WorldWideScience

Sample records for accelerated foxp2 evolution

  1. Accelerated FoxP2 evolution in echolocating bats.

    Li, Gang; Wang, Jinhong; Rossiter, Stephen J; Jones, Gareth; Zhang, Shuyi

    2007-01-01

    FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure) at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination. PMID:17878935

  2. Accelerated FoxP2 evolution in echolocating bats.

    Gang Li

    Full Text Available FOXP2 is a transcription factor implicated in the development and neural control of orofacial coordination, particularly with respect to vocalisation. Observations that orthologues show almost no variation across vertebrates yet differ by two amino acids between humans and chimpanzees have led to speculation that recent evolutionary changes might relate to the emergence of language. Echolocating bats face especially challenging sensorimotor demands, using vocal signals for orientation and often for prey capture. To determine whether mutations in the FoxP2 gene could be associated with echolocation, we sequenced FoxP2 from echolocating and non-echolocating bats as well as a range of other mammal species. We found that contrary to previous reports, FoxP2 is not highly conserved across all nonhuman mammals but is extremely diverse in echolocating bats. We detected divergent selection (a change in selective pressure at FoxP2 between bats with contrasting sonar systems, suggesting the intriguing possibility of a role for FoxP2 in the evolution and development of echolocation. We speculate that observed accelerated evolution of FoxP2 in bats supports a previously proposed function in sensorimotor coordination.

  3. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language.

    Scharff, Constance; Petri, Jana

    2011-07-27

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'. PMID:21690130

  4. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language

    Scharff, Constance; Petri, Jana

    2011-01-01

    The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the ‘evo-devo’ conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently...

  5. Conservation and diversity of Foxp2 expression in muroid rodents: functional implications.

    Campbell, Polly; Reep, Roger L; Stoll, Margaret L; Ophir, Alexander G; Phelps, Steven M

    2009-01-01

    FOXP2, the first gene causally linked to a human language disorder, is implicated in song acquisition, production, and perception in oscine songbirds, the evolution of speech and language in hominids, and the evolution of echolocation in bats. Despite the evident relevance of Foxp2 to vertebrate acoustic communication, a comprehensive description of neural expression patterns is currently lacking in mammals. Here we use immunocytochemistry to systematically describe the neural distribution of Foxp2 protein in four species of muroid rodents: Scotinomys teguina and S. xerampelinus ("singing mice"), the deer mouse, Peromyscus maniculatus, and the lab mouse, Mus musculus. While expression patterns were generally highly conserved across brain regions, we identified subtle but consistent interspecific differences in Foxp2 distribution, most notably in the medial amygdala and nucleus accumbens, and in layer V cortex throughout the brain. Throughout the brain, Foxp2 was highly enriched in areas involved in modulation of fine motor output (striatum, mesolimbic dopamine circuit, olivocerebellar system) and in multimodal sensory processing and sensorimotor integration (thalamus, cortex). We propose a generalized model for Foxp2-modulated pathways in the adult brain including, but not limited to, fine motor production and auditory perception. PMID:18972576

  6. FoxP2 in song-learning birds and vocal-learning mammals.

    Webb, D M; Zhang, J

    2005-01-01

    FoxP2 is the first identified gene that is specifically involved in speech and language development in humans. Population genetic studies of FoxP2 revealed a selective sweep in recent human history associated with two amino acid substitutions in exon 7. Avian song learning and human language acquisition share many behavioral and neurological similarities. To determine whether FoxP2 plays a similar role in song-learning birds, we sequenced exon 7 of FoxP2 in multiple song-learning and nonlearning birds. We show extreme conservation of FoxP2 sequences in birds, including unusually low rates of synonymous substitutions. However, no amino acid substitutions are shared between the song-learning birds and humans. Furthermore, sequences from vocal-learning whales, dolphins, and bats do not share the human-unique substitutions. While FoxP2 appears to be under strong functional constraints in mammals and birds, we find no evidence for its role during the evolution of vocal learning in nonhuman animals as in humans. PMID:15618302

  7. Imaging genetics of FOXP2 in dyslexia

    Wilcke, Arndt; Ligges, Carolin; Burkhardt, Jana; Alexander, Michael; Wolf, Christiane; Quente, Elfi; Ahnert, Peter; Becker, Albert; Müller-Myhsok, Bertram; Cichon, Sven; Boltze, Johannes; Hoffmann, Per; Kirsten, Holger

    2011-01-01

    Abstract Dyslexia is a developmental disorder characterised by extensive difficulties in the acquisition of reading or spelling. Genetic influence is estimated at 50-70%. However, the link between genetic variants and phenotypic deficits is largely unknown. Our aim was to investigate a role of genetic variants of FOXP2, a prominent speech and language gene, in dyslexia using imaging genetics. This technique combines functional magnetic resonance imaging (fMRI) and genetics to i...

  8. Monoallelic expression of the human FOXP2 speech gene.

    Adegbola, Abidemi A; Cox, Gerald F; Bradshaw, Elizabeth M; Hafler, David A; Gimelbrant, Alexander; Chess, Andrew

    2015-06-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations. PMID:25422445

  9. Analysis list: Foxp2 [Chip-atlas[Archive

    Full Text Available Foxp2 Liver,Pancreas + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Fo...xp2.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Foxp2.5.tsv http://dbarchive.biosciencedbc.j...p/kyushu-u/mm9/target/Foxp2.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Foxp2.Liver.tsv,http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Foxp2.Pancreas.tsv http://dbarchive.bioscience...dbc.jp/kyushu-u/mm9/colo/Liver.gml,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Pancreas.gml ...

  10. Phenotype of FOXP2 Haploinsufficiency in a Mother and Son

    Rice, Gregory M.; Raca, Gordana; Jakielski, Kathy J; Laffin, Jennifer J; Iyama-Kurtycz, Christina M.; Hartley, Sigan L; Sprague, Rae E.; Heintzelman, Anne T.; Shriberg, Lawrence D.

    2011-01-01

    Disruptions in FOXP2, a transcription factor, are the only known monogenic cause of speech and language impairment. We report clinical findings for two new individuals with a submicroscopic deletion of FOXP2: a boy with severe apraxia of speech and his currently moderately affected mother. A 1.57 Mb deletion on chromosome 7q31 was detected by array Comparative Genomic Hybridization (aCGH). In addition to FOXP2, the patients’ deletion involves two other genes, MDFIC and PPP1R3A, neither of whi...

  11. Extinction Events Can Accelerate Evolution

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate...... evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending...... computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the...

  12. FOXP2 promotes the nuclear translocation of POT1, but FOXP2(R553H), mutation related to speech-language disorder, partially prevents it

    Highlights: → We isolated protection of telomeres 1 (POT1) as a FOXP2-associated protein by a yeast two-hybrid. → FOXP2 associated and co-localized with POT1 in the nuclei. → FOXP2(R553H) also co-localized with POT1 in both the cytoplasm and nuclei. → FOXP2(R553H) partially prevented the nuclear translocation of POT1. → FOXP2(R553H) mutation may be associated with the pathogenesis of speech-language disorder. -- Abstract: FOXP2 is a forkhead box-containing transcription factor with several recognizable sequence motifs. However, little is known about the FOXP2-associated proteins except for C-terminal binding protein (CtBP). In the present study, we attempted to isolate the FOXP2-associated protein with a yeast two-hybrid system using the C-terminal region, including the forkhead domain, as a bait probe, and identified protection of telomeres 1 (POT1) as a FOXP2-associated protein. Immunoprecipitation assay confirmed the association with FOXP2 and POT1. POT1 alone localized in the cytoplasm but co-localized with FOXP2 and the forkhead domain of FOXP2 in nuclei. However, both FOXP2 with mutated nuclear localization signals and (R553H) mutated forkhead, which is associated with speech-language disorder, prevented the nuclear translocation of POT1. These results suggest that FOXP2 is a binding partner for the nuclear translocation of POT1. As loss of POT1 function induces the cell arrest, the impaired nuclear translocation of POT1 in the developing neuronal cells may be associated with the pathogenesis of speech-language disorder with FOXP2(R553H) mutation.

  13. Sobre el significado del descubrimiento del gen FOXP2

    Víctor Manuel LONGA MARTÍNEZ

    2006-01-01

    El reciente descubrimiento del gen FOXP2 ha ofrecido la primera evidencia clara de la base genética del lenguaje, mostrando una correlación inequívoca desde la perspectiva genética entre una versión mutada de F0XP2 y los trastornos lingüísticos de diferente tipo sufridos por una familia inglesa, conocida como KE. El objetivo central del presente trabajo es discutir diferentes aspectos relacionados con tal descubrimiento; especialmente, la discusión del significado de FOXP2 con ...

  14. The Key Regulator for Language and Speech Development, FOXP2, is a Novel Substrate for SUMOylation.

    Meredith, Leslie J; Wang, Chiung-Min; Nascimento, Leticia; Liu, Runhua; Wang, Lizhong; Yang, Wei-Hsiung

    2016-02-01

    Transcription factor forkhead box protein P2 (FOXP2) plays an essential role in the development of language and speech. However, the transcriptional activity of FOXP2 regulated by the post-translational modifications remains unknown. Here, we demonstrated that FOXP2 is clearly defined as a SUMO target protein at the cellular levels as FOXP2 is covalently modified by both SUMO1 and SUMO3. Furthermore, SUMOylation of FOXP2 was significantly decreased by SENP2 (a specific SUMOylation protease). We further showed that FOXP2 is selectively SUMOylated in vivo on a phylogenetically conserved lysine 674 but the SUMOylation does not alter subcellular localization and stability of FOXP2. Interestingly, we observed that human etiological FOXP2 R553H mutation robustly reduces its SUMOylation potential as compared to wild-type FOXP2. In addition, the acidic residues downstream the core SUMO motif on FOXP2 are required for its full SUMOylation capacity. Finally, our functional analysis using reporter gene assays showed that SUMOylation may modulate transcriptional activity of FOXP2 in regulating downstream target genes (DISC1, SRPX2, and MiR200c). Altogether, we provide the first evidence that FOXP2 is a substrate for SUMOylation and SUMOylation of FOXP2 plays a functional role in regulating its transcriptional activity. PMID:26212494

  15. FOXP2 drives neuronal differentiation by interacting with retinoic acid signaling pathways

    Jeroen Middelbeek

    2014-09-01

    Full Text Available FOXP2 was the first gene shown to cause a Mendelian form of speech and language disorder. Although developmentally expressed in many organs, loss of a single copy of FOXP2 leads to a phenotype that is largely restricted to orofacial impairment during articulation and linguistic processing deficits. Why perturbed FOXP2 function affects specific aspects of the developing brain remains elusive. We investigated the role of FOXP2 in neuronal differentiation and found that FOXP2 drives molecular changes consistent with neuronal differentiation in a human model system. We identified a network of FOXP2 regulated genes related to retinoic acid signaling and neuronal differentiation. FOXP2 also produced phenotypic changes associated with neuronal differentiation including increased neurite outgrowth and reduced migration. Crucially, cells expressing FOXP2 displayed increased sensitivity to retinoic acid exposure. This suggests a mechanism by which FOXP2 may be able to increase the cellular differentiation response to environmental retinoic acid cues for specific subsets of neurons in the brain. These data demonstrate that FOXP2 promotes neuronal differentiation by interacting with the retinoic acid signaling pathway and regulates key processes required for normal circuit formation such as neuronal migration and neurite outgrowth. In this way, FOXP2, which is found only in specific subpopulations of neurons in the brain, may drive precise neuronal differentiation patterns and/or control localization and connectivity of these FOXP2 positive cells.

  16. Ultrasonic Vocalization Changes and FOXP2 expression after Experimental Stroke

    Doran, Sarah J.; Trammel, Cassandra; Benashaski, Sharon E; Venna, Venugopal Reddy; McCullough, Louise D.

    2015-01-01

    Speech impairments affect one in four stroke survivors. However, animal models of post-ischemic vocalization deficits are limited. Male mice vocalize at ultrasonic frequencies when exposed to an estrous female mouse. In this study we assessed vocalization patterns and quantity in male mice after cerebral ischemia. FOXP2, a gene associated with verbal dyspraxia in humans, with known roles in neurogenesis and synaptic plasticity, was also examined after injury. Using a transient middle cerebral...

  17. Ultrasonic vocalization changes and FOXP2 expression after experimental stroke.

    Doran, Sarah J; Trammel, Cassandra; Benashaski, Sharon E; Venna, Venugopal Reddy; McCullough, Louise D

    2015-04-15

    Speech impairments affect one in four stroke survivors. However, animal models of post-ischemic vocalization deficits are limited. Male mice vocalize at ultrasonic frequencies when exposed to an estrous female mouse. In this study we assessed vocalization patterns and quantity in male mice after cerebral ischemia. FOXP2, a gene associated with verbal dyspraxia in humans, with known roles in neurogenesis and synaptic plasticity, was also examined after injury. Using a transient middle cerebral artery occlusion (MCAO) model, we assessed correlates of vocal impairment at several time-points after stroke. Further, to identify possible lateralization of vocalization deficits induced by left and right hemispheric strokes were compared. Significant differences in vocalization quantity were observed between stroke and sham animals that persisted for a month after injury. Injury to the left hemisphere reduced early vocalizations more profoundly than those to the right hemisphere. Nuclear expression of Foxp2 was elevated early after stroke (at 6h), but significantly decreased 24h after injury in both the nucleus and the cytoplasm. Neuronal Foxp2 expression increased in stroke mice compared to sham animals 4 weeks after injury. This study demonstrates that quantifiable deficits in ultrasonic vocalizations (USVs) are seen after stroke. USV may be a useful tool to assess chronic behavioral recovery in murine models of stroke. PMID:25644653

  18. FoxP2 and olfaction: divergence of FoxP2 expression in olfactory tubercle between different feeding habit bats.

    Chen, Qi; Wang, Lina; Jones, G; Metzner, W; Xuan, F J; Yin, Jiangxia; Sun, Y

    2013-12-01

    FoxP2 is a member of the winged helix/forkhead class of transcription factors. Despite FoxP2 is found to have particular relevance to speech and language, the role of this gene is broader and not yet fully elucidated. In this study, we investigated the expression of FoxP2 in the brains of bats with different feeding habits (two frugivorous species and three insectivorous species). We found FoxP2 expression in the olfactory tubercle of frugivorous species is significantly higher than that in insectivorous species. Difference of FoxP2 expression was not observed within each of the frugivorous or insectivorous group. The diverse expression patterns in olfactory tubercle between two kinds of bats indicate FoxP2 has a close relation with olfactory tubercle associated functions, suggesting its important role in sensory integration within the olfactory tubercle and such a discrepancy of FoxP2 expression in olfactory tubercle may take responsibility for the different feeding behaviors of frugivorous and insectivorous bats. PMID:24275589

  19. FOXP2 gene and language impairment in schizophrenia: association and epigenetic studies

    Moltó María D; Dagnall Adam M; Sanjuán Julio; Tolosa Amparo; Herrero Neus; de Frutos Rosa

    2010-01-01

    Abstract Background Schizophrenia is considered a language related human specific disease. Previous studies have reported evidence of positive selection for schizophrenia-associated genes specific to the human lineage. FOXP2 shows two important features as a convincing candidate gene for schizophrenia vulnerability: FOXP2 is the first gene related to a language disorder, and it has been subject to positive selection in the human lineage. Methods Twenty-seven SNPs of FOXP2 were genotyped in a ...

  20. Metabolic Acceleration in Human Evolution.

    Isler, Karin

    2016-07-12

    Humans stand out among other primates by an unusual combination of a very large brain and high fertility. Pontzer et al. (2016a) present new data on daily energy expenditure in great apes and show that the metabolic rate increased during human evolution. PMID:27411003

  1. Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia.

