable for > 15 weeks in dry conditions up to 45 degrees C and in humid conditions up to 37 degrees C. Evidently, this quick and easy dipstick test performs at an acceptable level of reliability and offers practical advantages for field workers needing to make rapid surveys of malaria vectors. PMID:12243234

  15. Development of an accelerated pavement test reproducing the effect of natural ageing on skid resistance

    Kane, M.; D. Zhao; Chailleux, E.; Delarrard, F.; Do, M. T.

    2013-01-01

    This study deals with the development of a new test method simulating the effect of ageing on skid resistance. This test is applied to bituminous mixes in this study, but can also be applied to concrete. This test relies on two machines, the Wehner–Schulze machine, to measure the friction, and the Weatherometer sunset machine, to simulate weather effects (rain, wind, sunlight, etc.). The relevance of this test is evaluated from comparisons between changes in friction and a chemical func...

  16. Beam Profile Measurement of 300 kV Ion Source Test Stand for 1 MV Electrostatic Accelerator

    Park, Sae-Hoon; Kim, Yu-Seok [Dongguk University, Gyeonju (Korea, Republic of); Kim, Dae-Il; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Multipurpose Accelerator Complex, Gyeongju (Korea, Republic of)

    2015-10-15

    In this paper, RF ion source, test stand of the ion source and its test results are presented. Beam profile was measured at the downstream from the accelerating tube and at the beam dump by using BPM and wire scanner. The RF ion source of the test stand is verified by measuring the total beam current with a faraday cup in the chamber. The KOMAC (KOrea Multi-purpose Accelerator Complex) has been developing a 300 kV ion source test stand for a 1 MV electrostatic accelerator. An ion source and accelerating tube will be installed in a high pressure vessel. The ion source in a high pressure vessel requires high reliability. To confirm the stable operation of the ion source, a test stand was proposed and developed. The ion source will be tested at the test stand to verify its long-term operation conditions. The test stand consists of a 300 kV high voltage terminal, a battery for the ion source power, a 60 Hz inverter, a 200 MHz RF power, a 5 kV extraction power supply, a 300 kV accelerating tube, and a vacuum system. The beam profile monitor was installed at the downstream from the accelerating tube. Wire scanner and faraday-cup was installed at the end of the chamber.

  17. An accelerated step test to assess dancer pre-season aerobic fitness.

    Bronner, Shaw; Rakov, Sara

    2014-03-01

    As the technical performance demands of dance increase, professional companies and pre-professional schools are implementing pre-season screenings that require an efficient, cost effective way to measure dancer aerobic fitness. The aim of this study was to assess an accelerated 3-minute step test (112 beats·min(-1)) by comparing it to the well-studied YMCA step test (96 beats·min(-1)) and a benchmark standard, an incremental treadmill test, using heart rate (HR) and oxygen consumption (VO2) as variables. Twenty-six professional and pre- professional dancers (age 20 ± 2.02 years) were fitted with a telemetric gas analysis system and HR monitor. They were tested in the following order: 96 step, 112 step, and treadmill test, with rest to return to baseline heart rate between each test. The step and treadmill tests were compared using Intra-class Correlation Coefficients [ICC (3, k)] calculated with analysis of variance (p dance populations, though further testing in larger groups of dancers representing a diverse range of genres and training levels is needed. PMID:24568799

  18. Test results of a Nb3Al/Nb3Sn subscale magnet for accelerator application

    The High Energy Accelerator Research Organization (KEK) has been developing a Nb3Al and Nb3Sn subscale magnet to establish the technology for a high-field accelerator magnet. The development goals are a feasibility demonstration for a Nb3Al cable and the technology acquisition of magnet fabrication with Nb3Al superconductors. KEK developed two double-pancake racetrack coils with Rutherford-type cables composed of 28 Nb3Al wires processed by rapid heating, quenching, and transformation in collaboration with the National Institute for Materials Science and the Fermi National Accelerator Laboratory. The magnet was fabricated to efficiently generate a high magnetic field in a minimum-gap common-coil configuration with two Nb3Al coils sandwiched between two Nb3Sn coils produced by the Lawrence Berkeley National Laboratory. A shell-based structure and a 'bladder and key' technique have been used for adjusting coil prestress during both the magnet assembly and the cool down. In the first excitation test of the magnet at 4.5 K performed in June 2014, the highest quench current of the Nb3Sn coil, i.e., 9667 A, was reached at 40 A/s corresponding to 9.0 T in the Nb3Sn coil and 8.2 T in the Nb3Al coil. The quench characteristics of the magnet were studied

  19. The Conversion of CESR to Operate as the Test Accelerator, CesrTA, Part 4: Superconducting Wiggler Diagnostics

    Billing, M G; Liu, X; Li, Y; Sabol, D; Smith, E N; Strohman, C R; Palmer, M A; Munson, D V

    2016-01-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it appropriate for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper, the last in a series of four, describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of electron cloud (EC) behavior within wigglers. Earlier papers provided an overview of the accelerator physics program, the general modifications of CESR, the modifications of the vacuum system necessary for the conversion of CESR to the test accelerator, CesrTA, enhanced to study such ...

  20. Evaluation of corrosion damage of aluminum alloy using acoustic emission testing

    GENG Rongsheng; FU Gangqiang

    2004-01-01

    Current studies are aiming at monitoring corrosion damage of aircraft main structures by using acoustic emission (AE) technique and at supplying useful data for determining calendar life of the aircraft. The characteristics of AE signals produced during accelerating corrosion process are described, and methods for evaluating corrosion damages and determining remaining life of main structures of aircraft using AE testing are outlined. Experimental results have shown that AE technique can detect corrosion damage of aluminum alloy much earlier than conventional non-destructive testing means, such as ultrasonic testing and eddy current testing. Relationship between corrosion damage and AE parameters was obtained through investigating corrosion damage extent and changes of AE signals during accelerating corrosion test, and showing that AE technique can be used to detect early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.

  1. Electrical Testing of Cement-Based Materials: Role of Testing Techniques, Sample Conditioning, and Accelerated Curing

    Spragg, Robert; Bu, Yiwen; Snyder, Kenneth; Bentz, Dale; Weiss, Jason

    2013-01-01

    These projects examined the potential for using electrical testing on concrete as a potential surrogate for obtaining information on ion and fluid transport. Electrical measurements are particularly attractive for use in quality control as they are easy to perform, are performed rapidly, and can be directly related to fluid transport. This work describes how electrical resistance measurements should be corrected for geometry to obtain a geometry independent resistivity or conductivity. Furthe...

  2. Simulation and steering in the intertank matching section of the ground test accelerator

    The Intertank Matching Section (IMS) of the Ground Test Accelerator (GTA) is a short (36 cm) beamline designed to match the Radio Frequency Quadrupole (RFQ) exit beam into the first Drift Tube LINAC (DTL) tank. The IMS contains two steering quadrupoles (SMQs) and four variable-field focussing quads (VFQs). The SMQs are fixed strength permanent magnet quadrupoles on mechanical actuators capable of transverse movement for the purpose of steering the beam. The upstream and downstream steering quadrupoles are labelled SMQ1 and SMQ4 respectively. Also contained in the IMS are two RF cavities for longitudinal matching

  3. Using a Tandem Pelletron accelerator to produce a thermal neutron beam for detector testing purposes.

    Irazola, L; Praena, J; Fernández, B; Macías, M; Bedogni, R; Terrón, J A; Sánchez-Nieto, B; Arias de Saavedra, F; Porras, I; Sánchez-Doblado, F

    2016-01-01

    Active thermal neutron detectors are used in a wide range of measuring devices in medicine, industry and research. For many applications, the long-term stability of these devices is crucial, so that very well controlled neutron fields are needed to perform calibrations and repeatability tests. A way to achieve such reference neutron fields, relying on a 3 MV Tandem Pelletron accelerator available at the CNA (Seville, Spain), is reported here. This paper shows thermal neutron field production and reproducibility characteristics over few days. PMID:26595777

  4. Instrumentation and control system for the AT-2 accelerator test stand

    A data-driven subroutine package, written for our accelerator test stand (ATS), is described. This flexible package permits the rapid writing and modifying of data acquisition, control, and analysis programs for the many diverse experiments performed on the ATS. These structurally simple and easy to maintain routines help to control administratively the integrity of the ATS through the use of the database. Our operating experience indicates that the original design goals have been met. We describe the subroutines, database, and our experiences with this system

  5. Design, fabrication and testing of a large cylindrical vacuum vessel for proton linear accelerator

    The paper deals with engineering design, fabrication, copper plating and vacuum design and leak testing of the first prototype segment of Alveraz type drift tube Proton Linear Accelerator (DTL) being developed at CAT. The prototype drift tube linac segment is a long horizontal cylindrical vacuum vessel. The cylindrical cavity is internally machined and copper plated from inside and operates at 202 MHz (RF) with a vacuum better than 1 x 10-6 mbar. There are 34 openings provided for vacuum pumps, RF input and monitoring loops, piston tuners etc. and a large openings for insertions of drift tubes from top of the tank. (author)

  6. Constant-Step Stress Accelerated Life Test of VFD under Logarithmic Normal Distribution Case

    2006-01-01

    In order to solve the life problem of vacuum fluorescent display (VFD) within shorter time, and reduce the life prediction cost, a constant-step stress accelerated life test was performed with its cathode temperature increased. Statistical analysis was done by applying logarithmic normal distribution for describing the life, and least square method (LSM) for estimating logarithmic normal parameters. Self-designed special software was used to predict the VFD life. It is verified by numerical results that the VFD life follows logarithmic normal distribution,and that the life-stress relationship satisfies linear Arrhenius equation completely. The accurate calculation of the key parameters enables the rapid estimation of VFD life.

  7. Constant-step stress accelerated life test of VFD under Weibull distribution case

    ZHANG Jian-ping; GENG Xin-min

    2005-01-01

    Constant-step stress accelerated life test of Vacuum Fluorescent Display (VFD) was conducted with increased cathode temperature. Statistical analysis was done by applying Weibull distribution for describing the life, and Least Square Method (LSM)for estimating Weibull parameters. Self-designed special software was used to predict the VFD life. Numerical results showed that the average life of VFD is over 30000 h, that the VFD life follows Weibull distribution, and that the life-stress relationship satisfies linear Arrhenius equation completely. Accurate calculation of the key parameter enabled rapid estimation of VFD life.

  8. Accelerated leaching of cementitious materials using ammonium nitrate (6 M): influence of test conditions

    We have focused on the test conditions influence on accelerated degradation of cementitious materials using ammonium nitrate. PH-buffering and renewal of the leaching solution were studied. PH-buffering appeared not to be very important when the renewal pH remains under eight. Renewal appeared to be the most influential feature. Its absence leads to calcium accumulation in the leaching solution inducing aggressiveness fall. Degradation is then less marked in terms of depth, flux and mineralogy. The resulting porosity increase is also smaller. (authors)

  9. Laserwire at the Accelerator Test Facility 2 with Sub-Micrometre Resolution

    Nevay, L. J.; Boogert, S.T.; Karataev, P.; Kruchinin, K.; Corner, L; Howell, D. F.; Walczak, R.; Aryshev, A.; Urakawa, J.; Terunuma, N.

    2014-01-01

    A laserwire transverse electron beam size measurement system has been developed and operated at the Accelerator Test Facility 2 (ATF2) at KEK. Special electron beam optics were developed to create an approximately 1 x 100 {\\mu}m (vertical x horizontal) electron beam at the laserwire location, which was profiled using a 150 mJ, 71 ps laser pulse with a wavelength of 532 nm. The precise characterisation of the laser propagation allows the non-Gaussian transverse profiles of the electron beam ca...

  10. An experimental test of Newton's law of gravitation for small accelerations

    Schubert, Sven

    2011-10-15

    The experiment presented in this thesis has been designed to test Newton's law of gravitation in the limit of small accelerations caused by weak gravitational forces. It is located at DESY, Hamburg, and is a modification of an experiment that was carried out in Wuppertal, Germany, until 2002 in order to measure the gravitational constant G. The idea of testing Newton's law in the case of small accelerations emerged from the question whether the flat rotation curves of spiral galaxies can be traced back to Dark Matter or to a law of gravitation that deviates from Newton on cosmic scales like e.g. MOND (Modified Newtonian Dynamics). The core of this experiment is a microwave resonator which is formed by two spherical concave mirrors that are suspended as pendulums. Masses between 1 and 9 kg symmetrically change their distance to the mirrors from far to near positions. Due to the increased gravitational force the mirrors are pulled apart and the length of the resonator increases. This causes a shift of the resonance frequency which can be translated into a shift of the mirror distance. The small masses are sources of weak gravitational forces and cause accelerations on the mirrors of about 10{sup -10} m/s{sup 2}. These forces are comparable to those between stars on cosmic scales and the accelerations are in the vicinity of the characteristic acceleration of MOND a{sub 0} {approx} 1.2.10{sup -10} m/s{sup 2}, where deviations from Newton's law are expected. Thus Newton's law could be directly checked for correctness under these conditions. First measurements show that due to the sensitivity of this experiment many systematic influences have to be accounted for in order to get consistent results. Newton's law has been confirmed with an accuracy of 3%. MOND has also been checked. In order to be able to distinguish Newton from MOND with other interpolation functions the accuracy of the experiment has to be improved. (orig.)

  11. Field Work Proposal: PUBLIC OUTREACH EVENT FOR ACCELERATOR STEWARDSHIP TEST FACILITY PILOT PROGRAM

    Hutton, Andrew [TJNAF; Areti, Hari [TJNAF

    2015-03-05

    Jefferson Lab’s outreach efforts towards the goals of Accelerator Stewardship Test Facility Pilot Program consist of the lab’s efforts in three venues. The first venue, at the end of March is to meet with the members of Virginia Tech Corporate Research Center (VTCRC) (http://www.vtcrc.com/tenant-directory/) in Blacksburg, Virginia. Of the nearly 160 members, we expect that many engineering companies (including mechanical, electrical, bio, software) will be present. To this group, we will describe the capabilities of Jefferson Lab’s accelerator infrastructure. The description will include not only the facilities but also the intellectual expertise. No funding is requested for this effort. The second venue is to reach the industrial exhibitors at the 6th International Particle Accelerator Conference (IPAC’15). Jefferson Lab will host a booth at the conference to reach out to the >75 industrial exhibitors (https://www.jlab.org/conferences/ipac2015/SponsorsExhibitors.php) who represent a wide range of technologies. A number of these industries could benefit if they can access Jefferson Lab’s accelerator infrastructure. In addition to the booth, where written material will be available, we plan to arrange a session A/V presentation to the industry exhibitors. The booth will be hosted by Jefferson Lab’s Public Relations staff, assisted on a rotating basis by the lab’s scientists and engineers. The budget with IPAC’15 designations represents the request for funds for this effort. The third venue is the gathering of Southeastern Universities Research Association (SURA) university presidents. Here we plan to reach the research departments of the universities who can benefit by availing themselves to the infrastructure (material sciences, engineering, medical schools, material sciences, to name a few). Funding is requested to allow for attendance at the SURA Board Meeting. We are coordinating with DOE regarding these costs to raise the projected conference

  12. Tolerable Limits of Oscillatory Accelerations Due to Rolling Motions Experienced by One Pilot During Automatic-Interceptor Flight Tests

    Brissenden, Roy F.; Cheatham, Donald C.; Champine, Robert A.

