WorldWideScience

Sample records for accelerated fractionation radiotherapy

  1. Modelling accelerated fractionation in radiotherapy

    This study was undertaken to investigate optimum treatment schedules for highly proliferative tumours. The linear quadratic model is used to predict the most effective fractionation regimes. It should be pointed out that greater early effects are associated with improved tumour control, as such these data should be treated as a useful guideline and should never be used out of context with clinical experience. The linear quadratic model with proliferation has been used to investigate the effect on cell survival and associated tumour control probability (TCP)

  2. Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss

    Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a “wait-and-scan” group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dose to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.

  3. Fractionated Stereotactic Radiotherapy of Vestibular Schwannomas Accelerates Hearing Loss

    Rasmussen, Rune, E-mail: rune333@gmail.com [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark); Claesson, Magnus [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark); Stangerup, Sven-Eric [Ear, Nose, and Throat Department, Rigshospitalet, Copenhagen (Denmark); Roed, Henrik [Department of Radiation Oncology, Rigshospitalet, Copenhagen (Denmark); Christensen, Ib Jarle [Finsen Laboratory, Rigshospitalet, Copenhagen (Denmark); Caye-Thomasen, Per [Ear, Nose, and Throat Department, Rigshospitalet, Copenhagen (Denmark); Juhler, Marianne [Department of Neurosurgery, Rigshospitalet, Copenhagen (Denmark)

    2012-08-01

    Objective: To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hearing preservation was also investigated. Methods and Materials: Forty-two patients receiving FSRT between 1997 and 2008 with a minimum follow-up of 2 years were included. All patients received 54 Gy in 27-30 fractions during 5.5-6.0 weeks. Clinical and audiometry data were collected prospectively. From a 'wait-and-scan' group, 409 patients were selected as control subjects, matched by initial audiometric parameters. Radiation dose to the cochlea was measured using the original treatment plan and then related to changes in acoustic parameters. Results: Actuarial 2-, 4-, and 10-year tumor control rates were 100%, 91.5%, and 85.0%, respectively. Twenty-one patients had serviceable hearing before FSRT, 8 of whom (38%) retained serviceable hearing at 2 years after FSRT. No patients retained serviceable hearing after 10 years. At 2 years, hearing preservation rates in the control group were 1.8 times higher compared with the group receiving FSRT (P=.007). Radiation dose to the cochlea was significantly correlated to deterioration of the speech reception threshold (P=.03) but not to discrimination loss. Conclusion: FSRT accelerates the naturally occurring hearing loss in patients with vestibular schwannoma. Our findings, using fractionation of radiotherapy, parallel results using single-dose radiation. The radiation dose to the cochlea is correlated to hearing loss measured as the speech reception threshold.

  4. Fractionated stereotactic radiotherapy of vestibular schwannomas accelerates hearing loss

    Rasmussen, Rune; Claesson, Magnus; Stangerup, Sven-Eric;

    2012-01-01

    To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea and hear......To evaluate long-term tumor control and hearing preservation rates in patients with vestibular schwannoma treated with fractionated stereotactic radiotherapy (FSRT), comparing hearing preservation rates to an untreated control group. The relationship between radiation dose to the cochlea...

  5. Comparison of remote results of conventional fractionation radiotherapy and late course accelerated hyperfractionation radiotherapy for nasopharyngeal carcinoma

    Objective: To compare the long-term effects of conventional fractionation (CF) radio-therapy and late course accelerated hyperfractionation (LCAHF) radiotherapy of nasopharyngeal carcinoma (NPC), and to arrive at a appropriate NPC radiotherapy protocol. Methods: According to the criteria, 496 patients with NPC were allotted to our retrospective analysis, including 269 in the CF group and 227 in the LCAHF group. Two large lateral opposing fields were first used to treat the nasopharynx and the upper neck at a fraction of 2 Gy daily, 5 days per week. After 36-40 Gy, two small lateral opposing fields were used to boost the primary tumor while the spinal cord shielded. In the CF group, the accumulated total dose of naso-pharynx was 68-76 Gy at 2 Gy daily. In the LCAHF group, the radiation fraction of primary tumor was 1.5 Gy twice daily, with a minimum of six-hour interval in the late course. The accumulated total dose was 69-72 Gy. Survival was assessed by Kaplan-Meier method and Logrank analysis. Results: The 5-year primary site control, tumor-free survival and overall survival rates was 65.4% ,61.5% and 68.1% in the LCAHF group and 52.8%, 49.4% and 57.5% in the CF group. The difference between the two groups were significant (P=0.006, 0.006 and 0.031). Further analysis showed that LCAHF improved the primary site control, tumor-free survival and overall survival rates of T2-T3 NPC (P0.05). Conclusions: When compared with conventional fractionation radiotherapy, late course accelerated hyperfractionation radiotherapy, being tolerable, definitely can improve the local control, tumor-free survival and overall survival in patients with nasopharyngeal carcinoma. But the recurrence rates of cervical lymph nodes and distant metastasis were similar in between these two groups. (authors)

  6. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    Stiebel-Kalish, Hadas, E-mail: kalishhadas@gmail.com [Neuro-Ophthalmology Unit, Rabin Medical Center, Petah Tikva (Israel); Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Reich, Ehud [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Department of Ophthalmology, Rabin Medical Center, Petah Tikva (Israel); Gal, Lior [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Rappaport, Zvi Harry [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Department of Neurosurgery, Rabin Medical Center, Petah Tikva (Israel); Nissim, Ouzi [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Department of Neurosurgery, Sheba Medical Center, Ramat Gan (Israel); Pfeffer, Raphael [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Spiegelmann, Roberto [Sackler School of Medicine, Tel Aviv University, Tel Aviv (Israel); Stereotactic Radiosurgery Unit, Sheba Medical Center, Ramat Gan (Israel); Department of Neurosurgery, Sheba Medical Center, Ramat Gan (Israel)

    2012-02-01

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

  7. Visual Outcome in Meningiomas Around Anterior Visual Pathways Treated With Linear Accelerator Fractionated Stereotactic Radiotherapy

    Purpose: Meningiomas threatening the anterior visual pathways (AVPs) and not amenable for surgery are currently treated with multisession stereotactic radiotherapy. Stereotactic radiotherapy is available with a number of devices. The most ubiquitous include the gamma knife, CyberKnife, tomotherapy, and isocentric linear accelerator systems. The purpose of our study was to describe a case series of AVP meningiomas treated with linear accelerator fractionated stereotactic radiotherapy (FSRT) using the multiple, noncoplanar, dynamic conformal rotation paradigm and to compare the success and complication rates with those reported for other techniques. Patients and Methods: We included all patients with AVP meningiomas followed up at our neuro-ophthalmology unit for a minimum of 12 months after FSRT. We compared the details of the neuro-ophthalmologic examinations and tumor size before and after FSRT and at the end of follow-up. Results: Of 87 patients with AVP meningiomas, 17 had been referred for FSRT. Of the 17 patients, 16 completed >12 months of follow-up (mean 39). Of the 16 patients, 11 had undergone surgery before FSRT and 5 had undergone FSRT as first-line management. Tumor control was achieved in 14 of the 16 patients, with three meningiomas shrinking in size after RT. Two meningiomas progressed, one in an area that was outside the radiation field. The visual function had improved in 6 or stabilized in 8 of the 16 patients (88%) and worsened in 2 (12%). Conclusions: Linear accelerator fractionated RT using the multiple noncoplanar dynamic rotation conformal paradigm can be offered to patients with meningiomas that threaten the anterior visual pathways as an adjunct to surgery or as first-line treatment, with results comparable to those reported for other stereotactic RT techniques.

  8. Prospective randomized trial to compare accelerated (six fractions a week radiotherapy against concurrent chemoradiotherapy (using conventional fractionation in locally advanced head and neck cancers

    Manoj Gupta

    2015-01-01

    Full Text Available Background: Concurrent chemoradiation (CCRT is currently considered to be the standard of care in locally advanced head and neck cancer. The optimum radiotherapy schedule for best local control and acceptable toxicity is not yet clear. We aimed at shortening of treatment time by using accelerated radiation, thereby comparing the disease response, loco-regional tumor control and tolerability of accelerated radiation (six fractions per week against CCRT in locally advanced head and neck cancer. Materials and Methods: We conducted the prospective randomized study for a period of 2 years from June 2011 to May 2013 in 133 untreated patients of histologically confirmed squamous cell carcinoma of head and neck. Study group (66 patients received accelerated radiotherapy with 6 fractions per week (66Gy/33#/5½ weeks. Control group (67 patients received CCRT with 5 fractions per week radiation (66 Gy/33#/6½ weeks along with intravenous cisplatin 30 mg/m 2 weekly. Tumor control, survival, acute and late toxicities were assessed. Results: Median overall treatment time was 38 days and 45 days in the accelerated radiotherapy and concurrent chemoradiation arm, respectively. At a median follow up of 12 months, 41 patients (62.1% in the accelerated radiotherapy arm and 47 patients (70.1% in the CCRT arm were disease free (P = 0.402. Local disease control was comparable in both the arms. Acute toxicities were significantly higher in the CCRT arm as compared with accelerated radiotherapy arm. There was no difference in late toxicities between the two arms. Conclusion: We can achieve, same or near to the same local control, with lower toxicities with accelerated six fractions per week radiation compared with CCRT especially for Indian population.

  9. Can pure accelerated radiotherapy given as six fractions weekly be an option in locally advanced carcinoma cervix: Results of a prospective randomized phase III trial

    Mukesh Sharma

    2016-01-01

    Conclusions: Accelerated radiotherapy given as six fractions per week is an effective alternative to concomitant chemoradiation in locally advanced carcinoma cervix and has shown lesser toxicities in our study.

  10. Nelson's syndrome: single centre experience using the linear accelerator (LINAC) for stereotactic radiosurgery and fractionated stereotactic radiotherapy.

    Wilson, Peter J; Williams, Janet R; Smee, Robert I

    2014-09-01

    Nelson's syndrome is a unique clinical phenomenon of growth of a pituitary adenoma following bilateral adrenalectomies for the control of Cushing's disease. Primary management is surgical, with limited effective medical therapies available. We report our own institution's series of this pathology managed with radiation: prior to 1990, 12 patients were managed with conventional radiotherapy, and between 1990 and 2007, five patients underwent stereotactic radiosurgery (SRS) and two patients fractionated stereotactic radiotherapy (FSRT), both using the linear accelerator (LINAC). Tumour control was equivocal, with two of the five SRS patients having a reduction in tumour volume, one patient remaining unchanged, and two patients having an increase in volume. In the FSRT group, one patient had a decrease in tumour volume whilst the other had an increase in volume. Treatment related morbidity was low. Nelson's syndrome is a challenging clinical scenario, with a highly variable response to radiation in our series. PMID:24825407

  11. A randomized study of accelerated fractionation radiotherapy with and without mitomycin C in the treatment of locally advanced head and neck cancer

    Ezzat, M.; Shouman, T.; Zaza, K.;

    2005-01-01

    Objectives: This single-institution study evaluates the feasibility of accelerated fractionation radiotherapy (AF) with and without mitomycin C (MMC) in the treatment of locally advanced head and neck cancer. Patients and Methods: Between May 1998 and October 2001, sixty patients with locally...... advanced stage III and IV of head and neck cancer were randomized into three treatment arms: (1) conventional fractionation radiotherapy (CF) (5 fractions per week); (2) accelerated fractionation radiotherapy (AF) (6 fractions per week); and (3) AF plus Mitomycin C (MMC). Results: The 2-year overall...... survival (OS) of the whole group was 21%. The OS according to treatment arm was 23%, 20%, and 28% in CF, AF, and AF+MMC arms respectively (p<0.19). The 2-year loco-regional control (LC) rate was 22% for the whole group of patients. The LC was 10%, 25%, and 30% for the CF, AF, and AF+MMC respectively (p=0...

  12. Fractionated stereotactic radiotherapy with linear accelerator for uveal melanoma - preliminary Vienna results

    Between June 1997 and February 1998, 21 patients suffering from uveal melanomas have been treated with a sterotactic 6 MeV LINAC (Saturne 43 trademark, General Electric, France) in conjunction with a stereotactic frame system (BrainLAB trademark, Germany). Immobilization of the eye was ensured with an optical fixation system which was proven reliable. During radiotherapy, movements of the irradiated eye were controlled on a monitor and documented by video recording. All patients co-operated very well with the optical fixation system. In 1164 measurements, the median value of horizontal deviation of the diseased eye during treatment was 0.3 mm (range: 0 to 1.3 mm). Median vertical deviation was 0.2 mm (range: 0 to 1.2 mm). For all patients, mean tumor prominence before treatment was 6.0±2.2 mm. In 20 patients, the total dose of 70 Gy (at 80%) was delivered in 5 fractions within 10 days. In one patient with a ciliary body tumor, the total dose of 70 Gy was divided into 7 fractions for better sparing of the anterior eye segment. Results: After a follow-up of at least 6 months, local tumor control was seen in all eyes. Mean tumor thickness reduction after 3, 6 and 9 months was 7%, 13% and 31%, respectively. Up to now, only mild subacute side-effects located in the anterior eye segment have been noticed. (orig.)

  13. Accelerated versus conventional fractionated postoperative radiotherapy for advanced head and neck cancer: Results of a multicenter Phase III study

    Purpose: To determine whether, in the postoperative setting, accelerated fractionation (AF) radiotherapy (RT) yields a superior locoregional control rate compared with conventional fractionation (CF) RT in locally advanced squamous cell carcinomas of the oral cavity, oropharynx, larynx, or hypopharynx. Methods and materials: Patients from four institutions with one or more high-risk features (pT4, positive resection margins, pN >1, perineural/lymphovascular invasion, extracapsular extension, subglottic extension) after surgery were randomly assigned to either RT with one daily session of 2 Gy up to 60 Gy in 6 weeks or AF. Accelerated fractionation consisted of a 'biphasic concomitant boost' schedule, with the boost delivered during the first and last weeks of treatment, to deliver 64 Gy in 5 weeks. Informed consent was obtained. The primary endpoint of the study was locoregional control. Analysis was on an intention-to-treat basis. Results: From March 1994 to August 2000, 226 patients were randomized. At a median follow-up of 30.6 months (range, 0-110 months), 2-year locoregional control estimates were 80% ± 4% for CF and 78% ± 5% for AF (p = 0.52), and 2-year overall survival estimates were 67% ± 5% for CF and 64% ± 5% for AF (p = 0.84). The lack of difference in outcome between the two treatment arms was confirmed by multivariate analysis. However, interaction analysis with median values as cut-offs showed a trend for improved locoregional control for those patients who had a delay in starting RT and who were treated with AF compared with those with a similar delay but who were treated with CF (hazard ratio = 0.5, 95% confidence interval 0.2-1.1). Fifty percent of patients treated with AF developed confluent mucositis, compared with only 27% of those treated with CF (p = 0.006). However, mucositis duration was not different between arms. Although preliminary, actuarial Grade 3+ late toxicity estimates at 2 years were 18% ± 4% and 27% ± 6% for CF and AF

  14. Preliminary comparison of the therapeutic efficacy of accelerated relative to conventional fractionation radiotherapy by treatment of spontaneous canine malignancies

    Purpose/Objective: This study's ultimate goals involve development of an accelerated fractionation (AF) regimen with an integrated final concomitant boost (CB) and examination of factors prognostic of the CB's therapeutic efficacy which could be measured during the initial AF portion to determine for which patients CB should be used. These endpoints can be accurately determined quickly by evaluating the treatment (tx) of spontaneous canine veterinary patient tumors. Because surviving tumor clonogen growth rate increases after radiotherapy (RT) begins, this accelerated repopulation (AR) should be reduced by AF. Furthermore, CB using a small field encompassing only the tumor bed, given as a second daily tx during the last week of RT, should further reduce AR. The initial portion of this project which is nearing completion was designed to determine if incidentally treated normal tissues could tolerate the AF regimen and project whether addition of the tumor bed CB would also be tolerated. Materials and Methods: Currently 20 canine patients with biopsy proven localized tumors have received canine AF radiotherapy given as 3.2Gy/fraction(fx) administered 5 days a week (Mon-Fri) to a total of 15 fxs (48Gy) within 18 elapsed days. RT is given with a 60Co teletherapy unit. Their tumor response, control, survival, and acute normal tissue responses are being directly compared to results we previously obtained from canines receiving a nearly equivalent dose/fx and total dose conventional fractionation (CF) regimen which was given alone or with adjuvant hyperthermia (HT). In that study the canines were stratified by tumor histology and anatomic site and randomly assigned to receive canine CF (3.5Gy/fx, 3 fxs/week [Mon-Wed-Fri] to 14 fxs (49Gy) in an elapsed time of approx. 30 days) either alone or followed weekly by local HT (44 deg. +/- 2 deg. C) for 30 minutes (5 HT fxs). As is currently done, these CF+/-HT patients were followed up to 3 years to quantitate the magnitudes and

  15. A Randomized Study of Accelerated Fractionation Radiotherapy with and Without Mitomycin C in the Treatment of Locally Advanced Head and Neck Cancer

    This single-institution study evaluates the feasibility of accelerated fractionation radiotherapy (AF) with and without mitomycin C (MMC) in thc treatment of locally advanced head and neck cancer. Patients and Methods: Between May 1998 and October 2001, sixty patients with locally advanced stage III and IV of head and neck cancer were randomized into three treatment arms: (I) conventional fractionation radiotherapy (CF) (5 fractions per week); (2) accelerated fractionation radiotherapy (AF) (6 fractions per week); and (3) AF plus Mitomycin C (MMC). The 2-year overall survival (OS) of the whole group was 21 %. The OS according to treatment arm was 23%, 20%. and 28% in CF. AF. and AF+MMC arms respectively (ρ<0. 19). The 2-year loco-regional control (LC) rate was 22% for the whole group of patients. The LC was 10%, 25%. and 30% for the CF, AF, and AF+MMC respectively (ρ=0.27). The only significant parameters for OS and LC were performance status and pre-treatment hemoglobin level. Mucositis grades 3 and 4 occurred in 70% and 90% of the patients in the AF and AF+MMC arm respectively compared to 55% of patients in the CF arm (ρ=0.04). However the addition of MMC did not significantly increase the incidence or severity of mucositis between AF and AF+MMC (ρ=0.13). Hematological toxicity grades 3 and 4 were significantly higher after MMC (occurred in 40% of patients versus 10% and 5% in CF and AF arms respectively, ρ=0.04). There was no statistically significant difference in the incidence of grade 3 dryness of mouth (ρ=0.06). fibrosis (ρ=0.6). or lymphoedema (ρ=0.39) among the three arms. There was a trend for improvement of LC and OS rates with the use or AF and the addition of MMC to AF compared to CF radiotherapy. although the difference was not statistically significant. The small number of the patients in each treatment arm and the inclusion or multiple tumor sites may contribute to these statistically insignificant results. Accordingly we advise to continue

  16. Three-year outcomes of a once daily fractionation scheme for accelerated partial breast irradiation (APBI) using 3-D conformal radiotherapy (3D-CRT)

    The aim of this study was to report 3-year outcomes of toxicity, cosmesis, and local control using a once daily fractionation scheme (49.95 Gy in 3.33 Gy once daily fractions) for accelerated partial breast irradiation (APBI) using three-dimensional conformal radiotherapy (3D-CRT). Between July 2008 and August 2010, women aged ≥40 years with ductal carcinoma in situ or node-negative invasive breast cancer ≤3 cm in diameter, treated with breast-conserving surgery achieving negative margins, were accrued to a prospective study. Women were treated with APBI using 3–5 photon beams, delivering 49.95 Gy over 15 once daily fractions over 3 weeks. Patients were assessed for toxicities, cosmesis, and local control rates before APBI and at specified time points. Thirty-four patients (mean age 60 years) with Tis 0 (n = 9) and T1N0 (n = 25) breast cancer were treated and followed up for an average of 39 months. Only 3% (1/34) patients experienced a grade 3 subcutaneous fibrosis and breast edema and 97% of the patients had good/excellent cosmetic outcome at 3 years. The 3-year rate of ipsilateral breast tumor recurrence (IBTR) was 0% while the rate of contralateral breast events was 6%. The 3-year disease-free survival (DFS), overall survival (OS), and breast cancer-specific survival (BCSS) was 94%, 100%, and 100%, respectively. Our novel accelerated partial breast fractionation scheme of 15 once daily fractions of 3.33 Gy (49.95 Gy total) is a remarkably well-tolerated regimen of 3D-CRT-based APBI. A larger cohort of patients is needed to further ascertain the toxicity of this accelerated partial breast regimen

  17. Predicting the Effect of Accelerated Fractionation in Postoperative Radiotherapy for Head and Neck Cancer Based on Molecular Marker Profiles: Data From a Randomized Clinical Trial

    Purpose: To determine the prognostic and predictive values of molecular marker expression profiles based on data from a randomized clinical trial of postoperative conventional fractionation (p-CF) therapy versus 7-day-per-week postoperative continuous accelerated irradiation (p-CAIR) therapy for squamous cell cancer of the head and neck. Methods and Materials: Tumor samples from 148 patients (72 p-CF and 76 p-CAIR patients) were available for molecular studies. Immunohistochemistry was used to assess levels of EGFR, nm23, Ki-67, p-53, and cyclin D1 expression. To evaluate the effect of fractionation relative to the expression profiles, data for locoregional tumor control (LRC) were analyzed using the Cox proportional hazard regression model. Survival curves were compared using the Cox f test. Results: Patients who had tumors with low Ki-67, low p-53, and high EGFR expression levels and oral cavity/oropharyngeal primary cancer sites tended to benefit from p-CAIR. A joint score for the gain in LRC from p-CAIR based of these features was used to separate the patients into two groups: those who benefited significantly from p-CAIR with respect to LRC (n = 49 patients; 5-year LRC of 28% vs. 68%; p = 0.01) and those who did not benefit from p-CAIR (n = 99 patients; 5-year LRC of 72% vs. 66%; p = 0.38). The nm23 expression level appeared useful as a prognostic factor but not as a predictor of fractionation effect. Conclusions: These results support the studies that demonstrate the potential of molecular profiles to predict the benefit from accelerated radiotherapy. The molecular profile that favored accelerated treatment (low Ki-67, low p-53, and high EGFR expression) was in a good accordance with results provided by other investigators. Combining individual predictors in a joint score may improve their predictive potential.

  18. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in locally advanced non-small-cell lung cancer: a feasibility study

    Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. High-dose accelerated

  19. Elective lymph node irradiation late course accelerated hyper-fractionated radiotherapy plus concurrent cisplatin-based chemotherapy for esophageal squamous cell carcinoma: a phase II study

    In this phase II study, we evaluated the efficacy, toxicity, and patterns of failure of elective lymph node irradiation (ENI) late course accelerated hyper-fractionated radiotherapy (LCAHRT) concurrently with cisplatin-based chemotherapy (CHT) for esophageal squamous cell carcinoma (ESCC). Patients with clinical stage II-IVa (T1-4N0-1M0 or M1a) ESCC were enrolled between 2004 and 2011. Radiation therapy (RT) comprised two courses: The first course of radiation covered the primary and metastatic regional tumors and high risk lymph nodal regions, given at 2 Gy per fraction for a dose of 40 Gy. In the second course, LCAHRT was delivered to the boost volume twice a day for an additional 19.6 Gy in 7 treatment days, using 1.4 Gy per fraction. Two cycles of CHT were given at the beginning of RT. The median age and Karnofsky performance status were 63 years and 80, respectively. The American Joint Committee on Cancer stage was II in 14 (20.6%) patients, III in 32 (47.1%), and IVa in 22 (32.3%). With a median follow-up of 18.5 months, the overall survival at 1-, 3-, 5-year were 75.5%, 46.5%, 22.7% for whole group patients, versus 78.6%, 49.4%, 39.9% for patients with stage II–III. The patterns of first failure from local recurrence, regional failure, and distant metastasis were seen in 20.6%, 17.6%, and 19.1%, respectively. The most frequent acute high-grade (≥ 3) toxicities were esophagitis and leucopenia, occurred in 26.4% and 32.4%. ENI LCAHRT concurrently with CHT was appeared to be an effective regimen for ESCC patient with a favorable and tolerated profile. Further observation with longer time and randomized phase III trial is currently underway.

  20. Single fraction radiotherapy versus multiple fraction radiotherapy for bone metastases in prostate cancer patients: comparative effectiveness

    External beam radiotherapy (EBRT) is an effective treatment for symptomatic bone metastases from a variety of primary malignancies. Previous meta-analyses and systematic reviews have reported on the efficacy of EBRT on bone metastases from multiple primaries. This review is focused on the comparative effectiveness of single fraction radiotherapy versus multiple fraction radiotherapy for bone metastases in prostate cancer patients

  1. What next in fractionated radiotherapy

    Trends in models for predicting the total dose required to produce tolerable normal-tissue injury can be seen by the progression from the ''cube root law'', through Strandqvist's slope of 0.22, to NSD, TDF and CRE which have separate time and fraction number exponents, to even better approximations now available. The dose-response formulae that can be used to define the effect of fraction size (and number) include (1) the linear quadratic (LQ) model (2) the two-component (TC) multi-target model and (3) repair-misrepair models. The LQ model offers considerable convenience, requires only two parameters to be determined, and emphasizes the difference between late and early normal-tissue dependence on dose per fraction first shown by exponents greater than the NSD slope of 0.24. Exponents of overall time, e.g. Tsup(0.11), yield the wrong shape of time curve, suggesting that most proliferating occurs early, although it really occurs after a delay depending on the turnover time of the tissue. Improved clinical results are being sought by hyperfractionation, accelerated fractionation, or continuous low dose rate irradiation as in interstitial implants. (U.K.)

  2. Neurocognitive outcome in brain metastases patients treated with accelerated-fractionation vs. accelerated-hyperfractionated radiotherapy: an analysis from Radiation Therapy Oncology Group Study 91-04

    Purpose: To evaluate neurocognitive outcome as measured by the Mini-Mental Status Examination (MMSE) among patients with unresectable brain metastases randomly assigned to accelerated fractionation (AF) vs. accelerated hyperfractionated (AH) whole-brain radiation therapy (WBRT). Methods and Materials: The Radiation Therapy Oncology Group (RTOG) accrued 445 patients with unresectable brain metastases to a Phase III comparison of AH (1.6 Gy b.i.d. to 54.4 Gy) vs. AF (3 Gy q.d. to 30 Gy). All had a KPS of ≥ 70 and a neurologic function status of 0-2. Three hundred fifty-nine patients had MMSEs performed and were eligible for this analysis. Changes in the MMSE were analyzed according to criteria previously defined in the literature. Results: The median survival was 4.5 months for both arms. The average change in MMSE at 2 and 3 months was a drop of 1.4 and 1.1, respectively, in the AF arm as compared to a drop of 0.7 and 1.3, respectively, in the AH arm (p=NS). Overall, 91 patients at 2 months and 23 patients at 3 months had both follow-up MMSE and computed tomography/magnetic resonance imaging documentation of the status of their brain metastases. When an analysis was performed taking into account control of brain metastases, a significant effect on MMSE was observed with time and associated proportional increase in uncontrolled brain metastases. At 2 months, the average change in MMSE score was a drop of 0.6 for those whose brain metastases were radiologically controlled as compared to a drop of 1.9 for those with uncontrolled brain metastases (p=0.47). At 3 months, the average change in MMSE score was a drop of 0.5 for those whose brain metastases were radiologically controlled as compared to a drop of 6.3 for those with uncontrolled brain metastases (p=0.02). Conclusion: Use of AH as compared to AF-WBRT was not associated with a significant difference in neurocognitive function as measured by MMSE in this patient population with unresectable brain metastases and

  3. Second Study of Hyper-Fractionated Radiotherapy

    R. Jacob

    1999-01-01

    Full Text Available Purpose and Method. Hyper-fractionated radiotherapy for treatment of soft tissue sarcomas is designed to deliver a higher total dose of radiation without an increase in late normal tissue damage. In a previous study at the Royal Marsden Hospital, a total dose of 75 Gy using twice daily 1.25 Gy fractions resulted in a higher incidence of late damage than conventional radiotherapy using 2 Gy daily fractions treating to a total of 60 Gy. The current trial therefore used a lower dose per fraction of 1.2 Gy and lower total dose of 72 Gy, with 60 fractions given over a period of 6 weeks.

  4. Theoretical exploration on ultra-fractionated radiotherapy

    This study based on the hyper-radiosensitivity (HRS) effect, a new tumour radiotherapy method - ultra-fractionation has been devised. Compared with conventional fractionation, the dose per fraction is decreased from 2Gy to 0.2 ∼ 0.5Gy for the ultra-fractionation. Although the amount of fractions is increased in order to reach the same therapeutic efficacy, the total dose is significantly reduced

  5. Dose escalation of accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine and carboplatin chemotherapy in unresectable stage III non-small-cell lung cancer: a phase I trial

    Accelerated hypofractionated radiotherapy can shorten total treatment time and overcome the accelerated repopulation of tumour cells during radiotherapy. This therapeutic approach has demonstrated good efficacy in the treatment of locally advanced non-small-cell lung cancer (NSCLC). However, the optimal fractionation scheme remains uncertain. The purpose of this phase I trial was to explore the maximum tolerated dose (MTD) of accelerated hypofractionated three-dimensional conformal radiotherapy (3-DCRT) (at 3 Gy/fraction) administered in combination with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for unresectable stage III NSCLC. Previously untreated cases of unresectable stage III NSCLC received accelerated hypofractionated 3-DCRT, delivered at 3 Gy per fraction, once daily, with five fractions per week. The starting dose was 66 Gy and an increment of 3 Gy was utilized. Higher doses continued to be tested in patient groups until the emergence of dose-limiting toxicity (DLT). The MTD was regarded as the dose that was one step below the dose at which DLT occurred. Patients received at least one cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 13 patients were enrolled and progressed through three dose escalation groups: 66 Gy, 69 Gy, and 72 Gy. No treatment-related deaths occurred. The major adverse events included radiation oesophagitis, radiation pneumonitis, and neutropenia. Nausea, fatigue, and anorexia were commonly observed, although the magnitude of these events was typically relatively minor. Among the entire group, four instances of DLT were observed, including two cases of grade 3 radiation oesophagitis, one case of grade 3 radiation pneumonitis, and one case of grade 4 neutropenia. All of these cases of DLT occurred in the 72 Gy group. Therefore, 72 Gy was designated as the DLT dose level, and the lower dose of 69 Gy was regarded as the MTD. For unresectable stage III NSCLC 69 Gy (at 3 Gy/fraction) was

  6. Fractionated stereotactic radiotherapy for acoustic neuromas

    Purpose: When compared with radiosurgery, fractionated stereotactic radiotherapy for acoustic neuroma (AN) offers escalation of the tumor dose and potential sparing of auditory and facial nerve functions. Methods and Materials: Between 1996 and 2001, 249 consecutive patients have received fractionated stereotactic radiotherapy for AN. One hundred twenty-five patients had follow-up >1 year and were the subject of this report. A noninvasive, repeat-fixation mask allowed simulation by way of spiral CT. Two distinct schedules for total dose and fractionation were used. For an AN 3), patients received 25 Gy given in 5 consecutive daily fractions of 5 Gy (111 patients), and for ANs ≥3.0 cm (volume 8.1 ± 1.2 cm3), patients received 30 Gy given in 10 fractions of 3 Gy (14 patients). Results: The percentage of decrease in tumor size was 12% ± 2% (range 0-100%) vs. 13% ± 3% (range 0-38%) for the 25 Gy vs. 30 Gy regimens, respectively. No patient had growth of the AN or developed facial weakness. Two patients developed transient decreases in facial sensation. The rates of hearing preservation were similar for the larger and smaller tumors. Conclusion: Fractionated stereotactic radiotherapy may preserve normal function and control both small and large ANs

  7. Avoidance of treatment interruption: an unrecognized benefit of accelerated radiotherapy in oropharyngeal carcinomas?

    Allal, Abdelkarim Said; De Pree, Christian; Dulguerov, Pavel; Bieri, Sabine; Maire, Daphne Isabel; Kurtz, John

    1999-01-01

    To assess the impact of treatment interruption on the potential gain in locoregional control obtained with accelerated radiotherapy (RT) compared with conventionally fractionated RT in patients with oropharyngeal carcinomas.

  8. Biological dose volume histograms during conformal hypofractionated accelerated radiotherapy for prostate cancer

    Radiobiological data suggest that prostate cancer has a low α/β ratio. Large radiotherapy fractions may, therefore, prove more efficacious than standard radiotherapy, while radiotherapy acceleration should further improve control rates. This study describes the radiobiology of a conformal hypofractionated accelerated radiotherapy scheme for the treatment of high risk prostate cancer. Anteroposterior fields to the pelvis deliver a daily dose of 2.7 Gy, while lateral fields confined to the prostate and seminal vesicles deliver an additional daily dose of 0.7 Gy. Radiotherapy is accomplished within 19 days (15 fractions). Dose volume histograms, calculated for tissue specific α/β ratios and time factors, predict a high biological dose to the prostate and seminal vesicles (77-93 Gy). The biological dose to normal pelvic tissues is maintained at standard levels. Radiobiological dosimetry suggests that, using hypofractionated and accelerated radiotherapy, high biological radiation dose can be given to the prostate without overdosing normal tissues

  9. Final results of the randomized phase III CHARTWEL-trial (ARO 97-1) comparing hyperfractionated-accelerated versus conventionally fractionated radiotherapy in non-small cell lung cancer (NSCLC)

    Background: Continuous hyperfractionated accelerated radiotherapy (CHART) counteracts repopulation and may significantly improve outcome of patients with non-small-cell lung cancer (NSCLC). Nevertheless high local failure rates call for radiation dose escalation. We report here the final results of the multicentric CHARTWEL trial (CHART weekend less, ARO 97-1). Patients and methods: Four hundred and six patients with NSCLC were stratified according to stage, histology, neoadjuvant chemotherapy and centre and were randomized to receive 3D-planned radiotherapy to 60 Gy/40 fractions/2.5 weeks (CHARTWEL) or 66 Gy/33 fractions/6.5 weeks (conventional fractionation, CF). Results: Overall survival (OS, primary endpoint) at 2, 3 and 5 yr was not significantly different after CHARTWEL (31%, 22% and 11%) versus CF (32%, 18% and 7%; HR 0.92, 95% CI 0.75-1.13, p = 0.43). Also local tumour control rates and distant metastases did not significantly differ. Acute dysphagia and radiological pneumonitis were more pronounced after CHARTWEL, without differences in clinical signs of pneumopathy. Exploratory analysis revealed a significant trend for improved LC after CHARTWEL versus CF with increasing UICC, T or N stage (p = 0.006-0.025) and after neoadjuvant chemotherapy (HR 0.48, 0.26-0.89, p = 0.019). Conclusions: Overall, outcome after CHARTWEL or CF was not different. The lower total dose in the CHARTWEL arm was compensated by the shorter overall treatment time, confirming a time factor for NSCLC. The higher efficacy of CHARTWEL versus CF in advanced stages and after chemotherapy provides a basis for further trials on treatment intensification for locally advanced NSCLC.

  10. Accelerated radiotherapy in advanced head and neck cancer

    The purpose of the study is to present the reasons for introducing concomitant boost accelerated radiotherapy (CBAR) and its practical aspects at advanced head and neck carcinomas (HNC). Accelerated clonogenic repopulation of the tumor during radiotherapy necessitates its termination within the shortest possible term. The differentiated effect of the fractionated dose on both early and late response of tissues requires the use of several smaller daily fractions with an interval between exceeding six hours during all the time of radiotherapy or a part of it. If there is no data about earlier kinetics of the tumor cells, schemes with total dose 69-72 Gy are given preference. The practical aspects of CBAR also are presented: 1. specificity of the clinical target volume (ICRU 50) considering the requirements for beam and fields; 2. irradiation techniques most frequently used and 3. the method of patient immobilization. The characteristic features of CBAR are also discussed: 1. The primary tumor and its subclinical diffusion are irradiated in standard fields or in such with exclusion of the spinal cord at dose up to 54 in 30 fractions for 5.5 weeks. During the first two days, two daily fractions at six-hours interval are delivered with partial exclusion of the spinal cord. The primary tumor is given during the last 2.5 weeks up to total dose 69-72 Gy with a second daily fraction of 1.5 Gy six hours after the first one; 2. The current concepts for spinal cord radiation tolerance and very high risk of transverse myelitis in some accelerated radiotherapeutical schemes are also discussed. The therapeutic approach described is based on the experience got from the conventional fractionation; 3. Without neglecting enhanced acute toxicity CBAR is recommended as a well tolerated radiotherapeutical method

  11. Fractionated radiotherapy in the treatment of neuroblastoma

    Purpose: To evaluate the benefit of radiation therapy for metastatic neuroblastoma patients. Methods and Materials: From September 1970 to March 1995, 90 patients with neuroblastoma were treated with fractionated radiotherapy. We looked at 42 patients with metastatic disease and 170 sites that were treated for the following indications: pain, mass effect, mass/cosmesis, adjuvant, and consolidation. Data collected includes age at diagnosis, sex, site of radiation, dose, fractionation, purpose of treatment, response, duration of local control, status at follow-up, and date of death. Results: Doses ranged from 100 cGy to 5000 cGy with a median dose of 2020 cGy. Median survival for this group of patients was 23.7 months with a maximum survival of 175.8 months and a minimum survival of two months. Patients whose sites were treated from 1970 - 1981 had a median survival of 22 months and a median dose of 2000 cGy compared to a survival of 26 months and a median dose of 1140 cGy for patients treated from 1981 - 1995. In patients treated for gross disease, 53% had a complete response to treatment and 46% had a partial response. There was a 16% recurrence rate in sites treated. Median time to failure was five months, although this ranged from a minimum of one month to a maximum of 119 months. Median dose of the sites of failure was 2000 cGy. Thirty-three percent of sites were treated within two months of patients' death. Conclusion: Fractionated radiotherapy is an effective treatment modality for palliation of metastatic neuroblastoma. Along with other modern treatments, including chemotherapy, it appears a total dose of around 1200 cGy is sufficient for palliation of most metastatic sites

  12. Fractionated stereotactically guided radiotherapy for pharmacoresistant epilepsy

    Aim: This prospective study evaluated the efficiency of fractionated stereotactically guided radiotherapy as a treatment of pharmacoresistant temporal lobe epilepsy. Patients and Methods: Inclusion criteria were patients aged between 17 and 65 years with one-sided temporally located focus, without sufficient epilepsy control by, antiepileptic drugs or neurosurgery. Between 1997 and 1999, two groups of six patients each were treated with 21 Gy (7 times 3 Gy) and 30 Gy (15 times 2 Gy). Study end points were seizure frequency, intensity, seizure length and neuropsychological parameters. Results: All patients experienced a marked reduction in seizure frequency. The mean reduction of seizures was 37% (range 9-77%, i.e. seizures reduced from a monthly mean number of 11.75 to 7.52) at 18 months following radiation treatment and 46% (23-94%, i.e. 0.2-23 seizures per month) during the whole follow-up time. Seizure length was reduced in five out of eleven patients and intensity of seizures in seven out of eleven patients. Conclusion: Radiotherapy was identified as safe and effective for pharmacoresistant epilepsy since a very good reduction of seizure frequency was observed. It is no substitute for regular use of antiepileptic drugs, but means an appropriate alternative for patients with contraindication against neurosurgery or insufficient seizure reduction after neurosurgery. (orig.)

  13. Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis

    Bourhis, J.; Overgaard, Jens; Audry, H.;

    2006-01-01

    BACKGROUND: Several trials have studied the role of unconventional fractionated radiotherapy in head and neck squamous cell carcinoma, but the effect of such treatment on survival is not clear. The aim of this meta-analysis was to assess whether this type of radiotherapy could improve survival......-specified categories: hyperfractionated, accelerated, and accelerated with total dose reduction. FINDINGS: 15 trials with 6515 patients were included. The median follow-up was 6 years. Tumours sites were mostly oropharynx and larynx; 5221 (74%) patients had stage III-IV disease (International Union Against Cancer...... radiotherapy (2% with accelerated fractionation without total dose reduction and 1.7% with total dose reduction at 5 years, p=0.02). There was a benefit on locoregional control in favour of altered fractionation versus conventional radiotherapy (6.4% at 5 years; p<0.0001), which was particularly efficient in...

  14. Accelerator dynamics of a fractional kicked rotor

    Iomin, A.

    2006-01-01

    It is shown that the Weyl fractional derivative can quantize an open system. A fractional kicked rotor is studied in the framework of the fractional Schrodinger equation. The system is described by the non-Hermitian Hamiltonian by virtue of the Weyl fractional derivative. Violation of space symmetry leads to acceleration of the orbital momentum. Quantum localization saturates this acceleration, such that the average value of the orbital momentum can be a direct current and the system behaves ...

  15. European organization for research on treatment of cancer trials using radiotherapy with multiple fractions per day

    During the past decade (1976-1986), radiotherapy with altered fractionation schemes using multiple fractions per day (MFD) was the major field of the clinical research undertaken in the EORTC Cooperative Group of Radiotherapy. Some of its participating institutions (Portsmouth, Dijon, Leuven, Amsterdam, Rome) performed pilot studies in the midseventies in more than 400 patients. Then largely based upon the previous institutional experiences, EORTC-labelled phase II and III were activated: 1,678 patients have been entered in 8 trials during the period 1978-1987. In order to summarize these clinical experiments covering various fields of tumor pathology, radiotherapy schemes are divided according to the type of altered fractionation: pure hyperfractionation, accelerated fractionation and mixed hyprfractionated and accelerated schemes

  16. Accelerated partial breast irradiation using robotic radiotherapy: a dosimetric comparison with tomotherapy and three-dimensional conformal radiotherapy

    Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David

    2016-01-01

    Background Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the no...