    Feuk, Lars; Kalervo, Aino; Lipsanen-Nyman, Marita; Skaug, Jennifer; Nakabayashi, Kazuhiko; Finucane, Brenda; Hartung, Danielle; Innes, Micheil; Kerem, Batsheva; Nowaczyk, Malgorzata J; Rivlin, Joseph; Roberts, Wendy; Senman, Lili; Summers, Anne; Szatmari, Peter; Wong, Virginia; Vincent, John B; Zeesman, Susan; Osborne, Lucy R; Cardy, Janis Oram; Kere, Juha; Scherer, Stephen W; Hannula-Jouppi, Katariina

    2006-11-01

    Mutations in FOXP2 cause developmental verbal dyspraxia (DVD), but only a few cases have been described. We characterize 13 patients with DVD--5 with hemizygous paternal deletions spanning the FOXP2 gene, 1 with a translocation interrupting FOXP2, and the remaining 7 with maternal uniparental disomy of chromosome 7 (UPD7), who were also given a diagnosis of Silver-Russell Syndrome (SRS). Of these individuals with DVD, all 12 for whom parental DNA was available showed absence of a paternal copy of FOXP2. Five other individuals with deletions of paternally inherited FOXP2 but with incomplete clinical information or phenotypes too complex to properly assess are also described. Four of the patients with DVD also meet criteria for autism spectrum disorder. Individuals with paternal UPD7 or with partial maternal UPD7 or deletion starting downstream of FOXP2 do not have DVD. Using quantitative real-time polymerase chain reaction, we show the maternally inherited FOXP2 to be comparatively underexpressed. Our results indicate that absence of paternal FOXP2 is the cause of DVD in patients with SRS with maternal UPD7. The data also point to a role for differential parent-of-origin expression of FOXP2 in human speech development. PMID:17033973

  2. The evolutionary history of genes involved in spoken and written language: beyond FOXP2

    Mozzi, Alessandra; Forni, Diego; Clerici, Mario; Pozzoli, Uberto; Mascheretti, Sara; Guerini, Franca R.; Riva, Stefania; Bresolin, Nereo; Cagliani, Rachele; Sironi, Manuela

    2016-01-01

    Humans possess a communication system based on spoken and written language. Other animals can learn vocalization by imitation, but this is not equivalent to human language. Many genes were described to be implicated in language impairment (LI) and developmental dyslexia (DD), but their evolutionary history has not been thoroughly analyzed. Herein we analyzed the evolution of ten genes involved in DD and LI. Results show that the evolutionary history of LI genes for mammals and aves was comparable in vocal-learner species and non-learners. For the human lineage, several sites showing evidence of positive selection were identified in KIAA0319 and were already present in Neanderthals and Denisovans, suggesting that any phenotypic change they entailed was shared with archaic hominins. Conversely, in FOXP2, ROBO1, ROBO2, and CNTNAP2 non-coding changes rose to high frequency after the separation from archaic hominins. These variants are promising candidates for association studies in LI and DD. PMID:26912479

  3. Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X

    Haesler, Sebastian; Rochefort, Christelle; Georgi, Benjamin; Licznerski, Pawel; Osten, Pavel; Scharff, Constance

    2007-01-01

    The gene encoding the forkhead box transcription factor, FOXP2, is essential for developing the full articulatory power of human language. Mutations of FOXP2 cause developmental verbal dyspraxia (DVD), a speech and language disorder that compromises the fluent production of words and the correct use and comprehension of grammar. FOXP2 patients have structural and functional abnormalities in the striatum of the basal ganglia, which also express high levels of FOXP2. Since human speech and lear...

  4. Recent acceleration of human adaptive evolution

    Hawks, John; Wang, Eric T; Cochran, Gregory M.; Harpending, Henry C.; Moyzis, Robert K.

    2007-01-01

    Genomic surveys in humans identify a large amount of recent positive selection. Using the 3.9-million HapMap SNP dataset, we found that selection has accelerated greatly during the last 40,000 years. We tested the null hypothesis that the observed age distribution of recent positively selected linkage blocks is consistent with a constant rate of adaptive substitution during human evolution. We show that a constant rate high enough to explain the number of recently selected variants would pred...

  5. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain.

    Sonja C Vernes

    2011-07-01

    Full Text Available Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2 causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.

  6. Zebrafish foxP2 zinc finger nuclease mutant has normal axon pathfinding.

    Lingyan Xing

    Full Text Available foxP2, a forkhead-domain transcription factor, is critical for speech and language development in humans, but its role in the establishment of CNS connectivity is unclear. While in vitro studies have identified axon guidance molecules as targets of foxP2 regulation, and cell culture assays suggest a role for foxP2 in neurite outgrowth, in vivo studies have been lacking regarding a role for foxP2 in axon pathfinding. We used a modified zinc finger nuclease methodology to generate mutations in the zebrafish foxP2 gene. Using PCR-based high resolution melt curve analysis (HRMA of G0 founder animals, we screened and identified three mutants carrying nonsense mutations in the 2(nd coding exon: a 17 base-pair (bp deletion, an 8bp deletion, and a 4bp insertion. Sequence analysis of cDNA confirmed that these were frameshift mutations with predicted early protein truncations. Homozygous mutant fish were viable and fertile, with unchanged body morphology, and no apparent differences in CNS apoptosis, proliferation, or patterning at embryonic stages. There was a reduction in expression of the known foxP2 target gene cntnap2 that was rescued by injection of wild-type foxP2 transcript. When we examined axon pathfinding using a pan-axonal marker or transgenic lines, including a foxP2-neuron-specific enhancer, we did not observe any axon guidance errors. Our findings suggest that foxP2 is not necessary for axon pathfinding during development.

  7. Absence of a Paternally Inherited FOXP2 Gene in Developmental Verbal Dyspraxia

    Feuk, Lars; Kalervo, Aino; Lipsanen-Nyman, Marita; Skaug, Jennifer,; Nakabayashi, Kazuhiko; Finucane, Brenda; Hartung, Danielle; Innes, Micheil; Kerem, Batsheva; Nowaczyk, Małgorzata J.; Rivlin, Joseph; Roberts, Wendy; Senman, Lili; Summers, Anne; Szatmari, Peter

    2006-01-01

    Mutations in FOXP2 cause developmental verbal dyspraxia (DVD), but only a few cases have been described. We characterize 13 patients with DVD-5 with hemizygous paternal deletions spanning the FOXP2 gene, 1 with a translocation interrupting FOXP2, and the remaining 7 with maternal uniparental disomy of chromosome 7 (UPD7), who were also given a diagnosis of Silver-Russell Syndrome (SRS). Of these individuals with DVD, all 12 for whom parental DNA was available showed absence of a paternal copy...

  8. Salivary FOXP2 expression and oral feeding success in premature infants

    Zimmerman, Emily; Maki, Monika; Maron, Jill

    2016-01-01

    The objective of the study is to determine whether salivary FOXP2 gene expression levels at the initiation of oral feeding attempts are predictive of oral feeding success in the premature newborn. In this prospective study, saliva samples from 21 premature infants (13 males; birth gestational age [GA]: 30–34 wk) were collected around the initiation of oral feeding trials. Total RNA was extracted and underwent reverse transcription-quantitative polymerase chain reaction amplification for FOXP2...

  9. FoxP2 Regulation during Undirected Singing in Adult Songbirds

    Teramitsu, Ikuko; White, Stephanie A.

    2006-01-01

    Learned vocal communication, including human speech, is a socially influenced behavior limited to certain animals. This ability requires auditory feedback during vocalization, which allows for on-line evaluation, to achieve the desired vocal output. To date, FOXP2 (forkhead box P2), a transcriptional repressor, is the only molecule directly linked to human speech. Identified FOXP2 mutations cause orofacial dyspraxia accompanied by abnormalities in corticostriatal circuitry controlling volunta...

  10. Identification of FOXP2 truncation as a novel cause of developmental speech and language deficits

    MacDermot, K; Bonora, E.; Sykes, N; Coupe, A.; Lai, C.; Vernes, S.; Vargha-Khadem, F; McKenzie, F.; Smith, R; Monaco, A.; Fisher, S

    2005-01-01

    FOXP2, the first gene to have been implicated in a developmental communication disorder, offers a unique entry point into neuromolecular mechanisms influencing human speech and language acquisition. In multiple members of the well-studied KE family, a heterozygous missense mutation in FOXP2 causes problems in sequencing muscle movements required for articulating speech (developmental verbal dyspraxia), accompanied by wider deficits in linguistic and grammatical processing. Chromosomal rearran...

  11. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene

    Shu, Weiguo; Cho, Julie Y.; Jiang, Yuhui; Zhang, Minhua; Weisz, Donald; Elder, Gregory A.; Schmeidler, James; De Gasperi, Rita; Sosa, Miguel A. Gama; Rabidou, Donald; Santucci, Anthony C.; Perl, Daniel; Morrisey, Edward; Buxbaum, Joseph D.

    2005-01-01

    Neurobiology of speech and language has previously been studied in the KE family, in which half of the members have severe impairment in both speech and language. The gene responsible for the phenotype was mapped to chromosome 7q31 and identified as the FOXP2 gene, coding for a transcription factor containing a polyglutamine tract and a forkhead DNA-binding domain. Because of linkage studies implicating 7q31 in autism, where language impairment is a component of the disorder, and in specific language impairment, FOXP2 has also been considered as a potential susceptibility locus for the language deficits in autism and/or specific language impairment. In this study, we characterized mice with a disruption in the murine Foxp2 gene. Disruption of both copies of the Foxp2 gene caused severe motor impairment, premature death, and an absence of ultrasonic vocalizations that are elicited when pups are removed from their mothers. Disruption of a single copy of the gene led to modest developmental delay but a significant alteration in ultrasonic vocalization in response to such separation. Learning and memory appear normal in the heterozygous animals. Cerebellar abnormalities were observed in mice with disruptions in Foxp2, with Purkinje cells particularly affected. Our findings support a role for Foxp2 in cerebellar development and in a developmental process that subsumes social communication functions in diverse organisms. PMID:15983371

  12. FOXP2 gene and language impairment in schizophrenia: association and epigenetic studies

    Moltó María D

    2010-07-01

    Full Text Available Abstract Background Schizophrenia is considered a language related human specific disease. Previous studies have reported evidence of positive selection for schizophrenia-associated genes specific to the human lineage. FOXP2 shows two important features as a convincing candidate gene for schizophrenia vulnerability: FOXP2 is the first gene related to a language disorder, and it has been subject to positive selection in the human lineage. Methods Twenty-seven SNPs of FOXP2 were genotyped in a cohort of 293 patients with schizophrenia and 340 controls. We analyzed in particular the association with the poverty of speech and the intensity of auditory hallucinations. Potential expansion of three trinucleotide repeats of FOXP2 was also screened in a subsample. Methylation analysis of a CpG island, located in the first exon of the gene, was performed in post-mortem brain samples, as well as qRT-PCR analysis. Results A significant association was found between the SNP rs2253478 and the item Poverty of speech of the Manchester scale (p = 0.038 after Bonferroni correction. In patients, we detected higher degree of methylation in the left parahippocampus gyrus than in the right one. Conclusions FOXP2 might be involved in the language disorder in patients with schizophrenia. Epigenetic factors might be also implicated in the developing of this disorder.

  13. FOXP2 gene deletion and infant feeding difficulties: a case report.

    Zimmerman, Emily; Maron, Jill L

    2016-01-01

    Forkhead box protein P2 (FOXP2) is a well-studied gene known to play an essential role in normal speech development. Deletions in the gene have been shown to result in developmental speech disorders and regulatory disruption of downstream gene targets associated with common forms of language impairments. Despite similarities in motor planning and execution between speech development and oral feeding competence, there have been no reports to date linking deletions within the FOXP2 gene to oral feeding impairments in the newborn. The patient was a nondysmorphic, appropriately and symmetrically grown male infant born at 35-wk gestational age. He had a prolonged neonatal intensive care unit stay because of persistent oral feeding incoordination requiring gastrostomy tube placement. Cardiac and neurological imagings were within normal limits. A microarray analysis found an ∼9-kb loss within chromosome band 7q3.1 that contains exon 2 of FOXP2, demonstrating a single copy of this region instead of the normal two copies per diploid gene. This case study expands our current understanding of the role FOXP2 exerts on motor planning and coordination necessary for both oral feeding success and speech-language development. This case report has important consequences for future diagnosis and treatment for infants with FOXP2 deletions, mutations, and varying levels of gene expression. PMID:27148578

  14. FOXP2 gene deletion and infant feeding difficulties: a case report

    Zimmerman, Emily; Maron, Jill L.

    2016-01-01

    Forkhead box protein P2 (FOXP2) is a well-studied gene known to play an essential role in normal speech development. Deletions in the gene have been shown to result in developmental speech disorders and regulatory disruption of downstream gene targets associated with common forms of language impairments. Despite similarities in motor planning and execution between speech development and oral feeding competence, there have been no reports to date linking deletions within the FOXP2 gene to oral feeding impairments in the newborn. The patient was a nondysmorphic, appropriately and symmetrically grown male infant born at 35-wk gestational age. He had a prolonged neonatal intensive care unit stay because of persistent oral feeding incoordination requiring gastrostomy tube placement. Cardiac and neurological imagings were within normal limits. A microarray analysis found an ∼9-kb loss within chromosome band 7q3.1 that contains exon 2 of FOXP2, demonstrating a single copy of this region instead of the normal two copies per diploid gene. This case study expands our current understanding of the role FOXP2 exerts on motor planning and coordination necessary for both oral feeding success and speech–language development. This case report has important consequences for future diagnosis and treatment for infants with FOXP2 deletions, mutations, and varying levels of gene expression.

  15. Identification of the Transcriptional Targets of FOXP2, a Gene Linked to Speech and Language, in Developing Human Brain

    Spiteri, E.; Konopka, G.; Coppola, G; Bomar, J.; Oldham, M; Ou, J.; Vernes, S.; Fisher, S; Ren, B; Geschwind, D

    2007-01-01

    Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (I...

  16. FOXP2 is not a major susceptibility gene for autism or specific language impairment

    Newbury, D.; Bonora, E.; Lamb, J; Fisher, S.; Lai, C.; Baird, G; Jannoun, L.; Slonims, V.; C. Stott; Merricks, M.; Bolton, P.; Bailey, A; Monaco, A.; International Molecular Genetic Study of Autism Consortium,

    2002-01-01

    The FOXP2 gene, located on human 7q31 (at the SPCH1 locus), encodes a transcription factor containing a polyglutamine tract and a forkhead domain. FOXP2 is mutated in a severe monogenic form of speech and language impairment, segregating within a single large pedigree, and is also disrupted by a translocation in an isolated case. Several studies of autistic disorder have demonstrated linkage to a similar region of 7q (the AUTS1 locus), leading to the proposal that a single genetic factor on 7...

  17. A variability-generating circuit goes awry in a songbird model of the FoxP2 speech disorder

    Gadagkar, Vikram; Goldberg, Jesse H.

    2013-01-01

    FoxP2 mutations cause a monogenic speech disorder in humans. In this issue of Neuron, Murugan et al. show that knockdown of FoxP2 in the songbird basal ganglia causes abnormal vocal variability due to excess bursting in a frontal cortical nucleus.

  18. The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2

    Nazaryan, Lusine; Stefanou, Eunice G; Hansen, Claus;

    2014-01-01

    and severe speech disorder. We identified three truncated genes: CDH12, DGKB and FOXP2, confirming the role of FOXP2 in severe speech disorder, and suggestive roles of CDH12 and/or DGKB for the global developmental and psychomotor delay. Our study confirmes the power of MPS for detecting breakpoints...

