WorldWideScience

Sample records for accelerated radiation therapy

  1. Development of 6 MeV X-band accelerator for next generation radiation therapy

    We are developing a 6 MeV X-band accelerator for the next generation radiation therapy. This accelerator is a compact LINAC about the length 60 [cm] and accelerates electron beam of 100 [mA] and 6 [MeV] . The RF power source is a small magnetron with 1.5 – 2.0 [MW] output. Various computer simulations were used for the design of the accelerator. The accelerator parts were processed using super-precision lathe and were joined by brazing. In the experiment of the completed accelerator, the energy of 6 [MeV] and beam current of 100 [mA] were observed. The accelerator is attached on a robot manipulator for medical treatment machine. In order to be certified for as a medical equipment, various tests are presently being carried out now. In this paper we described the design and measurements of the X-band accelerator. (author)

  2. Accelerators for Cancer Therapy

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  3. Use of electron linear accelerators in medical radiation therapy: physical characteristics. Overview report No. 1

    1976-02-01

    This report presents an overview of the physical characteristics of electron linear accelerators used in medical radiation therapy. Particular attention is given to those physical characteristics and performance parameters that are related to delivery of a useful, properly controlled prescription dose of radiation to the patient or to delivery of a potentially harmful dose of radiation to the patient, machine operators, or others in the vicinity of the accelerator. The purpose of the study, of which this report is a part, was to provide a data base which will assist the Bureau of Radiological Health in evaluating the need for a performance standard for medical linear accelerators and the priority which should be assigned to such a standard should one be required. (auth)

  4. Accelerator and radiation physics

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  5. Particle in cell simulation of laser-accelerated proton beams for radiation therapy

    In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging Coulomb force arising from charge separation induced by the ponderomotive pressure (light pressure) of high-intensity laser. The proton energy and phase space distribution functions obtained from the PIC simulations are used in the calculations of dose distributions using the GEANT Monte Carlo simulation code. Because of the broad energy and angular spectra of the protons, a compact particle selection and beam collimation system will be needed to generate small beams of polyenergetic protons for intensity modulated proton therapy

  6. Accelerators for therapy

    In the past decades circular and linear electron accelerators have been developed for clinical use in radiation therapy of tumors with the aim of achieving a high radiation dose in the tumor and as low as possible dose in the adjacent normal tissues. Today about one thousand accelerators are in medical use throughout the world and many hundred thousand patients are treated every day with accelerator-produced radiation. There exists, however, a large number of patients who cannot be treated satisfactorily in this way. New types of radiations such as neutrons, negative pions, protons and heavy ions were therefore tested recently. The clinical experience with these radiations and with new types of treatment procedures indicate that in future the use of a scanning beam of high energy protons might be optimal for the treatment of tumors. (orig.)

  7. Dosimetric comparison of three dimensional conformal radiation therapy versus intensity modulated radiation therapy in accelerated partial breast irradiation

    S Moorthy

    2016-01-01

    Full Text Available Aim of Study: Breast conserving surgery (BCS is the standard treatment for stage I and II breast cancer. Multiple studies have shown that recurrences after lumpectomy occur mainly in or near the tumor bed. Use of accelerated partial breast irradiation (APBI allows for significant reduction in the overall treatment time that results in increasing patient compliance and decreasing healthcare costs. We conducted a treatment planning study to evaluate the role of intensity modulated radiation therapy (IMRT with regards to three-dimensional conformal radiation therapy (3DCRT in APBI. Materials and Methods: Computed tomography planning data sets of 33 patients (20 right sided and 13 left sided with tumor size less than 3 cm and negative axillary lymph nodes were used for our study. Tumor location was upper outer, upper inner, central, lower inner, and lower outer quadrants in 10, 10, 5, 4 and 4 patients, respectively. Multiple 3DCRT and IMRT plans were created for each patient. Total dose of 38.5 Gy in 10 fractions were planned. Dosimetric analysis was done for the best 3DCRT and IMRT plans. Results: The target coverage has been achieved by both the methods but IMRT provided better coverage (P = 0.04 with improved conformity index (P = 0.01. Maximum doses were well controlled in IMRT to below 108% (P < 0.01. Heart V2 Gy (P < 0.01, lung V5 Gy (P = 0.01, lung V10 Gy (P = 0.02, contralateral breast V1 Gy (P < 0.01, contralateral lung V2 Gy (P < 0.01, and ipsilateral uninvolved breast (P < 0.01 doses were higher with 3DCRT compared to IMRT. Conclusion: Dosimetrically, IMRT–APBI provided best target coverage with less dose to normal tissues compared with 3DCRT-APBI.

  8. Treatment of nasopharyngeal carcinoma using simultaneous modulated accelerated radiation therapy via helical tomotherapy: a phase II study

    Du Lei

    2016-06-01

    Full Text Available The aim of the study was to evaluate short-term safety and efficacy of simultaneous modulated accelerated radiation therapy (SMART delivered via helical tomotherapy in patients with nasopharyngeal carcinoma (NPC.

  9. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer

    Avkshtol, Vladimir; Dong, Yanqun; Hayes, Shelly B; Hallman, Mark A; Price, Robert A; Sobczak, Mark L; Horwitz, Eric M; Zaorsky, Nicholas G

    2016-01-01

    Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6–15 Gy per fraction, up to 45 minutes per fraction, delivered in five fractions or less, over the course of approximately 2 weeks) is emerging as a popular treatment option for prostate cancer. The American Society for Radiation Oncology now recognizes SBRT for select low- and intermediate-risk prostate cancer patients. SBRT grew from the notion that high doses of radiation typical of brachytherapy could be delivered noninvasively using modern external-beam radiation therapy planning and delivery methods. SBRT is most commonly delivered using either a traditional gantry-mounted linear accelerator or a robotic arm-mounted linear accelerator. In this systematic review article, we compare and contrast the current clinical evidence supporting a gantry vs robotic arm SBRT for prostate cancer. The data for SBRT show encouraging and comparable results in terms of freedom from biochemical failure (>90% for low and intermediate risk at 5–7 years) and acute and late toxicity (cancer-specific mortality) cannot be compared, given the indolent course of low-risk prostate cancer. At this time, neither SBRT device is recommended over the other for all patients; however, gantry-based SBRT machines have the abilities of treating larger volumes with conventional fractionation, shorter treatment time per fraction (~15 minutes for gantry vs ~45 minutes for robotic arm), and the ability to achieve better plans among obese patients (since they are able to use energies >6 MV). Finally, SBRT (particularly on a gantry) may also be more cost-effective than conventionally fractionated external-beam radiation therapy. Randomized controlled trials of SBRT using both technologies are underway. PMID:27574585

  10. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 107 particles /cm2/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  11. Radiation therapy with laser-driven accelerated particle beams: physical dosimetry and spatial dose distribution

    Reinhardt, Sabine; Assmann, Walter [Ludwig-Maximilians Universitaet Muenchen (Germany); Kneschaurek, Peter; Wilkens, Jan [MRI, Technische Universitaet Muenchen (Germany)

    2011-07-01

    One of the main goals of the Munich Centre for Advanced Photonics (MAP) is the application of laser driven accelerated (LDA) particle beams for radiation therapy. Due to the unique acceleration process ultrashort particle pulses of high intensity (> 10{sup 7} particles /cm{sup 2}/ns) are generated, which makes online detection an ambitious task. So far, state of the art detection of laser accelerated ion pulses are non-electronic detectors like radiochromic films (RCF), imaging plates (IP) or nuclear track detectors (e.g. CR39). All these kind of detectors are offline detectors requiring several hours of processing time. For this reason they are not qualified for an application in radiation therapy where quantitative real time detection of the beam is an essential prerequisite. Therefore we are investigating pixel detectors for real time monitoring of LDA particle pulses. First tests of commercially available systems with 8-20 MeV protons are presented. For radiobiological experiments second generation Gafchromic films (EBT2) have been calibrated with protons of 12 and 20 MeV for a dose range of 0.3-10 Gy. Dose verification in proton irradiation of subcutaneous tumours in mice was successfully accomplished using these films.

  12. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer

    Amini Arya

    2012-03-01

    Full Text Available Abstract Background While conventionally fractionated radiation therapy alone is an acceptable option for poor prognostic patients with unresectable stage III NSCLC, we hypothesized that accelerated hypofractionated radiotherapy will have similar efficacy without increasing toxicity. Methods This is a retrospective analysis of 300 patients diagnosed with stage III NSCLC treated between 1993 and 2009. Patients included in the study were medically or surgically inoperable, were free of metastatic disease at initial workup and did not receive concurrent chemotherapy. Patients were categorized into three groups. Group 1 received 45 Gy in 15 fractions over 3 weeks (Accelerated Radiotherapy (ACRT while group 2 received 60-63 Gy (Standard Radiation Therapy 1 (STRT1 and group 3 received > 63 Gy (Standard Radiation Therapy (STRT2. Results There were 119 (39.7% patients in the ACRT group, 90 (30.0% in STRT1 and 91 (30.3% in STRT2. More patients in the ACRT group had KPS ≤ 60 (p 5% (p = 0.002, and had stage 3B disease (p Conclusions Despite the limitations of a retrospective analysis, our experience of accelerated hypofractionated radiation therapy with 45 Gy in 15 fractions appears to be an acceptable treatment option for poor performance status patients with stage III inoperable tumors. Such a treatment regimen (or higher doses in 15 fractions should be prospectively evaluated using modern radiation technologies with the addition of sequential high dose chemotherapy in stage III NSCLC.

  13. Use of electron linear accelerators in medical radiation therapy. Overview report No. 1. physical characteristics. Technical report

    1974-09-01

    The report is the first of a series of four overview reports prepared during the course of study regarding the use of electron linear accelerators in radiation therapy. The purpose of the study was to provide a data base which will assist BRH to decide whether the development of a performance standard concerning the radiation safety of medical linear accelerators is necessary, and if so, the priority which should be assigned to such a standard. The purpose of this report is to present an overview of the physical characteristics of electron linear accelerators used in medical radiation therapy. Particular attention is given to those physical characteristics and performance parameters which are related to delivery of a useful properly controlled prescription dose of radiation to the patient and to delivery of a potentially harmful dose of radiation to the patient, machine operator or others in the vicinity of the accelerator. (GRA)

  14. Dosimetric comparison of three dimensional conformal radiation therapy versus intensity modulated radiation therapy in accelerated partial breast irradiation

    Moorthy, S; H S Elhateer; SKD Majumdar; Mohammed, S; Patnaik, R; Narayanamurty

    2016-01-01

    Aim of Study: Breast conserving surgery (BCS) is the standard treatment for stage I and II breast cancer. Multiple studies have shown that recurrences after lumpectomy occur mainly in or near the tumor bed. Use of accelerated partial breast irradiation (APBI) allows for significant reduction in the overall treatment time that results in increasing patient compliance and decreasing healthcare costs. We conducted a treatment planning study to evaluate the role of intensity modulated radiation t...

  15. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer

    While conventionally fractionated radiation therapy alone is an acceptable option for poor prognostic patients with unresectable stage III NSCLC, we hypothesized that accelerated hypofractionated radiotherapy will have similar efficacy without increasing toxicity. This is a retrospective analysis of 300 patients diagnosed with stage III NSCLC treated between 1993 and 2009. Patients included in the study were medically or surgically inoperable, were free of metastatic disease at initial workup and did not receive concurrent chemotherapy. Patients were categorized into three groups. Group 1 received 45 Gy in 15 fractions over 3 weeks (Accelerated Radiotherapy (ACRT)) while group 2 received 60-63 Gy (Standard Radiation Therapy 1 (STRT1)) and group 3 received > 63 Gy (Standard Radiation Therapy (STRT2)). There were 119 (39.7%) patients in the ACRT group, 90 (30.0%) in STRT1 and 91 (30.3%) in STRT2. More patients in the ACRT group had KPS ≤ 60 (p < 0.001), more commonly presented with weight loss > 5% (p = 0.002), and had stage 3B disease (p < 0.001). After adjusting for clinical variables, there were no differences in the radiation groups in terms of the patterns of local or distant tumor control or overall survival. Some benefit in relapse free survival was seen in the STRT1 group as compared to ACRT (HR = 0.65, p = 0.011). Acute toxicity profiles in the ACRT were significantly lower for grade ≥ 2 radiation dermatitis (p = 0.002), nausea/vomiting (p = 0.022), and weight loss during treatment (p = 0.020). Despite the limitations of a retrospective analysis, our experience of accelerated hypofractionated radiation therapy with 45 Gy in 15 fractions appears to be an acceptable treatment option for poor performance status patients with stage III inoperable tumors. Such a treatment regimen (or higher doses in 15 fractions) should be prospectively evaluated using modern radiation technologies with the addition of sequential high dose chemotherapy in stage III NSCLC

  16. Hadron accelerators in cancer therapy

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadrontherapy Project (the largest project of this type in Europe) is then described, with reference to both the National Centre for Oncological Hadrontherapy and the design of two types of compact proton accelerators aimed at introducing proton therapy in a large number of hospitals. Finally, the radiation protection requirements are discussed. (author)

  17. Enhanced regeneration response of laryngeal and hypopharyngeal mucosa with accelerated hyperfractionated radiation therapy for glottic cancers

    The course and severity of acute mucosal reactions in 22 patients with previously untreated T1-2N0 glottic cancers were compared between two treatment schedules with different dose intensities: accelerated hyperfractionated radiation therapy (AHF) and standard conventional fractionation radiation therapy (CF). AHF consisted of a twice-daily fractionation of 1.5 Gy 10 times weekly to a total dose of 66 Gy given in 30-40 (median, 33) days. For CF, the fractionation was 2 Gy five times weekly for a total dose of 66 Gy in 45-51 (median, 49) days. Both treatment schedules were well tolerated and no treatment interruptions were necessary. The mucosal reaction reached a peak score clearly earlier with AHF than CF and already demonstrated improvement in the final treatment week. In contrast, the reaction persisted with CF. It is suggested that damaged mucosal tissues with AHF can be effectively compensated by enhanced regeneration response due to an adequately high dose intensity, suggesting a possible tolerability advantage for AHF. (author)

  18. Advances in medical electron linear accelerator technologies and the development of a next generation robotic radiation therapy system

    Radiation therapy for cancer began in the early 20th century with X-ray tubes delivering a few hundred keV. Through the 1930's to 1940's, 2 MV Van de Graaff accelerators and Betatrons of 20 to 45 MeV were used for cancer treatment. In the mid 1950's, radiation therapy combined 4 to 8 MeV linear accelerators with several high power microwave magnetrons and klystrons working in the megawatt range that have been developed for radar applications during the second world war. Since then, the linear accelerator became the most commonly used technology for radiation therapy and nowadays, more than 8000 linear accelerators are contributing to the treatment of cancer worldwide. We present the development of a real-time 3D robotic radiation therapy system combined with a compact X-band linear accelerator for the early detection of deep seated, small tumors. The system utilizes multiple narrow high energy X-ray beams focused on the target tumor. Real-time positioning is achieved by non-invasive methods based on correlation models for tumor motion and respiratory signals. Emphasis is placed on the tumor motion which is used to control a robotic head with six degrees of freedom to fix the tumor in a certain spatial position. (author)

  19. The Quality Control of Intensity Modulated Radiation Therapy (IMRT) for ONCOR Siemens Linear Accelerators Using Film Dosimetry

    Intensity Modulated Radiation Therapy has made a significant progress in radiation therapy centers in recent years. In this method, each radiation beam is divided into many subfields that create a field with a modulated intensity. Considering the complexity of this method, the quality control for Intensity Modulated Radiation Therapy is a topic of interest for researchers. This article is about the various steps of planning and quality control of Siemens linear accelerators for Intensity Modulated Radiation Therapy, using film dosimetry. This article in addition to review of the techniques, discusses the details of experiments and possible sources of errors which are not mentioned in the protocols and other references. This project was carried out in Isfahan Milad hospital which has two Siemens ONCOR linear accelerators. Both accelerators are equipped with Multi-Leaf Collimators which enables us to perform Intensity Modulated Radiation Therapy delivery in the step-and-shoot method. The quality control consists of various experiments related to the sections of radiation therapy. In these experiments, the accuracy of some components such as treatment planning system, imaging device (CT), Multi-Leaf Collimators, control system of accelerator, and stability of the output are evaluated. The dose verification is performed using film dosimetry method. The films were KODAK-EDR2, which were calibrated before the experiments. One of the important steps is the comparison of the calculated dose with planning system and the measured dose in experiments. The results of the experiments in various steps have been acceptable according to the standard protocols. The calibration of Multi-Leaf Collimators and evaluation of the leakage through the leaves of Multi-Leaf Collimator was performed by using the film dosimetry and visual check. In comparison with calculated and measured dose, more that 80% of the points have to be in agreement within 3% of the value. In our experiments

  20. Intensity modulated radiation therapy using laser-accelerated protons: a Monte Carlo dosimetric study

    In this paper we present Monte Carlo studies of intensity modulated radiation therapy using laser-accelerated proton beams. Laser-accelerated protons coming out of a solid high-density target have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Through the introduction of a spectrometer-like particle selection system that delivers small pencil beams of protons with desired energy spectra it is feasible to use laser-accelerated protons for intensity modulated radiotherapy. The method presented in this paper is a three-dimensional modulation in which the proton energy spectrum and intensity of each individual beamlet are modulated to yield a homogeneous dose in both the longitudinal and lateral directions. As an evaluation of the efficacy of this method, it has been applied to two prostate cases using a variety of beam arrangements. We have performed a comparison study between intensity modulated photon plans and those for laser-accelerated protons. For identical beam arrangements and the same optimization parameters, proton plans exhibit superior coverage of the target and sparing of neighbouring critical structures. Dose-volume histogram analysis of the resulting dose distributions shows up to 50% reduction of dose to the critical structures. As the number of fields is decreased, the proton modality exhibits a better preservation of the optimization requirements on the target and critical structures. It is shown that for a two-beam arrangement (parallel-opposed) it is possible to achieve both superior target coverage with 5% dose inhomogeneity within the target and excellent sparing of surrounding tissue

  1. Radiation Therapy

    ... therapy. At this time, you will have a physical exam , talk about your medical history , and maybe have imaging tests . Your doctor or nurse will discuss external beam radiation therapy, its benefits and side effects, and ways you can care ...

  2. Very accelerated radiation therapy: preliminary results in locally unresectable head and neck carcinomas

    Purpose: To report preliminary results of a very accelerated radiation therapy Phase I/II trial in locally advanced head and squamous cell carcinomas (HNSCC). Methods and Materials: Between 01/92 and 06/93, 35 patients with an unresectable HNSCC were entered in this study. Thirty-two (91%) had Stage IV, and 3 had Stage III disease. The mean nodal diameter, in patients with clinically involved nodes (83%), was 6.3 cm. The median Karnovsky performance status was 70. The treatment consisted of a twice daily schedule (BID) giving 62 Gy in 20 days. Results: In all cases, confluent mucositis was observed, which started about day 15 and resolved within 6 to 10 weeks. Eighty percent of patients had enteral nutritional support. The nasogastric tube or gastrostomy was maintained in these patients for a mean duration of 51.8 days. Eighteen patients (53%) were hospitalized during the course of treatment due to a poor medical status or because they lived far from the center (mean 25 days). Nineteen patients (56%) (some of whom were initially in-patients) were hospitalized posttreatment for toxicity (mean 13 days). Five patients (15%) were never hospitalized. During the follow-up period, 12 local and/or regional failures were observed. The actuarial 18-month loco-regional control rate was 59% (95% confidence interval, 45-73%). Conclusions: The dramatic shortening of radiation therapy compared to conventional schedules in our series of very advanced HNSCC resulted in: (a) severe acute mucosal toxicity, which was manageable but required intensive nutritional support in all cases; and (b) high loco-regional response rates, strongly suggesting that the time factor is likely to be critical for tumor control in this type of cancer

  3. Postmastectomy Hypofractionated and Accelerated Radiation Therapy With (and Without) Subcutaneous Amifostine Cytoprotection

    Purpose: Postmastectomy radiation therapy (PMRT) provides major local control and survival benefits. More aggressive radiation therapy schemes may, however, be necessary in specific subgroups, provided they are safely administered. We report the tolerance and efficacy of a highly accelerated and hypofractionated regimen (HypoARC). Methods and Materials: One hundred twelve high-risk patients who had undergone mastectomy received 10 consecutive fractions of 3.5 Gy in 12 days (thoracic wall and axillary/supraclavicular areas). Two consecutive additional fractions of 4 Gy were given to the surgical scar area (electrons 8-10 MeV) and 1 3.5-Gy fraction to the axilla (in cases with extensive nodal involvement). A minimum follow-up of 24 months (median, 44 months) was allowed before analysis. Of 112 patients, 21 (18.7%) refused to receive amifostine, the remaining receiving tolerance-based individualized doses (500-1000 mg/day subcutaneously). Results: By use of a dose individualization algorithm, 68.1%, 11%, and 18.7% of patients received 1000 mg, 750 mg, and 500 mg/day of amifostine. Patchy moist skin desquamation outside and inside the booster fields was noted in 14 of 112 (12.5%) and 26 of 112 (23.2%) patients, respectively. No case of acute pneumonitis was recorded. High amifostine dose offered a significant skin protection. Within a median follow-up time of 44 months, moderate subcutaneous edema outside and within the booster thoracic area was noted in 5 of 112 (4.4%) and 8 of 112 (7.1%) cases, respectively. Intense asymptomatic radiographic findings of in field lung fibrosis were noted in 4 of 112 (3.6%) patients. Amifostine showed a significant protection against lung and soft tissue fibrosis. A 97% projected 5-year local relapse free survival and 84% 5-year disease-specific survival were recorded. Lack of steroid receptor expression, simple human epidermal growth factor 2 positivity, or triple negative phenotype defined higher metastasis rates but had no effect on

  4. Postmastectomy Hypofractionated and Accelerated Radiation Therapy With (and Without) Subcutaneous Amifostine Cytoprotection

    Koukourakis, Michael I., E-mail: targ@her.forthnet.gr [Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis (Greece); Panteliadou, Marianthi; Abatzoglou, Ioannis M.; Sismanidou, Kyriaki [Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis (Greece); Sivridis, Efthimios; Giatromanolaki, Alexandra [Department of Pathology, Democritus University of Thrace, Alexandroupolis (Greece)

    2013-01-01

    Purpose: Postmastectomy radiation therapy (PMRT) provides major local control and survival benefits. More aggressive radiation therapy schemes may, however, be necessary in specific subgroups, provided they are safely administered. We report the tolerance and efficacy of a highly accelerated and hypofractionated regimen (HypoARC). Methods and Materials: One hundred twelve high-risk patients who had undergone mastectomy received 10 consecutive fractions of 3.5 Gy in 12 days (thoracic wall and axillary/supraclavicular areas). Two consecutive additional fractions of 4 Gy were given to the surgical scar area (electrons 8-10 MeV) and 1 3.5-Gy fraction to the axilla (in cases with extensive nodal involvement). A minimum follow-up of 24 months (median, 44 months) was allowed before analysis. Of 112 patients, 21 (18.7%) refused to receive amifostine, the remaining receiving tolerance-based individualized doses (500-1000 mg/day subcutaneously). Results: By use of a dose individualization algorithm, 68.1%, 11%, and 18.7% of patients received 1000 mg, 750 mg, and 500 mg/day of amifostine. Patchy moist skin desquamation outside and inside the booster fields was noted in 14 of 112 (12.5%) and 26 of 112 (23.2%) patients, respectively. No case of acute pneumonitis was recorded. High amifostine dose offered a significant skin protection. Within a median follow-up time of 44 months, moderate subcutaneous edema outside and within the booster thoracic area was noted in 5 of 112 (4.4%) and 8 of 112 (7.1%) cases, respectively. Intense asymptomatic radiographic findings of in field lung fibrosis were noted in 4 of 112 (3.6%) patients. Amifostine showed a significant protection against lung and soft tissue fibrosis. A 97% projected 5-year local relapse free survival and 84% 5-year disease-specific survival were recorded. Lack of steroid receptor expression, simple human epidermal growth factor 2 positivity, or triple negative phenotype defined higher metastasis rates but had no effect on

  5. Promotion of high-quality treatment and uninterrupted service of radiation therapy linear accelerators

    The experience of operation of radiotherapy complex at Donetsk Antitumor Center showed that a number of calibration and dosimetry tests were an inevitable part of high-quality radiation treatment and timely prevention of inconsiderable disorders in the work of linear accelerators, therefore the engineering service of this equipment should consist of various specialists.

  6. Application of Failure Mode and Effects Analysis to Intraoperative Radiation Therapy Using Mobile Electron Linear Accelerators

    Purpose: Failure mode and effects analysis (FMEA) represents a prospective approach for risk assessment. A multidisciplinary working group of the Italian Association for Medical Physics applied FMEA to electron beam intraoperative radiation therapy (IORT) delivered using mobile linear accelerators, aiming at preventing accidental exposures to the patient. Methods and Materials: FMEA was applied to the IORT process, for the stages of the treatment delivery and verification, and consisted of three steps: 1) identification of the involved subprocesses; 2) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, based on the product of three parameters (severity, frequency of occurrence and detectability, each ranging from 1 to 10); 3) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125. Results: Twenty-four subprocesses were identified. Ten potential failure modes were found and scored, in terms of RPN, in the range of 42–216. The most critical failure modes consisted of internal shield misalignment, wrong Monitor Unit calculation and incorrect data entry at treatment console. Potential causes of failure included shield displacement, human errors, such as underestimation of CTV extension, mainly because of lack of adequate training and time pressures, failure in the communication between operators, and machine malfunctioning. The main effects of failure were represented by CTV underdose, wrong dose distribution and/or delivery, unintended normal tissue irradiation. As additional safety measures, the utilization of a dedicated staff for IORT, double-checking of MU calculation and data entry and finally implementation of in vivo dosimetry were suggested. Conclusions: FMEA appeared as a useful tool for prospective evaluation of patient safety in radiotherapy

  7. A comparison of robotic arm versus gantry linear accelerator stereotactic body radiation therapy for prostate cancer

    Zaorsky,Nicholas; Avkshtol,Vladimir; Dong, Yanqun; Hayes, Shelly; Hallman,Mark; Price, Robert; Sobczak, Mark; Horwitz, Eric

    2016-01-01

    Vladimir Avkshtol, Yanqun Dong, Shelly B Hayes, Mark A Hallman, Robert A Price, Mark L Sobczak, Eric M Horwitz,* Nicholas G Zaorsky* Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA *These authors contributed equally to this work Abstract: Prostate cancer is the most prevalent cancer diagnosed in men in the United States besides skin cancer. Stereotactic body radiation therapy (SBRT; 6–15 ...

  8. Accelerated partial breast irradiation using 3D conformal radiation therapy (3D-CRT)

    Purpose: We present a novel three-dimensional conformal radiation therapy (3D-CRT) technique to treat the lumpectomy cavity, plus a 1.5-cm margin, in patients with early-stage breast cancer and study its clinical feasibility. Methods and Materials: A 3D-CRT technique for partial-breast irradiation was developed using archived CT scans from 7 patients who underwent an active breathing control study. The clinical feasibility of this technique was then assessed in 9 patients who were prospectively enrolled on an Investigational Review Board-approved protocol of partial-breast irradiation. The prescribed dose was 34 Gy in 5 patients and 38.5 Gy in 4 patients, delivered in 10 fractions twice daily over 5 consecutive days. The impact of both breathing motion and patient setup uncertainty on clinical target volume (CTV) coverage was studied, and an appropriate CTV-to-PTV (planning target volume) margin was calculated. Results: By adding a CTV-to-PTV 'breathing-only' margin of 5 mm, 98%-100% of the CTV remained covered by the 95% isodose surface at the extremes of normal inhalation and normal exhalation. The 'total' CTV-to-PTV margin employed to accommodate organ motion and setup error (10 mm) was found to be sufficient to accommodate the observed uncertainty in the delivery precision. Patient tolerance was excellent, and acute toxicity was minimal. No skin changes were noted during treatment, and at the initial 4-8-week follow-up visit, only mild localized hyperpigmentation and/or erythema was observed. No instances of symptomatic radiation pneumonitis have occurred. Conclusions: Accelerated partial-breast irradiation using 3D-CRT is technically feasible, and acute toxicity to date has been minimal. A CTV-to-PTV margin of 10 mm seems to provide coverage for most patients. However, more patients and additional studies will be needed to validate the accuracy of this margin, and longer follow-up will be needed to assess acute and chronic toxicity, tumor control, and cosmetic

  9. Laser acceleration of protons from near critical density targets for application to radiation therapy

    Bulanov, S S; Pirozhkov, A S; Thomas, A G R; Willingale, L; Krushelnick, K; Maksimchuk, A

    2010-01-01

    Laser accelerated protons can be a complimentary source for treatment of oncological diseases to the existing hadron therapy facilities. We demonstrate how the protons, accelerated from near-critical density plasmas by laser pulses having relatively small power, reach energies which may be of interest for medical applications. When an intense laser pulse interacts with near-critical density plasma it makes a channel both in the electron and then in the ion density. The propagation of a laser pulse through such a self-generated channel is connected with the acceleration of electrons in the wake of a laser pulse and generation of strong moving electric and magnetic fields in the propagation channel. Upon exiting the plasma the magnetic field generates a quasi-static electric field that accelerates and collimates ions from a thin filament formed in the propagation channel. Two-dimensional Particle-in-Cell simulations show that a 100 TW laser pulse tightly focused on a near-critical density target is able to acce...