  17. Fractionated stereotactic radiotherapy for recurrent small cell lung cancer brain metastases after whole brain radiotherapy

    Objective: Evaluation the Fractionated Stereotactic Radiotherapy (FSRT) for the patients with small-cell lung cancer (SCLC) after the whole brain radiotherapy (WBRT) failure. Methods: We retrospectively analyzed 35 patients with brain metastases from small-cell lung cancer treated with linear accelerator FSRT after the WBRT failure. Multivariate analysis was used to determine significant prognostic factor related to survival. Results: The following-up rate was 100%. The median following-up time was 11 months. The median over-all survival (OS) time was 10.3(1 -30) months after FSRT. Controlled extra cranial disease was the only identified significant predictor of increased median OS time (χ2 =4.02, P =0.045 ). The median OS time from the diagnosis of brain metastasis was 22 (6 - 134 ) months. 14 patients died from brain metastasis, 14 from extra-cranial progression, 1 from leptomeningeal metastases, and 3 from other causes. Local control at 6 months and 12 months was 91% and 76%, respectively. No significant late complications. New brain metastases outside of the treated area developed in 17% of patients at a median time of 4(2 -20) months; all patients had received previous WBRT. Conclusions: Fractionated stereotactic radiotherapy was safe and effective treatment for recurrent small-cell lung carcinoma brain metastases. (authors)

  18. Fractionated Stereotactic Radiotherapy for Facial Nerve Schwannomas.

    Shi, Wenyin; Jain, Varsha; Kim, Hyun; Champ, Colin; Jain, Gaurav; Farrell, Christopher; Andrews, David W; Judy, Kevin; Liu, Haisong; Artz, Gregory; Werner-Wasik, Maria; Evans, James J

    2016-02-01

    Purpose Data on the clinical course of irradiated facial nerve schwannomas (FNS) are lacking. We evaluated fractionated stereotactic radiotherapy (FSRT) for FNS. Methods Eight consecutive patients with FNS treated at our institution between 1998 and 2011 were included. Patients were treated with FSRT to a median dose of 50.4 Gy (range: 46.8-54 Gy) in 1.8 or 2.0 Gy fractions. We report the radiographic response, symptom control, and toxicity associated with FSRT for FNS. Results The median follow-up time was 43 months (range: 10-75 months). All patients presented with symptoms including pain, tinnitus, facial asymmetry, diplopia, and hearing loss. The median tumor volume was 1.57 cc. On the most recent follow-up imaging, five patients were noted to have stable tumor size; three patients had a net reduction in tumor volume. Additionally, six patients had improvement in clinical symptoms, one patient had stable clinical findings, and one patient had worsened House-Brackmann grade due to cystic degeneration. Conclusion FSRT treatment of FNS results in excellent control of growth and symptoms with a small rate of radiation toxicity. Given the importance of maintaining facial nerve function, FSRT could be considered as a primary management modality for enlarging or symptomatic FNS. PMID:26949592

  19. Tissue kinetics in mouse tongue mucosa during daily fractionated radiotherapy

    The purpose of the present investigation was to quantify cell flux between the distinct layers of the epithelial lining of the ventral surface of mouse tongue during daily fractionated radiotherapy. In tongue epithelium of untreated mice, the minimum residence time of cells in the germinal layer is 2-3 days. Migration through the functional layers requires an additional 2-3 days before labelled cells are observed in the most superficial layer of nucleated cells. A plateau in LI is observed for several days post-labelling in control epithelium, indicating an equilibrium between loss and proliferation of labelled cells. During fractionated radiotherapy, the minimum time from division to occurrence of labelled cells in the stratum lucidum is less than 2 days, and hence significantly shorter than in control epithelium. In contrast to untreated epithelium, no plateau in the germinal layer LI is seen, indicating that frequently both labelled daughters from dividing labelled cells are being lost from this compartment. In conclusion, the present data support a recently described model of radiation-induced accelerated repopulation in squamous epithelia, which postulates that the majority of damaged cells undergoes abortive divisions resulting in two differentiating daughters. (Author)

  20. Immediate side effects of large fraction radiotherapy

    Devereux, S.; Hatton, M.Q.F.; Macbeth, F.R. [Glasgow Western Infirmary (United Kingdom)

    1997-09-01

    The use of hypofractionated radiotherapy regiments is becoming more widely recognized in the palliation of non-small cell lung carcinoma (NSCLC). Anecdoctal reports of chest pain, rigors and fevers in the hours that follow radiotherapy led us to perform a survey estimating the frequency and severity of these symptoms following treatment to the thorax. We conclude that patients receiving palliative radiotherapy for bronchial carcinoma often develop significant symptoms in the hours following treatment. The timing and duration suggest a relationship with the radiotherapy, and we feel that patients should be warned of the possible occurrence of these symptoms. (author).

  1. Accelerated radiotherapy for advanced laryngeal cancer

    The purpose of this study was to evaluate a single institution's outcome for patients with advanced laryngeal cancer treated with accelerated radiotherapy (RT). Fifty-eight patients with advanced laryngeal cancer were treated with curative intent with accelerated RT during the period 1990-1998. Patients received radiotherapy alone or with induction chemotherapy. The 5-year local control (LC) and loco-regional control (LRC) probabilities were both 49% for T3 and 75% for T4 tumors. The 5-year disease-free survival probability was 46% and 68% and overall survival probability was 30% and 39% for T3 and T4 tumors respectively. No significant statistical difference in outcome was found, either between T3 and T4 tumors, or between patients who received induction chemotherapy and those who did not. The treatment results for advanced laryngeal cancer at this institution were comparable to those reported in the literature. The results for T3 and T4 were similar. T4 classification alone should not be an exclusion criterion for larynx preservation. Overall survival was poor, partly because of a high incidence of deaths from intercurrent diseases

  2. Accelerated radiotherapy for advanced laryngeal cancer

    Haugen, Hedda; Mercke, Claes [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Oncology; Johansson, Karl-Axel [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Radiophysics; Ejnell, Hasse; Edstroem, Staffan [Sahlgrenska Univ. Hospital, Goeteborg (Sweden). Dept. of Oto-Rhino-Laryngology

    2005-07-01

    The purpose of this study was to evaluate a single institution's outcome for patients with advanced laryngeal cancer treated with accelerated radiotherapy (RT). Fifty-eight patients with advanced laryngeal cancer were treated with curative intent with accelerated RT during the period 1990-1998. Patients received radiotherapy alone or with induction chemotherapy. The 5-year local control (LC) and loco-regional control (LRC) probabilities were both 49% for T3 and 75% for T4 tumors. The 5-year disease-free survival probability was 46% and 68% and overall survival probability was 30% and 39% for T3 and T4 tumors respectively. No significant statistical difference in outcome was found, either between T3 and T4 tumors, or between patients who received induction chemotherapy and those who did not. The treatment results for advanced laryngeal cancer at this institution were comparable to those reported in the literature. The results for T3 and T4 were similar. T4 classification alone should not be an exclusion criterion for larynx preservation. Overall survival was poor, partly because of a high incidence of deaths from intercurrent diseases.

  3. Late course accelerated hyperfractionation radiotherapy for nasopharyngeal carcinoma

    Objective: To study the efficacy of late course accelerated fractionation (LCAF) radio- therapy in the treatment of nasopharyngeal carcinoma(NPC). The end-po s were local control, radiation-induced complications, factors influencing survival. Methods: From December 1995 to April 1998, 178 NPC patients were admitted for radiation treatment. The radiation beam used was 60Co γ or 6 MV X-ray. For the first two-thirds of the treatment, two daily fractions of 1.2 Gy were given to the primary lesion , with an interval of ≥6 hours, 5 days per week to a total dose of 48 Gy/40 fractions, over a period of 4 weeks. For the last one third of the treatment, i. e. beginning from the 5th week, an accelerated hyperfractionation schedule was carried out. The dose per fraction was increased to 1.5 Gy, 2 fractions per day with an interval of ≥6 hours, the total dose for this part of the protocol was 30 Gy/20 fractions over 2 weeks. Thus the total dose was 78 Gy in 60 fractions in 6 weeks. Results: All patients completed the treatment. Acute mucositis: none in 2 patients, Grade 1 in 43 , Grade 2 in 78, Grade 3 in 52, and Grade 4 in 3 patients. Local control rate: the 5 -year nasopharyngeal local control rate was 87.7%, and the cervical lymph node local control rate was 85.7%. The 5-year distant metastasis rate was 26.1%, and 5-year survivals was 67.9%. Sixteen patients had radiation-induced cranial nerve palsy. Conclusions: With this treatment schedule, patient's tolerance is good, local control and 5 year survivals are better than control groups of conventional fractionation and hyperfractionation radiotherapy. Radiation-related late complication does not increase. Randomized clinical trials are being carried out to further confirm the efficacy of LCAF for nasopharyngeal carcinoma. (authors)

  4. Treatment accuracy of fractionated stereotactic radiotherapy

    Background and purpose: To assess the geometric accuracy of the delivery of fractionated stereotactic radiotherapy (FSRT) for brain tumours using the Gill-Thomas-Cosman (GTC) relocatable frame. Accuracy of treatment delivery was measured via portal images acquired with an amorphous silicon based electronic portal imager (EPI). Results were used to assess the existing verification process and to review the current margins used for the expansion of clinical target volume (CTV) to planning target volume (PTV). Patients and methods: Patients were immobilized in a GTC frame. Target volume definition was performed on localization CT and MRI scans and a CTV to PTV margin of 5 mm (based on initial experience) was introduced in 3D. A Brown-Roberts-Wells (BRW) fiducial system was used for stereotactic coordinate definition. The existing verification process consisted of an intercomparison of the coordinates of the isocentres and anatomy between the localization and verification CT scans. Treatment was delivered with 6 MV photons using four fixed non-coplanar conformal fields using a multi-leaf collimator. Portal imaging verification consisted of the acquisition of orthogonal images centred through the treatment isocentre. Digitally reconstructed radiographs (DRRs) created from the CT localization scans were used as reference images. Semi-automated matching software was used to quantify set up deviations (displacements and rotations) between reference and portal images. Results: One hundred and twenty six anterior and 123 lateral portal images were available for analysis for set up deviations. For displacements, the total errors in the cranial/caudal direction were shown to have the largest SD's of 1.2 mm, while systematic and random errors reached SD's of 1.0 and 0.7 mm, respectively, in the cranial/caudal direction. The corresponding data for rotational errors (the largest deviation was found in the sagittal plane) was 0.7 deg. SD (total error), 0.5 deg. (systematic) and 0

  5. Research on inter-fraction and intra-fraction motion of crystalline lens in radiotherapy

    Shu-ming YANG

    2013-03-01

    Full Text Available Objective  To investigate the range of inter-fraction and intra-fraction motion of crystalline lens in radiotherapy. Methods  The CT and MRI images of 17 patients were registered, and the profile of crystalline lens was delineated to determine the respective center coordinates, thus simulating and analyzing inter-fraction and intra-fraction motion of lens in radiotherapy. Results  Both left and right lens moved in different degree during both inter-or intra-fraction phase. The range of lens movement was larger in inter-fraction than in intra-fraction phase in all directions. Conclusion  When radiotherapy is given in the free state, considering the distance of lens movement alone in inter-and intra-fraction and without considering the setup error, the lens planning organs at risk should increase 1.5mm outside the lens boundary.

  6. Status of hypo fractionated radiotherapy in breast cancer

    It has been assumed that in the case of a majority of tumours hypo fractionation radiotherapy is of limited value because it negatively affected the ratio of curability to late adverse effects. However, there now exists data to suggest that hypo fractionation may be advisory in breast cancer. The author presents a number of recently published and currently ongoing trials, which may provide evidence for the use of hypo fractionated radiotherapy in breast cancer patients. The possible implications for primary breast cancer are that modest increase in fraction size combined with reduction in treatment time may translate into worthwhile gains in tumour control, without enhanced late normal tissue injuries. This may affect future decision-making in the course of radiotherapy for breast cancer if the ongoing trials are confirmatory. (author)

  7. Local radiotherapeutic management of ependymomas with fractionated stereotactic radiotherapy (FSRT)

    To assess the role of Fractionated Stereotactic Radiotherapy (FSRT) in the management of ependymomas. From January 1992 to July 2003, FSRT was performed in 19 patients with histologically confirmed ependymomas. The median age was 15 years, 5 patients were younger than 4 years of age. Twelve patients received FSRT as primary postoperative radiotherapy after surgical resection. In 6 patients irradiation of the posterior fossa was performed with a local boost to the tumor bed, and in 4 patients the tumor bed only was irradiated. In 7 patients FSRT was performed as re-irradiation for tumor progression. This patient group was analyzed separately. A median dose of 54 Gy was prescribed in a median fractionation of 5 × 1.8 Gy per week for primary RT using 6 MeV photons with a linear accelerator. For FSRT as re-irradiation, a median dose of 36 Gy was applied. All recurrent tumors were localized within the former RT-field. The 5- and 10-year overall survival rates were 77% and 64%, respectively. Patients treated with FSRT for primary irradiation showed an overall survival of 100% and 78% at 3 and 5 years after irradiation of the posterior fossa with a boost to the tumor bed, and a survival rate of 100% at 5 years with RT of the tumor bed only. After re-irradiation with FSRT, survival rates of 83% and 50% at 3-and 5 years, respectively, were obtained. Progression-free survival rates after primary RT as compared to re-irradiation were 64% and 60% at 5 years, respectively. FSRT was well tolerated by all patients and could be completed without interruptions due to side effects. No severe treatment related toxicity > CTC grade 2 for patients treated with FSRT could be observed. The present analysis shows that FSRT is well tolerated and highly effective in the management of ependymal tumors. The rate of recurrences, especially at the field border, is not increased as compared to conventional radiotherapy consisting of craniospinal irradiation and a local boost to the posterior

  8. Dosimetric effect of intra-fractional and inter-fractional target motion in lung cancer radiotherapy techniques

    Teerthraj Verma

    2015-12-01

    Full Text Available Purpose: The purpose of present study was to experimentally evaluate the dosimetric uncertainties in 3-dimensional conformal radiotherapy (3DCRT, dynamic intensity modulated radiotherapy (D-IMRT, step-shoot (SS-IMRT, and volumetric modulated arc therapy (VMAT treatment delivery techniques due to intra- and inter-fractional target motion. Methods: A previously treated lung patient was selected for this study and was replanned for 60 Gy in 30 fractions using four techniques (3DCRT, D-IMRT, SS-IMRT, and VMAT. These plans were delivered in a clinical linear accelerator equipped with HexaPOD™ evo RT System. The target dose of static QUASAR phantom was calculated that served as reference dose to the target. The QUASAR respiratory body phantom along with patients breathing wave form and HexaPOD™ evo RT System was used to simulate the intra-fraction and inter-fraction motions. Dose measurements were done by applying the intra-fractional and inter-fractional motions in all the four treatment delivery techniques.Results: The maximum percentage deviation in a single field was -4.3%, 10.4%, and -12.2% for 3DCRT, D-IMRT and SS-IMRT deliveries, respectively. Similarly, the deviation for a single fraction was -1.51%, -1.88%, -2.22%, and -3.03% for 3DCRT, D-IMRT, SS-IMRT and VMAT deliveries, respectively. Conclusion: The impact of inter-fractional and intra-fractional uncertainties calculated as deviation between dynamic and static condition dose was large in some fractions, however average deviation calculated for thirty fractions was well within 0.5% in all the four techniques. Therefore, inter- and intra-fractional uncertainties could be concern in fewer fraction treatments such as stereotactic body radiation therapy, and should be used in conjunction with intra- and inter-fractional motion management techniques.

  9. Misonidazole in fractionated radiotherapy: are many small fractions best

    The largest sensitizing effect is always demonstrated with six fractions, each given with 2 g/m2 of misonidazole. In the absence of reoxygenation a sensitizer enhancement ratio of 1.7 is predicted, but this falls to 1.1-1.2 if extensive reoxygenation occurs. Less sensitization is observed with 30 fractions, each with 0.4 g/m2 of drug. However, for clinical use, the important question is which treatment kills the maximum number of tumour cells. Many of the simulations predict a marked disadvantage of reducing the fraction number for X rays alone. The circumstances in which this disadvantage is offset by the large Sensitizer enhancement ratio values with a six-fraction schedule are few. The model calculations suggest that many small fractions, each with a low drug dose, are safest unless the clinician has some prior knowledge that a change in fraction number is not disadvantageous. (author)

  10. Fractionated stereotactic radiotherapy in the treatment of pituitary adenomas

    Kopp, C.; Theodorou, M.; Poullos, N.; Astner, S.T.; Geinitz, H.; Molls, M. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radiologische Onkologie; Stalla, G.K. [Max-Planck-Institut fuer Psychiatrie, Muenchen (Germany). Klinische Neuroendokrinologie; Meyer, B. [Technische Univ. Muenchen, Klinikum rechts der Isar (Germany). Neurochirurgische Klinik und Poliklinik; Nieder, C. [Nordland Hospital, Bodoe (Norway). Dept. of Oncology and Palliative Medicine; Tromsoe Univ. (Norway). Inst. of Clinical Medicine; Grosu, A.L [Freiburg Univ. (Germany). Klinik fuer Strahlenheilkunde

    2013-11-15

    Purpose: The purpose of this work was to evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent pituitary adenomas. Patients and methods: We report on 37 consecutive patients with pituitary adenomas treated with FSRT at our department. All patients had previously undergone surgery. Twenty-nine patients had nonfunctioning, 8 had hormone-producing adenoma. The mean total dose delivered by a linear accelerator was 49.4 Gy (range 45-52.2 Gy), 5 x 1.8 Gy weekly. The mean PTV was 22.8 ccm (range 2.0-78.3 ccm). Evaluation included serial imaging tests, endocrinologic and ophthalmologic examination. Results: Tumor control was 91.9 % for a median follow-up time of 57 months (range 2-111 months). Before FSRT partial hypopituitarism was present in 41 % of patients, while 35 % had anterior panhypopituitarism. After FSRT pituitary function remained normal in 22 %, 43 % had partial pituitary dysfunction, and 35 % had anterior panhypopituitarism. Visual acuity was stable in 76 % of patients, improved in 19 %, and deteriorated in 5 %. Visual fields remained stable in 35 patients (95 %), improved in one and worsened in 1 patient (2.7 %). Conclusion: FSRT is an effective and safe treatment for recurrent or residual pituitary adenoma. Good local tumor control and preservation of adjacent structures can be reached, even for large tumors. (orig.)

  11. Fractionated stereotactic radiotherapy in the treatment of pituitary adenomas

    Purpose: The purpose of this work was to evaluate tumor control and side effects associated with fractionated stereotactic radiotherapy (FSRT) in the management of residual or recurrent pituitary adenomas. Patients and methods: We report on 37 consecutive patients with pituitary adenomas treated with FSRT at our department. All patients had previously undergone surgery. Twenty-nine patients had nonfunctioning, 8 had hormone-producing adenoma. The mean total dose delivered by a linear accelerator was 49.4 Gy (range 45-52.2 Gy), 5 x 1.8 Gy weekly. The mean PTV was 22.8 ccm (range 2.0-78.3 ccm). Evaluation included serial imaging tests, endocrinologic and ophthalmologic examination. Results: Tumor control was 91.9 % for a median follow-up time of 57 months (range 2-111 months). Before FSRT partial hypopituitarism was present in 41 % of patients, while 35 % had anterior panhypopituitarism. After FSRT pituitary function remained normal in 22 %, 43 % had partial pituitary dysfunction, and 35 % had anterior panhypopituitarism. Visual acuity was stable in 76 % of patients, improved in 19 %, and deteriorated in 5 %. Visual fields remained stable in 35 patients (95 %), improved in one and worsened in 1 patient (2.7 %). Conclusion: FSRT is an effective and safe treatment for recurrent or residual pituitary adenoma. Good local tumor control and preservation of adjacent structures can be reached, even for large tumors. (orig.)

  12. Radiobiological modeling of interplay between accelerated repopulation and altered fractionation schedules in head and neck cancer

    Marcu Loredana

    2009-01-01

    Full Text Available Head and neck cancer represents a challenge for radiation oncologists due to accelerated repopulation of cancer cells during treatment. This study aims to simulate, using Monte Carlo methods, the response of a virtual head and neck tumor to both conventional and altered fractionation schedules in radiotherapy when accelerated repopulation is considered. Although clinical trials are indispensable for evaluation of novel therapeutic techniques, they are time-consuming processes which involve many complex and variable factors for success. Models can overcome some of the limitations encountered by trials as they are able to simulate in less complex environment tumor cell kinetics and dynamics, interaction processes between cells and ionizing radiation and their outcome. Conventional, hyperfractionated and accelerated treatment schedules have been implemented in a previously developed tumor growth model which also incorporates tumor repopulation during treatment. This study focuses on the influence of three main treatment-related parameters, dose per fraction, inter fraction interval and length of treatment gap and gap timing based on RTOG trial data on head and neck cancer, on tumor control. The model has shown that conventionally fractionated radiotherapy is not able to eradicate the stem population of the tumor. Therefore, new techniques such as hyperfractionated/ accelerated radiotherapy schedules should be employed. Furthermore, the correct selection of schedule-related parameters (dose per fraction, time between fractions, treatment gap scheduling is crucial in overcoming accelerated repopulation. Modeling of treatment regimens and their input parameters can offer better understanding of the radiobiological interactions and also treatment outcome.

  13. Minimizing metastatic risk in radiotherapy fractionation schedules

    Badri, Hamidreza; Ramakrishnan, Jagdish; Leder, Kevin

    2015-11-01

    Metastasis is the process by which cells from a primary tumor disperse and form new tumors at distant anatomical locations. The treatment and prevention of metastatic cancer remains an extremely challenging problem. This work introduces a novel biologically motivated objective function to the radiation optimization community that takes into account metastatic risk instead of the status of the primary tumor. In this work, we consider the problem of developing fractionated irradiation schedules that minimize production of metastatic cancer cells while keeping normal tissue damage below an acceptable level. A dynamic programming framework is utilized to determine the optimal fractionation scheme. We evaluated our approach on a breast cancer case using the heart and the lung as organs-at-risk (OAR). For small tumor α /β values, hypo-fractionated schedules were optimal, which is consistent with standard models. However, for relatively larger α /β values, we found the type of schedule depended on various parameters such as the time when metastatic risk was evaluated, the α /β values of the OARs, and the normal tissue sparing factors. Interestingly, in contrast to standard models, hypo-fractionated and semi-hypo-fractionated schedules (large initial doses with doses tapering off with time) were suggested even with large tumor α/β values. Numerical results indicate the potential for significant reduction in metastatic risk.

  14. Minimizing metastatic risk in radiotherapy fractionation schedules.

    Badri, Hamidreza; Ramakrishnan, Jagdish; Leder, Kevin

    2015-11-21

    Metastasis is the process by which cells from a primary tumor disperse and form new tumors at distant anatomical locations. The treatment and prevention of metastatic cancer remains an extremely challenging problem. This work introduces a novel biologically motivated objective function to the radiation optimization community that takes into account metastatic risk instead of the status of the primary tumor. In this work, we consider the problem of developing fractionated irradiation schedules that minimize production of metastatic cancer cells while keeping normal tissue damage below an acceptable level. A dynamic programming framework is utilized to determine the optimal fractionation scheme. We evaluated our approach on a breast cancer case using the heart and the lung as organs-at-risk (OAR). For small tumor [Formula: see text] values, hypo-fractionated schedules were optimal, which is consistent with standard models. However, for relatively larger [Formula: see text] values, we found the type of schedule depended on various parameters such as the time when metastatic risk was evaluated, the [Formula: see text] values of the OARs, and the normal tissue sparing factors. Interestingly, in contrast to standard models, hypo-fractionated and semi-hypo-fractionated schedules (large initial doses with doses tapering off with time) were suggested even with large tumor α/β values. Numerical results indicate the potential for significant reduction in metastatic risk. PMID:26509743

  15. Influence of dose per fraction on 7 days per week fractionation in radiotherapy

    To evaluate the effect of the dose per fraction in a radiotherapy schedule of 7 fractions per week and compare it with a conventional one of 5fr/w, 2Gy/fr, we use computer simulations methods taking into account the tumor proliferation. We have a significant increase of TCP with regard to the conventional schedule for 7 days per week programmes in which the dose per fraction is =1.7 Gy. (author)

  16. Stereotactic Fractionated Radiotherapy in the Treatment of Juxtapapillary Choroidal Melanoma: The McGill University Experience

    Purpose: To report our experience with linear accelerator-based stereotactic fractionated radiotherapy in the treatment of juxtapapillary choroidal melanoma. Methods and Materials: We performed a retrospective review of 50 consecutive patients diagnosed with juxtapapillary choroidal melanoma and treated with linear accelerator-based stereotactic fractionated radiotherapy between April 2003 and December 2009. Patients with small to medium sized lesions (Collaborative Ocular Melanoma Study classification) located within 2 mm of the optic disc were included. The prescribed radiation dose was 60 Gy in 10 fractions. The primary endpoints included local control, enucleation-free survival, and complication rates. Results: The median follow-up was 29 months (range, 1–77 months). There were 31 males and 29 females, with a median age of 69 years (range, 30–92 years). Eighty-four percent of the patients had medium sized lesions, and 16% of patients had small sized lesions. There were four cases of local progression (8%) and three enucleations (6%). Actuarial local control rates at 2 and 5 years were 93% and 86%, respectively. Actuarial enucleation-free survival rates at 2 and 5 years were 94% and 84%, respectively. Actuarial complication rates at 2 and 5 years were 33% and 88%, respectively, for radiation-induced retinopathy; 9.3% and 46.9%, respectively, for dry eye; 12% and 53%, respectively, for cataract; 30% and 90%, respectively, for visual loss [Snellen acuity (decimal equivalent), <0.1]; 11% and 54%, respectively, for optic neuropathy; and 18% and 38%, respectively, for neovascular glaucoma. Conclusions: Linear accelerator-based stereotactic fractionated radiotherapy using 60 Gy in 10 fractions is safe and has an acceptable toxicity profile. It has been shown to be an effective noninvasive treatment for juxtapapillary choroidal melanomas.

  17. Stereotactic Fractionated Radiotherapy in the Treatment of Juxtapapillary Choroidal Melanoma: The McGill University Experience

    Al-Wassia, Rolina; Dal Pra, Alan; Shun, Kitty; Shaban, Ahmed [Department of Oncology, Division of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada); Corriveau, Christine [Department of Ophthalmology, Notre Dame Hospital, Centre Hospitalier de l' Universite de Montreal, Montreal, Quebec (Canada); Edelstein, Chaim; Deschenes, Jean [Department of Ophthalmology, McGill University Health Centre, Montreal, Quebec (Canada); Ruo, Russel; Patrocinio, Horacio [Department of Medical Physics, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada); Cury, Fabio L.B. [Department of Oncology, Division of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada); DeBlois, Francois [Department of Medical Physics, Jewish General Hospital, McGill University, Montreal, Quebec (Canada); Shenouda, George, E-mail: george.shenouda@muhc.mcgill.ca [Department of Oncology, Division of Radiation Oncology, Montreal General Hospital, McGill University Health Centre, Montreal, Quebec (Canada)

    2011-11-15

    Purpose: To report our experience with linear accelerator-based stereotactic fractionated radiotherapy in the treatment of juxtapapillary choroidal melanoma. Methods and Materials: We performed a retrospective review of 50 consecutive patients diagnosed with juxtapapillary choroidal melanoma and treated with linear accelerator-based stereotactic fractionated radiotherapy between April 2003 and December 2009. Patients with small to medium sized lesions (Collaborative Ocular Melanoma Study classification) located within 2 mm of the optic disc were included. The prescribed radiation dose was 60 Gy in 10 fractions. The primary endpoints included local control, enucleation-free survival, and complication rates. Results: The median follow-up was 29 months (range, 1-77 months). There were 31 males and 29 females, with a median age of 69 years (range, 30-92 years). Eighty-four percent of the patients had medium sized lesions, and 16% of patients had small sized lesions. There were four cases of local progression (8%) and three enucleations (6%). Actuarial local control rates at 2 and 5 years were 93% and 86%, respectively. Actuarial enucleation-free survival rates at 2 and 5 years were 94% and 84%, respectively. Actuarial complication rates at 2 and 5 years were 33% and 88%, respectively, for radiation-induced retinopathy; 9.3% and 46.9%, respectively, for dry eye; 12% and 53%, respectively, for cataract; 30% and 90%, respectively, for visual loss [Snellen acuity (decimal equivalent), <0.1]; 11% and 54%, respectively, for optic neuropathy; and 18% and 38%, respectively, for neovascular glaucoma. Conclusions: Linear accelerator-based stereotactic fractionated radiotherapy using 60 Gy in 10 fractions is safe and has an acceptable toxicity profile. It has been shown to be an effective noninvasive treatment for juxtapapillary choroidal melanomas.

  18. Prospective Trial of Accelerated Partial Breast Intensity-Modulated Radiotherapy

    Purpose: To examine the feasibility and acute toxicities of an accelerated, partial breast, intensity-modulated radiotherapy (IMRT) protocol. Methods and Materials: Between February 2004 and August 2005, 55 patients with Stage I breast cancer and initial follow-up were enrolled at four facilities on a HealthONE and Western institutional review board-approved accelerated partial breast IMRT protocol. All patients were treated in 10 equal fractions delivered twice daily within 5 consecutive days. The first 7 patients were treated to 34 Gy, and the remaining 48 patients were treated to 38.5 Gy. Results: The median follow-up after IMRT was 10 months (range, <1-19) and after diagnosis was 11.5 months (range, 2-21). No local or distant recurrences developed. The T stage distribution was as follows: T1a in 11 patients, T1b in 24, and T1c in 20. The median tumor size was 9 mm (range, 1-20 mm). Breast cosmesis was judged by the patient as poor by 2, good by 12, and excellent by 40 (1 patient was legally blind) and by the physician as poor for 1, good for 10, and excellent for 44 patients. Breast pain, as judged by patient, was none in 34, mild in 19, moderate in 2, and severe in 0 patients. There was a single report of telangiectasia but no incidents of significant edema. Compared with historic controls for whom three-dimensional treatment planning techniques were used, IMRT provided similar dose delivery to the target while reducing the volume of normal breast included in the 100%, 75%, and 50% isodose lines. Conclusion: This initial report prospectively explored the feasibility of accelerated partial breast IMRT. After short-term follow-up, the dose delivery and clinical outcomes were very acceptable. We believe this regimen deserves additional investigation under institutional review board guidance

  19. SU-E-J-105: Stromal-Epithelial Responses to Fractionated Radiotherapy

    Qayyum, M [Little Company of Mary Hospital, Ever Green Park, IL (United States)

    2014-06-01

    Purpose: The stromal-epithelial-cell interactions that are responsible for directing normal breast-tissue development and maintenance play a central role in the progression of breast cancer. In the present study, we developed three-dimensional (3-D) cell co-cultures used to study cancerous mammary cell responses to fractionated radiotherapy. In particular, we focused on the role of the reactive stroma in determining the therapeutic ratio for postsurgical treatment. Methods: Cancerous human mammary epithelial cells were cultured in a 3-D collagen matrix with human fibroblasts stimulated by various concentrations of transforming growth factor beta 1 (TGF-β1). These culture samples were designed to model the post-lumpectomy mammary stroma in the presence of residual cancer cells. We tracked over time the changes in medium stiffness, fibroblast-cell activation (conversion to cancer activated fibroblasts (CAF)), and proliferation of both cell types under a variety of fractionated radiotherapy protocols. Samples were exposed to 6 MV X-rays from a linear accelerator in daily fraction sizes of 90, 180 and 360 cGy over five days in a manner consistent with irradiation exposure during radiotherapy. Results: We found in fractionation studies with fibroblasts and CAF that higher doses per fraction may be more effective early on in deactivating cancer-harboring cellular environments. Higher-dose fraction schemes inhibit contractility in CAF and prevent differentiation of fibroblasts, thereby metabolically uncoupling tumor cells from their surrounding stroma. Yet, over a longer time period, the higher dose fractions may slow wound healing and increase ECM stiffening that could stimulate proliferation of surviving cancer cells. Conclusion: The findings suggest that dose escalation to the region with residual disease can deactivate the reactive stroma, thus minimizing the cancer promoting features of the cellular environment. Large-fraction irradiation may be used to sterilize

  20. Measurement of reoxygenation during fractionated radiotherapy in head and neck squamous cell carcinoma xenografts

    Full text: Hypoxic tissues lack adequate oxygenation and it has been long established that tumours commonly exhibit hypoxia and that hypoxia is a factor contributing towards resistance to radiotherapy. To develop computer models and make predictions about the affects of tumour hypoxia on treatment outcome, quantitative tumour oxygenation and reoxygenation data from in vivo systems is required. The aim of this study was to investigate the timing and degree of reoxygenation during radiotherapy in a human head and neck squamous cell carcinoma xenograft mouse model (FaDu). Mice were immobilised using a novel restraining system and exposed unanaesthetised in 3 or 5 Gy fractions, up to a maximum of 40 Gy. Partial pres sures of oxygen (p02) measurements were recorded at six time points throughout the 2 week course of radiotherapy, using a fibre optic system. Tumours receiving 0-30 Gy did not exhibit an increase in p02' However, the mean p02 after 2 weeks of accelerated fractionated radiotherapy (40 Gy) was significantly increased (P < 0.01) compared

  1. Quality assurance protocol for linear accelerators used in radiotherapy

    Radiotherapy is a modality of choice for treatment of malignant diseases. Linear accelerators are the most common devices for implementing external radiation therapy. Taking into account the fact during the treatment, healthy tissue will inevitably be exposed to ionizing radiation, predicted dose in each radiotherapy case should be delivered with the greatest possible accuracy. Medical requirement for quality treatment achieving means as mach as possible dose into volume of interest and the greatest possible healthy tissue protection. From radiation protection point of view, occupational exposure of the staff involved in radiotherapy process should be minimized. To be able to reach it, consistent adherence to the Quality Assurance Programme is necessary. It should be in accordance with higher national and international protocols, because they give guidelines on the necessary standards, procedures, processes, resources and responsibilities that should be defined in structuring the overall radiotherapy quality management. As a part of this Master thesis, quality management as well as Quality Assurance Programme that is necessary to be applied in each radiotherapy center have been prepared. Mandatory dosimetry measurements included in the internal recommendations are also emphasized. Measurement results and external audit by IAEA indicated high accuracy and quality radiotherapy dose delivering in Macedonia. Based on the measurements and analysis, the aim of this Master thesis is offering a Quality Assurance Protocol for external beam radiotherapy that can be used on the national level in Republic of Macedonia. (Author)

  2. Radiotherapy using a laser proton accelerator

    Murakami, Masao; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L; Abe, Mitsuyuki; Bulanov, Sergei V; Daido, Hiroyuki; Esirkepov, Timur Zh; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-01-01

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. The laser acceleration method provides many enhanced capabilities for the radiation oncologist. It reduces the overall system size and weight by more than one order of magnitude. The characteristics of the particle beams (protons) make them suitable for a class of therapy that might not be possible with the conventional accelerator, such as the ease for changing pulse intensity, the focus spread, the pinpointedness, and the dose delivery in general. A compact, uncluttered system allows a PET device to be located in the vicinity of the patient in concert with the compact gantry. The radiation oncologist may be able to irradiate a localized tumor by scanning with a pencil-like particle...

  3. Fractionated stereotactic radiotherapy of brain metastases from renal cell carcinoma

    Purpose: To retrospectively evaluate the effectiveness of fractionated stereotactic radiotherapy (FSRT) for brain metastases from renal cell carcinoma (RCC). Methods and Materials: From May 1983 to September 1998, 35 patients with brain metastases from RCC underwent radiotherapy at the National Cancer Center Hospital, Tokyo; 10 patients treated initially with FSRT (FSRT group); 11 with surgery followed by conventional radiotherapy (S/CR group); and 14 with conventional radiotherapy (CR group). Survival and local control rates were determined for patients who had an ECOG performance status of 0-2. Results: Overall median survival rate was 18 months, and actuarial 1- and 2-year survival rates were 57.6% and 31.0%, respectively. Median survival rates were 25.6 months for the FSRT group, 18.7 months for the S/CR group, and 4.3 months for the CR group. Significant prognostic factors associated with survival were age less than 60 years and good performance status. In patients treated with FSRT, imaging studies revealed that 21 of 24 tumors (88%) were locally controlled during a median follow-up time of 5.2 months (range 0.5-68). Actuarial 1- and 2-year local control rates were 89.6% and 55.2%, respectively. No patient suffered from acute or late complications during and following FSRT. Conclusions: FSRT offers better tumor control and prolonged survival over the S/CR or CR groups, and should be considered as primary treatment for brain metastases from RCC. Patients under 60-years-old and those with a good performance status at the beginning of radiotherapy had a better prognosis.

  4. Fractionated radiotherapy of intracranial meningiomas and neurinomas; Radiotherapie fractionnee des meningiomes et des neurinomes intracraniens

    Maire, J.P.; Vendrely, V.; Bonichon, N. [Hopital Saint-Andre, Service d' oncologie-Radiotherapie, 33 - Bordeaux (France); Dautheribes, M. [Hopital Saint-Andre, Service de Neurochirurgie, 33 - Bordeaux (France); Darrouzet, V. [Hopital Saint-Andre, Service d' Otorhinoloryngologie, 33 - Bordeaux (France)

    2000-12-01

    In lost institutions, surgical excision remains the standard treatment of meningiomas and neurinomas; the aim of surgery is complete resection. However, total removal is not always feasible without significant morbidity and in some cases, the patient's condition contraindicates surgery. For incompletely excised tumors, recurrences will have consequences on neurological functions. There are now many reports in the literature confirming the fact that radiotherapy significantly decreases the incidence of recurrence of incompletely resected benign tumors and that it can replace surgery in some situations where an operation would involve considerable danger or permanent neurological damage: about 80 to 90% of such tumors are controlled with fractionated radiotherapy. Stereotaxic and three-dimensional treatment planning techniques increase local control and central nervous system tolerance so that the respective place of surgery and radiotherapy needs to be redefined, considering efficacy and morbidity of these two therapeutic means. In this article, we limit our remarks to fractionated radiotherapy and, after a review of the literature, we discuss the indications, volume evaluations and the techniques currently used. (authors)

  5. Preliminary results of fractionated stereotactic radiotherapy for benign brain tumors

    Choi, Byung Ock [College of Medicine, Catholic Univ., Seoul (Korea, Republic of); Kang, Ki Mun [Cellege of Medicine, Gyeongsang National Univ., Jinju, (Korea, Republic of)

    2003-03-01

    To evaluate the role of fractionated stereotactic radiotherapy (FSRT) in the management of benign brain tumors, we reviewed the clinical, and radiographic responses of patients treated. Between March 1996 and March 2002, 36 patients with benign brain tumors were treated by FSRT. The pathological diagnoses consisted of pituitary adenomas (12 patients), craniopharyngiomas (5 patients), meningiomas (10 patients), and acoustic neurinomas (9 patients). Radiotherapy doses of 25 to 35 Gy (3-6 Gy/fraction, 5-10 fractions) were prescribed to the 85-90% isodose line, depending upon the location, size and volume of the tumors. The median clinical and radiographical followup periods were 31 [range, 2-74) and 21 (range, 4-56) months, respectively. In the 35 patients that could be evaluated for their clinical response, 13 (37.1%) were considered improved, 16 (45.7%) stable and 6 (17.2%) worse. Of the 33 patients who had radiographic studies, tumor shrinkage was noted in 17 (51.5%), tumor stabilization in 13 (39.4%), and tumor progression in 3 (9,1%). Of the 17 tumor shrinkage patients, 7 [21.2%) showed a complete response, Acute radiation-induced complications occurred in 11 (30.6%) patients. FSRT is considered a safe and effective treatment method for benign brain tumors but large numbers of patients, with relatively long follow-up periods are needed to assess the exact role or effect of FSRT.

  6. Fractionated Proton Radiotherapy for Benign Cavernous Sinus Meningiomas

    Slater, Jerry D., E-mail: jdslater@dominion.llumc.edu [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, CA (United States); Loredo, Lilia N.; Chung, Arthur; Bush, David A.; Patyal, Baldev [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, CA (United States); Johnson, Walter D.; Hsu, Frank P.K. [Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, CA (United States); Slater, James M. [Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, CA (United States)

    2012-08-01

    Purpose: To evaluate the efficacy of fractionated proton radiotherapy for a population of patients with benign cavernous sinus meningiomas. Methods and Materials: Between 1991 and 2002, 72 patients were treated at Loma Linda University Medical Center with proton therapy for cavernous sinus meningiomas. Fifty-one patients had biopsy or subtotal resection; 47 had World Health Organization grade 1 pathology. Twenty-one patients had no histologic verification. Twenty-two patients received primary proton therapy; 30 had 1 previous surgery; 20 had more than 1 surgery. The mean gross tumor volume was 27.6 cm{sup 3}; mean clinical target volume was 52.9 cm{sup 3}. Median total doses for patients with and without histologic verification were 59 and 57 Gy, respectively. Mean and median follow-up periods were 74 months. Results: The overall 5-year actuarial control rate was 96%; the control rate was 99% in patients with grade 1 or absent histologic findings and 50% for those with atypical histology. All 21 patients who did not have histologic verification and 46 of 47 patients with histologic confirmation of grade 1 tumor demonstrated disease control at 5 years. Control rates for patients without previous surgery, 1 surgery, and 2 or more surgeries were 95%, 96%, and 95%, respectively. Conclusions: Fractionated proton radiotherapy for grade 1 cavernous sinus meningiomas achieves excellent control rates with minimal toxicities, regardless of surgical intervention or use of histologic diagnosis. Disease control for large lesions can be achieved by primary fractionated proton therapy.