    1961-01-01

    Limited flight - test data obtained from an automatically controlled interceptor during runs in which oscillatory rolling motions were encountered have been correlated with the pilot's comments regarding his ability to tolerate the imposed lateral accelerations.

  13. ZZ ADS-LIB/V1.0, test library for Accelerator Driven Systems

    1 - Description: This test library can be used for a number of code systems in the analysis of Accelerator Driven Systems (ADS). The library is restricted to those materials needed for benchmarking efforts linked to short and mid-term ADS experimental results and design concepts. The 30 materials selected and the upper energy limit of the evaluation of each of them is given in parentheses. Format: ENDF-6. Number of groups: continuous energy for ACE library, 421 neutron groups for MATXS library. Nuclides: H1 (150), O16 (150), Al27 (150), Ti46 (20), Ti47 (20), Ti48 (20), Ti49 (20), Ti50 (20), Cr50 (20), Cr52 (20), Cr53 (20), Cr54 (20), Mn55 (20), Fe54 (200), Fe56 (200), Fe57 (200), Fe58 (200), Ni58 (20), Ni60 (20), Ni61 (150), Ni62 (150), Ni64 (150), Pb204 (200), Pb206 (200), Pb207 (200), Pb208 (200), Th232 (20), U234 (20), U235 (20), U238 (30). Thermal scattering: Thermal scattering Data for Hydrogen bound in water, 293.6 K, 323.6 K, 373.6 K, 423.6 K, 473.6 K, 523.6 K, 573.6 K, 623.6 K. Temperatures: for H1: [293.6, 323.6, 373.6, 423.6, 473.6, 523.6, 573.6, 623.6 K]; for Actinides and O-16: [293.6, 400, 500, 600, 700, 800, 900, 1200 K]; and for the rest of materials: [293.6, 400, 500, 600, 700, 800, 900 K]. Origin: JEFF3.1. Neutron weighting spectrum: standard PWR spectrum included in the GROUPR module of NJOY, modified in such a way that follows the 1/E shape from 4.0 eV to 9.811 KeV and from 10 to 20 MeV. Background scattering: sigma-0, between 5 and 10, depending on the nuclide in the range 1-10 E10. Legendre order: P-6 for transport correction to P-5. 2 - Methods: Processing was carried out using NJOY-99.90 with the local updates at IAEA-NDS. The resulting processed files are available in ACE format for Monte Carlo transport calculations and in MATXS format for deterministic transport calculations

  14. Evaluation of the effectiveness of packed red blood cell irradiation by a linear accelerator

    Olivo, Ricardo Aparecido; da Silva, Marcus Vinícius; Garcia, Fernanda Bernadelli; Soares, Sheila; Rodrigues Junior, Virmondes; Moraes-Souza, Helio

    2015-01-01

    Irradiation of blood components with ionizing radiation generated by a specific device is recommended to prevent transfusion-associated graft-versus-host disease. However, a linear accelerator can also be used in the absence of such a device, which is the case of the blood bank facility studied herein. In order to evaluate the quality of the irradiated packed red blood cells, this study aimed to determine whether the procedure currently employed in the facility is effective in inhibiting the ...

  15. Some methods of the stop-band width evaluation in the compensated accelerating

    Several methods of the stop-band width δf evaluation in compensated structures are briefly observed. Simple for practical usage methods based on dispersion curve behavior in the vicinity of operating mode, are proposed. The methods are preferable for structures with large group velocity. The numerical simulation proved them to provide the high accuracy of δf determination. The application of the developed methods is given for the DAW structure in the case of proton and electron linear accelerators

  16. Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions

    Bo Sun; Tianyuan Ye; Qiang Feng; Jinghua Yao; Mumeng Wei

    2015-01-01

    This paper studies the corrosion behavior of B10 copper-nickel alloy in marine environment. Accelerated degradation test under marine environmental conditions was designed and performed based on the accelerated testing principle and the corrosion degradation mechanism. With the prolongation of marine corrosion time, the thickness of Cu2O film increased gradually. Its corrosion product was Cu2(OH)3Cl, which increased in quantity over time. Cl− was the major factor responsible for the marine c...

  17. High power testing of the multiple-loop radio-frequency drive concept for the FMIT accelerator

    The Fusion Materials Irradiation Test (FMIT) accelerator requires several 600-kW rf systems to simultaneously supply rf power to a single accelerator tank. Each rf-system output must be carefully phase and amplitude controlled to achieve the proper system performance. Two 80-MHz, 600-kW rf amplifiers with phase- and amplitude-control systems have been tested into a single, high-Q resonant cavity. Experimental results are presented

  18. ANALYSIS OF ACCELERATED LIFE TESTING USING LOG-LOGISTIC GEOMETRIC PROCESS MODEL IN CASE OF CENSORED DATA

    S. SAXENA

    2013-07-01

    Full Text Available Geometric process model has been used in a variety of situations such as the determination of the optimal replacement policy and the optimal inspection-repair replacement policy for standby systems, and the analysis of data with trends. This study deals with the analysis of accelerated life testing for Log-Logistic distribution using geometric process model. The case of type-I censoring is considered in this study. It is assumed that the lifetimes under increasing stress levels form a geometric process. The maximum likelihood estimates of the parameters and their confidence intervals using the asymptotic method are derived. The performance of the estimators is evaluated by a simulation study with different pre-fixed parameters.

  19. Application of the EXPERT consultation system to accelerated laboratory testing and interpretation.

    Van Lente, F; Castellani, W; Chou, D; Matzen, R N; Galen, R S

    1986-09-01

    The EXPERT consultation system-building tool, a knowledge-based artificial intelligence program developed at Rutgers University, has been applied to the development of a laboratory consultation system facilitating sequential laboratory testing and interpretation. Depending on the results of a basic panel of laboratory tests, the system requests that specific secondary tests be performed. Input of these secondary findings can result in requests for tertiary testing, to complete the database necessary for interpretation. Interpretation of all results is based upon final inferences from the collected findings through a series of rules, a hierarchical network that yields an efficient production system not easily obtained through conventional programming. The rules included in this model are based upon initial results for total protein, calcium, glucose, total bilirubin, alkaline phosphatase, lactate dehydrogenase, aspartate aminotransferase, thyroxin, hemoglobin, mean corpuscular volume, and the concentrations of four drugs. Pertinent clinical history items included are jaundice, diabetes, thyroid disease, medications, and ethanol. Implementing this system in a laboratory-based accelerated testing program involving outpatients maximized the effective use of laboratory resources, eliminated useless testing, and provided the patient with low-cost laboratory information. PMID:3527478

  20. Lessons from two field tests on pipeline damage detection using acceleration measurement

    Shinozuka, Masanobu; Lee, Sungchil; Kim, Sehwan; Chou, Pai H.

    2011-04-01

    Early detection of pipeline damages has been highlighted in water supply industry. Water pressure change in pipeline due to a sudden rupture causes pipe to vibrate and the pressure change propagates through the pipeline. From the measurement of pipe vibration the rupture can be detected. In this paper, the field test results and observations are provided for implementing next generation of SCADA system for pipeline rupture detection. Two field tests were performed on real buried plastic and metal pipelines for rupture detection. The rupture was simulated by introducing sudden water pressure drop caused by water blow-off and valve control. The measured acceleration data at the pipe surfaces were analyzed in both time and frequency domain. In time domain, the sudden narrow increase of acceleration amplitude was used as an indication of rupture event. For the frequency domain analysis, correlation function and the short time Fourier Transform technique were adopted to trace the dominant frequency shift. The success of rupture detection was found to be dependent on several factors. From the frequency analysis, the dominant frequency of metal water pipe was shifted by the water pressure drop, however, it was hard to identify from the plastic pipeline. Also the influence of existing facility such as airvac on pipe vibrations was observed. Finally, several critical lessons learned in the viewpoint of field measurement are discussed in this paper.

  1. Performance testing of the LUEhR-40M structure with an accelerated beam

    The results of experimental investigation of the prototype of the accelerating structure of the therapeutic linear accelerator of the LUEhR-40M model with an accelerating beam are presented. The accelerating structure is the standing wave biperiodic structure with inner coupling cells of 1.6 m length. The design energy of accelerated electrons equalling 20 MeV (during single electron beam passage through an accelerating structure) is obtained. 60 % of accelerated particles are accumulated in the energy interval of (20±1) MeV at 20 mA pulse current and at 3.6 MW SHF-power at the structure input

  2. Accelerated atmospheric corrosion testing using a cyclic wet/dry exposure test

    Aluminum corrosion is important in overhead electrical conductors constructed from aluminum wire centrally reinforced by galvanized steel strands. Inspection of conductor after long service has implicated rubber bushing material, on the outside, and the galvanized strands, on the inside, as providing potential galvanic sites for the initiation of rapid aluminum corrosion. Therefore, the galvanic corrosion of aluminum in contact with graphite-loaded neoprene rubber, hot-dip galvanized steel and steel was assessed in a cyclic wet/dry exposure test using mixed-salts spray solutions containing appropriate ratios of sulfate and chloride ion. Aluminum was found to corrode at between 3 to 6 times its uncoupled rate when associated with the rubber material. While the eta-phase, relatively pure Zn, galvanized layer remained intact, galvanic corrosion of aluminum was slow. However, on exposure of the zeta-phase, Zn/Fe intermetallic layer, aluminum corroded about 35 times faster than expected in a solution with a high level of Cl- ion. The importance of these data to conductor lifetime is discussed

  3. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  4. Benchmark testing of 233U evaluations

    In this paper we investigate the adequacy of available 233U cross-section data (ENDF/B-VI and JENDL-3) for calculation of critical experiments. An ad hoc revised 233U evaluation is also tested and appears to give results which are improved relative to those obtained with either ENDF/B-VI or JENDL-3 cross sections. Calculations of keff were performed for ten fast benchmarks and six thermal benchmarks using the three cross-section sets. Central reaction-rate-ratio calculations were also performed

  5. Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species

    Takmakov, Pavel; Ruda, Kiersten; Phillips, K. Scott; Isayeva, Irada S.; Krauthamer, Victor; Welle, Cristin G.

    2015-04-01

    Objective. A challenge for implementing high bandwidth cortical brain-machine interface devices in patients is the limited functional lifespan of implanted recording electrodes. Development of implant technology currently requires extensive non-clinical testing to demonstrate device performance. However, testing the durability of the implants in vivo is time-consuming and expensive. Validated in vitro methodologies may reduce the need for extensive testing in animal models. Approach. Here we describe an in vitro platform for rapid evaluation of implant stability. We designed a reactive accelerated aging (RAA) protocol that employs elevated temperature and reactive oxygen species (ROS) to create a harsh aging environment. Commercially available microelectrode arrays (MEAs) were placed in a solution of hydrogen peroxide at 87 °C for a period of 7 days. We monitored changes to the implants with scanning electron microscopy and broad spectrum electrochemical impedance spectroscopy (1 Hz-1 MHz) and correlated the physical changes with impedance data to identify markers associated with implant failure. Main results. RAA produced a diverse range of effects on the structural integrity and electrochemical properties of electrodes. Temperature and ROS appeared to have different effects on structural elements, with increased temperature causing insulation loss from the electrode microwires, and ROS concentration correlating with tungsten metal dissolution. All array types experienced impedance declines, consistent with published literature showing chronic (>30 days) declines in array impedance in vivo. Impedance change was greatest at frequencies <10 Hz, and smallest at frequencies 1 kHz and above. Though electrode performance is traditionally characterized by impedance at 1 kHz, our results indicate that an impedance change at 1 kHz is not a reliable predictive marker of implant degradation or failure. Significance. ROS, which are known to be present in vivo, can create

  6. THE MECHANICAL AND SHIELDING DESIGN OF A PORTABLE SPECTROMETER AND BEAM DUMP ASSEMBLY AT BNLS ACCELERATOR TEST FACILITY

    A portable assembly containing a vertical-bend dipole magnet has been designed and installed immediately down-beam of the Compton electron-laser interaction chamber on beamline 1 of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL). The water-cooled magnet designed with field strength of up to 0.7 Tesla will be used as a spectrometer in the Thompson scattering and vacuum acceleration experiments, where field-dependent electron scattering, beam focusing and energy spread will be analyzed. This magnet will deflect the ATF's 60 MeV electron-beam 90o downward, as a vertical beam dump for the Compton scattering experiment. The dipole magnet assembly is portable, and can be relocated to other beamlines at the ATF or other accelerator facilities to be used as a spectrometer or a beam dump. The mechanical and shielding calculations are presented in this paper. The structural rigidity and stability of the assembly were studied. A square lead shield surrounding the assembly's Faraday Cup was designed to attenuate the radiation emerging from the 1 inch-copper beam stop. All photons produced were assumed to be sufficiently energetic to generate photoneutrons. A safety evaluation of groundwater tritium contamination due to the thermal neutron capturing by the deuterium in water was performed, using updated Monte Carlo neutron-photon coupled transport code (MCNP). High-energy neutron spallation, which is a potential source to directly generate radioactive tritium and sodium-22 in soil, was conservatively assessed in verifying personal and environmental safety

  7. ASSESSMENT OF THE PCFBC-EXPOSED AND ACCELERATED LIFE-TESTED CANDLE FILTERS; TOPICAL

    Development of the hot gas filtration technology has been the focus of DOE/FETC and Siemens Westinghouse Power Corporation during the past twenty years. Systems development during this time has successfully lead to the generation and implementation of high temperature Siemens Westinghouse particulate filtration systems that are currently installed and are operational at Demonstration Plant sites, and which are ready for installation at commercial plant sites. Concurrently, materials development has advanced the use of commercially available oxide- and nonoxide-based monoliths, and has fostered the manufacture and use of second generation, oxide-based, continuous fiber reinforced ceramic composites and filament wound materials. This report summarizes the material characterization results for commercially available and second generation filter materials tested in Siemens Westinghouse's advanced, high temperature, particulate removal system at the Foster Wheeler, pressurized circulating fluidized-bed combustion, pilot-scale test facility in Karhula, Finland, and subsequent extended accelerated life testing of aged elements in Siemens Westinghouse pressurized fluidized-bed combustion simulator test facility in Pittsburgh, PA. The viability of operating candle filters successfully for over 1 year of service life has been shown in these efforts. Continued testing to demonstrate the feasibility of acquiring three years of service operation on aged filter elements is recommended