  10. Individualized Positron Emission Tomography–Based Isotoxic Accelerated Radiation Therapy Is Cost-Effective Compared With Conventional Radiation Therapy: A Model-Based Evaluation

    Bongers, Mathilda L., E-mail: ml.bongers@vumc.nl [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Coupé, Veerle M.H. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); De Ruysscher, Dirk [Radiation Oncology University Hospitals Leuven/KU Leuven, Leuven (Belgium); Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Oberije, Cary; Lambin, Philippe [Department of Radiation Oncology, GROW Research Institute, Maastricht University Medical Center, Maastricht (Netherlands); Uyl-de Groot, Cornelia A. [Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam (Netherlands); Institute for Medical Technology Assessment, Erasmus University Rotterdam, Rotterdam (Netherlands)

    2015-03-15

    Purpose: To evaluate long-term health effects, costs, and cost-effectiveness of positron emission tomography (PET)-based isotoxic accelerated radiation therapy treatment (PET-ART) compared with conventional fixed-dose CT-based radiation therapy treatment (CRT) in non-small cell lung cancer (NSCLC). Methods and Materials: Our analysis uses a validated decision model, based on data of 200 NSCLC patients with inoperable stage I-IIIB. Clinical outcomes, resource use, costs, and utilities were obtained from the Maastro Clinic and the literature. Primary model outcomes were the difference in life-years (LYs), quality-adjusted life-years (QALYs), costs, and the incremental cost-effectiveness and cost/utility ratio (ICER and ICUR) of PET-ART versus CRT. Model outcomes were obtained from averaging the predictions for 50,000 simulated patients. A probabilistic sensitivity analysis and scenario analyses were carried out. Results: The average incremental costs per patient of PET-ART were €569 (95% confidence interval [CI] €−5327-€6936) for 0.42 incremental LYs (95% CI 0.19-0.61) and 0.33 QALYs gained (95% CI 0.13-0.49). The base-case scenario resulted in an ICER of €1360 per LY gained and an ICUR of €1744 per QALY gained. The probabilistic analysis gave a 36% probability that PET-ART improves health outcomes at reduced costs and a 64% probability that PET-ART is more effective at slightly higher costs. Conclusion: On the basis of the available data, individualized PET-ART for NSCLC seems to be cost-effective compared with CRT.

  11. Individualized Positron Emission Tomography–Based Isotoxic Accelerated Radiation Therapy Is Cost-Effective Compared With Conventional Radiation Therapy: A Model-Based Evaluation

    Purpose: To evaluate long-term health effects, costs, and cost-effectiveness of positron emission tomography (PET)-based isotoxic accelerated radiation therapy treatment (PET-ART) compared with conventional fixed-dose CT-based radiation therapy treatment (CRT) in non-small cell lung cancer (NSCLC). Methods and Materials: Our analysis uses a validated decision model, based on data of 200 NSCLC patients with inoperable stage I-IIIB. Clinical outcomes, resource use, costs, and utilities were obtained from the Maastro Clinic and the literature. Primary model outcomes were the difference in life-years (LYs), quality-adjusted life-years (QALYs), costs, and the incremental cost-effectiveness and cost/utility ratio (ICER and ICUR) of PET-ART versus CRT. Model outcomes were obtained from averaging the predictions for 50,000 simulated patients. A probabilistic sensitivity analysis and scenario analyses were carried out. Results: The average incremental costs per patient of PET-ART were €569 (95% confidence interval [CI] €−5327-€6936) for 0.42 incremental LYs (95% CI 0.19-0.61) and 0.33 QALYs gained (95% CI 0.13-0.49). The base-case scenario resulted in an ICER of €1360 per LY gained and an ICUR of €1744 per QALY gained. The probabilistic analysis gave a 36% probability that PET-ART improves health outcomes at reduced costs and a 64% probability that PET-ART is more effective at slightly higher costs. Conclusion: On the basis of the available data, individualized PET-ART for NSCLC seems to be cost-effective compared with CRT

  12. Cardiac risks in patients with lung cancer in dynamics of carrying out radiation therapy on linear accelerator

    During radiation therapy (RT) patients on linear accelerator progress of chronic cardiac insufficiency has been pointed out. The patients with associated cardiac diseases in form of IHD, in case of combination of essential hypertension and IHD have shown increase of frequency of complications development of the part of cardiovascular system on RT in 70% og cases. Rhythm disorder and asequence, clear ECG-signs of ischemia in form of repolarization processes, decrease of voltage or T waive inversion, diastole dysfunction on insufficient relaxation type and systolic myocardium dysfunction of left ventricle are to be treated as substantial markers of cardiovascular pathology on RT

  13. State of accelerator for therapy

    Maruhashi, A

    2002-01-01

    21 facilities carry out particle radiotherapy in the world and 6 facilities will start in the next year. They are shown in the table. 6 facilities of them exist in Japan. Small accelerator for proton therapy is developed. The area of them becomes smaller than 100 m sup 2. 5 makers, form, kinds of accelerator, length of track, beam energy of them are shown. States of particle radiotherapy in 4 facilities in Japan are explained by the kinds of particle, energy, beam intensity, time structure and radiation room. The important problems are reconsideration of building and compact rotating gantry. The problems of radiotherapy are explained. (S.Y.)

  14. Radiation therapy physics

    1995-01-01

    The aim of this book is to provide a uniquely comprehensive source of information on the entire field of radiation therapy physics. The very significant advances in imaging, computational, and accelerator technologies receive full consideration, as do such topics as the dosimetry of radiolabeled antibodies and dose calculation models. The scope of the book and the expertise of the authors make it essential reading for interested physicians and physicists and for radiation dosimetrists.

  15. A Phase I Study of Short-Course Accelerated Whole Brain Radiation Therapy for Multiple Brain Metastases

    Caravatta, Luciana; Deodato, Francesco; Ferro, Marica [Department of Radiation Oncology, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it [Department of Radiation Oncology, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Massaccesi, Mariangela [Department of Radiation Oncology, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Cilla, Savino [Medical Physics Unit, Fondazione di Ricerca e Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Padula, Gilbert D.A. [Department of Radiation Oncology, The Lacks Cancer Center Saint Mary' s Health Care, Grand Rapids, Michigan (United States); Mignogna, Samantha; Tambaro, Rosa [Department of Palliative Therapies, Fondazione di Ricerca e Cura ' Giovanni Paolo II' , Universita Cattolica del S. Cuore, Campobasso (Italy); Carrozza, Francesco [Department of Oncology, A. Cardarelli Hospital, Campobasso (Italy); Flocco, Mariano [Madre Teresa di Calcutta Hospice, Larino (Italy); Cantore, Giampaolo [Department of Neurological Sciences, Istituto Neurologico Mediterraneo Neuromed, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli (Italy); Scapati, Andrea [Department of Radiation Oncology, ' San Francesco' Hospital, Nuoro (Italy); Buwenge, Milly [Department of Radiotherapy, Mulago Hospital, Kampala (Uganda); and others

    2012-11-15

    Purpose: To define the maximum tolerated dose (MTD) of a SHort-course Accelerated whole brain RadiatiON therapy (SHARON) in the treatment of patients with multiple brain metastases. Methods and Materials: A phase 1 trial in 4 dose-escalation steps was designed: 12 Gy (3 Gy per fraction), 14 Gy (3.5 Gy per fraction), 16 Gy (4 Gy per fraction), and 18 Gy (4.5 Gy per fraction). Eligibility criteria included patients with unfavorable recursive partitioning analysis (RPA) class > or =2 with at least 3 brain metastases or metastatic disease in more than 3 organ systems, and Eastern Cooperative Oncology Group (ECOG) performance status {<=}3. Treatment was delivered in 2 days with twice-daily fractionation. Patients were treated in cohorts of 6-12 to define the MTD. The dose-limiting toxicity (DLT) was defined as any acute toxicity {>=}grade 3, according to the Radiation Therapy Oncology Group scale. Information on the status of the main neurologic symptoms and quality of life were recorded. Results: Characteristics of the 49 enrolled patients were as follows: male/female, 30/19; median age, 66 years (range, 23-83 years). ECOG performance status was <3 in 46 patients (94%). Fourteen patients (29%) were considered to be in recursive partitioning analysis (RPA) class 3. Grade 1-2 acute neurologic (26.4%) and skin (18.3%) toxicities were recorded. Only 1 patient experienced DLT (neurologic grade 3 acute toxicity). With a median follow-up time of 5 months (range, 1-23 months), no late toxicities have been observed. Three weeks after treatment, 16 of 21 symptomatic patients showed an improvement or resolution of presenting symptoms (overall symptom response rate, 76.2%; confidence interval 0.95: 60.3-95.9%). Conclusions: Short-course accelerated radiation therapy in twice-daily fractions for 2 consecutive days is tolerated up to a total dose of 18 Gy. A phase 2 study has been planned to evaluate the efficacy on overall survival, symptom control, and quality of life indices.

  16. Early-Stage Breast Cancer Treated With 3-Week Accelerated Whole-Breast Radiation Therapy and Concomitant Boost

    Chadha, Manjeet, E-mail: MChadha@chpnet.org [Department of Radiation Oncology, Beth Israel Medical Center, New York, New York (United States); Woode, Rudolph; Sillanpaa, Jussi [Department of Radiation Oncology, Beth Israel Medical Center, New York, New York (United States); Lucido, David [Department of Biostatistics, Beth Israel Medical Center, New York, New York (United States); Boolbol, Susan K.; Kirstein, Laurie; Osborne, Michael P.; Feldman, Sheldon [Division of Breast Surgery, Beth Israel Medical Center, New York, New York (United States); Harrison, Louis B. [Department of Radiation Oncology, Beth Israel Medical Center, New York, New York (United States)

    2013-05-01

    Purpose: To report early outcomes of accelerated whole-breast radiation therapy with concomitant boost. Methods and Materials: This is a prospective, institutional review board-approved study. Eligibility included stage TisN0, T1N0, and T2N0 breast cancer. Patients receiving adjuvant chemotherapy were ineligible. The whole breast received 40.5 Gy in 2.7-Gy fractions with a concomitant lumpectomy boost of 4.5 Gy in 0.3-Gy fractions. Total dose to the lumpectomy site was 45 Gy in 15 fractions over 19 days. Results: Between October 2004 and December 2010, 160 patients were treated; stage distribution was as follows: TisN0, n=63; T1N0, n=88; and T2N0, n=9. With a median follow-up of 3.5 years (range, 1.5-7.8 years) the 5-year overall survival and disease-free survival rates were 90% (95% confidence interval [CI] 0.84-0.94) and 97% (95% CI 0.93-0.99), respectively. Five-year local relapse-free survival was 99% (95% CI 0.96-0.99). Acute National Cancer Institute/Common Toxicity Criteria grade 1 and 2 skin toxicity was observed in 70% and 5%, respectively. Among the patients with ≥2-year follow-up no toxicity higher than grade 2 on the Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic scale was observed. Review of the radiation therapy dose–volume histogram noted that ≥95% of the prescribed dose encompassed the lumpectomy target volume in >95% of plans. The median dose received by the heart D{sub 05} was 215 cGy, and median lung V{sub 20} was 7.6%. Conclusions: The prescribed accelerated schedule of whole-breast radiation therapy with concomitant boost can be administered, achieving acceptable dose distribution. With follow-up to date, the results are encouraging and suggest minimal side effects and excellent local control.

  17. Radiation Therapy

    ... goal of causing less harm to the surrounding healthy tissue. You don't have to worry that you'll glow in the dark after radiation treatment: People who receive external radiation are not radioactive. You' ...

  18. Intraoperative radiation therapy using a mobile electron linear accelerator: field matching for large-field electron irradiation

    Intraoperative radiation therapy (IORT) consists of delivering a large, single-fraction dose of radiation to a surgically exposed tumour or tumour bed at the time of surgery. With the availability of a mobile linear accelerator in the OR, IORT procedures have become more feasible for medical centres and more accessible to cancer patients. Often the area requiring irradiation is larger than what the treatment applicators will allow, and therefore, two or more adjoining fields are used. Unfortunately, the divergence and scattering of the electron beams may cause significant dose variations in the region of the field junction. Furthermore, because IORT treatments are delivered in a large single fraction, the effects of underdosing or overdosing could be more critical when compared to fractionated external beam therapy. Proper matching of the fields is therefore an important technical aspect of treatment delivery. We have studied the matching region using the largest flat applicator available for three different possibilities: abutting the fields, leaving a small gap or creating an overlap. Measurements were done using film dosimetry for the available energies of 4, 6, 9 and 12 MeV. Our results show the presence of clinically significant cold spots for the low-energy beams when the fields are either gapped or abutted, suggesting that the fields should be overlapped. No fields should be gapped. The results suggest that an optimal dose distribution may be obtained by overlapping the fields at 4 and 6 MeV and simply abutting the fields at 9 and 12 MeV. However, due to uncertainties in the placement of lead shields during treatment delivery, one may wish to consider overlapping the higher energy fields as well. (note)

  19. Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. accelerated-hyperfractionated radiotherapy: an analysis from Radiation Therapy Oncology Group Study 91-04

    Purpose: To evaluate neurocognitive outcome as measured by the Mini-Mental Status Examination (MMSE) among patients with unresectable brain metastases randomly assigned to accelerated fractionation (AF) vs. accelerated hyperfractionated (AH) whole-brain radiation therapy (WBRT). Methods and Materials: The Radiation Therapy Oncology Group (RTOG) accrued 445 patients with unresectable brain metastases to a Phase III comparison of AH (1.6 Gy b.i.d. to 54.4 Gy) vs. AF (3 Gy q.d. to 30 Gy). All had a KPS of ≥ 70 and a neurologic function status of 0-2. Three hundred fifty-nine patients had MMSEs performed and were eligible for this analysis. Changes in the MMSE were analyzed according to criteria previously defined in the literature. Results: The median survival was 4.5 months for both arms. The average change in MMSE at 2 and 3 months was a drop of 1.4 and 1.1, respectively, in the AF arm as compared to a drop of 0.7 and 1.3, respectively, in the AH arm (p=NS). Overall, 91 patients at 2 months and 23 patients at 3 months had both follow-up MMSE and computed tomography/magnetic resonance imaging documentation of the status of their brain metastases. When an analysis was performed taking into account control of brain metastases, a significant effect on MMSE was observed with time and associated proportional increase in uncontrolled brain metastases. At 2 months, the average change in MMSE score was a drop of 0.6 for those whose brain metastases were radiologically controlled as compared to a drop of 1.9 for those with uncontrolled brain metastases (p=0.47). At 3 months, the average change in MMSE score was a drop of 0.5 for those whose brain metastases were radiologically controlled as compared to a drop of 6.3 for those with uncontrolled brain metastases (p=0.02). Conclusion: Use of AH as compared to AF-WBRT was not associated with a significant difference in neurocognitive function as measured by MMSE in this patient population with unresectable brain metastases and

  20. SU-E-T-03: 3D GPU-Accelerated Secondary Checks of Radiation Therapy Treatment Plans

    Purpose: Redundant treatment verifications in conformal and intensity-modulated radiation therapy techniques are traditionally performed with single point calculations. New solutions can replace these checks with 3D treatment plan verifications. This work describes a software tool (Mobius3D, Mobius Medical Systems) that uses a GPU-accelerated collapsed cone algorithm to perform 3D independent verifications of TPS calculations. Methods: Mobius3D comes with reference beam models for common linear accelerators. The system uses an independently developed collapsed cone algorithm updated with recent enhancements. 144 isotropically-spaced cones are used for each voxel for calculations. These complex calculations can be sped up by using GPUs. Mobius3D calculate dose using DICOM information coming from TPS (CT, RT Struct, RT Plan RT Dose). DVH-metrics and 3D gamma tests can be used to compare both TPS and secondary calculations. 170 patients treated with all common techniques as 3DCFRT (including wedged), static and dynamic IMRT and VMAT have been successfully verified with this solution. Results: Calculation times are between 3–5 minutes for 3DCFRT treatments and 15–20 for most complex dMLC and VMAT plans. For all PTVs mean dose and 90% coverage differences are (1.12±0.97)% and (0.68±1.19)%, respectively. Mean dose discrepancies for all OARs is (0.64±1.00)%. 3D gamma (global, 3%/3 mm) analysis shows a mean passing rate of (97.8 ± 3.0)% for PTVs and (99.0±3.0)% for OARs. 3D gamma pasing rate for all voxels in CT has a mean value of (98.5±1.6)%. Conclusion: Mobius3D is a powerful tool to verify all modalities of radiation therapy treatments. Dose discrepancies calculated by this system are in good agreement with TPS. The use of reference beam data results in time savings and can be used to avoid the propagation of errors in original beam data into our QA system. GPU calculations permit enhanced collapsed cone calculations with reasonable calculation times

  1. SU-E-T-03: 3D GPU-Accelerated Secondary Checks of Radiation Therapy Treatment Plans

    Clemente, F; Perez, C [Hospital Central de la Defensa Gomez Ulla, Madrid, Madrid (Spain)

    2014-06-01

    Purpose: Redundant treatment verifications in conformal and intensity-modulated radiation therapy techniques are traditionally performed with single point calculations. New solutions can replace these checks with 3D treatment plan verifications. This work describes a software tool (Mobius3D, Mobius Medical Systems) that uses a GPU-accelerated collapsed cone algorithm to perform 3D independent verifications of TPS calculations. Methods: Mobius3D comes with reference beam models for common linear accelerators. The system uses an independently developed collapsed cone algorithm updated with recent enhancements. 144 isotropically-spaced cones are used for each voxel for calculations. These complex calculations can be sped up by using GPUs. Mobius3D calculate dose using DICOM information coming from TPS (CT, RT Struct, RT Plan RT Dose). DVH-metrics and 3D gamma tests can be used to compare both TPS and secondary calculations. 170 patients treated with all common techniques as 3DCFRT (including wedged), static and dynamic IMRT and VMAT have been successfully verified with this solution. Results: Calculation times are between 3–5 minutes for 3DCFRT treatments and 15–20 for most complex dMLC and VMAT plans. For all PTVs mean dose and 90% coverage differences are (1.12±0.97)% and (0.68±1.19)%, respectively. Mean dose discrepancies for all OARs is (0.64±1.00)%. 3D gamma (global, 3%/3 mm) analysis shows a mean passing rate of (97.8 ± 3.0)% for PTVs and (99.0±3.0)% for OARs. 3D gamma pasing rate for all voxels in CT has a mean value of (98.5±1.6)%. Conclusion: Mobius3D is a powerful tool to verify all modalities of radiation therapy treatments. Dose discrepancies calculated by this system are in good agreement with TPS. The use of reference beam data results in time savings and can be used to avoid the propagation of errors in original beam data into our QA system. GPU calculations permit enhanced collapsed cone calculations with reasonable calculation times.

  2. Special radiation protection aspects of medical accelerators

    Silari, Marco

    2001-01-01

    Radiation protection aspects relevant to medical accelerators are discussed. An overview is first given of general safety requirements. Next. shielding and labyrinth design are discussed in some detail for the various types of accelerators, devoting more attention to hadron machines as they are far less conventional than electron linear accelerators. Some specific aspects related to patient protection are also addressed. Finally, induced radioactivity in accelerator components and shielding walls is briefly discussed. Three classes of machines are considered: (1) medical electron linacs for 'conventional' radiation therapy. (2) low energy cyclotrons for production of radionuclides mainly for medical diagnostics and (3) medium energy cyclotrons and synchrotrons for advanced radiation therapy with protons or light ion beams (hadron therapy). (51 refs).

  3. Proton Therapy - Accelerating Protons to Save Lives

    Keppel, Cynthia [Hampton University Proton Therapy

    2011-10-25

    In 1946, physicist Robert Wilson first suggested that protons could be used as a form of radiation therapy in the treatment of cancer because of the sharp drop-off that occurs on the distal edge of the radiation dose. Research soon confirmed that high-energy protons were particularly suitable for treating tumors near critical structures, such as the heart and spinal column. The precision with which protons can be delivered means that more radiation can be deposited into the tumor while the surrounding healthy tissue receives substantially less or, in some cases, no radiation. Since these times, particle accelerators have continuously been used in cancer therapy and today new facilities specifically designed for proton therapy are being built in many countries. Proton therapy has been hailed as a revolutionary cancer treatment, with higher cure rates and fewer side effects than traditional X-ray photon radiation therapy. Proton therapy is the modality of choice for treating certain small tumors of the eye, head or neck. Because it exposes less of the tissue surrounding a tumor to the dosage, proton therapy lowers the risk of secondary cancers later in life - especially important for young children. To date, over 80,000 patients worldwide have been treated with protons. Currently, there are nine proton radiation therapy facilities operating in the United States, one at the Hampton University Proton Therapy Institute. An overview of the treatment technology and this new center will be presented.

  4. Shielding data for hadron-therapy ion accelerators: Attenuation of secondary radiation in concrete

    Agosteo, S; Sagia, E; Silari, M

    2014-01-01

    The secondary radiation field produced by seven different ion species (from hydrogen to nitrogen), impinging onto thick targets made of either iron or ICRU tissue, was simulated with the FLUKA Monte Carlo code, and transported through thick concrete shields: the ambient dose equivalent was estimated and shielding parameters evaluated. The energy for each ion beam was set in order to reach a maximum penetration in ICRU tissue of 290 mm (equivalent to the therapeutic range of 430 MeV/amu carbon ions). Source terms and attenuation lengths are given as a function of emission angle and ion species, along with fits to the Monte Carlo data, for shallow depth and deep penetration in the shield. Trends of source terms and attenuation lengths as a function of neutron emission angle and ion species impinging on tar- get are discussed. A comparison of double differential distributions of neutrons with results from similar simulation works reported in the literature is also included. The aim of this work is to provide shi...

  5. Short course continuous, hyperfractionated, accelerated radiation therapy (CHART) as preoperative treatment for rectal cancer

    Brooks, S.; Glynne-Jones, R.; Harrison, M.; Makris, A. [Mount Vernon Cancer Center, Northwood, Middlesex (United Kingdom); Novell, R.; Brown, K. [Luton and Dunstable Hospital (United Kingdom)

    2006-12-15

    Determine feasibility and toxicity of preoperative short course pelvic CHART (25 Gy in 15 fractions over 5 days) for treatment of clinically resectable primary rectal tumours. Between 1998 and 2004, 20 patients with clinically staged T3 resectable rectal carcinoma were treated in this prospective pilot study with preoperative short course CHART to their pelvis. The aim was for total mesorectal excision within 7 days. Radiation toxicity, surgical morbidity, locoregional control (LRC), overall (OS), cause specific (CSS) and disease free survival (DFS) outcomes were documented. Nineteen of the 20 patients completed planned radiotherapy. One discontinued radiotherapy due to toxicity. All patients underwent potentially curative radical surgery. One patient developed grade 3, and three patients grade 2 gastrointestinal toxicity. With a median follow-up of 31 months (range 0.9-88), there is no grade 3, 4 or 5 late toxicity. Two patients experienced grade 2, and three patients grade 1 late bowel toxicity. Two patients died from postoperative complications, and two developed grade 2 abdominal wound infections. At 3 years LRC is 95% (95% CI 83-100), OS 72% (95% CI 51-94), CSS 86% (95% CI 68-100) and DFS 80% (95% CI 60-100). Two patients died from metastatic disease, one patient from a second primary and one patient is alive after successful resection of hepatic metastases. This small study suggests preoperative short course CHART for clinically resectable rectal carcinoma is feasible with acceptable compliance and tolerable side effects.

  6. Radioprotectors and Radiomitigators for Improving Radiation Therapy: The Small Business Innovation Research (SBIR) Gateway for Accelerating Clinical Translation.

    Prasanna, Pataje G S; Narayanan, Deepa; Hallett, Kory; Bernhard, Eric J; Ahmed, Mansoor M; Evans, Gregory; Vikram, Bhadrasain; Weingarten, Michael; Coleman, C Norman

    2015-09-01

    Although radiation therapy is an important cancer treatment modality, patients may experience adverse effects. The use of a radiation-effect modulator may help improve the outcome and health-related quality of life (HRQOL) of patients undergoing radiation therapy either by enhancing tumor cell killing or by protecting normal tissues. Historically, the successful translation of radiation-effect modulators to the clinic has been hindered due to the lack of focused collaboration between academia, pharmaceutical companies and the clinic, along with limited availability of support for such ventures. The U.S. Government has been developing medical countermeasures against accidental and intentional radiation exposures to mitigate the risk and/or severity of acute radiation syndrome (ARS) and the delayed effects of acute radiation exposures (DEARE), and there is now a drug development pipeline established. Some of these medical countermeasures could potentially be repurposed for improving the outcome of radiation therapy and HRQOL of cancer patients. With the objective of developing radiation-effect modulators to improve radiotherapy, the Small Business Innovation Research (SBIR) Development Center at the National Cancer Institute (NCI), supported by the Radiation Research Program (RRP), provided funding to companies from 2011 to 2014 through the SBIR contracts mechanism. Although radiation-effect modulators collectively refer to radioprotectors, radiomitigators and radiosensitizers, the focus of this article is on radioprotection and mitigation of radiation injury. This specific SBIR contract opportunity strengthened existing partnerships and facilitated new collaborations between academia and industry. In this commentary, we assess the impact of this funding opportunity, outline the review process, highlight the organ/site-specific disease needs in the clinic for the development of radiation-effect modulators, provide a general understanding of a framework for gathering

  7. Long-term Outcomes in Treatment of Invasive Bladder Cancer With Concomitant Boost and Accelerated Hyperfractionated Radiation Therapy

    Canyilmaz, Emine, E-mail: dremocan@yahoo.com [Department of Radiation Oncology, Karadeniz Technical University, Trabzon (Turkey); Yavuz, Melek Nur [Department of Radiation Oncology, Akdeniz University, Antalya (Turkey); Serdar, Lasif [Department of Radiation Oncology, Karadeniz Technical University, Trabzon (Turkey); Uslu, Gonca Hanedan; Zengin, Ahmet Yasar [Department of Radiation Oncology, Kanuni Research and Education Hospital, Trabzon (Turkey); Aynaci, Ozlem; Haciislamoglu, Emel; Bahat, Zumrut; Yoney, Adnan [Department of Radiation Oncology, Karadeniz Technical University, Trabzon (Turkey)

    2014-11-01

    Purpose: The aim of this study was to evaluate the long-term clinical efficacy and toxicity of concomitant boost and accelerated hyperfractionated radiation therapy (CBAHRT) in patients with invasive bladder cancer. Methods and Materials: Between October 1997 and September 2012, 334 patients with diagnoses of invasive bladder cancer were selected. These patients received CBAHRT as a bladder-conserving approach. The treatment consisted of a dose of 45 Gy/1.8 Gy to the whole pelvis with a daily concomitant boost of 1.5 Gy to the tumor. Total dose was 67.5 Gy in 5 weeks. A total of 32 patients (10.3%) had a diagnosis of stage T1, 202 (64.3%) were at stage T2, 46 (14.6%) were at stage T3a, 22 (7%) were at stage T3b, and 12 (3.8%) were at stage T4a. Results: The follow-up period was 33.1 months (range, 4.3-223.3 months). Grade 3 late intestinal toxicity was observed in 9 patients (2.9%), whereas grade 3 late urinary toxicity was observed in 8 patients (2.5%). The median overall survival (OS) was 26.3 months (95% confidence interval [CI]: 21.4-31.2). The 5-, 10, and 15-year OS rates were 32.1% (standard error [SE], ± 0.027), 17.9% (SE, ± 0.025) and 12.5% (SE, ± 0.028), respectively. The median cause-specific survival (CSS) was 42.1 months (95% CI: 28.7-55.5). The 5-, 10-, and 15-year CSS rates were 43.2% (SE, ± 0.03), 30.3% (SE, ± 0.03), and 28% (SE, ± 0.04), respectively. The median relapse-free survival (RFS) was 111.8 months (95% CI: 99.6-124). The 5-, 10-, and 15-year RFS rates were 61.9% (SE, ± 0.03), 57.6% (SE, ± 0.04), and 48.2% (SE, ± 0.07), respectively. Conclusions: The CBAHRT technique demonstrated acceptable toxicity and local control rates in patients with invasive bladder cancer, and this therapy facilitated bladder conservation. In selected patients, the CBAHRT technique is a practical alternative treatment option with acceptable 5-, 10-, and 15-year results in patients undergoing cystectomy as well as concurrent chemoradiation therapy.

  8. External Radiation Therapy

    Full Text Available ... older the treatment that is frequently used is radiation therapy. Gunnar Zagars, M.D.: There are different forms ... prostate. [beeping] Narrator: The more common form of radiation therapy is external beam. A typical treatment takes seven ...

  9. Validating Fiducial Markers for Image-Guided Radiation Therapy for Accelerated Partial Breast Irradiation in Early-Stage Breast Cancer

    Purpose: Image-guided radiation therapy (IGRT) may be beneficial for accelerated partial breast irradiation (APBI). The goal was to validate the use of intraparenchymal textured gold fiducials in patients receiving APBI. Methods and Materials: Twenty-six patients were enrolled on this prospective study that had three or four textured gold intraparenchymal fiducials placed at the periphery of the lumpectomy cavity and were treated with three-dimensional (3D) conformal APBI. Free-breathing four-dimensional computed tomography image sets were obtained pre- and posttreatment, as were daily online megavoltage (MV) orthogonal images. Intrafraction motion, variations in respiratory motion, and fiducial marker migration were calculated using the 3D coordinates of individual fiducials and a calculated center of mass (COM) of the fiducials. We also compared the relative position of the fiducial COM with the geometric center of the seroma. Results: There was less than 1 mm of intrafraction respiratory motion, variation in respiratory motion, or fiducial marker migration. The change in seroma position relative to the fiducial COM was 1 mm ± 1 mm. The average position of the geometric seroma relative to the fiducial COM pretreatment compared with posttreatment was 1 mm ± 1 mm. The largest daily variation in displacement when using bony landmark was in the anteroposterior direction and two standard deviations (SD) of this variation was 10 mm. The average variation in daily separation between the fiducial pairs from daily MV images was 3 mm ± 3 mm therefore 2 SD is 6 mm. Conclusion: Fiducial markers are stable throughout the course of APBI. Planning target volume margins when using bony landmarks should be 10 mm and can be reduced to 6 mm if using fiducials.