  7. Response of human hair cortical cells to fractionated radiotherapy

    Hair cortical cell counting (HCCC) represents a non-invasive, in-vivo measure of cell kill in the human integument. Sixty-six patients undergoing conventionally fractionated, external beam radiotherapy for early stage carcinoma of the prostate had groin hair samples counted. This technique is a sensitive and reproducible measure of radiation effect and may have applicability as an in-vivo prediction tool or in the field of biological dosimetry. A repopulative follicular response occurring at 3-4 weeks may explain flattening of the dose response curve

  8. Comparison between continuous accelerated hyperfractionated and late-course accelerated hyperfractionated radiotherapy for esophageal carcinoma

    Purpose: To compare the treatment results and toxicity of continuous accelerated hyperfractionated (CAHF) and late-course accelerated hyperfractionated (LCAF) radiotherapy (RT) for esophageal carcinoma. Methods and Materials: Between August 1996 and March 1999, 101 patients with squamous cell carcinoma of the esophagus were randomized into two groups: 49 to the CAHF group and 52 to the LCAF group. Patients in the CAHF group received RT at 1.5 Gy/fraction b.i.d. (6-h interval), 5 d/wk, to a total dose 66 Gy in 44 fractions during 4.4 weeks. The patients in the LCAF group received conventional fractionation RT, 1.8 Gy/fraction, to a dose of 41.4 Gy in 23 fractions during 4.6 weeks, followed by accelerated fractionation RT using reduced fields, b.i.d., at 1.5 Gy/fraction, with a minimal interval of 6 h between fractions. The total dose was 68.4 Gy in 41 fraction during 6.4 weeks. Patient age, gender, performance score, diet, lesion location, lesion length, stage, and fractionation (CAHF or LCAF) were entered into the univariate and multivariate analyses. Results: All patients finished the treatment course, except for 1 patient in the CAHF group because of severe acute esophagitis. The rate of Grade I, II, and III acute bronchitis was 18.4% (9 of 49), 30.6% (15 of 49), and 8.2% (4 of 49) in the CAHF group and 13.5% (7 of 52), 21.2% (11 of 52), and 3.8% (2 of 52) in the LCAF group, respectively. However, the difference between the two groups was not statistically significant (p=0.084). The rate of Grade I, II, III, and IV acute esophagitis was 6.1% (3 of 49), 32.7% (16 of 49), 46.9% (23 of 49), and 14.3% (7 of 49) in the CAHF group and 26.9% (14 of 52), 32.7% (17 of 52), 7.7% (4 of 52), and 1.9% (1 of 52) in the LCAF group, respectively. The difference was statistically significant (p<0.001). The local control rate at 1, 2, and 3 years was 88.7%, 83.9%, and 55.9% in the CAHF group and 80.7%, 71.4%, and 57.1% in the LCAF group, respectively (p=0.1251). The 1-, 2-, and 3

  9. Optimal fractionation in radiotherapy with multiple normal tissues.

    Saberian, Fatemeh; Ghate, Archis; Kim, Minsun

    2016-06-01

    The goal in radiotherapy is to maximize the biological effect (BE) of radiation on the tumour while limiting its toxic effects on healthy anatomies. Treatment is administered over several sessions to give the normal tissue time to recover as it has better damage-repair capabilities than tumour cells. This is termed fractionation. A key problem in radiotherapy involves finding an optimal number of treatment sessions (fractions) and the corresponding dosing schedule. A major limitation of existing mathematically rigorous work on this problem is that it includes only a single normal tissue. Since essentially no anatomical region of interest includes only one normal tissue, these models may incorrectly identify the optimal number of fractions and the corresponding dosing schedule. We present a formulation of the optimal fractionation problem that includes multiple normal tissues. Our model can tackle any combination of maximum dose, mean dose and dose-volume type constraints for serial and parallel normal tissues as this is characteristic of most treatment protocols. We also allow for a spatially heterogeneous dose distribution within each normal tissue. Furthermore, we do not a priori assume that the doses are invariant across fractions. Finally, our model uses a spatially optimized treatment plan as input and hence can be seamlessly combined with any treatment planning system. Our formulation is a mixed-integer, non-convex, quadratically constrained quadratic programming problem. In order to simplify this computationally challenging problem without loss of optimality, we establish sufficient conditions under which equal-dosage or single-dosage fractionation is optimal. Based on the prevalent estimates of tumour and normal tissue model parameters, these conditions are expected to hold in many types of commonly studied tumours, such as those similar to head-and-neck and prostate cancers. This motivates a simple reformulation of our problem that leads to a closed

  10. Quantifying intra- and inter-fractional motion in breast radiotherapy

    Jones, Scott, E-mail: scott.jones@health.qld.gov.au [Division of Cancer Services, Radiation Oncology Mater Centre, Princess Alexandra Hospital, Brisbane (Australia); Fitzgerald, Rhys [Division of Cancer Services, Princess Alexandra Hospital, Brisbane (Australia); Owen, Rebecca; Ramsay, Jonathan [Division of Cancer Services, Radiation Oncology Mater Centre, Princess Alexandra Hospital, Brisbane (Australia)

    2015-03-15

    The magnitude of intra- and inter-fractional variation in the set up of breast cancer patients treated with tangential megavoltage photon beams was investigated using an electronic portal imaging device (EPID). Daily cine-EPID images were captured during delivery of the tangential fields for ten breast cancer patients treated in the supine position. Measurements collected from each image included the central lung distance (CLD), central flash distance (CFD), superior axial measurement (SAM) and the inferior axial measurement (IAM). The variation of motion within a fraction (intra-fraction) and the variation between fractions (inter-fraction) was analysed to quantify set up variation and motion due to respiration. Altogether 3775 EPID images were collected from 10 patients. The effect of respiratory motion during treatment was <0.1 cm standard deviation (SD) in the anterior–posterior (AP) direction. The inter-fraction movement caused by variations in daily set up was larger at 0.28 cm SD in the AP direction. Superior–inferior (SI) variation was more difficult to summarise and proved unreliable as the measurements were taken to an ambiguous point on the images. It was difficult to discern true SI movement from that implicated by AP movement. There is minimal intra-fractional chest wall motion due to respiration during treatment. Inter-fractional variation was larger, however, on average it remained within departmental tolerance (0.5 cm) for set up variations. This review of our current breast technique provides confidence in the feasibility of utilising advanced treatment techniques (field-in-field, intensity modulated radiotherapy or volumetric modulated arc therapy) following a review of the current imaging protocol.

  11. Quantifying intra- and inter-fractional motion in breast radiotherapy

    The magnitude of intra- and inter-fractional variation in the set up of breast cancer patients treated with tangential megavoltage photon beams was investigated using an electronic portal imaging device (EPID). Daily cine-EPID images were captured during delivery of the tangential fields for ten breast cancer patients treated in the supine position. Measurements collected from each image included the central lung distance (CLD), central flash distance (CFD), superior axial measurement (SAM) and the inferior axial measurement (IAM). The variation of motion within a fraction (intra-fraction) and the variation between fractions (inter-fraction) was analysed to quantify set up variation and motion due to respiration. Altogether 3775 EPID images were collected from 10 patients. The effect of respiratory motion during treatment was <0.1 cm standard deviation (SD) in the anterior–posterior (AP) direction. The inter-fraction movement caused by variations in daily set up was larger at 0.28 cm SD in the AP direction. Superior–inferior (SI) variation was more difficult to summarise and proved unreliable as the measurements were taken to an ambiguous point on the images. It was difficult to discern true SI movement from that implicated by AP movement. There is minimal intra-fractional chest wall motion due to respiration during treatment. Inter-fractional variation was larger, however, on average it remained within departmental tolerance (0.5 cm) for set up variations. This review of our current breast technique provides confidence in the feasibility of utilising advanced treatment techniques (field-in-field, intensity modulated radiotherapy or volumetric modulated arc therapy) following a review of the current imaging protocol

  12. Study of different dose fractionation in radiotherapy of larynx carcinoma

    In a clinical study the efficacy of a new fractionation scheme of radiotherapy of the carcinoma of the larynx was investigated. Radiation was applied every second day, three times a week, dose fractions being 4 Gy or 3.5 Gy, tumour doses 52 Gy, 52.5 Gy or 56 Gy. The results in 95 patients who were managed using this radiation scheme were compared with those in 129 patients, where the tumour dose, conventionally fractionated, was 60 Gy, 66 Gy or 70 Gy. The results in primarily cured patients, irrespective of the site and the stage of the tumour, were significantly better (p<0.05) with the new fractionation scheme. Statistically significant improvement of primary healing was proved in supraglottal carcinoma of the Ist and IInd stage and in the Ist and IIIrd stage of glottal carcinoma. In the new fractionation scheme higher occurrence of stronger reaction of the mucous membrane and of late radiation edema was found; complications of a more serious nature did not occur. (author)

  13. Fractionated stereotactic radiotherapy with vagina carotica protection technique for local residual nasopharyngeal carcinoma after primary radiotherapy

    LIU Feng; HUAN Fu-kui; FANG Hao; WAN Bao; LI Ye-xiong; XIAO Jian-ping; XU Ying-jie; ZHANG Ye; XU Guo-zhen; GAO Li; YI Jun-lin; LUO Jing-wei; HUANG Xiao-dong

    2012-01-01

    Background Local failure of nasopharyngeal carcinoma (NPC) after radiotherapy (RT) remains one of the major treatment failures.This study aimed to evaluate the clinical efficacy and complications of fractionated stereotactic radiotherapy (FSRT) with vagina carotica protection technique for local residual of NPC patients after the primary RT.Methods From August 2006 to August 2010,FSRT with vagina carotica protection technique was applied to 36 patients in our department,the patients aged between 13 and 76 years with a median of 41.3 years,25 of them were male and 11were female.According to 2002 Union for International Cancer Control (UICC) Staging System,the stages before primary radiotherapy were:Ⅱa 2,Ⅱb 5,Ⅲ 18,Ⅳa 7,Ⅳb 4.In the first course of radiotherapy,9 patients received conventional RT,27 patients received intensity modulated radiotherapy (IMRT) and 20 out of the 36 patients received concurrent chemoradiotherapy.The total dose in the first course of RT was 69.96-76.90 Gy (median,72.58 Gy).The intervals between the primary RT and FSRT ranged from 12 to 147 days (median,39.8 days).Target volumes ranged from 1.46 to 32.98 cm3 (median,14.94 cm3).The total FSRT doses were 10.0-24.0 Gy (median,16.5 Gy) with 2.0-5.0Gy per fraction.The most common regimen was 15 Gy in 5 fractions of 3 Gy,the irradiation dose to vagina carotica was less than 2 Gy per fraction.Results The median follow-up time was 34 months (range,12-59 months).The 3-year local control rate was 100%;the 3-year overall survival rate was 94.4%;the 3-year disease-free survival rate was 77.8%.In this study,we had one case of cranial nerve injury,two cases of temporal lobe necrosis,and no nasopharyngeal massive hemorrhage was observed.Conclusion FSRT with vagina carotica protection technique is an effective and safe RT regimen for local residual of NPC with reduction of radiation-related neurovascular lesions.

  14. Metastatic spinal cord compression: radiotherapy outcome and dose fractionation

    Background and purpose: No standard dose fractionation has been defined for metastatic spinal cord compression. This retrospective analysis was undertaken to explore the impact of hypo fractionated treatment compared to conventional multi fraction treatment. Materials and methods: One hundred and two consecutive patients referred to Mount Vernon Cancer Centre with metastatic spinal canal compression confirmed on MR scan in 95% with median age 68 years (range 32-90) and main primary tumour types breast (28%), prostate (28%) and lung (20%); 51% of patients were fully ambulant at diagnosis, 41% ambulant but with paraparesis and 9% had complete paraplegia. Spinal radiotherapy was given delivering a single dose in 32% and 20 Gy in five fractions in 64%. Results: The median survival was 3.5 months; survival was significantly related to primary site and motor function at presentation. Normal ambulation was achieved in 58% at 2 weeks and 71% up to 2 months after treatment. No patient who presented with paraplegia regained function. At presentation 59% of patients had severe pain, which fell to 8% at 2 weeks. Comparing those patients who received one or two dose treatments with those who received protracted fractionation, the two groups were matched for age, sex, primary site and site of compression. Relatively more patients treated with one or two doses had paraplegia; 19% vs. 3%. Despite this outcome in the two groups was equivalent for motor and sphincter function and pain control. Conclusions: Metastatic spinal canal compression carries a poor prognosis. Urgent treatment will maintain and improve motor function in patients presenting ambulant but those who have paraplegia at presentation do not improve and have a very short survival. In this series no difference in outcome was seen between patients treated with one or two radiation doses compared to multi fraction treatment; a randomised trial comparing fractionation schedules would be justified

  15. Improved immobilization and verification of fractionated stereotactic radiotherapy

    Accepted radiobiological principles predict improved results in terms of late effects, when treatment is fractionated. With the advent of reliable relocatable stereotactic frames, fractionated stereotactic radiotherapy is becoming a standard tool in the treatment of brain malignancies. At the Ottawa Regional Cancer Centre we have developed a system for the delivery of fractionated stereotactic radiotherapy with the following unique features: 1) Very accurate, stable, reproducible, non-invasive BRW-compatible relocatable stereotactic frame, based on a custom made Cobalt-Chrome bite block with circumferential clasps that lock into the undercuts of the teeth. This design results in precise repositioning and virtually eliminates translational and rotational head motion. 2) Positional verification which consists of the following: a) CT verification: Following treatment planning the calculated Cartesian coordinates of the target centre are marked on the localizer frame with 0.5mm Pb shot. A CT slice is then obtained through the plane defined by the lead shots to verify the centre of the target volume. The lines connecting the opposed lead shots should intersect at the calculated isocentre. b) Check film: Patient setup is verified using 3 mm Pb shot placed on the patient's skin at each of the lateral laser crosses as well as the anterior laser cross. AP and lateral double exposure check films are then taken. The projected distances between the Pb shot at the isocentre (centre of the circular field) and the other Pb shot on the patient skin is measured and compared to the corresponding distances on the treatment plan and on the verification CT. c) PPMS: Our optically based Patient Position Monitoring system (PPM) is used to measure setup and treatment error. Measurements of patient and frame position are made in 3D with a resolution of better than 0.2 mm and accuracy of better than 0.4 mm. PPM is used to assist and verify setup and to record treatment position every 5

  16. Accelerated hyperfractionated radiotherapy for locally advanced cervix cancer

    Purpose: A phase II trial was designed to evaluate the toxicity and outcome of patients with locally advanced cervix cancer treated with accelerated hyperfractionated radiotherapy (AHFX). Methods and Materials: In this prospective trial, AHFX doses of 1.25 Gy were administered twice daily at least 6 hours apart to a total pelvic dose of 57.5 Gy. A booster dose was then administered via either low-dose rate brachytherapy or external beam therapy to a smaller volume. All patients were accrued and treated at Peter MacCallum Cancer Institute (PMCI) between 1986 until April 1991. Results: Sixty-one eligible patients were enrolled in this protocol; 2 (3.2%) had Stage IIB; 42 (68.9%) had Stage III; 8 (13.1%) had Stage IV and 9 (14.8%) had recurrent cervical cancer. Fifty-two patients (85%) completed the planned external beam without a treatment break. Thirty patients had acute toxicity that required regular medication. One patient died of acute treatment related toxicity. Fifty-five patients received booster therapy: 45 with intrauterine brachytherapy, 6 with interstitial brachytherapy, and 4 with external beam. The median follow-up of surviving patients was 6 years. Overall 5-year survival is 27% and 5-year relapse free survival is 36%. Nineteen patients died with pelvic disease and the actuarial local control rate was 66%. There were 8 severe late complications observed in 7 patients. Seven required surgical intervention (an actuarial rate of 27%). Five patients also required total hip replacement. Conclusions: The local control rate was favorable compared with other series that have used standard fractionation, although overall survival remained similar. The severe late complication rate was high for this protocol and higher than similar protocols reported in the literature

  17. Neutronic fields produced by a lineal accelerator for radiotherapy

    Measurements and Monte Carlo calculations has been utilized to determine the dosimetric features as well as the neutron spectra of photoneutrons produced around an 18 MV linear accelerator for radiotherapy. Measurements were carried out with bare and Cd covered thermoluminescent dosimeters, TLD600 and TLD700, as well as inside a paraffine moderator. TLD pairs were also utilized as thermal neutrons inside a Bonner sphere spectrometer (au)

  18. Dosimetric effect of intra-fractional and inter-fractional target motion in lung cancer radiotherapy techniques

    Teerthraj Verma; Nirmal Painuly; Surendra Mishra; SA Yoganathansa; Gourav Jain; Ankit Srivastava; Navin Singh; MLB Bhatt; Naseem Jamal; MC Pant

    2015-01-01

    Purpose: The purpose of present study was to experimentally evaluate the dosimetric uncertainties in 3-dimensional conformal radiotherapy (3DCRT), dynamic intensity modulated radiotherapy (D-IMRT), step-shoot (SS-IMRT), and volumetric modulated arc therapy (VMAT) treatment delivery techniques due to intra- and inter-fractional target motion. Methods: A previously treated lung patient was selected for this study and was replanned for 60 Gy in 30 fractions using four techniques (3DCRT, D-IMRT, ...

  19. Late course accelerated hyperfractionated radiotherapy for clinical T1-2 esophageal carcinoma

    Kuai-Le Zhao; Yang Wang; Xue-Hui Shi

    2003-01-01

    AIM: This retrospective study was designed to analyze the results and the failure patterns of late course accelerated hyperfractionated radiotherapy for clinical T1-2NoMo esophageal carcinoma. METHODS: From Aug. 1994 to Feb. 2001, 56 patients with clinical T1-2 esophageal carcinoma received late course accelerated hyperfractionated radiotherapy in Cancer Hospital,Fudan University. All patients had been histologically proven to have squamous cell carcinoma (SCC) and were diagnosed to be T1-2NoMo by CT scan. All patients were treated with conventional fractionation (CF) irradiation during the first twothirds course of the treatment to a dose of about 41.4Gy/23fx/4 to 5 weeks, Which was then followed by accelerated hyperfractionation irradiation using reduced fields, twice daily at 1.SGy per fraction, to a dose about 27Gy/18 fx. Thus the total dose was 67-70Gy/40-43fx/40-49 d. RESULTS: The 1-, 3- and 5-year overall survival was 90.9 %,54.6 %, 47.8 % respectively. The 1-, 3- and 5-year local control rate was 90.9 %, 84.5 % and 84.5 %, respectively.Twenty-five percent (14/56) patients had distant metastasis and/or lymph nodes metastasis alone. Eight point nine percent (5/56) patients had local disease alone. Another 3.6 % (2/56) patients had regional relapse and distant metastasis. CONCLUSION: Late course accelerated hyperfractionated radiotherapy is effective on clinical T1-2 esophageal carcinoma.The main failure pattern is distant metastasis.

  20. Stereotactic fractionated radiotherapy in patients with optic nerve sheath meningioma

    Purpose: To evaluate the effectiveness of stereotactic fractionated radiotherapy (SFRT) in the treatment of optic nerve sheath meningioma (ONSM). Methods and Materials: Between 1994 and 2000, a total of 39 patients with either primary (n=15) or secondary (n=24) ONSM were treated with SFRT and received a median total tumor dose of 54 Gy using 1.8 Gy/fraction. Results: The radiographic response to SFRT was documented in all patients as stable disease (no change) except for 1 patient with a partial response. After a median follow-up of 35.5 months, all patients with ONSM were alive without recurrence. The visual fields and visual acuity were improved in 6 of 15 and 1 of 16 examined eyes in patients with primary ONSM, respectively, and in 6 of 24 and 7 of 26 examined eyes in patients with secondary ONSM, respectively. Stable visual fields and visual acuity was observed in 8 of 14 and 15 of 16 patients with primary ONSM, respectively, and in 17 of 24 and 19 of 26 patients with secondary ONSM, respectively. Except for reversible alopecia and erythema, no other SFRT-related toxicity was observed. Conclusion: SFRT represents a very effective and low-toxic treatment modality for ONSM. Despite a median follow-up of 3 years, this series of primary ONSM holds promise for future studies. It adds substantial evidence that SFRT may definitely become a standard treatment approach in selected cases of ONSM

  1. Research on relationship between dose per fraction and therapeutic effect in fractionated radiotherapy with a tumor control probability model

    Objective: To study whether the effect can be improved by using unequal dose per fraction in fractionated radiotherapy with the given overall treatment dose and time. Methods: Referring to the calculating formula of cell surviving probability, a new tumor control probability (TCP) calculating model following the fractionated radiotherapy has been set up. Then with four assumed fractionated dose protocols (fractionated dose increase or decrease in a week or in the whole treatment time), the TCP value will be calculated with the calculation model to get the relationship curves of some interested variables. Results: The calculation results show that the four assumed unequal fractionated dose (UEFD) protocols were better than the conventional equal fractionated dose (EFD) protocol. The more uneven fractionated dose distribution was the better TCP results would be. Conclusion: Given the overall treatment dose and time, treatment with UFED protocols can get better therapeutic effect than treatment with EFD protocol theoretically

  2. Fractionated stereotactic conformal radiotherapy for large benign skull base meningiomas

    to assess the safety and efficacy of fractionated stereotactic radiotherapy (FSRT) for large skull base meningiomas. Fifty-two patients with large skull base meningiomas aged 34-74 years (median age 56 years) were treated with FSRT between June 2004 and August 2009. All patients received FSRT for residual or progressive meningiomas more than 4 centimeters in greatest dimension. The median GTV was 35.4 cm3 (range 24.1-94.9 cm3), and the median PTV was 47.6 cm3 (range 33.5-142.7 cm3). Treatment volumes were achieved with 5-8 noncoplanar beams shaped using a micromultileaf collimator (MLC). Treatment was delivered in 30 daily fractions over 6 weeks to a total dose of 50 Gy using 6 MV photons. Outcome was assessed prospectively. At a median follow-up of 42 months (range 9-72 months) the 3-year and 5-year progression-free survival (PFS) rates were 96% and 93%, respectively, and survival was 100%. Three patients required further debulking surgery for progressive disease. Hypopituitarism was the most commonly reported late complication, with a new hormone pituitary deficit occurring in 10 (19%) of patients. Clinically significant late neurological toxicity was observed in 3 (5.5%) patients consisting of worsening of pre-existing cranial deficits. FSRT as a high-precision technique of localized RT is suitable for the treatment of large skull base meningiomas. The local control is comparable to that reported following conventional external beam RT. Longer follow-up is required to assess long term efficacy and toxicity, particularly in terms of potential reduction of treatment-related late toxicity

  3. Observation of hypoxia in HNSCC xenografts during fractionated radiotherapy

    Full text: This experimental study was performed to observe hypoxia within tumour xenografts using the 2-nitroimidazole oxygen binding agent, Pimonidazole. Xenografts were subjected to 6 MV fractionated radiotherapy to enable the changes in hypoxia to be assessed throughout treatment. The xenografts were grown in immuno-deficient mice through subcutaneously injection (FaOu cell line) 8 days prior to treatment, with all mice growing visible tumours ranging between 2 and 6 mm in diameter. An irradiation schedule of 5 x 3 Gy in week I and 5 x 5 Gy in week 2 was delivered using a novel restraining system to unanaesthetised mice. Pimonidazole was injected into 17 mice that had received 0, 3, 9, 20, 30 or 40 Gy. Immunohistochemical imaging processes were performed on xenograft cross-sections to observe hypoxia as well as proliferative (blue-BrdUrd) and endothelial blood vessel cells (red-Hoechst 33342). In vivo oxygenation levels were also recorded using the OxyLab fluorescent probe system to provide a concurrent quantitative oxygenation analysis. Cross-sectional fluorescent images confirmed the presence of hypoxia (pO2 < 10 mmHg), which decreased with radiation dose and tumour volume. Images illustrated the microscopic spatial and chaotic nature of cellular hypoxia in the tumours. OxyLab results confirmed quantitatively that the xenografts had low levels of oxygenation, which increased late in the schedule (after 40 Gy).

  4. Accelerated radiotherapy for T1, 2 glottic carcinoma: analysis of results with KI-67 index

    Purpose: Hyperfractionated and accelerated radiotherapy without a split was performed to improve the local control probability of early glottic carcinomas. We analyzed the results of this regimen by using the Ki-67 index. Methods and Materials: Over a 12-year period, 85 T1N0M0 glottic cancers and 50 T2N0M0 glottic cancers were treated with conventional fractionation (CF) from 1984 to 1989 and with accelerated fractionation (AF) since 1990. The CF program consisted of five daily fractions of 2 Gy per week, for a total of 64 Gy. The AF program consisted of 1.72 Gy per fraction, two fractions per day, 5 days a week, for a total of 55 or 58 Gy. The specimens, taken before radiotherapy, were immunohistochemically stained with anti-Ki-67 antibody. Results: The 5-year local control probability for T1 tumors was 79.6 ± 6.9% with CF treatment, whereas with AF it was 86.9 ± 5.6%. For T2 tumors it was 62.7 ± 12.2% with CF, whereas it was 74.7 ± 7.8% with AF. The difference between CF and AF did not reach the point of statistical significance. However, when T1 tumors had a Ki-67 index lower than 50%, the local control rate achieved with AF was significantly better than that with CF (p = 0.018). When the tumors had a Ki-67 index that was 50% or more, there was no difference in the local control rate between CF and AF, whether they were T1 or T2. The peak mucosal reactions at the larynx and/or hypopharynx were much more severe and appeared at smaller doses and earlier in AF than in CF. The patients with AF showed no severe late complications. Conclusions: AF could not obtain statistically significant improvement in local control probability of T1 or T2 glottic carcinomas

  5. Accelerated Deformable Registration of Repetitive MRI during Radiotherapy in Cervical Cancer

    Noe, Karsten Østergaard; Tanderup, Kari; Kiritsis, Christian; Dimopoulos, Johannes; Sørensen, Thomas Sangild; Lindegaard, Jacob; Grau, Cai

    Tumour regression and organ deformations during radiotherapy (RT) of cervical cancer represent major challenges regarding accurate conformation and calculation of dose when using image-guided adaptive radiotherapy. Deformable registration algorithms are able to handle organ deformations, which can...... be useful with advanced tools such as auto segmentation of organs and dynamic adaptation of radiotherapy. The aim of this study was to accelerate and validate deformable registration in MRI-based image-guided radiotherapy of cervical cancer.    ...

  6. Randomized study on late course accelerated hyperfractionation radiotherapy plus cisplatin in the treatment of esophageal carcinomas

    Objective: To investigate the therapeutic results of late course accelerated hyperfractionation (LCAH) radiotherapy plus cisplatin as a radiosensitizer in the treatment of esophageal carcinoma. Methods: One hundred and four patients with squamou s cell carcinoma of the esophagus were randomized into two groups: LCAH alone group (53 patients) and LCAH + cisplatin group (51 patients). The same irradiation technique was given for both groups with conventional fractionation (2 Gy daily, 5 times a week) in the first 3 weeks and late course accelerated hyperfractionation (1.5 Cry twice daily, a minimum interfraction interval of 6 hours, 5 days per week) in the last 2 weeks. The total dose was 60 Gy/5 wks. In LCAH + cisplatin group, cisplatin was given simultaneous with 20 mg once daily for 5 days in the 1st and 5th weeks. The acute and late side effects were evaluated during :and after the treatment. Results: The median survival time was 12.2 months and 17.0 months in the LCAH alone group and LCAH + cisplatin group. The 1- and 3-year survival rates in LCAH group were 52.8 % and 20.8%; while those of LCAH + cisplatin group were 58.0 % and 24.0% (P>0.05). The acute gastrointestinal toxicities and hematological toxicities were obvious in LCAH + cisplatin group, but no increased acute esophagitis or late complications was observed. Conclusions: Late course accelerated hyperfractionation radio-therapy used simultaneously with cisplatin tends to increase the overall survival rate compared with the late course accelerated hyperfractionation radiotherapy alone in the treatment of esophageal carcinoma. (authors)

  7. Hypofractionated and Accelerated Radiotherapy With Subcutaneous Amifostine Cytoprotection as Short Adjuvant Regimen After Breast-Conserving Surgery: Interim Report

    Purpose: Short radiotherapy schedules might be more convenient for patients and overloaded radiotherapy departments, provided late toxicity is not increased. We evaluated the efficacy and toxicity of a hypofractionated and highly accelerated radiotherapy regimen supported with cytoprotection provided by amifostine in breast cancer patients treated with breast-conserving surgery. Methods and Materials: A total of 92 patients received 12 consecutive fractions of radiotherapy (3.5 Gy/fraction for 10 fractions) to the breast and/or axillary/supraclavicular area and 4 Gy/fraction for 2 fractions to the tumor bed). Amifostine at a dose of 1,000 mg/d was administered subcutaneously. The follow-up of patients was 30-60 months (median, 39). Results: Using a dose individualization algorithm, 77.1% of patients received 1,000 mg and 16.3% received 750 mg of amifostine daily. Of the 92 patients, 13% interrupted amifostine because of fever/rash symptoms. Acute Grade 2 breast toxicity developed in 6.5% of patients receiving 1,000 mg of amifostine compared with 46.6% of the rest of the patients (p < .0001). The incidence of Grade 2 late sequelae was less frequent in the high amifostine dose group (3.2% vs. 6.6%; p = NS). Grade 1 lung fibrosis was infrequent (3.3%). The in-field relapse rate was 3.3%, and an additional 2.2% of patients developed a relapse in the nonirradiated supraclavicular area. c-erbB-2 overexpression was linked to local control failure (p = .01). Distant metastasis appeared in 13% of patients, and this was marginally related to more advanced T/N stage (p = .06). Conclusion: Within a minimal follow-up of 2.5 years after therapy, hypofractionated and accelerated radiotherapy with subcutaneous amifostine cytoprotection has proved a well-tolerated and effective regimen. Longer follow-up is required to assess the long-term late sequelae.

  8. Endocrine and visual function after fractionated stereotactic radiotherapy of perioptic tumors

    Purpose: To find out whether the use of stereotactic techniques for fractionated radiotherapy reduces toxicity to the endocrine and visual system in patients with benign perioptic tumors. Patients and methods: From 1993 to 2009, 29 patients were treated with fractionated stereotactic radiotherapy. The most frequent tumor types were grade I meningioma (n = 11) and pituitary adenoma (n = 10, 7 nonfunctioning, 3 growth hormone-producing). Patients were immobilized with the GTC frame (Radionics, USA) and the planning target volume (PTV; median 24.7, 4.6-58.6 ml) was irradiated with a total dose of 52.2 Gy (range, 45.0-55.8 Gy) in 1.8-Gy fractions using a linear accelerator (6 MeV photons) equipped with a micro-multileaf collimator. Maximum doses to the optic system and pituitary gland were 53.4 Gy (range, 11.5-57.6 Gy) and 53.6 Gy (range, 12.0-57.9 Gy). Results: Median follow-up was 45 months (range, 10-105 months). Local control was achieved in all but 1 patient (actuarial rate 92% at 5 years and 10 years). In 9 of 29 patients (31%), partial remission was observed (actuarial response rate 40% at 5 years and 10 years). In 4 of 26 patients (15%) with at least partial pituitary function, new hormonal deficits developed (actuarial rate 21% at 5 years and 10 years). This rate was significantly higher in patients treated for a larger PTV ( 25 ml: 0% vs. 42% at 5 years and 10 years, p = 0.028). Visual function improved in 4 of 15 patients (27%) who had prior impairment. None of the patients developed treatment-related optic neuropathy, but 2 patients experienced new disease-related visual deficits. Conclusion: Fractionated stereotactic radiotherapy for benign tumors of the perioptic and sellar region results in satisfactory response and local control rates and does not affect the visual system. The assumption that patients can be spared hypophyseal insufficiency only holds for small tumors. (orig.)

  9. Endocrine and visual function after fractionated stereotactic radiotherapy of perioptic tumors

    Kocher, M.; Semrau, R.; Mueller, R.P. [Universitaetsklinikum Koeln (Germany). Klinik und Poliklinik fuer Strahlentherapie; Treuer, H.; Hoevels, M.; Sturm, V. [Koeln Univ. (Germany). Dept. of Stereotaxy and Functional Neurosurgery

    2013-02-15

    Purpose: To find out whether the use of stereotactic techniques for fractionated radiotherapy reduces toxicity to the endocrine and visual system in patients with benign perioptic tumors. Patients and methods: From 1993 to 2009, 29 patients were treated with fractionated stereotactic radiotherapy. The most frequent tumor types were grade I meningioma (n = 11) and pituitary adenoma (n = 10, 7 nonfunctioning, 3 growth hormone-producing). Patients were immobilized with the GTC frame (Radionics, USA) and the planning target volume (PTV; median 24.7, 4.6-58.6 ml) was irradiated with a total dose of 52.2 Gy (range, 45.0-55.8 Gy) in 1.8-Gy fractions using a linear accelerator (6 MeV photons) equipped with a micro-multileaf collimator. Maximum doses to the optic system and pituitary gland were 53.4 Gy (range, 11.5-57.6 Gy) and 53.6 Gy (range, 12.0-57.9 Gy). Results: Median follow-up was 45 months (range, 10-105 months). Local control was achieved in all but 1 patient (actuarial rate 92% at 5 years and 10 years). In 9 of 29 patients (31%), partial remission was observed (actuarial response rate 40% at 5 years and 10 years). In 4 of 26 patients (15%) with at least partial pituitary function, new hormonal deficits developed (actuarial rate 21% at 5 years and 10 years). This rate was significantly higher in patients treated for a larger PTV ( 25 ml: 0% vs. 42% at 5 years and 10 years, p = 0.028). Visual function improved in 4 of 15 patients (27%) who had prior impairment. None of the patients developed treatment-related optic neuropathy, but 2 patients experienced new disease-related visual deficits. Conclusion: Fractionated stereotactic radiotherapy for benign tumors of the perioptic and sellar region results in satisfactory response and local control rates and does not affect the visual system. The assumption that patients can be spared hypophyseal insufficiency only holds for small tumors. (orig.)

  10. Conventionally fractionated stereotactic radiotherapy (FSRT) for acoustic neuromas

    Purpose: Analysis of local tumor control and functional outcome following conventionally fractionated stereotactic radiotherapy (FSRT) for acoustic neuromas. Patients and Methods: From 11/1989 to 9/1999 51 patients with acoustic neuromas have been treated by FSRT. Mean total dose was 57.6 ± 2.5 Gy. Forty-two patients have been followed for at least 12 months and were subject of an outcome analysis. Mean follow-up was 42 months. We analyzed local control, hearing preservation, and facial and trigeminal nerve functional preservation. We evaluated influences of tumor size, age, and association with neurofibromatosis Type 2 (NF2) on outcome and treatment related toxicity. Results: Actuarial 2- and 5-year tumor control rates were 100% and 97.7%, respectively. Actuarial useful hearing preservation rate was 85% at 2 and 5 years. New hearing loss was diagnosed in 4 NF2 patients. Pretreatment normal facial nerve function was preserved in all cases. Two cases of new or impaired trigeminal nerve dysesthesia required medication. No other cranial nerve deficit was observed. In Patients without NF2 tumor size or age had no influence on tumor control and cranial nerve toxicity. Diagnosis of NF2 was associated with higher risk of hearing impairment (p 0.0002), the hearing preservation rate in this subgroup was 60%. Conclusion: FSRT has been shown to be an effective means of local tumor control. Excellent hearing preservation rates and 5th and 7th nerve functional preservation rates were achieved. The results support the conclusion that FSRT can be recommended to patients with acoustic neuromas where special attention has to be taken to preserve useful hearing and normal cranial nerve function. For NF2 patients, FSRT may be the treatment of choice with superior functional outcome compared to treatment alternatives.

  11. Fractionated Stereotactic Radiotherapy in Patients With Optic Nerve Sheath Meningioma

    Purpose: To evaluate the effectiveness of fractionated stereotactic radiotherapy (SFRT) in the treatment of optic nerve sheath meningioma (ONSM). Methods and Materials: Between 1993 and 2005, 109 patients (113 eyes) with primary (n = 37) or secondary (n = 76) ONSM were treated according to a prospective protocol with SFRT to a median dose of 54 Gy. All patients underwent radiographic, ophthalmologic, and endocrine analysis before and after SFRT. Radiographic response, visual control, and late side effects were endpoints of the analysis. Results: Median time to last clinical, radiographic, and ophthalmologic follow up was 30.2 months (n = 113), 42.7 months (n = 108), and 53.7 months (n = 91), respectively. Regression of the tumor was observed in 5 eyes and progression in 4 eyes, whereas 104 remained stable. Visual acuity improved in 12, deteriorated in 11, and remained stable in 68 eyes. Mean visual field defects reduced from 33.6% (n = 90) to 17.8% (n = 56) in ipsilateral and from 10% (n = 94) to 6.7% (n = 62) in contralateral eyes. Ocular motility improved in 23, remained stable in 65, and deteriorated in 3 eyes. Radiographic tumor control was 100% at 3 years and 98% at 5 years. Visual acuity was preserved in 94.8% after 3 years and in 90.9% after 5 years. Endocrine function was normal in 90.8% after 3 years and in 81.3% after 5 years. Conclusions: SFRT represents a highly effective treatment for ONSM. Interdisciplinary counseling of the patients is recommended. Because of the high rate of preservation of visual acuity we consider SFRT the standard approach for the treatment of ONSM. Prolonged observation is warranted to more accurately assess late visual impairment. Moderate de-escalation of the radiation dose might improve the preservation of visual acuity and pituitary gland function.

  12. Fractionated Stereotactic Radiotherapy in Patients With Optic Nerve Sheath Meningioma

    Paulsen, Frank, E-mail: frank.paulsen@med.uni-tuebingen.de [Department of Radiation Oncology, University of Tuebingen, Tuebingen (Germany); Doerr, Stefan [Department of Radiation Oncology, University of Tuebingen, Tuebingen (Germany); Wilhelm, Helmut [Department of Ophthalmology, University of Tuebingen, Tuebingen (Germany); Becker, Gerd [Department of Radiation Oncology, Klinik am Eichert, Goeppingen (Germany); Bamberg, Michael [Department of Radiation Oncology, University of Tuebingen, Tuebingen (Germany); Classen, Johannes [Department of Radiation Oncology, St. Vincentius-Kliniken, Karlsruhe (Germany)

    2012-02-01

    Purpose: To evaluate the effectiveness of fractionated stereotactic radiotherapy (SFRT) in the treatment of optic nerve sheath meningioma (ONSM). Methods and Materials: Between 1993 and 2005, 109 patients (113 eyes) with primary (n = 37) or secondary (n = 76) ONSM were treated according to a prospective protocol with SFRT to a median dose of 54 Gy. All patients underwent radiographic, ophthalmologic, and endocrine analysis before and after SFRT. Radiographic response, visual control, and late side effects were endpoints of the analysis. Results: Median time to last clinical, radiographic, and ophthalmologic follow up was 30.2 months (n = 113), 42.7 months (n = 108), and 53.7 months (n = 91), respectively. Regression of the tumor was observed in 5 eyes and progression in 4 eyes, whereas 104 remained stable. Visual acuity improved in 12, deteriorated in 11, and remained stable in 68 eyes. Mean visual field defects reduced from 33.6% (n = 90) to 17.8% (n = 56) in ipsilateral and from 10% (n = 94) to 6.7% (n = 62) in contralateral eyes. Ocular motility improved in 23, remained stable in 65, and deteriorated in 3 eyes. Radiographic tumor control was 100% at 3 years and 98% at 5 years. Visual acuity was preserved in 94.8% after 3 years and in 90.9% after 5 years. Endocrine function was normal in 90.8% after 3 years and in 81.3% after 5 years. Conclusions: SFRT represents a highly effective treatment for ONSM. Interdisciplinary counseling of the patients is recommended. Because of the high rate of preservation of visual acuity we consider SFRT the standard approach for the treatment of ONSM. Prolonged observation is warranted to more accurately assess late visual impairment. Moderate de-escalation of the radiation dose might improve the preservation of visual acuity and pituitary gland function.

  13. Changes in serum and salivary amylase during radiotherapy for head and neck cancer; A comparison of conventionally fractionated radiotherapy with CHART

    Leslie, M.D.; Dische, S. (Mount Vernon Hospital, Northwood (United Kingdom))

    1992-05-01

    The changes in serum amylase that occur when radiotherapy is given in the treatment of head and neck cancer has been studied in 41 patients, 29 treated by CHART and 12 by conventionally fractionated radiotherapy. The peak rise in serum amylase following the start of treatment is seen earlier and is greater in the patients receiving continuous hyperfractionated accelerated radiotherapy (CHART). The serum amylase returns to normal earlier in the CHART patients so that the area under the curve is the same for both groups. The difference probably reflects the more rapid delivery of treatment to the patients receiving CHART. A close correlation between the peak rise in serum amylase and the amount of parotid tissue in the treatment volume is demonstrated. For six patients the total amount of amylase secreted by the parotid gland during CHART was measured and found to decline rapidly within a few days of the start of radiotherapy. The rise in serum amylase that results from the irradiation of salivary tissue provides a unique biochemical measure of an early radiation effect in a normal tissue. This probably reflects the interphase cell death of serous salivary cells. Although these immediate changes are of considerable interest they may not relate to the late effects of radiation on salivary gland function. (author). 13 refs.; 4 figs.