  19. A Key Evolutionary Mutation Enhances DNA Binding of the FOXP2 Forkhead Domain.

    Morris, Gavin; Fanucchi, Sylvia

    2016-04-01

    Forkhead box (FOX) transcription factors share a conserved forkhead DNA binding domain (FHD) and are key role players in the development of many eukaryotic species. Their involvement in various congenital disorders and cancers makes them clinically relevant targets for novel therapeutic strategies. Among them, the FOXP subfamily of multidomain transcriptional repressors is unique in its ability to form DNA binding homo and heterodimers. The truncated FOXP2 FHD, in the absence of the leucine zipper, exists in equilibrium between monomeric and domain-swapped dimeric states in vitro. As a consequence, determining the DNA binding properties of the FOXP2 FHD becomes inherently difficult. In this work, two FOXP2 FHD hinge loop mutants have been generated to successfully prevent both the formation (A539P) and the dissociation (F541C) of the homodimers. This allows for the separation of the two species for downstream DNA binding studies. Comparison of DNA binding of the different species using electrophoretic mobility shift assay, fluorescence anisotropy and isothermal titration calorimetry indicates that the wild-type FOXP2 FHD binds DNA as a monomer. However, comparison of the DNA-binding energetics of the monomer and wild-type FHD, reveals that there is a difference in the mechanism of binding between the two species. We conclude that the naturally occurring reverse mutation (P539A) seen in the FOXP subfamily increases DNA binding affinity and may increase the potential for nonspecific binding compared to other FOX family members. PMID:26950495

  20. Analysis of FFAG accelerators and the evolution of circular accelerators

    After rapidly comparing circular machines with the linear accelerator and the reasons for the choice of an annular high energy and very high intensity accelerator, recent problems concerning accelerator theory are discussed, with emphasis on their physical character. The FFAG principle. The limit of the energy of FFAG cyclotron. The setting-up and interpreting of mean energy of focusing terms for a spiral FFAG synchrotron. The limiting amplitude stable near the non-linear resonance 2Qz = Qr, as well as the linear coupling resonance of Walkinshaw 2Qz = Qr. The crossed-beam accelerator. The 40 MeV electron model of MURA. Two other parts deal with linear and non-linear methods of injection and extraction using a variable disturbance applied to the magnetic field, as well as to collective effects. The interaction of the beam with the accelerating cavities and the walls. The modification of the phase oscillation equation. The influence of the beams' high frequency fields on the Nielsen longitudinal instability. (author)

  1. The evolution of high energy accelerators

    Courant, E.D.

    1989-10-01

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community.

  2. The evolution of high energy accelerators

    In this lecture I would like to trace how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to gigantic projects being hotly debated in Congress as well as in the scientific community

  3. The evolution of high energy accelerators

    Courant, E.D.

    1994-08-01

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet.

  4. The evolution of high energy accelerators

    Accelerators have been devised and built for two reasons: In the first place, by physicists who needed high energy particles in order to have a means to explore the interactions between particles that probe the fundamental elementary forces of nature. And conversely, sometimes accelerator builders produce new machines for higher energy than ever before just because it can be done, and then challenge potential users to make new discoveries with the new means at hand. These two approaches or motivations have gone hand in hand. This lecture traces how high energy particle accelerators have grown from tools used for esoteric small-scale experiments to the gigantic projects of today. So far all the really high-energy machines built and planned in the world--except the SLC--have been ring accelerators and storage rings using the strong-focusing method. But this method has not removed the energy limit, it has only pushed it higher. It would seem unlikely that one can go beyond the Large Hadron Collider (LHC)--but in fact a workshop was held in Sicily in November 1991, concerned with the question of extrapolating to 100 TeV. Other acceleration and beam-forming methods are now being discussed--collective fields, laser acceleration, wake-field accelerators etc., all aimed primarily at making linear colliders possible and more attractive than with present radiofrequency methods. So far it is not entirely clear which of these schemes will dominate particle physics in the future--maybe something that has not been thought of as yet

  5. Expression of Foxp2, a gene involved in speech and language, in the developing and adult striatum.

    Takahashi, Kaoru; Liu, Fu-Chin; Hirokawa, Katsuiku; Takahashi, Hiroshi

    2003-07-01

    Many members of the forkhead/winged helix transcriptional factors are known to be regulators of embryogenesis. Mutations of the Fox gene family have been implicated in a range of human developmental disorders. Foxp2, a member of the Fox gene family, has recently been identified as the first gene that is linked to an inherited form of language and speech disorder. To elucidate the anatomical basis of language processing in the brain, we have examined the expression pattern of Foxp2 gene and its homologous gene, Foxp1, in the rat brain through development. Expression of Foxp2 mRNA was detected in the ventral telencephalon as early as embryonic day 13. Foxp2 mRNA was expressed primarily in differentiated cells of the lateral ganglionic eminence (striatal primordium). Of particular interest was that the developmental expression of Foxp2 followed a compartmental order in the striatum. Patches containing high levels of Foxp2 were aligned with patches enriched in mu-opoid receptor, a marker for striosomal cells, in the striatum through postnatal development. Conversely, Foxp2-positive patches were devoid of calbindin-D28k, a maker for striatal matrix cells. Therefore, Foxp2 was preferentially expressed in striosomal compartment in the striatum during development. In the mature striatum, Foxp2 expression was maintained in striosomes, although its expression level was reduced. In contrast to Foxp2, Foxp1 was expressed in both the striosomal and matrix compartments in the striatum through development. The striatum is known to be involved in the process of procedural memory, and mutation of Foxp2 results in neurological disorders of language and speech. Given the preferential expression of Foxp2 in the striosomal compartment, the striatum, particularly the striosomal system, may participate in neural information processing for language and speech. Our suggestion is consistent with the declarative/procedural model proposed by Ullman and colleagues (Ullman et al. [1997] J. Cogn

  6. Evolution of control systems for accelerators

    The author reviews the development of control systems for accelerators. After an historical survey and a general introduction the hardware and software of such systems is described. As example the control system of the CERN SP5 is considered. Finally an outlook is given to future developments with special regards to the LEP storage ring. (HSI)

  7. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development.

    Cesario, Jeffry M; Almaidhan, Asma A; Jeong, Juhee

    2016-03-01

    Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw. PMID:26969076

  8. Acceleration of climate evolution: what solutions?

    Global warming is a reality. By its activities, the mankind largely contributes to this phenomenon. If nothing is rapidly implemented, the climate warming up should greatly increase during the 21. century. These are in abstract the main conclusions of the first part of the report made by the inter-governmental experts group on climate evolution (GIEC), released on February 2, 2007. In front of this worrying situation, what are the foreseeable solutions to avoid the worst scenarios to become the reality of the next decades? In this context, nuclear energy makes an inevitable come back. In parallel, solutions for CO2 capture and geologic sequestration are under study. More disturbing are some 'geo-engineering' solutions preconized by some scientists and which aim at acting directly on climate without changing our life styles and consumption habits. This article makes a brief review of the work in progress in these different ways. (J.S.)

  9. Future evolution of bound superclusters in an accelerating Universe

    Araya-Melo, Pablo A.; Reisenegger, Andreas; Meza, Andres; van de Weygaert, Rien; Duenner, Rolando; Quintana, Hernan

    2009-01-01

    The evolution of marginally bound supercluster-like objects in all accelerating Lambda cold dark matter (Lambda CDM) Universe is followed, by means of cosmological simulations, from the present time to all expansion factor a = 100. The objects are identified on the basis of the binding density crite

  10. Gpgpu Accelerated Landscape-Evolution Modelling

    Maddy, D.; McGough, A. S.; Wainwright, J.; Trueman, A.

    2011-12-01

    Existing Landscape-Evolution Models (LEMs) have tended to be applied at relatively coarse spatial resolution and over comparatively short timescales (years-centuries). Extending these models to encompass landscape evolution at the scale of, for example, an entire river basin and over important landscape-forming timescales (i.e. tens of thousands of years) is computationally challenging. In order to address this challenge we are currently reformulating and extending an existing LEM, CybErosion, in order to create a new, highly optimised model, called CUDAscape. CUDAscape is being coded for parallel processing in order to exploit CUDA (Compute Unified Device Architecture), the parallel programming architecture developed by NVIDIA. CybErosion, a cellular erosion model written in C++, implements erosion, sediment transport and deposition processes at individual cell level, with each cell storing the cumulative changes in cell value (height) over the duration of the model run. Using a 5,000 cell DEM, and a simulated annual time step over 800k years, the original CybErosion code has an execution time of approximately 22 hours on an Intel 980X hexacore processor. Sequential code optimization has reduced this to ~4.5 hours but to achieve the modelling of grids comprising millions of cells requires orders of magnitude improvements in performance, an objective unlikely to be reached via advances in conventional CPU architectures within the foreseeable future. In this paper we will present our initial results for the CUDA implementation of a number of key methods including sink filling, flat routing, flow direction (D8, steepest descent) and flow accumulation (kernels that potentially have widespread application in a whole range of Earth System Models), the key bottlenecks in the current generation of LEMs (taking >75% of the execution time of the sequential execution of CybErosion). Using a single NVIDIA Tesla C2050 GPGPU we have seen speedup in excess of x100 on both flow

  11. Interaction between MAOA and FOXP2 in association with autism and verbal communication in a Korean population.

    Park, YoungJoon; Won, SeongSik; Nam, Min; Chung, Joo-Ho; Kwack, KyuBum

    2014-12-01

    Expression levels of monoamine oxidase A (MAOA), the enzyme that related to monoamine neurotransmitters metabolism such as serotonin, are related to schizophrenia and autism spectrum disorder. Forkhead box protein P2 (FOXP2), a transcription factor, is associated with abnormal language development and is expressed in several areas of the central nervous system in response to serotonin. For this reason, we undertook interaction analysis between MAOA and FOXP2 in autism spectrum disorder, including testing the verbal communication score of the childhood autism rating scale. In interaction analysis, the FOXP2-TCGC (rs12531289-rs1350135-rs10230087-rs2061183) diplotype and MAOA-TCG (rs6323-rs1801291-rs3027407) haplotype were significantly associated with autism spectrum disorder in males. However, when the interaction term was omitted, neither MAOA nor FOXP2 was associated with autism spectrum disorder or verbal communication. These results indicate that language and speech ability is affected by an interaction between FOXP2 and MAOA, but not by either gene separately. PMID:24356376

  12. The Forkhead Transcription Factor FOXP2 Is Required for Regulation of p21WAF1/CIP1 in 143B Osteosarcoma Cell Growth Arrest.

    Duncan M Gascoyne

    Full Text Available Mutations of the forkhead transcription factor FOXP2 gene have been implicated in inherited speech-and-language disorders, and specific Foxp2 expression patterns in neuronal populations and neuronal phenotypes arising from Foxp2 disruption have been described. However, molecular functions of FOXP2 are not completely understood. Here we report a requirement for FOXP2 in growth arrest of the osteosarcoma cell line 143B. We observed endogenous expression of this transcription factor both transiently in normally developing murine osteoblasts and constitutively in human SAOS-2 osteosarcoma cells blocked in early osteoblast development. Critically, we demonstrate that in 143B osteosarcoma cells with minimal endogenous expression, FOXP2 induced by growth arrest is required for up-regulation of p21WAF1/CIP1. Upon growth factor withdrawal, FOXP2 induction occurs rapidly and precedes p21WAF1/CIP1 activation. Additionally, FOXP2 expression could be induced by MAPK pathway inhibition in growth-arrested 143B cells, but not in traditional cell line models of osteoblast differentiation (MG-63, C2C12, MC3T3-E1. Our data are consistent with a model in which transient upregulation of Foxp2 in pre-osteoblast mesenchymal cells regulates a p21-dependent growth arrest checkpoint, which may have implications for normal mesenchymal and osteosarcoma biology.

  13. Acceleration of climate evolution: what solutions?; Acceleration de l'evolution du climat: quelles solutions?

    Desessard, J.F

    2007-04-15

    Global warming is a reality. By its activities, the mankind largely contributes to this phenomenon. If nothing is rapidly implemented, the climate warming up should greatly increase during the 21. century. These are in abstract the main conclusions of the first part of the report made by the inter-governmental experts group on climate evolution (GIEC), released on February 2, 2007. In front of this worrying situation, what are the foreseeable solutions to avoid the worst scenarios to become the reality of the next decades? In this context, nuclear energy makes an inevitable come back. In parallel, solutions for CO{sub 2} capture and geologic sequestration are under study. More disturbing are some 'geo-engineering' solutions preconized by some scientists and which aim at acting directly on climate without changing our life styles and consumption habits. This article makes a brief review of the work in progress in these different ways. (J.S.)

  14. Future Evolution of Bound Superclusters in an Accelerating Universe

    Araya-Melo, Pablo A; Meza, Andres; van de Weygaert, Rien; Dünner, Rolando; Quintana, Hernan

    2008-01-01

    The evolution of marginally bound supercluster-like objects in an accelerating Universe, with Omega_l = 0.7 and Omega_m = 0.3, is followed from the present time to an expansion factor a = 100. The large scale evolution of these objects freezes shortly after the present cosmological epoch, in contrast to the vigorously continuing internal development. Our study follows the external and the internal evolution of these island universes, as they gradually detach themselves from the cosmic background and internally evolve in splendid isolation. We model the bound objects in a LambdaCDM cosmological simulation of 512^3 dark matter particles in a cube of 500 Mpc/h side length. The objects are identified on the basis of the binding density criterion introduced by Dunner et al. (2006). In our simulation we find one supercluster with a mass of M ~ 8x10^15 M_sun/h, slightly larger than that of the Shapley supercluster. Even though we find around two Shapley-like superclusters in a volume comparable to that of the Local ...

  15. Accelerated protein evolution analysis reveals genes and pathways associated with the evolution of mammalian longevity

    Li, Yang; de Magalhães, João Pedro

    2011-01-01

    The genetic basis of the large species differences in longevity and aging remains a mystery. Thanks to recent large-scale genome sequencing efforts, the genomes of multiple species have been sequenced and can be used for cross-species comparisons to study species divergence in longevity. By analyzing proteins under accelerated evolution in several mammalian lineages where maximum lifespan increased, we identified genes and processes that are candidate targets of selection when longevity evolv...

  16. Sexual selection accelerates signal evolution during speciation in birds

    Seddon, Nathalie; Botero, Carlos A.; Tobias, Joseph A.; Dunn, Peter O.; MacGregor, Hannah E. A.; Rubenstein, Dustin R.; Uy, J. Albert C.; Weir, Jason T.; Whittingham, Linda A.; Safran, Rebecca J.

    2013-01-01

    Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male–male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation. PMID:23864596

  17. Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex

    Roll, P.; Vernes, S.; Bruneau, N.; Cillario, J.; Ponsole-Lenfant, M.; Massacrier, A.; Rudolf, G.; Khalife, M.; Hirsch, E; Fisher, S; Szepetowski, P

    2010-01-01

    It is a challenge to identify the molecular networks contributing to the neural basis of human speech. Mutations in transcription factor FOXP2 cause difficulties mastering fluent speech (developmental verbal dyspraxia, DVD), whereas mutations of sushi-repeat protein SRPX2 lead to epilepsy of the rolandic (sylvian) speech areas, with DVD or with bilateral perisylvian polymicrogyria. Pathophysiological mechanisms driven by SRPX2 involve modified interaction with the plasminogen activator recept...

  18. A study of the role of the FOXP2 and CNTNAP2 genes in persistent developmental stuttering

    Han, Tae-Un; Park, John; Domingues, Carlos F.; Moretti-Ferreira, Danilo; Paris, Emily; Sainz, Eduardo; Guiterrez, Joanne; Drayna, Dennis

    2014-01-01

    A number of speech disorders including stuttering have been shown to have important genetic contributions, as indicated by high heritability estimates from twin and other studies. We studied the potential contribution to stuttering from variants in the FOXP2 gene, which have previously been associated with developmental verbal dyspraxia, and from variants in the CNTNAP2 gene, which have been associated with specific language impairment (SLI). DNA sequence analysis of these two genes in a grou...

  19. Speech and language impairment and oromotor dyspraxia due to deletion of 7q31 that involves FOXP2.

    Zeesman, Susan; Nowaczyk, Małgorzata J M; Teshima, Ikuko; Roberts, Wendy; Cardy, Janis Oram; Brian, Jessica; Senman, Lili; Feuk, Lars; Osborne, Lucy R; Scherer, Stephen W

    2006-03-01

    We report detailed clinical, cytogenetic, and molecular findings in a girl with a deletion of chromosome 7q31-q32. This child has a severe communication disorder with evidence of oromotor dyspraxia, dysmorphic features, and mild developmental delay. She is unable to cough, sneeze, or laugh spontaneously. Her deletion is on the paternally inherited chromosome and includes the FOXP2 gene, which has recently been associated with speech and language impairment and a similar form of oromotor dyspraxia in at least three other published cases. We hypothesize that our patient's communication disorder and oromotor deficiency are due to haploinsufficiency for FOXP2 and that her dysmorphism and developmental delay are a consequence of the absence of the other genes involved in the microdeletion. We propose that this patient, together with others reported in the literature, may define a new contiguous gene deletion syndrome encompassing the 7q31-FOXP2 region. Cytogenetic and molecular analysis of this region should be considered for other individuals displaying similar characteristics. PMID:16470794

  20. Accelerated regulatory gene evolution in an adaptive radiation

    Barrier, Marianne; Robichaux, Robert H.; Purugganan, Michael D.