  8. Using student satisfaction data to evaluate a new online accelerated nursing education program.

    Gazza, Elizabeth A; Matthias, April

    2016-10-01

    As increasing numbers of students enroll in online education, institutions of higher education are responsible for delivering quality online courses and programs. Agencies that accredit institutions and programs require evidence of program quality, including student satisfaction. A large state university in the Southeastern United States transitioned an online nursing education degree completion, or Registered Nurse-to-Bachelor of Science in Nursing, program to an online accelerated format in order to meet the needs of working nurses and ultimately, increase the number of nurses prepared at the baccalaureate level. This article describes a descriptive, cross-sectional study that evaluated the effectiveness of the new online accelerated program using the quality indicator of student satisfaction. Ninety-one (32%) of the 284 students who were enrolled or had been enrolled in a course within the online accelerated degree completion program between fall 2013 session 1 and summer 2014 session participated in the study. The electronic Noel-Levitz Priorities Survey for Online Learners™ was used to measure student satisfaction with the program and associated services. Results provided insight into the students' satisfaction with the new program format and served as the basis for an interdepartmental program enhancement plan aimed at maintaining and enhancing student satisfaction and overall program quality. Findings indicated that measuring and evaluating student satisfaction can provide valuable information about the effectiveness of an online program. Recommendations for using the measurement tool in online program planning and studying student satisfaction in relation to retention and program completion were identified. PMID:27419621

  9. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  10. Test setup for accelerated test of high power IGBT modules with online monitoring of Vce and Vf voltage during converter operation

    de Vega, Angel Ruiz; Ghimire, Pramod; Pedersen, Kristian Bonderup;

    2014-01-01

    Several accelerated test methods exist in order to study the failures mechanisms of the high power IGBT modules like temperature cycling test or power cycles based on DC current pulses. The main drawback is that the test conditions do not represent the real performance and stress conditions of th...

  11. On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence

    González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.

    2016-08-01

    The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio m e / m i . For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.

  12. The Cornell-BNL FFAG-ERL Test Accelerator: White Paper

    Bazarov, Ivan; Dunham, Bruce; Hoffstaetter, Georg; Mayes, Christopher; Patterson, Ritchie; Sagan, David; Ben-Zvi, Ilan; Berg, Scott; Blaskiewicz, Michael; Brooks, Stephen; Brown, Kevin; Fischer, Wolfram; Hao, Yue; Meng, Wuzheng; Méot, François; Minty, Michiko; Peggs, Stephen; Ptitsin, Vadim; Roser, Thomas; Thieberger, Peter; Trbojevic, Dejan; Tsoupas, Nick

    2015-01-01

    The Cornell-BNL FFAG-ERL Test Accelerator (C$\\beta$) will comprise the first ever Energy Recovery Linac (ERL) based on a Fixed Field Alternating Gradient (FFAG) lattice. In particular, we plan to use a Non Scaling FFAG (NS-FFAG) lattice that is very compact and thus space- and cost- effective, enabling multiple passes of the electron beam in a single recirculation beam line, using the superconducting RF (SRF) linac multiple times. The FFAG-ERL moves the cost optimized linac and recirculation lattice to a dramatically better optimum. The prime accelerator science motivation for C$\\beta$ is proving that the FFAG-ERL concept works. This is an important milestone for the Brookhaven National Laboratory (BNL) plans to build a major Nuclear Physics facility, eRHIC, based on producing 21 GeV electron beams to collide with the RHIC ion beams. A consequence of the C$\\beta$ work would be the availability of significantly better, cost-effective, compact CW high-brightness electron beams for a plethora of scientific inves...

  13. Lattice design of the integrable optics test accelerator and optical stochastic cooling experiment at Fermilab

    Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)

    2015-05-01

    The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.

  14. Design and evaluation for the shielding system of the 9 MeV travelling wave linear electron accelerator

    The authors use EGS4 code, a generally known Monte Carlo computer simulation package, to carry out the simulation analysis of the radiation dose distribution around the head shielding system and inside the accelerator hall of the 9 MeV travelling wave linear electron accelerator. The accelerator is used for the large container inspecting system. The comparison of experience formulae evaluation and practical data was made. The results show that, at the main reference points in the accelerator hall, the dose calculated by EEG's is well coincided with the results measured. It serves as a good example for flexible application of EGS4

  15. Evaluation of High Energy Nuclear Data of Importance for Use in Accelerator and Space Technology

    Lee, Young Ouk

    2005-10-15

    New evaluation were performed for neutron- and proton-induced reactions for energies up to 250 400 MeV on C-12, N-14, O-16, Al-27, Si-28, Ca-40, Ar-40, Fe-54,58, Ni-64, Cu-63,65, Zr-90, Pb-208, Th-232, U-233,234,236, and Cm-243246. The evaluated results are then applied to the accelerator and space technology. A set of optical model parameters were optimized by searching a number of adjustable coefficients with the Simulated Annealing(SA) method for the spherical nuclei. A parameterization of the empirical formula was proposed to describe the proton-nucleus non-elastic cross sections of high-priority elements for space shielding purpose for proton energies from reaction threshold up to 400 MeV, which was then implemented into the fast scoping space shielding code CHARGE, based on the results of the optical model analysis utilizing up-to-date measurements. For proton energies up to 400 MeV covering most of the incident spectrum for trapped protons and solar energetic particle events, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction were prepared. The evaluated cross section set was applied to the thick target yield (TTY) and promp radiation benchmarks for the accelerator shielding. As for the assessment of the radiological impact of the accelerator to the environment, relevant nuclear reaction cross sections for the activation of the air were recommended among the author's evaluations and existing library based on the available measurements.

  16. Evaluation of High Energy Nuclear Data of Importance for Use in Accelerator and Space Technology

    New evaluation were performed for neutron- and proton-induced reactions for energies up to 250 400 MeV on C-12, N-14, O-16, Al-27, Si-28, Ca-40, Ar-40, Fe-54,58, Ni-64, Cu-63,65, Zr-90, Pb-208, Th-232, U-233,234,236, and Cm-243246. The evaluated results are then applied to the accelerator and space technology. A set of optical model parameters were optimized by searching a number of adjustable coefficients with the Simulated Annealing(SA) method for the spherical nuclei. A parameterization of the empirical formula was proposed to describe the proton-nucleus non-elastic cross sections of high-priority elements for space shielding purpose for proton energies from reaction threshold up to 400 MeV, which was then implemented into the fast scoping space shielding code CHARGE, based on the results of the optical model analysis utilizing up-to-date measurements. For proton energies up to 400 MeV covering most of the incident spectrum for trapped protons and solar energetic particle events, energy-angle spectra of secondary neutrons produced from the proton-induced neutron production reaction were prepared. The evaluated cross section set was applied to the thick target yield (TTY) and promp radiation benchmarks for the accelerator shielding. As for the assessment of the radiological impact of the accelerator to the environment, relevant nuclear reaction cross sections for the activation of the air were recommended among the author's evaluations and existing library based on the available measurements

  17. Los Alamos transmutation research: heavy liquid metal coolant technology and accelerator-driven materials test station

    The US Department of Energy is developing technologies needed to reduce the quantity of high-level nuclear waste bound for deep geologic disposal. Los Alamos National Laboratory has a long history of transmutation research in support of this mission. This report summarises two research programmes in the portfolio development of lead-alloy coolant technology and materials, and the Materials Test Station (MTS) using an accelerator-driven spallation target. We have been developing lead and lead-bismuth coolant technology and materials for advanced transmutation and nuclear energy systems since the mid-1990. Our programme mainly consists of operating a medium-scale lead-bismuth eutectic materials and thermal-hydraulic test loop (DELTA), conducting tests and experiments, developing associated coolant chemistry and liquid metal flow measurement and control sensors, instrumentation and systems, building and validating system corrosion models. We are also building a high-temperature natural convection lead test loop using an advanced material (Al-rich oxide dispersion strengthened steel). Key activities and an assessment of the technological readiness level will be given. (authors)

  18. Allowance for insulation aging in the new concept of accelerated life tests of high-voltage power transformers

    This paper reports that the existing system of type and acceptance tests of high-voltage transformer insulation does not take into account insulation ageing, which is particularly objectionable with respect to equip-met with reduced insulation levels. Suggested in the paper is a new concept of accelerated life tests based on integrated simulation of basic operating loads, both periodic (surge) and long-term ones; by making a long-term accelerated test simulating the working conditions, with exposure of test object and/or its insulation to periodic operating surges (overvoltages and overcurrents). This test replaces a group of conventional individual acceptance tests and provides more ample and more precise information on performance and dependability of the equipment. The test procedure was checked in test of a small lot of 1600 kVA 35 kV power transformers

  19. Test of new accelerator superconducting dipoles suitable for high precision field

    Field homogeneity of superconducting dipoles for accelerators is still difficult to achieve. To reach the required homogeneity level of 10-4 the conductors must be located within a few hundreths of mm. At present all the superconducting machines in construction or in project use the most developed technique of the double shell configuration. This technique is very sensitive to conductor size and a great care must be taken to reach the needed field homogeneity. The design proposed in this paper is a current block configuration which uses accuratly punched laminations with slots for conductor location. The design is then much less sensitive to conductor size. Furthermore the tooling needed to build such magnets is much less expensive than the one needed for the shell design. Three short dipoles have been constructed and tested. Very good results in field homogeneity have been obtained directly from the original design

  20. Design of CEBAF's [Continuous Electron Beam Accelerator Facility] rf separator and results of cold tests

    The design of the CEBAF accelerator system is based upon a multipass racetrack configuration, the straight sections of which will utilize 1497-MHz superconducting linac sections with independent magnetic transport at the end of each linac segment. Room temperature SW rf separators operating at a frequency of 998 MHz will be used in each independent transport channel at one end of the racetrack to extract a portion of the recirculating current. With the frequency chosen and appropriate phasing, three independent beams of correlated energy may be extracted for use in the three experimental areas. The design of the rf separators, abased on an alternating periodic structure (APS), will be described and some preliminary prototype cold test results will be given. 11 refs., 10 figs., 2 tabs

  1. Cavity beam position monitor system for the Accelerator Test Facility 2

    Kim, Y I; Aryshev, A; Boogert, S T; Boorman, G; Frisch, J; Heo, A; Honda, Y; Hwang, W H; Huang, J Y; Kim, E -S; Kim, S H; Lyapin, A; Naito, T; May, J; McCormick, D; Mellor, R E; Molloy, S; Nelson, J; Park, S J; Park, Y J; Ross, M; Shin, S; Swinson, C; Smith, T; Terunuma, N; Tauchi, T; Urakawa, J; White, G R

    2013-01-01

    The Accelerator Test Facility 2 (ATF2) is a scaled demonstrator system for final focus beam lines of linear high energy colliders. This paper describes the high resolution cavity beam position monitor (BPM) system, which is a part of the ATF2 diagnostics. Two types of cavity BPMs are used, C-band operating at 6.423 GHz, and S-band at 2.888 GHz with an increased beam aperture. The cavities, electronics, and digital processing are described. The resolution of the C-band system with attenuators was determined to be approximately 250 nm and 1 m for the S-band system. Without attenuation the best recorded C-band cavity resolution was 27 nm.

  2. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    NONE

    1994-10-01

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  3. Accelerated testing of metal foil tape joints and their effect of photovoltaic module reliability

    Sorensen, N. Robert; Quintana, Michael A.; Puskar, Joseph D.; Lucero, Samuel J.

    2009-08-01

    A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape joint degradation, a possible failure mode, can be incorporated into the model.

  4. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  5. On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence

    González, C A; Mininni, P D; Matthaeus, W H

    2016-01-01

    The effect of compressibility in charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the compressibilty effect over the particle dynamics we performed different numerical experiments: an incompressible case, and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. We show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the ot...

  6. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    NONE

    1994-10-01

    This document is the third volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of appendices C through U of the report

  7. Extremely low vertical-emittance beam in accelerator-test facility at KEK

    Electron beams with the lowest, normalized transverse emittance recorded so far were produced and confirmed in single-bunch-mode operation of the Accelerator Test Facility at KEK. We established a tuning method of the damping rings which achieves a small vertical dispersion and small x-y orbit coupling. The vertical emittance was less than 1 percent of the horizontal emittance. At the zero-intensity limit, the vertical normalized emittance was less than 2.8 x 10-8 rad m at beam energy 1.3 GeV. At high intensity, strong effects of intrabeam scattering were observed, which had been expected in view of the extremely high particle density due to the small transverse emittance

  8. Accelerated lifetime testing methodology for lifetime estimation of Lithium-ion batteries used in augmented wind power plants

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina;

    2013-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium-ion batteries. The results obtained at the end of the accelerated ageing process can be used for the parametrization of a performance-degradation lifetime model. In the proposed...... methodology both calendar and cycling lifetime tests are considered since both components are influencing the lifetime of Lithium-ion batteries. The methodology proposes also a lifetime model verification stage, where Lithium-ion battery cells are tested at normal operating conditions using an application...

  9. Design, testing and modifications of the Pelletron accelerator and future uses

    Solutions to various problems in the design of high voltage generator and acceleration units of the Pelletron electron accelerator designed and constructed at ININ are presented. Information on the design of the control system of the electron beams, activities proposed for utilization of sulfur hexafluoride as an accelerator isolating gas as well as some future uses of the Pelletron. (Author). 7 refs, 3 figs

  10. High Gradient Accelerator Research

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  11. Development of an accelerated test design for predicting the service life of the solar array at Mead, Nebraska

    Gaines, G.B.; Thomas, R.E.; Noel, G.T.; Shilliday, T.S.; Wood, V.E.; Carmichael, D.C.