  14. Not traditional regimes of radiotherapeutic dose fractionation as modifier of radiotherapy for carcinoma of lungs

    The efficiency of applying various of radiotherapeutic dose fractionation was analyzed. The results of the own studies performed at the Scientific and Research Institute of Oncology and Medical Radiology for elaborating not traditional regimes of radiotherapeutic dose fractionation (a dynamic fractionation applying enlarged regimes at the first stage and the classic ones at the second stage) were presented. Appliance of the modified radiotherapy for the epidermoid carcinoma of the lungs allowed to increase the objective response from 45,3+-3% to 80+-5% the tumor disappearing completely in 40+-6% of patients as compared with 10+-2%. Appliance of the intensive not traditional variant of the radiotherapy dynamic fractionation in case of a small cell carcinoma of the lungs resulted in the therapy duration reduction from 6 to 4 weeks. Thus the not traditional dose fractionation might become a mechanism for the improving the radiotherapy of persons suffering from the carcinoma of the lungs. (authors)

  15. Prostate stereotactic ablative body radiotherapy using a standard linear accelerator: Toxicity, biochemical, and pathological outcomes

    Background and purpose: Biological dose escalation through stereotactic ablative radiotherapy (SABR) holds promise of improved patient convenience, system capacity and tumor control with decreased cost and side effects. The objectives are to report the toxicities, biochemical and pathologic outcomes of this prospective study. Materials and methods: A phase I/II study was performed where low risk localized prostate cancer received SABR 35 Gy in 5 fractions, once weekly on standard linear accelerators. Common Terminology Criteria for Adverse Events v3.0 and Radiation Therapy Oncology Group late morbidity scores were used to assess acute and late toxicities, respectively. Biochemical control (BC) was defined by the Phoenix definition. Results: As of May 2012, 84 patients have completed treatment with a median follow-up of 55 months (range 13–68 months). Median age was 67 years and median PSA was 5.3 ng/ml. The following toxicities were observed: acute grade 3+: 0% gastrointestinal (GI), 1% genitourinary (GU), 0% fatigue; late grade 3+: 1% GI, 1% GU. Ninety-six percent were biopsy negative post-treatment. The 5-year BC was 98%. Conclusions: This novel technique employing standard linear accelerators to deliver an extreme hypofractionated schedule of radiotherapy is feasible, well tolerated and shows excellent pathologic and biochemical control

  16. Impact of dose size in single fraction spatially fractionated (grid) radiotherapy for melanoma

    Zhang, Hualin, E-mail: hualin.zhang@northwestern.edu, E-mail: hualinzhang@yahoo.com [Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States); Zhong, Hualiang [Department of Radiation Oncology, Henry Ford Health System, Detroit, Michigan 48202 (United States); Barth, Rolf F. [Department of Pathology, The Ohio State University, Columbus, Ohio 43210 (United States); Cao, Minsong; Das, Indra J. [Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202 (United States)

    2014-02-15

    Purpose: To evaluate the impact of dose size in single fraction, spatially fractionated (grid) radiotherapy for selectively killing infiltrated melanoma cancer cells of different tumor sizes, using different radiobiological models. Methods: A Monte Carlo technique was employed to calculate the 3D dose distribution of a commercially available megavoltage grid collimator in a 6 MV beam. The linear-quadratic (LQ) and modified linear quadratic (MLQ) models were used separately to evaluate the therapeutic outcome of a series of single fraction regimens that employed grid therapy to treat both acute and late responding melanomas of varying sizes. The dose prescription point was at the center of the tumor volume. Dose sizes ranging from 1 to 30 Gy at 100% dose line were modeled. Tumors were either touching the skin surface or having their centers at a depth of 3 cm. The equivalent uniform dose (EUD) to the melanoma cells and the therapeutic ratio (TR) were defined by comparing grid therapy with the traditional open debulking field. The clinical outcomes from recent reports were used to verify the authors’ model. Results: Dose profiles at different depths and 3D dose distributions in a series of 3D melanomas treated with grid therapy were obtained. The EUDs and TRs for all sizes of 3D tumors involved at different doses were derived through the LQ and MLQ models, and a practical equation was derived. The EUD was only one fifth of the prescribed dose. The TR was dependent on the prescribed dose and on the LQ parameters of both the interspersed cancer and normal tissue cells. The results from the LQ model were consistent with those of the MLQ model. At 20 Gy, the EUD and TR by the LQ model were 2.8% higher and 1% lower than by the MLQ, while at 10 Gy, the EUD and TR as defined by the LQ model were only 1.4% higher and 0.8% lower, respectively. The dose volume histograms of grid therapy for a 10 cm tumor showed different dosimetric characteristics from those of conventional

  17. High dose rate fractionated interstitial radiotherapy for prostate cancer

    Nose, Takayuki; Inoue, Takehiro; Inoue, Toshihiko [Osaka Univ., Suita (Japan). Medical School] [and others

    1996-12-01

    From January 1993 through June 1996, thirteen advanced prostate cancer cases were treated with high dose rate interstitial radiotherapy using TRUS and perineal template guidance combined with or without external radiotherapy. Among eight cases eligible for local control, only one case relapsed so far. One perineal skin necrosis and one total incontinence were experienced in the patients treated with non-standard protocol dose. No apparent side effects were found in standard treatment patients. In addition with markedly increased tumor dose local control rate can be improved. (author)

  18. HIGH DOSE FRACTION RADIOTHERAPY FOR MUCOSAL MALIGNANT MELANOMA OF THE HEAD AND NECK

    Liu Xiuying; Li Huiling; Zheng Tianrong; Lin Xiangsong

    1998-01-01

    Objective:To evatuate the results of high dose fraction radiotherapy for mucosal malignant melanoma of the head and neck (HNMM). Methods: From 1984-1994, 35 patients with HNMM were enrolled in this study. Among them, 27 cases localized to the nasal cavity or para-nasal sinus, 8 to the oral cavity. All patients received high dose fraction radiotherapy (6--8 Gy/fraction)with the total dose ranged from 40 to 60 Gy. Results: The minimum follow-up was 2 years (ranged 2-7 years). The overall 3- and 5-year survival rate was 45.7% and 24%,respectively. Conclusion: High dose fraction radiotherapy is effective for local control of HNMM.

  19. Initial experience of single fraction radiotherapy (8 Gy x 1) in the treatment of painful bone metastases

    Sixteen patients with painful bone metastases received single fraction radiotherapy of 8 Gy. Single fraction radiotherapy was effective in providing pain relief with response rate of 88.8%. There were no severe acute side effects. The therapeutic regimen was also safe and effective in patients with poor performance status and poor prognosis. Therefore single fraction radiotherapy should be considered to treat pain arising from bone metastases. (author)

  20. Salvage surgery after radical accelerated radiotherapy with concomitant boost technique for head and neck carcinomas

    Taussky, Daniel; Dulguerov, Pavel; Allal, Abdelkarim Said

    2005-01-01

    Definitive radiotherapy (RT) for head and neck cancer is increasingly used to preserve organ function, whereas surgery is reserved for treatment failure. However, data are sparse regarding the feasibility of salvage surgery, particularly for unselected patients after accelerated RT.

  1. Effect of fractionated regional external beam radiotherapy on peripheral blood cell count

    Purpose: The purpose of this study was to assess the need for obtaining weekly complete blood count (CBC) values and to identify the pattern of changes in CBC during regional conventional fractionated radiotherapy. Methods and Materials: A retrospective analysis of CBC data on 299 adult cancer patients who received definitive conventional radiotherapy to head and neck (n=95), chest (n=96), and pelvis (n=108) was performed. Temporal patterns and magnitude of change in white blood cells, neutrophils, lymphocytes, and platelets during radiotherapy were examined. Results: There were statistically significant declines in all counts, albeit not clinically significant. Notable differences between disease sites were found. The greatest weekly interval change in counts occurred during the first week of radiotherapy for all groups of patients. The mean WBC nadir values during treatment were 5.8 for head and neck, 6.8 for chest, and 5.4 for pelvis. The nadirs for all counts occurred toward the middle-to-end of radiotherapy. Lymphocytes were found to be more sensitive to radiotherapy than other leukocyte subcomponents. Conclusion: Our study suggests that weekly CBC monitoring is not necessary for all patients undergoing standard fractionated radiotherapy. Baseline blood counts may be used to determine an optimal schedule for monitoring CBCs in patients receiving conventional radiation alone. Reduced monitoring of CBC may result in significant financial savings

  2. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    Hauptman, Jason S., E-mail: jhauptman@mednet.ucla.edu [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Barkhoudarian, Garni; Safaee, Michael; Gorgulho, Alessandra [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Tenn, Steven; Agazaryan, Nzhde; Selch, Michael [Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); De Salles, Antonio A.F. [Division of Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States); Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA (United States)

    2012-06-01

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  3. Challenges in Linear Accelerator Radiotherapy for Chordomas and Chondrosarcomas of the Skull Base: Focus on Complications

    Purpose: Intracranial chordomas and chondrosarcomas are histologically low-grade, locally invasive tumors that infiltrate the skull base. Currently, consensus therapy includes surgical resection and adjuvant radiotherapy. Radiation delivery is typically limited by the proximity of these tumors to critical skull base structures. Methods: This is a retrospective review of 13 cases of chordomas and 2 cases of chondroid chondrosarcomas of the skull based treated with linear accelerator stereotactic radiotherapy (SRT, n = 10) or stereotactic radiosurgery (SRS, n = 5). The average time to the most recent follow-up visit was 4.5 years. The tumor characteristics, treatment details, and outcomes were recorded. Each radiation plan was reviewed, and the dosage received by the brainstem, optic apparatus, and pituitary was calculated. Results: Of the 10 patients treated with SRT, 6 were found to have unchanged or decreased tumor size as determined from radiographic follow-up. Of the 5 patients treated with SRS, 3 were found to have stable or unchanged tumors at follow-up. The complications included 1 SRT patient who developed endocrinopathy, 2 patients (1 treated with SRS and the other with SRT), who developed cranial neuropathy, and 1 SRS patient who developed visual deficits. Additionally, 1 patient who received both SRS and SRT within 2 years for recurrence experienced transient medial temporal lobe radiation changes that resolved. Conclusions: Where proton beam therapy is unavailable, linear accelerator-based SRT or radiosurgery remains a safe option for adjuvant therapy of chordomas and chondrosarcomas of the skull base. The exposure of the optic apparatus, pituitary stalk, and brainstem must be considered during planning to minimize complications. If the optic apparatus is included in the 80% isodose line, it might be best to fractionate therapy. Exposure of the pituitary stalk should be kept to <30 Gy to minimize endocrine dysfunction. Brainstem exposure should be

  4. Five Year Outcome of 145 Patients With Ductal Carcinoma In Situ (DCIS) After Accelerated Breast Radiotherapy

    Ciervide, Raquel [Department of Radiation Oncology, New York University School of Medicine, NYU Langone Medical Center, New York, New York (United States); Dhage, Shubhada; Guth, Amber; Shapiro, Richard L.; Axelrod, Deborah M.; Roses, Daniel F. [Department of Surgery, New York University School of Medicine, NYU Langone Medical Center, New York, New York (United States); Formenti, Silvia C., E-mail: silvia.formenti@nyumc.org [Department of Radiation Oncology, New York University School of Medicine, NYU Langone Medical Center, New York, New York (United States)

    2012-06-01

    Background: Accelerated whole-breast radiotherapy (RT) with tumor bed boost in the treatment of early invasive breast cancer has demonstrated equivalent local control and cosmesis when compared with standard RT. Its efficacy in the treatment of ductal carcinoma in situ (DCIS) remains unknown. Methods and Materials: Patients treated for DCIS with lumpectomy and negative margins were eligible for 2 consecutive hypofractionated whole-breast RT clinical trials. The first trial (New York University [NYU] 01-51) prescribed to the whole breast 42 Gy (2.8 Gy in 15 fractions) and the second trial (NYU 05-181) 40.5 Gy (2.7 Gy in 15 fractions) with an additional daily boost of 0.5 Gy to the surgical cavity. Results: Between 2002 and 2009, 145 DCIS patients accrued, 59 to the first protocol and 86 to the second trial. Median age was 56 years and 65% were postmenopausal at the time of treatment. Based on optimal sparing of normal tissue, 79% of the patients were planned and treated prone and 21% supine. At 5 years' median follow-up (60 months; range 2.6-105.5 months), 6 patients (4.1%) experienced an ipsilateral breast recurrence in all cases of DCIS histology. In 3/6 patients, recurrence occurred at the original site of DCIS and in the remaining 3 cases outside the original tumor bed. New contralateral breast cancers arose in 3 cases (1 DCIS and 2 invasive carcinomas). Cosmetic self-assessment at least 2 years after treatment is available in 125 patients: 91% reported good-to-excellent and 9% reported fair-to-poor outcomes. Conclusions: With a median follow-up of 5 years, the ipsilateral local recurrence rate is 4.1%, comparable to that reported from the NSABP (National Surgical Adjuvant Breast and Bowel Project) trials that employed 50 Gy in 25 fractions of radiotherapy for DCIS. There were no invasive recurrences. These results provide preliminary evidence that accelerated hypofractionated external beam radiotherapy is a viable option for DCIS.

  5. Five Year Outcome of 145 Patients With Ductal Carcinoma In Situ (DCIS) After Accelerated Breast Radiotherapy

    Background: Accelerated whole-breast radiotherapy (RT) with tumor bed boost in the treatment of early invasive breast cancer has demonstrated equivalent local control and cosmesis when compared with standard RT. Its efficacy in the treatment of ductal carcinoma in situ (DCIS) remains unknown. Methods and Materials: Patients treated for DCIS with lumpectomy and negative margins were eligible for 2 consecutive hypofractionated whole-breast RT clinical trials. The first trial (New York University [NYU] 01-51) prescribed to the whole breast 42 Gy (2.8 Gy in 15 fractions) and the second trial (NYU 05-181) 40.5 Gy (2.7 Gy in 15 fractions) with an additional daily boost of 0.5 Gy to the surgical cavity. Results: Between 2002 and 2009, 145 DCIS patients accrued, 59 to the first protocol and 86 to the second trial. Median age was 56 years and 65% were postmenopausal at the time of treatment. Based on optimal sparing of normal tissue, 79% of the patients were planned and treated prone and 21% supine. At 5 years' median follow-up (60 months; range 2.6-105.5 months), 6 patients (4.1%) experienced an ipsilateral breast recurrence in all cases of DCIS histology. In 3/6 patients, recurrence occurred at the original site of DCIS and in the remaining 3 cases outside the original tumor bed. New contralateral breast cancers arose in 3 cases (1 DCIS and 2 invasive carcinomas). Cosmetic self-assessment at least 2 years after treatment is available in 125 patients: 91% reported good-to-excellent and 9% reported fair-to-poor outcomes. Conclusions: With a median follow-up of 5 years, the ipsilateral local recurrence rate is 4.1%, comparable to that reported from the NSABP (National Surgical Adjuvant Breast and Bowel Project) trials that employed 50 Gy in 25 fractions of radiotherapy for DCIS. There were no invasive recurrences. These results provide preliminary evidence that accelerated hypofractionated external beam radiotherapy is a viable option for DCIS.

  6. Cyberknife fractionated radiotherapy for adrenal metastases: Preliminary report from a multispecialty Indian cancer care center

    Trinanjan Basu

    2015-03-01

    Full Text Available Purpose: Metastasis to adrenal gland from lung, breast, and kidney malignancies are quite common. Historically radiotherapy was intended for pain palliation. Recent studies with stereotactic body radiotherapy (SBRT including Cyberknife robotic radiosurgery aiming at disease control brings about encouraging results. Here we represent the early clinical experience with Cyberknife stereotactic system from an Indian cancer care center. The main purpose of this retrospective review is to serve as a stepping stone for future prospective studies with non- invasive yet effective technique compared to surgery. Methods: We retrospectively reviewed four cases of adrenal metastases (three: lung and one: renal cell carcinoma treated with Cyberknife SBRT. X sight spine tracking was employed for planning and treatment delivery. Patients were evaluated for local response clinically as well as with PETCT based response criteria.Results: With a median gross tumor volume of 20.5 cc and median dose per fraction of 10 Gy, two patients had complete response (CR and two had partial response (PR when assessed 8-12 weeks post treatment as per RECIST. There was no RTOG grade 2 or more acute adverse events and organs at risk dosage were acceptable. Till last follow up all the patients were locally controlled and alive. Conclusion: Cyberknife SBRT with its unique advantages like non- invasive, short duration outpatient treatment technique culminating in similar local control rates in comparison to surgery is an attractive option. World literature of linear accelerator based SBRT and our data with Cyberknife SBRT with small sample size and early follow up are similar in terms of local control in adrenal metastases. Future prospective data would reveal more information on the management of adrenal metastases.

  7. The role of accelerated hyperfractionated radiotherapy in the treatment of inoperable non-small cell lung cancer: a controlled clinical trial

    Radiotherapy remains the basic form of treatment in cases of non-small cell lung cancer (NSCLC) but there still exist controversies concerning optimal radiotherapy regimen and in particular, the total dose and fractionation schedules. To prove whether the question: if using an unconventional dose fractionation regimen (accelerated hyperfractionation) could improve the results of palliative teleradiotherapy patients with NSCLC. Between 1997 and 2000 in the Cancer Centre in Cracow (COOK) a controlled clinical trial was conducted in a group of 150 patients with locally advanced (III Deg) inoperable and unsuitable for radical radiotherapy NSCLC, with no major symptoms of the disease. In 76 patients conventionally fractionated radiotherapy was performed - 50 Gy in 25 fractions during 5 weeks (CF). 74 patients were irradiated twice a day (AHF); the dose per fraction was 1.25 Gy and the minimum interval between fractions - 6 hours. The total dose was 50 Gy in 40 fractions during 26 days. The probability of 12 months survival was 47.4% in the CF arm and 45.9% in the AHF arm; the probability of 24 months survival was 16.2% and 15.8%, respectively. In all 76 patients in CF arm the treatment was carried out in prescribed time without breaks. Out of 74 patients in the A HF group 8 (10,8%) did not complete the treatment and 2 of then died in 3rd and 4th week of treatment. The use of accelerated hyperfractionation does not improve the results of palliative teleradiotherapy in patients with locally advanced NSCLC without severe symptoms related to intrathoracic tumor. The treatment of choice in this group of patients os conventionally fractionated radiotherapy with a total dose of 50 Gy in 25 fractions in 5 week of treatment. (author)

  8. DCEMRI of spontaneous canine tumors during fractionated radiotherapy: A pharmacokinetic analysis

    Purpose: To estimate pharmacokinetic parameters from dynamic contrast-enhanced magnetic resonance (DCEMR) images of spontaneous canine tumors taken during the course of fractionated radiotherapy, and to quantify treatment-induced changes in these parameters. Materials and methods: Six dogs with tumors in the oral or nasal cavity received fractionated conformal radiotherapy with 54 Gy given in 18 fractions. T1-weighted DCEMR imaging was performed prior to each treatment fraction. Time-intensity curves in the tumor were extracted voxel-by-voxel, and were fitted to the Brix pharmacokinetic model. The dependence of the pharmacokinetic parameters on the accumulated radiation dose was calculated. Results: The Brix model reproduced the time-intensity curves well. A reduction in the kep parameter with accumulated radiation dose was found for five (three significant) out of six cases, while the results for the A parameter were less consistent. Both pre-treatment kep and the change in kep with accumulated dose correlated significantly with tumor regression. Conclusions: Pharmacokinetic parameters derived from DCEMR images taken during fractionated radiotherapy may predict response to radiotherapy. This may potentially impact on patient stratification and monitoring of treatment response for image-guided treatment strategies.

  9. Fractionated stereotactic radiotherapy of glomus jugulare tumors. Local control, toxicity, symptomatology, and quality of life

    Henzel, M.; Gross, M.W.; Failing, T.; Strassmann, G.; Engenhart-Cabillic, R. [Marburg Univ. (Germany). Dept. of Radiation Oncology; Hamm, K.; Surber, G.; Kleinert, G. [HELIOS Klinikum Erfurt (Germany). Dept. of Stereotactic Neurosurgery and Radiosurgery; Sitter, H. [Marburg Univ. (Germany). Dept. of Theoretical Surgery

    2007-10-15

    Background and Purpose: For glomus jugulare tumors, the goal of treatment is microsurgical excision. To minimize postoperative neurologic deficits, stereotactic radiosurgery (SRS) was performed as an alternative treatment option. Stereotactic fractionated radiotherapy (SRT) could be a further alternative. This study aims at the assessment of local control, side effects, and quality of life (QoL). Patients and Methods: Between 1999-2005, 17 patients were treated with SRT. 11/17 underwent previous operations. 6/17 received primary SRT. Treatment was delivered by a linear accelerator with 6-MV photons. Median cumulative dose was 57.0 Gy. Local control, radiologic regression, toxicity, and symptomatology were evaluated half-yearly by clinical examination and MRI scans. QoL was assessed by Short Form-36 (SF-36). Results: Median follow-up was 40 months. Freedom from progression and overall survival for 5 years were 100% and 93.8%. Radiologic regression was seen in 5/16 cases, 11/16 patients were stable. Median tumor shrinkage was 17.9% (p = 0.14). Severe acute toxicity (grade 3-4) or any late toxicity was never seen. Main symptoms improved in 9/16 patients, 7/16 were stable. QoL was not affected in patients receiving primary SRT. Conclusion: SRT offers an additional treatment option of high efficacy with less side effects, especially in cases of large tumors, morbidity, or recurrences after incomplete resections. (orig.)

  10. Clinical Experience With Image-Guided Radiotherapy in an Accelerated Partial Breast Intensity-Modulated Radiotherapy Protocol

    Purpose: To explore the feasibility of fiducial markers for the use of image-guided radiotherapy (IGRT) in an accelerated partial breast intensity modulated radiotherapy protocol. Methods and Materials: Nineteen patients consented to an institutional review board approved protocol of accelerated partial breast intensity-modulated radiotherapy with fiducial marker placement and treatment with IGRT. Patients (1 patient with bilateral breast cancer; 20 total breasts) underwent ultrasound guided implantation of three 1.2- x 3-mm gold markers placed around the surgical cavity. For each patient, table shifts (inferior/superior, right/left lateral, and anterior/posterior) and minimum, maximum, mean error with standard deviation were recorded for each of the 10 BID treatments. The dose contribution of daily orthogonal films was also examined. Results: All IGRT patients underwent successful marker placement. In all, 200 IGRT treatment sessions were performed. The average vector displacement was 4 mm (range, 2-7 mm). The average superior/inferior shift was 2 mm (range, 0-5 mm), the average lateral shift was 2 mm (range, 1-4 mm), and the average anterior/posterior shift was 3 mm (range, 1 5 mm). Conclusions: This study shows that the use of IGRT can be successfully used in an accelerated partial breast intensity-modulated radiotherapy protocol. The authors believe that this technique has increased daily treatment accuracy and permitted reduction in the margin added to the clinical target volume to form the planning target volume.

  11. Alternating chemotherapy and hyperfractionated accelerated radiotherapy in non-metastatic inflammatory breast cancer; Radiotherapie hyperfractionnee acceleree alternee avec une chimiotherapie dans le cancer du sein inflammatoire non metastatique

    Hasbini, A.; Le Pechoux, C.; Roche, B.; Pignol, J.P.; Abdulkarim, B.; Habrand, J.L. [Institut Gustave Roussy, Dept. de Radiotherapie, 94 - Villejuif (France); Zelek, L.; Spielmann, M. [Institut Gustave Roussy, Dept. d' oncologie Medicale, 94 - Villejuif (France); Arriagada, R. [Instituto de Radiomedicina, IRAM, Santiago, (Chile); Guinebretiere, J.M. [Institut Gustave Roussy, Dept. d' Anatomopothologie, 94 - Villejuif (France); Tardivon, A. [Institut Gustave Roussy, Dept. de Radiodiagnostic, 94 - Villejuif (France)

    2000-08-01

    Based on encouraging results reported in alternating radiotherapy and chemotherapy in inflammatory breast carcinoma, we have tried in this study to optimize locoregional treatment with a hyperfractionated accelerated radiotherapy schedule alternating with chemotherapy. From May 1991 to May 1995, 54 patients, previously untreated, with non-metastatic inflammatory breast cancer were entered in an alternating protocol consisting of eight courses of combined chemotherapy and two series of loco-regional hyperfractionated accelerated radiotherapy with a total dose of 66 Gy. Hyperfractionated accelerated radiotherapy was started after three courses of neo-adjuvant chemotherapy (Adriamycin, Vincristine, Cyclophosphamide, Methotrexate, 5-fluoro-uracil) administered every 21 days {+-}G.CSF. The first series delivered 45 Gy/three weeks to the breast, the axillary, sub-clavicular and internal mammary nodes, with two daily sessions of 1.5 Gy separated by an interval of eight hours, the second series consisted of a boost (21 Gy/14 fractions/10d) alternating with another regimen of anthracycline-based-chemotherapy (a total of five cycles every three weeks). Hormonal treatment was given to all patients. Of the 53 patients evaluated at the end of the treatment, 44(83%) had a complete clinical response, seven (13%) had a partial response (>50%) and two (4%) had tumoral progression. Of the 51 patients who were locally controlled, 18 (35%) presented a locoregional recurrence (LRR); eight(15 %) had to undergo a mastectomy. All the patients but two LRR developed metastases or died of local progressive disease and 26 (50%) developed metastases. With a median follow-up of 39 months (range: 4-74 months), survival rates at three and five years were respectively, 66 and 45% for overall survival and 45 and 36% for disease-free survival. Alternating a combination of chemotherapy and hyperfractionated accelerated radiotherapy is a well-tolerated regimen which provides acceptable local control

  12. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    Pedicini Piernicola

    2012-08-01

    Full Text Available Abstract Purpose To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr and the reduction of the effective doubling time (TD during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC. Methods A survey of the published papers comparing 3-years of local regional control rate (LCR for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of TD were obtained by a model incorporating the overall time corrected biologically effective dose (BED and a 3-year clinical LCR for high and low EGFr groups of patients (HEGFr and LEGFr, respectively. By obtaining the TD from the above analysis and the sub-sites’ potential doubling time (Tpot from flow cytometry and immunohistochemical methods, we were able to estimate the average TD for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (Dprolif, was estimated. Results The averages of TD were 77 (27-9095% days in LEGFr and 8.8 (7.3-11.095% days in HEGFr, if an onset of accelerated proliferation TK at day 21 was assumed. The correspondent HEGFr sub-sites’ TD were 5.9 (6.6, 5.9 (6.6, 4.6 (6.1, 14.3 (12.9 days, with respect to literature immunohistochemical (flow cytometry data of Tpot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The Dprolif for the HEGFr groups were 0.33 (0.29, 0.33 (0.29, 0.42 (0.31, 0.14 (0.15 Gy/day if α = 0.3 Gy-1 and α/β = 10 Gy were assumed. Conclusions A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced TD and Dprolif for each head and neck

  13. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    Gatti, M.; Bresciani, S.; Ponzone, R.; Panaia, R.; Salatino, A.; Stasi, M.; Gabriele, P. [IRCC, Candiolo (Italy)

    2011-10-15

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was < 10 mm in 33 patients (53%) and > 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long

  14. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr) and the reduction of the effective doubling time (TD) during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT) is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC). A survey of the published papers comparing 3-years of local regional control rate (LCR) for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of TD were obtained by a model incorporating the overall time corrected biologically effective dose (BED) and a 3-year clinical LCR for high and low EGFr groups of patients (HEGFr and LEGFr), respectively. By obtaining the TD from the above analysis and the sub-sites’ potential doubling time (Tpot) from flow cytometry and immunohistochemical methods, we were able to estimate the average TD for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (Dprolif), was estimated. The averages of TD were 77 (27-90)95% days in LEGFr and 8.8 (7.3-11.0)95% days in HEGFr, if an onset of accelerated proliferation TK at day 21 was assumed. The correspondent HEGFr sub-sites’ TD were 5.9 (6.6), 5.9 (6.6), 4.6 (6.1), 14.3 (12.9) days, with respect to literature immunohistochemical (flow cytometry) data of Tpot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The Dprolif for the HEGFr groups were 0.33 (0.29), 0.33 (0.29), 0.42 (0.31), 0.14 (0.15) Gy/day if α = 0.3 Gy-1 and α/β = 10 Gy were assumed. A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced TD and Dprolif for each head and neck sub-site

  15. Toxicity and cosmetic outcome of three-dimensional conformal radiotherapy for accelerated partial breast irradiation

    Full text of publication follows: Purpose.- To analyse the incidence and severity of acute and late normal tissue toxicity and cosmetic outcome using three - dimensional conformal radiotherapy to deliver accelerated partial breast irradiation. Patients and Methods.- 70 patients with stage I disease were treated with three-dimensional conformal radiotherapy for accelerated partial breast irradiation, in an approved protocol. The prescribed dose was 34 Gy in all patients delivered in 10 fractions over 5 consecutive days. On all CT scans gross tumor volume (GTV ) was defined around surgical clips. A 1.5 cm margin was added in order to account for clinical target volume (CTV) . A margin of 1 cm was added to CTI to define the planning target volume (PTV). The dose-volume constraints were followed in accordance with the specifications as dictated in the NSABP/RTOG protocol. After treatment, patients underwent a clinical and cosmetic evaluation every 3 months. Late toxicity was evaluated according to the RTOG grading schema. The cosmetic assessment was performed by the physicians using the controlateral untreated breast as the reference (Harvard scale). Results.- Median patient age was 66 years (range 51-80). Median follow-up was 15 months (range 6-46). Tumor size was 2 cm in 4(6%). The mean value of the ratio between the PTV and the whole ipsilateral breast volume was 38 % and the median percentage whole breast volume that received 95 % of prescribed dose was 34% (range 16%-55%). The rate of G1 and G2 acute skin toxicity was 28% and 2% respectively and the late toxicity was 17% (G1). G2 or greater toxicities were not observed. The most pronounced G1 late toxicity was subcutaneous fibrosis, developed in 3 patients. The cosmetic outcome was excellent in 83% and good in 17%. Conclusion.- Accelerated partial breast irradiation using three-dimensional conformal radiotherapy is technically feasible with very low acute and late toxicity. Long-term results are needed to assess

  16. Feasibility and early results of accelerated radiotherapy for head and neck carcinoma in the elderly

    Allal, Abdelkarim Said; Maire, Daphne Isabel; Becker, Minerva; Dulguerov, Pavel

    2000-01-01

    Accelerated radiotherapy (RT) represents a promising method with which to improve the treatment outcome in patients with head and neck carcinoma. However, its applicability to elderly patients has not been well established. This study assessed treatment toxicities, patient compliance, and oncologic results in patients age >/= 70 years who were treated with an accelerated concomitant boost RT schedule.

  17. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation

    Prokopiou, Sotiris; Eduardo G Moros; Poleszczuk, Jan; Caudell, Jimmy; Torres-Roca, Javier F.; Latifi, Kujtim; Lee, Jae K.; Myerson, Robert; Harrison, Louis B.; Enderling, Heiko

    2015-01-01

    Background Although altered protocols that challenge conventional radiation fractionation have been tested in prospective clinical trials, we still have limited understanding of how to select the most appropriate fractionation schedule for individual patients. Currently, the prescription of definitive radiotherapy is based on the primary site and stage, without regard to patient-specific tumor or host factors that may influence outcome. We hypothesize that the proportion of radiosensitive pro...

  18. Short-Course Accelerated Radiotherapy in Palliative Treatment of Advanced Pelvic Malignancies: A Phase I Study

    Caravatta, Luciana [Department of Radiation Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Padula, Gilbert D.A. [Department of Radiation Oncology, Lacks Cancer Center Saint Mary' s Health Care, Grand Rapids, MI (United States); Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it [Department of Radiation Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Ferrandina, Gabriella [Department of Gynecologic Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Bonomo, Pierluigi; Deodato, Francesco; Massaccesi, Mariangela [Department of Radiation Oncology, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Mignogna, Samantha; Tambaro, Rosa [Department of Palliative Therapies, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Rossi, Marco [Department of Anaesthesia, Intensive Care, and Pain Medicine, Fondazione di Ricercae Cura ' Giovanni Paolo II,' Universita Cattolica del S. Cuore, Campobasso (Italy); Flocco, Mariano [' Madre Teresa di Calcutta' Hospice, Larino (Italy); Scapati, Andrea [Department of Radiation Oncology, ' San Francesco' Hospital, Nuoro (Italy); and others

    2012-08-01

    Purpose: To define the maximum tolerated dose of a conformal short-course accelerated radiotherapy in patients with symptomatic advanced pelvic cancer. Methods and Materials: A phase I trial in 3 dose-escalation steps was designed: 14 Gy (3.5-Gy fractions), 16 Gy (4-Gy fractions), and 18 Gy (4.5-Gy fractions). The eligibility criteria included locally advanced and/or metastatic pelvic cancer and Eastern Cooperative Oncology Group performance status of {<=}3. Treatment was delivered in 2 days with twice-daily fractionation and at least an 8-hour interval. Patients were treated in cohorts of 6-12 to define the maximum tolerated dose. The dose-limiting toxicity was defined as any acute toxicity of grade 3 or greater, using the Radiation Therapy Oncology Group scale. Pain was recorded using a visual analog scale. The effect on quality of life was evaluated according to Cancer Linear Analog Scale (CLAS). Results: Of the 27 enrolled patients, 11 were male and 16 were female, with a median age of 72 years (range 47-86). The primary tumor sites were gynecologic (48%), colorectal (33.5%), and genitourinary (18.5%). The most frequent baseline symptoms were bleeding (48%) and pain (33%). Only grade 1-2 acute toxicities were recorded. No patients experienced dose-limiting toxicity. With a median follow-up time of 6 months (range 3-28), no late toxicities were observed. The overall (complete plus partial) symptom remission was 88.9% (95% confidence interval 66.0%-97.8%). Five patients (41.7%) had complete pain relief, and six (50%) showed >30% visual analog scale reduction. The overall response rate for pain was 91.67% (95% confidence interval 52.4%-99.9%). Conclusions: Conformal short course radiotherapy in twice-daily fractions for 2 consecutive days was well tolerated up to a total dose of 18 Gy. A phase II study is ongoing to confirm the efficacy on symptom control and quality of life indexes.

  19. Short-Course Accelerated Radiotherapy in Palliative Treatment of Advanced Pelvic Malignancies: A Phase I Study

    Purpose: To define the maximum tolerated dose of a conformal short-course accelerated radiotherapy in patients with symptomatic advanced pelvic cancer. Methods and Materials: A phase I trial in 3 dose-escalation steps was designed: 14 Gy (3.5-Gy fractions), 16 Gy (4-Gy fractions), and 18 Gy (4.5-Gy fractions). The eligibility criteria included locally advanced and/or metastatic pelvic cancer and Eastern Cooperative Oncology Group performance status of ≤3. Treatment was delivered in 2 days with twice-daily fractionation and at least an 8-hour interval. Patients were treated in cohorts of 6-12 to define the maximum tolerated dose. The dose-limiting toxicity was defined as any acute toxicity of grade 3 or greater, using the Radiation Therapy Oncology Group scale. Pain was recorded using a visual analog scale. The effect on quality of life was evaluated according to Cancer Linear Analog Scale (CLAS). Results: Of the 27 enrolled patients, 11 were male and 16 were female, with a median age of 72 years (range 47-86). The primary tumor sites were gynecologic (48%), colorectal (33.5%), and genitourinary (18.5%). The most frequent baseline symptoms were bleeding (48%) and pain (33%). Only grade 1-2 acute toxicities were recorded. No patients experienced dose-limiting toxicity. With a median follow-up time of 6 months (range 3-28), no late toxicities were observed. The overall (complete plus partial) symptom remission was 88.9% (95% confidence interval 66.0%-97.8%). Five patients (41.7%) had complete pain relief, and six (50%) showed >30% visual analog scale reduction. The overall response rate for pain was 91.67% (95% confidence interval 52.4%-99.9%). Conclusions: Conformal short course radiotherapy in twice-daily fractions for 2 consecutive days was well tolerated up to a total dose of 18 Gy. A phase II study is ongoing to confirm the efficacy on symptom control and quality of life indexes.

  20. Small-field fractionated radiotherapy with or without stereotactic boost for vestibular schwannoma

    Purpose: To assess the efficacy and toxicity of small-field fractionated radiotherapy with or without stereotactic boost (SB) for vestibular schwannomas.Methods and materials: Thirty-nine patients with vestibular schwannoma were treated with irradiation between March 1991 and February 1996. Extra-meatal tumor diameters were under 30 mm. Thirty-three patients received small-field fractionated radiotherapy followed by SB. Basic dose schedule was 44 Gy in 22 fractions over 5 1/2 weeks plus 4 Gy in one session. Six patients received small-field fractionated radiotherapy only (40-44 Gy in 20-22 fractions over 5-5 1/2 weeks or 36 Gy in 20 fractions over 5 weeks).< Results: Follow-up ranged from 6 to 69 months (median, 24 months). Tumors decreased in size in 13 cases (33%), were unchanged in 25 (64%), and increased in one (3%). The actuarial 2-year tumor control rate was 97%. Fifteen patients had useful hearing (Gardner-Robertson class 1-2) and 25 patients had testable hearing (class 1-4) before irradiation. The 2-year actuarial rates of useful hearing preservation (free of deterioration from class 1-2 to class 3-5) were 78%. The 2-year actuarial rates of any testable hearing preservation (free of deterioration from class 1-4 to class 5) were 96%. No permanent facial and trigeminal neuropathy developed after irradiation. The 2-year actuarial incidences of facial and trigeminal neuropathies were 8% and 16%, respectively.Conclusions: Small-field fractionated radiotherapy with or without SB provides excellent short-term local control and a relatively low incidence of complications for vestibular schwannoma, although further follow-up is necessary to evaluate the long-term results. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  1. Accelerated Partial Breast Irradiation with Intensity-Modulated Radiotherapy Is Feasible for Chinese Breast Cancer Patients

    He, Zhenyu; Wu, Sangang; Zhou, Juan; Li, Fengyan; Sun, Jiayan; Lin, Qin; Lin, Huanxin; Guan, Xunxing

    2014-01-01

    Purpose Several accelerated partial breast irradiation (APBI) techniques are being investigated in patients with early-stage breast cancer. The present study evaluated the feasibility, early toxicity, initial efficacy, and cosmetic outcomes of accelerated partial breast intensity-modulated radiotherapy (IMRT) for Chinese female patients with early-stage breast cancer after breast-conserving surgery. Methods A total of 38 patients met the inclusion criteria and an accelerated partial breast in...

  2. Effect of patient variation on standard- and hypo-fractionated radiotherapy of prostate cancer

    Xiong, W; Li, J; Ma, C-M [Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States)

    2005-04-07

    Recent publications suggested that the {alpha}/{beta} ratio in the well-known linear quadratic (LQ) model could be as low as 1.5 Gy for prostate cancer, indicating that prostate cancer control might be very sensitive to changes in the dose fractionation scheme. This also suggests that the standard-fractionation scheme based on large {alpha}/{beta} ratios may not be optimal for the radio-therapeutic management of prostate cancer. Hypo-fractionated radiotherapy for prostate cancer has received more attention recently as an alternative treatment strategy, which may lead to reduced treatment time and cost. However, hypo-fractionated radiotherapy may be more sensitive to patient variation in terms of disease control than standard-fractionated radiotherapy. The variation of LQ parameters {alpha} and {beta} for a patient population may compromise the outcome of the treatment. This effect can be studied by the introduction of the {sigma}{sub {alpha}} and {sigma}{sub {beta}} parameters, which are the standard deviations of Gaussian distributions around {alpha}{sub 0} and {beta}{sub 0}. The purpose of this study is to examine the effect of patient variation in {alpha} and {beta} on tumour control probability for standard- and hypo-fractionated radiotherapy of prostate cancer. The tumour control probability based on the LQ model is calculated using parameters {alpha}, {beta}, {sigma}{sub {alpha}} and {sigma}{sub {beta}}. Our results show that {sigma}{sub {alpha}} is an important parameter for radiotherapy fractionation, independent of the {alpha}/{beta} ratio. A large {sigma}{sub {alpha}} will result in a significant increase in the radiation dose required to achieve the same 95% TCP. Compared with the standard-fractionated scheme, {sigma}{sub {alpha}} has a smaller effect on hypo-fractionated treatment at lower {alpha}/{beta} ratios. On the other hand, for lower {alpha}/{beta} ratios, the {beta} term also plays a more important role in cell-killing and therefore the patient

  3. Effect of patient variation on standard- and hypo-fractionated radiotherapy of prostate cancer

    Recent publications suggested that the α/β ratio in the well-known linear quadratic (LQ) model could be as low as 1.5 Gy for prostate cancer, indicating that prostate cancer control might be very sensitive to changes in the dose fractionation scheme. This also suggests that the standard-fractionation scheme based on large α/β ratios may not be optimal for the radio-therapeutic management of prostate cancer. Hypo-fractionated radiotherapy for prostate cancer has received more attention recently as an alternative treatment strategy, which may lead to reduced treatment time and cost. However, hypo-fractionated radiotherapy may be more sensitive to patient variation in terms of disease control than standard-fractionated radiotherapy. The variation of LQ parameters α and β for a patient population may compromise the outcome of the treatment. This effect can be studied by the introduction of the σα and σβ parameters, which are the standard deviations of Gaussian distributions around α0 and β0. The purpose of this study is to examine the effect of patient variation in α and β on tumour control probability for standard- and hypo-fractionated radiotherapy of prostate cancer. The tumour control probability based on the LQ model is calculated using parameters α, β, σα and σβ. Our results show that σα is an important parameter for radiotherapy fractionation, independent of the α/ ratio. A large σα will result in a significant increase in the radiation dose required to achieve the same 95% TCP. Compared with the standard-fractionated scheme, σα has a smaller effect on hypo-fractionated treatment at lower α/β ratios. On the other hand, for lower α/β ratios, the β term also plays a more important role in cell-killing and therefore the patient variation parameter σβ must be considered when designing a new dose fractionation scheme

  4. Comparison between observation policy and fractionated stereotactic radiotherapy (SRT) as an initial management for vestibular schwannoma

    Purpose: To compare the use of an observation policy with that of stereotactic radiotherapy (SRT) for treatment of vestibular schwannoma. Methods and Materials: The study group consisted of 27 patients who underwent observation as an initial treatment (observation group) and 50 who received SRT (SRT group). The mean follow-up period was 35 months and 31 months, respectively. Stereotactic radiotherapy consisted of small-field fractionated radiotherapy (36-44 Gy in 20-22 fractions over 6 weeks) with or without a subsequent 4-Gy single irradiation boost. Results: Actuarial tumor control rate of the SRT group was significantly better than that of the observation group (p < 0.0001). The mean growth was 3.87 mm/year in the observation group and -0.75 mm/year in the SRT group (p < 0.0001). Eleven patients (41%) in the observation group and 1 (2%) in the SRT group received salvage therapy (p < 0.001). There was no difference in the actuarial Gardner and Robertson's class preservation curves for 5 years after the initial presentation. Conclusion: Stereotactic radiotherapy using a fractionated schedule provides a better tumor control rate and a similar rate of deterioration for hearing levels compared to an observation policy. Initial SRT may be a reasonable alternative to a wait-and-see policy

  5. Avoidance of treatment interruption: an unrecognized benefit of accelerated radiotherapy in oropharyngeal carcinomas?

    Purpose: To assess the impact of treatment interruption on the potential gain in locoregional control obtained with accelerated radiotherapy (RT) compared with conventionally fractionated RT in patients with oropharyngeal carcinomas. Methods and Materials: 152 patients treated with radical RT for oropharyngeal carcinomas between 1979 and 1996 were retrospectively analyzed. According to the American Joint Committee on Cancer (AJCC) staging system, there were 6/30/43/73 stages I/II/III/IV. Sixty-one patients were treated with a conventional RT schedule (median dose 70 Gy in 35 fractions), and 91 patients with either of two 5/5.5-week accelerated RT schedules (median dose 69.6-69.9 Gy in 41 fractions). Discounting weekends, RT was interrupted for 2 consecutive days or more in 53 patients (median duration 11 days, range 2-97), including 67% of the patients in the conventional RT group and 13% in the accelerated RT group. Median follow-up for surviving patients was 55 months (range 23-230). The Cox proportional hazards model was used for the multivariate analysis of factors influencing locoregional control. Results: In univariate analysis, factors associated with a significant decrease in locoregional control included WHO performance status ≥1, advanced AJCC stages (III and IV), conventional RT fractionation, overall treatment time ≥44 days (median), and RT interruption. In the multivariate analysis, when introduced into the model individually, the three significant therapeutic factors remained significant after adjustment for the forced clinical variables. However, when the three therapeutic factors were introduced together into the model, beside the AJCC stage (P = 0.017), only RT interruption remained a significant independent adverse prognostic factor (P = 0.026). Conclusions: This multivariate analysis highlights the potential negative impact of treatment gaps on locoregional control in oropharyngeal carcinomas. This suggests that treatment interruption may be

  6. Single fraction versus multiple fraction radiotherapy for palliation of painful vertebral bone metastases: A prospective study

    Dipanjan Majumder

    2012-01-01

    Conclusions: Different fractionation of radiation has same response and toxicity in treatment of vertebral bone metastasis. Single fraction RT may be safely used to treat these cases as this is more cost effective and less time consuming. Studies may be conducted to find out particular subgroup of patients to be benefitted more by either fractionation schedule; however, our study cannot comment on that issue.