    2001-01-01

    The disparity between rates of morphological and molecular evolution remains a key paradox in evolutionary genetics. A proposed resolution to this paradox has been the conjecture that morphological evolution proceeds via diversification in regulatory loci, and that phenotypic evolution may correlate better with regulatory gene divergence. This conjecture can be tested by examining rates of regulatory gene evolution in species that display rapid morphological diversification within adaptive ra...

  1. Angular momentum evolution in laser-plasma accelerators

    Thaury, Cédric; E. Guillaume; Corde, Sébastien; Lehe, R.; Le Bouteiller, M.; Ta Phuoc, K.; X. Davoine; Rax, Jean-Marcel; Rax, J. M.; Rousse, Antoine; Malka, Victor

    2013-01-01

    The transverse properties of an electron beam are characterized by two quantities, the emittance which indicates the electron beam extend in the phase space and the angular momentum which allows for non-planar electron trajectories. Whereas the emittance of electron beams produced in laser- plasma accelerator has been measured in several experiments, their angular momentum has been scarcely studied. It was demonstrated that electrons in laser-plasma accelerator carry some angular momentum, bu...

  2. Programming cells by multiplex genome engineering and accelerated evolution

    Wang, Harris H.; Isaacs, Farren J; Carr, Peter A.; Sun, Zachary Z.; Xu, George; Forest, Craig R; Church, George M.

    2009-01-01

    The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments1,2. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales3. Although in vitro and directed evolution methods4–9 have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous d...

  3. Does Gene Translocation Accelerate the Evolution of Laterally Transferred Genes?

    Hao, Weilong; Golding, G. Brian

    2009-01-01

    Lateral gene transfer (LGT) and gene rearrangement are essential for shaping bacterial genomes during evolution. Separate attention has been focused on understanding the process of lateral gene transfer and the process of gene translocation. However, little is known about how gene translocation affects laterally transferred genes. Here we have examined gene translocations and lateral gene transfers in closely related genome pairs. The results reveal that translocated genes undergo elevated ra...

  4. Differential coexpression of FoxP1, FoxP2, and FoxP4 in the Zebra Finch (Taeniopygia guttata) song system.

    Mendoza, Ezequiel; Tokarev, Kirill; Düring, Daniel N; Retamosa, Eva Camarillo; Weiss, Michael; Arpenik, Nshdejan; Scharff, Constance

    2015-06-15

    Heterozygous disruptions of the Forkhead transcription factor FoxP2 impair acquisition of speech and language. Experimental downregulation in brain region Area X of the avian ortholog FoxP2 disrupts song learning in juvenile male zebra finches. In vitro, transcriptional activity of FoxP2 requires dimerization with itself or with paralogs FoxP1 and FoxP4. Whether this is the case in vivo is unknown. To provide the means for future functional studies we cloned FoxP4 from zebra finches and compared regional and cellular coexpression of FoxP1, FoxP2, and FoxP4 mRNA and protein in brains of juvenile and adult male zebra finches. In the telencephalic song nuclei HVC, RA, and Area X, the three investigated FoxPs were either expressed alone or occurred in specific combinations with each other, as shown by double in situ hybridization and triple immunohistochemistry. FoxP1 and FoxP4 but not FoxP2 were expressed in RA and in the HVCRA and HVCX projection neurons. In Area X and the surrounding striatum the density of neurons expressing all three FoxPs together or FoxP1 and FoxP4 together was significantly higher than the density of neurons expressing other combinations. Interestingly, the proportions of Area X neurons expressing particular combinations of FoxPs remained constant at all ages. In addition, FoxP-expressing neurons in adult Area X express dopamine receptors 1A, 1B, and 2. Together, these data provide the first evidence that Area X neurons can coexpress all avian FoxP subfamily members, thus allowing for a variety of regulatory possibilities via heterodimerization that could impact song behavior in zebra finches. PMID:25556631

  5. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  6. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  7. Instability evolution in shock-accelerated inclined heavy gas cylinder

    Olmstead, Dell; Wayne, Patrick; Vorobieff, Peter; Davis, Daniel; Truman, C. Randall

    2014-11-01

    A heavy gas cylinder interacts with a normal or oblique shockwave at Mach numbers M ranging from 1.13 to 2.0. The angle between the shock front and cylinder axis is varied between 0 and 30°, while the Atwood numbers A range from 0.25 (SF6-N2 mix) to 0.67 (pure SF6). The evolution of the column is imaged in two perpendicular planes with Planar Laser Induced Fluorescence (PLIF). For oblique shock interactions, the nature of the flow is fully three-dimensional, with several instabilities developing in separate directions. In the plane that captures a cross-section of the column, Richtmyer-Meshkov instability (RMI) leads to formation of a pair of counter-rotating vortex columns. A uniform scaling appears to govern the primary instability growth in this plane across the M and A ranges, when the length scale is normalized by a product of the minimum streamwise scale after shock compression and M0.5. In the vertical plane through the column, Kelvin-Helmholtz vortices form with regular spacing along the column. The dominant wavelength of the structures in the vertical plane also appears to scale with the minimum compressed streamwise length. This research is supported by the US DOE National Nuclear Security Administration (NNSA) Grant DE-NA0002220.

  8. Accelerated evolution of the pituitary adenylate cyclase-activating polypeptide precursor gene during human origin

    Wang, Yin-Qiu; Qian, Ya-Ping; Yang, Su;

    2005-01-01

    strong functional constraint during the course of evolution. However, through comparative sequence analysis, we demonstrated that the PACAP precursor gene underwent an accelerated evolution in the human lineage since the divergence from chimpanzees, and the amino acid substitution rate in humans is at...... neuropeptide might have originated during human evolution and functioned in the human brain. Our data suggested that the PACAP precursor gene underwent adaptive changes during human origin and may have contributed to the formation of human cognition. Udgivelsesdato: 2005-Jun...... least seven times faster than that in other mammal species resulting from strong Darwinian positive selection. Eleven human-specific amino acid changes were identified in the PACAP precursors, which are conserved from murine to African apes. Protein structural analysis suggested that a putative novel...

  9. Accelerated evolution of the ASPM gene controlling brain size begins prior to human brain expansion.

    Natalay Kouprina

    2004-05-01

    Full Text Available Primary microcephaly (MCPH is a neurodevelopmental disorder characterized by global reduction in cerebral cortical volume. The microcephalic brain has a volume comparable to that of early hominids, raising the possibility that some MCPH genes may have been evolutionary targets in the expansion of the cerebral cortex in mammals and especially primates. Mutations in ASPM, which encodes the human homologue of a fly protein essential for spindle function, are the most common known cause of MCPH. Here we have isolated large genomic clones containing the complete ASPM gene, including promoter regions and introns, from chimpanzee, gorilla, orangutan, and rhesus macaque by transformation-associated recombination cloning in yeast. We have sequenced these clones and show that whereas much of the sequence of ASPM is substantially conserved among primates, specific segments are subject to high Ka/Ks ratios (nonsynonymous/synonymous DNA changes consistent with strong positive selection for evolutionary change. The ASPM gene sequence shows accelerated evolution in the African hominoid clade, and this precedes hominid brain expansion by several million years. Gorilla and human lineages show particularly accelerated evolution in the IQ domain of ASPM. Moreover, ASPM regions under positive selection in primates are also the most highly diverged regions between primates and nonprimate mammals. We report the first direct application of TAR cloning technology to the study of human evolution. Our data suggest that evolutionary selection of specific segments of the ASPM sequence strongly relates to differences in cerebral cortical size.

  10. Minimum-acceleration Trajectory Optimization for Humanoid Manipulator Based on Differential Evolution

    Ren Ziwu

    2016-04-01

    Full Text Available A humanoid manipulator produces significantly reactive forces against a humanoid body when it operates in a rapid and continuous reaction environment (e.g., playing baseball, ping-pong etc.. This not only disturbs the balance and stability of the humanoid robot, but also influences its operation precision. To solve this problem, a novel approach, which is able to generate a minimum-acceleration and continuous acceleration trajectory for the humanoid manipulator, is presented in this paper. By this method, the whole trajectory of humanoid manipulation is divided into two processes, i.e., the operation process and the return process. Moreover, the target operation point is considered as a particular point that should be passed through. As such, the trajectory of each process is described through a quartic polynomial in the joint space, after which the trajectory planning problem for the humanoid manipulator can be formulated as a global constrained optimization problem. In order to alleviate the reactive force, a fitness function that aims to minimize the maximum acceleration of each joint of the manipulator is defined, while differential evolution is employed to determine the joint accelerations of the target operation point. Thus, a trajectory with a minimum-acceleration and continuous acceleration profile is obtained, which can reduce the effect on the body and be favourable for the balance and stability of the humanoid robot to a certain extent. Finally, a humanoid robot with a 7-DOF manipulator for ping-pong playing is employed as an example. Simulation experiment results show the effectiveness of this method for the trajectory planning problem being studied.

  11. Accelerator

    The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)

  12. Molecular evolution of scorpion a-toxins--Accelerated substitutions and functional divergence

    2002-01-01

    Scorpion α-toxins are a family of toxic proteins with similar scaffold, but possess divergent pharmacological properties.Analysis of cDNA sequences reveals that the numbers of nucleotide substitutions per site (K) for 5' and 3' UTRs are smaller than those per synonymous site (Ks) for the mature peptide-coding sequences, whereas the numbers of nucleotide substitutions per nonsynonymous site (Ka) are close to or larger than Ks values for relevant pairs of cDNAs. These results, together with phylogenetic analysis, indicate that scorpion a-toxins have evolved by accelerated substitutions in the mature toxin regions. In addition, the 15 amino acids, absolutely conserved in all the scorpion α-toxins described so far, are mostly located in molecular interior, which may be involved in structural constraints for stabilizing the CSαβ fold in evolution of these molecules. Four hot spot mutation sites in the molecular surface are found to dis tribute in the putative functional regions of α-toxins, suggesting that positive Darwinian selection drives the accelerated evolution of scorpion α-toxins. These findings reasonably explain the relationship between three-dimensional structure conservation and functional divergence of scorpion α-toxins and are of important value in guiding us in our engineering experiments to obtain higher affinity ligands to Na+ channels.

  13. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    Zhang, Guo-Bo; Chen, Min; Schroeder, C. B.; Luo, Ji; Zeng, Ming; Li, Fei-Yu; Yu, Lu-Le; Weng, Su-Ming; Ma, Yan-Yun; Yu, Tong-Pu; Sheng, Zheng-Ming; Esarey, E.

    2016-03-01

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radius on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.

  14. Crossover accelerates evolution in GAs with a Babel-like fitness landscape: mathematical analyses.

    Suzuki, H; Iwasa, Y

    1999-01-01

    The effectiveness of crossover in accelerating evolution in genetic algorithms (GAs) is studied with a haploid finite population of bit sequences. A Babel-like fitness landscape is assumed. There is a single bit sequence (schema) that is significantly more advantageous than all the others. We study the time until domination of the advantageous schema (Τ&subd;). Evolution proceeds with appearance, spread, and domination of the advantageous schema. The most important process determining Τ&subd; is the appearance (creation) of the advantageous schema. Crossover helps this creation process and enhances the rate of evolution. To study this effect, we first establish an analytical method to estimate Τ&subd; with or without crossover. Then, we conduct a numerical analysis using the frequency vector representation of the population with the recurrence relations formulated after GA operations. Finally, we carry out direct computer simulations with simple GAs operating on a population of binary strings directly prepared in the computer memory to examine the performance of the two analytical methods. It is shown that Τ&subd; is reduced greatly by crossover with a mildly high rate when the mutation rate is adjusted to a moderate value and that an advantageous schema has a fairly larger order (the number of bits). From these observations, we can determine implementation criteria for GAs, which are useful when we are applying GAs to engineering problems having a conspicuously discontinuous fitness landscape. PMID:10491466

  15. Measurement of volatile evolution from polyurethane induced by accelerated ion beam irradiation

    Irradiation of polymer samples using an accelerated beam of He2+ ions passed through a 10μm thick window of havar foil has been performed. Such irradiation simulates the effects of large α radiation doses, on a vastly reduced time-scale. Analysis of volatiles evolved during irradiation is performed by a residual gas analyser (RGA), which is located close to the sample chamber. Presented in this paper are the results obtained during a radiation study on polyester/MDI based polyurethane materials. During high dose rate irradiation a number of high mass species were observed. A comparison between two similar polyurethanes formulated with slightly different polyesters indicated some differences. They were, however, too minor to link to specific degradation mechanisms. The dominant degradation products evident to the RGA at low dose rates were H2 , CO and CO2 . A series of polyurethane samples previously conditioned by γ irradiation at doses between 0 and 5MGy were irradiated in the ion beam. Identification of differences in trends in the rates of volatile evolution between these samples indicated the precise vacuum conditions at the time of irradiation had a major influence. There was also an indication that the surface of the sample had a small effect on rates of volatile evolution. Comparative plots of CO and CO2 evolution for a series of 1MGy irradiations indicated variations in behaviour between samples with different γ doses. Evolution during the first 1MGy was inhibited for the unirradiated sample, the extent of inhibition diminished with increasing γ dose and was no longer evident in a sample with 1.5MGy γ dose. H2 does not show an equivalent inhibition. Evidence for a low dose crosslinking reaction is put forward as a reason for the inhibition. Chemical reaction mechanisms are postulated and used to explain differences in the behaviour observed

  16. Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution

    Bi, Wentuan; Li, Xiaogang; Zhang, Lei; Jin, Tao; Zhang, Lidong; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2015-10-01

    In artificial photocatalysis, sluggish kinetics of hole transfer and the resulting high-charge recombination rate have been the Achilles' heel of photocatalytic conversion efficiency. Here we demonstrate water-soluble molecules as co-catalysts to accelerate hole transfer for improved photocatalytic H2 evolution activity. Trifluoroacetic acid (TFA), by virtue of its reversible redox couple TFA./TFA-, serves as a homogeneous co-catalyst that not only maximizes the contact areas between co-catalysts and reactants but also greatly promotes hole transfer. Thus K4Nb6O17 nanosheet catalysts achieve drastically increased photocatalytic H2 production rate in the presence of TFA, up to 32 times with respect to the blank experiment. The molecular co-catalyst represents a new, simple and highly effective approach to suppress recombination of photogenerated charges, and has provided fertile new ground for creating high-efficiency photosynthesis systems, avoiding use of noble-metal co-catalysts.

  17. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    Layla Parker-Katiraee

    2007-05-01

    Full Text Available Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage.