    1979-06-07

    This report describes an accelerated test which is designed to predict the life of the 25-kW photovoltaic array installed near Mead, Nebraska. Emphasis is placed on the power-output degradation at the module level and on long-term degradation modes, as appropriate for life prediction of mature devices for which infant failures are few. A quantitative model for accelerating testing using multiple environmental stresses is used to develop the test design. The model accounts for the effects of thermal stress by a relation of the Arrhenius form. This relation is then corrected for the effects of nonthermal environmental stresses such as relative humidity, atmospheric pollutants, and ultraviolet radiation. The test conditions, measurements, and data analyses for the accelerated tests are presented for determining the predicted life of the modules in service at Mead. Constant-temperature, cyclic-temperature, and uv types of tests are specified, incorporating selected levels of relative humidity and chemical contamination and an imposed forward-bias current and static electric field. It is recommended that as a first step in test implementation, the model be selectively validated using identified portions of the accelerated test design.

  12. Accelerating the design and testing of LEU fuel assemblies for conversion of Russian-designed research reactors outside Russia

    This paper identifies proposed geometries and loading specifications of LEU tube-type and pin-type test assemblies that would be suitable for accelerating the conversion of Russian-designed research reactors outside of Russia if these fuels are manufactured, qualified by irradiation testing, and made commercially available in Russia. (author)

  13. Optimal design of accelerated life tests for an extension of the exponential distribution

    Accelerated life tests provide information quickly on the lifetime distribution of the products by testing them at higher than usual levels of stress. In this paper, the lifetime of a product at any level of stress is assumed to have an extension of the exponential distribution. This new family has been recently introduced by Nadarajah and Haghighi (2011 [1]); it can be used as an alternative to the gamma, Weibull and exponentiated exponential distributions. The scale parameter of lifetime distribution at constant stress levels is assumed to be a log-linear function of the stress levels and a cumulative exposure model holds. For this model, the maximum likelihood estimates (MLEs) of the parameters, as well as the Fisher information matrix, are derived. The asymptotic variance of the scale parameter at a design stress is adopted as an optimization objective and its expression formula is provided using the maximum likelihood method. A Monte Carlo simulation study is carried out to examine the performance of these methods. The asymptotic confidence intervals for the parameters and hypothesis test for the parameter of interest are constructed

  14. Evaluation of the effectiveness of packed red blood cell irradiation by a linear accelerator

    Ricardo Aparecido Olivo; Marcus Vinícius da Silva; Fernanda Bernadelli Garcia; Sheila Soares; Virmondes Rodrigues Junior; Helio Moraes-Souza

    2015-01-01

    Irradiation of blood components with ionizing radiation generated by a specific device is recommended to prevent transfusion-associated graft-versus-host disease. However, a lin- ear accelerator can also be used in the absence of such a device, which is the case of the blood bank facility studied herein. In order to evaluate the quality of the irradiated packed red blood cells, this study aimed to determine whether the procedure currently employed in the facility is effective in inhibiting the...

  15. Reliability demonstration methodology for products with Gamma Process by optimal accelerated degradation testing

    For products with high reliability and long lifetime, accelerated degradation testing (ADT) may be adopted during product development phase to verify whether its reliability satisfies the predetermined level within feasible test duration. The actual degradation from engineering is usually a strictly monotonic process, such as fatigue crack growth, wear, and erosion. However, the method for reliability demonstration by ADT with monotonic degradation process has not been investigated so far. This paper proposes a reliability demonstration methodology by ADT for this kind of product. We first apply Gamma process to describe the monotonic degradation. Next, we present a reliability demonstration method by converting the required reliability level into allowable cumulative degradation in ADT and comparing the actual accumulative degradation with the allowable level. Further, we suggest an analytical optimal ADT design method for more efficient reliability demonstration by minimizing the asymptotic variance of decision variable in reliability demonstration under the constraints of sample size, test duration, test cost, and predetermined decision risks. The method is validated and illustrated with example on reliability demonstration of alloy product, and is applied to demonstrate the wear reliability within long service duration of spherical plain bearing in the end. - Highlights: • We present a reliability demonstration method by ADT for products with monotonic degradation process, which may be applied to verify reliability with long service life for products with monotonic degradation process within feasible test duration. • We suggest an analytical optimal ADT design method for more efficient reliability demonstration, which differs from the existed optimal ADT design for more accurate reliability estimation by different objective function and different constraints. • The methods are applied to demonstrate the wear reliability within long service duration of

  16. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 3: electron cloud diagnostics

    Billing, M. G.; Conway, J. V.; Crittenden, J. A.; Greenwald, S.; Li, Y.; Meller, R. E.; Strohman, C. R.; Sikora, J. P.; Calvey, J. R.; Palmer, M. A.

    2016-04-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the conversion of CESR to the test accelerator, CESRTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues [1] and the details of the vacuum system upgrades [2]. This paper focusses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phenomena as electron clouds (ECs) and methods to mitigate EC effects. The fourth paper in this series describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. While the initial studies of CESRTA focussed on questions related to the International Linear Collider damping ring design, CESRTA is a very versatile storage ring, capable of studying a wide range of accelerator physics and instrumentation questions.

  17. Measurement of induced radioactivities for the evaluation of internal exposure at high energy accelerator facilities

    At high-intense and high energy accelerator facilities, accelerator components are exposed to primary and/or secondary high energy particles during machine operation. As a result, these become radioactive and the radioactivities are accumulated with operation time. When workers engage in maintenance work such as cutting, welding, etc. in the areas with residual activities. These become a source of internal exposure through the inhalation of radioactive airbornes as well as a source of external exposure. The estimation of external doses to workers is relatively easy by directly measuring the radiation fields by pertinent radiation counters. While the internal dose depends very much on the kinds of radioactive nuclides and their concentrations in air. In a routine survey for internal dose evaluation, airborne activities are filtered and their activities on the filter are measured with a GM counter with an automatic sample changer at KEK (the High Energy Accelerator Research Organization). Ordinarily many filter samples have to be measured with a relatively short counting time, so this gross beta counting is a practical way in a routine procedure. In order to evaluate the internal dose from these countings, it is necessary to examine precisely the kinds of radioactivities and their concentrations collected on the filters by a Ge semiconductor detector, and the correlation between the gross beta counting and the actual dose has to be made clear in advance. However, kinds of radioactivities and their concentrations depend very much on production rates of individual nuclides and time variations after beam-off. First, in order to elucidate the production rates of individual nuclides and their concentrations after beam-off, metal samples of Al, Fe, Cu, Steel, etc., which are principal materials used in accelerator facilities, were irradiated at various places in the tunnel of KEK-500MeV and 12GeV proton synchrotrons. By using these irradiated samples, we examined

  18. Accelerated Lifetime Testing Methodology for Lifetime Estimation of Lithium-ion Batteries used in Augmented Wind Power Plants

    Stroe, Daniel Ioan; Swierczynski, Maciej Jozef; Stan, Ana-Irina;

    2014-01-01

    The development of lifetime estimation models for Lithium-ion battery cells, which are working under highly variable mission profiles characteristic for wind power plant applications, requires a lot of expenditures and time resources. Therefore, batteries have to be tested under accelerated...... lifetime ageing conditions. This paper presents a three-stage methodology used for accelerated lifetime testing of Lithium ion batteries. The results obtained at the end of the accelerated ageing process were used for the parametrization of a performance-degradation lifetime model, which is able to predict...... both the capacity fade and the power capability decrease of the selected Lithium-ion battery cells. In the proposed methodology both calendar and cycling lifetime tests were considered since both components are influencing the lifetime of Lithium-ion batteries. Furthermore, the proposed methodology was...

  19. Alternative filtration testing program: Pre-evaluation of test results

    Georgeton, G.K.; Poirier, M.R.

    1990-09-28

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing.

  20. Alternative filtration testing program: Pre-evaluation of test results

    Based on results of testing eight solids removal technologies and one pretreatment option, it is recommended that a centrifugal ultrafilter and polymeric ultrafilter undergo further testing as possible alternatives to the Norton Ceramic filters. Deep bed filtration should be considered as a third alternative, if a backwashable cartridge filter is shown to be inefficient in separate testing

  1. VMAT linear accelerator commissioning and quality assurance: dose control and gantry speed tests.

    Barnes, Michael P; Rowshanfarzad, Pejman; Greer, Peter B

    2016-01-01

    In VMAT treatment delivery the ability of the linear accelerator (linac) to accurately control dose versus gantry angle is critical to delivering the plan correctly. A new VMAT test delivery was developed to specifically test the dose versus gantry angle with the full range of allowed gantry speeds and dose rates. The gantry-mounted IBA MatriXX with attached inclinometer was used in movie mode to measure the instantaneous relative dose versus gantry angle during the plan every 0.54 s. The results were compared to the expected relative dose at each gantry angle calculated from the plan. The same dataset was also used to compare the instantaneous gan-try speeds throughout the delivery compared to the expected gantry speeds from the plan. Measurements performed across four linacs generally show agreement between measurement and plan to within 1.5% in the constant dose rate regions and dose rate modulation within 0.1 s of the plan. Instantaneous gantry speed was measured to be within 0.11°/s of the plan (1 SD). An error in one linac was detected in that the nominal gantry speed was incorrectly calibrated. This test provides a practical method to quality-assure critical aspects of VMAT delivery including dose versus gantry angle and gantry speed control. The method can be performed with any detector that can acquire time-resolved dosimetric information that can be synchronized with a measurement of gantry angle. The test fulfils several of the aims of the recent Netherlands Commission on Radiation Dosimetry (NCS) Report 24, which provides recommendations for comprehensive VMAT quality assurance. PMID:27167282

  2. Testing MOND over a large acceleration range in x-ray ellipticals

    Milgrom, Mordehai

    2012-01-01

    The gravitational fields of two isolated ellipticals, NGC 720 and NGC 1521, have been recently measured, assuming hydrostatic balance of the hot gas enshrouding them. These galaxies are worthy of special interest: They afford, for the first time to my knowledge, testing MOND in ellipticals with force and quality that, arguably, approach those of rotation-curve tests in disc galaxies: The fields have been probed to very large galactic radii, revealing a large range of mass discrepancies. In the context of MOND, it is noteworthy that the measured accelerations span a wide range, from more than 10a0 to about a0/10, unprecedented in individual ellipticals. I compare the predictions of MOND, based on only the baryonic mass, for reasonable stellar M/L values, with the deduced dynamical mass runs of these galaxies. I find that MOND predicts correctly the runs of the mass discrepancies: from no discrepancy in the inner parts, to approximately a-factor-of-ten discrepancy in the outermost regions probed. For NGC 1521, ...

  3. Estimating service lifetimes of a polymer encapsulant for photovoltaic modules from accelerated testing

    Czanderna, A.W.; Pern, F.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    In this paper, most of the emphasis is on A9918 ethylene vinyl acetate (EVA) used commercially as the pottant for encapsulating photovoltaic (PV) modules, in which the efficiencies in field-deployed modules have been reduced by 10-70% in 4-12 years. Yet, projections were made by several different research groups in the 1980s that the EVA lifetime could range from 2-100 years. The authors (1) elucidate the complexity of the encapsulation problem, (2) indicate the performance losses reported for PV systems deployed since 1981, (3) critically assess the service lifetime predictions for EVA as a PV pottant based on studies by others for which they review the inherent errors in their assumptions about the Arrhenius relation, (4) show how degradation of minimodules in laboratory experiments that simulate reality can produce efficiency losses comparable to those in field-degraded PV modules reported in the literature, and (5) outline an acceptable methodology for making a service lifetime prediction of the polymer encapsulant, including the essential need for relating accelerated lifetime testing to real-time testing with a sufficient number of samples.

  4. Testing MOND over a wide acceleration range in x-ray ellipticals.

    Milgrom, Mordehai

    2012-09-28

    The gravitational fields of two isolated ellipticals, NGC 720 and NGC 1521, have been recently measured to very large galactic radii (~100 and ~200 kpc), assuming hydrostatic balance of the hot gas enshrouding them. They afford, for the first time to my knowledge, testing modified Newtonian dynamics (MOND) in ellipticals with force and quality that, arguably, approach those of rotation-curve tests in disk galaxies. In the context of MOND, it is noteworthy that the measured accelerations span a wide range, from more than 10a(0) to about 0.1a(0), unprecedented in individual ellipticals. I find that MOND predicts correctly the measured dynamical mass runs (apart from a possible minor tension in the inner few kpc of NGC 720, which might be due to departure from hydrostatic equilibrium): The predicted mass discrepancy increases outward from none near the center, to ~10 at the outermost radii. The implications for the MOND-versus-dark-matter controversy go far beyond the simple fact of two more galaxies conforming to MOND. PMID:23030078

  5. Development of accelerated test design for service-life prediction of solar array at Mead, Nebraska. Quarterly report

    Gaines, G.B.; Thomas, R.E.; Noel, G.T.; Shilliday, T.S.; Wood, V.E.; Carmichael, D.C.

    1978-11-03

    As a significant beginning in applying accelerated tests to solar arrays for life-prediction purposes, this study is directed toward (a) developing a plan for predicting the service life of a specific solar array in a specific geographic site - viz., the 25-KW flat-plate array installed near Mead, Nebraska, and (b) developing technical information from laboratory and field measurements for designing an accelerated test that can be carried out in 2 years and have predictive validity for a service life as long as 20 years. Status of the program is described.

  6. Estimation of the Parameters of the Bivariate Generalized Exponential Distribution using Accelerated Life Testing with Censoring Data

    Salwa Asser

    2014-06-01

    Full Text Available In this paper, the estimation for the bivariate generalized exponential (BVGE distribution under type-I censored with constant stress accelerated life testing (CSALT are discussed. The scale parameter of the lifetime distribution at constant stress levels is assumed to be an inverse power law function of the stress level. The unknown parameters are estimated by the maximum likelihood approach and their approximate variance-covariance matrix is obtained. Then, the numerical studies are introduced to illustrate the approach study using samples which have been generated from the bivariate generalized exponential distribution. Keywords: Accelerated life testing, Bivariate generalized exponential distribution, Constant stress, Type-I censoring, Maximum likelihood estimation.

  7. Technical Evaluation of Oak Ridge Filter Test Facility

    Kriskovich, J R

    2002-01-01

    Two evaluations of the Oak Ridge Department of Energy (DOE) Filter Test Facility (FTF) were performed on December 11 and 12, 2001, and consisted of a quality assurance and a technical evaluation. This report documents results of the technical evaluation.

  8. Finds in Testing Experiments for Model Evaluation

    WU Ji; JIA Xiaoxia; LIU Chang; YANG Haiyan; LIU Chao

    2005-01-01

    To evaluate the fault location and the failure prediction models, simulation-based and code-based experiments were conducted to collect the required failure data. The PIE model was applied to simulate failures in the simulation-based experiment. Based on syntax and semantic level fault injections, a hybrid fault injection model is presented. To analyze the injected faults, the difficulty to inject (DTI) and difficulty to detect (DTD) are introduced and are measured from the programs used in the code-based experiment. Three interesting results were obtained from the experiments: 1) Failures simulated by the PIE model without consideration of the program and testing features are unreliably predicted; 2) There is no obvious correlation between the DTI and DTD parameters; 3) The DTD for syntax level faults changes in a different pattern to that for semantic level faults when the DTI increases. The results show that the parameters have a strong effect on the failures simulated, and the measurement of DTD is not strict.