  7. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    Leeman Jonathan E

    2012-07-01

    Full Text Available Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SRT/SRS of brainstem metastases. Methods We retrospectively reviewed 38 tumors in 36 patients treated with SRT/SRS between February 2003 and December 2011. Treatment was delivered with the Cyberknife™ or Trilogy™ radiosurgical systems. The median age of patients was 62 (range: 28–89. Primary pathologies included 14 lung, 7 breast, 4 colon and 11 others. Sixteen patients (44% had received whole brain radiation therapy (WBRT prior to SRT/SRS; ten had received prior SRT/SRS at a different site (28%. The median tumor volume was 0.94 cm3 (range: 0.01-4.2 with a median prescription dose of 17 Gy (range: 12–24 delivered in 1–5 fractions. Results Median follow-up for the cohort was 3.2 months (range: 0.4-20.6. Nineteen patients (52% had an MRI follow-up available for review. Of these, one patient experienced local failure corresponding to an actuarial 6-month local control of 93%. Fifteen of the patients with available follow-up imaging (79% experienced intracranial failure outside of the treatment volume. The median time to distant intracranial failure was 2.1 months. Six of the 15 patients with distant intracranial failure (40% had received previous WBRT. The actuarial overall survival rates at 6- and 12-months were 27% and 8%, respectively. Predictors of survival included Graded Prognostic Assessment (GPA score, greater number of treatment fractions, and higher prescription dose. Three patients experienced acute treatment-related toxicity consisting of

  8. IAEA-HypoX. A randomized multicenter study of the hypoxic radiosensitizer nimorazole concomitant with accelerated radiotherapy in head and neck squamous cell carcinoma

    Metwally, Mohamed Ahmed Hassan; Ali, Rubina; Kuddu, Maire;

    2015-01-01

    multicenter randomized trial in patients with HNSCC. Tumors were treated to a dose of 66-70Gy, 33-35 fractions, 6 fractions per week. NIM was administered in a dose of 1.2gperm(2), 90min before the first daily RT fraction. The primary endpoint was loco-regional failure. The trial was closed prematurely by......PURPOSE: To test the hypothesis that radiotherapy (RT) of head and neck squamous cell carcinoma (HNSCC) can be improved by hypoxic modification using nimorazole (NIM) in association with accelerated fractionation. MATERIALS AND METHODS: The protocol was activated in March 2012 as an international...... HNSCC given the hypoxic modifier NIM in addition to accelerated fractionation RT. However, the trial also revealed that conducting multicenter and multinational study combining drug and RT in developing countries may suffer from uncontrolled and unsolvable problems....

  9. Adjuvant single-fraction radiotherapy is safe and effective for intractable keloids

    The aim of this study was to assess the feasibility and efficacy of high-dose, single-fraction electron beam radiotherapy for therapy-resistant keloids. Before 2010, intractable keloids were treated at our institution with post-operative irradiation of 6-15 Gy in 3-5 fractionations. For convenience and cost effectiveness, we have changed our treatment protocol to high-dose single-fraction radiotherapy. A total of 12 patients with 16 keloid lesions were treated from January 2010 to January 2013 in our department. A 10-Gy dose of electron irradiation was given within 72 h of the surgical excision. The mean follow-up period was 20 months. Treatments were well tolerated, and there was no recurrence in any of the patients. Severe adverse effects were not observed. Surgical excision of the keloid, followed by immediate, single-fraction, high-dose radiotherapy, is both safe and effective in preventing recurrence of therapy-resistant keloids. (author)

  10. Intensity Modulated Radiotherapy (IMRT and Fractionated Stereotactic Radiotherapy (FSRT for children with head-and-neck-rhabdomyosarcoma

    Huber Peter E

    2007-09-01

    Full Text Available Abstract Background The present study evaluates the outcome of 19 children with rhabdomyosarcoma of the head-and-neck region treated with Intensity Modulated Radiotherapy (IMRT or Fractionated Stereotactic Radiotherapy (FSRT between August 1995 and November 2005. Methods We treated 19 children with head-and-neck rhabdomyosarcoma with FSRT (n = 14 or IMRT (n = 5 as a part of multimodal therapy. Median age at the time of radiation therapy was 5 years (range 2–15 years. All children received systemic chemotherapy according to the German Soft Tissue Sarcoma Study protocols. Median size of treatment volume for RT was 93,4 ml. We applied a median total dose of 45 Gy (range 32 Gy – 54 Gy using a median fractionation of 5 × 1,8 Gy/week (range 1,6 Gy – 1,8 Gy. The median time interval between primary diagnosis and radiation therapy was 5 months (range 3–9 months. Results After RT, the 3- and 5-year survival rate was 94%. The 3- and 5-year actuarial local control rate after RT was 89%. The actuarial freedom of distant metastases rate at 3- and 5-years was 89% for all patients. Radiotherapy was well tolerated in all children and could be completed without interruptions > 4 days. No toxicities >CTC grade 2 were observed. The median follow-up time after RT was 17 months. Conclusion IMRT and FSRT lead to excellent outcome in children with head-and-neck RMS with a low incidence of treatment-related side effects.

  11. Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases

    Leeman Jonathan E; Clump David A; Wegner Rodney E; Heron Dwight E; Burton Steven A; Mintz Arlan H

    2012-01-01

    Abstract Background Brainstem metastases represent an uncommon clinical presentation that is associated with a poor prognosis. Treatment options are limited given the unacceptable risks associated with surgical resection in this location. However, without local control, symptoms including progressive cranial nerve dysfunction are frequently observed. The objective of this study was to determine the outcomes associated with linear accelerator-based stereotactic radiotherapy or radiosurgery (SR...

  12. Accelerated split-course radiotherapy and concomitant cis-platinum and 5-fluorouracil chemotherapy with folinic acid enhancement in unresectable head and neck cancer

    In patients suffering from locally advanced, unresectable squamous cell carcinoma (SCC) of the base of the tongue, the floor of the mouth, the mobile part of the tongue, the tonsils, the hypopharynx and the larynx radiotherapy yields poor results, due to local failure rather than to distant metastases. Since toxicity of radiotherapy and cytotoxic chemotherapy do not overlap entirely efforts were made to achieve better results combining these two treatment modalities. Clinical trials on simultaneous radiotherapy/chemotherapy focussed on two cytotoxic agents: Cis-dichlorodiammineplatinum(II) (cis-DDP) and 5-flourouracil (5-FU). Another approach to overcome the radioresistance of large SCC adopts accelerated fractionation. The potential tumor doubling time of sqamous cell carcinomas is about four days, and thus repopulation of surviving clonogenic tumor cells during fractionated radiotherapy may be the cause of poor treatment results. In this pilot study a twice daily fractionated split-course radiotherapy is combined with simultaneous administration of cis-DDP and 5-FU with folinic acid (FA) enhancement. (orig.)

  13. Accelerated split-course radiotherapy and concomitant cis-platinum and 5-fluorouracil chemotherapy with folinic acid enhancement in unresectable head and neck cancer

    Wendt, T.G.; Wustrow, T.P.U.; Hartenstein, R.C.; Trott, K.R.

    1988-01-01

    In patients suffering from locally advanced, unresectable squamous cell carcinoma (SCC) of the base of the tongue, the floor of the mouth, the mobile part of the tongue, the tonsils, the hypopharynx and the larynx radiotherapy yields poor results, due to local failure rather than to distant metastases. Since toxicity of radiotherapy and cytotoxic chemotherapy do not overlap entirely efforts were made to achieve better results combining these two treatment modalities. Clinical trials on simultaneous radiotherapy/chemotherapy focussed on two cytotoxic agents: Cis-dichlorodiammineplatinum(II) (cis-DDP) and 5-flourouracil (5-FU). Another approach to overcome the radioresistance of large SCC adopts accelerated fractionation. The potential tumor doubling time of sqamous cell carcinomas is about four days, and thus repopulation of surviving clonogenic tumor cells during fractionated radiotherapy may be the cause of poor treatment results. In this pilot study a twice daily fractionated split-course radiotherapy is combined with simultaneous administration of cis-DDP and 5-FU with folinic acid (FA) enhancement.

  14. Prolonged survival when temozolomide is added to accelerated radiotherapy for glioblastoma multiforme

    The goal of this study was to evaluate accelerated radiotherapy with and without temozolomide (TMZ) for glioblastoma multiforme (GBM). This retrospective analysis evaluated 86 patients with histologically proven GBM who were treated with accelerated radiotherapy of 1.8 Gy twice daily to a total dose of 54 Gy within 3 weeks. Median age was 62 years and median Karnofsky index was 90. A total of 41 patients received radiotherapy only from 2002-2005 and 45 patients were treated with TMZ concomitantly and after radiotherapy from 2005-2007. Median overall survival (OS) was 12.5 months and 2-year OS was 15.4%. Patient characteristics were well balanced between the two groups except for better performance status (p = 0.05) and higher frequency of retreatment for the first recurrence (p = 0.02) in the TMZ group. Age at diagnosis (HR 2.83) and treatment with TMZ (HR 0.60) were correlated with OS in the multivariate analysis: treatment with and without TMZ resulted in median OS of 16 months and 11.3 months, respectively. Hematological toxicity grade > II was observed in 2/45 patients and 5/37 patients during simultaneous radiochemotherapy and adjuvant TMZ. TMZ added to accelerated radiotherapy for GBM resulted in prolonged overall survival with low rates of severe hematological toxicity. (orig.)

  15. The treatment of a large acoustic tumor with fractionated stereotactic radiotherapy

    McClelland, Shearwood; Gerbi, Bruce J.; Cho, Kwan H.; Hall, Walter A.

    2007-01-01

    The treatment of acoustic neuromas (AN) usually involves surgical excision or stereotactic radiosurgery. However, for large AN (mean diameter > 3 cm), stereotactic radiosurgery is rarely used, leaving patients with limited noninvasive treatment options. Recently, the use of fractionated stereotactic radiotherapy (FSRT) has been effective in treating small to medium-sized AN. We present a patient with a large AN treated with FSRT. The patient was a 43-year-old man presenting with imbalance, ti...

  16. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation

    Kanematsu, Nobuyuki; Inaniwa, Taku

    2016-01-01

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been commonly practiced for operational efficiency, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. The treatment plans are usually evaluated with total RBE-weighted dose, which is however deficient in relevance to the biological effect in the linear-quadratic model due to its quadratic-dose term, or the dose-fractionation effect. I...

  17. A proliferation saturation index to predict radiation response and personalize radiotherapy fractionation

    Although altered protocols that challenge conventional radiation fractionation have been tested in prospective clinical trials, we still have limited understanding of how to select the most appropriate fractionation schedule for individual patients. Currently, the prescription of definitive radiotherapy is based on the primary site and stage, without regard to patient-specific tumor or host factors that may influence outcome. We hypothesize that the proportion of radiosensitive proliferating cells is dependent on the saturation of the tumor carrying capacity. This may serve as a prognostic factor for personalized radiotherapy (RT) fractionation. We introduce a proliferation saturation index (PSI), which is defined as the ratio of tumor volume to the host-influenced tumor carrying capacity. Carrying capacity is as a conceptual measure of the maximum volume that can be supported by the current tumor environment including oxygen and nutrient availability, immune surveillance and acidity. PSI is estimated from two temporally separated routine pre-radiotherapy computed tomography scans and a deterministic logistic tumor growth model. We introduce the patient-specific pre-treatment PSI into a model of tumor growth and radiotherapy response, and fit the model to retrospective data of four non-small cell lung cancer patients treated exclusively with standard fractionation. We then simulate both a clinical trial hyperfractionation protocol and daily fractionations, with equal biologically effective dose, to compare tumor volume reduction as a function of pretreatment PSI. With tumor doubling time and radiosensitivity assumed constant across patients, a patient-specific pretreatment PSI is sufficient to fit individual patient response data (R2 = 0.98). PSI varies greatly between patients (coefficient of variation >128 %) and correlates inversely with radiotherapy response. For this study, our simulations suggest that only patients with intermediate PSI (0.45–0.9) are

  18. Evolution of Hypofractionated Accelerated Radiotherapy for Prostate Cancer – The Sunnybrook Experience

    Hima Bindu Musunuru

    2014-11-01

    Full Text Available Stereotactic Ablative Body Radiotherapy (SABR is a newer method of ultra hypo fractionated radiotherapy that uses combination of image guided radiotherapy (IGRT and intensity modulated radiotherapy(IMRT or volumetric modulated arc therapy(VMAT, to deliver high doses of radiation in a few fractions to a target, at the same time sparing the surrounding organs at risk(OAR.SABR is ideal for treating small volumes of disease and has been introduced in a number of disease sites including brain, lung, liver, spine and prostate. Given the radiobiological advantages of treating prostate cancer with high doses per fraction, SABR is becoming a standard of care for low and intermediate risk prostate cancer patients based upon the results from Sunny Brook and also the US-based prostate SABR consortium. This review examines the development of moderate and ultra hypo fractionation schedules at the Odette Cancer centre, Sunnybrook Health Sciences. Moderate hypo fractionation protocol was first developed in 2001 for intermediate risk prostate cancer and from there on different treatment schedules including SABR evolved for all risk groups.

  19. A retrospective analysis of survival outcomes for two different radiotherapy fractionation schedules given in the same overall time for limited stage small cell lung cancer

    To compare survival outcomes for two fractionation schedules of thoracic radiotherapy, both given over 3 weeks, in patients with limited stage small cell lung cancer (LS-SCLC). At Radiation Oncology Mater Centre (ROMC) and the Royal Brisbane and Women's Hospital (RBWH), patients with LS-SCLC treated with curative intent are given radiotherapy (with concurrent chemotherapy) to a dose of either 40Gy in 15 fractions ('the 40Gy/15⧣group') or 45Gy in 30 fractions ('the 45Gy/30⧣group'). The choice largely depends on institutional preference. Both these schedules are given over 3 weeks, using daily and twice-daily fractionation respectively. The records of all such patients treated from January 2000 to July 2009 were retrospectively reviewed and survival outcomes between the two groups compared. Of 118 eligible patients, there were 38 patients in the 40Gy/15⧣ group and 41 patients in the 45Gy/30⧣ group. The median relapse-free survival time was 12 months in both groups. Median overall survival was 21 months (95% CI 2–37 months) in the 40Gy/15⧣ group and 26 months (95% CI 1–48 months) in the 45Gy/30⧣ group. The 5-year overall survival rates were 20% and 25%, respectively (P=0.24). On multivariate analysis, factors influencing overall survival were: whether prophylactic cranial irradiation (PCI) was given (P=0.01) and whether salvage chemotherapy was given at the time of relapse (P=0.057). Given the small sample size, the potential for selection bias and the retrospective nature of our study it is not possible to draw firm conclusions regarding the efficacy of hypofractionated thoracic radiotherapy compared with hyperfractionated accelerated thoracic radiotherapy however hypofractionated radiotherapy may result in equivalent relapse-free survival.

  20. PhoNeS: A novel approach to BNCT with conventional radiotherapy accelerators

    PhoNeS (Photo Neutron Source) is an INFN project devoted to the optimization of the neutron production and moderation in radiotherapy linear accelerators. LinAcs producing high energy (15-25MeV) photon beams are becoming widespread. At this energy neutron photo-production is unavoidable and the neutron dose must be controlled and reduced during normal radiotherapy. A technique known as BNCT (Boron Neutron Capture Therapy) uses neutrons for radiotherapic treatments: the cells are given a drug containing B10 which undergoes fission after neutron capture, inducing heavy damages to the DNA of the cell itself. This paper will describe the moderator developed by PhoNeS and the results in terms of neutron flux and spectrum and photon contamination of the measurements performed on several radiotherapy accelerators

  1. Long term results of hypo-fractionated mammary radiotherapy as exclusive treatment of elderly patients suffering from a beast cancer

    The author discuss the results obtained on 29 elderly patients exclusively treated between 1995 and 1999 by mammary irradiation (32.5 Gy) in 5 fractions over 5 weeks, and then with a lower additional irradiation (13 Gy) in two fractions. They discuss the efficiency of this hypo-fractionated radiotherapy without breast conserving surgery. Short communication

  2. Late course accelerated hyperfractionation radiotherapy for elderly patients with esophageal carcinoma

    Objective: To study the clinical results and prognostic factors of late course accelerated hyperfractionation radiotherapy (LCAHR) in the treatment of esophageal carcinoma in the elderly. Methods: 105 over 60 year-old patients with esophageal carcinoma who received radical LCAHR, were retrospectively analysed. Radical tumoricidal dose of 67.9-72.0 Gy was delivered in 39-43 fractions over 42-53 days. Results: The 5-year local control rate was 63.7%. The 5-year disease-free survival and overall survival rate were 22.6% and 34.4%. Acute esophagitis and bronchitis were the most common but acceptable radioreactions Grade 1-2. No significant differences were found either in the clinical response or complication, between the 60-69 year and 70-80 year groups. By multivariate analysis, T stage and KPS score were two independent prognostic factors. Of 67 death cases, 31 died of local relapse, 23 of distant metastases, 8 of both and 5 of other causes. Conclusions: LCAHR toxicity, being tolerable for the older esophageal carcinoma patients, may improve their survival and quality of life

  3. Radiobiological characterization of different energy-photon beams used in radiotherapy from linear accelerator

    The main objective of this study was to perform a radiobiological characterization of different energy photon beams (6 MV and 15 MV) from linear accelerator used in radiotherapy, and comparison of different treatment modalities, with special regard to late effects of radiation. Using two end points, cell survival and micronucleus induction, in the biological system (Chines hamster V79 cell line). Chromosomes number was counted and found to be 22 chromosomes per cell. Cells were kept in confluent growth for two days and then exposed to two photon beams and immediately after irradiation were counted and re seeded in different numbered for each dose. For evaluation of surviving fraction samples were incubated at 37oC for 6 days, five samples were counted for each dose. At the same time three samples were seeded for the micronuclei frequency and incubated at 37oC after 24 hours cytochalasin-B was added to block cells in cytokinesis. The survival curve showed similar curves for the two beams and decreased with dose. The micronuclei frequency was positively correlated with dose and the energy of the photon. This indicates the presence of low dose of photoneutrons produced by using high energy photon beams. (Author)

  4. Carbon Ion Radiotherapy in Advanced Hypofractionated Regimens for Prostate Cancer: From 20 to 16 Fractions

    Okada, Tohru [National Institute of Radiological Sciences, Chiba (Japan); Tsuji, Hiroshi, E-mail: h_tsuji@nirs.go.jp [National Institute of Radiological Sciences, Chiba (Japan); Kamada, Tadashi [National Institute of Radiological Sciences, Chiba (Japan); Akakura, Koichiro; Suzuki, Hiroyoshi; Shimazaki, Jun [Department of Urology, Graduate School of Medicine, Chiba University, Chiba (Japan); Tsujii, Hirohiko [National Institute of Radiological Sciences, Chiba (Japan)

    2012-11-15

    Purpose: To assess the effects of differences in dose fractionation on late radiation toxicity and biochemical control in patients with prostate cancer treated with carbon ion radiotherapy (C-ion RT). Methods and Materials: A total of 740 prostate cancer patients who received C-ion RT between April 2000 and February 2009 were analyzed. Of those, 664 patients followed for at least 1 year were analyzed with regard to late radiation toxicity. Biochemical relapse-free (BRF) and overall survival (OS) rates in patient subgroups with each dose-fractionation were analyzed. Results: Only 1 case of grade 3 genitourinary (GU) morbidity was observed in 20 fractions, and none of the patients developed higher grade morbidities. The incidence of late GU toxicity in patients treated with 16 fractions was lower than that of patients treated with 20 fractions. The OS rate and BRF rate of the entire group at 5 years were 95.2% and 89.7%, respectively. The 5-year BRF rate of the patients treated with 16 fractions of C-ion RT (88.5%) was comparable to that of the patients treated with 20 fractions (90.2%). Conclusion: C-ion RT of 57.6 GyE (the physical C-ion dose [Gy] Multiplication-Sign RBE) in 16 fractions could offer an even lower incidence of genitourinary toxicity and comparable BRF rate than that in 20 fractions. Advancement in hypofractionation could be safely achieved with C-ion RT for prostate cancer.

  5. Optimization of combination therapy of arsenic trioxide and fractionated radiotherapy for malignant glioma

    Purpose: The primary objective was to optimize the combined treatment regimen using arsenic trioxide (ATO) and fractionated radiotherapy for the treatment of malignant glioma. Methods and Materials: Nude mice with human glioma xenograft tumors were treated with fractionated local tumor radiation of 250 cGy/fraction/day and 5 mg/kg ATO for 5-10 days. Results: Time course experiments demonstrated that maximal tumor growth delay occurred when ATO was administered between 0 and 4 h after radiation. The combination treatment of ATO and radiation synergistically inhibited tumor growth and produced a tumor growth delay time of 13.2 days, compared with 1.4 days and 6.5 days for ATO and radiation alone (p < 0.01), respectively. The use of concurrent therapy of radiation and ATO initially, followed by ATO as maintenance therapy, was superior to the use of preloading with ATO before combined therapy and produced a tumor growth delay time of 22.7 days as compared with 11.7 days for the ATO preloading regimen (p < 0.01). The maintenance dose of ATO after concurrent therapy was effective and important for continued inhibition of tumor growth. Conclusions: The combined use of fractionated radiation and ATO is effective for the treatment of glioma xenograft tumors. ATO was most effective when administered 0-4 h after radiation without pretreatment with ATO. These results have important implications for the optimization of treatment regimen using ATO and fractionated radiotherapy for the treatment of brain tumors

  6. Efficacy of whole brain radiotherapy combined with fractionated stereotactic radiotherapy in metastatic brain tumors, and prognostic factors

    We attempted to analyze the effectiveness of whole brain radiotherapy (WBRT) combined with fractionated stereotactic radiotherapy (FSRT) in brain metastases. Thirty-seven metastatic brain tumors in 29 patients without previous treatment were treated with WBRT plus FSRT, from October 1996 to February 2002. Four of the patients received stereotactic radiosurgery (SRS) prior to WBRT. Non-small cell lung cancer was the most common type of primary tumor (20/29). The total dose to the whole brain ranged from 30 Gy to 40 Gy, and the boost dose from FSRT ranged from 12 Gy to 40 Gy. End points were survival rate and local control rates. Factors influencing survival were evaluated. Median survival was 13 months, and actuarial survival rates at one and two years were 81% and 39%, respectively. Actuarial one and two year local control rates for all lesions were 78% and 71%, respectively. Survival was significantly associated with age, tumor size, presence of active extracranial tumors, and performance status. No acute or delayed complications were observed. We believe that WBRT plus FSRT should be included in the treatment options for metastatic brain tumors, and we consider the effect of this non-invasive method to be quite good in patients with good prognostic factors, although other invasive modalities could also be effective in them. (author)

  7. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement

    Droege, L.H.; Hinsche, T.; Hess, C.F.; Wolff, H.A. [University Hospital of Goettingen, Department of Radiotherapy and Radiation Oncology, Goettingen (Germany); Canis, M. [University of Goettingen, Department of Otorhinolaryngology, Head and Neck Surgery, Goettingen (Germany); Alt-Epping, B. [University of Goettingen, Department of Palliative Medicine, Goettingen (Germany)

    2014-02-15

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting. (orig.)

  8. Fractionated external beam radiotherapy of skull base metastases with cranial nerve involvement

    Skull base metastases frequently appear in a late stage of various tumor entities and cause pain and neurological disorders which strongly impair patient quality of life. This study retrospectively analyzed fractionated external beam radiotherapy (EBRT) as a palliative treatment approach with special respect to neurological outcome, feasibility and acute toxicity. A total of 30 patients with skull base metastases and cranial nerve disorders underwent EBRT with a mean total dose of 31.6 Gy. Neurological status was assessed before radiotherapy, during radiotherapy and 2 weeks afterwards categorizing orbital, parasellar, middle fossa, jugular foramen and occipital condyle involvement and associated clinical syndromes. Neurological outcome was scored as persistence of symptoms, partial response, good response and complete remission. Treatment-related toxicity and overall survival were assessed. Before EBRT 37 skull base involvement syndromes were determined with 4 patients showing more than 1 syndrome. Of the patients 81.1 % responded to radiotherapy with 10.8 % in complete remission, 48.6 % with good response and 21.6 % with partial response. Grade 1 toxicity of the skin occurred in two patients and grade 1 hematological toxicity in 1 patient under concurrent chemoradiotherapy. Median overall survival was 3.9 months with a median follow-up of 45 months. The use of EBRT for skull base metastases with symptomatic involvement of cranial nerves is marked by good therapeutic success in terms of neurological outcome, high feasibility and low toxicity rates. These findings underline EBRT as the standard therapeutic approach in the palliative setting. (orig.)

  9. Particle-beam accelerators for radiotherapy and radioisotopes

    The philosophy used in developing the new PIGMI technology was that the parameters chosen for physics research machines are not necessarily the right ones for a dedicated therapy or radioisotope machine. In particular, the beam current and energy can be optimized, and the design should emphasize minimum size, simplicity and reliability of operation, and economy in capital and operating costs. A major part of achieving these goals lay in raising the operating frequency and voltage gradient of the accelerator, which shrinks the diameter and length of the components. Several other technical innovations resulted in major system improvements. One of these is a radically new type of accelerator structure named the radio-frequency quadrupole (RFQ) accelerator. This allowed us to eliminate the large, complicated ion source used in previous ion accelerators, and to achieve a very high quality accelerated beam. Also, by using advanced permanent magnet materials to make the focusing elements, the system becomes much simpler. Other improvements have been made in all of the accelerator components and in the methods for operating them. These will be described, and design and costing information examples given for several possible therapy and radioisotope production machines

  10. Study of inter-fractional variations and adaptive radiotherapy in pancreatic cancer

    Objective: To quantitatively characterize the inter-fractional anatomy variations and advantages of dosimetry for the adaptive radiotherapy in pancreatic cancer. Methods: A total of 226 daily CT images acquired from 10 patients with pancreatic cancer treated with image-guided radiotherapy were analyzed retrospectively. Targets and organs at risk (OARs) were delineated by the atlas-based automatic segmentation and modified by the skilled physician. Various parameters,including the center of mass (COM) distance, the maximal overlap ratio (MOR) and the Dice coefficient (DC), were used to quantify the inter-fractional organ displacement and deformation. The adaptive radiation therapy (ART) was applied to handle the daily GT images. The dose distributions parameters from the ART plan were compared with those from the repositioning plan. Results: The inter-fractional anatomy variations of pancreas head were obvious in the pancreatic cancer irradiation. The mean COM distance, MOR and DC of pancreas head after the bony or soft tissue alignment and registration was (7.8 ± 1.3)mm, (87.2 ± 8.4)% and (77.2 ±7.9)% respectively. Compared with the repositioning plan, the ART plan had better target coverage and OARs sparing. For example, the mean V100 of PTV was improved from (93.32 ± 2.89) % for repositioning plan to (96.03 ± 1.42)% for ART plan with t =2.79, P =0.008 and the mean V50.4 for duodenum was reduced from (43.4 ± 12.71)% for the repositioning plan to (15.6 ± 6.25)% for the ART plan with t =3.52, P=0.000. Conclusions: The ART can effectively account for the obvious inter-fractional anatomy variations in pancreatic cancer irradiation and be used to escalate the radiotherapy dose for the pancreatic cancer, which will lead to a promising higher local control rate. (authors)

  11. Optimum radiotherapy schedule for uterine cervical cancer based-on the detailed information of dose fractionation and radiotherapy technique

    Cho, Jae Ho; Kim, Hyun Chang; Suh, Chang Ok [Yonsei University Medical School, Seoul (Korea, Republic of)] (and others)

    2005-09-15

    The best dose-fractionation regimen of the definitive radiotherapy for cervix cancer remains to be clearly determined. It seems to be partially attributed to the complexity of the affecting factors and the lack of detailed information on external and intra-cavitary fractionation. To find optimal practice guidelines, our experiences of the combination of external beam radiotherapy (EBRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT) were reviewed with detailed information of the various treatment parameters obtained from a large cohort of women treated homogeneously at a single institute. The subjects were 743 cervical cancer patients (Stage IB 198, IIA 77, IIB 364, IIIA 7, IIIB 89 and IVA 8) treated by radiotherapy alone, between 1990 and 1996. A total external beam radiotherapy (EBRT) dose of 23.4 {approx} 59.4 Gy (Median 45.0) was delivered to the whole pelvis. High-dose-rate intracavitary brachytherapy (HDR-ICBT) was also performed using various fractionation schemes. A Midline block (MLB) was initiated after the delivery of 14.4{approx} 43.2 Gy (Median 36.0) of EBRT in 495 patients, while in the other 248 patients EBRT could not be used due to slow tumor regression or the huge initial bulk of tumor. The point A, actual bladder and rectal doses were individually assessed in all patients. The biologically effective dose (BED) to the tumor ({alpha} / {beta} = 10) and late-responding tissues ({alpha} /{beta} = 3) for both EBRT and HDR-ICBT were calculated. The total BED values to point A, the actual bladder and rectal reference points were the summation of the EBRT and HDR-ICBT. In addition to all the details on dose-fractionation, the other factors (i.e. the overall treatment time, physicians preference) that can affect the schedule of the definitive radiotherapy were also thoroughly analyzed. The association between MD-BED Gy{sub 3} and the risk of complication was assessed using serial multiple logistic regressions models. The associations between R

  12. Critical dose and toxicity index of organs at risk in radiotherapy: Analyzing the calculated effects of modified dose fractionation in non–small cell lung cancer

    Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumours of Romagna I.R.S.T., Meldola (Italy); Caivano, Rocchina [Service of Medical Physics, I.R.C.C.S. Regional Cancer Hospital C.R.O.B, Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Nappi, Antonio [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy); Salvatore, Marco [U.O. of Nuclear Medicine, I.R.C.C.S. SDN Foundation, Naples (Italy); Storto, Giovanni [U.O. of Nuclear Medicine, I.R.C.C.S. Regional Cancer Hospital C.R.O.B., Rionero in Vulture (Italy)

    2014-04-01

    To increase the efficacy of radiotherapy for non–small cell lung cancer (NSCLC), many schemes of dose fractionation were assessed by a new “toxicity index” (I), which allows one to choose the fractionation schedules that produce less toxic treatments. Thirty-two patients affected by non resectable NSCLC were treated by standard 3-dimensional conformal radiotherapy (3DCRT) with a strategy of limited treated volume. Computed tomography datasets were employed to re plan by simultaneous integrated boost intensity-modulated radiotherapy (IMRT). The dose distributions from plans were used to test various schemes of dose fractionation, in 3DCRT as well as in IMRT, by transforming the dose-volume histogram (DVH) into a biological equivalent DVH (BDVH) and by varying the overall treatment time. The BDVHs were obtained through the toxicity index, which was defined for each of the organs at risk (OAR) by a linear quadratic model keeping an equivalent radiobiological effect on the target volume. The less toxic fractionation consisted in a severe/moderate hyper fractionation for the volume including the primary tumor and lymph nodes, followed by a hypofractionation for the reduced volume of the primary tumor. The 3DCRT and IMRT resulted, respectively, in 4.7% and 4.3% of dose sparing for the spinal cord, without significant changes for the combined-lungs toxicity (p < 0.001). Schedules with reduced overall treatment time (accelerated fractionations) led to a 12.5% dose sparing for the spinal cord (7.5% in IMRT), 8.3% dose sparing for V{sub 20} in the combined lungs (5.5% in IMRT), and also significant dose sparing for all the other OARs (p < 0.001). The toxicity index allows to choose fractionation schedules with reduced toxicity for all the OARs and equivalent radiobiological effect for the tumor in 3DCRT, as well as in IMRT, treatments of NSCLC.

  13. Quality Assesment Of Photon And Electron Beams From Siemens PRIMUS Radiotherapy Accelerator

    There are two types of radiation from SIEMENS Primus Radiotherapy Accelerator at the National Cancer Hospital (K Hospital): electron and photon beams. Electron beams with four different energies of 6; 9; 12 and 15 MeV. Photon beams with two different energies: 6 MV and 15 MV. The symmetry as well as flatness of profiles created by all these beams are very important factors using in clinical practice. This report presents the method using water phantom to define absorbed dose distribution in medium of all beams. This is an effective and accurate method to define quality of radiation beams with different field sizes using in radiotherapy. (author)

  14. Radiation myelopathy in patients treated for carcinoma of bronchus using a six fraction regime of radiotherapy

    The adoption of a six-fraction regime of radiotherapy for patients with locally advanced carcinoma of the bronchus was followed by the appearance of radiation myelitis in eight cases. These were among a group of 130 patients given radiotherapy with anterior and posterior treatment fields, without shielding of the spinal cord. Radiation myelitis was found only in those where the calculated spinal-cord dose exceeded 3350 cGy(rad). The possible precipitating factors in the eight patients who suffered myelopathy were compared with those in the remaining 62 patients who also received spinal-cord doses calculated to be greater than 3350 cGy(rad). Only one difference was found - the haemoglobin concentration was significantly higher in those who suffered neuropathy compared with those who did not (P=0.05). (U.K.)

  15. Long-term results of fractionated stereotactic radiotherapy as third-line treatment in acromegaly.

    Diallo, Alpha M; Colin, Philippe; Litre, Claude F; Diallo, Mamadou M; Decoudier, Bénédicte; Bertoin, Florence; Higel, Brigitte; Patey, Martine; Rousseaux, Pascal; Delemer, Brigitte

    2015-12-01

    The treatment of acromegaly is based on surgery, drugs, and radiotherapy as a third-line option. Fractionated stereotactic radiotherapy (FSRT) is a new technique with a need for long-term evaluation. The purpose of the study was to evaluate long-term results of FSRT in acromegaly. Overall, 34 patients [sex ratio 1.12, age 45 (5-65) years] with a pituitary adenoma of 24.5 (9-76) mm including 20 invasive tumors were treated by radiotherapy in fractionated stereotactic conditions delivering 50 gy in 27 sessions. Baseline growth hormone (GH) and IGF1 levels were 18 (±14.5) and 632.6 (±339) µg/L, respectively. Indications of FSRT were failure of surgery and drug treatments (n = 30) or contraindication/refusal of surgery (n = 4). Hormonal control was defined by normal age- and sex-adjusted IGF1. Remission was defined by hormonal control after withdrawal of drugs for a minimum of three consecutive months. Data were analyzed in SPSS software with a significance level at p < 0.05. After a mean follow-up of 152 months, hormonal control was achieved in 33 patients (97 %) with withdrawal of drugs in 13 patients (38.2 %) without any recurrence. Factors found to be significantly associated to remission in a multivariate Cox regression were lower baseline hormone levels (GH and IGF1) and smaller tumor size. Tumor control was achieved in all patients. Acquired hypopituitarism after radiotherapy was the main side effect reported with a rate of 39 %. FSRT seems to be an effective and well tolerated third-line treatment of acromegaly, particularly adapted to macro adenomas treatment. PMID:25956280

  16. Hyperfractionated accelerated radiotherapy with concomitant integrated boost of 70-75 Gy in 5 weeks for advanced head and neck cancer. A phase I dose escalation study

    Cvek, J.; Skacelikova, E.; Otahal, B.; Halamka, M.; Feltl, D. [University Hospital Ostrava (Czech Republic). Dept. of Oncology; Kubes, J. [University Hospital Bulovka, Prague (Czech Republic). Dept. of Radiation Oncology; Kominek, P. [University Hospital Ostrava (Czech Republic). Dept. of Otolaryngology

    2012-08-15

    Background and purpose: The present study was performed to evaluate the feasibility of a new, 5-week regimen of 70-75 Gy hyperfractionated accelerated radiotherapy with concomitant integrated boost (HARTCIB) for locally advanced, inoperable head and neck cancer. Methods and materials: A total of 39 patients with very advanced, stage IV nonmetastatic head and neck squamous cell carcinoma (median gross tumor volume 72 ml) were included in this phase I dose escalation study. A total of 50 fractions intensity-modulated radiotherapy (IMRT) were administered twice daily over 5 weeks. Prescribed total dose/dose per fraction for planning target volume (PTV{sub tumor}) were 70 Gy in 1.4 Gy fractions, 72.5 Gy in 1.45 Gy fractions, and 75 Gy in 1.5 Gy fractions for 10, 13, and 16 patients, respectively. Uninvolved lymphatic nodes (PTV{sub uninvolved}) were irradiated with 55 Gy in 1.1 Gy fractions using the concomitant integrated boost. Results: Acute toxicity was evaluated according to the RTOG/EORTC scale; the incidence of grade 3 mucositis was 51% in the oral cavity/pharynx and 0% in skin and the recovery time was {<=} 9 weeks for all patients. Late toxicity was evaluated in patients in complete remission according to the RTOG/EORTC scale. No grade 3/4 late toxicity was observed. The 1-year locoregional progression-free survival was 50% and overall survival was 55%. Conclusion: HARTCIB (75 Gy in 5 weeks) is feasible for patients deemed unsuitable for chemoradiation. Acute toxicity was lower than predicted from radiobiological models; duration of dysphagia and confluent mucositis were particularly short. Better conformity of radiotherapy allows the use of more intensive altered fractionation schedules compared with older studies. These results suggest that further dose escalation might be possible when highly conformal techniques (e.g., stereotactic radiotherapy) are used.

  17. Bevacizumab, Capecitabine, Amifostine, and Preoperative Hypofractionated Accelerated Radiotherapy (HypoArc) for Rectal Cancer: A Phase II Study

    Purpose: Bevacizumab has established therapeutic activity in patients with metastatic colorectal cancer, and anti-vascular endothelial growth factor therapy enhances the activity of radiotherapy in experimental models. We assessed the feasibility and efficacy of preoperative radiochemotherapy combined with bevacizumab in patients with rectal cancer. Methods and Materials: Nineteen patients with radiologic T3 and/or N+ rectal carcinoma were treated with preoperative conformal hypofractionated accelerated radiotherapy (3.4 Gy in 10 consecutive fractions) supported with amifostine (500-1,000 mg daily), capecitabine (600 mg/m2 twice daily, 5 days per week), and bevacizumab (5 mg/kg every 2 weeks for 2 cycles). Surgery followed 6 weeks after the end of radiotherapy. A cohort of 14 sequential patients treated with the same regimen without bevacizumab was available for comparison. Results: Grade 2 or 3 diarrhea was noted in 7 of 19 patients (36.8%), which was statistically worse than patients receiving the same regimen without bevacizumab (p = 0.01). A higher incidence of Grade 2 or 3 proctalgia was also noted (21.1%) (p = 0.03). Bladder and skin toxicity was negligible. All toxicities regressed completely within 2 weeks after the end of therapy. Pathologic complete and partial response was noted in 7 of 19 cases (36.8%) and 8 of 19 cases (42.1%). Within a median follow-up of 21 months, none of the patients has had late complications develop and only 1 of 18 evaluable cases (5.5%) has had locoregional relapse. Conclusions: Bevacizumab can be safely combined with hypofractionated radiotherapy and capecitabine as a preoperative radiochemotherapy regimen for patients with rectal cancer. The high pathologic complete response rates urges the testing of bevacizumab in randomized studies.