  18. Identification of the imprinted KLF14 transcription factor undergoing human-specific accelerated evolution.

    Parker-Katiraee, Layla; Carson, Andrew R; Yamada, Takahiro; Arnaud, Philippe; Feil, Robert; Abu-Amero, Sayeda N; Moore, Gudrun E; Kaneda, Masahiro; Perry, George H; Stone, Anne C; Lee, Charles; Meguro-Horike, Makiko; Sasaki, Hiroyuki; Kobayashi, Keiko; Nakabayashi, Kazuhiko; Scherer, Stephen W

    2007-05-01

    Imprinted genes are expressed in a parent-of-origin manner and are located in clusters throughout the genome. Aberrations in the expression of imprinted genes on human Chromosome 7 have been suggested to play a role in the etiologies of Russell-Silver Syndrome and autism. We describe the imprinting of KLF14, an intronless member of the Krüppel-like family of transcription factors located at Chromosome 7q32. We show that it has monoallelic maternal expression in all embryonic and extra-embryonic tissues studied, in both human and mouse. We examine epigenetic modifications in the KLF14 CpG island in both species and find this region to be hypomethylated. In addition, we perform chromatin immunoprecipitation and find that the murine Klf14 CpG island lacks allele-specific histone modifications. Despite the absence of these defining features, our analysis of Klf14 in offspring from DNA methyltransferase 3a conditional knockout mice reveals that the gene's expression is dependent upon a maternally methylated region. Due to the intronless nature of Klf14 and its homology to Klf16, we suggest that the gene is an ancient retrotransposed copy of Klf16. By sequence analysis of numerous species, we place the timing of this event after the divergence of Marsupialia, yet prior to the divergence of the Xenarthra superclade. We identify a large number of sequence variants in KLF14 and, using several measures of diversity, we determine that there is greater variability in the human lineage with a significantly increased number of nonsynonymous changes, suggesting human-specific accelerated evolution. Thus, KLF14 may be the first example of an imprinted transcript undergoing accelerated evolution in the human lineage. PMID:17480121

  19. Accelerating parameter identification of proton exchange membrane fuel cell model with ranking-based differential evolution

    Parameter identification of PEM (proton exchange membrane) fuel cell model is a very active area of research. Generally, it can be treated as a numerical optimization problem with complex nonlinear and multi-variable features. DE (differential evolution), which has been successfully used in various fields, is a simple yet efficient evolutionary algorithm for global numerical optimization. In this paper, with the objective of accelerating the process of parameter identification of PEM fuel cell models and reducing the necessary computational efforts, we firstly present a generic and simple ranking-based mutation operator for the DE algorithm. Then, the ranking-based mutation operator is incorporated into five highly-competitive DE variants to solve the PEM fuel cell model parameter identification problems. The main contributions of this work are the proposed ranking-based DE variants and their application to the parameter identification problems of PEM fuel cell models. Experiments have been conducted by using both the simulated voltage–current data and the data obtained from the literature to validate the performance of our approach. The results indicate that the ranking-based DE methods provide better results with respect to the solution quality, the convergence rate, and the success rate compared with their corresponding original DE methods. In addition, the voltage–current characteristics obtained by our approach are in good agreement with the original voltage–current curves in all cases. - Highlights: • A simple and generic ranking-based mutation operator is presented in this paper. • Several DE (differential evolution) variants are used to solve the parameter identification of PEMFC (proton exchange membrane fuel cells) model. • Results show that our method accelerates the process of parameter identification. • The V–I characteristics are in very good agreement with experimental data

  20. 3D simulations of supernova remnants evolution including non-linear particle acceleration

    Ferrand, Gilles; Ballet, Jean; Teyssier, Romain; Fraschetti, Federico

    2009-01-01

    If a sizeable fraction of the energy of supernova remnant shocks is channeled into energetic particles (commonly identified with Galactic cosmic rays), then the morphological evolution of the remnants must be distinctly modified. Evidence of such modifications has been recently obtained with the Chandra and XMM-Newton X-ray satellites. To investigate these effects, we coupled a semi-analytical kinetic model of shock acceleration with a 3D hydrodynamic code (by means of an effective adiabatic index). This enables us to study the time-dependent compression of the region between the forward and reverse shocks due to the back reaction of accelerated particles, concomitantly with the development of the Rayleigh-Taylor hydrodynamic instability at the contact discontinuity. Density profiles depend critically on the injection level eta of particles: for eta up to about 10^-4 modifications are weak and progressive, for eta of the order of 10^-3 modifications are strong and immediate. Nevertheless, the extension of the...

  1. Human microRNAs originated from two periods at accelerated rates in mammalian evolution.

    Iwama, Hisakazu; Kato, Kiyohito; Imachi, Hitomi; Murao, Koji; Masaki, Tsutomu

    2013-03-01

    MicroRNAs (miRNAs) are short, noncoding RNAs that modulate genes posttranscriptionally. Frequent gains and losses of miRNA genes have been reported to occur during evolution. However, little is known systematically about the periods of evolutionary origin of the present miRNA gene repertoire of an extant mammalian species. Thus, in this study, we estimated the evolutionary periods during which each of 1,433 present human miRNA genes originated within 15 periods, from human to platypus-human common ancestral branch and a class "conserved beyond theria," primarily using multiple genome alignments of 38 species, plus the pairwise genome alignments of five species. The results showed two peak periods in which the human miRNA genes originated at significantly accelerated rates. The most accelerated rate appeared in the period of the initial phase of hominoid lineage, and the second appeared shortly before Laurasiatherian divergence. Approximately 53% of the present human miRNA genes have originated within the simian lineage to human. In particular, approximately 28% originated within the hominoid lineage. The early phase of placental mammal radiation comprises approximately 28%, while no more than 15% of human miRNAs have been conserved beyond placental mammals. We also clearly showed a general trend, in which the miRNA expression level decreases as the miRNA becomes younger. Intriguingly, amid this decreasing trend of expression, we found one significant rise in the expression level that corresponded to the initial phase of the hominoid lineage, suggesting that increased functional acquisitions of miRNAs originated at this particular period. PMID:23171859

  2. Alternative splicing modulated by genetic variants demonstrates accelerated evolution regulated by highly conserved proteins.

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Lin, Xianzhi; Chan, Tak-Ming; Wang, Rena; Xiao, Xinshu

    2016-04-01

    Identification of functional genetic variants and elucidation of their regulatory mechanisms represent significant challenges of the post-genomic era. A poorly understood topic is the involvement of genetic variants in mediating post-transcriptional RNA processing, including alternative splicing. Thus far, little is known about the genomic, evolutionary, and regulatory features of genetically modulated alternative splicing (GMAS). Here, we systematically identified intronic tag variants for genetic modulation of alternative splicing using RNA-seq data specific to cellular compartments. Combined with our previous method that identifies exonic tags for GMAS, this study yielded 622 GMAS exons. We observed that GMAS events are highly cell type independent, indicating that splicing-altering genetic variants could have widespread function across cell types. Interestingly, GMAS genes, exons, and single-nucleotide variants (SNVs) all demonstrated positive selection or accelerated evolution in primates. We predicted that GMAS SNVs often alter binding of splicing factors, with SRSF1 affecting the most GMAS events and demonstrating global allelic binding bias. However, in contrast to their GMAS targets, the predicted splicing factors are more conserved than expected, suggesting thatcis-regulatory variation is the major driving force of splicing evolution. Moreover, GMAS-related splicing factors had stronger consensus motifs than expected, consistent with their susceptibility to SNV disruption. Intriguingly, GMAS SNVs in general do not alter the strongest consensus position of the splicing factor motif, except the more than 100 GMAS SNVs in linkage disequilibrium with polymorphisms reported by genome-wide association studies. Our study reports many GMAS events and enables a better understanding of the evolutionary and regulatory features of this phenomenon. PMID:26888265

  3. Evolution in fast forward: a potential role for mutators in accelerating Staphylococcus aureus pathoadaptation.

    Canfield, Gregory S; Schwingel, Johanna M; Foley, Matthew H; Vore, Kelly L; Boonanantanasarn, Kanitsak; Gill, Ann L; Sutton, Mark D; Gill, Steven R

    2013-02-01

    Pathogen evolution and subsequent phenotypic heterogeneity during chronic infection are proposed to enhance Staphylococcus aureus survival during human infection. We tested this theory by genetically and phenotypically characterizing strains with mutations constructed in the mismatch repair (MMR) and oxidized guanine (GO) system, termed mutators, which exhibit increased spontaneous-mutation frequencies. Analysis of these mutators revealed not only strain-dependent increases in the spontaneous-mutation frequency but also shifts in mutational type and hot spots consistent with loss of GO or MMR functions. Although the GO and MMR systems are relied upon in some bacterial species to prevent reactive oxygen species-induced DNA damage, no deficit in hydrogen peroxide sensitivity was found when either of these DNA repair pathways was lost in S. aureus. To gain insight into the contribution of increased mutation supply to S. aureus pathoadaptation, we measured the rate of α-hemolysin and staphyloxanthin inactivation during serial passage. Detection of increased rates of α-hemolysin and staphyloxanthin inactivation in GO and MMR mutants suggests that these strains are capable of modifying virulence phenotypes implicated in mediating infection. Accelerated derivation of altered virulence phenotypes, combined with the absence of increased ROS sensitivity, highlights the potential of mutators to drive pathoadaptation in the host and serve as catalysts for persistent infections. PMID:23204459

  4. Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements

    Forsyth, C.; Fazakerley, A.N.; Walsh, A. P.; Watt, Clare E. J.; Garza, K. J.; Owen, C. J.; Constantinescu, D.; I. Dandouras; Fornaçon, K.-H.; E. Lucek; G. T. Marklund; Sadeghi, S. S.; Khotyaintsev, Y.; Masson, A.; N. Doss

    2012-01-01

    Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multi-spacecraft observations from Cluster we have examined two upward current regions on 14 December 2009. Our observations show that ...

  5. Role of accelerated segment switch in exons to alter targeting (ASSET in the molecular evolution of snake venom proteins

    Kini R Manjunatha

    2009-06-01

    Full Text Available Abstract Background Snake venom toxins evolve more rapidly than other proteins through accelerated changes in the protein coding regions. Previously we have shown that accelerated segment switch in exons to alter targeting (ASSET might play an important role in its functional evolution of viperid three-finger toxins. In this phenomenon, short sequences in exons are radically changed to unrelated sequences and hence affect the folding and functional properties of the toxins. Results Here we analyzed other snake venom protein families to elucidate the role of ASSET in their functional evolution. ASSET appears to be involved in the functional evolution of three-finger toxins to a greater extent than in several other venom protein families. ASSET leads to replacement of some of the critical amino acid residues that affect the biological function in three-finger toxins as well as change the conformation of the loop that is involved in binding to specific target sites. Conclusion ASSET could lead to novel functions in snake venom proteins. Among snake venom serine proteases, ASSET contributes to changes in three surface segments. One of these segments near the substrate binding region is known to affect substrate specificity, and its exchange may have significant implications for differences in isoform catalytic activity on specific target protein substrates. ASSET therefore plays an important role in functional diversification of snake venom proteins, in addition to accelerated point mutations in the protein coding regions. Accelerated point mutations lead to fine-tuning of target specificity, whereas ASSET leads to large-scale replacement of multiple functionally important residues, resulting in change or gain of functions.

  6. Evolution and development of the Oak Ridge 25URC tandem accelerator control system

    Since acceptance of the 25URC accelerator in 1982, we have continued to develop and improve both the accelerator control system and associated software. In this paper, we describe these improvements and also discuss how our experience with the present system would influence the architecture and design of future, similar systems

  7. Accelerated molecular evolution of insect orthologues of ERG28/C14orf1: a link with ecdysteroid metabolism?

    Reiner A. Veitia; Laurence D. Hurst

    2001-04-01

    We have analysed the evolution of ERG28/C14orf1, a gene coding for a protein involved in sterol biosynthesis. While primary sequence of the protein is well conserved in all organisms able to synthesize sterols de novo, strong divergence is noticed in insects, which are cholesterol auxotrophs. In spite of this virtual acceleration, our analysis suggests that the insect orthologues are evolving today at rates similar to those of the remaining members of the family. A plausible way to explain this acceleration and subsequent stabilization is that Erg28 plays a role in at least two different pathways. Discontinuation of the cholesterogenesis pathway in insects allowed the protein to evolve as much as the function in the other pathway was not compromised.

  8. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators

    Mehrling, T. J.; Robson, R. E.; Erbe, J.-H.; Osterhoff, J.

    2016-09-01

    This paper introduces a semi-analytic numerical approach (SANA) for the rapid computation of the transverse emittance of beams with finite energy spread in plasma wakefield accelerators in the blowout regime. The SANA method is used to model the beam emittance evolution when injected into and extracted from realistic plasma profiles. Results are compared to particle-in-cell simulations, establishing the accuracy and efficiency of the procedure. In addition, it is demonstrated that the tapering of vacuum-to-plasma and plasma-to-vacuum transitions is a viable method for the mitigation of emittance growth of beams during their injection and extraction from and into plasma cells.

  9. Evolution of high-repetition-rate induction accelerators through advancements in switching

    Future applications of linear and recirculating induction accelerators include microwave sources for plasma heating and linear colliders, industrial manufacturing processes, and heavy-ion fusion. These applications require pulsed sources capable of sustained operation at high pulse-repetition rates. Powering these new accelerators places severe switching demands on the source that often can not be met with commercially-available technology. Consequently, several new accelerator switching schemes have been developed at Lawrence Livermore National Laboratory. Our transition from spark-gap technology to magnetic switching has merged the formerly independent roles of source and cell into a single system and reshaped our design methods to emphasize high efficiency. Treatment of the accelerator as a system has also enabled us to optimize new accelerator designs based on cost considerations. Presently, we are developing a technology for driving a heavy-ion induction recirculator at pulse rates exceeding 100 kHz. In this case, the switching method is all solid state and the source and cell have evolved into unified device. (Author) 6 figs., tab., 30 refs

  10. The evolution of tooling, techniques, and quality control for accelerator dipole magnet cables

    The present generation of particle accelerators are utilizing the flattened, compacted, single layer cable design introduced nearly 20 years ago at Rutherford Laboratory. However, the requirements for current density, filament size, dimensional control long lengths, and low current degradation are much more stringent for the present accelerators compared with the earlier Tevatron and HERA accelerators. Also, in order to achieve higher field strengths with efficient use of superconductor, the new designs require wider cables with more strands. These requirements have stimulated an active research effort which has led to significant improvements in critical current density and conductor manufacturing. In addition they have stimulated the development of new cabling techniques, improved tooling, and better measurement techniques. The need to produce over 20 million meters of cable has led to the development of high speed cabling machines and on-line quality assurance measurements. These new developments will be discussed, and areas still requiring improvement will be identified

  11. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae

    Luo, M. C.; Deal, K. R.; Akhunov, E. D.; Akhunova, A. R.; Anderson, O. D.; Anderson, J. A.; Blake, N.; Clegg, M. T.; Coleman-Derr, D.; Conley, E. J.; Crossman, C. C.; Dubcovsky, J.; Gill, B. S.; Gu, Y. Q.; Hadam, J.; Heo, H. Y.; Huo, N.; Lazo, G.; Ma, Y.; Matthews, D. E.; McGuire, P. E.; Morrell, P. L.; Qualset, C. O.; Renfro, J.; Tabanao, D.; Talbert, L. E.; Tian, C.; Toleno, D. M.; Warburton, M. L.; You, F. M.; Zhang, W.; Dvorak, J.

    2009-01-01

    Single-nucleotide polymorphism was used in the construction of an expressed sequence tag map of Aegilops tauschii, the diploid source of the wheat D genome. Comparisons of the map with the rice and sorghum genome sequences revealed 50 inversions and translocations; 2, 8, and 40 were assigned respectively to the rice, sorghum, and Ae. tauschii lineages, showing greatly accelerated genome evolution in the large Triticeae genomes. The reduction of the basic chromosome number from 12 to 7 in the Triticeae has taken place by a process during which an entire chromosome is inserted by its telomeres into a break in the centromeric region of another chromosome. The original centromere–telomere polarity of the chromosome arms is maintained in the new chromosome. An intrachromosomal telomere–telomere fusion resulting in a pericentric translocation of a chromosome segment or an entire arm accompanied or preceded the chromosome insertion in some instances. Insertional dysploidy has been recorded in three grass subfamilies and appears to be the dominant mechanism of basic chromosome number reduction in grasses. A total of 64% and 66% of Ae. tauschii genes were syntenic with sorghum and rice genes, respectively. Synteny was reduced in the vicinity of the termini of modern Ae. tauschii chromosomes but not in the vicinity of the ancient termini embedded in the Ae. tauschii chromosomes, suggesting that the dependence of synteny erosion on gene location along the centromere–telomere axis either evolved recently in the Triticeae phylogenetic lineage or its evolution was recently accelerated. PMID:19717446

  12. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  13. Acceleration and transport of anomalous cosmic rays: Investigating the spectral evolution at Voyager 1 beyond the termination shock

    Senanayake, Udara K.