  9. Test and evaluation capabilities at NAVELEXCEN Charleston

    Stalvey, T.W.; Anderson, G.B.; Hinson, T.L. [Naval Electronic Systems Engineering Center, Charleston, SC (United States)

    1993-12-31

    The Environmental Systems and Instrumentation Engineering Department is located within the Special Programs Directorate of the Naval Electronic Systems Engineering Center (NAVELEXCEN Charleston). This Center is an echelon 4 Command under the Naval Command Control and Ocean Surveillance Center, San Diego (NCCOSC). NCCOSC is an echelon 3 Command under the Space and Warfare Systems Command (SPAWAR) which is located in Washington DC. Radiation Detection, Indication and Computation (RDIAC) equipment life-cycle management for the entire Navy falls under the auspices of the Naval Sea Systems Command (SEA 04R). The RADIAC Program provides centralized management for the execution of research, development, test, evaluation, maintenance, procurement, allowance, and equipment support for all Navy RADIAC instrumentation and assigned special monitoring equipments. RADIAC equipment is used throughout the Navy to support various functions associated with radioactivity, potential contamination, and personnel exposure to sources of ionizing radiation. Common sources in today`s Navy include nuclear reactors, nuclear weapons, industrial radiography, and nuclear medicine. Types of radiation includes gamma, x-ray, alpha, and beta.

  10. Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL

    In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergency situations; and (3) Plan recovery and keep squirrels out.

  11. Diagnosis and Tests: Evaluating a Fall or Risk of Falling

    ... Get Up and Go” test, the Berg Balance Scale, or similar simple tests of mobility and balance. ... memory testing Physical therapy assessment A home safety evaluation. Updated: March 2012 Posted: March 2012 © 2016 Health ...

  12. Imbibitions, energy test and accelerated ageing in primed and non-primed seeds of Peltophorum dubium

    LILei-hong; ZHANGWan-li; ZUYuan-gang; SONIAPerez

    2005-01-01

    Peltophorum dubium seeds were set to imbibe with four treatments, soaked with solution Captan 0.2% under 10and 27℃,PEG 6000 -1.0 MPa under 10 and 27℃. For each treatment there were four replicates with 40 seeds incubated in 9-cm Petri dishes with double filter paper moistened with testing solution. The imbibition curves showed that the final weight increase were from 70% to 150% in the treatments when imbibition entered a lag phase. Seeds were tested for effects on germination of five treatments: control group (nonprimed), primed with PEG6000 -1.0 MPa at 10 and 27℃, primed with Captan 0.2% at 10 and 27℃. For each treatment, there were three sub-treatments: seeds were soaked in distilled water for 12, 24 and 36h before the energy test. Germination percentages of nonprimed seeds and primed in PEG 27℃ soaked in distilled water during 12 h were the highest, reaching 100%. The lowest germination percentage occurred primed seeds with PEG6000 27℃ and soaked in distilled water during 36 h, which was only 52%. Germination mean time of primed seeds in PEG at 10℃, soaked 24 h was 1.08 days, mean time of primed seeds in PEG at 27℃ soaked 12 h was 2.42 days. Accelerated ageing results showed low or no germination after ageing 72 h. Control group had a higher germination percentage and seeds were more resistant to deterioration than those in primed groups, both in Petri dish (27℃) and vermiculate (room temperature).

  13. Coating and Interface Degradation of Coated steel, Part 2: Accelerated Laboratory Tests

    In a previous paper, it was demonstrated that the measurement of cathodic delamination by the Scanning Kelvin Probe can assess the interface stability of poly(vinyl butyral) (PVB) coated steel after field exposure. This technique was utilized to characterize the degradation of the polymer/metal interface in several outdoor climates. In this paper, the effects of environmental factors on the interface degradation were investigated in the laboratory. The mechanisms measured in the field were reproduced to provide input in the development of an appropriate accelerated test for PVB coated steel. The ASTM B117 and G154 standardized tests were investigated individually and sequentially. The interface stability improved after 24 h of ASTM G154 exposure. After 144 h of exposure to ASTM G154 exposure, polymer oxidation took place simultaneously with interface degradation. The condensation phase of the ASTM G154 test was responsible for the interface improvement while the ultraviolet radiation triggered the interface degradation. Pre-exposure to ASTM G154 delayed wet de-adhesion during ASTM B117 exposure. After wet de-adhesion caused by 6 h of ASTM B117, exposure to ASTM G154 for 24 h increased the interface stability. The effects of ultraviolet radiation, relative humidity, temperature and environment on interface degradation were investigated in a special chamber. Humidity was the primary factor found to influence the interface improvement during G154 exposure. A wet/dry salt fog cycle with irradiation by an ultraviolet or filtered xenon arc lamp around room temperature was suggested to reproduce the competition between the interface improvement and the interface degradation that takes place in the field

  14. Stress corrosion evaluation of powder metallurgy aluminum alloy 7091 with the breaking load test method

    Domack, Marcia S.

    1987-01-01

    The stress corrosion behavior of the P/M aluminum alloy 7091 is evaluated in two overaged heat treatment conditions, T7E69 and T7E70, using an accelerated test technique known as the breaking load test method. The breaking load data obtained in this study indicate that P/M 7091 alloy is highly resistant to stress corrosion in both longitudinal and transverse orientations at stress levels up to 90 percent of the material yield strength. The reduction in mean breaking stress as a result of corrosive attack is smallest for the more overaged T7E70 condition. Details of the test procedure are included.

  15. The conversion of CESR to operate as the Test Accelerator, CesrTA. Part 2: vacuum modifications

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper, the second in a series of four, discusses the modifications of the vacuum system necessary for the conversion of CESR to the test accelerator, CESR-TA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. A separate paper describes the vacuum system modifications of the superconducting wigglers to accommodate the diagnostic instrumentation for the study of EC behavior within wigglers. While the initial studies of CESR-TA focussed on questions related to the International Linear Collider (ILC) damping ring design, CESR-TA is a very flexible storage ring, capable of studying a wide range of accelerator physics and instrumentation questions

  16. The Conversion of CESR to Operate as the Test Accelerator, CesrTA, Part 3: Electron Cloud Diagnostics

    Billing, M G; Crittendan, J A; Greenwald, S; Li, Y; Meller, R E; Strohman, C R; Sikora, J P; Calvey, J R; Palmer, M A

    2015-01-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper is the third in a series of four describing the the conversion of CESR to the test accelerator, CesrTA. The first two papers discuss the overall plan for the conversion of the storage ring to an instrument capable of studying advanced accelerator physics issues and the details of the vacuum system upgrades. This paper focusses on the necessary development of new instrumentation, situated in four dedicated experimental regions, capable of studying such phe...

  17. Razor UAS Test and Evaluation System Project

    National Aeronautics and Space Administration — Adsys Controls' Razor UAS Test System is a high fidelity simulation and Hardware-in-the-Loop (HIL) test system. Razor provides extensive existing capability for...

  18. On the design and testing of solid armatures for rail accelerator applications

    Karthaus, W.; de Zeeuw, W.A.; Kolkert, W.J. (TNO PML-Pulse Physics (NL))

    1991-01-01

    Two different armature designs, for rail accelerator applications have been studied during electromagnetic launch experiments. The designs investigated are an aluminium multi-finger monoblock and a copper fiber brush armature. The experimental set-up used and the results obtained together with an electro-thermal model that describes the armature interface behavior during the acceleration process itself are presented in this paper.

  19. An evaluation of a test scheduling solution

    Kelly, Timothy James

    1993-01-01

    As recognized in the software engineering process, software testing during development is an aspect that must be improved to accurately predict and reduce probabilities of future software failures. A possible method of improving software reliability is to concentrate on the scheduling of the test process to reduce costs and increase coverage. Software test scheduling is the process of sequencing the test procedures to manage costs and maximize verification and validation of the system being e...

  20. Monitoring accelerated carbonation on standard Portland cement mortar by nonlinear resonance acoustic test

    Eiras, J. N.; Kundu, T.; Popovics, J. S.; Monzó, J.; Borrachero, M. V.; Payá, J.

    2015-03-01

    Carbonation is an important deleterious process for concrete structures. Carbonation begins when carbon dioxide (CO2) present in the atmosphere reacts with portlandite producing calcium carbonate (CaCO3). In severe carbonation conditions, C-S-H gel is decomposed into silica gel (SiO2.nH2O) and CaCO3. As a result, concrete pore water pH decreases (usually below 10) and eventually steel reinforcing bars become unprotected from corrosion agents. Usually, the carbonation of the cementing matrix reduces the porosity, because CaCO3 crystals (calcite and vaterite) occupy more volume than portlandite. In this study, an accelerated carbonation-ageing process is conducted on Portland cement mortar samples with water to cement ratio of 0.5. The evolution of the carbonation process on mortar is monitored at different levels of ageing until the mortar is almost fully carbonated. A nondestructive technique based on nonlinear acoustic resonance is used to monitor the variation of the constitutive properties upon carbonation. At selected levels of ageing, the compressive strength is obtained. From fractured surfaces the depth of carbonation is determined with phenolphthalein solution. An image analysis of the fractured surfaces is used to quantify the depth of carbonation. The results from resonant acoustic tests revealed a progressive increase of stiffness and a decrease of material nonlinearity.

  1. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    NONE

    1994-10-01

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.

  2. Operation and postirradiation examination of ORR capsule OF-2: accelerated testing of HTGR fuel

    Irradiation capsule OF-2 was a test of High-Temperature Gas-Cooled Reactor fuel types under accelerated irradiation conditions in the Oak Ridge Research Reactor. The results showed good irradiation performance of Triso-coated weak-acid-resin fissile particles and Biso-coated fertile particles. These particles had been coated by a fritted gas distributor in the 0.13-m-diam furnace. Fast-neutron damage (E > 0.18 MeV) and matrix-particle interaction caused the outer pyrocarbon coating on the Triso-coated particles to fail. Such failure depended on the optical anisotropy, density, and open porosity of the outer pyrocarbon coating, as well as on the coke yield of the matrix. Irradiation of specimens with values outside prescribed limits for these properties increased the failure rate of their outer pyrocarbon coating. Good irradiation performance was observed for weak-acid-resin particles with conversions in the range from 15 to 75% UC2

  3. Utilization of optical image data from the Advanced Test Accelerator (ATA)

    Extensive use is made of optical diagnostics to obtain information on the 50-MeV, 10-kA, 70-ns pulsed-electron beam produced by the Advanced Test Accelerator (ATA). Light is generated by the beam striking a foil inserted in the beamline or through excitation of the gas when the beamline is filled with air. The emitted light is collected and digitized. Two-dimensional images are recorded by either a gated framing camera or a streak camera. Extraction of relevant beam parameters, such as current density, current, and beam size, requires an understanding of the physics of the light-generation mechanism and an ability to handle and properly exploit a large digital database of image data. We will present a brief overview of the present understanding of the light-generation mechanisms in foil and gas, with emphasis on experimental observations and trends. We will review our data management and analysis techniques and indicate successful approaches for extracting beam parameters

  4. Test of the Pauli exclusion principle for nucleons and atomic electrons by accelerator mass spectrometry

    The Pauli exclusion principle was tested by searching with accelerator mass spectrometry for non-Paulian atoms with three electrons in the K-shell and for non-Paulian nuclei with three protons or three neutrons in the nuclear 1 s1/2 shell. For non-Paulian atoms of 20Ne and 36Ar the following limits have been obtained: N(20Ne)/N(20Ne)-21 and N(36Ar)/N(36Ar)-17. For non-Paulian nuclei of 5Li and 5He with three protons or three neutrons, respectively, in the nuclear 1 s1/2 shell the following limits have been measured: N(5Li)/N(6Li)-17 for a range of proton separation energies of 5Li between 0 and 50 MeV and N(5He)/N(4He)-15 for neutron separation energies between 0 and 32 MeV. The result for 5Li is used to deduce a limit for the probability β2/2 of finding two colliding protons in the symmetric state with respect to exchange to be β2/2-32. (orig.)

  5. A modified feed-forward control system at the Accelerator Test Facility

    A modified feed-forward control system has been operated at the Brookhaven Accelerator Test Facility to control the phase and amplitude of two high power klystron rf systems used to power a photocathode rf gun and a traveling wave electron linac. The changes to the control algorithm include an improved handling of cross coupling between the amplitude and the phase channels, an improved calibration routine that allows for changes in the matrix elements due to the variable base-line and improved filtering. The modifications to the software include modularity, portability, and user-friendliness. Improvements to the hardware include a linearized phase and amplitude controller with dc biasing for an improved dynamic range. The feed-forward system can handle nonlinear and noninstantaneous systems. With simultaneous regulation of two channels, the phase and the amplitude fluctuations over a time span of more than 3 μS were reduced to less than ±0.2 degree and ±0.2%, from the initial ±2.7 degree and ±1.8%, respectively. copyright 1997 American Institute of Physics

  6. Accelerated aging tests of radiation damaged lasers and photodiodes for the CMS tracker optical links

    Gill, K; Batten, J; Cervelli, G; Grabit, R; Jensen, F; Troska, Jan K; Vasey, F

    1999-01-01

    The combined effects of radiation damage and accelerated ageing in COTS lasers and p-i-n photodiodes are presented. Large numbers of these devices are employed in future High Energy Physics experiments and it is vital that these devices are confirmed to be sufficiently robust in terms of both radiation resistance and reliability. Forty 1310 nm InGaAsP edge-emitting lasers (20 irradiated) and 30 InGaAs p- i-n photodiodes (19 irradiated) were aged for 4000 hours at 80 degrees C with periodic measurements made of laser threshold and efficiency, in addition to p-i-n leakage current and photocurrent. There were no sudden failures and there was very little wearout- related degradation in either unirradiated or irradiated sample groups. The results suggest that the tested devices have a sufficiently long lifetime to operate for at least 10 years inside the Compact Muon Solenoid experiment despite being exposed to a harsh radiation environment. (13 refs).