  18. Low or High Fractionation Dose β-Radiotherapy for Pterygium? A Randomized Clinical Trial

    Purpose: Postoperative adjuvant treatment using β-radiotherapy (RT) is a proven technique for reducing the recurrence of pterygium. A randomized trial was conducted to determine whether a low fractionation dose of 2 Gy within 10 fractions would provide local control similar to that after a high fractionation dose of 5 Gy within 7 fractions for surgically resected pterygium. Methods: A randomized trial was conducted in 200 patients (216 pterygia) between February 2006 and July 2007. Only patients with fresh pterygium resected using a bare sclera method and given RT within 3 days were included. Postoperative RT was delivered using a strontium-90 eye applicator. The pterygia were randomly treated using either 5 Gy within 7 fractions (Group 1) or 2 Gy within 10 fractions (Group 2). The local control rate was calculated from the date of surgery. Results: Of the 216 pterygia included, 112 were allocated to Group 1 and 104 to Group 2. The 3-year local control rate for Groups 1 and 2 was 93.8% and 92.3%, respectively (p = .616). A statistically significant difference for cosmetic effect (p = .034), photophobia (p = .02), irritation (p = .001), and scleromalacia (p = .017) was noted in favor of Group 2. Conclusions: No better local control rate for postoperative pterygium was obtained using high-dose fractionation vs. low-dose fractionation. However, a low-dose fractionation schedule produced better cosmetic effects and resulted in fewer symptoms than high-dose fractionation. Moreover, pterygia can be safely treated in terms of local recurrence using RT schedules with a biologic effective dose of 24–52.5 Gy10.

  19. Low or High Fractionation Dose {beta}-Radiotherapy for Pterygium? A Randomized Clinical Trial

    Viani, Gustavo Arruda, E-mail: gusviani@gmail.com [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil); De Fendi, Ligia Issa; Fonseca, Ellen Carrara [Department of Ophthalmology, Marilia Medicine School, Sao Paulo, SP (Brazil); Stefano, Eduardo Jose [Department of Radiation Oncology, Marilia Medicine School, Sao Paulo, SP (Brazil)

    2012-02-01

    Purpose: Postoperative adjuvant treatment using {beta}-radiotherapy (RT) is a proven technique for reducing the recurrence of pterygium. A randomized trial was conducted to determine whether a low fractionation dose of 2 Gy within 10 fractions would provide local control similar to that after a high fractionation dose of 5 Gy within 7 fractions for surgically resected pterygium. Methods: A randomized trial was conducted in 200 patients (216 pterygia) between February 2006 and July 2007. Only patients with fresh pterygium resected using a bare sclera method and given RT within 3 days were included. Postoperative RT was delivered using a strontium-90 eye applicator. The pterygia were randomly treated using either 5 Gy within 7 fractions (Group 1) or 2 Gy within 10 fractions (Group 2). The local control rate was calculated from the date of surgery. Results: Of the 216 pterygia included, 112 were allocated to Group 1 and 104 to Group 2. The 3-year local control rate for Groups 1 and 2 was 93.8% and 92.3%, respectively (p = .616). A statistically significant difference for cosmetic effect (p = .034), photophobia (p = .02), irritation (p = .001), and scleromalacia (p = .017) was noted in favor of Group 2. Conclusions: No better local control rate for postoperative pterygium was obtained using high-dose fractionation vs. low-dose fractionation. However, a low-dose fractionation schedule produced better cosmetic effects and resulted in fewer symptoms than high-dose fractionation. Moreover, pterygia can be safely treated in terms of local recurrence using RT schedules with a biologic effective dose of 24-52.5 Gy{sub 10.}.

  20. A Population-based Study of the Fractionation of Palliative Radiotherapy for Bone Metastasis in Ontario

    Purpose: To describe the use of palliative radiotherapy (PRT) for bone metastases in Ontario between 1984 and 2001 and identify factors associated with the choice of fractionation. Methods and Materials: Electronic RT records from the nine provincial RT centers in Ontario were linked to the Ontario Cancer Registry to identify all courses of PRT for bone metastases. Results: Between 1984 and 2001, 44,884 patients received 74,432 courses of PRT for bone metastases in Ontario. The mean number of courses per patient was 1.7, and 65% of patients received only a single course of PRT for bone metastasis. The mean number of fractions per course was 3.9. The proportion of patients treated with a single fraction increased from 27.2% in 1984-1986 to 40.3% in 1987-1992 and decreased thereafter. Single fractions were used more frequently in patients with a shorter life expectancy, in older patients, and in patients who lived further from an RT center. Single fractions were used more frequently when the prevailing waiting time for RT was longer. There were wide variations in the use of single fractions among the different RT centers (intercenter range, 11.8-62.3%). Intercenter variations persisted throughout the study period and were not explained by differences in case mix. Conclusions: Despite increasing evidence of the effectiveness of single-fraction PRT for bone metastases, most patients continued to receive fractionated PRT throughout the two decades of this study. Single fractions were used more frequently when waiting times were longer. There was persistent, unexplained variation in the fractionation of PRT among different centers

  1. Accelerated ray tracing for radiotherapy dose calculations on a GPU

    M. de Greef; J. Crezee; J.C. van Eijk; R. Pool; A. Bel

    2009-01-01

    PURPOSE: The graphical processing unit (GPU) on modern graphics cards offers the possibility of accelerating arithmetically intensive tasks. By splitting the work into a large number of independent jobs, order-of-magnitude speedups are reported. In this article, the possible speedup of PLATO's ray t

  2. Radiotherapy of the rhabdomyosarcoma R1H of the rat: Split-course versus continuous fractionation

    Fractionated split-course treatments were given with gaps of different length and the effect on tumor response was studied using the rhabdomyosarcoma R1H of the rat. Total doses of 68, 75 and 82 Gy were applied in 30 fractions (five fractions per week). After four weeks, that is after 20 fractions, treatment was interrupted for one or two weeks followed by another ten fractions. The results were compared to those of continuous treatment given in six consecutive weeks. Tumor response was quantified by TCD37% and net growth delay. The TCD37% increased with increasing duration of the gap. A mean repopulated dose of 0.72 Gy per day was obtained. This corresponds to a doubling time of tumor clonogens of 4.2 days during the gap, which is somewhat slower than the volume doubling time of unperturbed tumors (2.5 days) of the same size. The results obtained for the net growth delay support the results of the TCD37% data. It is concluded that a gap during fractionated radiotherapy leads to poorer results since the dose required for tumor control is enhanced and sparing of normal tissue can only be expected for early but not for late reacting tissues. (orig.)

  3. Study of the Accelerator Technology Development for Cancer Radiotherapy

    The hadronic particle beams including both protons, neutrons and charged particles have been studied for cancer therapy by a number of research centers in several countries during the past two decades. In this paper is briefly discussed concerning the accelerator type and its applications. The future trends are seen in the new technological developments like the use of proton gantries, beam scanning techniques, improved patient handling system and in the increasing precision of treatment. (author)

  4. In Vivo Dosimetry for Single-Fraction Targeted Intraoperative Radiotherapy (TARGIT) for Breast Cancer

    Purpose: In vivo dosimetry provides an independent check of delivered dose and gives confidence in the introduction or consistency of radiotherapy techniques. Single-fraction intraoperative radiotherapy of the breast can be performed with the Intrabeam compact, mobile 50 kV x-ray source (Carl Zeiss Surgical, Oberkochen, Germany). Thermoluminescent dosimeters (TLDs) can be used to estimate skin doses during these treatments. Methods and Materials: Measurements of skin doses were taken using TLDs for 72 patients over 3 years of clinical treatments. Phantom studies were also undertaken to assess the uncertainties resulting from changes in beam quality and backscatter conditions in vivo. Results: The mean measured skin dose was 2.9 ± 1.6 Gy, with 11% of readings higher than the prescription dose of 6 Gy, but none of these patients showed increased complications. Uncertainties due to beam hardening and backscatter reduction were small compared with overall accuracy. Conclusions: TLDs are a useful and effective method to measure in vivo skin doses in intraoperative radiotherapy and are recommended for the initial validation or any modification to the delivery of this technique. They are also an effective tool to show consistent and safe delivery on a more frequent basis or to determine doses to other critical structures as required.

  5. Stereotactic radiotherapy (SRT) for acoustic neuroma by linear accelerator

    Sakamoto, Tooru; Shirato, Hiroki; Fukuda, Satoshi [Hokkaido Univ., Sapporo (Japan). School of Medicine] [and others

    1997-10-01

    We analyzed forty one patients with acoustic neuroma treated by SRT giving 36 Gy in 20 fractions to 48 Gy in 23 fractions during 1991 and 1997, and found a sterilization of tumor size in 97.6%. Twenty-six patients had measurable hearing before and after SRT and 43.5% of patients showed change in pure tone average less than 10 dB, 82.6% less than 20 dB at the last follow-up examination. Facial and trigeminal nerve function was evaluated in 41 patients. Transient facial weakness developed in 4.8% and trigeminal neuropathy in 9.6% of irradiated cases. We consider that SRT complications are less than that of gamma-knife, although the longer follow-up period should be needed. (author)

  6. The results of accelerated radiotherapy and concomitant cisplatin administration in advanced oropharyngeal cancer

    The accelerated radiotherapy and concomitant infusion of cisplatin in low doses was evaluated in 15 patients with advanced squamous cell carcinoma of the oral cavity and oral part of pharynx. Clinical complete response was seen in 6 of 15 patients (40%) and 4 patients (26.6%) were alive 12 months with no evidence of disease, of all group of 15 patients 9 (60%) were alive 12 months after treatment. (author)

  7. Physical-dosimetric enabling a dual linear accelerator 3D planning systems for radiotherapy

    The process of commissioning clinical linear accelerator requires a dual comprehensive study of the therapeutic beam parameters, both photons Electron. All information gained by measuring physical and dosimetric these beams must be analyzed, processed and refined for further modeling in computer-based treatment planning (RTPS). Of professionalism of this process will depend on the accuracy and precision of the calculations the prescribed doses. This paper aims to demonstrate availability clinical linear accelerator system-RTPS with late radiotherapy treatments shaped beam of photons and electrons. (author)

  8. Acceleration of pubertal development following pituitary radiotherapy for Cushing's disease

    Nicholl, R.M.; Kirk, J.M.W.; Grossman, A.B.; Plowman, P.N.; Besser, G.M.; Savage, M.O. (Saint Bartholomew' s Hospital, London (United Kingdom))

    1993-01-01

    A 7-year-old boy with pituitary dependent Cushing's disease was treated with pituitary irradiation following unsuccessful microadenomectomy. This led to normalization of the hypercortisolaemia, but was followed by GH deficiency. Two years after radiotherapy he had the onset of pubertal development with testicular enlargement to 8 ml bilaterally. Pubertal regression was induced using the long-acting GnRH analogue goserelin. Acceleration of skeletal maturation was also arrested, resulting in improvement of final height prediction. Irradiation directly to the hypothalamo-pituitary region, as well as whole brain irradiation, may thus be associated with accelerated pubertal development. (author).

  9. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma

    Background and purpose: Anatomic changing frequently occurred during fractionated radiotherapy. The aims of this study were to model the potential benefit of adaptive IMRT replanning during fractionated radiotherapy and its potential advantage over clinical outcome in patients with nasopharyngeal carcinoma. Materials and methods: Thirty-three patients with repeat CT imaging and replanning were retrospectively analyzed. 66 case-matched control patients without replanning were identified by matching for AJCC stage, gender, and age. Hybrid IMRT plans were generated to evaluate the dosimetric changing. Mann-Whitney-Wilcoxon tests were used to evaluate the effect of replanning on volumetric and dosimetric outcomes within individuals. Kaplan-Meier estimators were used to estimate the survival function of patients with or without replanning. Results: The mean volume of the ipsilateral and contralateral parotid glands decreased during the treatment. The hybrid IMRT plans showed decreased doses to target volumes and increased doses to normal structures in replanning. The clinical outcome comparison indicated that the IMRT replanning improved the 3 years local progression-free survival for patients who had AJCC staged more than T3 (T3,4Nx) and ease the late effects for patients who had large lymph nodes (AJCC stage TxN2,3). Conclusion: Repeat CT imaging and IMRT replanning were recommendatory for specific nasopharyngeal carcinoma patients.

  10. A comparison of anatomical and dosimetric variations in the first 15 fractions, and between fractions 16 and 25, of intensity-modulated radiotherapy for nasopharyngeal carcinoma.

    Yang, Haihua; Tu, Yu; Wang, Wei; Hu, Wei; Ding, Weijun; Yu, Changhui; Zhou, Chao

    2013-01-01

    The purpose of this study was to compare anatomical and dosimetric variations in first 15 fractions, and between fractions 16 and 25, during intensity-modulated radiotherapy (IMRT) for nasopharyngeal carcinoma (NPC). Twenty-three NPC patients who received IMRT in 33 fractions were enrolled. Each patient had two repeat computed tomography (CT) scans before the 16th and 25th fraction. Hybrid IMRT plans were generated to evaluate the dosimetric changes. There was a significant decrease of the transverse diameter of nasopharyngeal and neck as well as gross tumor volume (GTV) in the primary nasopharyngeal carcinoma (GTVnx) and involved lymph nodes (GTVnd) during the first 15 fractions, and between fraction 16 and 25 (p anatomic changes resulted in more predominant dosimetric effects in the first 15 fractions, and between fractions 16 and 25, of IMRT. PMID:24257268

  11. Prospective randomised multicenter trial on single fraction radiotherapy (8 Gyx1) versus multiple fractions (3 Gyx10) in the treatment of painful bone metastases

    Background and purpose: To investigate whether single-fraction radiotherapy is equal to multiple fractions in the treatment of painful metastases. Patients and methods: The study planned to recruit 1000 patients with painful bone metastases from four Norwegian and six Swedish hospitals. Patients were randomized to single-fraction (8 Gyx1) or multiple-fraction (3 Gyx10) radiotherapy. The primary endpoint of the study was pain relief, with fatigue and global quality of life as the secondary endpoints. Results: The data monitoring committee recommended closure of the study after 376 patients had been recruited because interim analyses indicated that, as in two other recently published trials, the treatment groups had similar outcomes. Both groups experienced similar pain relief within the first 4 months, and this was maintained throughout the 28-week follow-up. No differences were found for fatigue and global quality of life. Survival was similar in both groups, with median survival of 8-9 months. Conclusions: Single-fraction 8 Gy and multiple-fraction radiotherapy provide similar pain benefit. These results, confirming those of other studies, indicate that single-fraction 8 Gy should be standard management policy for these patients

  12. Radiotherapy

    This review highlights developments over the past decade in radiotherapy and attempts to summarize the state of the art in the management of the major diseases in which radiotherapy has a meaningful role. The equipment, radiobiology of radiotherapy and carcinoma of the lung, breast and intestines are highlighted

  13. TLD Intercomparison in accelerators for radiotherapy in three Latin american countries

    In Radiotherapy one of the objectives is to establish and to give follow up to quality assurance programs which make sure that the doses administered to the patients with cancer are a high probability of a success in external radiation. Likewise, one of the present preoccupations of the United Nations Agencies as well as the International Atomic Energy Agency and the Pan-American Health Organization is the optimal employment of the radiations in the treatment of cancer patients since the administered dose in Radiotherapy suffers considerable variations by the lack of quality assurance programs. The use of Electron linear accelerators requires a program of quality assurance that includes expert personnel, equipment and adequate facilities. The more used methodology for the dosimetry calibration and characterization of X-ray beams and high energy electrons for radiotherapy use is using a ionization chamber dosemeter calibrated in a regional secondary standardization laboratory. However, to establish and give follow up to the quality assurance programs it is necessary the dosimetric intercomparison through TLD. In this study it was designed plastic phantoms with TLD crystals and it was made its characterization to realize an absorbed dose analysis in the crystals exposed at X-ray beams 6 MV and high energy electrons 10 and 12 MeV to standardize the dosimetric procedures and proceeding to realize an International Pilot intercomparison of absorbed doses in TLD crystals in three Latin American countries: Mexico, Peru and Colombia with the participation of accelerators of five different institutions. The found results show that the majority of the measured doses with TLD in the different accelerators were in the 0.95-1.05 range though it had two cases outside of this range. The use of the phantoms with TLD crystals shows that they are of excellent aid to make analysis of the doses administered to the patients and an intercomparison of results to standardize procedures at

  14. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer

    Amini Arya

    2012-03-01

    Full Text Available Abstract Background While conventionally fractionated radiation therapy alone is an acceptable option for poor prognostic patients with unresectable stage III NSCLC, we hypothesized that accelerated hypofractionated radiotherapy will have similar efficacy without increasing toxicity. Methods This is a retrospective analysis of 300 patients diagnosed with stage III NSCLC treated between 1993 and 2009. Patients included in the study were medically or surgically inoperable, were free of metastatic disease at initial workup and did not receive concurrent chemotherapy. Patients were categorized into three groups. Group 1 received 45 Gy in 15 fractions over 3 weeks (Accelerated Radiotherapy (ACRT while group 2 received 60-63 Gy (Standard Radiation Therapy 1 (STRT1 and group 3 received > 63 Gy (Standard Radiation Therapy (STRT2. Results There were 119 (39.7% patients in the ACRT group, 90 (30.0% in STRT1 and 91 (30.3% in STRT2. More patients in the ACRT group had KPS ≤ 60 (p 5% (p = 0.002, and had stage 3B disease (p Conclusions Despite the limitations of a retrospective analysis, our experience of accelerated hypofractionated radiation therapy with 45 Gy in 15 fractions appears to be an acceptable treatment option for poor performance status patients with stage III inoperable tumors. Such a treatment regimen (or higher doses in 15 fractions should be prospectively evaluated using modern radiation technologies with the addition of sequential high dose chemotherapy in stage III NSCLC.

  15. A meta-analysis of hyperfractionated and accelerated radiotherapy and combined chemotherapy and radiotherapy regimens in unresected locally advanced squamous cell carcinoma of the head and neck

    Former meta-analyses have shown a survival benefit for the addition of chemotherapy (CHX) to radiotherapy (RT) and to some extent also for the use of hyperfractionated radiation therapy (HFRT) and accelerated radiation therapy (AFRT) in locally advanced squamous cell carcinoma (SCC) of the head and neck. However, the publication of new studies and the fact that many older studies that were included in these former meta-analyses used obsolete radiation doses, CHX schedules or study designs prompted us to carry out a new analysis using strict inclusion criteria. Randomised trials testing curatively intended RT (≥60 Gy in >4 weeks/>50 Gy in <4 weeks) on SCC of the oral cavity, oropharynx, hypopharynx, and larynx published as full paper or in abstract form between 1975 and 2003 were eligible. Trials comparing RT alone with concurrent or alternating chemoradiation (5-fluorouracil (5-FU), cisplatin, carboplatin, mitomycin C) were analyzed according to the employed radiation schedule and the used CHX regimen. Studies comparing conventionally fractionated radiotherapy (CFRT) with either HFRT or AFRT without CHX were separately examined. End point of the meta-analysis was overall survival. Thirty-two trials with a total of 10 225 patients were included into the meta-analysis. An overall survival benefit of 12.0 months was observed for the addition of simultaneous CHX to either CFRT or HFRT/AFRT (p < 0.001). Separate analyses by cytostatic drug indicate a prolongation of survival of 24.0 months, 16.8 months, 6.7 months, and 4.0 months, respectively, for the simultaneous administration of 5-FU, cisplatin-based, carboplatin-based, and mitomycin C-based CHX to RT (each p < 0.01). Whereas no significant gain in overall survival was observed for AFRT in comparison to CFRT, a substantial prolongation of median survival (14.2 months, p < 0.001) was seen for HFRT compared to CFRT (both without CHX). RT combined with simultaneous 5-FU, cisplatin, carboplatin, and mitomycin C as

  16. Single Fraction Versus Fractionated Linac-Based Stereotactic Radiotherapy for Vestibular Schwannoma: A Single-Institution Experience

    Purpose: To evaluate and compare outcomes for patients with vestibular schwannoma (VS) treated in a single institution with linac-based stereotactic radiosurgery (SRS) or by fractionated stereotactic radiotherapy (SRT). Methods and Materials: One hundred and nineteen patients (SRS = 78, SRT = 41) were treated. For both SRS and SRT, beam shaping is performed by a mini-multileaf collimator. For SRS, a median single dose of 12.5 Gy (range, 11–14 Gy), prescribed to the 80% isodose line encompassing the target, was applied. Of the 42 SRT treatments, 32 treatments consisted of 10 fractions of 3–4 Gy, and 10 patients received 25 sessions of 2 Gy, prescribed to the 100% with the 95% isodose line encompassing the planning target volume. Mean largest tumor diameter was 16.6 mm in the SRS and 24.6 mm in the SRT group. Local tumor control, cranial nerve toxicity, and preservation of useful hearing were recorded. Any new treatment-induced cranial nerve neuropathy was scored as a complication. Results: Median follow-up was 62 months (range, 6–136 months), 5 patients progressed, resulting in an overall 5-year local tumor control of 95%. The overall 5-year facial nerve preservation probability was 88% and facial nerve neuropathy was statistically significantly higher after SRS, after prior surgery, for larger tumors, and in Koos Grade ≥3. The overall 5-year trigeminal nerve preservation probability was 96%, not significantly influenced by any of the risk factors. The overall 4-year probability of preservation of useful hearing (Gardner-Robertson score 1 or 2) was 68%, not significantly different between SRS or SRT (59% vs. 82%, p = 0.089, log rank). Conclusion: Linac-based RT results in good local control and acceptable clinical outcome in small to medium-sized vestibular schwannomas (VSs). Radiosurgery for large VSs (Koos Grade ≥3) remains a challenge because of increased facial nerve neuropathy.

  17. Single Fraction Versus Fractionated Linac-Based Stereotactic Radiotherapy for Vestibular Schwannoma: A Single-Institution Experience

    Collen, Christine, E-mail: ccollen@uzbrussel.be [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Ampe, Ben [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Gevaert, Thierry [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Moens, Maarten [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Linthout, Nadine; De Ridder, Mark; Verellen, Dirk [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); D' Haens, Jean [Department of Neurosurgery, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium); Storme, Guy [Department of Radiation Oncology, UZ Brussel, Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels (Belgium)

    2011-11-15

    Purpose: To evaluate and compare outcomes for patients with vestibular schwannoma (VS) treated in a single institution with linac-based stereotactic radiosurgery (SRS) or by fractionated stereotactic radiotherapy (SRT). Methods and Materials: One hundred and nineteen patients (SRS = 78, SRT = 41) were treated. For both SRS and SRT, beam shaping is performed by a mini-multileaf collimator. For SRS, a median single dose of 12.5 Gy (range, 11-14 Gy), prescribed to the 80% isodose line encompassing the target, was applied. Of the 42 SRT treatments, 32 treatments consisted of 10 fractions of 3-4 Gy, and 10 patients received 25 sessions of 2 Gy, prescribed to the 100% with the 95% isodose line encompassing the planning target volume. Mean largest tumor diameter was 16.6 mm in the SRS and 24.6 mm in the SRT group. Local tumor control, cranial nerve toxicity, and preservation of useful hearing were recorded. Any new treatment-induced cranial nerve neuropathy was scored as a complication. Results: Median follow-up was 62 months (range, 6-136 months), 5 patients progressed, resulting in an overall 5-year local tumor control of 95%. The overall 5-year facial nerve preservation probability was 88% and facial nerve neuropathy was statistically significantly higher after SRS, after prior surgery, for larger tumors, and in Koos Grade {>=}3. The overall 5-year trigeminal nerve preservation probability was 96%, not significantly influenced by any of the risk factors. The overall 4-year probability of preservation of useful hearing (Gardner-Robertson score 1 or 2) was 68%, not significantly different between SRS or SRT (59% vs. 82%, p = 0.089, log rank). Conclusion: Linac-based RT results in good local control and acceptable clinical outcome in small to medium-sized vestibular schwannomas (VSs). Radiosurgery for large VSs (Koos Grade {>=}3) remains a challenge because of increased facial nerve neuropathy.

  18. Predictors for Clinical Outcomes After Accelerated Partial Breast Intensity-Modulated Radiotherapy

    Purpose: To correlate the treatment planning parameters with the clinical outcomes in patients treated with accelerated partial breast intensity-modulated radiotherapy. Methods and Materials: A total of 105 patients with Stage I breast cancer were treated between February 2004 and March 2007 in a Phase II prospective trial and had detailed information available on the planning target volume (PTV), ipsilateral breast volume (IBV), PTV/IBV ratio, lung volume, chest wall volume, surgery to radiotherapy interval, follow-up interval, breast pain, and cosmesis. The first 7 of these patients were treated to 34 Gy, and the remaining 98 were treated to 38.5 Gy. All patients were treated twice daily for 5 consecutive days. Univariate and multivariate analyses were performed. Results: The median follow-up was 13 months. No recurrences or deaths were observed. Of the 105 patients, 30 reported mild or moderate breast pain in their most recently recorded follow-up visit. The irradiated lung volume (p 35 Gy (p 35 Gy) and to lung correlated with reports of mild pain after accelerated partial breast intensity-modulated radiotherapy. Also, the PTV, but not the PTV/IBV ratio, was predictive of post-treatment reports of pain.

  19. Fractionated stereotactic radiotherapy boost for gynecologic tumors: An alternative to brachytherapy?

    Purpose: A brachytherapy (BT) boost to the vaginal vault is considered standard treatment for many endometrial or cervical cancers. We aimed to challenge this treatment standard by using stereotactic radiotherapy (SRT) with a linac-based micromultileaf collimator technique. Methods and Materials: Since January 2002, 16 patients with either endometrial (9) or cervical (7) cancer have been treated with a final boost to the areas at higher risk for relapse. In 14 patients, the target volume included the vaginal vault, the upper vagina, the parametria, or (if not operated) the uterus (clinical target volume [CTV]). In 2 patients with local relapse, the CTV was the tumor in the vaginal stump. Margins of 6-10 mm were added to the CTV to define the planning target volume (PTV). Hypofractionated dynamic-arc or intensity-modulated radiotherapy techniques were used. Postoperative treatment was delivered in 12 patients (2 x 7 Gy to the PTV with a 4-7-day interval between fractions). In the 4 nonoperated patients, a dose of 4 Gy/fraction in 5 fractions with 2 to 3 days' interval was delivered. Patients were immobilized in a customized vacuum body cast and optimally repositioned with an infrared-guided system developed for extracranial SRT. To further optimize daily repositioning and target immobilization, an inflated rectal balloon was used during each treatment fraction. In 10 patients, CT resimulation was performed before the last boost fraction to assess for repositioning reproducibility via CT-to-CT registration and to estimate PTV safety margins around the CTV. Finally, a comparative treatment planning study between BT and SRT was performed in 2 patients with an operated endometrial Stage I cancer. Results: No patient developed severe acute urinary or low-intestinal toxicity. No patient developed urinary late effects (>6 months). One patient with a vaginal relapse previously irradiated to the pelvic region presented with Grade 3 rectal bleeding 18 months after retreatment

  20. Biological dose representation for carbon-ion radiotherapy of unconventional fractionation

    Kanematsu, Nobuyuki

    2016-01-01

    In carbon-ion radiotherapy, single-beam delivery each day in alternate directions has been commonly practiced for operational efficiency, taking advantage of the Bragg peak and the relative biological effectiveness (RBE) for uniform dose conformation to a tumor. The treatment plans are usually evaluated with total RBE-weighted dose, which is however deficient in relevance to the biological effect in the linear-quadratic model due to its quadratic-dose term, or the dose-fractionation effect. In this study, we reformulate the extrapolated response dose (ERD), or synonymously BED, which normalizes the dose-fractionation and cell-repopulation effects as well as the RBE of treating radiation, based on inactivation of a single model cell system and a typical treating radiation in carbon-ion RT. The ERD distribution virtually represents the biological effect of the treatment regardless of radiation modality or fractionation scheme. We applied the ERD formulation to simplistic model treatments and to a preclinical su...

  1. Dose-Escalation Study of Single-Fraction Stereotactic Body Radiotherapy for Liver Malignancies

    Purpose: We performed a Phase I dose-escalation study to explore the feasibility and safety of treating primary and metastatic liver tumors with single-fraction stereotactic body radiotherapy (SBRT). Methods and Materials: Between February 2004 and February 2008, 26 patients were treated for 40 identifiable lesions. Nineteen patients had hepatic metastases, 5 had intrahepatic cholangiocarcinomas, and 2 had recurrent hepatocellular carcinomas. The prescribed radiation dose was escalated from 18 to 30 Gy at 4-Gy increments with a planned maximum dose of 30 Gy. Cumulative incidence functions accounted for competing risks to estimate local failure (LF) incidence over time under the competing risk of death. Results: All patients tolerated the single-fraction SBRT well without developing a dose-limiting toxicity. Nine acute Grade 1 toxicities, one acute Grade 2 toxicity, and two late Grade 2 gastrointestinal toxicities were observed. After a median of 17 months follow-up (range, 2-55 months), the cumulative risk of LF at 12 months was 23%. Fifteen patients have died: 11 treated for liver metastases and 4 with primary liver tumors died. The median survival was 28.6 months, and the 2-year actuarial overall survival was 50.4%. Conclusions: It is feasible and safe to deliver single-fraction, high-dose SBRT to primary or metastatic liver malignancies measuring ≤5 cm. Moreover, single-fraction SBRT for liver lesions demonstrated promising local tumor control with minimal acute and long-term toxicity. Single-fraction SBRT appears to be a viable nonsurgical option, but further studies are warranted to evaluate both control rates and impact on quality of life.

  2. Toshiba's accelerator technology and approach toward higher performance and downsizing for heavy-ion radiotherapy

    Toshiba has developed various systems and components for particle beam accelerators, and delivered a number of accelerator systems including for SPring-8, which is the world's largest-class synchrotron radiation facility, as well as for the Central Japan Synchrotron Radiation Facility (provisional name). Combining our proprietary technologies cultivated through our experience in the development of particle beam accelerators, we are promoting the development of an accelerator for heavy-ion radiotherapy. Toward the higher performance and downsizing of its accelerator, we are also focusing on the research and development of both an ion source applying laser beam technologies, and a superconducting deflecting magnet for accelerators. (author)

  3. Fractionation and delivery schedules in combined radiotherapy-cisplatin for head and neck cancer

    Full text: Since Rosenberg's initial discovery, cisplatin has become one of the most effective anticancer drugs, with particular significance in head and neck cancer. For advanced disease, where the tumour is unresectable, radiotherapy and chemotherapy, either singularly or combined, remain the possible therapeutic modalities. The majority of the trials using a combination of cisplatin and radiation obtained much better results than the single-agent trials. But the best schedule, dosage and timing between radiation and drug administration are still unknown. Many positive steps were however made to eliminate the cisplatin-produced side effects, as much as possible. The tendency in current trials is to fractionate the drug dose by daily administration and also to hyperfractionate the radiation. In this way the long-term benefits are improved and the toxicity is better tolerated

  4. Micronuclei in cytokinesis-blocked lymphocytes of cancer patients following fractionated partial-body radiotherapy

    The cytokinesis-block micronucleus assay was used to measure chromosome damage in lymphocytes of 11 cancer patients undergoing fractionated partial-body irradiation. Measurements performed before, during and after cessation of radiotherapy showed a dose-related increase in micronucleus frequency in each patient studied. When results for micronucleus frequency (Y) were plotted against estimated equivalent whole-body dose (X) the dose-response relationship obtained was Y = 75.8X + 49.5 (r = 0.783, P<0.0001). A general decline in MN frequency was observed during the post-treatment period down to 57% (±10) after 12 months but with considerable variation between individuals. Advantages and disadvantages of the application of the cytokinesis-block micronucleus assay as a biological dosemeter for lymphocytes irradiated in vivo are discussed. (author)

  5. Hypo-fractionated treatment in radiotherapy: radio-biological models Tcp and NTCP

    At the present time the breast cancer in Mexico has the first place of incidence of the malignant neoplasia s in the women, and represents 11.34% of all the cancer cases. On the other hand, the treatments for cancer by means of ionizing radiations have been dominated under the approaches of the medical radio-oncologists which have been based on test and error by many years. The radio-biological models, as the Tcp, NTCP and dosimetric variables, for their clinical application in the conventional radiotherapy with hypo-fractionation have as purpose predicting personalized treatment plans that they present most probability of tumor control and minor probability of late reactions, becoming this way support tools in the decisions taking for the patient treatments planning of Medical Physicists and Radio-oncologists. (Author)

  6. Fractionated External Beam Radiotherapy as a Suitable Preparative Regimen for Hepatocyte Transplantation After Partial Hepatectomy

    Purpose: Hepatocyte transplantation is strongly considered to be a promising option to correct chronic liver failure through repopulation of the diseased organ. We already reported on extensive liver repopulation by hepatocytes transplanted into rats preconditioned with 25-Gy single dose selective external beam irradiation (IR). Herein, we tested lower radiation doses and fractionated protocols, which would be applicable in clinical use. Methods and Material: Livers of dipeptidylpeptidase IV (DPPIV)-deficient rats were preconditioned with partial liver external beam single dose IR at 25 Gy, 8 Gy, or 5 Gy, or fractionated IR at 5 x 5 Gy or 5 x 2 Gy. Four days after completion of IR, a partial hepatectomy (PH) was performed to resect the untreated liver section. Subsequently, 12 million wild-type (DPPIV+) hepatocytes were transplanted via the spleen into the recipient livers. The degree of donor cell integration and liver repopulation was studied 16 weeks after transplantation by means of immunofluorescence and DPPIV-luminescence assay. Results: Donor hepatocyte integration and liver repopulation were more effective in the irradiated livers following pretreatment with the IR doses 1 x 25 Gy and 5 x 5 Gy (formation of large DPPIV-positive cell clusters) than single-dose irradiation at 8 Gy or 5 Gy (DPPIV-positive clusters noticeably smaller and less frequent). Quantitative analysis of extracted DPPIV revealed signals exceeding the control level in all transplanted animals treated with IR and PH. Compared with the standard treatment of 1 x 25 Gy, fractionation with 5 x 5 Gy was equally efficacious, the Mann-Whitney U test disclosing no statistically significant difference (p = 0.146). The lower doses of 1 x 5 Gy, 1 x 8 Gy, and 5 x 2 Gy were significantly less effective with p < 0.05. Conclusion: This study suggests that fractionated radiotherapy in combination with PH is a conceivable pretreatment approach to prime the host liver for hepatocyte transplantation, thus

  7. Immunologic changes after loco-regional radiotherapy and fractionated total body irradiation (TBI) in mice

    The immunologic effects of fractionated irradiation to both hind limbs and the tail of adult mice were investigated. A dose of 34 Gy given in 17 fractions of 2 Gy, 1 fraction per day, 5 days per week, was delivered with a 60Co source. A significant decrease of the total splenocyte count and of the PHA(phytohemagglutinin)-induced proliferation of T cells was found immediately after irradiation. Both parameters normalized within 30 days after irradiation. Immediately after irradiation, the MLC (mixed lymphocyte culture) was supranormal, dropped to 45% 1 week later, and normalized within 1 month after radiotherapy. The NK (natural killer) activity was significantly decreased only the first week after loco-regional irradiation, while the LAK (lymphokine activated killer) activity was not altered at all. The percentage of goat-anti-mouse+ cells (mainly B lymphocytes) was not changed immediately after loco-regional irradiation, but rose to supranormal values (175% of control level) 3 months after irradiation. A persistent decrease of the percentage and the absolute numbers of the Lyt2+ cells (= CD8+ cells, suppressor/cytotoxic phenotype) was observed up to 3 months after irradiation, while the percentage of L3T4+ cells (= CD4+ cells, helper phenotype) remained normal for the total follow-up. No differences in allogeneic skin graft survival could be demonstrated between irradiated and control animals. The observed immunological effects could not be explained by the scatter irradiation to the whole body as total body irradiation (TBI) administered in a dose and dose rate similar to the scatter dose did not result in persistent immunologic changes. No dose-rate effect could be demonstrated in a low dose fractionated total body irradiation schedule. A total body irradiation similar to the scatter dose in humans did not result in significant immunologic changes

  8. A comparison of 3-D data correlation methods for fractionated stereotactic radiotherapy

    Purpose: Stereotactic radiosurgery is currently used to treat patients who are not good candidates for conventional neurosurgical procedures. For treatments of nonvascular tumor cells, it appears that fractionation offers a radiobiological advantage between tumor and normal tissues. Therefore, fractionated stereotactic radiotherapy (FSR) is preferred because it minimizes normal tissue complications and maximizes local tumor control probability. We have implemented a methodology clinically to perform the noninvasive patient repositioning technique. The 3-D data correlation method for high-precision and multiple fraction stereotactic treatments has been presented. Methods and Materials: Three different optimization algorithms (Hooke and Jeeves optimization, simplex optimization, and simulated annealing optimization) are evaluated to calculate the transformation parameters necessary for FSR. A least-square object function is created to perform the 3-D data matching process. By minimizing the unconstrained object function value the best fit can be approached for the reference 3-D data sets. Simulation shows that these algorithms deliver results that are comparable to the previously published correlation algorithm (singular value decomposition [SVD] method). The advantage for optimization algorithms is easily understood and can be readily implemented by using a personal computer (PC). The mathematical framework provides a tool to calculate the transformation matrix which can be used to adjust patient position for fractionated treatments. Therefore, using these algorithms for a high-precision fractionated treatment is possible without an invasive repeat fixation device and has been implemented clinically. A bite plate system was incorporated to acquire 3-D patient data. With a 3-D digital camera localization device, the patient motion can be followed in real time with the system calibrated to the isocenter. Results: Two types of data sets are utilized to study the

  9. A real time scintillating fiber dosimeter for gamma and neutron monitoring on radiotherapy accelerators

    Bartesaghi, G. [INFN Sez. di Milano and Universita dell' Insubria, Como (Italy)]. E-mail: giacomobartesaghi@libero.it; Conti, V. [INFN Sez. di Milano and Universita dell' Insubria, Como (Italy); Prest, M. [INFN Sez. di Milano and Universita dell' Insubria, Como (Italy); Mascagna, V. [Universita dell' Insubria, Como (Italy); Scazzi, S. [Universita dell' Insubria, Como (Italy); Cappelletti, P. [Ospedale Sant' Anna, Como (Italy); Frigerio, M. [Ospedale Sant' Anna, Como (Italy); Gelosa, S. [Ospedale Sant' Anna, Como (Italy); Monti, A. [Ospedale Sant' Anna, Como (Italy); Ostinelli, A. [Ospedale Sant' Anna, Como (Italy); Mozzanica, A. [INFN Sez. di Pavia and Universita di Brescia (Italy); Bevilacqua, R. [Universita di Trieste and INFN sez. di Trieste (Italy); Giannini, G. [Universita di Trieste and INFN sez. di Trieste (Italy); Totaro, P. [Universita di Trieste and INFN sez. di Trieste (Italy); Vallazza, E. [INFN Sez. di Trieste (Italy)

    2007-03-01

    The quality of the radiotherapic treatment depends strongly on the capability to measure the dose released in the treated volume and the one absorbed by the surrounding volumes, which is mainly due to the scattered radiation produced by the primary beam interaction with the accelerator collimating system. Radiotherapy linear accelerators produce electron (6-20MeV) and photon (6, 18MV) irradiating fields up to 40x40cm{sup 2}. Photons with energies greater than 8MeV generate neutrons via photoproduction which are being studied for possible BNCT applications. We have developed a prototype of a real time dosimeter with 1mm diameter scintillating and clear fibers readout by multianode photomultipliers. For neutron applications, the fibers have been coupled with boron loaded scintillator. We will describe the dosimeter and the results of the tests comparing them to the ones obtained with the standard dosimeters.