  10. Workshop on the accelerator for particle therapy

    A two-day workshop on the accelerator for particle therapy was held on August 22-23, 1990, with the aim of mutual understanding of medical accelerators among investigators. The state-of-the-art facilities in Japan and medical proton accelerators in Japan and other countries were introduced. This is a compilation of papers presented at the workshop: (1) particle radiotherapy at the National Institute of Radiological Sciences (NIRS); (2) proton therapy; (3) treatment planning, especially for photon and electron therapies; (4) heavy ion synchrotron project at the NIRS; (5) medical proton accelerator project of Tsukuba University and recent status of Loma Linda University Medical Center Proton Beam Facility; (6) inspection report on the Loma Linda University Medical Center Proton Beam Facility; (7) accelerator project of Kyoto University; (8) actual conditions of the 7 MeV proton linear accelerator; (9) design study of superconducting compact cyclotron prototype model; (10) medical superconducting prototype cyclotron; (11) RCNP cyclotron cascade project; (12) beam extraction from synchrotron; (13) radiation safety design in high energy particle accelerator facilities. (N.K.)

  11. Phase I and pharmacokinetic study of preirradiation chemotherapy with BCNU, cisplatin, etoposide, and accelerated radiation therapy in patients with high-grade glioma

    Purpose: We conducted a Phase I study of bischloroethylnitrosourea (BCNU), cisplatin, and oral etoposide administered prior to and during accelerated hyperfractionated radiation therapy in newly diagnosed high-grade glioma. Pharmacokinetic studies of oral etoposide were also done. Methods and Materials: Patients started chemotherapy after surgery but prior to definitive radiation therapy (160 cGy twice daily x 15 days; 4800 cGy total). Initial chemotherapy consisted of BCNU 40 mg/m2 days 1-3, cisplatin 30 mg/m2 days 1-3 and 29-31, and etoposide 50 mg orally days 1-14 and 29-42, repeated in 8 weeks concurrent with radiation therapy. BCNU 200 mg/m2 every 8 weeks x 4 cycles was given after radiation therapy. Results: Sixteen patients, 5 with grade 3 anaplastic astrocytoma and 11 with glioblastoma were studied. Grade 3-4 leukopenia (38%) and thrombocytopenia (31%) were dose-limiting. Other toxicities were anorexia (81%), nausea (94%), emesis (56%), alopecia (88%), and ototoxicity (38%). The maximum tolerated dose was BCNU 40 mg/m2 days 1-3, cisplatin 20 mg/m2 days 1-3 and 29-31, and oral etoposide 50 mg days 1-21 and 29-49 prior to radiation therapy and repeated in 8 weeks with the start of radiation therapy followed by BCNU 200 mg/m2 every 8 weeks for 4 cycles. Median time to progression and survival were 13 and 14 months respectively. Responses occurred in 2 of 9 (22%) patients with evaluable disease. In pharmacokinetic studies, all patients achieved plasma concentrations of >0.1 μg/ml etoposide (the in vitro radiosensitizing threshold), following a 50 mg oral dose. The mean ± SD 2 hr and 6 hr plasma concentrations were 0.92 ± 0.43 μg/ml and 0.36 ± 0.12 μg/ml, respectively. Estimated duration of exposure to >0.1 μg/ml etoposide was 10-17 hr. Conclusions: Preirradiation chemotherapy with BCNU, cisplatin, and oral etoposide with accelerated hyperfractionated radiation therapy in high-grade gliomas is feasible and merits further investigation. Sustained

  12. Imaging in radiation therapy

    Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomography). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as Intensity Modulated Radiation Therapy (IMRT), gated radiation therapy, tomotherapy, and Image Guided Radiation Therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging for static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been in significant improvement. Imaging equipment and their common applications that are in active use and/or under development in radiation therapy are reviewed

  13. External Radiation Therapy

    Full Text Available ... frequently used is radiation therapy. Gunnar Zagars, M.D.: There are different forms of radiation for prostate ... typical treatment takes seven weeks. Gunnar Zagars, M.D.: A patient comes in every day, Monday to ...

  14. External Radiation Therapy

    Full Text Available ... the treatment that is frequently used is radiation therapy. Gunnar Zagars, M.D.: There are different forms of radiation for prostate cancer. They really boil down to two different types. ...

  15. A phase II trial of accelerated hypofractionated three-dimensional conformal radiation therapy in locally advanced non-small cell lung cancer

    Purpose: The aim of this study is to evaluate the safety and efficacy of accelerated hypofractionated radiotherapy (HypoRT) combined with sequential chemotherapy in locally advanced non-small cell lung cancer (NSCLC). Materials and methods: A total of 34 patients with stage III NSCLC were enrolled. All patients received accelerated HypoRT (initially 50 Gy/20 fractions, then a fraction dose of 3 Gy) using three-dimensional conformal radiation therapy (3D-CRT), omitting elective nodal irradiation (ENI), to a total dose of 65-68 Gy. All patients received two cycles of induction chemotherapy; 1-2 cycles of consolidation chemotherapy were given to 31 patients. The primary outcome measure was a profile of radiation toxicity. The secondary endpoints included overall survival (OS), progression-free survival (PFS), locoregional PFS (LR-PFS) and the pattern of initial failure. Results: Radiation toxicity was minimal. The median and 3-year OS, PFS were 19.0 months, 32.1%; 10.0 months, 29.8%, respectively. The 1-, 2-, and 3-year LR-PFS were 69.6%, 60.9% and 60.9%, respectively. No patient experienced isolated elective nodal failure as the first site of failure. Conclusion: This study suggests that accelerated HypoRT using 3D-CRT omitting ENI can be used in combination with sequential chemotherapy in locally advanced NSCLC.

  16. The application of accelerator for medical therapy in Indonesia

    The study of the application of accelerator for medical therapy in Indonesia was carried out. Accelerator that used for therapy is an electron lintier accelerator (Linac) which can radiate electron beam and X-ray. This study shows that there are 8 unit of Linac distributed at 6 big hospitals in Indonesia, especially in Jakarta. This study also shows that radiotherapy facilities in Indonesia is un sufficient of. Therefore, providing radiotherapy facilities for hospitals, especially the big hospitals in Indonesia is necessary

  17. Radiation therapy dosimetry system

    New therapeutic treatments generally aim to increase therapeutic efficacy while minimizing toxicity. Many aspects of radiation dosimetry have been studied and developed particularly in the field of external radiation. The success of radiotherapy relies on monitoring the dose of radiation to which the tumor and the adjacent tissues are exposed. Radiotherapy techniques have evolved through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments or radiosurgery and robotic radiation therapy. These advances push the frontiers in our effort to provide better patient care by improving the precision of the absorbed dose delivered. This paper presents state-of-the art radiation therapy dosimetry techniques as well as the value of integral dosimetry (INDOS), which shows promise in the fulfillment of radiation therapy dosimetry requirements. - highlights: • Pre-treatment delivery and phantom dosimetry in brachytherapy treatments were analyzed. • Dose distribution in the head and neck was estimated by physical and mathematical dosimetry. • Electron beam flattening was acquired by means of mathematical, physical and “in vivo” dosimetry. • Integral dosimetry (INDOS) has been suggested as a routine dosimetric method in all radiation therapy treatments

  18. Radiation therapy physics

    Hendee, William R; Hendee, Eric G

    2013-01-01

    The Third Edition of Radiation Therapy Physics addresses in concise fashion the fundamental diagnostic radiologic physics principles as well as their clinical implications. Along with coverage of the concepts and applications for the radiation treatment of cancer patients, the authors have included reviews of the most up-to-date instrumentation and critical historical links. The text includes coverage of imaging in therapy planning and surveillance, calibration protocols, and precision radiation therapy, as well as discussion of relevant regulation and compliance activities. It contains an upd

  19. Determination Of Some Specific Parameters In Energy Spectrum Of Electron Beams From The Radiation Therapy Linear Accelerator Siemens PRIMUS

    Mean energy E0 and maximum probability energy Ep,0 of electron beams on the patient skin are important parameters using in radiotherapy. This report presents the experimental method assessing quality of 12 MeV electron beam from Radiation therapy Linac-SIEMENS Primus at the National Cancer Hospital (K Hospital). Absorbed dose distribution and absorbed curve of a certain field size at the depths in medium have been defined by absorbed measurement technique in water phantom. The determination of Ep,0 and E0 is based on the use of semi- empirical relationships between electron energy and range parameters, which are determined in percentage depth dose curve for electron beam in water phantom. (author)

  20. Radiation Therapy (For Parents)

    ... be some permanent changes to the color and elasticity of the skin. How can you help? Dress ... to Home and School Cancer Center Cancer Basics Types of Cancer Teens Get Radiation Therapy Chemotherapy Dealing ...

  1. External Radiation Therapy

    Full Text Available ... prostate or when the patient is older the treatment that is frequently used is radiation therapy. Gunnar ... different types. There's what we call external beam treatment, which is given from an x-ray machine, ...

  2. External Radiation Therapy

    Full Text Available ... given from an x-ray machine, and there's a variety called interstitial implantation, which uses radioactive seeds. ... common form of radiation therapy is external beam. A typical treatment takes seven weeks. Gunnar Zagars, M. ...

  3. Radiation control in accelerator facilities

    In view of radiation control, particle accelerator facilities have posed various problems involving radiation (mainly neutron) leakage, occupational exposure, environmental aspects in the surrounding area, and waste management. The intent of the workshop was to discuss these problems. This report contains nine topics that were presented and discussed: (1) Radiation safety system for the AVF cyclotron and the cyclotron cascade project at the Research Center for Nuclear Physics, Osaka University; (2) Calculation for the shielding design in the RIKEN Ring Cyclotron Facility; (3) Shielding design method for high-energy protons in the National Laboratory for High-energy Physics (KEK); (4) Radiation safety programme for the uses of medical accelerators in the National Institute of Radiological Sciences; (5) Development of the new stack air monitor; (6) Environmental radiation monitoring in the vicinity of the intense 14 Mev neutron source facility; (7) Radiation control around the KEK-proton synchroton; (8) Radiation safety control system for the RIKEN Ring Cyclotron; (9) Evaluation of radioactivity and skyshine induced by neutron production in an accelerator facility. (Namekawa, K.)

  4. Development of the accelerator-based technique for hadron therapy

    Hadron therapy with protons and carbon ions is one of the most effective branches in radiation oncology. It has advantages over therapy using gamma-radiation and electron beams. Fifty thousands of patients per year need such a treatment in Russia. Review of the main modern trends in the development of accelerators for therapy and treatment techniques concerned with respiratory gated irradiation and scanning with the intensity modulated pencil beams is given. Main stages of forming, time-structure and main parameters of the beams used in proton therapy as well as requirements to medicine accelerators are considered. Main results of testing with the beam of C235-V3 cyclotron for the first Russian specialized hospital proton therapy center in Dimitrovgrad are presented. Using of the superconducting accelerators and gantry systems for hadron therapy is considered

  5. Dose non-linearity of the dosimetry system and possible monitor unit errors on medical linear accelerators used in conventional and intensity-modulated radiation therapy

    Muhammad Wazir

    2012-01-01

    Full Text Available The purpose of this work is to study dose non-linearity in medical linear accelerators used in conventional radiotherapy and intensity-modulated radiation therapy. Open fields, as well as the enhanced dynamic wedge ones, were used to collect data for 6 MV and 15 MV photon beams obtained from the VARIAN linear accelerator. Beam stability was checked and confirmed for different dose rates, energies, and application of enhanced dynamic wedge by calculating the charge per monitor unit. Monitor unit error was calculated by the two-exposure method for open and enhanced dynamic wedge beams of 6 MV and 15 MV photons. A significant monitor unit error with maximum values of ±2.05931 monitor unit and ±2.44787 monitor unit for open and enhanced dynamic wedge beams, respectively, both energy and dose rate dependent, was observed both in the open photon beam and enhanced dynamic wedge fields. However, it exhibited certain irregular patterns at enhanced dynamic wedge angles. Dose monitor unit error exists only because of the overshoot phenomena and electronic delay in dose coincident and integrated circuits with a dependency on the dose rate and photon energy. Monitor unit errors are independent of the application of enhanced dynamic wedge. The existence of monitor unit error demands that the dose non-linearity of the linear accelerator dosimetry system be periodically tested, so as to avoid significant dosimetric errors.

  6. Radiation therapy imaging apparatus

    This patent describes a radiation therapy imaging apparatus for providing images in a patient being treated on a radiation therapy apparatus for verification and monitoring of patient positioning and verification of alignment and shaping of the radiation field of the radiation therapy apparatus. It comprises: a high-energy treatment head for applying a radiation dose to a patient positioned on a treatment table, and a gantry rotatable about an isocentric axis and carrying the treatment head for permitting the radiation dose to be applied to the patient from any of a range of angles about the isocentric axis; the radiation therapy imaging apparatus including a radiation therapy image detector which comprises a video camera mounted on the gantry diametrically opposite the treat head, an elongated light-excluding enclosure enveloping the camera to exclude ambient light from the camera, a fluoroscopic plate positioned on a distal end of the enclosure remote from the camera and aligned with the head to produce a fluoroscopic image in response to radiation applied from the head through the patient, mirror means in the enclosure and oriented for reflecting the image to the camera to permit monitoring on a viewing screen of the position of the radiation field in respect to the patient, and means for retracting at least the distal end of the enclosure from a position in which the fluoroscopic plate is disposed opposite the treatment head without disturbing the position of the camera on the gantry, so that the enclosure can be collapsed and kept from projecting under the treatment table when the patient is being positioned on the treatment table

  7. Pilot study of human recombinant interferon gamma and accelerated hyperfractionated thoracic radiation therapy in patients with unresectable stage IIIA/B nonsmall cell lung cancer

    Purpose: Gamma interferon has a wide range of properties, including the ability to sensitize solid tumor cells to the effects of ionizing radiation. The North Central Cancer Treatment Group has previously completed pilot studies of accelerated hyperfractionated thoracic radiation therapy (AHTRT) in patients with unresectable Stage IIIA/B nonsmall cell lung cancer (NSCLC). This Phase I study was designed to assess the toxicity of concomitant gamma interferon and AHTRT in a similar patient population. Methods and Materials: Between December 1991 and May 1992, 18 patients with unresectable Stage IIIA/B NSCLC were treated with daily gamma interferon (0.2 mg subcutaneously) concomitant with AHTRT (60 Gy given in 1.5 Gy twice daily fractions). All patients had an Eastern Cooperative Oncology Group performance status of 0 or 1 with weight loss < 5%. Eight patients had Stage IIIA and 10 had Stage IIIB disease. Results: Nine patients (50%) experienced severe, life-threatening, or fatal toxicities. Eight of the patients (44%) developed significant radiation pneumonitis, which was severe in six patients and fatal in two patients (11% treatment-related mortality). Two patients (11%) developed severe radiation esophagitis. With follow-up of 15-21 months, 2 patients are alive, and 16 have died. The median survival time and 1-year survival rate is 7.8 months and 38%, respectively. Conclusion: Gamma interferon appeared to sensitize normal lung tissue to the effects of radiation, as demonstrated by the high incidence of severe or fatal radiation pneumonitis. We do not recommend pursuing gamma interferon as a radiosensitizer in this setting

  8. Three-Year Outcomes of a Canadian Multicenter Study of Accelerated Partial Breast Irradiation Using Conformal Radiation Therapy

    Berrang, Tanya S., E-mail: tberrang@bccancer.bc.ca [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Olivotto, Ivo [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Kim, Do-Hoon [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Nichol, Alan [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Cho, B.C. John [Princess Margaret Hospital, Ontario (Canada); University of Toronto, Ontario (Canada); Mohamed, Islam G. [British Columbia Cancer Agency-Southern Interior, BC (Canada); University of British Columbia, BC (Canada); Parhar, Tarnjit [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Wright, J.R. [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Truong, Pauline [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Tyldesley, Scott [British Columbia Cancer Agency-Vancouver Centre, BC (Canada); University of British Columbia, BC (Canada); Sussman, Jonathan [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada); Wai, Elaine [British Columbia Cancer Agency-Vancouver Island, BC (Canada); University of British Columbia, BC (Canada); Whelan, Tim [Juravinski Cancer Centre, Ontario (Canada); McMaster University, Ontario (Canada)

    2011-12-01

    Purpose: To report 3-year toxicity, cosmesis, and efficacy of a multicenter study of external beam, accelerated partial breast irradiation (APBI) for early-stage breast cancer. Methods and Materials: Between March 2005 and August 2006, 127 women aged {>=}40 years with ductal carcinoma in situ or node-negative invasive breast cancer {<=}3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study involving five Canadian cancer centers. Women meeting predefined dose constraints were treated with APBI using 3 to 5 photon beams, delivering 35 to 38.5 Gy in 10 fractions, twice a day, over 1 week. Patients were assessed for treatment-related toxicities, cosmesis, and efficacy before APBI and at specified time points for as long as 3 years after APBI. Results: 104 women had planning computed tomography scans showing visible seromas, met dosimetric constraints, and were treated with APBI to doses of 35 Gy (n = 9), 36 Gy (n = 33), or 38.5 Gy (n = 62). Eighty-seven patients were evaluated with minimum 3-year follow-up after APBI. Radiation dermatitis, breast edema, breast induration, and fatigue decreased from baseline levels or stabilized by the 3-year follow-up. Hypopigmentation, hyperpigmentation, breast pain, and telangiectasia slightly increased from baseline levels. Most toxicities at 3 years were Grade 1. Only 1 patient had a Grade 3 toxicity with telangiectasia in a skin fold inside the 95% isodose. Cosmesis was good to excellent in 86% (89/104) of women at baseline and 82% (70/85) at 3 years. The 3-year disease-free survival was 97%, with only one local recurrence that occurred in a different quadrant away from the treated site and two distant recurrences. Conclusions: At 3 years, toxicity and cosmesis were acceptable, and local control and disease-free survival were excellent, supporting continued accrual to randomized APBI trials.

  9. Fractionated radiation therapy after Strandqvist

    Models for predicting the total dose required to produce tolerable normal-tissue damage in radiation therapy are becoming less empirical, more realistic, and more specific for different tissue reactions. The progression is described from the 'cube root law', through STRANDQVIST'S well known graph to NSD, TDF and CRE and more recently to biologically based time factors and linear-quadratic dose-response curves. New applications of the recent approach are reviewed together with their implications for non-standard fractionation in radiation therapy. It is concluded that accelerated fractionation is an important method to be investigated, as well as hyperfractionation; and that more data are required about the proliferation rates of clonogenic cells in human tumours. (orig.)

  10. Five-Year Outcomes, Cosmesis, and Toxicity With 3-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation

    Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy per fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with conventional WBI

  11. Electron accelerators for radiation sterilization

    Industrial radiation processes using high power electron accelerators are attractive because the throughput rates are very high and the treatment costs per unit of product are often competitive with more conventional chemical processes. The utilization of energy in e-beam processing is more efficient than typical thermal processing. The use of volatiles or toxic chemicals can be avoided. Strict temperature or moisture controls may not be needed. Irradiated materials are usable immediately after processing. These capabilities are unique in that beneficial changes can be induced rapidly in solid materials and preformed products. In recent years, e-beam accelerators have emerged as the preferred alternative for industrial processing as they offer advantages over isotope radiation sources, such as (a) increased public acceptance since the storage, transport and disposal of radioactive material is not an issue; (b) the ability to hook up with the manufacturing process for in-line processing; (c) higher dose rates resulting in high throughputs. During the 1980s and 1990s, accelerator manufacturers dramatically increased the beam power available for high energy equipment. This effort was directed primarily at meeting the demands of the sterilization industry. During this era, the perception that bigger (higher power, higher energy) was always better prevailed, since the operating and capital costs of accelerators did not increase with power and energy as fast as the throughput. High power was needed to maintain low unit costs for the treatment. During the late 1980s and early 1990s, advances in e-beam technology produced new high energy, high power e-beam accelerators suitable for use in sterilization on an industrial scale. These newer designs achieved high levels of reliability and proved to be competitive with gamma sterilization by 60Co and fumigation with EtO. In parallel, technological advances towards 'miniaturization' of accelerators also made it possible to

  12. External Radiation Therapy

    Full Text Available ... predict when or even if the remaining cancer cells will become active again. Christopher Wood, M.D.: It's at the ten-year mark where the differences between success rates with radical prostatectomy and radiation therapy become evident,and if you're not going ...

  13. Involved Node Radiation Therapy

    Maraldo, Maja V; Aznar, Marianne C; Vogelius, Ivan R;

    2012-01-01

    PURPOSE: The involved node radiation therapy (INRT) strategy was introduced for patients with Hodgkin lymphoma (HL) to reduce the risk of late effects. With INRT, only the originally involved lymph nodes are irradiated. We present treatment outcome in a retrospective analysis using this strategy ...

  14. Principles of radiation therapy

    This chapter reviews (a) the natural history of metastatic bone disease in general terms and as it impacts on the use of radiation as therapy; (b) the clinical and radiographic evaluations used to guide the application of irradiation; and (c) the methods, results, and toxicities of various techniques of irradiation

  15. External Radiation Therapy

    Full Text Available ... prostate or when the patient is older the treatment that is frequently used is radiation therapy. Gunnar Zagars, M.D.: There are different forms ... different types. There's what we call external beam treatment, which is given from an x-ray machine, ...

  16. A Survey of Hadron Therapy Accelerator Technologies

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy

  17. A Survey of Hadron Therapy Accelerator Technologies.

    PEGGS,S.; SATOGATA, T.; FLANZ, J.

    2007-06-25

    Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.

  18. Intraoperative Radiation Therapy in Early Breast Cancer Using a Linear Accelerator Outside of the Operative Suite: An “Image-Guided” Approach

    Hanna, Samir Abdallah, E-mail: samir.hanna@hsl.org.br [Department of Radiation Oncology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Simões Dornellas de Barros, Alfredo Carlos; Martins de Andrade, Felipe Eduardo; Barbosa Bevilacqua, Jose Luiz [Department of Mastology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Morales Piato, José Roberto [Department of Mastology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Department of Gynecology, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo (Brazil); Lopes Pelosi, Edilson [Department of Radiation Oncology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Martella, Eduardo [Department of Radiation Oncology, Hospital Perola Byington, Sao Paulo (Brazil); Fernandes da Silva, João Luis [Department of Radiation Oncology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Andrade Carvalho, Heloisa de [Department of Radiation Oncology, Hospital Sirio-Libanes, Sao Paulo (Brazil); Department of Radiology and Oncology, Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo (Brazil)

    2014-08-01

    Purpose: To present local control, complications, and cosmetic outcomes of intraoperative radiation therapy (IORT) for early breast cancer, as well as technical aspects related to the use of a nondedicated linear accelerator. Methods and Materials: This prospective trial began in May of 2004. Eligibility criteria were biopsy-proven breast-infiltrating ductal carcinoma, age >40 years, tumor <3 cm, and cN0. Exclusion criteria were in situ or lobular types, multicentricity, skin invasion, any contraindication for surgery and/or radiation therapy, sentinel lymph node involvement, metastasis, or another malignancy. Patients underwent classic quadrantectomy with intraoperative sentinel lymph node and margins evaluation. If both free, the patient was transferred from operative suite to linear accelerator room, and IORT was delivered (21 Gy). Primary endpoint: local recurrence (LR); secondary endpoints: toxicities and aesthetics. Quality assurance involved using a customized shield for chest wall protection, applying procedures to minimize infection caused by patient transportation, and using portal films to check collimator-shield alignment. Results: A total of 152 patients were included, with at least 1 year follow-up. Median age (range) was 58.3 (40-85.4) years, and median follow-up time was 50.7 (12-110.5) months. The likelihood of 5-year local recurrence was 3.7%. There were 3 deaths, 2 of which were cancer related. The Kaplan-Meier 5-year actuarial estimates of overall, disease-free, and local recurrence-free survivals were 97.8%, 92.5%, and 96.3%, respectively. The overall incidences of acute and late toxicities were 12.5% and 29.6%, respectively. Excellent, good, fair, and bad cosmetic results were observed in 76.9%, 15.8%, 4.3%, and 2.8% of patients, respectively. Most treatments were performed with a 5-cm collimator, and in 39.8% of the patients the electron-beam energy used was ≥12 MeV. All patients underwent portal film evaluation, and the shielding was

  19. Intraoperative Radiation Therapy in Early Breast Cancer Using a Linear Accelerator Outside of the Operative Suite: An “Image-Guided” Approach

    Purpose: To present local control, complications, and cosmetic outcomes of intraoperative radiation therapy (IORT) for early breast cancer, as well as technical aspects related to the use of a nondedicated linear accelerator. Methods and Materials: This prospective trial began in May of 2004. Eligibility criteria were biopsy-proven breast-infiltrating ductal carcinoma, age >40 years, tumor <3 cm, and cN0. Exclusion criteria were in situ or lobular types, multicentricity, skin invasion, any contraindication for surgery and/or radiation therapy, sentinel lymph node involvement, metastasis, or another malignancy. Patients underwent classic quadrantectomy with intraoperative sentinel lymph node and margins evaluation. If both free, the patient was transferred from operative suite to linear accelerator room, and IORT was delivered (21 Gy). Primary endpoint: local recurrence (LR); secondary endpoints: toxicities and aesthetics. Quality assurance involved using a customized shield for chest wall protection, applying procedures to minimize infection caused by patient transportation, and using portal films to check collimator-shield alignment. Results: A total of 152 patients were included, with at least 1 year follow-up. Median age (range) was 58.3 (40-85.4) years, and median follow-up time was 50.7 (12-110.5) months. The likelihood of 5-year local recurrence was 3.7%. There were 3 deaths, 2 of which were cancer related. The Kaplan-Meier 5-year actuarial estimates of overall, disease-free, and local recurrence-free survivals were 97.8%, 92.5%, and 96.3%, respectively. The overall incidences of acute and late toxicities were 12.5% and 29.6%, respectively. Excellent, good, fair, and bad cosmetic results were observed in 76.9%, 15.8%, 4.3%, and 2.8% of patients, respectively. Most treatments were performed with a 5-cm collimator, and in 39.8% of the patients the electron-beam energy used was ≥12 MeV. All patients underwent portal film evaluation, and the shielding was

  20. Radiation therapy facilities in the United States

    Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA), as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care

  1. Five-Year Outcomes, Cosmesis, and Toxicity With 3-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation

    Rodríguez, Núria, E-mail: nrodriguez@parcdesalutmar.cat [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Sanz, Xavier [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Dengra, Josefa [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Foro, Palmira [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Membrive, Ismael; Reig, Anna [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Quera, Jaume [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain); Fernández-Velilla, Enric; Pera, Óscar; Lio, Jackson; Lozano, Joan [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Algara, Manuel [Department of Radiation Oncology, Hospital de la Esperanza, Parc de Salut MAR, Barcelona (Spain); Universidad Pompeu Fabra, Barcelona (Spain)

    2013-12-01

    Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy per fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P<.01). Late skin toxicity was no worse than grade 2 in either group, without significant differences between the 2 groups. In the ipsilateral breast, the areas that received the highest doses (ie, the boost or quadrant) showed the greatest loss of elasticity. WBI resulted in a greater loss of elasticity in the high-dose area compared with APBI (P<.05). Physician assessment showed that >75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with

  2. Microbeam radiation therapy

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  3. Dose linearity and uniformity of Siemens ONCOR impression plus linear accelerator designed for step-and-shoot intensity-modulated radiation therapy

    For step-and-shoot type delivery of intensity-modulated radiation therapy (IMRT), beam stability characteristics during the first few monitor units need to be investigated to ensure the planned dose delivery. This paper presents the study done for Siemens ONCOR impression plus linear accelerator before commissioning it for IMRT treatment. The beam stability for 6 and 15 MV in terms of dose monitor linearity, monitor unit stability and beam uniformity is investigated in this work. Monitor unit linearity is studied using FC65G chamber for the range 1-100 MU. The dose per MU is found to be linear for small monitor units down to 1 MU for both 6 and 15 MV beams. The monitor unit linearity is also studied with portal imaging device for the range 1-20 MU for 6 MV beam. The pixel values are within ±1σ confidence level up to 2 MU; for 1 MU, the values are within ±2σ confidence level. The flatness and symmetry analysis is done for both energies in the range of 1-10 MU with Kodak diagnostic films. The flatness and symmetry are found to be within ±3% up to 2 MU for 6 MV and up to 3 MU for 15 MV. (author)

  4. Contribution to the examination of the radiation field of medical linear accelerator SL 75-20 to therapy of tumors

    The vast majority of radiological studies indicate that the Do values for different mammalian cells, irradiated with X- or γ-rays, cluster quite closely around a value of about 1,3 Gy. There are a number of mathematical ways to define the shape of survival curves. All of these are based on the concept of the random nature of energy deposition by radiation. As the energy is increased above 4 MeV, it is possible to concentrate more energy in the tumor than in the surrounding tissues. The analysis showed that an energy of about 20-25 MeV is optimum. The concept of therapeutic ratio is represented by the percentage of patients who will develop complications as a function of dose. It has been found empirically that radiation has been used to treat patients with malignant disease, that fractionating the radiation treatment, so that it is given over a period of weeks, results in a better therapeutic ratio for most tumors than giving the treatment of a single dose. To illustrate the procedure, we have selected at random 40 patients with cancer of the cervix and we have examined their status via the time with their life lines. From the diagram we note that slope of the survival curves in the recent era is identical to that of the normal population. This means that, if a woman reaches a point 6 to 8 years after treatment and is still disease free, she will have the same life expectancy as a woman of the same age, in the normal population. (author)