    Interstellar neutral atoms entering the heliosphere could become ionized by photo-ionization or charge exchange with solar-wind ions. These newly created ions are picked up by the solar wind and carried to the termination shock (TS) where they are believed to be accelerated by the diffusive shock acceleration process to high energies (˜1-100 MeV n-1). The accelerated ions are known as anomalous cosmic rays (ACRs). When NASA's space probe, Voyager 1 crossed the TS in 2004, the measured ACR spectra did not match the theoretical prediction of a continuous power law, and the source of the high-energy ACRs was not observed. However, over the next few years, in the declining phase of the solar cycle, the spectra began to evolve into the expected power-law profile. The model developed here is based on the suggestion that ACRs are still accelerated at the shock, but away from the Voyager crossing points. First, we study ACR acceleration using a three-dimensional, non-spherical model of the heliosphere that is axisymmetric with respect to the interstellar flow direction. A semi-analytic model of the plasma and magnetic field backgrounds is developed to permit an investigation over a wide range of parameters under controlled conditions. The model is applied to helium ACRs, whose phase-space trajectories are stochastically integrated backward in time until a pre-specified, low-energy boundary of 0.5 MeV n-1, is reached. Next, we propose that the solar cycle had an important effect on the evolving of the spectra in the heliosheath. To investigate this, a magnetohydrodynamic background model with stationary solar-wind inner boundary conditions was used to model the transport of helium and oxygen ions. In addition, we developed a charge consistent stochastic model to simulate multiply charged oxygen ACRs. It is shown that the spectral evolution of ACRs in the heliosheath at Voyager 1 could be explained by combining intermediate-energy particles arriving from the heliotail

  14. Accelerated evolution of 3'avian FOXE1 genes, and thyroid and feather specific expression of chicken FoxE1

    Antin Parker B

    2011-10-01

    Full Text Available Abstract Background The forkhead transcription factor gene E1 (FOXE1 plays an important role in regulation of thyroid development, palate formation and hair morphogenesis in mammals. However, avian FOXE1 genes have not been characterized and as such, codon evolution of FOXE1 orthologs in a broader evolutionary context of mammals and birds is not known. Results In this study we identified the avian FOXE1 gene in chicken, turkey and zebra finch, all of which consist of a single exon. Chicken and zebra finch FOXE1 are uniquely located on the sex-determining Z chromosome. In situ hybridization shows that chicken FOXE1 is specifically expressed in the developing thyroid. Its expression is initiated at the placode stage and is maintained during the stages of vesicle formation and follicle primordia. Based on this expression pattern, we propose that avian FOXE1 may be involved in regulating the evagination and morphogenesis of thyroid. Chicken FOXE1 is also expressed in growing feathers. Sequence analysis identified two microdeletions in the avian FOXE1 genes, corresponding to the loss of a transferable repression domain and an engrailed homology motif 1 (Eh1 C-terminal to the forkhead domain. The avian FOXE1 proteins exhibit a significant sequence divergence of the C-terminus compared to those of amphibian and mammalian FOXE1. The codon evolution analysis (dN/dS of FOXE1 shows a significantly increased dN/dS ratio in the avian lineages, consistent with either a relaxed purifying selection or positive selection on a few residues in avian FOXE1 evolution. Further site specific analysis indicates that while relaxed purifying selection is likely to be a predominant cause of accelerated evolution at the 3'-region of avian FOXE1, a few residues might have evolved under positive selection. Conclusions We have identified three avian FOXE1 genes based on synteny and sequence similarity as well as characterized the expression pattern of the chicken FOXE1 gene

  15. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu

    2009-02-15

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.

  16. Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome.

    Leonardo Arbiza

    2006-04-01

    Full Text Available For years evolutionary biologists have been interested in searching for the genetic bases underlying humanness. Recent efforts at a large or a complete genomic scale have been conducted to search for positively selected genes in human and in chimp. However, recently developed methods allowing for a more sensitive and controlled approach in the detection of positive selection can be employed. Here, using 13,198 genes, we have deduced the sets of genes involved in rate acceleration, positive selection, and relaxation of selective constraints in human, in chimp, and in their ancestral lineage since the divergence from murids. Significant deviations from the strict molecular clock were observed in 469 human and in 651 chimp genes. The more stringent branch-site test of positive selection detected 108 human and 577 chimp positively selected genes. An important proportion of the positively selected genes did not show a significant acceleration in rates, and similarly, many of the accelerated genes did not show significant signals of positive selection. Functional differentiation of genes under rate acceleration, positive selection, and relaxation was not statistically significant between human and chimp with the exception of terms related to G-protein coupled receptors and sensory perception. Both of these were over-represented under relaxation in human in relation to chimp. Comparing differences between derived and ancestral lineages, a more conspicuous change in trends seems to have favored positive selection in the human lineage. Since most of the positively selected genes are different under the same functional categories between these species, we suggest that the individual roles of the alternative positively selected genes may be an important factor underlying biological differences between these species.

  17. Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements

    Forsyth, C.; Fazakerley, A. N.; Walsh, A. P.; Watt, C. E.; Garza, K.; Owen, C. J.; Constantinescu, D. O.; Dandouras, I. S.; Fornacon, K.; Lucek, E. A.; Marklund, G. T.; Sadeghi, S. S.; Khotyaintsev, Y. V.; Masson, A.; Doss, N.

    2013-12-01

    Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multispacecraft observations from Cluster, we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations, and we use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500 V, and that the majority of the potential drop was below C3. Assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous single- and multispacecraft observations.

  18. Tolerance of Whole-Genome Doubling Propagates Chromosomal Instability and Accelerates Cancer Genome Evolution

    Dewhurst, Sally M.; McGranahan, Nicholas; Burrell, Rebecca A.; Rowan, Andrew J.; Grönroos, Eva; Endesfelder, David; Joshi, Tejal; Mouradov, Dmitri; Gibbs, Peter; Ward, Robyn L.; Hawkins, Nicholas J.; Szallasi, Zoltan Imre; Sieber, Oliver M.; Swanton, Charles

    2014-01-01

    The contribution of whole-genome doubling to chromosomal instability (CIN) and tumor evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells ...

  19. Evolution of the Argonne Tandem Linear Accelerator System (ATLAS) control system

    Given that the Argonne Tandem Linear Accelerator System (ATLAS) recently celebrated its 25. anniversary, this paper will explore the past, present, and future of the ATLAS Control System, and how it has evolved along with the accelerator and control system technology. ATLAS as we know it today, originated with a Tandem Van de Graff in the sixties. With the addition of the Booster section in the late seventies, came the first computerized control. ATLAS itself was placed into service on June 25, 1985, and was the world's first superconducting linear accelerator for ions. Since its dedication as a National User Facility, more than a thousand experiments by more than 2,000 users worldwide, have taken advantage of the unique capabilities it provides. Today, ATLAS continues to be a user facility for physicists who study the particles that form the heart of atoms. Its most recent addition, CARIBU (Californium Rare Isotope Breeder Upgrade), creates special beams that feed into ATLAS. ATLAS is similar to a living organism, changing and responding to new technological challenges and research needs. As it continues to evolve, so does the control system: from the original days using a DEC PDP-11/34 computer and two CAMAC crates, to a DEC Alpha computer running Vsystem software and more than twenty CAMAC crates, to distributed computers and VME systems. Future upgrades are also in the planning stages that will continue to evolve the control system. (authors)

  20. Study of dose distribution for stereotactic irradiation. Evolution of using gamma unit and linear accelerator

    Currently used stereotactic irradiation techniques that employ high-energy photon beams are based either on a gamma unit that uses stationary 201-cobalt beams or on isocentric linear accelerators. The techniques that rely on linear accelerators are divided into multiple non-coplanar converging arcs, precessional convergent irradiation, and others. These techniques have respective physical characteristics, for example, the precision of dose convergence and isodose distributions. We discuss the physical characteristics of the gamma unit, multiple non-coplanar converging arcs, and precessional convergent irradiation. In terms of the precision of dose convergence, the best was the gamma unit, followed by precessional convergent irradiation, with multiple non-coplanar converging arcs third. The precision of dose convergence deteriorated with diminishing field size in all techniques, and the precision of dose convergence was improved using a circular field with supplementary collimator among the techniques using linear accelerators. In addition, stereotactic irradiation techniques should be examined for disease treatment and running cost, because the techniques that have the greatest precision in dose convergence are incompatible with all-purpose usage. (author)

  1. Isolation of Hox cluster genes from insects reveals an accelerated sequence evolution rate.

    Heike Hadrys

    Full Text Available Among gene families it is the Hox genes and among metazoan animals it is the insects (Hexapoda that have attracted particular attention for studying the evolution of development. Surprisingly though, no Hox genes have been isolated from 26 out of 35 insect orders yet, and the existing sequences derive mainly from only two orders (61% from Hymenoptera and 22% from Diptera. We have designed insect specific primers and isolated 37 new partial homeobox sequences of Hox cluster genes (lab, pb, Hox3, ftz, Antp, Scr, abd-a, Abd-B, Dfd, and Ubx from six insect orders, which are crucial to insect phylogenetics. These new gene sequences provide a first step towards comparative Hox gene studies in insects. Furthermore, comparative distance analyses of homeobox sequences reveal a correlation between gene divergence rate and species radiation success with insects showing the highest rate of homeobox sequence evolution.

  2. Tolerance whole of genome doubling propagates chromosomal instability and accelerates cancer genome evolution

    Dewhurst, Sally M; McGranahan, Nicholas; Burrell, Rebecca A.; Rowan, Andrew J.; Grönroos, Eva; Endesfelder, David; Joshi, Tejal; Mouradov, Dmitri; Gibbs, Peter; Ward, Robyn L.; Hawkins, Nicholas J.; Szallasi, Zoltan; Sieber, Oliver M.; Swanton, Charles

    2014-01-01

    The contribution of whole genome doubling to chromosomal instability (CIN) and tumour evolution is unclear. We use long-term culture of isogenic tetraploid cells from a stable diploid colon cancer progenitor to investigate how a genome-doubling event affects genome stability over time. Rare cells that survive genome doubling demonstrate increased tolerance to chromosome aberrations. Tetraploid cells do not exhibit increased frequencies of structural or numerical CIN per chromosome. However, t...

  3. No accelerated rate of protein evolution in male-biased Drosophila pseudoobscura genes.

    Metta, Muralidhar; Gudavalli, Rambabu; Gibert, Jean-Michel; Schlotterer, Christian

    2006-01-01

    Sexually dimorphic traits are often subject to diversifying selection. Genes with a male-biased gene expression also are probably affected by sexual selection and have a high rate of protein evolution. We used SAGE to measure sex-biased gene expression in Drosophila pseudoobscura. Consistent with previous results from D. melanogaster, a larger number of genes were male biased (402 genes) than female biased (138 genes). About 34% of the genes changed the sex-related expression pattern between ...

  4. Saturation condition and evolution of the nuclides for sub-critical system driven by accelerator

    At present work, under initial inventory with 232Th and natU, the evolution of nuclides in subcritical devices under given thermal, fast, hardening fast and fission neutron field are studied without the detail structure of sub-critical device and the burn-up being considered. It is supposed that the subcritical reactor consists of uniform in which the flux of neutron is homogeneous. The fissile nuclides breeding, equilibrium condition, minor activity (MA) accumulation and transmutation, are studied. (author)

  5. Nonlinear evolution of broad-bandwidth, laser-imprinted nonuniformities in planar targets accelerated by 351-nm laser light

    Planar, 20 and 40 μm thick CH targets have been accelerated by 351 nm laser beams of the OMEGA laser system [Opt. Commun. 133, 495 (1997)]. Different beam-smoothing techniques were employed including distributed phase plates, smoothing by spectral dispersion, and distributed polarization rotators. The Rayleigh - Taylor evolution of three-dimensional (3D) broadband planar-target perturbations seeded by laser nonuniformities was measured using x-ray radiography at ∼1.3 keV. Fourier analysis shows that the perturbations evolve to longer wavelengths and the shorter wavelengths saturate. The saturation amplitudes and rates of growth of these features are consistent with the predictions of Haan [Phys. Rev. A 39, 5812 (1989)]. copyright 1999 American Institute of Physics

  6. Spectral evolution of GRB 060904A observed with Swift and Suzaku -- Possibility of Inefficient Electron Acceleration

    Yonetoku, Daisuke; Murakami, Toshio; Emura, Naomi; Aoyama, Yuka; Kidamura, Takashi; Kodaira, Hironobu; Kodama, Yoshiki; Kozaka, Ryota; Nashimoto, Takuro; Okuno, Shinya; Yokota, Satoshi; Yoshinari, Satoru; Abe, Keiichi; Onda, Kaori; Tashiro, Makoto S; Urata, Yuji; Nakagawa, Yujin E; Sugita, Satoshi; Yamaoka, Kazutaka; Yoshida, Atsumasa; Ishimura, Takuto; Kawai, Nobuyuki; Shimokawabe, Takashi; Kinugasa, Kenzo; Kohmura, Takayoshi; Kubota, Kaori; Sugiyasu, Kei; Ueda, Yoshihiro; Masui, Kensuke; Nakazawa, Kazuhiro; Takahashi, Tadayuki; Maeno, Shouta; Sonoda, Eri; Yamauchi, Makoto; Kuwahara, Makoto; Tamagawa, Toru; Matsuura, Daisuke; Suzuki, Motoko; Barthelmy, Scott; Gehrels, Neil; Nousek, John

    2007-01-01

    We observed an X-ray afterglow of GRB 060904A with the Swift and Suzaku satellites. We found rapid spectral softening during both the prompt tail phase and the decline phase of an X-ray flare in the BAT and XRT data. The observed spectra were fit by power-law photon indices which rapidly changed from $\\Gamma = 1.51^{+0.04}_{-0.03}$ to $\\Gamma = 5.30^{+0.69}_{-0.59}$ within a few hundred seconds in the prompt tail. This is one of the steepest X-ray spectra ever observed, making it quite difficult to explain by simple electron acceleration and synchrotron radiation. Then, we applied an alternative spectral fitting using a broken power-law with exponential cutoff (BPEC) model. It is valid to consider the situation that the cutoff energy is equivalent to the synchrotron frequency of the maximum energy electrons in their energy distribution. Since the spectral cutoff appears in the soft X-ray band, we conclude the electron acceleration has been inefficient in the internal shocks of GRB 060904A. These cutoff spectr...

  7. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling

    Vrugt, Jasper A [Los Alamos National Laboratory; Hyman, James M [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory; Higdon, Dave [Los Alamos National Laboratory; Ter Braak, Cajo J F [NETHERLANDS; Diks, Cees G H [UNIV OF AMSTERDAM

    2008-01-01

    Markov chain Monte Carlo (MCMC) methods have found widespread use in many fields of study to estimate the average properties of complex systems, and for posterior inference in a Bayesian framework. Existing theory and experiments prove convergence of well constructed MCMC schemes to the appropriate limiting distribution under a variety of different conditions. In practice, however this convergence is often observed to be disturbingly slow. This is frequently caused by an inappropriate selection of the proposal distribution used to generate trial moves in the Markov Chain. Here we show that significant improvements to the efficiency of MCMC simulation can be made by using a self-adaptive Differential Evolution learning strategy within a population-based evolutionary framework. This scheme, entitled DiffeRential Evolution Adaptive Metropolis or DREAM, runs multiple different chains simultaneously for global exploration, and automatically tunes the scale and orientation of the proposal distribution in randomized subspaces during the search. Ergodicity of the algorithm is proved, and various examples involving nonlinearity, high-dimensionality, and multimodality show that DREAM is generally superior to other adaptive MCMC sampling approaches. The DREAM scheme significantly enhances the applicability of MCMC simulation to complex, multi-modal search problems.