  7. Measurement and Compensation of Horizontal Crabbing at the Cornell Electron Storage Ring Test Accelerator

    Ehrlichman, M P; Hartung, W; Peterson, D P; Rider, N; Rubin, D; Sagan, D; Shanks, J P; Wang, S T

    2013-01-01

    In storage rings, horizontal dispersion in the rf cavities introduces horizontal-longitudinal ($xz$) coupling, contributing to beam tilt in the $xz$ plane. This coupling can be characterized by a "crabbing" dispersion term $\\zeta_a$ that comes from decomposing the $1$-turn transfer matrix. $\\zeta_a$ is proportional to the rf cavity voltage and the horizontal dispersion in the cavity. We report experiments at the Cornell Electron Storage Ring Test Accelerator (CesrTA) where $xz$ coupling was explored using three lattices with distinct crabbing properties. We characterize the $xz$ coupling for each case by measuring the horizontal projection of the beam with a beam size monitor. The three lattice configurations correspond to a) $16$ mrad $xz$ tilt at the beam size monitor source point, b) compensation of the $\\zeta_a$ introduced by one of two pairs of RF cavities with the second, and c) zero dispersion in RF cavities, eliminating $\\zeta_a$ entirely. Additionally, intrabeam scattering (IBS) is evident in our mea...

  8. Particle acceleration and plasma energization in substorms: MHD and test particle studies

    Birn, Joachim [Los Alamos National Laboratory

    2015-07-16

    The author organizes his slide presentation under the following topics: background, MHD simulation, orbit integration, typical orbits, spatial and temporal features, acceleration mechanisms, source locations, and source energies. Field-­aligned energetic particle fluxes are shown for 45-keV electrons and 80-keV protons. It is concluded that the onset from local thin current sheet is electron tearing. Acceleration is mainly from field collapse, governed by Ey = -vxXBz: importance of localization; betatron acceleration (similar if nonadiabatic); 1st order Fermi, type B (or A; current sheet acceleration). There are two source regions (of comparable importance in magnetotail): - flanks, inner tail - drift entry - early, higher energy - outer plasma sheet - reconnection entry - later, lower energy. Both thermal and suprathermal sources are important, with limited energy range for acceleration

  9. Development of an accelerated test design for predicting the service life of the solar array at Mead, Nebraska. Quarterly report

    Gaines, G.B.; Thomas, R.E.; Noel, G.T.; Shilliday, T.S.; Wood, V.E.; Carmichael, D.C.

    1979-02-06

    Economic viability requires that photovoltaic arrays should have a service life of 20 years or longer. Qualification and performance tests indicate that presently available photovoltaic modules provide acceptable performance at the time of installation. This study is being conducted as part of a program to develop and validate an accelerated test plan that can be used to predict the useful service life of present and future solar arrays. Previously a methodology was developed for designing an accelerated test program incorporating trade-offs between the cost of each test and its value in reducing the variance in the life prediction for that array. The objective of the present study is to apply this methodology to develop an accelerated test plan to predict the service life of the 25-kW photovoltaic array installed near Mead, Nebraska. Potential long-term degradation modes for the two types of modules in the Mead array have been determined and judgments have been made as to those environmental stresses and combinations of stresses which accelerate the degradation of the power output. Hierarchical trees representing the severity of effects of stresses (test conditions) on eleven individual degradation modes have been constructed and have been pruned of tests judged to be nonessential. Composites of those trees have been developed so that there is now one pruned tree covering eight degradation modes, another covering two degradation modes, and a third covering one degradation mode. These three composite trees form the basis for selection of test conditions in the final test plan which is now being prepared.

  10. Evaluation of a new IR-guided system for mechanical QA of linear accelerators

    The authors report the development of a new procedure for mechanical quality assurance of linear accelerators using an infrared-guided system. The system consists of an infrared (IR) camera and an IR-reflective marker that can be attached to a gantry, a collimator, or a treatment table. The trace of this marker can be obtained in three dimensions (3D) for a full or partial rotation of the mechanical devices. The software is written to localize rotational axes of the gantry, collimator, and the treatment table based on the marker traces. The separation of these axes characterizes the size of the sphere defining the mechanical isocenter. Additional information on anomalies in gantry movement such as degree of gantry sag and hysteresis can also be obtained. An intrinsic uncertainty of the system to localize rotational axis is 0.35 mm or less. Tests on a linear accelerator demonstrated the ability of this system to detect the separation between rotational axes of less than 1 mm and to confirm orthogonality of the planes of gantry, collimator, and table rotation.

  11. Glass durability evaluation using multiple test methods

    The high content of Na2O in Hanford Site low-level tank wastes, averaging about 80 wt % on an oxide basis, necessitates the development of durable high-sodium glasses. Pacific Northwest Laboratory (PNL) is providing glass formulation support for this program. Glass development entails testing many glasses in a short time; it is not practical to perform long-term durability tests on every glass. The current approach on chemical durability focuses on a suite of short-term laboratory tests such as dynamic single-pass flow-through (SPFT) tests, static product consistency tests (PCT), and vapor hydration tests. The preliminary results from the three types of tests are quite different, but each provides insight into the glass corrosion process. The PCT data showed that at the same alumina, silica, and sodium levels the glass durability order for different glass systems is: Boron-only > Mixture > Calcium-only, while the opposite order is observed in SPFT tests. The order for vapor hydration tests is: Boron-only > Mixture = Calcium-only. Understanding of the glass durability order requires knowledge of the glass corrosion mechanism under specific test conditions. Integration of the three types of tests used in this program provides a more nearly complete picture of glass corrosion progress and the needed confidence for a glass optimization program. The 7-day PCT tests may provide one of the best means for preliminary screening of glass compositions within short development time. The results are relevant to long-term (or final stage corrosion) durability, as assessed by vapor hydration tests

  12. Test and evaluation of pressure vessel materials

    We have prepared a method for analyzing the Charpy impact test data, which is deduced from ''the standard anelastic solid equation''. The theoretical expression for the absorbed energy is in a form of W=Wsub(U)+(Wsub(R)-Wsub(U))/ [1+(ωtau)2] showing the Debye characteristics and where tau is given by the Arrhenius equation; tau=tau0 exp(ΔH/ksub(B)T). Four measurable parameters, at the present stage, can characterize the dynamic hehavior of cracking (Charpy impact result). They are the upper shelf energy(Wsub(R), the lower shelf energy (Wsub(U)), the activation energy of crack (ΔH, and wtau(0) where w tau(0) are the resonance frequency of the specimen and the jumping pre-exponential factor of propagating crack respectively. However the states of R (relaxed) and U (un-relaxed) should be defined from reasonable physical conditions in the future and it is possible that Wsub(U) is small enough to be taken as zero. The effects of irradiation, alloying elements, and heat treatment on the impact results should be interpreted as changes in the above characteristic parameters. The present method has been applied for weld metal of SA 508-2 irradiated up to a fluence of 4x1018n/cm2, E>1.0Mev, resulting in about 29% decrease in Wsub(R), negligible change in Wsub(U), 5.6 times increase in ωtau0, and no change in ΔH. This seems to indicate that irradiation degrades an average value of YOUNG's modulus so that cracks propagate more easily and it does not effect on breaking the lattice bond. However much more systematic analyses should be necessary for correct judgment. It is concluded that the present method is quite adequate for analyzing the Charpy impact data even though plastic deformation in the specimen was not considered separately so that the method should be applied for various cases in order to evaluate the proper trend of effects of irradiation, alloying elements, and heat treatment on the Charpy impact results. (Author)

  13. Development and test of an accelerating cavity shape for a superconducting linear collider

    In order to use superconducting RF accelerating structures in the construction of a linear collider certain criteria must be addressed. Foremost of these criteria is the high accelerating gradient. This requirement might be more accurately expressed as the accelerating gradient per unit cost. The authors see therefore that cost/unit length is also a primary criteria. The cavity must be designed so that input power can be coupled in and higher order mode (HOM) power may be coupled out to the degree required by beam stability considerations. At this time in the development of superconducting RF accelerating cavities, the accelerating gradient is limited by two phenomena, electron field emission and thermal breakdown. The first of these makes it imperative to choose a cell shape that minimizes Epk/Eacc and the second phenomena to minimize Hpk/Eacc (the ratio of the peak surface fields to the accelerating gradient). As field emission is the dominant gradient limitation, there is considerable premium in lowering Epk/Eacc. The cell to cell coupling (K) is also effected by the shape. This is true of the coupling of the HOM's as well as the fundamental TM010 mode. Because of this, the number of coupled cells comprising an accelerating unit is limited. A larger number of cells/module helps reduce the structure cost by reducing the number of couplers as well as by improving the filling factor for the machine. An effort is made here to increase the number of cells per module to 10

  14. Accelerated tests for the soft error rate determination of single radiation particles in components of terrestrial and avionic electronic systems

    This paper describes the main features of the accelerated test procedures used to determine reliability data of microelectronics devices used in terrestrial environment.This paper focuses on the high energy particle test that could be performed through spallation neutron source or quasi-mono-energetic neutron or proton. Improvements of standards are illustrated with respect to the state of the art of knowledge in radiation effects and scaling down of microelectronics technologies. (authors)

  15. Corrosion Embrittlement of Duralumin II Accelerated Corrosion Tests and the Behavior of High-Strength Aluminum Alloys of Different Compositions

    Rawdon, Henry S

    1928-01-01

    The permanence, with respect to corrosion, of light aluminum alloy sheets of the duralumin type, that is, heat-treatable alloys containing Cu, Mg, Mn, and Si is discussed. Alloys of this type are subject to surface corrosion and corrosion of the interior by intercrystalline paths. Results are given of accelerated corrosion tests, tensile tests, the effect on corrosion of various alloying elements and heat treatments, electrical resistance measurements, and X-ray examinations.

  16. Test and evaluation of isotope identifiers

    Three devices were tested against eighteen radio-isotopes ranging in activity from 0.37 kBq (K-40) to 93.24 GBq (Pu-239) to determine their effectiveness as isotope identifiers. Two of the devices were hand-held instruments using NaI(Tl) detectors and the third one was a bench-top instrument using a mechanically-cooled Ge detector. Details of the test and the test results are presented in this paper. (author)

  17. Installation, tests and start up of the Tandetron positive ions accelerator

    The National Institute of Nuclear Research acquired a Positive ions accelerator type Tandetron 2MV of the Dutch Company High Voltage Engineering, Europe B.V. (H.V.E.E.) which was installed in the building named Irradiator Nave which is occupied by the Gamma irradiator and the Pelletron accelerator. Starting from the accelerator selection it was defined the conditions required for the operation of this as well as: electric feeding, water quality and quantity, air compressed, temperature, humidity, etc.; as well as the necessary modifications of the installation area. (Author)

  18. Status of the visible Free-Electron Laser at the Brookhaven Accelerator Test Facility

    The 500 nm Free-Electron Laser (ATF) of the Brookhaven National Laboratory is reviewed. We present an overview of the ATF, a high-brightness, 50-MeV, electron accelerator and laser complex which is a users' facility for accelerator and beam physics. A number of laser acceleration and FEL experiments are under construction at the ATF. The visible FEL experiment is based on a novel superferric 8.8 mm period undulator. The electron beam parameters, the undulator, the optical resonator, optical and electron beam diagnostics are discussed. The operational status of the experiment is presented. 22 refs., 7 figs

  19. Deuteron cross section evaluation for safety and radioprotection calculations of IFMIF/EVEDA accelerator prototype

    In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.

  20. Deuteron cross section evaluation for safety and radioprotection calculations of IFMIF/EVEDA accelerator prototype

    Blideanu, Valentin [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Garcia, Mauricio [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Joyer, Philippe, E-mail: philippe.joyer@cea.fr [Commissariat a l' energie atomique CEA/IRFU, Centre de Saclay, 91191 Gif sur Yvette cedex (France); Lopez, Daniel; Mayoral, Alicia; Ogando, Francisco [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain); Ortiz, Felix [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Sanz, Javier; Sauvan, Patrick [Universidad Nacional de Educacion a Distancia, UNED, Madrid (Spain); Instituto de Fusion Nuclear, UPM, Madrid (Spain)

    2011-10-01

    In the frame of IFMIF/EVEDA activities, a prototype accelerator delivering a high power deuteron beam is under construction in Japan. Interaction of these deuterons with matter will generate high levels of neutrons and induced activation, whose predicted yields depend strongly on the models used to calculate the different cross sections. A benchmark test was performed to validate these data for deuteron energies up to 20 MeV and to define a reasonable methodology for calculating the cross sections needed for EVEDA. Calculations were performed using the nuclear models included in MCNPX and PHITS, and the dedicated nuclear model code TALYS. Although the results obtained using TALYS (global parameters) or Monte Carlo codes disagree with experimental values, a solution is proposed to compute cross sections that are a good fit to experimental data. A consistent computational procedure is also suggested to improve both transport simulations/prompt dose and activation/residual dose calculations required for EVEDA.

  1. Life prediction of 808nm high power semiconductor laser by accelerated life test of constant current stress

    Yao, Nan; Li, Wei; Zhao, Yihao; Zhong, Li; Liu, Suping; Ma, Xiaoyu

    2015-10-01

    High power semiconductor laser is widely used because of its high transformation efficiency, good working stability, compact volume and simple driving requirements. Laser's lifetime is very long, but tests at high levels of stress can speed up the failure process and shorten the times to failure significantly. So accelerated life test is used here for forecasting the lifetime of 808nm CW GaAs/AlGaAs high power semiconductor laser that has an output power of 1W under 1.04A. Accelerated life test of constant current stress based on the Inverse Power Law Relationship was designed. Tests were conducted under 1.3A, 1.6A and 1.9A at room temperature. It is the first time that this method is used in the domestic research of laser's lifetime prediction. Applying Weibull Distribution to describe the lifetime distribution and analyzing the data of times to failure, characteristics lifetime's functional relationship model with current is achieved. Then the characteristics lifetime under normal current is extrapolated, which is 9473h. Besides, to confirm the validity of the functional relationship model, we conduct an additional accelerated life test under 1.75A. Based on this experimental data we calculated the characteristics lifetime corresponding to 1.75A that is 171h, while the extrapolated characteristics lifetime from the former functional relationship model is 162h. The two results shows 5% deviation that is very low and acceptable, which indicates that the test design is reasonable and authentic.