  5. Principles of radiation therapy

    Radiation oncology now represents the integration of knowledge obtained over an 80-year period from the physics and biology laboratories and the medical clinic. Such integration is recent; until the supervoltage era following World War II, the chief developments in these three areas for the most part were realized independently. The physics and engineering laboratories have now developed a dependable family of sources of ionizing radiations that can be precisely directed at tumor volumes at various depths within the body. The biology laboratory has provided the basic scientific support underlying the intensive clinical experience and currently is suggesting ways of using ionizing radiations more effectively, such as modified fractionation schedules relating to cell cycle kinetics and the use of drugs and chemicals as modifiers of radiation response and normal tissue reaction. The radiation therapy clinic has provided the patient stratum on which the acute and chronic effects of irradiation have been assessed, and the patterns of treatment success and failure identified. The radiation therapist has shared with the surgeon and medical oncologist the responsibility for clarifying the natural history of a large number of human neoplasms, and through such clarifications, has developed more effective treatment strategies. Several examples of this include the improved results in the treatment of Hodgkin's disease, squamous cell carcinoma of the cervix, seminoma, and epithelial neoplasms of the upper aerodigestive tract

  6. Phase 2 Study of Accelerated Hypofractionated Thoracic Radiation Therapy and Concurrent Chemotherapy in Patients With Limited-Stage Small-Cell Lung Cancer

    Purpose: To prospectively investigate the efficacy and toxicity of accelerated hypofractionated thoracic radiation therapy (HypoTRT) combined with concurrent chemotherapy in the treatment of limited-stage small-cell lung cancer (LS-SCLC), with the hypothesis that both high radiation dose and short radiation time are important in this setting. Methods and Materials: Patients with previously untreated LS-SCLC, Eastern Cooperative Oncology Group performance status of 0 to 2, and adequate organ function were eligible. HypoTRT of 55 Gy at 2.5 Gy per fraction over 30 days was given on the first day of the second or third cycle of chemotherapy. An etoposide/cisplatin regimen was given to 4 to 6 cycles. Patients who had a good response to initial treatment were offered prophylactic cranial irradiation. The primary endpoint was the 2-year progression-free survival rate. Results: Fifty-nine patients were enrolled from July 2007 through February 2012 (median age, 58 years; 86% male). The 2-year progression-free survival rate was 49.0% (95% confidence interval [CI] 35.3%-62.7%). Median survival time was 28.5 months (95% CI 9.0-48.0 months); the 2-year overall survival rate was 58.2% (95% CI 44.5%-71.9%). The 2-year local control rate was 76.4% (95% CI 63.7%-89.1%). The severe hematologic toxicities (grade 3 or 4) were leukopenia (32%), neutropenia (25%), and thrombocytopenia (15%). Acute esophagitis and pneumonitis of grade ≥3 occurred in 25% and 10% of the patients, respectively. Thirty-eight patients (64%) received prophylactic cranial irradiation. Conclusion: Our study showed that HypoTRT of 55 Gy at 2.5 Gy per fraction daily concurrently with etoposide/cisplatin chemotherapy has favorable survival and acceptable toxicity. This radiation schedule deserves further investigation in LS-SCLC

  7. Concurrent chemo-irradiation using accelerated concomitant boost radiation therapy in loco-regionally advanced head and neck squamous cell carcinomas

    Vivek R

    2006-01-01

    Full Text Available Purpose: To investigate the feasibility of combining concomitant boost-accelerated radiation regimen (ACB with full-dose mono-chemotherapy using cisplatin and to assess its local response and acute toxicity patterns in patients with advanced loco-regional head and neck squamous cell carcinoma (HNSCC. Materials and Methods: Between July 2004 and August 2005, a pilot study involving 27 patients with stage III to IVB (AJCC-6th HNSCC of the oropharynx, hypopharynx and larynx who met the eligibility criteria was undertaken. Twenty-four of these patients (median age - 53 years were analyzable. The radiation dose was 72 Gy in 42 fractions over 6 weeks, delivered in one daily fraction of 1.8 Gy during the first 3.5 weeks and two fractions per day, 1.8 Gy and 1.5 Gy boost-separated by> 6 h interval, during the last 2.5 weeks. cisplatin, 100 mg/m2, was given in intravenous (i.v. infusion on day 1 and day 22. Tumor and clinical status were assessed and acute toxicities were graded. Results: Out of 27 patients, 24 patients received both radiation and chemotherapy as per protocol and were available for analysis. The loco-regional response rates were as follows: an overall response of 95.8% (23 patients, a complete response of 79.1% (19 patients, a partial response of 16.7% (4 patients and progressive disease in 4.2% (1 patient. Dysphagia, nausea, vomiting and bone marrow suppression were the most common side effects and were associated with cisplatin administration. One patient (3.7% died of complications (pneumonia and sepsis, 3 patients (12.5% had acute grade 4 toxicity and 21 patients (87.5% had acute grade 3 (17 patients or grade 2 (4 patients toxicity. Conclusion: This data shows that it is feasible to combine ACB and full-dose mono-chemotherapy using cisplatin with manageable, although substantial, toxicity. The compliance to therapy was high and the loco-regional response achieved compared favorably with ACB alone or other concurrent chemoradiation

  8. Phase 2 Study of Accelerated Hypofractionated Thoracic Radiation Therapy and Concurrent Chemotherapy in Patients With Limited-Stage Small-Cell Lung Cancer

    Xia, Bing [Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai (China); Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou (China); Hong, Ling-Zhi [Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing (China); Cai, Xu-Wei; Zhu, Zheng-Fei; Liu, Qi; Zhao, Kuai-Le; Fan, Min; Mao, Jing-Fang; Yang, Huan-Jun; Wu, Kai-Liang [Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai (China); Fu, Xiao-Long, E-mail: xlfu1964@hotmail.com [Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai (China)

    2015-03-01

    Purpose: To prospectively investigate the efficacy and toxicity of accelerated hypofractionated thoracic radiation therapy (HypoTRT) combined with concurrent chemotherapy in the treatment of limited-stage small-cell lung cancer (LS-SCLC), with the hypothesis that both high radiation dose and short radiation time are important in this setting. Methods and Materials: Patients with previously untreated LS-SCLC, Eastern Cooperative Oncology Group performance status of 0 to 2, and adequate organ function were eligible. HypoTRT of 55 Gy at 2.5 Gy per fraction over 30 days was given on the first day of the second or third cycle of chemotherapy. An etoposide/cisplatin regimen was given to 4 to 6 cycles. Patients who had a good response to initial treatment were offered prophylactic cranial irradiation. The primary endpoint was the 2-year progression-free survival rate. Results: Fifty-nine patients were enrolled from July 2007 through February 2012 (median age, 58 years; 86% male). The 2-year progression-free survival rate was 49.0% (95% confidence interval [CI] 35.3%-62.7%). Median survival time was 28.5 months (95% CI 9.0-48.0 months); the 2-year overall survival rate was 58.2% (95% CI 44.5%-71.9%). The 2-year local control rate was 76.4% (95% CI 63.7%-89.1%). The severe hematologic toxicities (grade 3 or 4) were leukopenia (32%), neutropenia (25%), and thrombocytopenia (15%). Acute esophagitis and pneumonitis of grade ≥3 occurred in 25% and 10% of the patients, respectively. Thirty-eight patients (64%) received prophylactic cranial irradiation. Conclusion: Our study showed that HypoTRT of 55 Gy at 2.5 Gy per fraction daily concurrently with etoposide/cisplatin chemotherapy has favorable survival and acceptable toxicity. This radiation schedule deserves further investigation in LS-SCLC.

  9. Study on external beam radiation therapy

    Kim, Mi Sook; Yoo, Seoung Yul; Yoo, Hyung Jun; Ji, Young Hoon; Lee, Dong Han; Lee, Dong Hoon; Choi, Mun Sik; Yoo, Dae Heon; Lee, Hyo Nam; Kim, Kyeoung Jung

    1999-04-01

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT.

  10. Study on external beam radiation therapy

    To develop the therapy technique which promote accuracy and convenience in external radiation therapy, to obtain the development of clinical treatment methods for the global competition. The contents of the R and D were 1. structure, process and outcome analysis in radiation therapy department. 2. Development of multimodality treatment in radiation therapy 3. Development of computation using networking techniques 4. Development of quality assurance (QA) system in radiation therapy 5. Development of radiotherapy tools 6. Development of intraoperative radiation therapy (IORT) tools. The results of the R and D were 1. completion of survey and analysis about Korea radiation therapy status 2. Performing QA analysis about ICR on cervix cancer 3. Trial of multicenter randomized study on lung cancers 4. Setting up inter-departmental LAN using MS NT server and Notes program 5. Development of ionization chamber and dose-rate meter for QA in linear accelerator 6. Development on optimized radiation distribution algorithm for multiple slice 7. Implementation on 3 dimensional volume surface algorithm and 8. Implementation on adaptor and cone for IORT

  11. Accelerated Partial Breast Irradiation Is Safe and Effective Using Intensity-Modulated Radiation Therapy in Selected Early-Stage Breast Cancer

    Lewin, Alan A., E-mail: alanl@baptisthealth.net [Department of Radiation Oncology, Baptist Hospital of Miami, Miami, FL (United States); Derhagopian, Robert [Department of Surgery, Baptist Hospital of Miami, Miami, FL (United States); Saigal, Kunal; Panoff, Joseph E. [Department of Radiation Oncology, University of Miami, Miami, FL (United States); Abitbol, Andre; Wieczorek, D. Jay; Mishra, Vivek [Department of Radiation Oncology, Baptist Hospital of Miami, Miami, FL (United States); Reis, Isildinha; Ferrell, Annapoorna [Division of Biostatistics, University of Miami, Miami, FL (United States); Moreno, Lourdes [Department of Radiation Oncology, Baptist Hospital of Miami, Miami, FL (United States); Takita, Cristiane [Department of Radiation Oncology, University of Miami, Miami, FL (United States)

    2012-04-01

    Purpose: To report the feasibility, toxicity, cosmesis, and efficacy of using intensity-modulated radiation therapy (IMRT) with respiratory gating to deliver accelerated partial breast irradiation (APBI) in selected Stage I/II breast cancer after breast-conserving surgery. Methods and Materials: Eligible patients with node-negative Stage I/II breast cancer were prospectively enrolled in an institutional review board approved protocol to receive APBI using IMRT after breast-conserving surgery. The target volume was treated at 3.8 Gy/fraction twice daily for 5 days, to a total dose of 38 Gy. Results: Thirty-six patients were enrolled for a median follow-up time of 44.8 months. The median tumor size was 0.98 cm (range, 0.08-3 cm). The median clinical target volume (CTV) treated was 71.4 cc (range, 19-231 cc), with the mean dose to the CTV being 38.96 Gy. Acute toxicities included Grade 1 erythema in 44% of patients and Grade 2 in 6%, Grade 1 hyperpigmentation in 31% of patients and Grade 2 in 3%, and Grade 1 breast/chest wall tenderness in 14% of patients. No Grade 3/4 acute toxicities were observed. Grade 1 and 2 late toxicities as edema, fibrosis, and residual hyperpigmentation occurred in 14% and 11% of patients, respectively; Grade 3 telangiectasis was observed in 3% of patients. The overall cosmetic outcome was considered 'excellent' or 'good' by 94% of patients and 97% when rated by the physician, respectively. The local control rate was 97%; 1 patient died of a non-cancer-related cause. Conclusions: APBI can be safely and effectively administered using IMRT. In retrospective analysis, IMRT enabled the achievement of normal tissue dose constraints as outlined by Radiation Therapy Oncology Group 04-13/NSABP B-13 while providing excellent conformality for the CTV. Local control and cosmesis have remained excellent at current follow-up, with acceptable rates of acute/late toxicities. Our data suggest that cosmesis is dependent on target volume

  12. Accelerated Partial Breast Irradiation Is Safe and Effective Using Intensity-Modulated Radiation Therapy in Selected Early-Stage Breast Cancer

    Purpose: To report the feasibility, toxicity, cosmesis, and efficacy of using intensity-modulated radiation therapy (IMRT) with respiratory gating to deliver accelerated partial breast irradiation (APBI) in selected Stage I/II breast cancer after breast-conserving surgery. Methods and Materials: Eligible patients with node-negative Stage I/II breast cancer were prospectively enrolled in an institutional review board approved protocol to receive APBI using IMRT after breast-conserving surgery. The target volume was treated at 3.8 Gy/fraction twice daily for 5 days, to a total dose of 38 Gy. Results: Thirty-six patients were enrolled for a median follow-up time of 44.8 months. The median tumor size was 0.98 cm (range, 0.08–3 cm). The median clinical target volume (CTV) treated was 71.4 cc (range, 19–231 cc), with the mean dose to the CTV being 38.96 Gy. Acute toxicities included Grade 1 erythema in 44% of patients and Grade 2 in 6%, Grade 1 hyperpigmentation in 31% of patients and Grade 2 in 3%, and Grade 1 breast/chest wall tenderness in 14% of patients. No Grade 3/4 acute toxicities were observed. Grade 1 and 2 late toxicities as edema, fibrosis, and residual hyperpigmentation occurred in 14% and 11% of patients, respectively; Grade 3 telangiectasis was observed in 3% of patients. The overall cosmetic outcome was considered “excellent” or “good” by 94% of patients and 97% when rated by the physician, respectively. The local control rate was 97%; 1 patient died of a non–cancer-related cause. Conclusions: APBI can be safely and effectively administered using IMRT. In retrospective analysis, IMRT enabled the achievement of normal tissue dose constraints as outlined by Radiation Therapy Oncology Group 04-13/NSABP B-13 while providing excellent conformality for the CTV. Local control and cosmesis have remained excellent at current follow-up, with acceptable rates of acute/late toxicities. Our data suggest that cosmesis is dependent on target volume size

  13. [Problems after radiation therapy].

    Karasawa, Kumiko

    2014-01-01

    The rate of severe late adverse effects has decreased with the highly accurate administration of radiation therapy; however, the total number of patients who suffer from late effects has not decreased because of the increased total number of patients and better survival rates. Late adverse effects, occurring more than a few months after irradiation, include the extension and collapse of capillaries, thickening of the basement membrane, and scarring of tissue due to loss of peripheral vessels. The main causes of these late effects are the loss of stromal cells and vascular injury. This is in contrast to early reactions, which occur mainly due to the reorganization of slow-growing non-stem cell renewal systems such as the lung, kidney, heart, and central nervous system. In addition, the patient's quality of life is impaired if acute reactions such as mouth or skin dryness are not alleviated. Most adverse effects are radiation dose dependent, and the thresholds differ according to the radiosensitivity of each organ. These reactions occur with a latency period of a few months to more than 10 years. Understanding the clinical and pathological status, through discussion with radiation oncologists, is the essential first step. Some of the late effects have no effective treatment, but others can be treated by steroids or hyperbaric oxygen therapy. An appropriate decision is important. PMID:24423950

  14. Intracoronary radiation therapy

    Moon, Dae Hyuk; Oh, Seung Jun; Lee, Hee Kung; Park, Seong Wook; Hong, Myeong Ki [College of Medicine, Ulsan Univ., Seoul (Korea, Republic of); Bom, Hee Seung [College of Medicine, Chonnam National Univ., Kwangju (Korea, Republic of)

    2001-07-01

    Restenosis remains a major limitation of percutaneous coronary interventions. Numerous Studies including pharmacological approaches and new devices failed to reduce restenosis rate except coronary stenting. Since the results of BENESTENT and STRESS studies came out, coronary stenting has been the most popular interventional strategy in the various kinds of coronary stenotic lesions, although the efficacy of stending was shown only in the discrete lesion of the large coronary artery. The widespread use of coronary stending has improved the early and late outcomes after coronary intervention, but it has also led to a new and serious problem, e.g., in-stent restenosis. Intravascular radiation for prevention of restenosis is a new technology in the field of percutaneous coronary intervention. Recent animal experiments and human trials have demonstrated that local irradiation, in conjunction with coronary interventions, substantially diminished the rate of restenosis. This paper reviews basic radiation biology of intracoronary radiation and its role in the inhibition of restenosis. The current status of intracoronary radiation therapy using Re-188 liquid balloon is also discussed.

  15. Radiation Therapy for Skin Cancer

    ... skin cells called melanocytes that produce skin color ( melanin ). Radiation therapy is used mostly for melanomas that ... in addition to surgery, chemotherapy or biologic therapy. Hair Epidermis Dermis Subcutaneous Hair Follicle Vein Artery © ASTRO ...

  16. About radiation therapy

    Explained are the history and outline of technology in radiation therapy (RT), characteristics of dose distribution of major radiations in RT and significance of biological effective dose (BED) from aspects of radiation oncology and therapeutic prediction. The history is described from the first X-ray RT documented in 1896 to the latest (1994) RT with National Institute of Radiological Sciences (NIRS) carbon beam for tumors in trunk. X-ray RT has aimed to make the energy high because target tumors are generally present deep in the body and an ideal RT, the intensity modulated RT, has been developed to assure the desirable dose distribution (or, dose-volume histogram) based on precise planning with X-CT and computing. Low energy gamma ray emitted from radioisotopes provides also an ideal RT mean because of its excellent focusing to the internal target; however, problems remain of invasion and long lodging of the isotope in the body. Heavy ion RT is conducted on the planning on X-CT image and computation utilizing Bragg's principle and is superior for minimizing the exposure of normal, non-cancerous tissues. Boron neutron capture therapy is a promising RT as the local control is always possible at 10B ratio of the lesion/normal tissue >2.5, which is measurable by PET with 18F-boronophenylalanine. In the current oncology, BED is estimated by the linear quadratic model, α(nd)+β(nd)2, where d is a total irradiation dose and n, number of fractionation, and is a planning basis for the effect prediction in RT above. Physical problems in future involve the system development of more efficient dose focusing and convenient dose impartation, and development of more easily operable system and cost reduction is awaited. (R.T.)

  17. Radiation Therapy for Breast Cancer

    ... therapy. Ask your doctor for more information. For women undergoing reconstruction, post- mastectomy radiation may affect your options for reconstruction or the cosmetic outcome. Discuss with your surgeon and radiation oncologist ...

  18. Stereotactic body radiation therapy

    Comprehensive an up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. Examines in detail retrospective studies and prospective clinical trials for various organ sites from around the world. Written by world-renowned experts in SBRT from North America, Asia and Europe. Stereotactic body radiation therapy (SBRT) has emerged as an innovative treatment for various primary and metastatic cancers, and the past five years have witnessed a quantum leap in its use. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.

  19. Stereotactic body radiation therapy

    Lo, Simon S. [Univ. Hospitals Seidman Cancer Center, Cleveland, OH (United States). Dept. of Radiation Oncology; Case Western Reserve Univ., Cleveland, OH (United States). Case Comprehensive Cancer Center; Teh, Bin S. [The Methodist Hospital Cancer Center and Research Institute, Houston, TX (United States). Weill Cornell Medical College; Lu, Jiade J. [National Univ. of Singapore (Singapore). Dept. of Radiation Oncology; Schefter, Tracey E. (eds.) [Colorado Univ., Aurora, CO (United States). Dept. of Radiation Oncology

    2012-11-01

    Comprehensive an up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. Examines in detail retrospective studies and prospective clinical trials for various organ sites from around the world. Written by world-renowned experts in SBRT from North America, Asia and Europe. Stereotactic body radiation therapy (SBRT) has emerged as an innovative treatment for various primary and metastatic cancers, and the past five years have witnessed a quantum leap in its use. This book provides a comprehensive and up-to-date account of the physical/technological, biological, and clinical aspects of SBRT. It will serve as a detailed resource for this rapidly developing treatment modality. The organ sites covered include lung, liver, spine, pancreas, prostate, adrenal, head and neck, and female reproductive tract. Retrospective studies and prospective clinical trials on SBRT for various organ sites from around the world are examined, and toxicities and normal tissue constraints are discussed. This book features unique insights from world-renowned experts in SBRT from North America, Asia, and Europe. It will be necessary reading for radiation oncologists, radiation oncology residents and fellows, medical physicists, medical physics residents, medical oncologists, surgical oncologists, and cancer scientists.

  20. The physics of radiation therapy

    Khan, Faiz M

    2009-01-01

    Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout.

  1. Recent trends in particle accelerator radiation safety

    The use of particle accelerators in applied and research activities continues to expand, bringing new machines with higher energy and current capabilities which create radiation safety problems not commonly encountered before. An overview is given of these increased ionizing radiation hazards, along with a discussion of some of the new techniques required in evaluating and controlling them. A computer search of the literature provided a relatively comprehensive list of publications describing accelerator radiation safety problems and related subjects

  2. Prognostic significance of proliferation associated antigens (PCNA, Ki-67) and p53-expression in inoperable head and neck cancer after accelerated split-course radiation therapy

    Purpose: To determine whether the immunohistochemical (IHC) expression of proliferation associated antigens (Proliferating Cell Nuclear Antigen [PCNA], Ki-67) and the nuclear p53 reactivity are predictive for overall-survival (OS) and relapse-free-survival (RFS) in patients (pts) with inoperable squamous cell carcinoma of the head and neck region (SCC H and N) after accelerated split-course radiation therapy (RT) with and without chemotherapy (ChT). Materials and Methods: Between 10/89 and 9/93, 87 pts with biopsy proven SCC H and N (80 male, 7 female, median age 52 years [range, 23-65 years]) were randomly allocated to RT alone or simultaneous RT/ChT as part of a multicenter trial. All pts had inoperable lesions in AJCC (1988) stage III (7 pts, 8%) and IV (80 pts, 92%). Primaries were located in the oral cavity (19 pts, 22%), oropharynx (38 pts, 44%) and hypopharynx (30 pts, 34%). RT consisted of 3 cycles of accelerated fractionation (180 cGy bid, total dose 7020 cGy/51 days). Scheduled split between cycles was 10 days. ChT consisted of cis-DDP, 60 mg/m2, 5-FU, 350 mg/m2, Leucovorin (LV) 50 mg/m2 iv bolus on day 2 and 5-FU, 350 mg/m2/24 h and LV 100 mg/m2/24 h ci on days 3-5. ChT was repeated on days 22 and 44. Routinely processed paraffin embedded sections were IHC-stained using the monoclonal antibodies PC 10, MIB1 and DO7 for detection of PCNA, Ki-67 antigen and p53 oncoprotein. Percentage of positive nuclei per 1000 tumor cells were given as Labeling Index (LI). In addition, tumor volume (TV) and percentage of necrosis were measured using CT-data. Median follow-up was 3.5 years (range 1.5-5 years). Results: OS and RFS were 39% and 44% after 3 years, respectively. In univariate analysis TV (>125 ml: 5% OS vs. ≤125 ml: 54% OS, p55years: 66% OS vs. ≤55years: 23% OS, p=.0025), PCNA-LI (LI>20%: 50% OS vs. LI≤20%: 31% OS, p=.0146),MIB1-LI (LI>20%: 55% OS vs. LI≤20%: 23% OS, p=.0344) and additional ChT (RT/ChT: 41% OS vs. RT: 27% OS, p=.0258) had a

  3. Radiation therapy in palliative care

    Radiation therapy is a valuable treatment for palliation of local symptoms with consistently high response rates in the relief and control of bone pain, neurological symptom, obstructive symptoms, and tumor hemorrhage. Over than 80% of patients who developed bone metastasis and superior vena cava syndrome obtained symptom relief by radiation therapy. Radiation therapy is also well established as an effective treatment for brain metastasis, improving symptoms and preventing progressive neurological deficits, and recently stereotactic irradiation had became a alternative treatment of surgery for small metastatic brain tumors. Both radiation therapy and surgery are effective in the initial treatment of malignant spinal cord compression syndrome, and no advantages of surgery over radiation therapy has been demonstrated in published series when patients have a previously conformed diagnosis of malignant disease and no evidence of vertebral collapse. The outcome of treatment depends primarily upon the speed of diagnosis and neurological status at initiation of treatment. It is very important to start radiation therapy before patient become non-ambulant. Low irradiation dose and short treatment period of palliative radiation therapy can minimize disruption and acute morbidity for the patients with advanced cancer with enabling control of symptoms and palliative radiation therapy is applicable to the patient even in poor general condition. (author)

  4. Accelerators for the advanced radiation technology project

    Ion beam irradiation facilities are now under construction for the advanced radiation technology (ART) project in Takasaki Radiation Chemistry Research Establishment of (Japan Atomic Energy Research Institute) JAERI. The project is intended to make an effective use of ion beams, especially ion beams, in the research field of radiation application technology. The TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities include four ion accelerators to produce almost all kinds of energetic ions in the periodic table. The facilities are also provided with several advanced irradiation means and act as very powerful accelerator complex for material development. Specifically, this report presents an outline of the ART project, features of TIARA as accelerator facilities dedicated to material development, the AVF cyclotron under construction (Sumitomo Heavy Industries, Ltd., Model 930), tandem accelerator, microbeam, and experimental instruments used. (N.K.)

  5. Recircular accelerator to proton ocular therapy

    Rabelo, Luisa A.; Campos, Tarcisio P.R., E-mail: luisarabelo88@gmail.com, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear

    2013-07-01

    Proton therapy has been used for the treatment of Ocular Tumors, showing control in most cases as well as conservation of the eyeball, avoiding the enucleation. The protons provide higher energetic deposition in depth with reduced lateral spread, compared to the beam of photons and electrons, with characteristic dose deposition peak (Bragg peak). This technique requires large particle accelerators hampering the deployment a Proton Therapy Center in some countries due to the need for an investment of millions of dollars. This study is related to a new project of an electromagnetic unit of proton circular accelerator to be coupled to the national radiopharmaceutical production cyclotrons, to attend ocular therapy. This project evaluated physical parameters of proton beam circulating through classical and relativistic mechanical formulations and simulations based on an ion transport code in electromagnetic fields namely CST (Computer Simulation Technology). The structure is differentiated from other circular accelerations (patent CTIT/UFMG NRI research group/UFMG). The results show the feasibility of developing compact proton therapy equipment that works like pre-accelerator or post-accelerator to cyclotrons, satisfying the interval energy of 15 MeV to 64 MeV. Methods of reducing costs of manufacture, installation and operation of this equipment will facilitate the dissemination of the proton treatment in Brazil and consequently advances in fighting cancer. (author)

  6. Experience with the functional assessment of cancer therapy-lung (FACT-L) in ECOG 4593, a phase II hyperfractionated accelerated radiation therapy (HART) trial

    PURPOSE: To gain experience in measuring quality of life (QOL) using the FACT-L in patients (pt) with non small cell lung cancer (NSCLC) treated with an altered fractionation regimen, HART, in a Phase II, multiinstitutional ECOG trial. MATERIALS AND METHODS: Version 2 of FACT-L, with 43 questions in 6 subscale categories (8 physical well-being, 8 social/family well-being, 3 relationship with doctor, 6 emotional well-being, 8 functional well-being, 10 lung cancer symptoms), available in English, Spanish and French, was administered by data managers and filled out by pts, independent of physician presence or input. The HART trial enrolled 30 pts, and FACT-L was administered at baseline (tp 1), treatment completion (tp 2) and 4 weeks following therapy (tp 3). (35(43)) FACT-L items were designed to yield a total QOL score with higher values reflective of better QOL; in addition, a FACT-L trial outcome index (TOI) was computed (TOI = physical score + functional score + lung cancer related score), and is considered the most relevant clinical QOL measure. RESULTS: The FACT-L completion rates were: tp 1 - (30(30)) (100%), tp 2 - (29(30)) (97%) and tp 3 - (24(30)) (80%); the mean scores at various time points are summarized in the table below and indicate that FACT-L is responsive to changes over time. The differences in subscales and total scores can be used as a measure of change in QOL resulting from treatment; statistically significant change was noted from baseline to tp 2 for physical, emotional and functional well-being; and from baseline to tp 3 for emotional well-being. The change in TOI score was also evaluated as a function of response and toxicity grade, and no clear association emerged. When assessed as a function of survival (at the time of this analysis, (5(30)) pt were alive, with median survival of 56 weeks), the degradation in QOL was most severe for pt who died early; the mean change in TOI from baseline to tp 3 for pt dying in the first 25 weeks, 25

  7. Cancer therapy with particle accelerators

    Amaldi, Ugo

    1999-01-01

    This review paper is devoted to conventional radiotherapy and to hadron therapy. In this therapeutical modality, proposed by R. R. Wilson in 1946, the physical selectivity of proton and light ion beams is used to irradiate tissues very close to organs at risk, which cannot be irradiated (the brain and the spinal cord for instance). Also fast neutrons are employed, but they are not suitable for a truly conformal irradiation. Carbon ions have the added advantage, with respect to protons, of the high density of ionization at the end of the range in matter. This property is very valuable for the control of tumours which are radioresistant to both X-rays and protons. After clarifying the general principles, a review is presented of the world hadron therapy centres which are running or are in the design and construction stage. (33 refs).

  8. Winter therapy for the accelerators

    Corinne Pralavorio

    2016-01-01

    Hundreds of people are hard at work during the year-end technical stop as all the accelerators are undergoing maintenance, renovation and upgrade operations in parallel.   The new beam absorber on its way to Point 2 before being lowered into the LHC tunnel for installation. The accelerator teams didn’t waste any time before starting their annual winter rejuvenation programme over the winter. At the end of November, as the LHC ion run was beginning, work got under way on the PS Booster, where operation had already stopped. On 14 December, once the whole complex had been shut down, the technical teams turned their attention to the other injectors and the LHC. The year-end technical stop (YETS) provides an opportunity to carry out maintenance work on equipment and repair any damage as well as to upgrade the machines for the upcoming runs. Numerous work projects are carried out simultaneously, so good coordination is crucial. Marzia Bernardini's team in the Enginee...