  8. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Benjamin Allen

    2015-02-01

    Full Text Available Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  9. Toward a mechanistic understanding of the damage evolution of SnAgCu solder joints in accelerated thermal cycling test

    Mahin Shirazi, Sam

    Accelerated thermal cycling (ATC) tests are the most commonly used tests for the thermo-mechanical performance assessment of microelectronics assemblies. Currently used reliability models have failed to incorporate the microstructural dependency of lead free solder joint behavior and its microstructure evolution during cycling. Thus, it is essential to have a mechanistic understanding of the effect of cycling parameters on damage evolution and failure of lead free solder joints in ATC. Recrystallization has been identified as the damage rate controlling mechanism in ATC. Usually it takes 1/3 of life for completion of recrystallization regardless of cycling parameters. Thus, the life of the solder joints can be predicted by estimating global recrystallization. The objective of the first part of the study was to examine whether the damage scenario applies in service is the same as the harsh thermal cycling tests (i.e. 0/100 °C and -40/125 °C) commonly used in industry. Microstructure analysis results on a variety of lead free solder SnAgCu assemblies subjected to the both harsh (0/100 °C) and mild (20/80 °C) ATC confirmed similar failure mechanism under the both testing conditions. Sn grain morphology (interlaced versus beach ball) has a significant effect on the thermo-mechanical performance (and thus the model) of the lead free solder joints. The longer thermal cycling lifetime observed in the interlaced solder joints subjected to the ATC compared to the beach ball structure was correlated to the different initial microstructure and the microstructure evolution during cycling. For the modeling proposes, the present study was focused on Sn-Ag-Cu solder joints with either a single Sn grain or beach ball structure. Microstructural analysis results of the simulated thermal cycling experiment revealed that, the life can be approximated as determined by the accumulation of a certain amount of work during the high temperature dwells. Finally the effect of precipitates

  10. Accelerated evolution of mitochondrial but not nuclear genomes of Hymenoptera: new evidence from crabronid wasps.

    Martin Kaltenpoth

    Full Text Available Mitochondrial genes in animals are especially useful as molecular markers for the reconstruction of phylogenies among closely related taxa, due to the generally high substitution rates. Several insect orders, notably Hymenoptera and Phthiraptera, show exceptionally high rates of mitochondrial molecular evolution, which has been attributed to the parasitic lifestyle of current or ancestral members of these taxa. Parasitism has been hypothesized to entail frequent population bottlenecks that increase rates of molecular evolution by reducing the efficiency of purifying selection. This effect should result in elevated substitution rates of both nuclear and mitochondrial genes, but to date no extensive comparative study has tested this hypothesis in insects. Here we report the mitochondrial genome of a crabronid wasp, the European beewolf (Philanthus triangulum, Hymenoptera, Crabronidae, and we use it to compare evolutionary rates among the four largest holometabolous insect orders (Coleoptera, Diptera, Hymenoptera, Lepidoptera based on phylogenies reconstructed with whole mitochondrial genomes as well as four single-copy nuclear genes (18S rRNA, arginine kinase, wingless, phosphoenolpyruvate carboxykinase. The mt-genome of P. triangulum is 16,029 bp in size with a mean A+T content of 83.6%, and it encodes the 37 genes typically found in arthropod mt genomes (13 protein-coding, 22 tRNA, and two rRNA genes. Five translocations of tRNA genes were discovered relative to the putative ancestral genome arrangement in insects, and the unusual start codon TTG was predicted for cox2. Phylogenetic analyses revealed significantly longer branches leading to the apocritan Hymenoptera as well as the Orussoidea, to a lesser extent the Cephoidea, and, possibly, the Tenthredinoidea than any of the other holometabolous insect orders for all mitochondrial but none of the four nuclear genes tested. Thus, our results suggest that the ancestral parasitic lifestyle of

  11. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa.

    Peter L Oliver

    2009-12-01

    Full Text Available The onset of prezygotic and postzygotic barriers to gene flow between populations is a hallmark of speciation. One of the earliest postzygotic isolating barriers to arise between incipient species is the sterility of the heterogametic sex in interspecies' hybrids. Four genes that underlie hybrid sterility have been identified in animals: Odysseus, JYalpha, and Overdrive in Drosophila and Prdm9 (Meisetz in mice. Mouse Prdm9 encodes a protein with a KRAB motif, a histone methyltransferase domain and several zinc fingers. The difference of a single zinc finger distinguishes Prdm9 alleles that cause hybrid sterility from those that do not. We find that concerted evolution and positive selection have rapidly altered the number and sequence of Prdm9 zinc fingers across 13 rodent genomes. The patterns of positive selection in Prdm9 zinc fingers imply that rapid evolution has acted on the interface between the Prdm9 protein and the DNA sequences to which it binds. Similar patterns are apparent for Prdm9 zinc fingers for diverse metazoans, including primates. Indeed, allelic variation at the DNA-binding positions of human PRDM9 zinc fingers show significant association with decreased risk of infertility. Prdm9 thus plays a role in determining male sterility both between species (mouse and within species (human. The recurrent episodes of positive selection acting on Prdm9 suggest that the DNA sequences to which it binds must also be evolving rapidly. Our findings do not identify the nature of the underlying DNA sequences, but argue against the proposed role of Prdm9 as an essential transcription factor in mouse meiosis. We propose a hypothetical model in which incompatibilities between Prdm9-binding specificity and satellite DNAs provide the molecular basis for Prdm9-mediated hybrid sterility. We suggest that Prdm9 should be investigated as a candidate gene in other instances of hybrid sterility in metazoans.

  12. Accelerated Evolution of Conserved Noncoding Sequences in theHuman Genome

    Prambhakar, Shyam; Noonan, James P.; Paabo, Svante; Rubin, EdwardM.

    2006-07-06

    Genomic comparisons between human and distant, non-primatemammals are commonly used to identify cis-regulatory elements based onconstrained sequence evolution. However, these methods fail to detect"cryptic" functional elements, which are too weakly conserved amongmammals to distinguish from nonfunctional DNA. To address this problem,we explored the potential of deep intra-primate sequence comparisons. Wesequenced the orthologs of 558 kb of human genomic sequence, coveringmultiple loci involved in cholesterol homeostasis, in 6 nonhumanprimates. Our analysis identified 6 noncoding DNA elements displayingsignificant conservation among primates, but undetectable in more distantcomparisons. In vitro and in vivo tests revealed that at least three ofthese 6 elements have regulatory function. Notably, the mouse orthologsof these three functional human sequences had regulatory activity despitetheir lack of significant sequence conservation, indicating that they arecryptic ancestral cis-regulatory elements. These regulatory elementscould still be detected in a smaller set of three primate speciesincluding human, rhesus and marmoset. Since the human and rhesus genomesequences are already available, and the marmoset genome is activelybeing sequenced, the primate-specific conservation analysis describedhere can be applied in the near future on a whole-genome scale, tocomplement the annotation provided by more distant speciescomparisons.

  13. A porous proton-relaying metal-organic framework material that accelerates electrochemical hydrogen evolution

    Hod, Idan; Deria, Pravas; Bury, Wojciech; Mondloch, Joseph E.; Kung, Chung-Wei; So, Monica; Sampson, Matthew D.; Peters, Aaron W.; Kubiak, Cliff P.; Farha, Omar K.; Hupp, Joseph T.

    2015-09-01

    The availability of efficient hydrogen evolution reaction (HER) catalysts is of high importance for solar fuel technologies aimed at reducing future carbon emissions. Even though Pt electrodes are excellent HER electrocatalysts, commercialization of large-scale hydrogen production technology requires finding an equally efficient, low-cost, earth-abundant alternative. Here, high porosity, metal-organic framework (MOF) films have been used as scaffolds for the deposition of a Ni-S electrocatalyst. Compared with an MOF-free Ni-S, the resulting hybrid materials exhibit significantly enhanced performance for HER from aqueous acid, decreasing the kinetic overpotential by more than 200 mV at a benchmark current density of 10 mA cm-2. Although the initial aim was to improve electrocatalytic activity by greatly boosting the active area of the Ni-S catalyst, the performance enhancements instead were found to arise primarily from the ability of the proton-conductive MOF to favourably modify the immediate chemical environment of the sulfide-based catalyst.

  14. Postcopulatory sexual selection is associated with accelerated evolution of sperm morphology.

    Rowe, Melissah; Albrecht, Tomáš; Cramer, Emily R A; Johnsen, Arild; Laskemoen, Terje; Weir, Jason T; Lifjeld, Jan T

    2015-04-01

    Rapid diversification of sexual traits is frequently attributed to sexual selection, though explicit tests of this hypothesis remain limited. Spermatozoa exhibit remarkable variability in size and shape, and studies report a correlation between sperm morphology (sperm length and shape) and sperm competition risk or female reproductive tract morphology. However, whether postcopulatory processes (e.g., sperm competition and cryptic female choice) influence the speed of evolutionary diversification in sperm form is unknown. Using passerine birds, we quantified evolutionary rates of sperm length divergence among lineages (i.e., species pairs) and determined whether these rates varied with the level of sperm competition (estimated as relative testes mass). We found that relative testes mass was significantly and positively associated with more rapid phenotypic divergence in sperm midpiece and flagellum lengths, as well as total sperm length. In contrast, there was no association between relative testes mass and rates of evolutionary divergence in sperm head size, and models suggested that head length is evolutionarily constrained. Our results are the first to show an association between the strength of sperm competition and the speed of sperm evolution, and suggest that postcopulatory sexual selection promotes rapid evolutionary diversification of sperm morphology. PMID:25655075

  15. An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution

    Hood Leroy

    2004-11-01

    Full Text Available Abstract Background The runt domain transcription factors are key regulators of developmental processes in bilaterians, involved both in cell proliferation and differentiation, and their disruption usually leads to disease. Three runt domain genes have been described in each vertebrate genome (the RUNX gene family, but only one in other chordates. Therefore, the common ancestor of vertebrates has been thought to have had a single runt domain gene. Results Analysis of the genome draft of the fugu pufferfish (Takifugu rubripes reveals the existence of a fourth runt domain gene, FrRUNT, in addition to the orthologs of human RUNX1, RUNX2 and RUNX3. The tiny FrRUNT packs six exons and two putative promoters in just 3 kb of genomic sequence. The first exon is located within an intron of FrSUPT3H, the ortholog of human SUPT3H, and the first exon of FrSUPT3H resides within the first intron of FrRUNT. The two gene structures are therefore "interlocked". In the human genome, SUPT3H is instead interlocked with RUNX2. FrRUNT has no detectable ortholog in the genomes of mammals, birds or amphibians. We consider alternative explanations for an apparent contradiction between the phylogenetic data and the comparison of the genomic neighborhoods of human and fugu runt domain genes. We hypothesize that an ancient RUNT locus was lost in the tetrapod lineage, together with FrFSTL6, a member of a novel family of follistatin-like genes. Conclusions Our results suggest that the runt domain family may have started expanding in chordates much earlier than previously thought, and exemplify the importance of detailed analysis of whole-genome draft sequence to provide new insights into gene evolution.

  16. Orchestrated structure evolution: accelerating direct-write nanomanufacturing by combining top-down patterning with bottom-up growth

    Direct-write nanomanufacturing with scanning beams and probes is flexible and can produce high quality products, but it is normally slow and expensive to raster point-by-point over a pattern. We demonstrate the use of an accelerated direct-write nanomanufacturing method called 'orchestrated structure evolution' (OSE), where a direct-write tool patterns a small number of growth 'seeds' that subsequently grow into the final thin film pattern. Through control of seed size and spacing, it is possible to vary the ratio of 'top-down' to 'bottom-up' character of the patterning processes, ranging from conventional top-down raster patterning to nearly pure bottom-up space-filling via seed growth. Electron beam lithography (EBL) and copper electrodeposition were used to demonstrate trade-offs between process time and product quality over nano- to microlength scales. OSE can reduce process times for high-cost EBL patterning by orders of magnitude, at the expense of longer (but inexpensive) copper electrodeposition processing times. We quantify the degradation of pattern quality that accompanies fast OSE patterning by measuring deviations from the desired patterned area and perimeter. We also show that the density of OSE-induced grain boundaries depends upon the seed separation and size. As the seed size is reduced, the uniformity of an OSE film becomes more dependent on details of seed nucleation processes than normally seen for conventionally patterned films.

  17. High Power Beam Test and Measurement of Emittance Evolution of a 1.6-Cell Photocathode RF Gun at Pohang Accelerator Laboratory

    Park, Jang-Ho; Park, Sung-Ju; Kim, Changbum; Parc, Yong-Woon; Hong, Ju-Ho; Huang, Jung-Yun; Xiang, Dao; Wang, Xijie; Ko, In Soo

    2007-04-01

    A Brookhaven National Laboratory (BNL) GUN-IV type photocathode rf gun has been fabricated to use in femtosecond electron diffraction (FED), femtosecond far infrared radiation (fs-FIR) facility, and X-ray free electron laser (XFEL) facilities at the Pohang Accelerator Laboratory (PAL). The gun consists of a 1.6-cell cavity with a copper cathode, a solenoid magnet, beam diagnostic components and auxiliary systems. We report here the measurement of the basic beam parameters which confirm a successful fabrication of the photocathode RF gun system. The emittance evolution is measured by an emittance meter and compared with the PARMELA simulation, which shows a good agreement.

  18. Polyurethanes irradiation by accelerated electrons: molecular and supramolecular evolution, incidence on the extractable and biomedical implications; Irradiation de polyurethannes par electrons acceleres: evolution moleculaire et supramoleculaire, incidence sur les extractibles et implications biomedicales

    Guignot, C

    2002-11-15

    Face to the development of radiosterilization and polymers medical devices it was wished to study the behavior of polyurethanes under accelerated electrons in oxidizing atmosphere. This study has been made to reveal the physico chemical and organisational modifications of polyurethanes for a medical use. (N.C.)

  19. The Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations

    Ramaprabhu, Praveen; Karkhanis, Varad; Banerjee, Rahul; Varshochi, Hilda; Khan, Manoranjan; Lawrie, Andrew; Variable g RT Collaboration

    2015-11-01

    From detailed numerical simulations of the single-mode Rayleigh-Taylor (RT) instability driven by time-varying acceleration histories, we report on several findings of relevance to the performance of Inertial Confinement Fusion capsules. The incompressible, Direct Numerical Simulations (DNS) were performed in two- and three-dimensions, and over a range of density ratios of the fluid combinations (characterized by the Atwood number). We have investigated several acceleration histories, including acceleration profiles g(t) of the general form tn, with n > -2. For the 2D flow, results from numerical simulations are compared with a potential flow model developed and reported as part of this work. When the simulations are extended to three dimensions, bubble and spike growth rates are in agreement with an extension to the drag buoyancy model with modifications for time-dependent acceleration histories. We have come up with simple analytic solutions to the Drag Buoyancy model for variable g flows, and compared the solution with the 2D and 3D DNS results. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.

  20. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations.

    Ramaprabhu, P; Karkhanis, V; Banerjee, R; Varshochi, H; Khan, M; Lawrie, A G W

    2016-01-01

    From nonlinear models and direct numerical simulations we report on several findings of relevance to the single-mode Rayleigh-Taylor (RT) instability driven by time-varying acceleration histories. The incompressible, direct numerical simulations (DNSs) were performed in two (2D) and three dimensions (3D), and at a range of density ratios of the fluid combinations (characterized by the Atwood number). We investigated several acceleration histories, including acceleration profiles of the general form g(t)∼t^{n}, with n≥0 and acceleration histories reminiscent of the linear electric motor experiments. For the 2D flow, results from numerical simulations compare well with a 2D potential flow model and solutions to a drag-buoyancy model reported as part of this work. When the simulations are extended to three dimensions, bubble and spike growth rates are in agreement with the so-called level 2 and level 3 models of Mikaelian [K. O. Mikaelian, Phys. Rev. E 79, 065303(R) (2009)10.1103/PhysRevE.79.065303], and with corresponding 3D drag-buoyancy model solutions derived in this article. Our generalization of the RT problem to study variable g(t) affords us the opportunity to investigate the appropriate scaling for bubble and spike amplitudes under these conditions. We consider two candidates, the displacement Z and width s^{2}, but find the appropriate scaling is dependent on the density ratios between the fluids-at low density ratios, bubble and spike amplitudes are explained by both s^{2} and Z, while at large density differences the displacement collapses the spike data. Finally, for all the acceleration profiles studied here, spikes enter a free-fall regime at lower Atwood numbers than predicted by all the models. PMID:26871165

  1. Recent Acceleration of Plastid Sequence and Structural Evolution Coincides with Extreme Mitochondrial Divergence in the Angiosperm Genus Silene

    Sloan, Daniel B; Alverson, Andrew J; Wu, Martin; Palmer, Jeffrey D.; Taylor, Douglas R.