  10. Hypo-fractionated radiotherapy of breast cancer: long term results of a set of 80 cases treated in the radiotherapy department of the Oran university hospital

    The authors report the assessment of the local and locoregional control and of the acute and late toxicity of adjuvant hypo-fractionated radiotherapy in breast cancer treatment. During 1998, 80 women have been treated by conservative or radical surgery and hypo-fractionated tele-cobalto-therapy (36 Gy in five fractions of 3 Gy a week, and a boost of 15 Gy in five fractions in case of conservative surgery). Results are discussed in terms of local and locoregional recurrence, tolerance, late toxicity, global survival, and tumour classification. The irradiation scheme seems perfectly achievable but a greater number of patients and a longer follow-up are required to better assess the efficiency and aesthetic results. Short communication

  11. Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography

    Purpose: Recent clinical investigations have shown a strong correlation between pretreatment tumor hypoxia and poor response to radiotherapy. These observations raise questions about standard assumptions of tumor reoxygenation during radiotherapy, which has been poorly studied in human cancers. Positron emission tomography (PET) imaging of [F-18]fluoromisonidazole (FMISO) uptake allows noninvasive assessment of tumor hypoxia, and is amenable for repeated studies during fractionated radiotherapy to systematically evaluate changes in tumor oxygenation. Methods and Materials: Seven patients with locally advanced nonsmall cell lung cancers underwent sequential [F-18]FMISO PET imaging while receiving primary radiotherapy. Computed tomograms were used to calculate tumor volumes, define tumor extent for PET image analysis, and assist in PET image registration between serial studies. Fractional hypoxic volume (FHV) was calculated for each study as the percentage of pixels within the analyzed imaged tumor volume with a tumor:blood [F-18]FMISO ratio ≥ 1.4 by 120 min after injection. Serial FHVs were compared for each patient. Results: Pretreatment FHVs ranged from 20-84% (median 58%). Subsequent FHVs varied from 8-79% (median 29%) at midtreatment, and ranged from 3-65% (median 22%) by the end of radiotherapy. One patient had essentially no detectable residual tumor hypoxia by the end of radiation, while two others showed no apparent decrease in serial FHVs. There was no correlation between tumor size and pretreatment FHV. Conclusions: Although there is a general tendency toward improved oxygenation in human tumors during fractionated radiotherapy, these changes are unpredictable and may be insufficient in extent and timing to overcome the negative effects of existing pretreatment hypoxia. Selection of patients for clinical trials addressing radioresistant hypoxic cancers can be appropriately achieved through single pretreatment evaluations of tumor hypoxia

  12. Vertical mammaplasty associated with accelerated partial breast radiotherapy: how oncoplastic surgery techniques associated with modern techniques of radiotherapy can improve the aesthetic outcome in selected patients

    Breast cancer is the second most common type of cancer in the world, being the most common among women, responsible for 22% of new cases each year. It's surgical and radiation treatment evolved from radical procedures (Halsted radical mastectomy and total external breast radiotherapy) to less radical and more conservative procedures. With the use of modern oncoplastic surgery techniques and accelerated partial breast radiotherapy, selected patients can benefit with better aesthetic results, fewer side effects, and more comfortable and brief treatments. (author)

  13. Vertical mammaplasty associated with accelerated partial breast radiotherapy: how oncoplastic surgery techniques associated with modern techniques of radiotherapy can improve the aesthetic outcome in selected patients

    Couto, Henrique Lima, E-mail: enriquecouto@hotmail.com [Santa Fe Women' s and Maternity Hospital, Belo Horizonte, MG (Brazil); Amorim, Washington Cancado; Guimaraes, Rodrigo [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Hospital Geral; Ramires, Leandro Cruz; Castilho, Marcus Simoes [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina; Dominguez, Lorena Lima Coto [Universidade Estacio de Sa (UNESA), Rio de Janeiro, EJ (Brazil)

    2014-07-15

    Breast cancer is the second most common type of cancer in the world, being the most common among women, responsible for 22% of new cases each year. It's surgical and radiation treatment evolved from radical procedures (Halsted radical mastectomy and total external breast radiotherapy) to less radical and more conservative procedures. With the use of modern oncoplastic surgery techniques and accelerated partial breast radiotherapy, selected patients can benefit with better aesthetic results, fewer side effects, and more comfortable and brief treatments. (author)

  14. Hyperfractionated-accelerated radiotherapy followed by radical surgery in locally advanced tumors of the oral cavity

    Hoeller, U. [Dept. of Radiotherapy, Radiooncology and Nuclear Medicine, Vivantes Klinikum Neukoelln, Berlin (Germany); Biertz, I.; Tribius, S.; Alberti, W. [Dept. of Radiotherapy and Radiooncology, Univ. Hospital Hamburg-Eppendorf (Germany); Flinzberg, S.; Schmelzle, R. [Dept. of Dental, Oral and Maxillofacial Surgery, Univ. Hospital Hamburg-Eppendorf (Germany)

    2006-03-15

    Purpose: to evaluate the outcome of hyperfractionated-accelerated radiotherapy and subsequent planned primary tumor resection and radical neck dissection in locally advanced tumors of the oral cavity. Patients and Methods: this retrospective analysis evaluates 126 subsequent patients who were treated between 1988 and 1997 for locally advanced tumors of the oral cavity (with extension into the oropharynx in 17 patients), 34 (27%) AJCC stage III and 92 (73%) stage IV. Primary tumor and nodal metastases were irradiated with 1.4 Gy bid to a median total dose of 72.8 Gy (range 58.8-75.6 Gy). Then, planned radical surgery of the primary site according to the initial tumor extent and cervical nodes was performed. Median follow-up of living patients was 6 years (range 1-11 years). Results: 4 weeks after radiotherapy, 14 patients (11%) had complete tumor remission, 92 (73%) partial remission, 15 (12%) no change, and five (4%) progressive disease. Complete resection was achieved in 117 (93%) patients (nine incomplete resections). 5-year locoregional control rate was 62 {+-} 9%, overall survival 36 {+-} 9%. Surgery-related morbidity occurred in 42 patients (33%; mainly delayed wound healing and fistulae), overall severe treatment-related morbidity in 46 patients (36%). 24/84 relapse-free patients (29%) required a percutaneous gastrostomy or nasal tube {>=} 1 year after therapy. Conclusion: in this study, the outcome of combined curative radiotherapy and planned surgery of the primary tumor and neck nodes was comparable to reported results of hyperfractionated radiotherapy with or without salvage surgery of the neck nodes with respect to locoregional control and overall survival. Planned surgery carries a substantial risk of morbidity and seems to offer no benefit in comparison to salvage surgery of the neck nodes only. Therefore, salvage surgery is preferred. (orig.)

  15. Medication for hearing loss after fractionated stereotactic radiotherapy (SRT) for vestibular schwannoma

    Purpose: To investigate the effectiveness of corticosteroid treatments for patients showing decreases in hearing levels after stereotactic radiotherapy for vestibular schwannoma. Methods and Materials: Twenty-one patients experienced a hearing loss in pure-tone average at greater than 20 dB or less than 10 dB within 1 year after irradiation administration of 44 Gy/22 fractions followed by a 4 Gy boost. Eight received oral prednisone at a daily dose of 30 mg, which was gradually decreased (medicated group), and 13 received none (nonmedicated group). The average observation period was 26.7±16.6 (range: 6-69) months. Results: Hearing recovery was seen after initial onset of the hearing loss in all 8 patients in the medicated group and in 2 of 13 patients in the nonmedicated group (p=0.001). The hearing recovery, that is, the change in pure-tone average (dB) at the last follow-up from the onset of hearing loss, was 9.8±6.9 dB (recovery) in the medicated group and -9.4±12.8 dB (further loss) in the nonmedicated group (p=0.0013). The hearing recovery rate, normalizing to the degree of the hearing loss before medication, was also significantly higher in the medicated group than in the nonmedicated group (p=0.0014). Conclusions: Corticosteroidal intake is suggested to be effective in improving hearing loss after stereotactic radiotherapy, at least in young patients having a useful pretreatment hearing level, if the treatment for hearing loss is administered immediately after the hearing loss is first detected

  16. SU-E-J-187: Management of Optic Organ Motion in Fractionated Stereotactic Radiotherapy

    Purpose: Fractionated stereotactic radiotherapy (FSRT) for optic nerve tumors can potentially use planning target volume (PTV) expansions as small as 1–5 mm. However, the motion of the intraorbital segment of the optic nerve has not been studied. Methods: A subject with a right optic nerve sheath meningioma underwent CT simulation in three fixed gaze positions: right, left, and fixed forward at a marker. The gross tumor volume (GTV) and the organs-at-risk (OAR) were contoured on all three scans. An IMRT plan using 10 static non-coplanar fields to 50.4 Gy in 28 fractions was designed to treat the fixed-forward gazing GTV with a 1 mm PTV, then resulting coverage was evaluated for the GTV in the three positions. As an alternative, the composite structures were computed to generate the internal target volume (ITV), 1 mm expansion free-gazing PTV, and planning organat-risk volumes (PRVs) for free-gazing treatment. A comparable IMRT plan was created for the free-gazing PTV. Results: If the patient were treated using the fixed forward gaze plan looking straight, right, and left, the V100% for the GTV was 100.0%, 33.1%, and 0.1%, respectively. The volumes of the PTVs for fixed gaze and free-gazing plans were 0.79 and 2.21 cc, respectively, increasing the PTV by a factor of 2.6. The V100% for the fixed gaze and free-gazing plans were 0.85 cc and 2.8 cc, respectively increasing the treated volume by a factor of 3.3. Conclusion: Fixed gaze treatment appears to provide greater organ sparing than free-gazing. However unanticipated intrafraction right or left gaze can produce a geometric miss. Further study of optic nerve motion appears to be warranted in areas such as intrafraction optical confirmation of fixed gaze and optimized gaze directions to minimize lens and other normal organ dose in cranial radiotherapy

  17. A Phase I Study of Chemoradiotherapy With Use of Involved-Field Conformal Radiotherapy and Accelerated Hyperfractionation for Stage III Non-Small Cell Lung Cancer: WJTOG 3305

    Purpose: A Phase I study to determine a recommended dose of thoracic radiotherapy using accelerated hyperfractionation for unresectable non–small-cell lung cancer was conducted. Methods and Materials: Patients with unresectable Stage III non–small-cell lung cancer were treated intravenously with carboplatin (area under the concentration curve 2) and paclitaxel (40 mg/m2) on Days 1, 8, 15, and 22 with concurrent twice-daily thoracic radiotherapy (1.5 Gy per fraction) beginning on Day 1 followed by two cycles of consolidation chemotherapy using carboplatin (area under the concentration curve 5) and paclitaxel (200 mg/m2). Total doses were 54 Gy in 36 fractions, 60 Gy in 40 fractions, 66 Gy in 44 fractions, and 72 Gy in 48 fractions at Levels 1 to 4. The dose-limiting toxicity, defined as Grade ≥4 esophagitis and neutropenic fever and Grade ≥3 other nonhematologic toxicities, was monitored for 90 days. Results: Of 26 patients enrolled, 22 patients were assessable for response and toxicity. When 4 patients entered Level 4, enrollment was closed to avoid severe late toxicities. Dose-limiting toxicities occurred in 3 patients. They were Grade 3 neuropathy at Level 1 and Level 3 and Grade 3 infection at Level 1. However, the maximum tolerated dose was not reached. The median survival time was 28.6 months for all patients. Conclusions: The maximum tolerated dose was not reached, although the dose of radiation was escalated to 72 Gy in 48 fractions. However, a dose of 66 Gy in 44 fractions was adopted for this study because late toxicity data were insufficient.

  18. A Phase I Study of Chemoradiotherapy With Use of Involved-Field Conformal Radiotherapy and Accelerated Hyperfractionation for Stage III Non-Small Cell Lung Cancer: WJTOG 3305

    Tada, Takuhito, E-mail: tada@msic.med.osaka-cu.ac.jp [Department of Radiology, Osaka City University Graduate School of Medicine, Osaka (Japan); Department of Radiology, Izumi Municipal Hospital, Izumi (Japan); Chiba, Yasutaka [Department of Environmental Medicine and Behavioural Science, Kinki University Faculty of Medicine, Osaka-sayama (Japan); Tsujino, Kayoko [Department of Radiation Oncology, Hyogo Cancer Center, Akashi (Japan); Fukuda, Haruyuki [Department of Radiology, Osaka Prefectural Medical Center for Respiratory and Allergic Diseases, Habikino (Japan); Nishimura, Yasumasa [Department of Radiation Oncology, Kinki University Faculty of Medicine, Osaka-sayama (Japan); Kokubo, Masaki [Division of Radiation Oncology, Institute of Biomedical Research and Innovation, Kobe (Japan); Negoro, Shunichi [Department of Medical Oncology, Hyogo Cancer Center, Akashi (Japan); Kudoh, Shinzoh [Department of Respiratory Medicine, Osaka City University Graduate School of Medicine, Osaka (Japan); Fukuoka, Masahiro [Department of Medical Oncology, Izumi Municipal Hospital, Izumi (Japan); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, Osaka-sayama (Japan); Nakanishi, Yoichi [Research Institute for Disease of the Chest, Graduate School of Medical Science, Kyusyu University, Fukuoka (Japan)

    2012-05-01

    Purpose: A Phase I study to determine a recommended dose of thoracic radiotherapy using accelerated hyperfractionation for unresectable non-small-cell lung cancer was conducted. Methods and Materials: Patients with unresectable Stage III non-small-cell lung cancer were treated intravenously with carboplatin (area under the concentration curve 2) and paclitaxel (40 mg/m{sup 2}) on Days 1, 8, 15, and 22 with concurrent twice-daily thoracic radiotherapy (1.5 Gy per fraction) beginning on Day 1 followed by two cycles of consolidation chemotherapy using carboplatin (area under the concentration curve 5) and paclitaxel (200 mg/m{sup 2}). Total doses were 54 Gy in 36 fractions, 60 Gy in 40 fractions, 66 Gy in 44 fractions, and 72 Gy in 48 fractions at Levels 1 to 4. The dose-limiting toxicity, defined as Grade {>=}4 esophagitis and neutropenic fever and Grade {>=}3 other nonhematologic toxicities, was monitored for 90 days. Results: Of 26 patients enrolled, 22 patients were assessable for response and toxicity. When 4 patients entered Level 4, enrollment was closed to avoid severe late toxicities. Dose-limiting toxicities occurred in 3 patients. They were Grade 3 neuropathy at Level 1 and Level 3 and Grade 3 infection at Level 1. However, the maximum tolerated dose was not reached. The median survival time was 28.6 months for all patients. Conclusions: The maximum tolerated dose was not reached, although the dose of radiation was escalated to 72 Gy in 48 fractions. However, a dose of 66 Gy in 44 fractions was adopted for this study because late toxicity data were insufficient.

  19. Intra-fractional uncertainties in cone-beam CT based image-guided radiotherapy (IGRT) of pulmonary tumors

    Purpose: Intra-fractional variability of tumor position and breathing motion was evaluated in cone-beam CT (CB-CT) based image-guided radiotherapy (IGRT) of pulmonary tumors. Materials and methods: Twenty-four patients (27 lesions: prim. NSCLC n = 6; metastases n = 21) were treated with stereotactic body radiotherapy (SBRT) (one to eight fractions). Prior to every treatment fraction (n = 66) and immediately after treatment a CB-CT was acquired. Patient motion, absolute drift and drift of the tumor relative to the bony anatomy were measured. Tumor motion was investigated based on the density distribution in the CB-CT. Results: Absolute intra-fractional drift (3D vector) of the tumor position was 2.8 mm ± 1.6 mm (mean ± SD), maximum 7.2 mm. Poor correlation between patient motion and absolute tumor drift was observed. Changes of the tumor position due to patient motion and due to drifts independently from the bony anatomy were of similar magnitude with 2.1 mm ± 1.4 mm and 2.3 mm ± 1.6 mm, respectively. No systematic increase or decrease of breathing motion was seen. The intra-fractional change of breathing motion was more than 2 mm and 3 mm in 39% and 16%, respectively. Conclusion: Intra-fractional tumor position and breathing motion were stable. In IGRT of pulmonary tumors we suggest an ITV-to-PTV margin of 5 mm to compensate intra-fractional changes

  20. ACUTE TOXICITY PROFILE AND COMPLIANCE TO ACCELERATED RADIOTHERAPY PLUS CARBOGEN AND NICOTINAMIDE FOR CLINICAL STAGE T2-4 LARYNGEAL CANCER : RESULTS OF A PHASE III RANDOMIZED TRIAL

    Janssens, Geert O.; Terhaard, Chris H.; Doornaert, Patricia A.; Bijl, Hendrik P.; van den Ende, Piet; Chin, Alim; Pop, Lucas A.; Kaanders, Johannes H.

    2012-01-01

    Purpose: To report the acute toxicity profile and compliance from a randomized Phase III trial comparing accelerated radiotherapy (AR) with accelerated radiotherapy plus carbogen and nicotinamide (ARCON) in laryngeal cancer. Methods and Materials: From April 2001 to February 2008, 345 patients with

  1. Acute toxicity profile and compliance to accelerated radiotherapy plus carbogen and nicotinamide for clinical stage T2-4 laryngeal cancer: results of a phase III randomized trial.

    Janssens, G.O.R.J.; Terhaard, C.H.J.; Doornaert, P.A.; Bijl, H.P.; Ende, P. van den; Chin, A.; Pop, L.A.M.; Kaanders, J.H.A.M.

    2012-01-01

    PURPOSE: To report the acute toxicity profile and compliance from a randomized Phase III trial comparing accelerated radiotherapy (AR) with accelerated radiotherapy plus carbogen and nicotinamide (ARCON) in laryngeal cancer. METHODS AND MATERIALS: From April 2001 to February 2008, 345 patients with

  2. Increased diffuse radiation fraction does not significantly accelerate plant growth

    Angert, Alon; Krakauer, Nir

    2010-05-01

    A recent modelling study (Mercado et al., 2009) claims that increased numbers of scattering aerosols are responsible for a substantial fraction of the terrestrial carbon sink in recent decades because higher diffuse light fraction enhances plant net primary production (NPP). Here we show that observations of atmospheric CO2 seasonal cycle and tree ring data indicate that the relation between diffuse light and NPP is actually quite weak on annual timescales. The inconsistency of these data with the modelling results may arise because the relationships used to quantify the enhancement of NPP were calibrated with eddy covariance measurements of hourly carbon uptake. The effect of diffuse-light fraction on carbon uptake could depend on timescale, since this effect varies rapidly as sun angle and cloudiness change, and since plants can respond dynamically over various timescales to change in incoming radiation. Volcanic eruptions, such as the eruption of Mount Pinatubo in 1991, provide the best available tests for the effect of an annual-scale increase in the diffuse light fraction. Following the Pinatubo Eruption, in 1992 and 1993, a sharp decrease in the atmospheric CO2 growth rate was observed. This could have resulted from enhanced plant carbon uptake. Mercado et al. (2009) argue that largely as a result of the (volcanic aerosol driven) increase in diffuse light fraction, NPP was elevated in 1992, particularly between 25° N-45° N where annual NPP was modelled to be ~0.8 PgC (~10%) above average. In a previous study (Angert et al., 2004) a biogeochemical model (CASA) linked to an atmospheric tracer model (MATCH), was used to show that a diffuse-radiation driven increase in NPP in the extratropics will enhance carbon uptake mostly in summer, leading to a lower CO2 seasonal minimum. Here we use a 'toy model' to show that this conclusion is general and model-independent. The model shows that an enhanced sink of 0.8 PgC, similar to that modelled by Mercado et al. (2009

  3. Neuropsychological outcome after fractionated stereotactic radiotherapy (FSRT) for base of skull meningiomas: a prospective 1-year follow-up

    Purpose: The purpose of this study was to evaluate the cognitive outcome after fractionated stereotactic radiotherapy (FSRT) in patients with base of skull meningiomas. Methods and material: A total of 40 patients with base of skull meningiomas were neuro psychologically evaluated before, after the first fraction (1.8 Gy), at the end of FSRT (n=37), 6 weeks (n=24), 6 (n=18) and 12 months (n=14) after FSRT. A comprehensive test battery including assessment of general intelligence, attention and memory functions was used. Alternate forms were used and current mood state was controlled. Results: After the first fraction a transient decline in memory function and simultaneous improvements in attention functions were observed. No cognitive deteriorations were seen during further follow-up, but increases in attention and memory functions were observed. Mood state improved after the first fraction, at the end of radiotherapy and 6 weeks after radiotherapy. Conclusion: The present data support the conclusion that the probability for the development of permanent cognitive dysfunctions appears to be very low after FSRT. The transient memory impairments on day 1 are interpreted as most likely related to an increase of a preexisting peritumoral edema, whereas the significant acute improvements in attention functions are interpreted as practice effects. An analysis of localization specific effects of radiation failed to show clear hemisphere specific cognitive changes

  4. Compliance to the prescribed dose and overall treatment time in five randomized clinical trials of altered fractionation in radiotherapy for head-and-neck carcinomas

    Purpose: To investigate compliance to the prescribed dose-fractionation schedule in five randomized controlled trials of altered fractionation in radiotherapy for head-and-neck carcinoma. Methods and Materials: Individual patient data from 2566 patients participating in the European Organization for Research and Treatment of Cancer (EORTC) 22791, EORTC 22811, EORTC 22851, Princess Margaret Hospital (PMH), and continuous hyperfractionated accelerated radiotherapy (CHART) head-and-neck trials were merged in the fractionation IMPACT (Intergroup Merger of Patient data from Altered or Conventional Treatment schedules) study database. The ideal treatment time was defined as the minimum time required to deliver a prescribed schedule. Compliance to the prescribed overall treatment time was quantified as the difference between the actual and the ideal overall time. An overall measure of compliance in an individual patient, the total dose lost (TDL), was calculated as the dose lost due to prolongation of therapy (assuming a Dprolif of 0.64 Gy/day) plus the difference between the prescribed and the actual dose given. Results: The time in excess of the ideal ranged up to 97 days (average 3.9 days), and 25% of the patients had delays of 6 days or more. World Health Organization (WHO) performance status and nodal stage had a significant effect on TDL. TDL was significantly higher in the conventional than in the altered arm of the EORTC 22851 and CHART trials. In the PMH trial, TDL was significantly higher in the hyperfractionation than in the conventional arm. Centers participating in the three EORTC trials varied significantly in their compliance. There was a significant improvement in compliance in patients treated more recently. Conclusions: Even in randomized controlled trials, compliance to the prescribed radiation therapy schedule may be relatively poor, especially after conventional fractionation. This affects the interpretation of the outcome of these trials

  5. Extracranial doses during stereotactic radiosurgery and fractionated stereotactic radiotherapy measured with thermoluminescent dosimeter in vivo

    Kim, I.H.; Lim, D.H.; Kim, S.; Hong, S.; Kim, B.K.; Kang, W-S.; Wu, H.G.; Ha, S.W.; Park, C.I. [Seoul National University College of Medicine, Department of Therapeutic Radiology (Korea)

    2000-05-01

    Recently the usage of 3-dimensional non-coplanar radiotherapy technique is increasing. We measured the extracranial dose and its distribution g the above medical procedures to estimate effect of exit doses of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) of the intracranial target lesions using a linac system developed in our hospital. Among over hundred patients who were treated with SRS or FSRT from 1995 to 1998, radiation dosimetry data of 15 cases with SRS and 20 cases with FSRT were analyzed. All patients were adults. Of SRS cases, 11 were male and 4 were female. Vascular malformation cases were 9, benign tumors were 3, and malignant tumors were 3. Of FSRT cases, males were 12 and females were 8. Primary malignant brain tumors were 5, benign tumors were 6, and metastatic brain tumors were 10. Doses were measured with lithium fluoride TLD chips (7.5% Li-6 and 92.5% Li-7; TLD-100, Harshaw/Filtrol, USA). The chips were attached patient's skin at the various extracranial locations during SRS or FSRT. For SRS, 14-25 Gy were delivered with 1-2 isocenters using 12-38 mm circular tertiary collimators with reference to 50-80% isodose line conforming at the periphery of the target lesions. For FSRT, 5-28 fractions were used to deliver 9-56 Gy to periphery with dose maximum of 10-66 Gy. Both procedures used 6 MV X-ray generated from Clinac-18 (Varian, USA). For SRS procedures, extracranial surface doses (relative doses) were 8.07{+-}4.27 Gy (0.31{+-}0.16% Mean{+-}S.D.) at the upper eyelids, 6.13{+-}4.32 Gy (0.24{+-}0.16%) at the submental jaw, 7.80{+-}5.44 Gy (0.33{+-}0.26%) at thyroid, 1.78{+-}0.64 Gy (0.07{+-}0.02%) at breast, 0.75{+-}0.38 Gy (0.03{+-}0.02%) at umbilicus, 0.40{+-}0.07 Gy (0.02{+-}0.01%) at perineum, and 0.46{+-}0.39 Gy (0.02{+-}0.01%) at scrotum. Thus the farther the distance from the brain, the less the dose to the location. In overall the doses were less than 0.3% and thus less detrimental. For FSRT procedures

  6. Extracranial doses during stereotactic radiosurgery and fractionated stereotactic radiotherapy measured with thermoluminescent dosimeter in vivo

    Recently the usage of 3-dimensional non-coplanar radiotherapy technique is increasing. We measured the extracranial dose and its distribution g the above medical procedures to estimate effect of exit doses of stereotactic radiosurgery (SRS) and fractionated stereotactic radiotherapy (FSRT) of the intracranial target lesions using a linac system developed in our hospital. Among over hundred patients who were treated with SRS or FSRT from 1995 to 1998, radiation dosimetry data of 15 cases with SRS and 20 cases with FSRT were analyzed. All patients were adults. Of SRS cases, 11 were male and 4 were female. Vascular malformation cases were 9, benign tumors were 3, and malignant tumors were 3. Of FSRT cases, males were 12 and females were 8. Primary malignant brain tumors were 5, benign tumors were 6, and metastatic brain tumors were 10. Doses were measured with lithium fluoride TLD chips (7.5% Li-6 and 92.5% Li-7; TLD-100, Harshaw/Filtrol, USA). The chips were attached patient's skin at the various extracranial locations during SRS or FSRT. For SRS, 14-25 Gy were delivered with 1-2 isocenters using 12-38 mm circular tertiary collimators with reference to 50-80% isodose line conforming at the periphery of the target lesions. For FSRT, 5-28 fractions were used to deliver 9-56 Gy to periphery with dose maximum of 10-66 Gy. Both procedures used 6 MV X-ray generated from Clinac-18 (Varian, USA). For SRS procedures, extracranial surface doses (relative doses) were 8.07±4.27 Gy (0.31±0.16% Mean±S.D.) at the upper eyelids, 6.13±4.32 Gy (0.24±0.16%) at the submental jaw, 7.80±5.44 Gy (0.33±0.26%) at thyroid, 1.78±0.64 Gy (0.07±0.02%) at breast, 0.75±0.38 Gy (0.03±0.02%) at umbilicus, 0.40±0.07 Gy (0.02±0.01%) at perineum, and 0.46±0.39 Gy (0.02±0.01%) at scrotum. Thus the farther the distance from the brain, the less the dose to the location. In overall the doses were less than 0.3% and thus less detrimental. For FSRT procedures, dose ranged 1.7 to 4.0 Gy in the

  7. Effects of conventional fractionated three dimensional conformal radiotherapy on unresectable hepatocellular carcinoma

    Objective: To investigate the efficacy and toxicity of conventional fractionated three-dimensional conformal radiotherapy (3D-CRT) on unresectable hepatocellular carcinoma(HCC). Methods: Fifty two patients with unresectable HCC, all without extrahepatic metastases, were treated by 3D-CRT conducted 5 times a week with the total radiation dose of 36-66 Gy and a daily dose of 2 Gy. The curative effect was evaluated by CT scan to observe the maximum tumor size. Survival rates,survival time, and adverse responses were recorded. Results: The total effective rate of the 52 patients was 69.2% with complete response (CR) in 2 patients and partial response (PR) in 34 patients. The incidence rate of radioactive hepatitis was 1.92%. The 1-, 2-, 3-, and 4-year survival rates were 57.7%, 34.6%, 23.1%, and 9.61% respectively, and the median survival time was 10.5 months. The 1-, 2-, 3-, and 4-year local control rates were 67%, 51.5%, 32.3%, and 2.24%, and the 1-, 2-, 3-, and 4-year distant metastasis rate were 17.2%, 23.5%, 36.7%, and 76.9% respectively. The intrahepatic metastases rate was 62.5% and 37.5% of the patients suffered from extrahepatic metastasis, including metastases of lung,bone,and retroperitoneal lymph nodes. The remission rate of the ≥50 Gy group was 76.9%, significantly higher than that of the ≤50 Gy group (46.2%, χ2=10.72, P<0.05).There was no grade 3 or 4 acute toxicity, and two patients (3.84%) developed gastric or duodenal ulcer. Conclusions: Conventional fractionated 3D-CRT evokes a rather effective response for unresectable HCC with acceptable toxicity. Radiation dose seems to be a significant prognostic factor in RT response for HCC. (authors)

  8. A prospective trial of short-fractionation radiotherapy for the palliation of liver metastases

    The purpose of this study was to prospectively examine the effectiveness and tolerability of a simple radiotherapy technique for the palliation of symptomatic liver metastases. Twenty-eight patients with symptomatic liver metastases were enrolled from seven centres, and received targeted (partial or whole) liver irradiation consisting of 10 Gy in two fractions over 2 days. Symptoms at baseline were hepatic pain (27 patients), abdominal distension (19), night sweats (12), nausea (18) and vomiting (eight). Twenty-two patients (76%) had failed previous treatment with chemotherapy, hormonal therapy and/or high-dose steroids. Symptoms and potential toxicities were prospectively assessed at the time of treatment, then 2, 6 and 10 weeks later. Individual symptom response rates were 53-66% at 2 weeks. Partial or complete global symptomatic responses were noted in 15 patients (54%) overall. The treatment was well tolerated with two patients (7%) experiencing grade 3 toxicity (one vomiting and one diarrhoea); however, four patients reported temporary worsening of pain shortly after treatment. This simple and well-tolerated treatment achieves useful palliation. Copyright (2003) Blackwell Science Pty Ltd

  9. Can exhaled NO fraction predict radiotherapy-induced lung toxicity in lung cancer patients?

    A large increase in nitric oxide fraction (FeNO) after radiotherapy (RT) for lung cancer may predict RT-induced lung toxicity. In this study, we assessed the relationships between FeNO variations and respiratory symptoms, CT scan changes or dose volume histogram (DVH) parameters after RT. We measured FeNO before RT, 4, 5, 6, 10 weeks, 4 and 7.5 months after RT in 65 lung cancer patients. Eleven lung cancer patients (17%) complained of significant respiratory symptoms and 21 (31%) had radiation pneumonitis images in >1/3 of the irradiated lung after RT. Thirteen patients (20%) showed increases in FeNO >10 ppb. The sensitivity and specificity of a >10 ppb FeNO increase for the diagnosis of RT-associated respiratory symptoms were 18% and 83%, respectively. There was no correlation between DVH parameters or CT scan changes after RT and FeNO variations. Three patients (5%) showed intriguingly strong (2 or 3-fold, up to 55 ppb) and sustained increases in FeNO at 4 and 5 weeks, followed by significant respiratory symptoms and/or radiation-pneumonitis images. Serial FeNO measurements during RT had a low ability to identify lung cancer patients who developed symptoms or images of radiation pneumonitis. However, three patients presented with a particular pattern which deserves to be investigated

  10. In vivo cell kinetic measurements in a randomized trial of continuous hyperfractionated accelerated radiotherapy with or without mitomycin C in head-and-neck cancer

    Purpose: Tumor cell repopulation is still considered to be a major cause of failure in radiotherapy. In this study, we investigated the influence of cell kinetic parameters on the outcome of patients treated in a randomized trial of accelerated fractionation, with or without mitomycin C, vs. conventional fractionation. Methods and Materials: Sixty-two patients were studied using administration of bromodeoxyuridine (BrdUrd), and cell kinetic parameters were measured using flow cytometry. The patients were treated with either 70 Gy for 7 weeks or 55.3 Gy for 17 continuous days (V-CHART) with or without 20 mg/m2 mitomycin C on day 5. Results: The potential doubling time (Tpot) and labeling index (LI) failed to provide any prognostic information with regard to local control or survival. However, the duration of the S phase (Ts) revealed patients whose tumors had a long Ts had significantly worse local control (p = 0.028) and survival (p = 0.034) irrespective of treatment. A similar trend was evident within the different treatment arms particularly associated with overall survival. Conclusions: The Ts values of head-and-neck squamous cell cancers provided prognostic information that predicted clinical outcome irrespective of treatment schedule in this study. This neglected parameter of the Tpot method might provide information related to redistribution of cells during fractionated radiotherapy

  11. Accelerated superfractionated radiotherapy for inflammatory breast carcinoma: complete response predicts outcome and allows for breast conservation

    Purpose: Chemotherapy and accelerated superfractionated radiotherapy were prospectively applied for inflammatory breast carcinoma with the intent of breast conservation. The efficacy, failure patterns, and patient tolerance utilizing this approach were analyzed. Methods and Materials: Between 1983 and 1996, 52 patients with inflammatory breast carcinoma presented to the Medical College of Virginia Hospitals of VCU and the New England Medical Center. Thirty-eight of these patients were jointly evaluated in multidisciplinary breast clinics and managed according to a defined prospectively applied treatment policy. Patients received induction chemotherapy, accelerated superfractionated radiotherapy, selected use of mastectomy, and concluded with additional chemotherapy. The majority were treated with 1.5 Gy twice daily to field arrangements covering the entire breast and regional lymphatics. An additional 18-21 Gy was then delivered to the breast and clinically involved nodal regions. Total dose to clinically involved areas was 63-66 Gy. Following chemoradiotherapy, patients were evaluated with physical examination, mammogram, and fine needle aspiration x 3. Mastectomy was reserved for those patients with evidence of persistent or progressive disease in the involved breast. All patients received additional chemotherapy. Results: Median age was 51 years. Median follow-up was 23.9 months (6-86) months. The breast preservation rate at the time of last follow-up was 74%. The treated breast or chest wall as the first site of failure occurred in only 13%, and the ultimate local control rate with the selected use of mastectomy was 74%. Ten patients underwent mastectomy, 2 of which had pathologically negative specimens despite a clinically palpable residual mass. Response to chemotherapy was predictive of treatment outcome. Of the 15 patients achieving a complete response, 87% remain locoregionally controlled without the use of mastectomy. Five-year overall survival for

  12. Quality of life in patients with oropharynx carcinomas: assessment after accelerated radiotherapy with or without chemotherapy versus radical surgery and postoperative radiotherapy

    Allal, Abdelkarim Said; Nicoucar, Kevin; Mach, Nicolas; Dulguerov, Pavel

    2003-01-01

    In oropharyngeal carcinomas, it is assumed that the effectiveness of the different treatment approaches is roughly equivalent, whereas the functional outcome after radical radiotherapy (RT) is superior to that associated with primary surgery. The aim of this study is to assess quality of life (QoL) outcomes of patients after two treatment strategies: radical surgery with postoperative RT and accelerated concomitant boost RT with or without chemotherapy.

  13. Radiotherapy

    The book is focussed on the actual knowledge on the clinical radiotherapy and radio-oncology. Besides fundamental and general contributions specific organ systems are treated in detail. The book contains the following contributions: Basic principles, radiobiological fundamentals, physical background, radiation pathology, basics and technique of brachytherapy, methodology and technique of the stereotactic radiosurgery, whole-body irradiation, operative radiotherapy, hadron therapy, hpyerthermia, combined radio-chemo-therapy, biometric clinical studies, intensity modulated radiotherapy, side effects, oncological diagnostics; central nervous system and sense organs, head-neck carcinomas, breast cancer, thorax organs, esophagus carcinoma, stomach carcinoma, pancreas carcinoma, heptabiliary cancer and liver metastases, rectal carcinomas, kidney and urinary tract, prostate carcinoma, testicular carcinoma, female pelvis, lymphatic system carcinomas, soft tissue carcinoma, skin cancer, bone metastases, pediatric tumors, nonmalignant diseases, emergency in radio-oncology, supporting therapy, palliative therapy

  14. Preoperative concurrent CBDCA chemotherapy and accelerated hyperfractionated radiotherapy for squamous cell carcinoma of the maxillary region

    Between 1994 and 2000, 28 patients with T3/T4 squamus cell carcinoma of the maxillary region (maxillary sinus, 22; maxillary gingiva, 4; maxillary bone, 1; buccal mucosa, 1) had accelerated hyperfractionated radiotherapy combined with simultaneous CBDCA chemotherapy preoperatively, at Chiba Cancer Center Hospital. The protocol consisted of combined therapy with accelerated hyperfractionated irradiation of 1.6 Gy, twice a day, to a total dose of 32.0-51.2 Gy and concurrent intra-arterial or intravenous infusion of CBDCA 20-30 mg/body/day for a cumulative total dose of 270-480 mg. After completion of the preoperative combined therapy, the clinical CR rate was 17.9%, and the good PR·CR rate was 32.1%. According to the initial findings and response to the combined therapy, all patients had maxillectomy (subtotal, 3; total, 16; extended, 9) 4 weeks after completion of the preoperative combined therapy. Postoperatively, the complete pathologic response (Ohboshi and Shimozato's classification, grade III and IV) rate was 28.6%. And the actuarial local control rate was 85.7%, with a mean follow-up of 46.2 months. Based on these results, we believe this preoperative therapy with CBDCA chemotherapy and accelerated hyperfractionated radiation is a significant choice as treatment for squamous cell cancer of the maxillary region. (author)

  15. Salvage Fractionated Stereotactic Radiotherapy with or without Chemotherapy and Immunotherapy for Recurrent Glioblastoma Multiforme: A Single Institution Experience

    Hasan, Shaakir; Chen, Eda; Lanciano, Rachelle; Yang, Jun; Hanlon, Alex; Lamond, John; Arrigo, Stephen; Ding, William; Mikhail, Michael; Ghaneie, Arezoo; Brady, Luther

    2015-01-01

    Background The current standard of care for salvage treatment of glioblastoma multiforme (GBM) is gross total resection and adjuvant chemoradiation for operable patients. Limited evidence exists to suggest that any particular treatment modality improves survival for recurrent GBM, especially if inoperable. We report our experience with fractionated stereotactic radiotherapy (fSRT) with and without chemo/immunotherapy, identifying prognostic factors associated with prolonged survival. ...

  16. A comparison of 3-D data correlation methods for fractionated stereotactic radiotherapy (FSR)

    Purpose/Objective: Stereotactic Radiosurgery is currently used to treat patients who are not good candidates for conventional neurosurgical procedures. For treatments of nonvascular tumor cells, it appears that fractionation will offer a radiological advantage between tumor and normal tissues. Therefore, Fractionated Stereotactic Radiotherapy (FSR) is preferred because it minimizes normal tissue complications and maximizes local tumor control probability. We have implemented a methodology clinically to perform the non-invasive patient repositioning technique. The 3-D data correlation method for high precision and multiple fraction stereotactic treatments has been presented. Materials and Methods: Three different optimization algorithms (Hooke and Jeeves optimization, Simplex optimization, and Simulated Annealing optimization) are evaluated to calculate the transformation parameters necessary for FSR. These algorithms are based on rigid body transformation in which the patient surfaces are considered as reference. A least-square object function is created to perform the 3-D data matching process. By minimizing the unconstrained object function value the best fit can be approached for the reference 3-D data sets. Simulation shows that these algorithms give results which are comparable to the previously published correlation algorithm (Singular Value Decomposition (SVD) method). The advantage is that these algorithms are easily understood and can be readily implemented using a personal computer. The mathematical framework provides a tool to calculate the transformation matrix which can be used to adjust patient position for fractionated treatment. Therefore, using these algorithms for a high precision fractionated treatment is possible without invasive repeat fixation device. A bite plate system was incorporated to acquire 3-D patient data. With 3-D digital camera localization device, the patient motion can be followed in real time with the system calibrated to the

  17. Integration of surgery with fractionated stereotactic radiotherapy for treatment of nonfunctioning pituitary macroadenomas

    Objective: To evaluate the efficacy of fractionated stereotactic radiotherapy (FSRT) after surgery in the management of residual or recurrent nonfunctioning pituitary adenomas with respect to tumor control and the development of complications. Methods and materials: The clinical records of patients with nonfunctioning pituitary adenomas who underwent FSRT were retrospectively analyzed. For newly diagnosed tumors, transsphenoidal surgery was performed, and, if residual tumor was identified at 3 months, FSRT was performed. If significant tumor volume persisted, transcranial surgery was performed before FSRT. We originally initiated FSRT with 2-Gy fractions to 46 Gy. We escalated the dose to 50.4 Gy thereafter. As a final modification, we dropped the daily dose to 1.8-Gy fractions delivered within 6 weeks. High-dose conformality and homogeneity was achieved with arc beam shaping and differential beam weighting. The radiographic, endocrinologic, and visual outcomes after FSRT were evaluated. Results: The 68 patients included 36 males and 32 females with an age range of 15-81 years. The median follow-up was 30 months (range, 2-82 months), and the median tumor volume was 6.2 cm3. Of the 68 patients, 20 were treated to 46 Gy and 48 to 50-52.2 Gy. Most were treated to 50.4 Gy. Eleven patients had recurrent tumors, 54 had residual tumors, and no surgery was performed in 3 patients before FSRT. We noted no radiation-induced acute or late toxicities, except for radiation-induced optic neuropathy in 2 patients. At latest follow-up, the tumor had decreased in size in 26 patients and remained stable in 41 of the 42 remaining patients. Of the 68 patients, 4 (6%) developed hypopituitarism at 6, 11, 12, and 17 months after FSRT. Reviewing available serial Humphrey visual fields, visual fields were objectively improved in 28 patients, and remained stable in 24 patients, and worsened in 2 patients. Conclusion: The findings of this analysis support the use of surgery followed by FSRT

  18. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial

    Overgaard, Jens; Hansen, Hanne Sand; Specht, Lena;

    2003-01-01

    BACKGROUND: Although head and neck cancer can be cured by radiotherapy, the optimum treatment time for locoregional control is unclear. We aimed to find out whether shortening of treatment time by use of six instead of five radiotherapy fractions per week improves the tumour response in squamous-...

  19. Five compared with six fractions per week of conventional radiotherapy of squamous-cell carcinoma of head and neck: DAHANCA 6 and 7 randomised controlled trial

    Overgaard, Jens; Hansen, Hanne Sand; Specht, Lena; Overgaard, Marie; Grau, Cai; Andersen, Elo; Bentzen, Jens Knud Daugaard; Bastholt, Lars; Hansen, Olfred; Johansen, Jørgen; Andersen, Lisbeth; Evensen, Jan F

    2003-01-01

    Although head and neck cancer can be cured by radiotherapy, the optimum treatment time for locoregional control is unclear. We aimed to find out whether shortening of treatment time by use of six instead of five radiotherapy fractions per week improves the tumour response in squamous-cell carcinoma....