  9. Decline of Cosmetic Outcomes Following Accelerated Partial Breast Irradiation Using Intensity Modulated Radiation Therapy: Results of a Single-Institution Prospective Clinical Trial

    Liss, Adam L. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Ben-David, Merav A. [Department of Radiation Oncology, The Sheba Medical Center, Ramat Gan (Israel); Jagsi, Reshma; Hayman, James A. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Griffith, Kent A. [Biostatistics Unit, University of Michigan, Ann Arbor, Michigan (United States); Moran, Jean M.; Marsh, Robin B. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Pierce, Lori J., E-mail: ljpierce@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States)

    2014-05-01

    Purpose: To report the final cosmetic results from a single-arm prospective clinical trial evaluating accelerated partial breast irradiation (APBI) using intensity modulated radiation therapy (IMRT) with active-breathing control (ABC). Methods and Materials: Women older than 40 with breast cancer stages 0-I who received breast-conserving surgery were enrolled in an institutional review board-approved prospective study evaluating APBI using IMRT administered with deep inspiration breath-hold. Patients received 38.5 Gy in 3.85-Gy fractions given twice daily over 5 consecutive days. The planning target volume was defined as the lumpectomy cavity with a 1.5-cm margin. Cosmesis was scored on a 4-category scale by the treating physician. Toxicity was scored according to National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0). We report the cosmetic and toxicity results at a median follow-up of 5 years. Results: A total of 34 patients were enrolled. Two patients were excluded because of fair baseline cosmesis. The trial was terminated early because fair/poor cosmesis developed in 7 of 32 women at a median follow-up of 2.5 years. At a median follow-up of 5 years, further decline in the cosmetic outcome was observed in 5 women. Cosmesis at the time of last assessment was 43.3% excellent, 30% good, 20% fair, and 6.7% poor. Fibrosis according to CTCAE at last assessment was 3.3% grade 2 toxicity and 0% grade 3 toxicity. There was no correlation of CTCAE grade 2 or greater fibrosis with cosmesis. The 5-year rate of local control was 97% for all 34 patients initially enrolled. Conclusions: In this prospective trial with 5-year median follow-up, we observed an excellent rate of tumor control using IMRT-planned APBI. Cosmetic outcomes, however, continued to decline, with 26.7% of women having a fair to poor cosmetic result. These results underscore the need for continued cosmetic assessment for patients treated with APBI by technique.

  10. Stereotactic body radiation therapy (SBRT) for lung malignancies: preliminary toxicity results using a flattening filter-free linear accelerator operating at 2400 monitor units per minute

    Flattening filter-free (FFF) linear accelerators (linacs) are capable of delivering dose rates more than 4-times higher than conventional linacs during SBRT treatments, causing some to speculate whether the higher dose rate leads to increased toxicity owing to radiobiological dose rate effects. Despite wide clinical use of this emerging technology, clinical toxicity data for FFF SBRT are lacking. In this retrospective study, we report the acute and late toxicities observed in our lung radiosurgery experience using a FFF linac operating at 2400 MU/min. We reviewed all flattening filter-free (FFF) lung SBRT cases treated at our institution from August 2010 through July 2012. Patients were eligible for inclusion if they had at least one clinical assessment at least 30 days following SBRT. Pulmonary, cardiac, dermatologic, neurologic, and gastrointestinal treatment related toxicities were scored according to CTCAE version 4.0. Toxicity observed within 90 days of SBRT was categorized as acute, whereas toxicity observed more than 90 days from SBRT was categorized as late. Factors thought to influence risk of toxicity were examined to assess relationship to grade > =2 toxicity. Sixty-four patients with >30 day follow up were eligible for inclusion. All patients were treated using 10 MV unflattened photons beams with intensity modulated radiation therapy (IMRT) inverse planning. Median SBRT dose was 48 Gy in 4 fractions (range: 30–60 Gy in 3–5 fractions). Six patients (9%) experienced > = grade 2 acute pulmonary toxicity; no non-pulmonary acute toxicities were observed. In a subset of 49 patients with greater than 90 day follow up (median 11.5 months), 11 pulmonary and three nerve related grade > =2 late toxicities were recorded. Pulmonary toxicities comprised six grade 2, three grade 3, and one each grade 4 and 5 events. Nerve related events were rare and included two cases of grade 2 chest wall pain and one grade 3 brachial plexopathy which spontaneously resolved. No

  11. Pre-irradiation carboplatin and etoposide and accelerated hyperfractionated radiation therapy in patients with high-grade astrocytomas: a phase II study

    Purpose: To investigate feasibility, activity and toxicity of pre-irradiation chemotherapy (CHT) in patients with newly diagnosed high-grade astrocytoma. Material and Methods: Thirty-five patients with glioblastoma multiform (GBM) and ten patients with anaplastic astrocytoma (AA) entered into this study. Three weeks after surgery patients started their CHT consisting of two cycles of carboplatin (CBDCA) (C) 400 mg/m2, day 1 and etoposide (VP 16) (E) 120 mg/m2, days 1-3, given in a 3-week interval. One week after the second cycle of CE, accelerated hyperfractionated radiation therapy (ACC HFX RT) was introduced with tumor dose of 60 Gy in 40 fractions in 20 treatment days in 4 weeks, 1.5 Gy b.i.d. fractionation.Results: Responses to two cycles of CE could be evaluated in 29 (67%) of 43 patients who received it. Fourteen patients were found impossible to determine radiographic response due to an absence of post-operative contrast enhancement because they were all grossly totally resected. There were 7, 24% (95% confidence intervals - CI, 9-40%), PR (2 AA and 5 GBM), 19 SD, and 3 PD. After RT, of those 29 patients, there were 3 CR and 11 PR (overall objective response rate was 48% (95% CI, 30-67%)), 12 SD, and 3 PD. Median survival time (MST) for all 45 patients is 14 months (95% CI, 11-20 months, while median time to progression (MTP) for all patients is 12 months (95% CI, 8-16 months). Toxicities of this combined modality approach were mild to moderate, with the incidences of CHT-induced grade 3 leukopenia, being 5% (95% CI, 0-11%), and grade 3 thrombocytopenia being 7% (95% CI, 0-15%). Of RT-induced toxicity, grade 1 external otitis was observed in 26% (95% CI, 13-39%), while nausea, vomiting and somnolence were each observed in 5% (95% CI, 0-11%) patients.Conclusion: Pre-irradiation CE and ACC HFX RT was a feasible treatment regimen with mild to moderate toxicity, but failed to improve results over what usually would be obtained with 'standard' approach in this

  12. Decline of Cosmetic Outcomes Following Accelerated Partial Breast Irradiation Using Intensity Modulated Radiation Therapy: Results of a Single-Institution Prospective Clinical Trial

    Purpose: To report the final cosmetic results from a single-arm prospective clinical trial evaluating accelerated partial breast irradiation (APBI) using intensity modulated radiation therapy (IMRT) with active-breathing control (ABC). Methods and Materials: Women older than 40 with breast cancer stages 0-I who received breast-conserving surgery were enrolled in an institutional review board-approved prospective study evaluating APBI using IMRT administered with deep inspiration breath-hold. Patients received 38.5 Gy in 3.85-Gy fractions given twice daily over 5 consecutive days. The planning target volume was defined as the lumpectomy cavity with a 1.5-cm margin. Cosmesis was scored on a 4-category scale by the treating physician. Toxicity was scored according to National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE version 3.0). We report the cosmetic and toxicity results at a median follow-up of 5 years. Results: A total of 34 patients were enrolled. Two patients were excluded because of fair baseline cosmesis. The trial was terminated early because fair/poor cosmesis developed in 7 of 32 women at a median follow-up of 2.5 years. At a median follow-up of 5 years, further decline in the cosmetic outcome was observed in 5 women. Cosmesis at the time of last assessment was 43.3% excellent, 30% good, 20% fair, and 6.7% poor. Fibrosis according to CTCAE at last assessment was 3.3% grade 2 toxicity and 0% grade 3 toxicity. There was no correlation of CTCAE grade 2 or greater fibrosis with cosmesis. The 5-year rate of local control was 97% for all 34 patients initially enrolled. Conclusions: In this prospective trial with 5-year median follow-up, we observed an excellent rate of tumor control using IMRT-planned APBI. Cosmetic outcomes, however, continued to decline, with 26.7% of women having a fair to poor cosmetic result. These results underscore the need for continued cosmetic assessment for patients treated with APBI by technique

  13. ICT accelerators for radiation applications

    Several ICT accelerators were designed and constructed during the past two decades and are now in use in some factories and institutes in various parts of China. The specifications, design considerations, construction specialities and information about the applications of these accelerators are given in the present paper. (author)

  14. Feasibility of using laser ion accelerators in proton therapy

    Bulanov, S V

    2002-01-01

    The feasibility of using the laser plasma as a source of the high-energy ions for the proton radiation therapy is discussed. The proposal is based on the recent inventions of the effective ions acceleration in the experiments and through numerical modeling of the powerful laser radiation interaction with the gaseous and solid state targets. The principal peculiarity of the dependence of the protons energy losses in the tissues (the Bragg peak of losses) facilities the solution of one of the most important problems of the radiation therapy, which consists in realizing the tumor irradiation by sufficiently high and homogeneous dose with simultaneous minimization of the irradiation level, relative to the healthy and neighbouring tissues and organs

  15. Radiation safety research at Indus accelerator complex

    A brief description of the radiation safety research being carried out at the electron synchrotron radiation sources, Indus-1 (450 MeV) and Indus-2 (2.5 GeV) is presented. As these sources being operated at high energy, the radiation environment is primarily due to the interaction of these electrons with accelerating structure, when beam loss takes place, and subsequent development of electromagnetic cascade. Radiation in the cascade mainly consists of the Bremsstrahlung component which initiates photo-neutron production. Characteristics of these radiations are that the energy can be as high up to the energy of the accelerated electron. This gives rise to problems in detection and personnel dosimetry due to dose buildup effects. The angular dependency and pulsed nature of these radiations complicate the issue of detection. Besides, accidental loss of beam in the vacuum envelope of the accelerator, in addition to normal loss calls for appropriate evaluation of these contributions for personnel radiation safety. Attempts made to understand these problems and the research and development work carried out at Indus Accelerator Complex in order to address them will be discussed. (author)

  16. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    Cossairt, J.D.

    1993-11-01

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements.

  17. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    This report discusses the following topics: Composition of Accelerator Radiation Fields; Shielding of Electrons and Photons at Accelerators; Shielding of Hadrons at Accelerators; Low Energy Prompt Radiation Phenomena; Induced Radioactivity at Accelerators; Topics in Radiation Protection Instrumentation at Accelerators; and Accelerator Radiation Protection Program Elements

  18. External Radiation Therapy

    Full Text Available ... D.: There are different forms of radiation for prostate cancer. They really boil down to two different types. There's what we call external beam treatment, which is given from an x-ray ... the prostate. [beeping] Narrator: The more common form of radiation ...

  19. Terahertz radiation from laser accelerated electron bunches

    Coherent terahertz and millimeter wave radiation from laser accelerated electron bunches has been measured. The bunches were produced by tightly focusing (spot diameter ∼ 6 (micro)m) a high peak power (up to 10 TW), ultra-short ((ge)50 fs) laser pulse from a high repetition rate (10 Hz) laser system (0.8 (micro)m), onto a high density (>1019 cm-3) pulsed gas jet of length ∼ 1.5 mm. As the electrons exit the plasma, coherent transition radiation is generated at the plasma-vacuum boundary for wavelengths long compared to the bunch length. Radiation in the 0.3-19 THz range and at 94 GHz has been measured and found to depend quadratically on the bunch charge. The measured radiated energy for two different collection angles is in good agreement with theory. Modeling indicates that optimization of this table-top source could provide more than 100 (micro)J/pulse. Together with intrinsic synchronization to the laser pulse, this will enable numerous applications requiring intense terahertz radiation. This radiation can also be used as a powerful tool for measuring the properties of laser accelerated bunches at the exit of the plasma accelerator. Preliminary spectral measurements indicates that bunches as short as 30-50 fs have been produced in these laser driven accelerators

  20. Radiation safety consideration during intraoperative radiation therapy

    Using in-house-designed phantoms, the authors evaluated radiation exposure rates in the vicinity of a newly acquired intraoperative radiation therapy (IORT) system: Axxent Electronic Brachytherapy System. The authors also investigated the perimeter radiation levels during three different clinical intraoperative treatments (breast, floor of the mouth and bilateral neck cancer patients). Radiation surveys during treatment delivery indicated that IORT using the surface applicator and IORT using balloons inserted into patient body give rise to exposure rates of 200 mR h-1, 30 cm from a treated area. To reduce the exposure levels, movable lead shields should be used as they reduce the exposure rates by >95 %. The authors' measurements suggest that intraoperative treatment using the 50-kVp X-ray source can be administered in any regular operating room without the need for radiation shielding modification as long as the operators utilise lead aprons and/or stand behind lead shields. (authors)

  1. Illusory Flow in Radiation from Accelerating Charge

    Biro, Tamas S; Schram, Zsolt

    2014-01-01

    In this paper we analyze the classical electromagnetic radiation of an accelerating point charge moving on a straight line trajectory. Depending on the duration of accelerations, rapidity distributions of photons emerge, resembling the ones obtained in the framework of hydrodynamical models by Landau or Bjorken. Detectable differences between our approach and spectra obtained from hydrodynamical models occur at high transverse momenta and are due to interference.

  2. External Radiation Therapy

    Full Text Available ... the cancer is not completely contained in the prostate or when the patient is older the treatment ... D.: There are different forms of radiation for prostate cancer. They really boil down to two different ...

  3. Radiative processes of uniformly accelerated entangled atoms

    Menezes, G

    2015-01-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms travelling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that the maximally entangled antisymmetric Bell state is a decoherence-free state.

  4. Radiation Therapy of Pituitary Tumors

    Radiation treatment results were analyzed in a retrospective analysis of 47 patients with pituitary adenoma treated with radiation alone or combined with surgery from 1974 through 1987 at the Department of Therapeutic Radiology of Kyung Hee University. The 5-year overall survival rates for all patients was 80.4%. Radiation therapy was effective for improving visual symptoms and headache, but could not normalize amenorrhea and galactorrhoea. There was no difference of survival rate between radiation alone and combination with surgery. Prognostic factors such as age, sex, disease type, visual field, headache and surgical treatment were statistically no significant in survival rates of these patients

  5. Rectal injuries following radiation therapy

    Rectal injuries following radiation therapy were reviewed. Primary diseases in which radiation injuries appeared were described, and local injuries in the neibouring organs such as the small intestine, the bladder, the uterus, and the vagina were also referred to. Classification, frequency, fistulation, radiation necrosis, x-ray findings and occurrence time of rectal and sigmoid colonic injuries were reported. As occurrence factors of radiation injuries, total dose, measurement of dose, stage of primary disease, and history of laparatomy were mentioned. Countermeasures for reducing rectal injuries and treatment methods of local injuries were also described. (Serizawa, K.)

  6. Curative radiation therapy in prostate cancer

    Radiotherapy has experienced an extremely rapid development in recent years. Important improvements such as the introduction of multileaf collimators and computed tomography (CT)-based treatment planning software have enabled three dimensional conformal external beam radiation therapy (3DCRT). The development of treatment planning systems and technology for brachytherapy has been very rapid as well. Development of accelerators with integrated on-board imaging equipment and technology, for example image-guided radiation therapy (IGRT) has further improved the precision with reduced margins to adjacent normal tissues. This has, in turn, led to the possibility to administer even higher doses to the prostate than previously. Although radiotherapy and radical prostatectomy have been used for the last decades as curative treatment modalities, still there are no randomized trials published comparing these two options. Outcome data show that the two treatment modalities are highly comparable when used for low- and intermediate-risk prostate cancer

  7. Late Toxicity and Patient Self-Assessment of Breast Appearance/Satisfaction on RTOG 0319: A Phase 2 Trial of 3-Dimensional Conformal Radiation Therapy-Accelerated Partial Breast Irradiation Following Lumpectomy for Stages I and II Breast Cancer

    Purpose: Late toxicities and cosmetic analyses of patients treated with accelerated partial breast irradiation (APBI) on RTOG 0319 are presented. Methods and Materials: Patients with stages I to II breast cancer ≤3 cm, negative margins, and ≤3 positive nodes were eligible. Patients received three-dimensional conformal external beam radiation therapy (3D-CRT; 38.5 Gy in 10 fractions twice daily over 5 days). Toxicity and cosmesis were assessed by the patient (P), the radiation oncologist (RO), and the surgical oncologist (SO) at 3, 6, and 12 months from the completion of treatment and then annually. National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to grade toxicity. Results: Fifty-two patients were evaluable. Median follow-up was 5.3 years (range, 1.7-6.4 years). Eighty-two percent of patients rated their cosmesis as good/excellent at 1 year, with rates of 64% at 3 years. At 3 years, 31 patients were satisfied with the treatment, 5 were not satisfied but would choose 3D-CRT again, and none would choose standard radiation therapy. The worst adverse event (AE) per patient reported as definitely, probably, or possibly related to radiation therapy was 36.5% grade 1, 50% grade 2, and 5.8% grade 3 events. Grade 3 AEs were all skin or musculoskeletal-related. Treatment-related factors were evaluated to potentially establish an association with observed toxicity. Surgical bed volume, target volume, the number of beams used, and the use of bolus were not associated with late cosmesis. Conclusions: Most patients enrolled in RTOG 0319 were satisfied with their treatment, and all would choose to have the 3D-CRT APBI again

  8. Late Toxicity and Patient Self-Assessment of Breast Appearance/Satisfaction on RTOG 0319: A Phase 2 Trial of 3-Dimensional Conformal Radiation Therapy-Accelerated Partial Breast Irradiation Following Lumpectomy for Stages I and II Breast Cancer

    Chafe, Susan, E-mail: susan.chafe@albertahealthservices.ca [Department of Radiation Oncology, Cross Cancer Institute-University of Alberta, Edmonton, Alberta (Canada); Moughan, Jennifer [Department of Radiation Oncology, RTOG Statistical Center, Philadelphia, Pennsylvania (United States); McCormick, Beryl [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wong, John [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland (United States); Pass, Helen [Womens' Breast Center, Stamford Hospital, Stamford, Connecticut (United States); Rabinovitch, Rachel [Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado (United States); Arthur, Douglas W. [Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Petersen, Ivy [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); White, Julia [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Vicini, Frank A. [Michigan Healthcare Professionals/21st Century Oncology, Farmington Hills, Michigan (United States)

    2013-08-01

    Purpose: Late toxicities and cosmetic analyses of patients treated with accelerated partial breast irradiation (APBI) on RTOG 0319 are presented. Methods and Materials: Patients with stages I to II breast cancer ≤3 cm, negative margins, and ≤3 positive nodes were eligible. Patients received three-dimensional conformal external beam radiation therapy (3D-CRT; 38.5 Gy in 10 fractions twice daily over 5 days). Toxicity and cosmesis were assessed by the patient (P), the radiation oncologist (RO), and the surgical oncologist (SO) at 3, 6, and 12 months from the completion of treatment and then annually. National Cancer Institute Common Terminology Criteria for Adverse Events, version 3.0, was used to grade toxicity. Results: Fifty-two patients were evaluable. Median follow-up was 5.3 years (range, 1.7-6.4 years). Eighty-two percent of patients rated their cosmesis as good/excellent at 1 year, with rates of 64% at 3 years. At 3 years, 31 patients were satisfied with the treatment, 5 were not satisfied but would choose 3D-CRT again, and none would choose standard radiation therapy. The worst adverse event (AE) per patient reported as definitely, probably, or possibly related to radiation therapy was 36.5% grade 1, 50% grade 2, and 5.8% grade 3 events. Grade 3 AEs were all skin or musculoskeletal-related. Treatment-related factors were evaluated to potentially establish an association with observed toxicity. Surgical bed volume, target volume, the number of beams used, and the use of bolus were not associated with late cosmesis. Conclusions: Most patients enrolled in RTOG 0319 were satisfied with their treatment, and all would choose to have the 3D-CRT APBI again.

  9. Radiation Therapy for Cancer

    ... Cancers by Body Location Childhood Cancers Adolescent & Young Adult Cancers Metastatic Cancer Recurrent Cancer Research NCI’s Role in ... the affected area). Damage to the bowels, causing diarrhea and ... a second cancer caused by radiation exposure. Second cancers that develop ...

  10. External Radiation Therapy

    Full Text Available Narrator: When the cancer is not completely contained in the prostate or when the patient is older the treatment that is frequently used ... There are different forms of radiation for prostate cancer. They really boil down to two different types. ...

  11. Intensity-modulated radiation therapy.

    Goffman, Thomas E; Glatstein, Eli

    2002-07-01

    Intensity-modulated radiation therapy (IMRT) is an increasingly popular technical means of tightly focusing the radiation dose around a cancer. As with stereotactic radiotherapy, IMRT uses multiple fields and angles to converge on the target. The potential for total dose escalation and for escalation of daily fraction size to the gross cancer is exciting. The excitement, however, has greatly overshadowed a range of radiobiological and clinical concerns. PMID:12071811

  12. Radiation safety aspects at Indus accelerator complex

    Indus Accelerator Complex at Raja Ramanna Center for Advanced Technology houses two synchrotron radiation sources Indus-1 and Indus-2 that are being operated round-the-clock to cater to the needs of the research community. Indus-1 is a 450 MeV electron storage ring and Indus-2 is presently being operated with electrons stored at 2 GeV. Bremsstrahlung radiation and photo-neutrons form the major radiation environment in Indus Accelerator Complex. They are produced due to loss of electron-beam occurring at different stages of operation of various accelerators located in the complex. The synchrotron radiation (SR) also contributes as a potential hazard. In order to ensure safety of synchrotron radiation users and operation and maintenance staff working in the complex from this radiation, an elaborate radiation safety system is in place. The system comprises a Personnel Protection System (PPS) and a Radiation Monitoring System (RMS). The PPS includes zoning, radiation shielding, door interlocks, a search and scram system and machine operation trip-interlocks. The RMS consists of area radiation monitors and beam loss monitors, whose data is available online in the Indus control room. Historical data of radiation levels is also available for data analysis. Synchrotron radiation beamlines at Indus-2 are handled in a special manner owing to the possibility of exposure to synchrotron radiation. Shielding hutches with SR monitors are installed at each beamline of Indus-2. Health Physics Unit also carries out regular radiological surveillance for photons and neutrons during various modes of operation and data is logged shift wise. The operation staff is appropriately trained and qualified as per the recommendations of Atomic Energy Regulatory Board (AERB). Safety training is also imparted to the beamline users. Safe operation procedures and operation checklists are being followed strictly. A radiation instrument calibration facility is also being set-up at RRCAT. The radiation

  13. Electron accelerator applications for radiation processing

    Full text: Department of Nuclear Sciences and Applications (NS) - contributes to the worldwide nuclear sciences and technology development. Through NS, jointly with institutes and laboratories worldwide, the IAEA supports R and D on critical problems facing developing countries. Work targets food, health, water, environment and high tech areas where nuclear and radiation technologies can make a difference. The results and recommendations from the programme elaborated at NAPC lead to organization and execution of the following meetings on the most important issues regarding radiation technology applications, mostly based on accelerator technology: - Technical Meeting (TM) on 'Emerging Applications of Radiation Processing', April, 2003, Vienna, Austria (TECDOC-1386) - Consultants Meeting (CT) on 'Advances in Radiation Processing of Polymers', September 2003, Notre Dame, Indiana, U.S.A. (TECDOC-1420) - Consultants Meeting (CT) on 'Status of Industrial Scale Radiation Treatment of Wastewater', October 2003, Daejon, Republic of Korea (TECDOC-1407) - Consultants Meeting (CT) on 'Radiation Processing of Polysaccharides', November 2003, Takasaki, Japan (TECDOC-1422) - Consultants Meeting (CT) on 'Emerging Applications of Radiation in Nanotechnology', March 2004, Bologna, Italy (TECDOC-1438) - Consultants Meeting (CT) on 'Radiation Processing of Gaseous and Liquid Effluents', September 2004, Sofia, Bulgaria. The total number of accelerators installed all over the world exceeds 13,000, among them the number of units applied for radiation processing being close to 1,200. Direct, transformer accelerators, single resonant cavity accelerators and microwave source powered linear accelerators have been found to be the most suitable for radiation processing. The industrial accelerators' development is still in progress, not only due to new areas of application but also because of demands of lower cost and more compact size machines. Some new countries elaborated their own

  14. Khan's the physics of radiation therapy

    Khan, Faiz M

    2014-01-01

    Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team-radiation oncologists, medical physicists, dosimetrists, and radiation therapists-develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (

  15. Radiation therapy for endometrial carcinoma

    Although pelvic irradiation has traditionally been employed as an adjunct to surgery, the role of radiation therapy as a definitive therapeutic modality continues to be controversial. One-hundred and twenty-one patients were treated for endometrial carcinoma between 1978 and 1985 at the Medical College of Virginia Hospital. These patients were divided into three groups with respect to their treatment. Group 1 consisted of 16 patients who had preoperative radiation therapy, group 2 consisted of 77 patients who had postoperative radiation therapy, and group 3 consisted of 28 patients who had radiation therapy alone. Ninety-three percent of the patients in groups 1 and 2 and 68% of patients in group 3 had stages I and II disease. In group 3, 32% of the patients had stages III and IV disease. Two-thirds of the patients in groups 1 and 2 had moderately differentiated tumor. One-third of patients in group 3 had poorly differentiated tumor. Sixty percent of the study's population in group 2 had deep myometrial invasion. The treatment doses utilized and local failures will be presented. All of the patients have been followed for a minimum period of 2 years. The observed actuarial 5-year survival was 85%, 80%, and 53%, respectively, for groups 1, 2, and 3. The overall survival of the entire patient population was 77%. There was 1 fatality secondary to small bowel complication in group 2 and another serious complication of rectovaginal fistula in group 1 requiring colostomy. Other side effects were skin reaction, diarrhea, and cystitis, which were treated symptomatically. Analysis of the authors' institution experience with adenocarcinoma of the endometrium and its management with radiation therapy is presented. Survival is correlated with stage, grade, and depth of myometrial invasion

  16. Radiation therapy for retinoblastoma

    Treatment results were examined about 39 retinoblastoma introduced to the radiotherapy purpose, at National Center for Child Health and Development, during the 37 years from 1975 to 2012. In 29 patients of bilateral, 24 patients were postoperative radiotherapy, 4 patients were for preservation purpose. In 10 unilateral patients, 5 patients were postoperative, 4 patients were for preservation purpose. Delayed adverse events, 11 patients with cataracts requiring surgery, pituitary dysfunction 2 patients who take a hormone replacement, 1 glaucoma, were showed. The recurrence was 6 patients, and inner 1 patient was a trilateral retinoblastoma, and turned into the only death case. The onset of secondary cancer was observed in 4 patients, 1 was Merkel cell carcinoma and 3 patients were rhabdomyosarcoma. All had occurred out of the radiation field. (author)

  17. Phase II Study of Accelerated High-Dose Radiotherapy With Concurrent Chemotherapy for Patients With Limited Small-Cell Lung Cancer: Radiation Therapy Oncology Group Protocol 0239

    Purpose: To investigate whether high-dose thoracic radiation given twice daily during cisplatin-etoposide chemotherapy for limited small-cell lung cancer (LSCLC) improves survival, acute esophagitis, and local control rates relative to findings from Intergroup trial 0096 (47%, 27%, and 64%). Patients and Methods: Patients were accrued over a 3-year period from 22 US and Canadian institutions. Patients with LSCLC and good performance status were given thoracic radiation to 61.2 Gy over 5 weeks (daily 1.8-Gy fractions on days 1-22, then twice-daily 1.8-Gy fractions on days 23-33). Cisplatin (60 mg/m2 IV) was given on day 1 and etoposide (120 mg/m2 IV) on days 1-3 and days 22-24, followed by 2 cycles of cisplatin plus etoposide alone. Patients who achieved complete response were offered prophylactic cranial irradiation. Endpoints included overall and progression-free survival; severe esophagitis (Common Toxicity Criteria v 2.0) and treatment-related fatalities; response (Response Evaluation Criteria in Solid Tumors); and local control. Results: Seventy-two patients were accrued from June 2003 through May 2006; 71 were evaluable (median age 63 years; 52% female; 58% Zubrod 0). Median survival time was 19 months; at 2 years, the overall survival rate was 36.6% (95% confidence interval [CI] 25.6%-47.7%), and progression-free survival 19.7% (95% CI 11.4%-29.6%). Thirteen patients (18%) experienced severe acute esophagitis, and 2 (3%) died of treatment-related causes; 41% achieved complete response, 39% partial response, 10% stable disease, and 6% progressive disease. The local control rate was 73%. Forty-three patients (61%) received prophylactic cranial irradiation. Conclusions: The overall survival rate did not reach the projected goal; however, rates of esophagitis were lower, and local control higher, than projected. This treatment strategy is now one of three arms of a prospective trial of chemoradiation for LSCLC (Radiation Therapy Oncology Group 0538/Cancer and

  18. Phase II Study of Accelerated High-Dose Radiotherapy With Concurrent Chemotherapy for Patients With Limited Small-Cell Lung Cancer: Radiation Therapy Oncology Group Protocol 0239

    Komaki, Ritsuko, E-mail: rkomaki@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Paulus, Rebecca [Radiation Therapy Oncology Group Statistical Center, Philadelphia, Pennsylvania (United States); Ettinger, David S. [Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland (United States); Videtic, Gregory M.M. [Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio (United States); Bradley, Jeffrey D. [Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri (United States); Glisson, Bonnie S. [Department of Thoracic/Head and Neck Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Langer, Corey J. [Thoracic Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Sause, William T. [Radiation Center, LDS Hospital, Salt Lake City, Utah (United States); Curran, Walter J. [Department of Radiation Oncology, Jefferson Medical College, Philadelphia, Pennsylvania (United States); Choy, Hak [Department of Radiation Oncology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas (United States)

    2012-07-15

    Purpose: To investigate whether high-dose thoracic radiation given twice daily during cisplatin-etoposide chemotherapy for limited small-cell lung cancer (LSCLC) improves survival, acute esophagitis, and local control rates relative to findings from Intergroup trial 0096 (47%, 27%, and 64%). Patients and Methods: Patients were accrued over a 3-year period from 22 US and Canadian institutions. Patients with LSCLC and good performance status were given thoracic radiation to 61.2 Gy over 5 weeks (daily 1.8-Gy fractions on days 1-22, then twice-daily 1.8-Gy fractions on days 23-33). Cisplatin (60 mg/m{sup 2} IV) was given on day 1 and etoposide (120 mg/m{sup 2} IV) on days 1-3 and days 22-24, followed by 2 cycles of cisplatin plus etoposide alone. Patients who achieved complete response were offered prophylactic cranial irradiation. Endpoints included overall and progression-free survival; severe esophagitis (Common Toxicity Criteria v 2.0) and treatment-related fatalities; response (Response Evaluation Criteria in Solid Tumors); and local control. Results: Seventy-two patients were accrued from June 2003 through May 2006; 71 were evaluable (median age 63 years; 52% female; 58% Zubrod 0). Median survival time was 19 months; at 2 years, the overall survival rate was 36.6% (95% confidence interval [CI] 25.6%-47.7%), and progression-free survival 19.7% (95% CI 11.4%-29.6%). Thirteen patients (18%) experienced severe acute esophagitis, and 2 (3%) died of treatment-related causes; 41% achieved complete response, 39% partial response, 10% stable disease, and 6% progressive disease. The local control rate was 73%. Forty-three patients (61%) received prophylactic cranial irradiation. Conclusions: The overall survival rate did not reach the projected goal; however, rates of esophagitis were lower, and local control higher, than projected. This treatment strategy is now one of three arms of a prospective trial of chemoradiation for LSCLC (Radiation Therapy Oncology Group 0538

  19. Radiation Therapy: Preventing and Managing Side Effects

    ... yourself during radiation therapy Radiation therapy can damage healthy body tissues in or near the area being treated, which can cause side effects. Many people worry about this part of their cancer treatment. Before ...