  2. Accelerated multi-source remedial approach using field sample evaluation for site characterization and closure

    An active 128-acre industrial site, which has been operating since 1868, located in southern New Jersey was effectively remediated in three months using an accelerated multi-source remedial approach which uses field sample evaluation for site characterization and closure. Through extensive multi-remedial investigations consisting of the collection and laboratory analysis of 849 soil samples, and the installation and subsequent sampling of 60 ground water monitoring wells, 73 areas of environmental concern were identified and subsequently designated for remedial action. An aggressive remedial approach was conducted which consisted of soil excavation, including post-excavation sampling to ensure that compliance with applicable New Jersey soil cleanup criteria was achieved. Waste loading, transportation and proper disposal at a designated facility, and the use of a full service mobile laboratory for post-excavation soil sample characterization was achieved within the project time-frame. The mobile laboratory was an integral component of the remedial approach. It provided volatile organic, base-neutral, total petroleum hydrocarbon, and priority pollutant metals analyses on post-excavation soil samples using approved laboratory methods. Use of the mobile laboratory provided multiparameter sample results for field evaluation within 24 hours of collection, which expedited remediation activities allowing areas to be evaluated and backfilled immediately, as appropriate. This approach allowed rapid restoration of the remediation areas, thereby greatly reducing disruptions in facility operations. Quality Assurance/Quality Control methods consisted of the use of a fixed base laboratory for confirmation sample analysis of 10% of the samples collected

  3. Coanda hydro intake screen testing and evaluation

    Howarth, J.

    2001-07-01

    The objective of this project has been to evaluate the effectiveness, suitability and cost benefit of the Aquashear Coanda effect, maintenance free intake screen for use in small hydro system intakes. (author)

  4. Electron cloud dynamics in the Cornell Electron Storage Ring Test Accelerator wiggler

    Celata, C. M.

    2011-01-01

    The interference of stray electrons (also called “electron clouds”) with accelerator beams is important in modern intense-beam accelerators, especially those with beams of positive charge. In magnetic wigglers, used, for instance, for transverse emittance damping, the intense synchrotron radiation produced by the beam can generate an electron cloud of relatively high density. In this paper the complicated dynamics of electron clouds in wigglers is examined using the example of a wiggler in th...

  5. Accelerated Cosmological Models in Modified Gravity tested by distant Supernovae SNIa data

    Borowiec, Andrzej; Godlowski, Wlodzimierz; Szydlowski, Marek

    2006-01-01

    Recent supernovae of type Ia measurements and other astronomical observations suggest that our universe is in accelerating phase of evolution at the present epoch. While a dark energy of unknown form is usually proposed as the most feasible mechanism for the acceleration, there are appears some alternative conception that some effects arising from generalization of Einstein equation can mimic dark energy through a modified Friedmann equation. In this work we investigate some observational con...

  6. An End-to-End Test of Neutron Stars as Particle Accelerators

    CARAVEO, PATRIZIA A.

    2005-01-01

    Combining resolved spectroscopy with deep imaging, XMM-Newton is providing new insights on the particle acceleration processes long known to be at work in the magnetospheres of isolated neutron stars. According to a standard theoretical interpretation, in neutron stars' magnetospheres particles are accelerated along the B field lines and, depending on their charge, they can either move outward, to propagate in space, or be funnelled back, towards the star surface. While particles impinging on...

  7. Testing Assumptions about Evaluating Strategic Alliance Performance

    Olk, Paul; Ariño, Africa

    2003-01-01

    Researchers have used a variety of measures to evaluate strategic alliance performance. In this paper we use data collected on performance of R&D consortia in the U.S. and of Spain-based equity and non-equity dyadic alliances to investigate empirically five basic assumptions made by strategic alliance researchers. We find that while several assumptions are supported, others are not. Results are consistent across samples. We conclude with recommendations for how to evaluate performance in futu...

  8. Lead-bismuth spallation target design of the accelerator-driven test facility (ADTF)

    A design methodology for the lead-bismuth eutectic (LBE) spallation target has been developed and applied for the accelerator-driven test facility (ADTF) target. This methodology includes the target interface with the subcritical multiplier (SCM) of the ADTF and the different engineering aspects of the target design, physics, heat-transfer, hydraulics, structural, radiological, and safety analyses. Several design constrains were defined and utilised for the target design process to satisfy different engineering requirements and to minimise the time and the cost of the design development. Interface requirements with the subcritical multiplier were defined based on target performance parameters and material damage issues to enhance the lifetime of the target structure. Different structural materials were considered to define the most promising candidate based on the current database including radiation effects. The developed target design has a coaxial geometrical configuration to minimise the target footprint and it is installed vertically along the SCM axis. LBE is the target material and the target coolant with ferritic steel (HT-9 Alloy) structural material. The proton beam has 8.33 mA current uniformly distributed and 8.14 cm beam radius resulting in a current density of 40 μA/cm2. The beam power is 5 MW and the proton energy is 600 MeV. The beam tube has 10 cm radius to accommodate the halo current. A hemi-spherical geometry is used for the target window, which is connected to the beam tube. The beam tube is enclosed inside two coaxial tubes to provide inlet and outlet manifolds for the LBE coolant. The inlet and the outlet coolant manifolds and the proton beam are entered from the top above the SCM. The paper describes the design criteria, engineering constraints, and the developed target design for the ADTF. (authors)

  9. Experimental test of a new antiproton acceleration scheme in the Fermilab Main Injector

    In an effort to provide higher intensity and lower emittance antiproton beam to the Tevatron collider for high luminosity operation, a new Main Injector (MI) antiproton acceleration scheme has been developed [1-4]. In this scheme, beam is accelerated from 8 to 27 GeV using the 2.5 MHz rf system and from 27 to 150 GeV using the 53 MHz rf system. This paper reports the experimental results of beam study. Simulation results are reported in a different PAC'05 paper [5]. Experiments are conducted with proton beam from the Booster. Acceleration efficiency, emittance growth and beam harmonic transfer between 2.5 MHz (h=28) and 53 MHz (h=588) buckets have been studied. Beam study shows that one can achieve an overall acceleration efficiency of about 100%, longitudinal emittance growth less than 20% and negligible transverse emittance growth. accelerated to 150 GeV and injected to the Tevatron. The multi-bunch coalescing process is eliminated in this acceleration scheme. Consequently, longitudinal emittance growth is reduced. Smaller emittance growth reduces beam loss

  10. The Conversion of CESR to Operate as the Test Accelerator, CesrTA, Part 2: Vacuum Modifications

    Billing, M G

    2015-01-01

    Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper, the second in a series of four, discusses the modifications of the vacuum system necessary for the conversion of CESR to the test accelerator, CesrTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. A separate paper describes the vacuum system modifications of the superconducting wigglers to accommodate the ...

  11. Accuracy evaluation of the optical surface monitoring system on EDGE linear accelerator in a phantom study.

    Mancosu, Pietro; Fogliata, Antonella; Stravato, Antonella; Tomatis, Stefano; Cozzi, Luca; Scorsetti, Marta

    2016-01-01

    Frameless stereotactic radiosurgery (SRS) requires dedicated systems to monitor the patient position during the treatment to avoid target underdosage due to involuntary shift. The optical surface monitoring system (OSMS) is here evaluated in a phantom-based study. The new EDGE linear accelerator from Varian (Varian, Palo Alto, CA) integrates, for cranial lesions, the common cone beam computed tomography (CBCT) and kV-MV portal images to the optical surface monitoring system (OSMS), a device able to detect real-time patient׳s face movements in all 6 couch axes (vertical, longitudinal, lateral, rotation along the vertical axis, pitch, and roll). We have evaluated the OSMS imaging capability in checking the phantoms׳ position and monitoring its motion. With this aim, a home-made cranial phantom was developed to evaluate the OSMS accuracy in 4 different experiments: (1) comparison with CBCT in isocenter location, (2) capability to recognize predefined shifts up to 2° or 3cm, (3) evaluation at different couch angles, (4) ability to properly reconstruct the surface when the linac gantry visually block one of the cameras. The OSMS system showed, with a phantom, to be accurate for positioning in respect to the CBCT imaging system with differences of 0.6 ± 0.3mm for linear vector displacement, with a maximum rotational inaccuracy of 0.3°. OSMS presented an accuracy of 0.3mm for displacement up to 1cm and 1°, and 0.5mm for larger displacements. Different couch angles (45° and 90°) induced a mean vector uncertainty < 0.4mm. Coverage of 1 camera produced an uncertainty < 0.5mm. Translations and rotations of a phantom can be accurately detect with the optical surface detector system. PMID:26994827

  12. Evaluation of Cermet Fuels Test Data

    Test results characterizing ceramic-metallic (cermet) fuels are available from fuel development programs conducted for the ANP project, the 710 reactor program and the Argonne National Laboratory (ANL) nuclear rocket program. There is some overlap in the materials candidates tested in these programs. Test conditions were however significantly different due to wide variation in intended applications of these high temperature cermet fuels. This paper provides an overview of these development efforts, define (where possible) the damage mechanisms thought to be responsible for fuel operating limitations, and identify the fundamental physical mechanisms thought to be responsible. In more recent years, a new form of cermet fuels based on uranium-zirconium carbonitride (U,Zr)CN was developed and tested by the Innovative Nuclear Space Power and Propulsion Institute, University of Florida, and the Scientific Research Associates 'LUTCH' of Russia. The most significant outcome of the joint INSPILUTCH program was the establishment of the high temperature characteristics of the uranium-zirconium carbonitride, (U,Zr)CN and its long term compatibility with the metallic matrix. The improved features of uranium-zirconium carbonitride include chemical compatibility with tungsten matrix and stability at temperatures as high as 3300 K, high uranium density, and high thermal conductivity. The paper also presents a brief summary of the (U,Zr)CN base cermet fuel test results. (authors)

  13. Evaluation of the technique 'wire on the screw' in laboratory accelerated essays

    The CLIMAT essay has been employed as for the micro climate corrosiveness determination as for large geographic zones, allowing the qualification of corrosiveness of the interesting sites, the maps raising, the materials evaluation and the pollution focus localization. However, its utility, this has not been deepen in the understanding of his characteristics and corrosive process that it experiments. With the purpose in order to deepen in its knowledge and evaluating the useful possibilities in an immersion-emersion accelerated essay, it was accomplishment the present work. For this, was employed spiral aluminium manometers forming a galvanized pair with copper and steel screws, which were exposed to representative dissolutions of rainwater of the rural, urban and marine environment. It was measured the electrode potential for the essays, the corrosion velocities were determined gravimetrically, it was drawing polarization curves and they were characterized the corrosion products by X-ray diffraction (XRD), Infrared spectrometry (Ftir), Scanning Electron Microscopy (Sem) and stereoscopic microscope. The results allow to conclude that must pass sometime for what galvanic action was established. The potential evolution after that initial time, is approximately the same for the two pairs, for which the main losing of mass obtained in the Al-Cu screw has to be explained with kinetic arguments offered for polarization curves. The main corrosion product is bayerite (Al(OH)3), with greater crystallinity in Cl- dissolution than in SO4(2-) and with morphologies very influenced by environment. (Author)

  14. LIBO accelerates

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  15. Neural Network Models of Simple Mechanical Systems Illustrating the Feasibility of Accelerated Life Testing

    Fusaro, Robert L.; Jones, Steven P.; Jansen, Ralph

    1996-01-01

    A complete evaluation of the tribological characteristics of a given material/mechanical system is a time-consuming operation since the friction and wear process is extremely systems sensitive. As a result, experimental designs (i.e., Latin Square, Taguchi) have been implemented in an attempt to not only reduce the total number of experimental combinations needed to fully characterize a material/mechanical system, but also to acquire life data for a system without having to perform an actual life test. Unfortunately, these experimental designs still require a great deal of experimental testing and the output does not always produce meaningful information. In order to further reduce the amount of experimental testing required, this study employs a computer neural network model to investigate different material/mechanical systems. The work focuses on the modeling of the wear behavior, while showing the feasibility of using neural networks to predict life data. The model is capable of defining which input variables will influence the tribological behavior of the particular material/mechanical system being studied based on the specifications of the overall system.

  16. Testability integrated evaluation method based on testability virtual test data

    Liu Guanjun; Zhao Chenxu; Qiu Jing; Zhang Yong

    2014-01-01

    Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated eval-uation method is proposed in this paper based on testability virtual test data. Considering the char-acteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability vir-tual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.

  17. Testability integrated evaluation method based on testability virtual test data

    Liu Guanjun

    2014-02-01

    Full Text Available Testability virtual test is a new test method for testability verification, which has the advantages such as low cost, few restrictions and large sample of test data. It can be used to make up the deficiency of testability physical test. In order to take the advantage of testability virtual test data effectively and to improve the accuracy of testability evaluation, a testability integrated evaluation method is proposed in this paper based on testability virtual test data. Considering the characteristic of testability virtual test data, the credibility analysis method for testability virtual test data is studied firstly. Then the integrated calculation method is proposed fusing the testability virtual and physical test data. Finally, certain helicopter heading and attitude system is presented to demonstrate the proposed method. The results show that the testability integrated evaluation method is feasible and effective.

  18. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  19. A null test of the metric nature of the cosmic acceleration

    We discuss the testable predictions of a phenomenological model in which the accelerated expansion of the universe is the result of the action of a non-gravitational force field, rather than the effect of a negative-pressure dark energy fluid or a modification of general relativity. We show, through the equivalence principle, that in such a scenario the cosmic acceleration felt by distant standard candles like SNIa (type Ia supernovae (SNe)) depends on the mass of the host system, being larger in isolated galaxies than in rich clusters. As a consequence, the scatter in the observed SNIa Hubble diagram has mostly a physical origin in this scenario: in fact, the SNIa distance modulus is increasing, at fixed redshift, for SNe that are hosted in isolated galaxies with respect to the case of SNe hosted in rich galaxy clusters. Due to its strong dependence on the astrophysical environments of standard candles, we conclude that alternative non-gravitational mechanisms for the observed accelerated expansion of the universe can be interestingly contrasted against the standard metric interpretation of the cosmological acceleration by means of an environmental analysis of the cosmic structures in which SNIa are found. The possible absence of such environmental effects would definitely exclude the possibility of non-gravitational mechanisms being responsible for the accelerated cosmological expansion and will therefore reinforce a metric interpretation

  20. Evaluation of high density polyethylene composite filled with bagasse after accelerated weathering followed by biodegradation

    Peyvand Darabi

    2012-11-01

    Full Text Available Wood-plastic composites (WPC have many applications as structural and non-structural material. As their outdoor application becomes more widespread, their resistance against weathering, particularly ultraviolet light and biodegradation becomes of more concern. In the present study, natural fiber composites (NFPC made of bagasse and high density polyethylene, with and without pigments, were prepared by extrusion and subjected to accelerated weathering for 1440 h; then weathered and un-weathered samples were exposed to fungal and termite resistance tests. The chemical and surface qualities of samples were studied by ATR-FTIR spectroscopy, colorimetry, contact angle, and roughness tests before and after weathering. Using bagasse as filler does reduce the discoloration of weathered samples. Adding pigments may reduce the effect of weathering on lignin degradation, although it favors polymer oxidation, but it increases the weight loss caused by fungi. Despite the high resistance of samples against biological attack, weathering triggers attack by termites and fungi on the surface and causes surface quality loss.