  20. Effectiveness of custom neutron shielding in the maze of radiotherapy accelerators

    An investigation was performed to examine the neutron dose equivalent in a radiotherapy maze lined with a customised neutron shielding material. The accelerator investigated was a Varian Clinac 2100C/D using 18 MV photons, and the neutron shielding utilised at this centre was PremadexTM commercially available neutron shielding. Based on Monte Carlo simulations, properly installed customised neutron shielding may reduce the neutron dose equivalent by up to a factor of 8 outside the maze, depending upon the installation. In addition, it was determined that the neutron dose near the entrance to the maze may be reduced by approximately 40% by using customised neutron shielding in the maze, as compared with a facility not using this shielding. This would have a positive dose-saving effect in doorless maze designs. (author)

  1. External beam radiotherapy for palliation of painful bone metastases: pooled data bioeffect dose response analysis of dose fractionation

    Bone metastases develop in up to 70% of newly diagnosed cancer patients and result in immobility, anxiety, and depression, severely diminishing the patients quality of life. Radiotherapy is a frequently used modality for bone metastasis and has been shown to be effective in reducing metastatic bone pain and in some instances, causing tumor shrinkage or growth inhibition. There is controversy surrounding the optimal fractionation schedule and total dose of external beam radiotherapy, despite many randomized trials and overviews addressing the issue. This study was undertaken to apply BED to clinical fractionation data of radiotherapeutic management of bone metastases in order to arrive at optimum BED values for acceptable level of response rate. A computerised literature search was conducted to identify all prospective clinical studies that addressed the issue of fractionation for the treatment of bone metastasis. The results of these studies were pooled together to form the database for the analysis. A total of 4111 number of patients received radiation dose ranging from 4 to 40.5 Gy in 1 to 15 fractions with dose per fraction ranging from 2 to 10 Gy. Single fraction treatments were delivered in 2013 patients and the dose varied from 4 to 10 Gy. Multi fraction treatments were delivered in 2098 patients and the dose varied from 15 to 40.5 Gy. The biological effective dose (BED) was evaluated for each fractionation schedule using the linear quadratic model and an / value of 10 Gy. Response rate increased significantly beyond a BED value of 14.4 Gy (p < 0.01). Based on our analysis and indications from the literature about higher retreatment and fracture rate of single fraction treatments, minimum BED value of 14.4 Gy is recommended. (authors)

  2. Accelerated hypofractionated radiation therapy compared to conventionally fractionated radiation therapy for the treatment of inoperable non-small cell lung cancer

    While conventionally fractionated radiation therapy alone is an acceptable option for poor prognostic patients with unresectable stage III NSCLC, we hypothesized that accelerated hypofractionated radiotherapy will have similar efficacy without increasing toxicity. This is a retrospective analysis of 300 patients diagnosed with stage III NSCLC treated between 1993 and 2009. Patients included in the study were medically or surgically inoperable, were free of metastatic disease at initial workup and did not receive concurrent chemotherapy. Patients were categorized into three groups. Group 1 received 45 Gy in 15 fractions over 3 weeks (Accelerated Radiotherapy (ACRT)) while group 2 received 60-63 Gy (Standard Radiation Therapy 1 (STRT1)) and group 3 received > 63 Gy (Standard Radiation Therapy (STRT2)). There were 119 (39.7%) patients in the ACRT group, 90 (30.0%) in STRT1 and 91 (30.3%) in STRT2. More patients in the ACRT group had KPS ≤ 60 (p < 0.001), more commonly presented with weight loss > 5% (p = 0.002), and had stage 3B disease (p < 0.001). After adjusting for clinical variables, there were no differences in the radiation groups in terms of the patterns of local or distant tumor control or overall survival. Some benefit in relapse free survival was seen in the STRT1 group as compared to ACRT (HR = 0.65, p = 0.011). Acute toxicity profiles in the ACRT were significantly lower for grade ≥ 2 radiation dermatitis (p = 0.002), nausea/vomiting (p = 0.022), and weight loss during treatment (p = 0.020). Despite the limitations of a retrospective analysis, our experience of accelerated hypofractionated radiation therapy with 45 Gy in 15 fractions appears to be an acceptable treatment option for poor performance status patients with stage III inoperable tumors. Such a treatment regimen (or higher doses in 15 fractions) should be prospectively evaluated using modern radiation technologies with the addition of sequential high dose chemotherapy in stage III NSCLC

  3. Impact on cellular immunocompetence by late course accelerated hyperfractionation radiotherapy assisted with cisplatin in the treatment of esophageal carcinoma

    Objective: To investigate the therapeutic results of late course accelerated hyperfractionation radiotherapy (LCAHR) combined with concomitant cisplatin administration as a sensitizer, and to assess the effects on cell-mediated immunocompetence in the treatment of esophageal carcinoma. Methods: From Jan. to Nov. 199, 104 patients with squamous cell carcinoma (SCC) of the esophagus were randomized to receive LCAHR alone (Group A, 53 patients) or LCAHR plus cisplatin (Group B, 51 patients). For both groups, the same radiation technic was given with the conventional fractionation in the first 3 weeks and 1.5 Gy twice daily, a minimum inter fraction interval of 6 hours, 5 days per week in the final 2 weeks. The total dose was 60 Gy/35 fs/5 wk. For the B group patients, cisplatin was given synchronously with 20 mg once daily for 5 days in the 1 st and 5 th weeks. The CD4, CD8 and CD56 expressions in peripheral blood lymphocytes (PBL) were quantitatively assessed with flow cytometry before and during the treatment. Results: The CD4/CD8 ratio of PBL decreased significantly after treatment completion (P < 0.01 in Group A and P < 0.01 in Group B). Whereas the percentage of positive CD56 PBL increased dramatically (P < 0.01 in two groups). There were no evidence that CD expression difference had any statistical or clinical significance. Conclusion: Immunosuppression may be present on cell-mediated immuno-activity (CD4/CD8) and NK cell (CD56)immuno-enhancement may be obtainable on immuno-surveillance, when esophageal carcinoma is being treated by LCAHR with or without cisplatin

  4. Neoadjuvant short-course hyperfractionated accelerated radiotherapy (SC-HART) combined with S-1 for locally advanced rectal cancer

    The purpose of this study was to examine the safety and feasibility of a novel protocol of neoadjuvant short-course hyperfractionated accelerated radiotherapy (SC-HART) combined with S-1 for locally advanced rectal cancer. A total of 56 patients with lower rectal cancer of cT3N1M0 (Stage III b) was treated with SC-HART followed by radical surgery, and were analyzed in the present study. SC-HART was performed with a dose of 2.5 Gy twice daily, with an interval of at least 6 hours between fractions, up to a total dose of 25 Gy (25 Gy in 10 fractions for 5 days) combined with S-1 for 10 days. Radical surgery was performed within three weeks following the end of the SC-HART. The median age was 64.6 (range, 39-85) years. The median follow-up term was 16.3 (range, 2-53) months. Of the 56 patients, 53 (94.4%) had no apparent adverse events before surgery; 55 (98.2%) completed the full course of neoadjuvant therapy, while one patient stopped chemotherapy because of Grade 3 gastrointestinal toxicity (CTCAE v.3). The sphincter preservation rate was 94.6%. Downstaging was observed in 45 patients (80.4%). Adjuvant chemotherapy was administered to 43 patients (76.8%). The local control rate, disease-free survival rate and disease-specific survival rate were 100%, 91.1% and 100%, respectively. To conclude, SC-HART combined with S-1 for locally advanced rectal cancer was well tolerated and produced good short-term outcomes. SC-HART therefore appeared to have a good feasibility for use in further clinical trials. (author)

  5. Neoadjuvant short-course hyperfractionated accelerated radiotherapy (SC-HART) combined with S-1 for locally advanced rectal cancer.

    Doi, Hiroshi; Beppu, Naohito; Odawara, Soichi; Tanooka, Masao; Takada, Yasuhiro; Niwa, Yasue; Fujiwara, Masayuki; Kimura, Fumihiko; Yanagi, Hidenori; Yamanaka, Naoki; Kamikonya, Norihiko; Hirota, Shozo

    2013-11-01

    The purpose of this study was to examine the safety and feasibility of a novel protocol of neoadjuvant short-course hyperfractionated accelerated radiotherapy (SC-HART) combined with S-1 for locally advanced rectal cancer. A total of 56 patients with lower rectal cancer of cT3N1M0 (Stage III b) was treated with SC-HART followed by radical surgery, and were analyzed in the present study. SC-HART was performed with a dose of 2.5 Gy twice daily, with an interval of at least 6 hours between fractions, up to a total dose of 25 Gy (25 Gy in 10 fractions for 5 days) combined with S-1 for 10 days. Radical surgery was performed within three weeks following the end of the SC-HART. The median age was 64.6 (range, 39-85) years. The median follow-up term was 16.3 (range, 2-53) months. Of the 56 patients, 53 (94.4%) had no apparent adverse events before surgery; 55 (98.2%) completed the full course of neoadjuvant therapy, while one patient stopped chemotherapy because of Grade 3 gastrointestinal toxicity (CTCAE v.3). The sphincter preservation rate was 94.6%. Downstaging was observed in 45 patients (80.4%). Adjuvant chemotherapy was administered to 43 patients (76.8%). The local control rate, disease-free survival rate and disease-specific survival rate were 100%, 91.1% and 100%, respectively. To conclude, SC-HART combined with S-1 for locally advanced rectal cancer was well tolerated and produced good short-term outcomes. SC-HART therefore appeared to have a good feasibility for use in further clinical trials. PMID:23658415

  6. Procedure to measure the neutrons spectrum around a lineal accelerator for radiotherapy

    An experimental procedure was developed, by means of Bonner spheres, to measure the neutrons spectrum around Linacs of medical use that only requires of a single shot of the accelerator; to this procedure we denominate Planetary or Isocentric method. One of the problems associated to the neutrons spectrum measurement in a radiotherapy room with lineal accelerator is because inside the room a mixed, intense and pulsed radiation field takes place affecting the detection systems based on active detector; this situation is solved using a passive detector. In the case of the Bonner spheres spectrometer the active detector has been substituted by activation detectors, trace detectors or thermoluminescent dosimeters. This spectrometer uses several spheres that are situated one at a time in the measurement point, this way to have the complete measurements group the accelerator should be operated, under the same conditions, so many times like spheres have the spectrometer, this activity can consume a long time and in occasions due to the work load of Linac to complicate the measurement process too. The procedure developed in this work consisted on to situate all the spectrometer spheres at the same time and to make the reading by means of a single shot, to be able to apply this procedure, is necessary that before the measurements two characteristics are evaluated: the cross-talking of the spheres and the symmetry conditions of the neutron field. This method has been applied to determine the photo-neutrons spectrum produced by a lineal accelerator of medical use Varian ix of 15 MV to 100 cm of the isocenter located to 5 cm of depth of a solid water mannequin of 30 x 30 x 15 cm. The spectrum was used to determine the total flow and the environmental dose equivalent. (Author)

  7. Quality of life assessment in advanced non-small-cell lung cancer patients undergoing an accelerated radiotherapy regimen: report of ECOG study 4593

    Purpose: To prospectively evaluate the quality of life (QOL) before, at completion, and after therapy for patients receiving an accelerated fractionation schedule of radiotherapy for advanced, unresectable non-small-cell lung cancer in a Phase II multi-institutional trial. Methods and Materials: The Functional Assessment of Cancer Therapy-Lung (FACT-L) patient questionnaire was used to score the QOL in patients enrolled in the Eastern Cooperative Oncology Group Phase II trial (ECOG 4593) of hyperfractionated accelerated radiotherapy in non-small-cell lung cancer. Radiotherapy (total dose 57.6 Gy in 36 fractions) was delivered during 15 days, with three radiation fractions given each treatment day. The protocol was activated in 1993, and 30 patients had accrued by November 1995. The FACT-L questionnaire was administered at study entry (baseline), on the last day of radiotherapy (assessment 2), and 4 weeks after therapy (assessment 3). The FACT-L includes scores for physical, functional, emotional, and social well-being (33 items), and a subscale of lung cancer symptoms (10 additional items). The summation of the physical, functional, and lung cancer symptom subscales (21 items) constitutes the Trial Outcome Index (TOI), considered the most clinically relevant outcome measure in lung cancer treatment trials. Results: The FACT-L completion rates at the designated study time points were as follows: baseline, 30 of 30 (100%); assessment 2, 29 (97%) of 30; and assessment 3, 24 (80%) of 30. At treatment completion, statistically significant declines in QOL scores were noted, compared with baseline for physical and functional well-being. Emotional well-being scores improved at both assessment 2 and assessment 3. The physical and functional scores returned approximately to baseline values at assessment 3. The change in TOI score was evaluated as a function of the clinical response to treatment, toxicity grade, and survival; no clear association was noted. A trend for the

  8. Intracranial tumours after external fractionated radiotherapy for pituitary adenomas in northern Sweden

    Norberg, Lars; Johansson, Robert; Rasmuson, Torgny (Dept. of Radiation Sciences, Oncology, Umeaa Univ., Umeaa (Sweden)), E-mail: Torgny.Rasmuson@onkologi.umu.se

    2010-11-15

    We analysed the incidence of second primary intracranial tumours in patients with pituitary adenomas treated with radiotherapy compared to the risk of patients not exposed to irradiation and to the general population. Materials and methods. This retrospective cohort study includes 298 patients with pituitary adenomas that received radiotherapy to the pituitary from 1960 to 2007. The patients were recruited from the Cancer Registry of northern Sweden and the local radiotherapy-registry of the Univ. Hospital in Umeaa. Only patients with =12 months follow-up after diagnosis of pituitary adenoma were included. A cohort of 131 patients with pituitary adenomas not treated with radiotherapy was used as reference. Standard incidence ratios (SIR) between observed and expected number of second primary intracranial tumours were calculated. Results. The median observation time after diagnosis of pituitary adenoma in 298 patients treated with radiotherapy was 14 years, and the total number of person-years at risk was 4 784. Six (2.0%) of the patients developed second primary intracranial tumours between 7 and 31 years after radiotherapy. Two patients had gliomas and four had meningiomas. The expected number of intracranial tumours was 1.15 giving a SIR of 5.20 (95% CI 1.90-11.31). No significant correlations were found between radiation technique or administered dose and the risk of developing a second primary intracranial tumour. The cumulative risk for second intracranial tumours at 10 and 20 years was 1.3%. Patients not treated with radiotherapy were followed 1 601 years and no second primary intracranial tumour occurred. Discussion. The results indicate an increased risk of second primary intracranial tumours in patients treated with radiotherapy for pituitary adenomas, compared to patients not exposed to irradiation and to the general population. Meningiomas were more frequent than gliomas and the median time interval between radiotherapy and second intracranial tumour was

  9. Radiotherapy

    The need for radiotherapy research is exemplified by the 100,000 cancer patients who will fail treatment locally and/or regionally annually for the next several years but who would benefit from better local treatment modalities. Theoretically, all of the areas of investigation discussed in this projection paper have the potential to significantly improve local-regional treatment of cancer by radiotherapy alone or in combination with other modalities. In many of the areas of investigation discussed in this paper encouraging results have been obtained in cellular and animal tumor studies and in limited studies in humans as well. In the not too distant future the number of patients who would benefit from better local control may increase by tens of thousands if developments in chemotherapy and/or immunotherapy provide a means to eradicate disseminated microscopic foci of cancer. Thus the efforts to improve local-regional control take on even greater significance

  10. A low-dose hypersensitive keratinocyte loss in response to fractionated radiotherapy is associated with growth arrest and apoptosis

    Background and purpose: The existence of a hypersensitive radiation response to doses below 0.5 Gy is well established for many normal and tumour cell lines. There is also evidence for hypersensitive tissue responses in acute skin damage and kidney function in mice. Recently, we have identified that a hypersensitive γH2AX response exists in human epidermis. The aim of this study was to investigate the dose-response of basal clonogenic keratinocytes in normal skin to fractionated radiotherapy with low dose fractions. Materials: Skin punch biopsies were taken before and during radiotherapy from prostate cancer patients undergoing radiotherapy with a curative intent. Areas of epidermis receiving daily fractions of approximately 0.1, 0.2, 0.45 and 1.1 Gy were biopsied on the same occasion to determine dose-response for each individual patient. In total, 89 cases were assessed either at 1, 2.5, 3, 4, 5 or 6.5 weeks in the treatment course. Biopsy sampling of another 25 patients was performed from areas receiving 0.45 and 1.1 Gy per fraction at regular intervals throughout the 7-week treatment period. The number of basal keratinocytes per mm of the interfollicular epidermis was determined. The DNA damage response of the basal keratinocytes was investigated by immunohistochemical staining for molecular markers of growth arrest, mitosis and cell death, using p21, phospho-H3 and γH2AX, respectively. The number of stained keratinocytes in the basal layer was counted manually. The p21 staining was also quantified by digital image analysis. Results: The individual dose-response relationships revealed a low-dose hypersensitivity for reduction of basal keratinocytes throughout 7 weeks of radiotherapy (p < 0.01). Growth arrest and cell proliferation assessed at 1 week and 6.5 weeks showed, in both cases, hypersensitive increase of p21 (p < 0.01) and hypersensitive depression of mitosis (p < 0.01). Manual counting and digital image analysis of p21 showed good agreement. Cell

  11. Cyberknife fractionated radiotherapy for adrenal metastases: Preliminary report from a multispecialty Indian cancer care center

    Trinanjan Basu; Tejinder Kataria; Ashu Abhishek; Deepak Gupta; Shikha Goyal; Shyam S. Bisht; Karthick K Payaliappan; Vikraman Subhramani

    2015-01-01

    Purpose: Metastasis to adrenal gland from lung, breast, and kidney malignancies are quite common. Historically radiotherapy was intended for pain palliation. Recent studies with stereotactic body radiotherapy (SBRT) including Cyberknife robotic radiosurgery aiming at disease control brings about encouraging results. Here we represent the early clinical experience with Cyberknife stereotactic system from an Indian cancer care center. The main purpose of this retrospective review is to serve as...

  12. 20 Gy in five fractions versus 8 Gy in one fraction in palliative radiotherapy of bone metastases. A multicenter randomized study

    Bone is the most common site of cancer dissemination and 70% of patients with bone lesions present with pain requiring therapy. Radiotherapy plays a major role in the treatment of painful bone metastases, but optimal dose and fractionation regime remain debatable. To address this issue a randomized trial comparing a single dose of 8 Gy vs. 20 Gy in 5 fractions was performed and enrolled 115 patients with 146 metastatic lesions. Pain relief was assessed longitudinally based on a pain questionnaire, in which patients were supposed to record their pain intensity using a 4-point scale (none, mild, moderate, severe), as well as doses and types of analgesic drugs taken. Questionnaires were collected prior to treatment, 2, 4 and 8 weeks after treatment completion and every 4 weeks thereafter. Complete pain relief was achieved in 23 patients (36%) treated with one fraction of 8 Gy and in 24 patients (39%) who received 20 Gy in 5 fractions (p=0.96). Remarkable pain relief after one fraction and 5 fractions was achieved in 21 patients (33%) and 18 patients (29%), respectively (p=0.89) and moderate pain relief in 9 patients (14%) and 10 patients (16%), respectively (p=0.94). There was also no difference between the two treatment regimes according to duration of pain relief (medians of 8 and 10 months, respectively). Single fraction of 8 Gy is equally effective to a fractionated schedule in the treatment of painful bone metastases, and should be recommended as standard care in the majority of patients. (author)

  13. Randomized trial of palliative two-fraction versus more intensive 13-fraction radiotherapy for patients with inoperable non-small cell lung cancer and good performance status

    Macbeth, F.R. [Glasgow Western Infirmary (United Kingdom); Bolger, J.J. [Weston Park Hospital, Sheffield (United Kingdom); Hopwood, P. [Christie Hospital and Holt Radium Inst., Manchester (United Kingdom); Bleehen, N.M. [Addenbrooke`s Hospital, Cambridge (United Kingdom); Cartmell, J.; Girling, D.J.; Machin, D.; Stephens, R.J.; Bailey, A.J. [Medical Research Council, Cambridge (United Kingdom)

    1996-11-01

    In patients with non-metastatic but inoperable non-small lung cancer that is locally too extensive for radical radiotherapy (RT), but who have good performance status, it is important to determine whether thoracic RT should be the minimum that is required to palliate thoracic symptoms or whether treatment should be more intensive, with the aim of prolonging survival. A total of 509 such patients from 11 centres in the UK between November 1989 and October 1992 were admitted to a trial comparing palliative versus more intensive RT with respect to survival and quality of life. They were allocated at random to receive thoracic RT with either 17 Gy in two fractions (F2) 1 week apart (255 patients) or 39 Gy in 13 fractions (F13) 5 days per week (254 patients). (author).

  14. Randomised phase I/II study to evaluate carbon ion radiotherapy versus fractionated stereotactic radiotherapy in patients with recurrent or progressive gliomas: The CINDERELLA trial

    Haselmann Renate

    2010-10-01

    Full Text Available Abstract Background Treatment of patients with recurrent glioma includes neurosurgical resection, chemotherapy, or radiation therapy. In most cases, a full course of radiotherapy has been applied after primary diagnosis, therefore application of re-irradiation has to be applied cauteously. With modern precision photon techniques such as fractionated stereotactic radiotherapy (FSRT, a second course of radiotherapy is safe and effective and leads to survival times of 22, 16 and 8 months for recurrent WHO grade II, III and IV gliomas. Carbon ions offer physical and biological characteristics. Due to their inverted dose profile and the high local dose deposition within the Bragg peak precise dose application and sparing of normal tissue is possible. Moreover, in comparison to photons, carbon ions offer an increased relative biological effectiveness (RBE, which can be calculated between 2 and 5 depending on the GBM cell line as well as the endpoint analyzed. Protons, however, offer an RBE which is comparable to photons. First Japanese Data on the evaluation of carbon ion radiation therapy for the treatment of primary high-grade gliomas showed promising results in a small and heterogeneous patient collective. Methods Design In the current Phase I/II-CINDERELLA-trial re-irradiation using carbon ions will be compared to FSRT applied to the area of contrast enhancement representing high-grade tumor areas in patients with recurrent gliomas. Within the Phase I Part of the trial, the Recommended Dose (RD of carbon ion radiotherapy will be determined in a dose escalation scheme. In the subsequent randomized Phase II part, the RD will be evaluated in the experimental arm, compared to the standard arm, FSRT with a total dose of 36 Gy in single doses of 2 Gy. Primary endpoint of the Phase I part is toxicity. Primary endpoint of the randomized part II is survival after re-irradiation at 12 months, secondary endpoint is progression-free survival. Discussion The

  15. Simultaneous optimization of dose distributions and fractionation schemes in particle radiotherapy

    Unkelbach, J.; Zeng, C.; Engelsman, M.

    2013-01-01

    Purpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities. Meth

  16. Adjuvant or radical fractionated stereotactic radiotherapy for patients with pituitary functional and nonfunctional macroadenoma

    Weber Damien C

    2011-12-01

    Full Text Available Abstract Purpose To evaluate the efficacy and toxicity of stereotactic fractionated radiotherapy (SFRT for patients with pituitary macroadenoma (PMA. Methods and Materials Between March 2000 and March 2009, 27 patients (male to female ratio, 1.25 with PMA underwent SFRT (median dose, 50.4 Gy. Mean age of the patients was 56.5 years (range, 20.3 - 77.4. In all but one patient, SFRT was administered for salvage treatment after surgical resection (transphenoidal resection in 23, transphenoidal resection followed by craniotomy in 2 and multiple transphenoidal resections in another patient. In 10 (37% patients, the PMAs were functional (3 ACTH-secreting, 3 prolactinomas, 2 growth hormone-secreting and 2 multiple hormone-secretion. Three (11.1% and 9 (33.3% patients had PMA abutting and compressing the optic chiasm, respectively. Mean tumor volume was 2.9 ± 4.6 cm3. Eighteen (66.7% patients had hypopituitarism prior to SFRT. The mean follow-up period after SFRT was 72.4 ± 37.2 months. Results Tumor size decreased for 6 (22.2% patients and remained unchanged for 19 (70.4% other patients. Two (7.4% patients had tumor growth inside the prescribed treatment volume. The estimated 5-year tumor growth control was 95.5% after SFRT. Biochemical remission occurred in 3 (30% patients with functional PMA. Two patients with normal anterior pituitary function before SFRT developed new deficits 25 and 65 months after treatment. The 5-year survival without new anterior pituitary deficit was thus 95.8%. Five patients with visual field defect had improved visual function and 1 patient with no visual defect prior to SFRT, but an optic chiasm abutting tumor, had a decline in visual function. The estimated 5-year vision and pituitary function preservation rates were 93.2% and 95.8%, respectively. Conclusions SFRT is a safe and effective treatment for patients with PMA, although longer follow-up is needed to evaluate long-term outcomes. In this study, approximately 1

  17. Radiobiological Characterization of Two Photon-Beam Energies 6 and 15 MV used in Radiotherapy From Linear Accelerator

    The main objective of this study is to perform radiobiological characterization of two different photon beam energies, 6 MV and 15 MV, from linear accelerator used in radiotherapy, with special regard to late effects of radiation. Two end-points, namely cell survival and micronucleus induction were used for the characterization. Chinese hamster V 79 lung fibroblast cell line to prepare cell culture and to perform the innervate experiments. chromosomes number was counted and found to be 22 chromosomes per cell, this result is in complete agreement with expected 11 pairs of chromosomes representing the genome of this species. Cells were kept in confluent growth for two days and then exposed to two photon beam energies, 6 and 15 MV respectively. Different dose rates were used for the two beam energies, 0.25, 0.5, 1.0, 2.0, 4.0, 7.0 Gy. Cells were counted immediately after irradiation and re seeded, the seeded number of cells was calculated to the dose rate used. Another set of unirradiated cells treated the same as the experimental set was used as a control group. The plating efficiency (PE) was calculated for the control group, then cells were incubated at 37oC for 6 days to construct the survival curve, five samples were counted per dose and the mean was calculated. The two survival curves are similar for photon beam energies (6 and 15 MV) and the surviving fraction was decreased with dose rate. The two curves showed similar values of α and β parameters, this result is expected for the same radiation type (X-ray). For the micronuclei assay three samples for each dose were seeded and incubated at 37oC for 24 hours then Cytochalasin-B was added to block cells in cytokinesis phase of the mitosis. The micronuclei number was counted and plotted with dose. A significant positive correlation was found between dose and micronuclei frequency (P=0.00), moreover, the micronuclei frequency is relatively higher with 15 MV compared with 6 MV energy. This indicates the presence

  18. Clinical role of18F-FDG PET/CT-based simultaneous modulated accelerated radiotherapy treatment plan-ning for locally advanced nasopharyngeal carcinoma

    Jianshe Wang; Tianyou Tang Co-first author; Jing Xu; Andrew Z Wang; Liang Li; Junnian Zheng; Longzhen Zhang

    2015-01-01

    Objective The aim of this study was to compare the long-term local control, overal survival, and late toxicities of positron emission tomography/computed tomography (PET/CT)-guided dose escalation radio-therapy versus conventional radiotherapy in the concurrent chemoradiotherapy treatment of local y ad-vanced nasopharyngeal carcinoma (NPC). Methods A total of 48 patients with stage III–IVa NPC were recruited and randomly administered PET/CT-guided dose escalation chemoradiotherapy (group A) or conventional chemoradiotherapy (group B). The dose-escalation radiotherapy was performed using the simultaneous modulated accelerated radiotherapy technique at prescribed doses of 77 gray (Gy) in 32 fractions (f) to the gross target volume (GTV): planning target volume (PTV) 1 received 64 Gy/32 f, while PTV2 received 54.4 Gy/32 f. Patients in group B received uniform-dose intensity-modulated radiotherapy, PTV1 received 70 Gy/35 f and PTV2 received 58 Gy/29 f. Concurrent chemotherapy consisted of cisplatin [20 mg/m2 intravenous (IV) on days 1–4] and docetaxel (75 mg/m2 IV on days 1 and 8) administered during treatment weeks 1 and 4. Al patients received 2–4 cycles of adjuvant chemotherapy of the same dose and drug regimen. Results The use of fluorine-18-fluorodeoxyglucose (18F-FDG) PET/CT significantly reduced the treat-ment volume delineation of the GTV in 83.3% (20/24) of patients. The 5-year local recurrence-free survival rates of the two groups were 100% and 79.2%, respectively (P = 0.019). The 5-year disease free survival (DFS) rates were 95.8% and 75.0%, respectively (P = 0.018). The 5-year local progression-free survival and DFS rates were significantly dif erent. The 5-year overal survival (OS) rates were 95.8% and 79.2%, re-spectively. Dif erences in OS improvement were insignificant (P = 0.079). Late toxicities were similar in the two groups. The most common late toxicities of the two arms were grade 1–2 skin dystrophy, xerostomia, subcutaneous fibrosis, and

  19. Patient position reproducibility in fractionated stereotactically guided conformal radiotherapy using the BrainLab trademark mask system

    Purpose: Dedicated mask systems nowadays allow the use of stereotactic radiotherapy in fractionated regimes, therefore combining the advantages of high precision radiotherapy with the biological benefit of fractionation. Therefore the knowledge of institution specific isocenter accuracy is essential for decision-making about margins to be allowed to form the planning target volume. Patients and Method: Measurements of isocenter deviations during fractionated treatments were performed in 33 patients using the simulator Simulix-xy (Oldelft) in connection with the BrainLab trademark angiographic localizer-box as well as port-films. In both cases repeated images were overlaid by use of anatomical landmarks with a methodical accuracy in the order of 0.5 mm. Results: Both methods yield random isocenter deviations of less then 2 mm (standard deviation) in all three directions and no significant systematic deviations. These values are in the order of the accuracy of the method, obtained by comparison of two independent investigators, as well as they are comparable with the literature. Conclusions: The accuracy of less than 2 mm indicates safety margins of 3-4 mm as sufficient for clinical routine to cover the target in 95.5% of all set-ups (2 SD). (orig.)

  20. Tumor Localization Using Cone-Beam CT Reduces Setup Margins in Conventionally Fractionated Radiotherapy for Lung Tumors

    Purpose: To determine whether setup margins can be reduced using cone-beam computed tomography (CBCT) to localize tumor in conventionally fractionated radiotherapy for lung tumors. Methods and Materials: A total of 22 lung cancer patients were treated with curative intent with conventionally fractionated radiotherapy using daily image guidance with CBCT. Of these, 13 lung cancer patients had sufficient CBCT scans for analysis (389 CBCT scans). The patients underwent treatment simulation in the BodyFix immobilization system using four-dimensional CT to account for respiratory motion. Daily alignment was first done according to skin tattoos, followed by CBCT. All 389 CBCT scans were retrospectively registered to the planning CT scans using automated soft-tissue and bony registration; the resulting couch shifts in three dimensions were recorded. Results: The daily alignment to skin tattoos with no image guidance resulted in systematic (Σ) and random (σ) errors of 3.2-5.6 mm and 2.0-3.5 mm, respectively. The margin required to account for the setup error introduced by aligning to skin tattoos with no image guidance was approximately 1-1.6 cm. The difference in the couch shifts obtained from the bone and soft-tissue registration resulted in systematic (Σ) and random (σ) errors of 1.5-4.1 mm and 1.8-5.3 mm, respectively. The margin required to account for the setup error introduced using bony anatomy as a surrogate for the target, instead of localizing the target itself, was 0.5-1.4 cm. Conclusion: Using daily CBCT soft-tissue registration to localize the tumor in conventionally fractionated radiotherapy reduced the required setup margin by up to approximately 1.5 cm compared with both no image guidance and image guidance using bony anatomy as a surrogate for the target.

  1. Pain relief and quality of life following radiotherapy for bone metastases: a randomised trial of two fractionation schedules

    Background: The optimum dose and fractionation schedule for the palliative irradiation of painful bone metastases is controversial. Purpose: To compare the efficacy, side-effects and effect on quality of life of two commonly used radiotherapy schedules in the management of painful bone metastases. Materials and methods: In a prospective trial, 280 patients were randomised to receive either a single 10 Gy treatment or a course of 22.5 Gy in five daily fractions for the relief of localised metastatic bone pain. Results: Response rates have been calculated from 240 assessable treated sites of pain. The overall response rates were 83.7% (single treatment) and 89.2% (five fractions). The complete response rates were 38.8% (single treatment) and 42.3% (five fractions). The median duration of pain control was 13.5 weeks (single treatment) and 14.0 weeks (five fractions). None of these differences was statistically significant. There were no differences between the groups in the effect of treatment on a variety of quality of life parameters. Conclusions: It is concluded that a single 10 Gy treatment is as effective as a course of 22.5 Gy in five fractions in the management of painful bone metastases

  2. 18F-EF5 PET Is Predictive of Response to Fractionated Radiotherapy in Preclinical Tumor Models

    Rehan Ali; Sandeep Apte; Marta Vilalta; Murugesan Subbarayan; Zheng Miao; Chin, Frederick T.; Graves, Edward E.

    2015-01-01

    We evaluated the relationship between pre-treatment positron emission tomography (PET) using the hypoxic tracer 18F-[2-(2-nitro-1-H-imidazol-1-yl)-N-(2,2,3,3,3- pentafluoropropyl) acetamide] (18F-EF5) and the response of preclinical tumor models to a range of fractionated radiotherapies. Subcutaneous HT29, A549 and RKO tumors grown in nude mice were imaged using 18F-EF5 positron emission tomography (PET) in order to characterize the extent and heterogeneity of hypoxia in these systems. Based ...

  3. 3H-DOPA: Distribution in the subcellular fractions of melanomas and its perspective use in radiotherapy

    The incorporation of 3H-DOPA (740 MBq per mouse) into the subcellular fractions of Harding-Passey's melanoma was studied simultaenously with tyrosinase activity determination up to 2 days. The kinetics of 3H-DOPA was checked by means of electron histoautoradiography 30 min, 1, 3 and 24 hours, respectively, after injection. Maximum incorporation of 3H-DOPA was found in mitochondria and melanosomes as well as high tyrosinase activity. DOPA is supposed to be used for internal radiotherapy of melanomas. (author)

  4. Determining inter-fractional motion of the uterus using 3D ultrasound imaging during radiotherapy for cervical cancer

    Baker, Mariwan; Jensen, Jørgen Arendt; Behrens, Claus F.

    2014-01-01

    Uterine positional changes can reduce the accuracy of radiotherapy for cervical cancer patients. The purpose of this study was to; 1) Quantify the inter-fractional uterine displacement using a novel 3D ultrasound (US) imaging system, and 2) Compare the result with the bone match shift determined...... by Cone-Beam CT (CBCT) imaging.Five cervical cancer patients were enrolled in the study. Three of them underwent weekly CBCT imaging prior to treatment and bone match shift was applied. After treatment delivery they underwent a weekly US scan. The transabdominal scans were conducted using a Clarity US...

  5. SU-F-BRF-12: Investigating Dosimetric Effects of Inter-Fraction Deformation in Lung Cancer Stereotactic Body Radiotherapy (SBRT)

    Purpose: We studied dosimetric effects of inter-fraction deformation in lung stereotactic body radiotherapy (SBRT), in order to investigate the necessity of adaptive re-planning for lung SBRT treatments. Methods: Six lung cancer patients with different treatment fractions were retrospectively investigated. All the patients were immobilized and localized with a stereotactic body frame and were treated under cone-beam CT (CBCT) image guidance at each fraction. We calculated the actual delivered dose of the treatment plan using the up-to-date patient geometry of each fraction, and compared the dose with the intended plan dose to investigate the dosimetric effects of the inter-fraction deformation. Deformable registration was carried out between the treatment planning CT and the CBCT of each fraction to obtain deformed planning CT for more accurate dose calculations of the delivered dose. The extent of the inter-fraction deformation was also evaluated by calculating the dice similarity coefficient between the delineated structures on the planning CT and those on the deformed planning CT. Results: The average dice coefficients for PTV, spinal cord, esophagus were 0.87, 0.83 and 0.69, respectively. The volume of PTV covered by prescription dose was decreased by 23.78% on average for all fractions and all patients. For spinal cord and esophagus, the volumes covered by the constraint dose were increased by 4.57% and 3.83%. The maximum dose was also increased by 4.11% for spinal cord and 4.29% for esophagus. Conclusion: Due to inter-fraction deformation, large deterioration was found in both PTV coverage and OAR sparing, which demonstrated the needs for adaptive re-planning of lung SBRT cases to improve target coverage while reducing radiation dose to nearby normal tissues

  6. Predicting Rectal and Bladder Overdose During the Course of Prostate Radiotherapy Using Dose-Volume Data From Initial Treatment Fractions

    Purpose: To evaluate whether information from the initial fractions can determine which patients are likely to consistently exceed their planning dose–volume constraints during the course of radiotherapy for prostate cancer. Methods and Materials: Ten patients with high-risk prostate cancer were treated with helical tomotherapy to a dose of 60 Gy in 20 fractions. The prostate, rectum, and bladder were recontoured on their daily megavoltage computed tomography scans and the dose was recalculated. The bladder and rectal volumes (in mL) receiving ≥100% and ≥70% of the prescribed dose in each fraction and in the original plans were recorded. A fraction for which the difference between planned and delivered was more than 2 mL was considered a volume failure. Similarly if the difference in the planned and delivered maximum dose (Dmax) was ≥1% for the rectum and bladder, the fraction was considered a dose failure. Each patient’s first 3 to 5 fractions were analyzed to determine if they correctly identified those patients who would consistently fail (i.e., ≥20% of fractions) during the course of their radiotherapy. Results: Six parameters were studied; the rectal volume (RV) and bladder volumes (BV) (in mL) received ≥100% and ≥70% of the prescribed dose and maximum dose to 2 mL of the rectum and bladder. This was given by RV100, RV70, BV100, BV70, RDmax, and BDmax, respectively. When more than 1 of the first 3 fractions exceed the planning constraint as defined, it accurately predicts consistent failures through the course of the treatment. This method is able to correctly identify the consistent failures about 80% (RV70, BV100, and RV100), 90% (BV70), and 100% (RDmax and BDmax) of the times. Conclusions: This study demonstrates the feasibility of a method accurately identifying patients who are likely to consistently exceed the planning constraints during the course of their treatment, using information from the first 3 to 5 fractions.

  7. Determining optimization of the initial parameters in Monte Carlo simulation for linear accelerator radiotherapy

    Chang, Kwo-Ping; Wang, Zhi-Wei; Shiau, An-Cheng

    2014-02-01

    Monte Carlo (MC) method is a well known calculation algorithm which can accurately assess the dose distribution for radiotherapy. The present study investigated all the possible regions of the depth-dose or lateral profiles which may affect the fitting of the initial parameters (mean energy and the radial intensity (full width at half maximum, FWHM) of the incident electron). EGSnrc-based BEAMnrc codes were used to generate the phase space files (SSD=100 cm, FS=40×40 cm2) for the linac (linear accelerator, Varian 21EX, 6 MV photon mode) and EGSnrc-based DOSXYZnrc code was used to calculate the dose in the region of interest. Interpolation of depth dose curves of pre-set energies was proposed as a preliminary step for optimal energy fit. A good approach for determination of the optimal mean energy is the difference comparison of the PDD curves excluding buildup region, and using D(10) as a normalization method. For FWHM fitting, due to electron disequilibrium and the larger statistical uncertainty, using horn or/and penumbra regions will give inconsistent outcomes at various depths. Difference comparisons should be performed in the flat regions of the off-axis dose profiles at various depths to optimize the FWHM parameter.

  8. Retrospective study on therapy options of brain metastases surgery versus stereotactic radiotherapy with the linear accelerator

    Fortunati, M K S

    2001-01-01

    Background: in the therapy of brain metastases there has been a great progress in the last years. It was shown, that more aggressive therapies can not only extend the survival of the patients, but also improve quality of life. The major question of this study was, whether surgery or stereotactic radiotherapy with the linear accelerator show better results in behalf of the survival. Beside this major question many parameters regarding the patient or his primary cancer were examined. Methods: from the 1st of January 1995 until the 30th of June 2000 233 patients with one or more brain metastases have been treated in the Wagner Jauregg Landesnervenkrankenhaus Oberoesterreich (WJ LNKH OeO). The LINAC has been established on the 1st of July 1997. The patients have been distributed in three groups: 1. LINAC-group: 81 patients have been treated from the 1st of July 1997 until the 30th of June 2000 with the LINAC. 2. Surgery-group: 81 patients have been operated from the 1st of July 1997 until the 30th June 2000. 3 Co...

  9. Tcp and NTCP radiobiological models: conventional and hypo fractionated treatments in radiotherapy

    Astudillo V, A.; Paredes G, L. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Resendiz G, G.; Posadas V, A. [Hospital Angeles Lomas, Av. Vialidad de la Barranca s/n, Col. Valle de las Palmas, 52763 Huixquilucan de Degallado, Estado de Mexico (Mexico); Mitsoura, E. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan, Esq. Jesus Carranza s/n, Col. Moderna de la Cruz, 50180 Toluca, Estado de Mexico (Mexico); Rodriguez L, A.; Flores C, J. M., E-mail: armando.astudillo@inin.gob.mx [Hospital Medica Sur, Puente de Piedra 150, Col. Toriello Guerra, 14050 Tlalpan, Mexico D. F. (Mexico)

    2015-10-15

    The hypo and conventional fractionated schedules performance were compared in terms of the tumor control and the normal tissue complications. From the records of ten patients, treated for adenocarcinoma and without mastectomy, the dose-volume histogram was used. Using radiobiological models the probabilities for tumor control and normal tissue complications were calculated. For both schedules the tumor control was approximately the same. However, the damage in the normal tissue was larger in conventional fractionated schedule. This is important because patients assistance time to their fractions (15 fractions/25 fractions) can be optimized. Thus, the hypo fractionated schedule has suitable characteristics to be implemented. (Author)

  10. Tcp and NTCP radiobiological models: conventional and hypo fractionated treatments in radiotherapy

    The hypo and conventional fractionated schedules performance were compared in terms of the tumor control and the normal tissue complications. From the records of ten patients, treated for adenocarcinoma and without mastectomy, the dose-volume histogram was used. Using radiobiological models the probabilities for tumor control and normal tissue complications were calculated. For both schedules the tumor control was approximately the same. However, the damage in the normal tissue was larger in conventional fractionated schedule. This is important because patients assistance time to their fractions (15 fractions/25 fractions) can be optimized. Thus, the hypo fractionated schedule has suitable characteristics to be implemented. (Author)