  20. Anaemia and radiation therapy

    Anaemia is frequent in cancer and may increase tumour hypoxia that stimulates angiogenesis. However, erythropoietin is a hypoxia-inducible stimulator of erythropoiesis which seems to improve quality of life in cancer patients. Two recent phase III randomized studies showed negative results using erythropoietin in head and neck cancer patients and in metastatic breast cancer patients with impaired specific survival. In vitro and in vivo experiments have provided erythropoietin-receptor expression in endothelial cancer cells including malignant tumours of the breast, prostate, cervix, lung, head and neck, ovary, melanoma, stomach, gut, kidney etc. Biologic effect of erythropoietin and its receptor linkage induces proliferation of human breast cancer and angiogenesis and may limit anti-tumour effect of cancer treatment, in part, by tumour vascularization improvement. In addition, the use of exogenous erythropoietin could be able to favour tumour progression by improving tumour oxygenation and nutriment supply. If erythropoietin receptor were functional in human cancer. the assessment of erythropoietin receptor expression on tumour cell may help to select patients benefiting from exogenous erythropoietin. However. the relationship between erythropoietin receptor expression, tumour growth and exogenous erythropoietin. requires more studies. The results of recent clinical trials suggest that using erythropoietin should be avoided in non-anemic patients and discussed in patients receiving curative therapy. (authors)

  1. Radiation therapy of esophageal cancer

    Radiation therapy has been used extensively in the management of patients with cancer of the esophagus. It has demonstrated an ability to cure a small minority of patients. Cure is likely to be limited to patients who have lesions less than 5 cm in length and have minimal, if any, involvement of lymph nodes. Esophagectomy is likely to cure a similar, small percentage of patients with the same presentation of minimal disease but has a substantial acute postoperative mortality rate and greater morbidity than irradiation. Combining surgery and either preoperative or postoperative irradiation may cure a small percentage of patients beyond the number cured with either modality alone. Radiation has demonstrated benefit as an adjuvant to surgery following the resection of minimal disease. However, radiation alone has never been compared directly with surgery for the highly select, minimal lesions managed by surgery. Radiation provides good palliation of dysphagia in the majority of patients, and roughly one third may have adequate swallowing for the duration of their illness when ''radical'' doses have been employed. Surgical bypass procedures have greater acute morbidity but appear to provide more reliable, prolonged palliation of dysphagia. Several approaches to improving the efficacy of irradiation are currently under investigation. These approahces include fractionation schedules, radiosensitizers, neutron-beam therapy, and helium-ion therapy

  2. Electromagnetic radiation. Variational methods, waveguides and accelerators

    This is a graduate level textbook on the theory of electromagnetic radiation and its application to waveguides, transmission lines, accelerator physics and synchrotron radiation. It has grown out of lectures and manuscripts by Julian Schwinger prepared during the war at MIT's Radiation Laboratory, updated with material developed by Schwinger at UCLA in the 1970s and 1980s, and by Milton at the University of Oklahoma since 1994. The book includes a great number of straightforward and challenging exercises and problems. It is addressed to students in physics, electrical engineering, and applied mathematics seeking a thorough introduction to electromagnetism with emphasis on radiation theory and its applications. A hardcover edition containing additionally the reprints of more than 15 papers by Schwinger on these topics is available separately. (orig.)

  3. Injection accelerator for proton therapy system

    We have developed the magnet-free alternating phase focusing (APF) linac for proton cancer therapy facilities. This new linac enhances the reliability and serviceability of such facilities. The newly developed linac uses radio-frequency electric field to accelerate as well as focus a beam of protons (hydrogen nuclei). The electric field is designed with 'sawtooth-shaped phase modulation technology', which can generate high-quality beam. The elimination of magnets has resulted in a simplified linac structure that requires very few adjustments, resulting in improved reliability and serviceability. The system uses a resonant coupler to distribute radio-frequency power, the first such commercial application in the world. The ratio-frequency power supply has been integrated into a single unit, simplifying the structure of the facility. There is no need to adjust the ratio-frequency power phase, for easy servicing. (author)

  4. Radiation from Shock-Accelerated Particles

    Nishikawa, Ken-ichi; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2012-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration, generation of magnetic fields , and associated radiation. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. The shock structure depends on the composition of the jet and ambient plasma (electron-positron or electron-ions). Strong electromagnetic fields are generated in the reverse , jet shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The detailed properties of the radiation are important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jet shocks, and supernova remnants

  5. Megavoltage radiation therapy: Meeting the technological needs

    addressing technological needs for megavoltage radiation treatment, that the radiation treatment machine technology not be considered in isolation from the technologies associated with the other steps of the treatment process. It makes no sense to have highly sophisticated linear accelerators capable of 3-D conformal and intensity modulated radiation therapy (IMRT) if there is not a good imaging capability for accurately defining the extent and location of both tumours and normal tissues. Requirements for a radiation therapy facility have been defined in an IAEA report. This report considered cobalt-60 megavoltage therapy machines but indicated that the IAEA would not consider provisions for linear accelerators. In 1993, the Pan American Health Organization along with the WHO and the IAEA produced a report describing the design requirements for megavoltage x-ray machines for cancer treatment in developing countries. Clearly, even within the last decade, there are still different opinions on the benefits (and risks) of cobalt-60 versus linear accelerators for provision of radiation treatment especially in the context of developing countries. There are a number of considerations when a particular institution in any country makes decisions about the purchase of radiation therapy equipment. Broadly speaking, these include: Societal infrastructure considerations (e.g. is there stable electrical power available to support the treatment and related technologies?); Financial considerations (e.g. are there sufficient financial resources to purchase, operate, maintain and eventually dispose of the treatment technology?); Types and stage of diseases most likely to be treated (e.g. late stage diseases have different planning and treatment requirements compared to early stage and well localized tumours); The number and types of professional staff available to support the treatment technologies (e.g. radiation oncologists, medical physicists, radiation therapists (technologists), and

  6. Radiation Therapy and Hearing Loss

    A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment- and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associated ototoxicity as well as a detailed approach for scoring toxicity is presented.

  7. [Radiation therapy of pancreatic cancer].

    Huguet, F; Mornex, F; Orthuon, A

    2016-09-01

    Currently, the use of radiation therapy for patients with pancreatic cancer is subject to discussion. In adjuvant setting, the standard treatment is 6 months of chemotherapy with gemcitabine and capecitabine. Chemoradiation (CRT) may improve the survival of patients with incompletely resected tumors (R1). This should be confirmed by a prospective trial. Neoadjuvant CRT is a promising treatment especially for patients with borderline resectable tumors. For patients with locally advanced tumors, there is no a standard. An induction chemotherapy followed by CRT for non-progressive patients reduces the rate of local relapse. Whereas in the first trials of CRT large fields were used, the treated volumes have been reduced to improve tolerance. Tumor movements induced by breathing should be taken in account. Intensity modulated radiation therapy allows a reduction of doses to the organs at risk. Whereas widely used, this technique is not recommended. PMID:27523418

  8. Oray surgery and radiation therapy

    Carl, W.

    1975-07-01

    Clinical evidence seems to indicate that careful oral surgery after radiation therapy contributes little, if anything at all, to the onset of osteoradionecrosis. In many cases the process of bone dissolution has already well progressed before teeth have to be extracted. The bone changes can be demonstrated radiographically and clinically. The teeth in the immediate area become very mobile and cause severe pain during mastication. Whether this condition could have been prevented by extractions before radiation therapy is difficult to establish. Osteoradionecrosis may be encountered in edentulous jaws. It manifests itself clinically by bone segments which break loose and penetrate through the mucosa leaving a defect which does not heal over. More research and more comparative studies are needed in this area in order to make reasonably accurate predictions.

  9. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    Cossairt, J.D.

    1996-10-01

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements.

  10. Topics in radiation at accelerators: Radiation physics for personnel and environmental protection

    In the first chapter, terminology, physical and radiological quantities, and units of measurement used to describe the properties of accelerator radiation fields are reviewed. The general considerations of primary radiation fields pertinent to accelerators are discussed. The primary radiation fields produced by electron beams are described qualitatively and quantitatively. In the same manner the primary radiation fields produced by proton and ion beams are described. Subsequent chapters describe: shielding of electrons and photons at accelerators; shielding of proton and ion accelerators; low energy prompt radiation phenomena; induced radioactivity at accelerators; topics in radiation protection instrumentation at accelerators; and accelerator radiation protection program elements

  11. Radiation therapy for pleural mesothelioma

    There is clear evidence that both pleural and peritoneal malignant mesothelioma are increasing in incidence in the United States. There is a recognized long period of latency from asbestos exposure to the emergence and diagnosis of tumor. Considering the levels of asbestos utilization in the mid-20th century, we must expect that the number of cases will continue to increase until the end of this century. Evaluation of treatment options is thus a critical issue in determining treatment approaches for this disease. Recognized only recently, mesothelioma has no effective treatment, and patients are reported only anecdotally as cured. Pleural mesothelioma is the more common presentation, but even here the reports are from small, uncontrolled series. Only one study is available in which a concomitant comparison of treatment methods was carried out. Randomized clinical studies regarding treatment of pleural mesothelioma have only recently been initiated by the clinical cooperative groups. There is thus a paucity of information on treatment in general and radiation therapy specifically for malignant mesothelioma. This chapter reviews the reported experience using radiation therapy alone and combined with other modalities for the treatment of malignant pleural mesothelioma and considers the potential for improvement of the results of current methods of radiation therapy

  12. Development of local radiation therapy

    The major limitations of radiation therapy for cancer are the low effectiveness of low LET and inevitable normal tissue damage. Boron Neutron Capture Therapy (BNCT) is a form of potent radiation therapy using Boron-10 having a high propensityof capturing theraml neutrons from nuclear reactor and reacting with a prompt nuclear reaction. Photodynamic therapy is a similiar treatment of modality to BNCT using tumor-seeking photosenistizer and LASER beam. If Boron-10 and photosensitizers are introduced selectively into tumor cells, it is theoretically possible to destroy the tumor and to spare the surrounding normal tissue. Therefore, BNCT and PDT will be new potent treatment modalities in the next century. In this project, we performed PDT in the patients with bladder cancers, oropharyngeal cancer, and skin cancers. Also we developed I-BPA, new porphyrin compounds, methods for estimation of radiobiological effect of neutron beam, and superficial animal brain tumor model. Furthermore, we prepared preclinical procedures for clinical application of BNCT, such as the macro- and microscopic dosimetry, obtaining thermal neutron flux from device used for fast neutron production in KCCH have been performed

  13. Development of local radiation therapy

    Lee, Seung Hoon; Lim, Sang Moo; Choi, Chang Woon; Chai, Jong Su; Kim, Eun Hee; Kim, Mi Sook; Yoo, Seong Yul; Cho, Chul Koo; Lee, Yong Sik; Lee, Hyun Moo

    1999-04-01

    The major limitations of radiation therapy for cancer are the low effectiveness of low LET and inevitable normal tissue damage. Boron Neutron Capture Therapy (BNCT) is a form of potent radiation therapy using Boron-10 having a high propensityof capturing theraml neutrons from nuclear reactor and reacting with a prompt nuclear reaction. Photodynamic therapy is a similiar treatment of modality to BNCT using tumor-seeking photosenistizer and LASER beam. If Boron-10 and photosensitizers are introduced selectively into tumor cells, it is theoretically possible to destroy the tumor and to spare the surrounding normal tissue. Therefore, BNCT and PDT will be new potent treatment modalities in the next century. In this project, we performed PDT in the patients with bladder cancers, oropharyngeal cancer, and skin cancers. Also we developed I-BPA, new porphyrin compounds, methods for estimation of radiobiological effect of neutron beam, and superficial animal brain tumor model. Furthermore, we prepared preclinical procedures for clinical application of BNCT, such as the macro- and microscopic dosimetry, obtaining thermal neutron flux from device used for fast neutron production in KCCH have been performed.

  14. New frontier of laser particle acceleration: driving protons to 80 MeV by radiation pressure

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Lee, Chang-Lyoul; Choi, Il Woo; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V; Jeong, Tae Moon; Nam, Chang Hee

    2014-01-01

    The radiation pressure acceleration (RPA) of charged particles has been considered a challenging task in laser particle acceleration. Laser-driven proton/ion acceleration has attracted considerable interests due to its underlying physics and potential for applications such as high-energy density physics, ultrafast radiography, and cancer therapy. Among critical issues to overcome the biggest challenge is to produce energetic protons using an efficient acceleration mechanism. The proton acceleration by radiation pressure is considerably more efficient than the conventional target normal sheath acceleration driven by expanding hot electrons. Here we report the generation of 80-MeV proton beams achieved by applying 30-fs circularly polarized laser pulses with an intensity of 6.1 x 1020 W/cm2 to ultrathin targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and 3D-PIC simulations. We expect this fast energy scalin...

  15. Late complications of radiation therapy

    There are cases in which, although all traces of acute radiation complications seem to have disappeared, late complications may appear months or years to become apparent. Trauma, infection or chemotherapy may sometimes recall radiation damage and irreversible change. There were two cases of breast cancer that received an estimated skin dose in the 6000 cGy range followed by extirpation of the residual tumor. The one (12 y.o.) developed atrophy of the breast and severe teleangiectasis 18 years later radiotherapy. The other one (42 y.o.) developed severe skin necrosis twenty years later radiotherapy after administration of chemotherapy and received skin graft. A case (52 y.o.) of adenoidcystic carcinoma of the trachea received radiation therapy. The field included the thoracic spinal cord which received 6800 cGy. Two years and 8 months after radiation therapy she developed complete paraplegia and died 5 years later. A truly successful therapeutic outcome requires that the patient be alive, cured and free of significant treatment-related morbidity. As such, it is important to assess quality of life in long-term survivors of cancer treatment. (author)

  16. Practical risk management in radiation therapy

    Technology advances in radiation therapy is very remarkable. In the technological progress of radiation therapy, development of computer control technology has helped. However, there is no significant progress in the ability of human beings who is operating. In many hospitals, by the incorrect parameter setting and wrong operations at radiation treatment planning system, many incidents have been reported recently. In order to safely use invisible radiation beam for treatment, what we should be careful? In state-of-the-art radiation therapy and many technological progress, risk management should be correspond continue. I report practical risk management in radiation therapy about the technical skills, non-technical skills and the quality control. (author)

  17. Accelerated neuroregulation for therapy of opiate dependency

    S. Sunatrio

    2004-03-01

    Full Text Available Acute weaning from chronic opioid abuse during general anesthesia is usually followed by adrenergic outflow effects. This article is to report our experience with accelerated neuroregulation that reverses the physical and psychological dependency. After a comprehensive psychological and medical examination, 361 heroin dependent patients were admitted to ICU to be hospitalized for a full 24 or 36 hours, including a 6 hour pre-procedure medication process (solbutamol, clonidine, diazepam, ranitidine, omeprazole, vitamin C, octreotide, and ondansetron. Anesthesia was induced with midazolam and propofol iv and maintained with propofol infusion. Naltrexon, clonidine, octreotide, and diazepam were then administered. Anesthesia was maintained for 3 ½ - 5 hours depending on severity of withdrawal symptoms precipitated by naltrexone. Analgetics and sedatives were given as needed afterwards. Upon discharge on the following day, patient was prescribed a regimen of oral naltrexone for 10-12 months. All 361 patients were successfully detoxified without any adverse anesthetic events. The side effects encountered were fatigue, insomnia, drowsy, shivering, abdominal pain, nausea, diarrhoea, myalgia, goose bumps and uncomfortable feeling. In most of the patients these symptoms disappeared without any treatment. Symptomatic treatments were needed in 32.7% of patients. In all 166 patients who completed their naltrexone maintenance treatment, craving disappeared in the 10th month. The main problem was the low patient compliance to oral naltrexone, so that only 45.9% of the patients completed their therapy. Conclusion: Accelerated neuroregulation which includes naltrexone maintenance treatment (10-12 months was highly effective to detoxify and to abolish craving in the heroin dependent patients. (Med J Indones 2004; 13: 53-8Keywords: detoxification, craving management

  18. Radiation therapy of suprasellar germinomas

    From 1974 to 1984, nine patients with suprasellar germinoma were treated with megavoltage radiation therapy. The entire craniospinal axis was irradiated in all patients, with median doses of 45 Gy, 44.4 Gy, and 24 Gy delivered to the tumor volume, whole brain, and spinal cord, respectively. There have been no tumor recurrences, with median 56-month follow-up among seven survivors. Two patients have died (12, 14 months) without evidence of tumor, both of uncontrolled endocrine dysfunction. The dose usually recommended for treatment of intracranial germinoma is 50-55 Gy. The data suggest that 45 Gy may be sufficient

  19. Radiation therapy in bronchogenic carcinoma

    Response of intrathoracic symptoms to thoracic irradiation was evaluated in 330 patients. Superior vena caval syndrome and hemoptysis showed the best response, with rates of 86% and 83%, respectively, compared to 73% for pain in the shoulder and arm and 60% for dyspnea and chest pain. Atelectasis showed re-expansion in only 23% of cases, but this figure increased to 57% for patients with oat-cell carcinoma. Vocal cord paralysis improved in only 6% of cases. Radiation therapy has a definite positive role in providing symptomatic relief for patients with carcinoma of the lung

  20. Insufficiency fracture after radiation therapy

    Insufficiency fracture occurs when normal or physiological stress applied to weakened bone with demineralization and decreased elastic resistance. Recently, many studies reported the development of IF after radiation therapy (RT) in gynecological cancer, prostate cancer, anal cancer and rectal cancer. The RT-induced insufficiency fracture is a common complication during the follow-up using modern imaging studies. The clinical suspicion and knowledge the characteristic imaging patterns of insufficiency fracture is essential to differentiate it from metastatic bone lesions, because it sometimes cause severe pain, and it may be confused with bone metastasis.

  1. Stereotactic body radiation therapy (SBRT) for lung malignancies: preliminary toxicity results using a flattening filter-free linear accelerator operating at 2400 monitor units per minute

    Prendergast, Brendan M; Dobelbower, Michael C; Bonner, James A.; Popple, Richard A.; Baden, Craig J; Minnich, Douglas J.; Cerfolio, Robert J.; Spencer, Sharon A; Fiveash, John B.

    2013-01-01

    Background Flattening filter-free (FFF) linear accelerators (linacs) are capable of delivering dose rates more than 4-times higher than conventional linacs during SBRT treatments, causing some to speculate whether the higher dose rate leads to increased toxicity owing to radiobiological dose rate effects. Despite wide clinical use of this emerging technology, clinical toxicity data for FFF SBRT are lacking. In this retrospective study, we report the acute and late toxicities observed in our l...

  2. Accelerated radiation therapy for locally advanced squamous cell carcinomas of the oral cavity and oropharynx selected according to tumor cell kinetics--a phase II multicenter study

    Purpose: A Phase II multicenter trial testing an accelerated regimen of radiotherapy in locally advanced and inoperable cancers of the head and neck, in patients selected on the basis of 5-bromo-2-deoxyuridine/DNA flow cytometry-derived tumor potential doubling time (Tpot). Methods and Materials: From September 1992 to September 1993, 23 patients consecutively diagnosed to have locally advanced, inoperable carcinomas of the oral cavity and the oropharynx, with Tpot of ≤5 days, received an accelerated radiotherapy regimen (AF) based on a modification of the concomitant boost technique: 2 Gy/fraction once a day, delivered 5 days a week up to 26 Gy, followed by 2 Gy/fraction twice a day, with a 6-h interval, one of the two fractions being delivered as a concomitant boost to reduced fields, up to 66 Gy total dose (off-cord reduction at 46 Gy), shortening the overall treatment time to 4.5 weeks. A contemporary control group of 46 patients with Tpot of >5 days or unknown was treated with conventional fractionation (CF): 2 Gy/fraction once a day, 5 days a week, up to 66 Gy in 6.5 weeks, with fields shrinkage after 46 Gy. Results: All patients completed the accelerated regimen according to protocol and in the prescribed overall treatment time. Immediate tolerance was fairly good: 65% of the patients in the AF group experienced Grade 3 mucositis vs. 45% in the CF group (p = n.s.). Symptoms related to mucosal reactions seemed to persist longer in AF than in CF patients. The crude proportion of mild (Grades 1 and 2) late effects on skin (p < 0.01) and salivary glands (p < 0.05) was higher in AF than in CF patients, although these reactions did not exceed the limits of tolerance. Three patients in the AF and 1 in the CF arm experienced a late Grade 4 bone complication. Actuarial estimates of severe (Grades 3 and 4) late complications showed a 2-year hazard of 33.3% in the AF arm and 49.7% in CF (p = NS). The actuarial 2-year local control rate of the AF patients was 49

  3. Intraoperative radiation therapy. State of the art and outlook

    Intraoperative radiation therapy (IORT)- a medical procedure that uses an electron beam produced by an accelerator to irradiate a cancerous area during surgery, while the patient is still on the operating table- has aroused growing interest in recent years. The use of IORT has been furthered by the development of mobile accelerators, a result due in part to collaboration between ENEA, which provided know-how on accelerators, and Italian industrial concerns. After outlining the evolution of the technologies used in IORT, the article describes the state of the art and compares the systems now on the market, reports the results of clinical applications and delineates possible further developments

  4. Risk analysis of external radiation therapy

    External radiation therapy is carried out via a complex treatment process in which many different groups of staff work together. Much of the work is dependent on and in collaboration with advanced technical equipment. The purpose of the research task has been to identify a process for external radiation therapy and to identify, test and analyze a suitable method for performing risk analysis of external radiation therapy

  5. Twenty-year results of treatment of patients with stage i-IIA Hodgkin's lymphoma using radiation therapy with accelerated dose fractionation

    The findings of investigation of 20-year survival of 234 patients with stage IA-IIA Hodgkin's lymphoma (HL) are analyzed. In case of a favorable prognosis according to EORTC criteria total relapse-free survival was 90 and 76% respectively at 10-year and 79 and 73% at 20 year terms of observation. The use of chemoradiation therapy at unfavorable prognosis eliminated the difference in the survival of the patients from different prognostic groups.

  6. The use of recombination chambers at radiation therapy facilities

    Zielczynski, Mieczyslaw [Institute of Atomic Energy, 05-400 Swierk (Poland); Golnik, Natalia, E-mail: golnik@mchtr.pw.edu.p [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland); Gryzinski, Michal A. [Institute of Atomic Energy, 05-400 Swierk (Poland); Tulik, Piotr [Institute of Atomic Energy, 05-400 Swierk (Poland); Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland)

    2010-12-15

    The paper presents an overview of the applications of recombination chambers for dosimetric measurements at radiotherapy facilities. The chambers were used at electron, proton and heavy ion accelerators, in the beam and in the vicinity of the accelerators at very different dose rates. The examples of measurements discussed in the paper include: the determination of the absorbed dose and radiation quality parameters of a 170 MeV proton beam and BNCT (boron neutron capture therapy) beam, neutron dose measurements at a phantom surface outside the beam of a 15 MV electron medical accelerator, determination of ambient dose equivalent, H* (10) outside the irradiated phantom in the proton therapy treatment room at JINR (Dubna, Russia), and at working places outside the shielding of the heavy ion therapy facility at GSI (Darmstadt, Germany).

  7. The use of recombination chambers at radiation therapy facilities

    The paper presents an overview of the applications of recombination chambers for dosimetric measurements at radiotherapy facilities. The chambers were used at electron, proton and heavy ion accelerators, in the beam and in the vicinity of the accelerators at very different dose rates. The examples of measurements discussed in the paper include: the determination of the absorbed dose and radiation quality parameters of a 170 MeV proton beam and BNCT (boron neutron capture therapy) beam, neutron dose measurements at a phantom surface outside the beam of a 15 MV electron medical accelerator, determination of ambient dose equivalent, H* (10) outside the irradiated phantom in the proton therapy treatment room at JINR (Dubna, Russia), and at working places outside the shielding of the heavy ion therapy facility at GSI (Darmstadt, Germany).

  8. Application of Novel Accelerator Research for Particle Therapy

    Bjerke, Henrik Hemmestad

    2014-01-01

    This thesis seeks to review the latest trends in hadron therapy devices, and evaluate the potential of novel, researched accelerator concepts for future application. Although the clinical benefits of hadron therapy over photon therapy is unproven or disputed for many cancer types, there are several cases where hadron therapy presents a superior option. Many governments and medical institutions are planning or already executing development of new hadron treatment facilities. However, the highe...

  9. Prospective study of accelerated postoperative radiation therapy in patients with squamous-cell carcinoma of the head and neck; Radiotherapie externe acceleree postoperatoire des carcinomes epidermoides localement evolues de la sphere ORL: etude prospective de phase 2

    Zouhair, A.; Coucke, P.A.; Azria, D.; Moeckli, R.; Mirimanoff, R.O.; Ozsahin, M. [Centre Hospitalier Universitaire Vaudois CHUV, Service de Radio-Oncologie, Lausanne (Switzerland); Azria, D. [Centre Regional de Lutte Contre le Cancer Val-d' Aurelle-Paul-Lamarque, Dept. d' Oncologie- Radiotherapie, 34 - Montpellier (France); Pache, P. [Centre Hospitalier Universitaire Vaudois CHUV, Service d' ORL, Lausanne (Switzerland); Stupp, R. [Centre hospitalier Universitaire Vaudois CHUV, Centre Pluridisciplinaire d' Oncologie Medicale, Lausanne (Switzerland)

    2003-08-01

    Purpose. - To assess the feasibility and efficacy of accelerated postoperative radiation therapy (RT) in patients with squamous-cell carcinoma of the head and neck (SCCHN). Patients and methods. - Between December 1997 and July 2001, 68 patients (male to female ratio: 52/16; median age: 60-years (range: 43-81)) with pT1-pT4 and/or pN0-pN3 SCCHN (24 oropharynx, 19 oral cavity, 13 hypopharynx, 5 larynx, 3 unknown primary, 2 maxillary sinus, and 2 salivary gland) were included in this prospective study. Postoperative RT was indicated because extra-capsular infiltration (ECT) was observed in 20 (29%), positive surgical margins (PSM) in 20 (29%) or both in 23 patients (34%). Treatment consisted of external beam R 66 Gy in 5 weeks and 3 days. Median follow-up was 15 months. Results. -According to CTC 2.0, acute morbidity was acceptable: grade 3 mucositis was observed in 15 (22%) patients, grade 3 dysphagia in 19 (28%) patients, grade 3 skin erythema in 21 (31%) patients with a median weight loss of 3.1 kg (range: 0-16). No grade 4 toxicity wa observed. Median time to relapse was 13 months; we observed only three (4%) local and four (6%) regional relapses, whereas eight (12%) patients developed distant metastases without any evidence of locoregional recurrence. The 2 years overall-, disease-free survival, an actuarial locoregional control rates were 85, 73 and 83% respectively. Conclusion.- The reduction of the overall treatment time using postoperative accelerated RT with weekly concomitant boost (six fraction per week) is feasible with local control rates comparable to that of published data. Acute RT related morbidity is acceptable. (author)

  10. DART-bid: dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily. High local control in early stage (I/II) non-small-cell lung cancer

    While surgery is considered standard of care for early stage (I/II), non-small-cell lung cancer (NSCLC), radiotherapy is a widely accepted alternative for medically unfit patients or those who refuse surgery. International guidelines recommend several treatment options, comprising stereotactic body radiation therapy (SBRT) for small tumors, conventional radiotherapy ≥ 60 Gy for larger sized especially centrally located lesions or continuous hyperfractionated accelerated RT (CHART). This study presents clinical outcome and toxicity for patients treated with a dose-differentiated accelerated schedule using 1.8 Gy bid (DART-bid). Between April 2002 and December 2010, 54 patients (median age 71 years, median Karnofsky performance score 70 %) were treated for early stage NSCLC. Total doses were applied according to tumor diameter: 73.8 Gy for 6 cm. The median follow-up was 28.5 months (range 2-108 months); actuarial local control (LC) at 2 and 3 years was 88 %, while regional control was 100 %. There were 10 patients (19 %) who died of the tumor, and 18 patients (33 %) died due to cardiovascular or pulmonary causes. A total of 11 patients (20 %) died intercurrently without evidence of progression or treatment-related toxicity at the last follow-up, while 15 patients (28 %) are alive. Acute esophagitis ≤ grade 2 occurred in 7 cases, 2 patients developed grade 2 chronic pulmonary fibrosis. DART-bid yields high LC without significant toxicity. For centrally located and/or large (> 5 cm) early stage tumors, where SBRT is not feasible, this method might serve as radiotherapeutic alternative to present treatment recommendations, with the need of confirmation in larger cohorts. (orig.)