  1. Testing and evaluation of eight decontamination chemicals

    This report covers experimental work comparing eight different decontamination chemicals. Seven of these chemicals have some novelty, or are not currently in use at the ICPP. The eighth is a common ICPP decontamination reagent used as a baseline for effective comparison. Decontamination factors, waste generation values, and corrosion rates are tabulated for these chemicals. Recommendations are given for effective methods of non-sodium or low-sodium decontamination chemicals. The two most effective chemical for decontamination found in these test were a dilute hydrofluoric and nitric acid (HF/HNO3) mixture and a fluoroboric acid solution. The fluoroboric acid solution (1 molar) was by far the most effective decontamination reagent, but suffered the problem of generating significant final calcine volume. The HF/HNO3 solution performed a very good decontamination of the SIMCON coupons while generating only small amounts of calcine volume. Concentration variables were also tested, and optimized for these two solutions. Several oxidation/reduction decon chemical systems were also tested. These systems were similar to the TURCO 4502 and TURCO 4521 solutions used for general decontamination at the ICPP. A low sodium alternative, nitric acid/potassium permanganate, to the ''high sodium'' TURCO 4502 was tested extensively, optimized and recommended for general ICPP use. A reductive chemical solution, oxalic acid/nitric acid was also shown to have significant advantages

  2. Interactive Test Analysis: Development, Implementation, and Evaluation.

    Lipe, Gary

    An interactive test analysis system was developed which interfaces a 3M DATRONICS system with a XEROX Sigma 9 computer. The computer programs were written in A Programming Language (APL). The current implementation of the program is characterized by its capability to: read responses from a DATRONIC answer sheet; allow the faculty member the option…

  3. Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks

    Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings

  4. Laboratory test of Newton's law of gravity for small accelerations

    The rotation curves of spiral galaxies suggest that either a considerable fraction of the galactic mass must be dark matter, or that one of Newton's laws needs revision at accelerations less than 1×10−10 m s−2. We have endeavored to search for evidence of the latter in a terrestrial laboratory. A sensitive torsion balance was employed to measure small accelerations due to gravity. No deviations from the predictions of Newton's law were found down to 1 × 10−12 m s−2. (paper)

  5. Evaluation of Apoptosis in Immunotoxicity Testing

    Nagarkatti, Mitzi; Rieder, Sadiye Amcaoglu; Vakharia, Dilip; Nagarkatti, Prakash S.

    2010-01-01

    Immunotoxicity testing is important in determining the toxic effects of chemical substances, medicinal products, airborne pollutants, cosmetics, medical devices, and food additives. The immune system of the host is a direct target of these toxicants, and the adverse effects include serious health complications such as susceptibility to infections, cancer, allergic reactions, and autoimmune diseases. One way to investigate the harmful effects of different chemicals is to study apoptosis in imm...

  6. Evaluation of rapid diagnostic test for influenza

    Tiziano Allice; Valeria Ghisetti

    2009-01-01

    In high risk patients such as in eldery, newborns and immunosuppressed subjects, a timely diagnosis of influenza is required for the most appropriate antiviral strategy in order to avoid severe secondary respiratory complications and viral spreading. Influenza is preventable by vaccination and chemoprophylaxis and is treatable by specific antiviral indications. The need for a timely diagnosis has led to the introduction of numerous rapid diagnostic tests.These are mostly antigen detection tes...

  7. Foucault test: a quantitative evaluation method.

    Rodríguez, Gustavo; Villa, Jesús; Ivanov, Rumen; González, Efrén; Martínez, Geminiano

    2016-08-01

    Reliable and accurate testing methods are essential to guiding the polishing process during the figuring of optical telescope mirrors. With the natural advancement of technology, the procedures and instruments used to carry out this delicate task have consistently increased in sensitivity, but also in complexity and cost. Fortunately, throughout history, the Foucault knife-edge test has shown the potential to measure transverse aberrations in the order of the wavelength, mainly when described in terms of physical theory, which allows a quantitative interpretation of its characteristic shadowmaps. Our previous publication on this topic derived a closed mathematical formulation that directly relates the knife-edge position with the observed irradiance pattern. The present work addresses the quite unexplored problem of the wavefront's gradient estimation from experimental captures of the test, which is achieved by means of an optimization algorithm featuring a proposed ad hoc cost function. The partial derivatives thereby calculated are then integrated by means of a Fourier-based algorithm to retrieve the mirror's actual surface profile. To date and to the best of our knowledge, this is the very first time that a complete mathematical-grounded treatment of this optical phenomenon is presented, complemented by an image-processing algorithm which allows a quantitative calculation of the corresponding slope at any given point of the mirror's surface, so that it becomes possible to accurately estimate the aberrations present in the analyzed concave device just through its associated foucaultgrams. PMID:27505659

  8. Evaluation and testing of computed radiography systems

    The implementation of film replacement digital radiographic imaging systems throughout Europe is now gathering momentum. Such systems create the foundations for totally digital departments of radiology, since radiographic examinations constitute the most prevalent modality. Although this type of development will lead to improvements in the delivery and management of radiological service, such widespread implementation of new technology must be carefully monitored. The implementation of effective QA tests on installation, at periodic intervals and as part of a routine programme will aid this process. This paper presents the results of commissioning tests undertaken on a number of computed radiography imaging systems provided by different manufacturers. The aim of these tests was not only to provide baseline performance measurements against which subsequent measurements can be compared but also to explore any differences in performance, which might exist between different units. Results of measurements will be presented for (1) monitor and laser printer setup; (2) imaging plates, including sensitivity, consistency and uniformity; (3) resolution and contrast detectability; and (4) signal and noise performance. Results from the latter are analysed in relationship with both system and quantum noise components. (authors)

  9. Evaluation and testing of computed radiography systems.

    Charnock, P; Connolly, P A; Hughes, D; Moores, B M

    2005-01-01

    The implementation of film replacement digital radiographic imaging systems throughout Europe is now gathering momentum. Such systems create the foundations for totally digital departments of radiology, since radiographic examinations constitute the most prevalent modality. Although this type of development will lead to improvements in the delivery and management of radiological service, such widespread implementation of new technology must be carefully monitored. The implementation of effective QA tests on installation, at periodic intervals and as part of a routine programme will aid this process. This paper presents the results of commissioning tests undertaken on a number of computed radiography imaging systems provided by different manufacturers. The aim of these tests was not only to provide baseline performance measurements against which subsequent measurements can be compared but also to explore any differences in performance, which might exist between different units. Results of measurements will be presented for (1) monitor and laser printer set-up; (2) imaging plates, including sensitivity, consistency and uniformity; (3) resolution and contrast detectability; and (4) signal and noise performance. Results from the latter are analysed in relationship with both system and quantum noise components. PMID:15933109

  10. Electron Lenses for Experiments on Nonlinear Dynamics with Wide Stable Tune Spreads in the Fermilab Integrable Optics Test Accelerator

    Stancari, G. [Fermilab; Carlson, K. [Fermilab; McGee, M. W. [Fermilab; Nobrega, L. E. [Fermilab; Romanov, A. L. [Fermilab; Ruan, J. [Fermilab; Valishev, A. [Fermilab; Noll, D. [Frankfurt U.

    2015-06-01

    Recent developments in the study of integrable Hamiltonian systems have led to nonlinear accelerator lattice designs with two transverse invariants. These lattices may drastically improve the performance of high-power machines, providing wide tune spreads and Landau damping to protect the beam from instabilities, while preserving dynamic aperture. To test the feasibility of these concepts, the Integrable Optics Test Accelerator (IOTA) is being designed and built at Fermilab. One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The parameters of the required device are similar to the ones of existing electron lenses. We present theory, numerical simulations, and first design studies of electron lenses for nonlinear integrable optics.

  11. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens

  12. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar [Comisión Nacional de Energía Atómica, Gerencia Materiales, Depto. Corrosión, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Gaillard, Natalia [Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Mariscotti, Mario; Ruffolo, Marcelo [Tomografía de Hormigón Armado S.A. (THASA), Reclus 2017, 1609 Boulogne, Buenos Aires (Argentina)

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  13. Design of an accelerated test to determine the attack of the sulphates on concrete structures, and the suggest alternative to design a container

    This work at demonstrating one of the accelerated tests in the frame of the Norm ASTM E-632-82, in order to evaluate the life of service for Reinforced Concrete Structures with High Performance.These will be used as barriers of engineering in containers for Radioactive Wastes.The results of the evaluation are necessary for the probabilistic and deterministic analysis, which are required to obtain licentiate for the emplacement and construction of this type of installations.Since concrete is the principal material used in this type of containers, its properties, in particular, its durability must be evaluated taking into accounts both, intrinsic factors and the extrinsic factors.Within the intrinsic factors we can mention your formulation, including design of armors of steel, production, treated and structural design.As extrinsic factors, weather and environmental, soil characteristic and service operation must be considered.It is important to emphasize that within the criteria used in the conceptual design of these types of repositories, the structures that act of barrier must not alter their insulation properties during all the period of service, which may be several hundreds of years.Although it is not possible to guarantee that repository's performance will not be altered throughout its time of service, the fact to obtain results of accelerated tests and the long term, it will enable us to estimate the durability of such structures, across the support of mathematical suitable models.The different stages which should be taken into account for the development of the evaluation tests, determining the relevant parameters to be considered in them and results obtained so far, are showing in this work

  14. Software Test And Evaluation Center Of CASC Established

    2008-01-01

    @@ The software Test and Evaluation Center of CASC(CASC-STEC) was established recently.The establishment of the CASC-STEC is an important measure to strengthen the capability of software test and evaluation,to ensure the quality of software products and improve the level of software engineering.

  15. An Accelerated Test Method of Simultaneous Carbonation and Chloride Ion Ingress: Durability of Silica Fume Concrete in Severe Environments

    Ghahari, S. A.; Ramezanianpour, A. M.; Ramezanianpour, A. A.; Esmaeili, M

    2016-01-01

    The effects of simultaneous carbonation and chloride ion attack on mechanical characteristics and durability of concrete containing silica fume have been investigated through an accelerated test method. Specimens containing different amounts of silica fume were maintained in an apparatus in which carbon dioxide pressure and concentration and relative humidity were kept constant, and wetting and drying cycles in saline water were applied. Surface resistivity, sorptivity, CO2 consumption, and c...

  16. Testing prototypes of high-temperature superconducting current leads of cryogenic stand for testing magnetic elements of the NICA accelerating complex

    Kres, E. V.; Kadenko, I. N.; Bessheiko, O. A.; Belov, D. V.; Blinov, N. A.; Galimov, A. R.; Zorin, A. G.; Karpinsky, V. N.; Nikiforov, D. N.; Pivin, R. V.; Smirnov, A. V.; Shevchenko, E. V.; Smirnov, S. A.; Khodzhibagiyan, G. G.; Liu, Cheng Lian

    2014-09-01

    In the Laboratory of High Energies at the Joint Institute for Nuclear Research, as part of the NICA-MPD [1] project, tests of two prototypes of HTSC current leads prepared at ASIPP institute (Hefei, China) have been performed [2, 3] to measure electric and heat parameters and to search for structural and physical drawbacks. Based on the experimental results, necessary changes are made in the structure of HTSC current leads of the testing stand for the magnetic element testing of the NICA accelerating complex and its basic setups: the Nuclotron, Booster, and Collider.

  17. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    Z. Chen; C. Gautier; F. Hemez; N. K. Bultman

    2000-02-01

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  18. Vacuum seals design and testing for a linear accelerator of the National Spallation Neutron Source

    Vacuum seals are very important to ensure that the Spallation Neutron Source (SNS) Linac has an optimum vacuum system. The vacuum joints between flanges must have reliable seals to minimize the leak rate and meet vacuum and electrical requirements. In addition, it is desirable to simplify the installation and thereby also simplify the maintenance required. This report summarizes an investigation of the metal vacuum seals that include the metal C-seal, Energized Spring seal, Helcoflex Copper Delta seal, Aluminum Delta seal, delta seal with limiting ring, and the prototype of the copper diamond seals. The report also contains the material certifications, design, finite element analysis, and testing for all of these seals. It is a valuable reference for any vacuum system design. To evaluate the suitability of several types of metal seals for use in the SNS Linac and to determine the torque applied on the bolts, a series of vacuum leak rate tests on the metal seals have been completed at Los Alamos Laboratory. A copper plated flange, using the same type of delta seal that was used for testing with the stainless steel flange, has also been studied and tested. A vacuum seal is desired that requires significantly less loading than a standard ConFlat flange with a copper gasket for the coupling cavity assembly. To save the intersegment space the authors use thinner flanges in the design. The leak rate of the thin ConFlat flange with a copper gasket is a baseline for the vacuum test on all seals and thin flanges. A finite element analysis of a long coupling cavity flange with a copper delta seal has been performed in order to confirm the design of the long coupling cavity flange and the welded area of a cavity body with the flange. This analysis is also necessary to predict a potential deformation of the cavity under the combined force of atmospheric pressure and the seating load of the seal. Modeling of this assembly has been achieved using both HKS/Abaqus and COSMOS

  19. TravInfo Field Operational Test Institutional Evaluation Final Results

    Yim, Youngbin; Deakin, Elizabeth

    2000-01-01

    This paper documents the final analysis of a three part series of institutional evaluations of the TravInfo Field Operational Test from its inception in 1992 through its completion in 1998. The Field Operational Test was performed over a two-year period from September 1996 to September 1998. Funding for the TravInfo evaluation was from the Federal Highway Administration with a matching grant from the California Department of Transportation (Caltrans). The institutional evaluation examined Tra...

  20. High power testing of the RF accelerating cavity for the positron damping ring at SuperKEKB

    A positron damping ring (DR) is under construction to meet the requirement of the low-emittance positron-beam injection to the main ring of SuperKEKB based on the nano-beam scheme. We have proposed and developed a radiofrequency (RF) accelerating structure for the DR, which can supply 2 MV accelerating voltage at maximum with three accelerating cavities to be installed in a limited space, forming “multi single cell” structure. This structure is based on the higher-order-mode (HOM) damped structure of the normal-conducting accelerating cavity system ARES, where 32 ARES cavities had been successfully operated at the KEKB main rings with extremely low trip rates. Last fiscal year, we made the first production-version cavity (hereafter called cavity No.1) based on the development of the prototype cavity (hereafter called prototype). In this paper, we present results of low-power and high-power tests of the cavity No.1, compared with the results of the prototype. (author)