  11. Cancer Treatment with Gene Therapy and Radiation Therapy

    Kaliberov, Sergey A.; Buchsbaum, Donald J.

    2012-01-01

    Radiation therapy methods have evolved remarkably in recent years which have resulted in more effective local tumor control with negligible toxicity of surrounding normal tissues. However, local recurrence and distant metastasis often occur following radiation therapy mostly due to the development of radioresistance through the deregulation of the cell cycle, apoptosis, and inhibition of DNA damage repair mechanisms. Over the last decade, extensive progress in radiotherapy and gene therapy co...

  12. Melioidosis: reactivation during radiation therapy

    Jegasothy, B.V.; Goslen, J.B.; Salvatore, M.A.

    1980-05-01

    Melioidosis is caused by Pseudomonas pseudomallei, a gram-negative, motile bacillus which is a naturally occurring soil saprophyte. The organism is endemic in Southeast Asia, the Philippines, Australia, and parts of Central and South America. Most human disease occurs from infection acquired in these countries. Infection with P pseudomallei may produce no apparent clinical disease. Acute pneumonitis or septicemia may result from inhalation of the organism, and inoculation into sites of trauma may cause localized skin abscesses, or the disease may remain latent and be reactivated months or years later by trauma, burns, or pneumococcal pneumonia, diabetic ketoacidosis, influenza, or bronchogenic carcinoma. The last is probably the commonest form of melioidosis seen in the United States. We present the first case of reactivation of melioidosis after radiation therapy for carcinoma of the lung, again emphasizing the need to consider melioidosis in a septic patient with a history of travel, especially to Southeast Asia.

  13. Melioidosis: reactivation during radiation therapy

    Melioidosis is caused by Pseudomonas pseudomallei, a gram-negative, motile bacillus which is a naturally occurring soil saprophyte. The organism is endemic in Southeast Asia, the Philippines, Australia, and parts of Central and South America. Most human disease occurs from infection acquired in these countries. Infection with P pseudomallei may produce no apparent clinical disease. Acute pneumonitis or septicemia may result from inhalation of the organism, and inoculation into sites of trauma may cause localized skin abscesses, or the disease may remain latent and be reactivated months or years later by trauma, burns, or pneumococcal pneumonia, diabetic ketoacidosis, influenza, or bronchogenic carcinoma. The last is probably the commonest form of melioidosis seen in the United States. We present the first case of reactivation of melioidosis after radiation therapy for carcinoma of the lung, again emphasizing the need to consider melioidosis in a septic patient with a history of travel, especially to Southeast Asia

  14. Status Of The Dielectric Wall Accelerator For Proton Therapy

    The Dielectric Wall Accelerator (DWA) offers the potential to produce a high gradient linear accelerator for proton therapy and other applications. The current status of the DWA for proton therapy will be reviewed. Recent progress in SiC photoconductive switch development will be presented. There are serious beam transport challenges in the DWA arising from short pulse excitation of the wall. Solutions to these transport difficulties will be discussed.

  15. A phase I/II study piloting accelerated partial breast irradiation using CT-guided intensity modulated radiation therapy in the prone position

    Background and purpose: External beam accelerated partial breast irradiation (EB-aPBI) is noninvasive with broader potential applicability than aPBI using brachytherapy. However, it has inherent challenges in daily reproducibility. Image-guide radiotherapy (IGRT) can improve daily reproducibility, allowing smaller treatment margins. Our institution proposed IG-IMRT in the prone position to evaluate dose homogeneity, conformality, normal tissue avoidance, and reliable targeting for EB-aPBI. We report preliminary results and toxicity from a phase I/II study evaluating the feasibility of EB-aPBI in the prone position using IG-IMRT. Materials and methods: Twenty post-menopausal women with node-negative breast cancer, excised tumors 99% of the PTV. Dose constraints for the whole breast, lungs and heart were met. Results: The median patient age was 61.5. Mean tumor size was 1.0 cm. 35% of patients had DCIS. Median PTV was 243 cc (108–530) and median breast reference volume was 1698 cc (647–3627). Average daily shifts for IGRT were (0.6, −4.6, 1.7 mm) with standard deviations of (6.3, 6.5, 6.4 mm). Acute toxicity was G1 erythema in 80%, and G2 erythema, G2 fatigue, and G2 breast pain each occurred in 1 patient. With a median follow-up of 18.9 months (12–35), 40% of patients have G1 fibrosis and 30% have G1 hyperpigmentation. 95% of patients have good to excellent cosmesis. There have been no recurrences. Conclusions: These data demonstrate that EB-aPBI in the prone position using IG-IMRT is well tolerated, yields good dosimetric conformality, and results in promising early toxicity profiles

  16. Resistance to radiation of a 0.8 μm CMOS VLSI readout of instrumentation for accelerators used in tumor therapy

    This paper shows the results of irradiations with photons and neutrons of a Very Large Scale Integration (VLSI) CMOS AMS 0.8μm chip used in medical physics applications. It has been designed as readout of dosimeters and monitor chambers used on electron/photon and proton/carbon ions for tumor therapy. The chip is located close to the detectors and it is thus used in a radioactive environment. We have performed measurements on 30 MV X-rays, fast and thermal neutrons. The chip behaves well (i.e. the gain variations are below 1%) up to X- ray doses of 75 krad and a total fast neutron number of 4*1012. This allows the use of the chip over several years (>5) without performance modifications. It has to be noticed that in real life the dose rates are much lower than during the tests, allowing a self-repairing of the chip with annealing. No Single Event Effect was observed up to 1010 neutrons. (authors)

  17. Radiation therapy of patients with locally advanced forms of upper airway cancer

    These research devoted to the planning and radiation therapy problems and intended for patients with malignant neoplasms of upper airways. Devices ''Rocus AM'', ''Teratron-95'', linear accelerators ''Mevatron-KD-2'' and ''Clinac2100'' was applied toward the patients.

  18. Self-shielded electron linear accelerators designed for radiation technologies

    Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.

    2009-09-01

    This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.

  19. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  20. An international intercomparison of absorbed dose measurements for radiation therapy

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  1. Booster linear accelerators for proton therapy

    Radiotherapy using proton beams of energies of order 200 MeV is now accepted as a feasible cancer treatment technique whose widespread use has so far been limited by the high costs of proposed facilities. AEA Technology have identified a low-cost solution using a linear accelerator to boost existing hospital cyclotrons. The present project status and the design of the booster linear accelerator are discussed. (Author) 4 tabs., 2 figs., 2 refs

  2. Radiation Therapy for Early Stage Lung Cancer

    Parashar, Bhupesh; Arora, Shruthi; Wernicke, A. Gabriella

    2013-01-01

    Radiation therapy for early stage lung cancer is a promising modality. It has been traditionally used in patients not considered candidates for standard surgical resection. However, its role has been changing rapidly since the introduction of new and advanced technology, especially in tumor tracking, image guidance, and radiation delivery. Stereotactic radiation therapy is one such advancement that has shown excellent local control rates and promising survival in early stage lung cancer. In a...

  3. Radiation therapy of CNS lymphoma

    A retrospective analysis of 22 patients with central nervous system (CNS) non-Hodgkin's lymphomas seen from 1978 to 1989 at Hamamatsu University Hospital was carried out. These were corresponding to 16% (22/137) of non-Hodgkin's lymphomas treated by irradiation during the same period. Six patients had primary intracranial involvement, six had secondary one, five had leptomeningeal involvement and five had spinal cord compression. Median survival of these groups 29 months, 7 months, 6 months and 4 months, respectively. On the case primary intracranial involvement, neurological signs and symptoms and performance status (PS) were improved in most patients. Whole brain irradiation with a dose of 45 Gy to 50 Gy followed by systemic chemotherapy was considered as effective treatment modalities. On the other hand, for the secondary intracranial lymphomas, clinical symptoms and PS were excellently improved by radiation therapy; however, these did not reflect survival. The conditions having primary site on gastrointestinal tract and relapse as systemic dissemination were considerable risk factors for the control of CNS involvement. For these patients, prophylactic chemotherapy is necessary. Improvement of PS on patients with leptomeningeal lymphomas was obtained in only 3 of 5 cases. These were treated by irradiation on whole spine or neuroaxis and intrathecal MTX injection. We observed 2 cases dying from cerebrovascular accident and one case from leukoencephalopathy. This showed that such combination therapy should be carefully attempted. Five patients having spinal cord compression suffered from paraplegia and none of them had been improved on their symptoms. Four of 5 patients complained of back pain one to two months before onset of paraplegia without abnormal findings on spine roentgenograms. Therefore, studies with myelography or MRI are considered to be essential to patients with non-Hodgkin's lymphoma who complained of back pain. (author)

  4. Applications of radiation monitoring system at Indus Accelerator Complex

    Indus Accelerator Complex (IAC) at RRCAT, Indore houses two high energy electron accelerators Indus-I (450 MeV, 100 mA) and Indus-2 (2.5 GeV, 300 mA). The Radiation Monitoring System (RMS) comprises of area monitoring and personnel monitoring. RMS at IAC provides very useful information about radiation levels, beam loss scenario, unusual incidents etc. In this system the remotely displayed radiation data in control room matches well with the local readings of the respective area radiation monitor. The paper describes various features of Radiation Monitoring System and its applications in radiation exposure control in IAC. (author)

  5. Neutron radiation area monitoring system for proton therapy facilities

    A neutron radiation area monitoring system has been developed for proton accelerator facilities dedicated to cancer therapy. The system comprises commercial measurement equipment, computer hardware and a suite of software applications that were developed specifically for use in a medical accelerator environment. The system is designed to record and display the neutron dose-equivalent readings from 16 to 24 locations (depending on the size of the proton therapy centre) throughout the facility. Additional software applications provide for convenient data analysis, plotting, radiation protection reporting, and system maintenance and administration tasks. The system performs with a mean time between failures of >6 months. Required data storage capabilities and application execution times are met with inexpensive off-the-shelf computer hardware. (authors)

  6. Radiation protection activities around the CERN accelerators

    The staff of the Survey Section of Radiation Protection (RP) working around the CERN accelerators were as usual very busy. The LEP2 programme is now fully on its way, with the installation of additional superconducting RF cavities carried out during both the winter and summer shutdowns. The LEP energy per beam was thus increased to 80.5 GeV in summer and to 86 GeV in autumn. ACOL and LEAR ended their operational life on 19 December producing, for the last time, antiprotons for the experiments in the South Hall; all experiments will be dismantled in 1997. This programme will be partly replaced by the future Antiproton Decelerator, which was approved by the Research Board in November. Several experiments also came to their end in the North and West Experimental Areas of the SPS. NA44 (in EHN1) and NA47 (in EHN2) ended this year. All experiments installed in beam lines HI, H3, XI and X3 in the West Area also terminated, as these beam lines will be dismantled in the course of 1997 to make room for test facilities for the LHC. Several modifications in the West and North Experimental Areas have already been undertaken at the end of the year and will be continued in 1997. Some equipment installed in the West Area will be moved to the North Area. In addition to routine work, several measurements of synchrotron radiation were made in LEP for the two new energy levels reached in 1996. A number of dedicated measurements were also undertaken in EHN1 (North Area) at the end of the year, during the lead-ion run which closed the physics period. A detailed assessment of releases of radioactivity from the ISOLDE facility was also made

  7. Radiation Therapy for Gynecologic Cancers

    ... the doctors who oversee the care of each person undergoing radiation treatment. Other members of the treatment team include radiation therapists, radiation oncology nurses, medical physicists, dosimetrists, social workers ...

  8. Technological progress in radiation therapy for brain tumors

    Vernimmen, Frederik Jozef

    2014-01-01

    To achieve a good therapeutic ratio the radiation dose to the tumor should be as high as possible with the lowest possible dose to the surrounding normal tissue. This is especially the case for brain tumors. Technological ad- vancements in diagnostic imaging, dose calculations, and radiation delivery systems, combined with a better un- derstanding of the pathophysiology of brain tumors have led to improvements in the therapeutic results. The widely used technology of delivering 3-D conformal therapy with photon beams (gamma rays) produced by Li-near Accelerators has progressed into the use of Intensity modulated radiation therapy (IMRT). Particle beams have been used for several decades for radiotherapy because of their favorable depth dose characteristics. The introduction of clinically dedicated proton beam therapy facilities has improved the access for cancer patients to this treatment. Proton therapy is of particular interest for pediatric malignancies. These technical improvements are further enhanced by the evolution in tumor physiology imaging which allows for improved delineation of the tumor. This in turn opens the potential to adjust the radiation dose to maximize the radiobiological effects. The advances in both imaging and radiation therapy delivery will be discussed.

  9. Upgrade of accelerator radiation safety system for SPring-8

    The accelerator safety interlock system to protect persons from the radiation damages has been operated in SPring-8. The accelerator safety interlock system is monitoring the condition of safety equipment. If the condition is unsafe, the system stops the electron beam. The accelerator safety interlock system currently running is based on the operation mode control. Since the operation mode based system is quite complex, the system has some problems. Therefore, we are planning to construct new accelerator safety interlock system. We'll report the situation of current accelerator safety interlock system and the conceptual design of new accelerator safety interlock system. (author)

  10. Radiation protection activities around the CERN accelerators

    In 1997 the physics programme of the SPS and LEP was seriously affected by a fire in one of the surface building of the SPS; the incident caused a delay in the LEP start-up, an interruption of several weeks in the SPS fixed-target programme, and the cancellation of the lead ion run for 1997. The consequences for the experiments were, nevertheless, kept to a minimum thanks to the excellent performance of the accelerators. The neutrino experiments even accumulated a record intensity. Experiments at the ISOLDE facility benefited from 315 shifts instead of 200 as originally scheduled, and new experiments started measuring the properties of unstable elements which play a crucial role in the stars. LEP also reached record energy and luminosity in 1997. Measurements of synchrotron radiation in the LEP tunnel were repeated at the new energy value of 92 GeV, to comply with the demands of the INB procedure. Following the end of operation of ACOL and LEAR in December 1996, decommissioning of the Antiproton Accumulator and transformation of the Antiproton Collector into the Antiproton Decelerator started. Experiments in the South Hall were dismantled during the year and the hall will be used partly as a storage area for radioactive components and partly as a test area

  11. Extramammary Paget's disease: role of radiation therapy

    Extra mammary Paget's disease (EMPD) is an uncommon premalignant skin condition that has been traditionally managed with surgery. A report of long-standing Paget's disease with transformation to invasive adenocarcinoma definitively managed with radiation therapy is presented. A review of cases of extramammary Paget's disease treated with radiation therapy is discussed. The use of radiation therapy should be considered in selected cases, as these studies demonstrate acceptable rates of local control when used as an adjunct to surgery, or as a definitive treatment modality. Copyright (2002) Blackwell Science Pty Ltd

  12. Radiation therapy for renal transplant rejection reactions

    Forty-four renal transplant patients were given radiation therapy for severe rejection phenomena. The 29 patients who had only one course of irradiation had a 52.3% successful function rate. Fifteen patients received from two to four courses of irradiation with an ultimate 60% rate of sustained function. Fifty patients who received only steroid and other medical management but no irradiation had a 60% rate of successful renal function. In the irradiation group, no patient whose creatinine level did not respond to radiation therapy maintained a functioning kidney. The data indicate that the overall successful function rate is maintained by radiation therapy in patients who show severe allograft rejection phenomena

  13. Radiation therapy for renal transplant rejection reactions

    Peeples, W.J.; Wombolt, D.G.; El-Mahdi, A.M.; Turalba, C.I.

    1982-01-01

    Forty-four renal transplant patients were given radiation therapy for severe rejection phenomena. The 29 patients who had only one course of irradiation had a 52.3% successful function rate. Fifteen patients received from two to four courses of irradiation with an ultimate 60% rate of sustained function. Fifty patients who received only steroid and other medical management but no irradiation had a 60% rate of successful renal function. In the irradiation group, no patient whose creatinine level did not respond to radiation therapy maintained a functioning kidney. The data indicate that the overall successful function rate is maintained by radiation therapy in patients who show severe allograft rejection phenomena.

  14. Modern radiation therapy for extranodal lymphomas

    Yahalom, Joachim; Illidge, Tim; Specht, Lena;

    2015-01-01

    Extranodal lymphomas (ENLs) comprise about a third of all non-Hodgkin lymphomas (NHL). Radiation therapy (RT) is frequently used as either primary therapy (particularly for indolent ENL), consolidation after systemic therapy, salvage treatment, or palliation. The wide range of presentations of ENL...... adopted RT volume definitions based on the International Commission on Radiation Units and Measurements (ICRU), as has been widely adopted by the field of radiation oncology for solid tumors. Organ-specific recommendations take into account histological subtype, anatomy, the treatment intent, and other...

  15. Detoxication and antiproteolytic therapy of radiation complications

    Yakhontov, N.E.; Klimov, I.A.; Lavrikova, L.P.; Martynov, A.D.; Provorova, T.P.; Serdyukov, A.S.; Shestakov, A.F. (Gor' kovskij Meditsinskij Inst. (USSR))

    1984-11-01

    49 patients with uterine cervix and ovarian carcinomas were treated with detoxication and antiproteolytic therapy of radiation-induced side-effects. The therapy permits to complete without interruption the remote gamma-therapy course and to reduce patients in-hospital periods by 10+- 1 days. The prescription of hemoder intravenous injection in a dose of 450 ml and contrical intramuscular injection (10000 AtrE) in cases of pronounced manifestations of radiation-induced side-effects (asthenia, leukopenia, enterocolitis) for 3 days should be considered an efficient therapy.

  16. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  17. Managing the adverse effects of radiation therapy.

    Berkey, Franklin J

    2010-08-15

    Nearly two thirds of patients with cancer will undergo radiation therapy as part of their treatment plan. Given the increased use of radiation therapy and the growing number of cancer survivors, family physicians will increasingly care for patients experiencing adverse effects of radiation. Selective serotonin reuptake inhibitors have been shown to significantly improve symptoms of depression in patients undergoing chemotherapy, although they have little effect on cancer-related fatigue. Radiation dermatitis is treated with topical steroids and emollient creams. Skin washing with a mild, unscented soap is acceptable. Cardiovascular disease is a well-established adverse effect in patients receiving radiation therapy, although there are no consensus recommendations for cardiovascular screening in this population. Radiation pneumonitis is treated with oral prednisone and pentoxifylline. Radiation esophagitis is treated with dietary modification, proton pump inhibitors, promotility agents, and viscous lidocaine. Radiation-induced emesis is ameliorated with 5-hydroxytryptamine3 receptor antagonists and steroids. Symptomatic treatments for chronic radiation cystitis include anticholinergic agents and phenazopyridine. Sexual dysfunction from radiation therapy includes erectile dysfunction and vaginal stenosis, which are treated with phosphodiesterase type 5 inhibitors and vaginal dilators, respectively. PMID:20704169

  18. Hyperbaric oxygen therapy for radiation myelitis

    Radiation therapy may damage healthy tissues adjacent to tumor. Hyperbaric oxygen therapy (HBO) is useful in treating soft tissue and osteoradionecrosis. In addition, HBO has been recommended to treat radiation-induced myelitis. We used radiation to induce a predictable myelitis in the spinal cords of rats who were randomized into treatment (HBO) and control groups 8 wk after irradiation. Serial neurologic examination showed no benefit or harm as a result of HBO. This small pilot study did not demonstrate any clinically significant benefit of HBO for radiation myelitis in rats

  19. Radiation therapy in elderly patients

    Elderly patients, or those individuals over 65 or 70 depending on the different authors, represent the majority of cancer patients who treated with radiation therapy (RT), however there are very few publications that we provide information needed to evaluate the use of RT in the treatment elders regarding: indication of dose, tissue tolerance, toxicity and association with other therapeutic modalities. In the treatment process must take into account RT radiobiology Clinical applied to each patient and is more relevant in the elderly in which often are comorbid conditions and functional limitations normal tissues increases with age and disease coexisting vascular and connective influencing RT treatment. Chronological age does not correlate with the biological age for tolerance normal tissue, however frequently refers to healthy tissue in the elderly are less tolerant than healthy tissue RT adults young but no data in the literature to support it and perhaps those claims probably based on the presence of comorbid conditions or diseases associated or previous surgeries that influence the risk of tissue damage healthy. Studies conducted by the EORTC not show differences in toxicity acute and late age-related. Elderly patients tolerate RT like younger patients with comparable side effects. In the case of concurrent chronic diseases should take into account a possible modification of the dose and volume irradiated to prevent the risk develop permanent damage or sector body lest un irradiated able to compensate for the loss of function of the irradiated tissue; but we should always note that the dose reduction while reducing the risk of complications also decreases the chance of cure

  20. Comparing Postoperative Radiation Therapies for Brain Metastases

    In this clinical trial, patients with one to four brain metastases who have had at least one of the metastatic tumors removed surgically will be randomly assigned to undergo whole-brain radiation therapy or stereotactic radiosurgery.

  1. Radiation protection activities around the CERN accelerators

    As planned, the PS complex started up at the end of March 1998. The machines worked smoothly and the availability of the beams reached from 90% up to 96%. New record intensities were achieved for the 14 GeV/c protons for the SPS fixed-target operation and for the Pb53+ ions. The year 1998 saw the PS complex busy with the transformation of the Antiproton Accumulator (ACOL) into the Antiproton Decelerator (AD). This project is almost finished and the first test beams of protons have already been successfully decelerated in the machine. It is envisaged that the physicists will receive a 100 MeV antiproton beam from October 1999 onwards. Major modifications of the East Hall were required due to the installation of the DIRAC experiment, some test facilities for secondary particles used by LHC experimental groups, and an irradiation area (IRRAD1) for radiation hardness tests of LHC components. The first beams to experimental areas of the East Hall were already sent from July 1998 onwards. The ISOLDE mass separator delivered 275 shifts of radioactive beams of high quality to its user community. The SPS fixed-target programme lasted from 1 April to 30 November. The successful start-up of the accelerators for both the proton and lead-ion periods was followed by stable machine running and by record intensities. The year 1998 marked the end of the operation of the neutrino beam. The dismantling of CHORUS began before the end of the year, to be followed by that of the NOMAD experiment early in 1999

  2. Nursing care update: Internal radiation therapy

    Internal radiation therapy has been used in treating gynecological cancers for over 100 years. A variety of radioactive sources are currently used alone and in combination with other cancer treatments. Nurses need to be able to provide safe, comprehensive care to patients receiving internal radiation therapy while using precautions to keep the risks of exposure to a minimum. This article discusses current trends and issues related to such treatment for gynecological cancers.20 references

  3. Modern radiation therapy for primary cutaneous lymphomas

    Specht, Lena; Dabaja, Bouthaina; Illidge, Tim;

    2015-01-01

    Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment......, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational...... meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era....

  4. Radiation therapy apparatus having retractable beam stopper

    This invention relates to a radiation therapy apparatus which utilized a linear translation mechanism for positioning a beam stopper. An apparatus is described wherein the beam stopper is pivotally attached to the therapy machine with an associated drive motor in such a way that the beam stopper retracts linearly

  5. DART-bid: dose-differentiated accelerated radiation therapy, 1.8 Gy twice daily. High local control in early stage (I/II) non-small-cell lung cancer

    Zehentmayr, Franz; Wurstbauer, Karl; Deutschmann, Heinz; Sedlmayer, Felix [Landeskrankenhaus Salzburg, Univ.-Klinik fuer Radiotherapie und Radio-Onkologie, Univ.-Klinikum der Paracelsus Medizinischen Privatuniversitaet, Salzburg (Austria); Paracelsus Medizinische Privatuniversitaet, Institute for Research and Development of Advanced Radiation Technologies (radART), Salzburg (Austria); Fussl, Christoph; Kopp, Peter; Dagn, Karin; Fastner, Gerd [Landeskrankenhaus Salzburg, Univ.-Klinik fuer Radiotherapie und Radio-Onkologie, Univ.-Klinikum der Paracelsus Medizinischen Privatuniversitaet, Salzburg (Austria); Porsch, Peter; Studnicka, Michael [Landeskrankenhaus Salzburg, Univ.-Klinik fuer Pneumologie, Univ.-Klinikum der Paracelsus Medizinischen Privatuniversitaet, Salzburg (Austria)

    2014-09-23

    While surgery is considered standard of care for early stage (I/II), non-small-cell lung cancer (NSCLC), radiotherapy is a widely accepted alternative for medically unfit patients or those who refuse surgery. International guidelines recommend several treatment options, comprising stereotactic body radiation therapy (SBRT) for small tumors, conventional radiotherapy ≥ 60 Gy for larger sized especially centrally located lesions or continuous hyperfractionated accelerated RT (CHART). This study presents clinical outcome and toxicity for patients treated with a dose-differentiated accelerated schedule using 1.8 Gy bid (DART-bid). Between April 2002 and December 2010, 54 patients (median age 71 years, median Karnofsky performance score 70 %) were treated for early stage NSCLC. Total doses were applied according to tumor diameter: 73.8 Gy for < 2.5 cm, 79.2 Gy for 2.5-4.5 cm, 84.6 Gy for 4.5-6 cm, 90 Gy for > 6 cm. The median follow-up was 28.5 months (range 2-108 months); actuarial local control (LC) at 2 and 3 years was 88 %, while regional control was 100 %. There were 10 patients (19 %) who died of the tumor, and 18 patients (33 %) died due to cardiovascular or pulmonary causes. A total of 11 patients (20 %) died intercurrently without evidence of progression or treatment-related toxicity at the last follow-up, while 15 patients (28 %) are alive. Acute esophagitis ≤ grade 2 occurred in 7 cases, 2 patients developed grade 2 chronic pulmonary fibrosis. DART-bid yields high LC without significant toxicity. For centrally located and/or large (> 5 cm) early stage tumors, where SBRT is not feasible, this method might serve as radiotherapeutic alternative to present treatment recommendations, with the need of confirmation in larger cohorts. (orig.) [German] Die Standardbehandlung fuer nichtkleinzellige Bronchialkarzinome (NSCLC) im Stadium I/II ist die Operation, wobei Radiotherapie fuer Patienten, die nicht operabel sind oder die Operation ablehnen, als Alternative

  6. Helium-3 and Helium-4 acceleration by high power laser pulses for hadron therapy

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; Leemans, W. P.; Bulanov, S. V.; Margarone, D.; Korn, G.; Haberer, T.

    2015-06-24

    The laser driven acceleration of ions is considered a promising candidate for an ion source for hadron therapy of oncological diseases. Though proton and carbon ion sources are conventionally used for therapy, other light ions can also be utilized. Whereas carbon ions require 400 MeV per nucleon to reach the same penetration depth as 250 MeV protons, helium ions require only 250 MeV per nucleon, which is the lowest energy per nucleon among the light ions. This fact along with the larger biological damage to cancer cells achieved by helium ions, than that by protons, makes this species an interesting candidate for the laser driven ion source. Two mechanisms (Magnetic Vortex Acceleration and hole-boring Radiation Pressure Acceleration) of PW-class laser driven ion acceleration from liquid and gaseous helium targets are studied with the goal of producing 250 MeV per nucleon helium ion beams that meet the hadron therapy requirements. We show that He3 ions, having almost the same penetration depth as He4 with the same energy per nucleon, require less laser power to be accelerated to the required energy for the hadron therapy.

  7. AREAL test facility for advanced accelerator and radiation source concepts

    Tsakanov, V. M.; Amatuni, G. A.; Amirkhanyan, Z. G.; Aslyan, L. V.; Avagyan, V. Sh.; Danielyan, V. A.; Davtyan, H. D.; Dekhtiarov, V. S.; Gevorgyan, K. L.; Ghazaryan, N. G.; Grigoryan, B. A.; Grigoryan, A. H.; Hakobyan, L. S.; Haroutiunian, S. G.; Ivanyan, M. I.; Khachatryan, V. G.; Laziev, E. M.; Manukyan, P. S.; Margaryan, I. N.; Markosyan, T. M.; Martirosyan, N. V.; Mehrabyan, Sh. A.; Mkrtchyan, T. H.; Muradyan, L. Kh.; Nikogosyan, G. H.; Petrosyan, V. H.; Sahakyan, V. V.; Sargsyan, A. A.; Simonyan, A. S.; Toneyan, H. A.; Tsakanian, A. V.; Vardanyan, T. L.; Vardanyan, A. S.; Yeremyan, A. S.; Zakaryan, S. V.; Zanyan, G. S.

    2016-09-01

    Advanced Research Electron Accelerator Laboratory (AREAL) is a 50 MeV electron linear accelerator project with a laser driven RF gun being constructed at the CANDLE Synchrotron Research Institute. In addition to applications in life and materials sciences, the project aims as a test facility for advanced accelerator and radiation source concepts. In this paper, the AREAL RF photoinjector performance, the facility design considerations and its highlights in the fields of free electron laser, the study of new high frequency accelerating structures, the beam microbunching and wakefield acceleration concepts are presented.

  8. Upgrade of accelerator radiation safety system for SPring-8 (2)

    Radiation safety interlock system for the SPring-8 accelerator complex, which protects personnel from radiation hazard induced by electron beams and synchrotron radiation, has been operating over a decade. In the past 10 years, the accelerator was upgraded to extend accelerator/beam-transport areas, and it was implemented new functions. The safety interlock system was also extended. The extended radiation safety interlock system had the complicated safety logic to handle the upgraded accelerator because the safety interlock system was closely related to “Operation MODE” of the accelerator, which is the combination of accelerator/beam-transport areas in operation. This circumstance provoked extensive discussions on the design of new radiation safety interlock system to satisfy the requirements and smooth migration from the old system to the new one. The construction of the new radiation safety interlock system was finalized in September 2010. And the system started the user operation in October 2010. We will report the design of the new radiation safety interlock system and introduction results. (author)

  9. Care of the patient receiving radiation therapy

    External radiation therapy, or teletherapy, is the use of ionizing radiation to destroy cancer cells. Clinical use of ionizing radiation as treatment for cancer began with the discovery of x-rays in 1895, the identification of natural radioactivity (radium) in 1896, and the first reported cure of cancer, a basal cell epithelioma, induced by radiation in 1899. Initially, radiation was administered as a single large dose and produced severe, life-threatening side effects. The basis for the use of ionizing radiation in daily increments for a period of weeks was provided by Regaud in 1922; ten years later, Coutard clinically developed the method of dose fractionation, which remains in use today. Although the use of ionizing radiation as a treatment is over eighty years old, only in recent years have advancements in its clinical application been based on research related to the biologic effect of radiation on human cells. To effectively care for the patient prior to, during, and at the completion of external radiation therapy, the nurse must know the physical and biologic basis of external radiation therapy and its clinical application

  10. Risk of potential radiation accidental situations at TESLA accelerator installation

    The main aim of this paper is to recognize some of the numerous risks of potential exposure and to quantify requirements and probability of failure of radiation protection system due to design event tree. Nature of design and construction of Tesla Accelerator Installation (T.A.I.) make possibility of potential exposure as a result of proven design and modification, trade off, human error as well as defense in depth. In the case of potential exposure human risk is the result of two random events: first, the occurrence of the event that causes the exposure, and the second, the appearance of a harmful effect. The highest doses during potential exposure at T.A.I. can be received at the entrance to primary beam space (V.I.N.C.Y. cyclotron vault) as well as in space with target for fluorine production, high energy experimental channels, proton therapy channel and channel for neutron researches. Expected values of prompt radiation equivalent dose rate in the cyclotron vault is considerably high, in order of 10 Sv/h. Serious problem deals with such large research installation is a number of workers, as visiting research workers of different educational levels and people in Institute who are not professionally connected with ionizing radiation. They could cause willing or unwilling opening of the cyclotron vault doors. Considering some possible scenarios we assumed that during 7000 working hours per year it is reasonably to expect 300 unsafe entries per year. It can be concluded that safety system should be designed so that probability of failure of radiation protection system has to be less than 1.9 10-6. (authors)

  11. High power radiation guiding systems for laser driven accelerators

    This paper reviews the main problems encountered in the design of an optical system for transmitting high fluence radiation in a laser driven accelerator. Particular attention is devoted to the analysis of mirror and waveguide systems. (orig.)

  12. Wound healing following radiation therapy: a review

    Radiation therapy may interrupt normal wound healing mechanisms. Changes in vasculature, effects on fibroblasts, and varying levels of regulatory growth factors result in the potential for altered wound healing whether radiation is given before or after surgery. Surgical factors, such as incision size, as well as radiation parameters, including dose and fractionation, are important considerations in developing overall treatment plans. Experience suggests that certain practical measures may diminish the risk of morbidity, and investigations are ongoing

  13. A linear electron accelerator radiation processing facility

    A description is given of the operations of a contract radiation processing facility. The radiation sources are medium energy linacs. Provision is being made for the installation of a cobalt 60 processing facility. A list is given of the radiation processing programmes presently being undertaken. The dosimetry system is described. (U.K.)

  14. Radiation protection systems on the TESLA Accelerator Installation

    In the Institute of Nuclear sciences VINCA, the Accelerator Installation TESLA which is an medium energy ion accelerator facility consisting of an isochronous cyclotron VINCY, a heavy ion source, a D/H ion source, three low energy and five high energy experimental channels is now under construction. Some problems in defining radiation protection and safety programme, particularly problems in construction appropriate shielding barriers at the Accelerator Installation TESLA are discussed in this paper. (author

  15. Role of radiation therapy in gastric adenocarcinoma

    Lisa Hazard; John O'Connor; Courtney Scaife

    2006-01-01

    Outcomes in patients with gastric cancer in the United States remain disappointing, with a five-year overall survival rate of approximately 23%. Given high rates of local-regional control following surgery, a strong rationale exists for the use of adjuvant radiation therapy.Randomized trials have shown superior local control with adjuvant radiotherapy and improved overall survival with adjuvant chemoradiation. The benefit of adjuvant chemoradiation in patients who have undergone D2 lymph node dissection by an experienced surgeon is not known, and the benefit of adjuvant radiation therapy in addition to adjuvant chemotherapy continues to be defined.In unresectable disease, chemoradiation allows long-term survival in a small number of patients and provides effective palliation. Most trials show a benefit to combined modality therapy compared to chemotherapy or radiation therapy alone.The use of pre-operative, intra-operative, 3D conformal, and intensity modulated radiation therapy in gastric cancer is promising but requires further study.The current article reviews the role of radiation therapy in the treatment of resectable and unresectable gastric carcinoma, focusing on current recommendations in the United States.

  16. Evolution of radiation therapy: technology of today

    The three well established arms of treatment are surgery, radiation therapy and chemotherapy. The management of cancer is multidisciplinary; Radiation Oncologists along with Surgical Oncologists and Medical Oncologists are responsible for cancer therapeutics. They all work in close collaboration with Pathologists and Radiologists for cancer diagnosis and staging and rely on Oncology Nurses, Physiotherapists, Occupational Therapists, Nutritionists and Social Workers for optimal treatment and rehabilitation of cancer patients. Therefore cancer management is a team work for getting the best results. Radiation therapy is one of the most effective methods of treating cancer

  17. Modern Radiation Therapy for Hodgkin Lymphoma

    Specht, Lena; Yahalom, Joachim; Illidge, Tim;

    2014-01-01

    Radiation therapy (RT) is the most effective single modality for local control of Hodgkin lymphoma (HL) and an important component of therapy for many patients. These guidelines have been developed to address the use of RT in HL in the modern era of combined modality treatment. The role of reduced...... Lymphoma Radiation Oncology Group (ILROG) Steering Committee regarding the modern approach to RT in the treatment of HL, outlining a new concept of ISRT in which reduced treatment volumes are planned for the effective control of involved sites of HL. Nodal and extranodal non-Hodgkin lymphomas (NHL) are...... Commission on Radiation Units and Measurements concepts of gross tumor volume, clinical target volume, internal target volume, and planning target volume are used for defining the targeted volumes. Newer treatment techniques, including intensity modulated radiation therapy, breath-hold, image guided...

  18. Accelerator based neutron source for neutron capture therapy

    Full text: The Budker Institute of Nuclear Physics (Novosibirsk) and the Institute of Physics and Power Engineering (Obninsk) have proposed an accelerator based neutron source for neutron capture and fast neutron therapy for hospital. Innovative approach is based upon vacuum insulation tandem accelerator (VITA) and near threshold 7Li(p,n)7Be neutron generation. Pilot accelerator based neutron source for neutron capture therapy is under construction now at the Budker Institute of Nuclear Physics, Novosibirsk, Russia. In the present report, the pilot facility design is presented and discussed. Design features of facility components are discussed. Results of experiments and simulations are presented. Complete experimental tests are planned by the end of the year 2005

  19. Protective prostheses during radiation therapy

    Current applications and complications in the use of radiotherapy for the treatment of oral malignancy are reviewed. Prostheses are used for decreasing radiation to vital structures not involved with the lesion but located in the field of radiation. With a program of oral hygiene and proper dental care, protective prostheses can help decrease greatly the morbidity seen with existing radiotherapy regimens

  20. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    Shuang-Qing, W; Shuang-Qing, Wu; Mu-Lin, Yan

    2003-01-01

    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated by using a method of the generalized tortoise coordinate transformation. Both the location and temperature of the event horizon depend on the time and on the angles. They coincide with previous results, but the thermal radiation spectrum of massless spinor particles displays a kind of spin-acceleration coupling effect.

  1. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect

    吴双清; 闫沐霖

    2003-01-01

    The Hawking radiation of Weyl neutrinos in an arbitrarily accelerating Kinnersley black hole is investigated using a method of the generalized tortoise coordinate transformation.Both the location and temperature of the event horizon depend on the time and on the angles.They are in agreement with the previous results,but thethermal radiation spectrum of massless spinor particles displays a type of spin-acceleration coupling effect.

  2. Vitamin A as an adjunct to radiation therapy of cancer

    In a series of animal experiments supplemental Vitamin A (Vit. A) has been found to enhance the effectiveness of irradiation in tumor therapy in several ways: 1. By direct potentiation of radiation effects as manifested by hastening of tumor regression and lessening of metastatic spread. 2. By exerting a protective action against toxicity induced by therapeutic exposure to radiation as expressed by a) moderation of depletion of blood elements (i.e. leucopenia, thrombocytopenia) b) minimizing of damage to mucosal surfaces (i.e. radiation esophagitis) c) reduction of immunosuppression (i.e. increased rate of ''takes'' of transplanted tumors in irradiated animals) d) counteracting of carcinogenic effects (i.e. radiation-induced lymphoma). 3. By accelerating wound healing thereby shortening surgery to irradiation time in post-operative treatment. The above observations derived from their animal experiment which are described in detail suggest that Vit. A may be of value as an antineoplastic and radioprotective agent

  3. Radiation from Accelerated Particles in Shocks and Reconnections

    Nishikawa, K.-I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Fishman, G. J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; Hartmann, D. H.

    2012-01-01

    We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic jets propagating into an unmagnetized plasmas. Strong magnetic fields generated in the trailing shock contribute to the electrons transverse deflection and acceleration. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants

  4. Neutron radiation therapy: application of advanced technology to the treatment of cancer

    Maughan, R L; Kota, C; Burmeister, J; Porter, A T; Forman, J D; Blosser, H G; Blosser, E; Blosser, G

    1999-01-01

    The design and construction of a unique superconducting cyclotron for use in fast neutron radiation therapy is described. The clinical results obtained in the treatment of adenocarcinoma of the prostate with this accelerator are presented. Future use of the boron neutron capture reaction as a means of enhancing fast neutron therapy in the treatment of patients with brain tumors (glioblastoma multiforme) is also discussed.

  5. Particle Accelerators and Detectors for medical Diagnostics and Therapy

    Braccini, Saverio

    2016-01-01

    This Habilitationsschrift (Habilitation thesis) is focused on my research activities on medical applications of particle physics and was written in 2013 to obtain the Venia Docendi (Habilitation) in experimental physics at the University of Bern. It is based on selected publications, which represented at that time my major scientific contributions as an experimental physicist to the field of particle accelerators and detectors applied to medical diagnostics and therapy. The thesis is structured in two parts. In Part I, Chapter 1 presents an introduction to accelerators and detectors applied to medicine, with particular focus on cancer hadrontherapy and on the production of radioactive isotopes. In Chapter 2, my publications on medical particle accelerators are introduced and put into their perspective. In particular, high frequency linear accelerators for hadrontherapy are discussed together with the new Bern cyclotron laboratory. Chapter 3 is dedicated to particle detectors with particular emphasis on three ...

  6. Characterizing THz Coherent Synchrotron Radiation at Femtosecond Linear Accelerator

    LIN Xu-Ling; ZHANG Jian-Bing; LU YU; LUO Feng; LU Shan-Liang; YU Tie-Min; DAI Zhi-Min

    2009-01-01

    The generation and observation of coherent THz synchrotron radiation from femtosecond electron bunches in the Shanghai Institute of Applied Physics femtosecond accelerator device is reported.We describe the experiment setup and present the first result of THz radiation properties such as power and spectrum.

  7. PIN photo-diodes as radiation detectors in accelerator applications

    We have been using PIN photo-diodes originally suited for light detection as radiation detectors in several applications: photon monitoring in X-ray machines in industrial and medical applications, X-ray spectroscopy for identification of radioactive materials and XRF, and charged particle spectroscopy. The versatility of these devices as radiation detectors has led us to apply it in several accelerator experiments. This work presents an overview of the results obtained in several experiments: the measurement of charged particles up to 12 MeV in a Tandem accelerator, the measurement of the Bremstralung radiation obtained in an experimental electron accelerator in the range from 70 keV to 470 keV, the direct measurement of the intensity of the electron beam; also the application of PIN photo-diodes in the measurement of the intensity of photons in lineal accelerators used in radiotherapy up to 18 MeV. The front end conditioning electronics associated with the detectors is also described for every application: low noise charge sensitive preamplifiers and current amplifiers are used. The PIN diodes are a good choice for radiation detection in several accelerator applications with the advantage of a good position resolution due to its small size, good sensitivity for different radiation fields and low cost, and can be used to build a wide variety of detection systems around accelerator experiments. (author)

  8. Self-consistent radiative effect on relativistic electromagnetic particle acceleration

    Noguchi, K; Nishimura, K

    2005-01-01

    We study the radiation damping effect on the relativistic acceleration of electron-positron plasmas with two-and-half-dimensional particle-in-cell (PIC) simulation. Particles are accelerated by Poynting flux via the diamagnetic relativistic pulse accelerator (DRPA), and decelerated by the self-consistently solved radiation damping force. With $\\Omega_{ce}/\\omega_{pe}\\geq 10$, the Lorentz factor of the highest energy particles reaches gamma>100, and the acceleration still continues. The emitted radiation is peaked within few degrees from the direction of Poynting flux and strongly linearly polarized, which may be detectable in gamma-ray burst(GRB) observations. We also show that the DRPA is insensitive to the initial supporting currents.

  9. Impact of radiation therapy on sexual life

    The aim of this study was to evaluate the impact of radiation therapy on sexual life. The analysis was based on a Pubmed literature review. The keywords used for this research were 'sexual, radiation, oncology, and cancer'. After a brief reminder on the anatomy and physiology, we explained the main complications of radiation oncology and their impact on sexual life. Preventive measures and therapeutic possibilities were discussed. Radiation therapy entails local, systematic and psychological after-effects. For women, vaginal stenosis and dyspareunia represent the most frequent side effects. For men, radiation therapy leads to erectile disorders for 25 to 75% of the patients. These complications have an echo often mattering on the patient quality of life of and on their sexual life post-treatment reconstruction. The knowledge of the indications and the various techniques of irradiation allow reducing its potential sexual morbidity. The information and the education of patients are essential, although often neglected. In conclusion, radiation therapy impacts in variable degrees on the sexual life of the patients. Currently, there are not enough preventive and therapeutic means. Patient information and the early screening of the sexual complications are at stake in the support of patients in the reconstruction of their sexual life. (authors)

  10. Code of practice for x-ray therapy linear accelerators

    Details are presented on the tests that should be performed during the installation of a megavoltage linear accelerator. Also discussed are the dosimetry studies that should be done as part of the operation of the machine. Information in specific radiation monitoring equipment is provided. (U.S.)

  11. Radiation safety training for accelerator facilities

    In November 1992, a working group was formed within the U.S. Department of Energy's (DOE's) accelerator facilities to develop a generic safety training program to meet the basic requirements for individuals working in accelerator facilities. This training, by necessity, includes sections for inserting facility-specific information. The resulting course materials were issued by DOE as a handbook under its technical standards in 1996. Because experimenters may be at a facility for only a short time and often at odd times during the day, the working group felt that computer-based training would be useful. To that end, Lawrence Livermore National Laboratory (LLNL) and Argonne National Laboratory (ANL) together have developed a computer-based safety training program for accelerator facilities. This interactive course not only enables trainees to receive facility- specific information, but time the training to their schedule and tailor it to their level of expertise

  12. Accelerated larvae development of Ascaris lumbricoides eggs with ultraviolet radiation

    Aladawi, M. A.; Albarodi, H.; Hammoudeh, A.; Shamma, M.; Sharabi, N.

    2006-01-01

    In order to investigate the effect of UV radiation on the development of Ascaris lumbricoides larvae, eggs were exposed to increasing UV doses. Filtered wastewater from the secondary effluent taken from the Damascus wastewater treatment plant (DWTP) was used as irradiation and incubation medium. The progressive and accelerated embryonation stages were microscopically observed and the percentages of completely developed larvae were determined weekly. Results indicated that the UV radiation accelerated the development of larvae with increasing UV dose. Preliminary information about the relationship between the UV radiation dose and rate of embryonation is also presented.

  13. Accelerated larvae development of Ascaris lumbricoides eggs with ultraviolet radiation

    Aladawi, M.A. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic)]. E-mail: Scientific@aec.org.sy; Albarodi, H. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Hammoudeh, A. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Shamma, M. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic); Sharabi, N. [Syrian Atomic Energy Commission, Radiation Technology Department, P.O. Box 6091, Damascus (Syrian Arab Republic)

    2006-01-15

    In order to investigate the effect of UV radiation on the development of Ascaris lumbricoides larvae, eggs were exposed to increasing UV doses. Filtered wastewater from the secondary effluent taken from the Damascus wastewater treatment plant (DWTP) was used as irradiation and incubation medium. The progressive and accelerated embryonation stages were microscopically observed and the percentages of completely developed larvae were determined weekly. Results indicated that the UV radiation accelerated the development of larvae with increasing UV dose. Preliminary information about the relationship between the UV radiation dose and rate of embryonation is also presented.

  14. Accelerated larvae development of Ascaris lumbricoides eggs with ultraviolet radiation

    In order to investigate the effect of UV radiation on the development of Ascaris lumbricoides larvae, eggs were exposed to increasing UV doses. Filtered wastewater from the secondary effluent taken from the Damascus wastewater treatment plant (DWTP) was used as irradiation and incubation medium. The progressive and accelerated embryonation stages were microscopically observed and the percentages of completely developed larvae were determined weekly. Results indicated that the UV radiation accelerated the development of larvae with increasing UV dose. Preliminary information about the relationship between the UV radiation dose and rate of embryonation is also presented

  15. Cancer and electromagnetic radiation therapy: Quo Vadis?

    Makropoulou, Mersini

    2016-01-01

    In oncology, treating cancer with a beam of photons is a well established therapeutic technique, developed over 100 years, and today over 50% of cancer patients will undergo traditional X-ray radiotherapy. However, ionizing radiation therapy is not the only option, as the high-energy photons delivering their cell-killing radiation energy into cancerous tumor can lead to significant damage to healthy tissues surrounding the tumor, located throughout the beam's path. Therefore, in nowadays, advances in ionizing radiation therapy are competitive to non-ionizing ones, as for example the laser light based therapy, resulting in a synergism that has revolutionized medicine. The use of non-invasive or minimally invasive (e.g. through flexible endoscopes) therapeutic procedures in the management of patients represents a very interesting treatment option. Moreover, as the major breakthrough in cancer management is the individualized patient treatment, new biophotonic techniques, e.g. photo-activated drug carriers, help...

  16. Radiation therapy for intracranial germ cell tumors

    Kato, Shingo; Hayakawa, Kazushige; Tsuchiya, Miwako; Arai, Masahiko; Kazumoto, Tomoko; Niibe, Hideo; Tamura, Masaru

    1988-04-01

    The results of radiation therapy in 31 patients with intracranial germ cell tumors have been analyzed. The five-year survival rates were 70.1 % for germinomas and 38.1 % for teratomas. Three patients with germinoma have since died of spinal seeding. The prophylactic irradiation of the spinal canal has been found effective in protecting spinal seeding, since no relapse of germinoma has been observed in cases that received entire neuraxis iradiation, whereas teratomas and marker (AFP, HCG) positive tumors did not respond favorably to radiation therapy, and the cause of death in these patients has been local failure. Long-term survivors over 3 years after radiation therapy have been determined as having a good quality of life.

  17. Neutron radiation from medical electron accelerators

    A method is described using simple gold foils and relatively inexpensive moderators to measure neutron fluences, both fast nd thermal, which then can be converted to dose equivalent using a few simple formulas. The method is sensitive, easy to calibrate, and should work at most accelerators regardless of energy or room geometry

  18. An integrated ultrasound-computer dosimetry system for radiation therapy

    A highly interactive on-line computer-based radiation therapy planning system has been developed to allow first-hand participation by the physician for maximum input of clinical judgement in treatment planning. The system utilizes an ultrasound scanning device for acquisition of the patient's contour and anatomical information for simultaneous evaluation by the therapist and processing by the computer. The man-machine interaction and graphic data entry are achieved through a sonic graph pen digitizer mounted on the screen of a multi-colour video monitor. A second graph pen digitizer on a radiograph view box is used for digitization and entry to the computer of other graphic data sources. Radiation treatment parameters are graphically entered directly on the echogram of the patient's cross-sectional anatomy. The radiation dose distribution for a proposed plan is then computed and displayed superimposed in a contrasting colour on the echogram for further scrutiny by the therapist and possible modification. When an acceptable plan is produced, the radiation fields are accurately marked on the patient body in reference to the radiation ports displayed. The system is used for external beam planning with simple, multiple, and irregular fields and intracavitary and interstitial implant dosimetry. Since in this system the radiation delivery is planned based on the cross-sectional anatomy, it is well suited for planning of heavy particle beam therapy which utilizes the stopping characteristics of the accelerated particles in the absorbing medium. (author)

  19. Radiation Therapy for Pilocytic Astrocytomas of Childhood

    Purpose: Though radiation therapy is generally considered the most effective treatment for unresectable pilocytic astrocytomas in children, there are few data to support this claim. To examine the efficacy of radiation therapy for pediatric pilocytic astrocytomas, we retrospectively reviewed the experience at our institution. Methods and Materials: Thirty-five patients 18 years old or younger with unresectable tumors and without evidence of neurofibromatosis have been treated since 1982. Patients were treated with local radiation fields to a median dose of 54 Gy. Six patients were treated with radiosurgery to a median dose of 15.5 Gy. Five patients were treated with initial chemotherapy and irradiated after progression. Results: All patients were alive after a median follow-up of 5.0 years. However, progression-free survival was 68.7%. None of 11 infratentorial tumors progressed compared with 6 of 20 supratentorial tumors. A trend toward improved progression-free survival was seen with radiosurgery (80%) compared with external beam alone (66%), but this difference did not reach statistical significance. Eight of the 9 patients progressing after therapy did so within the irradiated volume. Conclusions: Although the survival of these children is excellent, almost one third of patients have progressive disease after definitive radiotherapy. Improvements in tumor control are needed in this patient population, and the optimal therapy has not been fully defined. Prospective trials comparing initial chemotherapy to radiation therapy are warranted.

  20. Early cardiac changes related to radiation therapy

    To investigate the incidence and severity of possible radiation-induced cardiac changes, 21 women without heart disease were investigated serially by echocardiography and by measuring systolic time intervals before and up to 6 months after postoperative radiation therapy because of breast cancer. Radiation was associated with a decrease in fractional systolic shortening of the left ventricular (LV) minor-axis diameter, from 0.35 +/- 0.05 to 0.32 +/- 0.06 (p less than 0.005), and in the systolic blood pressure/end-systolic diameter ratio, from 4.4 +/- 1.2 to 3.9 +/- 0.9 mm Hg/mm (p less than 0.005). The mitral E point-septal separation increased, from 2.8 +/- 1.5 to 4.2 +/- 2.5 mm (p less than 0.005). The preejection period/LV ejection time ratio of systolic time intervals increased, but only the decrease within 6 months after therapy was significant (p less than 0.005). All these changes reflect slight transient depression of LV function, which became normalized within 6 months after therapy. Up to 6 months after therapy, a slight pericardial effusion was found in 33% of the patients. Hence, conventional radiation therapy appeared to cause an acute transient and usually symptomless decrease in LV function, and later, slight pericardial effusion in one-third of the patients

  1. Gene Profiling Technique to Accelerate Stem Cell Therapies for Eye Diseases

    ... to accelerate stem cell therapies for eye diseases Gene profiling technique to accelerate stem cell therapies for ... The method simultaneously measures the expression of multiple genes, allowing scientists to quickly characterize cells according to ...

  2. Monte Carlo techniques in radiation therapy

    Verhaegen, Frank

    2013-01-01

    Modern cancer treatment relies on Monte Carlo simulations to help radiotherapists and clinical physicists better understand and compute radiation dose from imaging devices as well as exploit four-dimensional imaging data. With Monte Carlo-based treatment planning tools now available from commercial vendors, a complete transition to Monte Carlo-based dose calculation methods in radiotherapy could likely take place in the next decade. Monte Carlo Techniques in Radiation Therapy explores the use of Monte Carlo methods for modeling various features of internal and external radiation sources, including light ion beams. The book-the first of its kind-addresses applications of the Monte Carlo particle transport simulation technique in radiation therapy, mainly focusing on external beam radiotherapy and brachytherapy. It presents the mathematical and technical aspects of the methods in particle transport simulations. The book also discusses the modeling of medical linacs and other irradiation devices; issues specific...

  3. Eosinophilia following radiation therapy Fin childhood

    Radiation related eosinophilia (R.R.E.) has been observed mainly among the patients who received radiation therapy for uterine cancer, which was said to Fbe the sign of good prognosis. Retrospective study of eosinophilia following radiation therapy was performed in 41 pediatric patients with acute lymphoblastic leukemia, brain tumor and so on. Thirty-two per cent of all courses of radiation therapy was associated with R.R.E.. Eosinophil counts increased gradually from two weeks after the start of therapy and reached to maximun on the 33rd day (mean). R.R.E. was seen much more frequently among the patients with brain tumor than those with ALL. And R.R.E. was also related to radiation dose. Patients under 3 years of age showed R.R.E. less frequently comparing to the older age group. Those findings might mean that R.R.E. was strongly related to the host's immunological function. This is the first report about R.R.E. in childhood. (author)

  4. Bullous pemphigoid after radiation therapy

    Electron beam therapy applied to a lymph node metastasis from a squamous cell carcinoma was followed by the development of histologically and immunologically typical bullous pemphigoid, the lesions being initially strictly confined to the irradiation area. This observation suggests that the bullous pemphigoid antigen may be altered or unmasked by electron beam radiotherapy, leading subsequently to the production of autoantibodies. The disease in this case effectively responded to the administration of tetracycline and niacinamide, a therapeutic regimen described recently

  5. Malignant peritoneal mesothelioma after radiation therapy

    A 49-year-old woman developed ascites 31 years after radiation therapy for ovarian cancer and was admitted to hospital 1 year later. Diffuse infiltration of both sheets of the peritoneum was found by CT, which on histological investigation turned out to be an advanced malignant peritoneal carcinoma. When there is a history of radiation exposure, malignant peritoneal mesothelioma should be considered as the cause of ascites. (orig.)

  6. Cancer and electromagnetic radiation therapy: Quo Vadis?

    Makropoulou, Mersini

    2016-01-01

    In oncology, treating cancer with a beam of photons is a well established therapeutic technique, developed over 100 years, and today over 50% of cancer patients will undergo traditional X-ray radiotherapy. However, ionizing radiation therapy is not the only option, as the high-energy photons delivering their cell-killing radiation energy into cancerous tumor can lead to significant damage to healthy tissues surrounding the tumor, located throughout the beam's path. Therefore, in nowadays, adv...

  7. Radiative Effect on Particle Acceleration via Relativistic Electromagnetic Expansion

    Noguchi, K

    2005-01-01

    The radiation damping effect on the diamagnetic relativistic pulse accelerator (DRPA) is studied in two-and-half dimensional Particle-in-Cell (PIC) simulation with magnetized electron-positron plasmas. Self-consistently solved radiation damping force converts particle energy to radiation energy. The DRPA is still robust with radiation, and the Lorentz factor of the most high energy particles reach more than two thousand before they decouple from the electromagnetic pulse. Resulted emitted power from the pulse front is lower in the radiative case than the estimation from the non-radiative case due to the radiation damping. The emitted radiation is strongly linearly polarized and peaked within few degrees from the direction of Poynting flux.

  8. Radiation load of workers on linear accelerators

    Burden of health care personnel working on linear accelerators. New examination and treatment methods enable to reduce the number of health care personnel even in the case of increased numbers of examined patients. However, still open is the question of determining the effective dose delivered to health care personnel. The employment of several methods of evaluation of received dose at one workplace makes it possible to compare the accuracy and reliability of the respective types of measuring devices, as well as to point out the pitfalls of their use.At the St. Elizabeth Cancer Institute we compared the results of measurements of TL dosimeters, and OSL dosimeters at workplaces with linear accelerators. (authors)

  9. Effects of radiation therapy in microvascular anastomoses

    Fried, M.P.

    1985-07-01

    The otolaryngologist, as a head and neck surgeon, commonly cares for patients with upper aerodigestive tract malignancies. Therapy of these neoplasms often requires wide excision. One standard reconstructive procedure utilizes pedicled regional flaps, both dermal and myodermal which have some disadvantages. The shortcomings of these pedicled regional flaps have led to the use of the vascularized free flap in certain cases. The occasional case may lead to catastrophe if microanastomoses fail when combined with radiation. Notwithstanding, many surgical series have reported success when radiation has been given. The present investigation was undertaken to assess the effects of radiation therapy on microvascular anastomoses when radiation is administered pre- or postoperatively or when nonradiated tissue is transferred to an irradiated recipient site. These effects were observed serially in an experimental rat model using a tubed superficial epigastric flap that adequately reflected tissue viability and vascular patency. The histologic changes were then noted over a three month period after completion of both radiation and surgery. This study adds credence to the observation of the lack of deleterious effects of radiation on experimental microvascular anastomotic patency whether the radiation is given before or after surgery or if radiated tissue is approximated to nonradiated vessels.

  10. Effects of radiation therapy in microvascular anastomoses

    The otolaryngologist, as a head and neck surgeon, commonly cares for patients with upper aerodigestive tract malignancies. Therapy of these neoplasms often requires wide excision. One standard reconstructive procedure utilizes pedicled regional flaps, both dermal and myodermal which have some disadvantages. The shortcomings of these pedicled regional flaps have led to the use of the vascularized free flap in certain cases. The occasional case may lead to catastrophe if microanastomoses fail when combined with radiation. Notwithstanding, many surgical series have reported success when radiation has been given. The present investigation was undertaken to assess the effects of radiation therapy on microvascular anastomoses when radiation is administered pre- or postoperatively or when nonradiated tissue is transferred to an irradiated recipient site. These effects were observed serially in an experimental rat model using a tubed superficial epigastric flap that adequately reflected tissue viability and vascular patency. The histologic changes were then noted over a three month period after completion of both radiation and surgery. This study adds credence to the observation of the lack of deleterious effects of radiation on experimental microvascular anastomotic patency whether the radiation is given before or after surgery or if radiated tissue is approximated to nonradiated vessels