    2012-01-01

    The angiosperm genus Silene exhibits some of the most extreme and rapid divergence ever identified in mitochondrial genome architecture and nucleotide substitution rates. These patterns have been considered mitochondrial specific based on the absence of correlated changes in the small number of available nuclear and plastid gene sequences. To better assess the relationship between mitochondrial and plastid evolution, we sequenced the plastid genomes from four Silene species with fully sequenc...

  2. Time-dependent galactic winds I. Structure and evolution of galactic outflows accompanied by cosmic ray acceleration

    Dorfi, E A; 10.1051/0004-6361/201118082

    2013-01-01

    Cosmic rays are transported out of the galaxy by diffusion and advection due to streaming along magnetic field lines and resonant scattering off self-excited MHD waves. Thus momentum is transferred to the plasma via the frozen-in waves as a mediator assisting the thermal pressure in driving a galactic wind. The bulk of the Galactic CRs are accelerated by shock waves generated in SNRs, a significant fraction of which occur in OB associations on a timescale of several $10^7$ years. We examine the effect of changing boundary conditions at the base of the galactic wind due to sequential SN explosions on the outflow. Thus pressure waves will steepen into shock waves leading to in situ post-acceleration of GCRs. We performed simulations of galactic winds in flux tube geometry appropriate for disk galaxies, describing the CR diffusive-advective transport in a hydrodynamical fashion along with the energy exchange with self-generated MHD waves. Our time-dependent CR hydrodynamic simulations confirm the existence of ti...

  3. E Pluribus Unum: 50 Years of Research, Millions of Viruses, and One Goal--Tailored Acceleration of AAV Evolution.

    Grimm, Dirk; Zolotukhin, Sergei

    2015-12-01

    Fifty years ago, a Science paper by Atchison et al. reported a newly discovered virus that would soon become known as adeno-associated virus (AAV) and that would subsequently emerge as one of the most versatile and most auspicious vectors for human gene therapy. A large part of its attraction stems from the ease with which the viral capsid can be engineered for particle retargeting to cell types of choice, evasion from neutralizing antibodies or other desirable properties. Particularly powerful and in the focus of the current review are high-throughput methods aimed at expanding the repertoire of AAV vectors by means of directed molecular evolution, such as random mutagenesis, DNA family shuffling, in silico reconstruction of ancestral capsids, or peptide display. Here, unlike the wealth of prior reviews on this topic, we especially emphasize and critically discuss the practical aspects of the different procedures that affect the ultimate outcome, including diversification protocols, combinatorial library complexity, and selection strategies. Our overall aim is to provide general guidance that should help users at any level, from novice to expert, to safely navigate through the rugged space of directed AAV evolution while avoiding the pitfalls that are associated with these challenging but promising technologies. PMID:26388463

  4. Accelerating networks

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  5. Will there be again a transition from acceleration to deceleration in course of the dark energy evolution of the universe?

    Pan, Supriya

    2013-01-01

    In this work we consider the evolution of the interactive dark fluids in the background of homogeneous and isotropic FRW model of the universe.The dark fluids consist of a warm dark matter and a dark energy and both are described as perfect fluid with barotropic equation of state. The dark species interact non-gravitationally through an additional term in the energy conservation equations. An autonomous system is formed in the energy density spaces and fixed points are analyzed. A general expression for the deceleration parameter has been obtained and it is possible to have more than one zero of the deceleration parameter. Finally, vanishing of the deceleration parameter has been examined with some examples.

  6. Rapid Circumstellar Disk Evolution and an Accelerating Star Formation Rate in the Infrared Dark Cloud M17 SWex

    Povich, Matthew S; Robitaille, Thomas P; Broos, Patrick S; Orbin, Wesley T; King, Robert R; Naylor, Tim; Whitney, Barbara A

    2016-01-01

    We present a catalog of 840 X-ray sources and first results from a 100 ks Chandra X-ray Observatory imaging study of the filamentary infrared dark cloud G014.225$-$00.506, which forms the central regions of a larger cloud complex known as the M17 southwest extension (M17 SWex). In addition to the rich population of protostars and young stellar objects with dusty circumstellar disks revealed by Spitzer Space Telescope archival data, we discover a population of X-ray-emitting, intermediate-mass pre--main-sequence stars (IMPS) that lack infrared excess emission from circumstellar disks. We model the infrared spectral energy distributions of this source population to measure its mass function and place new constraints on the inner dust disk destruction timescales for 2-8 $M_{\\odot}$ stars. We also place a lower limit on the star formation rate (SFR) and find that it is quite high ($\\dot{M}\\ge 0.007~M_{\\odot}$ yr$^{-1}$), equivalent to several Orion Nebula Clusters in G14.225$-$0.506 alone, and likely accelerating...

  7. Microstructural Evolution of SAC305 Solder Joints in Wafer Level Chip-Scale Packaging (WLCSP) with Continuous and Interrupted Accelerated Thermal Cycling

    Zhou, Quan; Zhou, Bite; Lee, Tae-Kyu; Bieler, Thomas

    2016-06-01

    Four high-strain design wafer level chip scale packages were given accelerated thermal cycling with a 10°C/min ramp rate and 10 min hold times between 0°C and 100°C to examine the effects of continuous and interrupted thermal cycling on the number of cycles to failure. The interruptions given two of the samples were the result of periodic examinations using electron backscattered pattern mapping, leading to room temperature aging of 30 days-2.5 years after increments of about 100 cycles at several stages of the cycling history. The continuous thermal cycling resulted in solder joints with a much larger degree of recrystallization, whereas the interrupted thermal cycling tests led to much less recrystallization, which was more localized near the package side, and the crack was more localized near the interface and had less branching. The failure mode for both conditions was still the same, with cracks nucleating along the high angle grain boundaries formed during recrystallization. In conditions where there were few recrystallized grains, recovery led to formation of subgrains that strengthened the solder, and the higher strength led to a larger driving force for crack growth through the solder, leading to failure after less than half of the cycles in the continuous accelerated thermal cycling condition. This work shows that there is a critical point where sufficient strain energy accumulation will trigger recrystallization, but this point depends on the rate of strain accumulation in each cycle and various recovery processes, which further depends on local crystal orientations, stress state evolution, and specific activated slip and twinning systems.

  8. Advanced accelerators

    This report discusses the suitability of four novel particle acceleration technologies for multi-TeV particle physics machines: laser driven linear accelerators (linac), plasma beat-wave devices, plasma wakefield devices, and switched power and cavity wakefield linacs. The report begins with the derivation of beam parameters practical for multi-TeV devices. Electromagnetic field breakdown of materials is reviewed. The two-beam accelerator scheme for using a free electron laser as the driver is discussed. The options recommended and the conclusions reached reflect the importance of cost. We recommend that more effort be invested in achieving a self-consistent range of TeV accelerator design parameters. Beat-wave devices have promise for 1-100 GeV applications and, while not directly scalable to TeV designs, the current generation of ideas are encouraging for the TeV regime. In particular, surfatrons, finite-angle optical mixing devices, plasma grating accelerator, and the Raman forward cascade schemes all deserve more complete analysis. The exploitation of standard linac geometry operated in an unconventional mode is in a phase of rapid evolution. While conceptual projects abound, there are no complete designs. We recommend that a fraction of sponsored research be devoted to this approach. Wakefield devices offer a great deal of potential; trades among their benefits and constraints are derived and discussed herein. The study of field limitation processes has received inadequate attention; this limits experiment designers. The costs of future experiments are such that investment in understanding these processes is prudent. 34 refs., 12 figs., 3 tabs

  9. Can Accelerators Accelerate Learning?

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  10. CEBAF Accelerator Achievements

    In the past decade, nuclear physics users of Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) have benefited from accelerator physics advances and machine improvements. As of early 2011, CEBAF operates routinely at 6 GeV, with a 12 GeV upgrade underway. This article reports highlights of CEBAF's scientific and technological evolution in the areas of cryomodule refurbishment, RF control, polarized source development, beam transport for parity experiments, magnets and hysteresis handling, beam breakup, and helium refrigerator operational optimization.

  11. Role of synoptic- and meso-scales on the evolution of the boundary-layer wind profile over a coastal region: the near-coast diurnal acceleration

    Jiménez, Pedro A.; de Arellano, Jordi Vilà-Guerau; Dudhia, Jimy; Bosveld, Fred C.

    2016-02-01

    The contributions of synoptic- and meso-scales to the boundary layer wind profile evolution in a coastal environment are examined. The analysis is based on observations of the wind profile within the first 200 m of the atmosphere continuously recorded during a 10 year period (2001-2010) at the 213-m meteorological tower at the Cabauw Experimental Site for Atmospheric Research (CESAR, The Netherlands). The analysis is supported by a numerical experiment based on the Weather Research and Forecasting (WRF) model performed at high horizontal resolution of 2 km and spanning the complete observational period (10 years). Results indicate that WRF is able to reproduce the inter-annual wind variability but with a tendency to be too geostrophic. At seasonal scales, we find a differentiated behavior between Winter and Summer seasons with the Spring and Autumn transition periods more similar to the Summer and Winter modes, respectively. The winter momentum budget shows a weak intradiurnal variability. The synoptic scale controls the shape of the near surface wind profile that is characterized by weaker and more ageostrophic winds near the surface than at higher altitudes within the planetary boundary layer (PBL) as a result of the frictional turning. In turn, during summer, mesoscale circulations associated with the differential heating of land and sea become important. As a result, the PBL winds show a stronger intradiurnal component that is characterized by an oscillation of the near surface winds around the geostrophic direction with the maximum departure in the afternoon. Although also driven by thermal land-sea differences, this mesoscale component is not associated with the classical concept of a sea-breeze front. It originates from the thermal expansion of the boundary layer over land and primarily differs from the sea-breeze in its propagation speed resulting in a wind rotation far ahead of any coastal front. We refer to it as the near-coast diurnal acceleration (NCDA

  12. The Legacy of Cornell Accelerators

    Tigner, M.; Cassel, D. G.

    2015-10-01

    This is the story of a culture and its evolution and legacy. Beginning with the invention of the cyclotron at Berkeley, the path of further accelerator development at Cornell via the Los Alamos experience of the primary actors is described. The science done with the accelerators and on the accelerators and beams themselves is reviewed and brought up to the current time. The evolution of the user community and the sources of support for accelerators and science done with them are discussed at the appropriate places in the story.

  13. Plasma accelerators

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  14. Linear Accelerators

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics.

  15. Comparative analysis of syntenic genes in grass genomes reveals accelerated rates of gene structure and coding sequence evolution in polyploid wheat

    Cycles of whole genome duplication (WGD) and diploidization are hallmarks of eukaryotic genome evolution and speciation. Polyploid wheat (Triticum aestivum) has had a massive increase in genome size largely due to recent WGDs. How these processes may impact the dynamics of gene evolution was studied...

  16. Acceleration of Field-Scale Bioreduction of U(VI) in a Shallow Alluvial Aquifer: Temporal and Spatial Evolution of Biogeochemistry

    Uranium mill tailings sites provide access to uranium-contaminated groundwater at sites that are shallow and low hazard, making it possible to address the following scientific objectives: (1) Determine the dominant electron accepting processes at field sites with long-term metal/rad contamination; (2) Define the biogeochemical transformations that may be important to either natural or accelerated bioremediation under field conditions; and (3) Examine the potential for using biostimulation (electron donor addition) to accelerate reduction of U(VI) to U(IV) at the field scale

  17. Future accelerators (?)

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made

  18. Future accelerators (?)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  19. Accelerating Value Creation with Accelerators

    Jonsson, Eythor Ivar

    2015-01-01

    accelerator programs. Microsoft runs accelerators in seven different countries. Accelerators have grown out of the infancy stage and are now an accepted approach to develop new ventures based on cutting-edge technology like the internet of things, mobile technology, big data and virtual reality. It is also......Accelerators can help to accelerate value creation. Accelerators are short-term programs that have the objective of creating innovative and fast growing ventures. They have gained attraction as larger corporations like Microsoft, Barclays bank and Nordea bank have initiated and sponsored...

  20. Animal evolution: trilobites on speed.

    Budd, Graham E

    2013-10-01

    A new study quantifies rates of morphological and molecular evolution for arthropods during the critical Cambrian explosion. Both morphological and molecular evolution are accelerated--but not so much to break any speed limits. PMID:24112983

  1. Accelerated Evolution of Ly$\\alpha$ Luminosity Function at $\\textit{z} \\gtrsim 7$ Revealed by the Subaru Ultra-Deep Survey for Ly$\\alpha$ Emitters at $\\textit{z}=7.3$

    Konno, Akira; Ono, Yoshiaki; Shimasaku, Kazuhiro; Shibuya, Takatoshi; Furusawa, Hisanori; Nakajima, Kimihiko; Naito, Yoshiaki; Momose, Rieko; Yuma, Suraphong; Iye, Masanori

    2014-01-01

    We present the ultra-deep Subaru narrowband imaging survey for Lya emitters (LAEs) at $z=7.3$ in SXDS and COSMOS fields with a total integration time of 106 hours. Exploiting our new sharp bandwidth filter, NB101, installed on Suprime-Cam, we have reached $L(Lya)=2.4\\times10^{42} \\ erg \\ s^{-1}$ ($5\\sigma$) for $z=7.3$ LAEs, about 4 times deeper than previous Subaru $z \\gtrsim 7$ studies, which allows us to reliably investigate evolution of Lya luminosity function (LF), for the first time, down to the luminosity limit same as those of Subaru $z=3.1-6.6$ LAE samples. Surprisingly, we only find three and four LAEs in SXDS and COSMOS fields, respectively, while one expects a total of $\\sim 65$ LAEs by our survey in the case of no Lya LF evolution from $z=6.6$ to $7.3$.We identify a decrease of Lya LF from $z=6.6$ to $7.3$ at the $>90\\%$ confidence level from our $z=7.3$ Lya LF.Moreover, the evolution of Lya LF is clearly accelerated at $z>6.6$ beyond the measurement uncertainties including cosmic variance. Becau...

  2. Accelerators for research and applications

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs

  3. Laser accelerator

    Vigil, Ricardo

    2014-01-01

    Approved for public release; distribution is unlimited In 1979,W. B. Colson and S. K. Ride proposed a new kind of electron accelerator using a uniform magnetic field in combination with a circularly-polarized laser field. A key concept is to couple the oscillating electric field to the electron’s motion so that acceleration is sustained. This dissertation investigates the performance of the proposed laser accelerator using modern high powered lasers and mag-netic fields that are significan...

  4. Laser plasma accelerators

    Malka, V.

    2012-01-01

    Research activities on laser plasma accelerators are paved by many significant breakthroughs. This review article provides an opportunity to show the incredible evolution of this field of research which has, in record time, allowed physicists to produce high quality electron beams at the GeV level using compact laser systems. I will show the scientific path that led us to explore different injection schemes and to produce stable, high peak current and high quality electron beams with control ...

  5. LIBO accelerates

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  6. Induction accelerators

    Takayama, Ken

    2011-01-01

    A broad class of accelerators rests on the induction principle whereby the accelerating electrical fields are generated by time-varying magnetic fluxes. Particularly suitable for the transport of bright and high-intensity beams of electrons, protons or heavy ions in any geometry (linear or circular) the research and development of induction accelerators is a thriving subfield of accelerator physics. This text is the first comprehensive account of both the fundamentals and the state of the art about the modern conceptual design and implementation of such devices. Accordingly, the first part of the book is devoted to the essential features of and key technologies used for induction accelerators at a level suitable for postgraduate students and newcomers to the field. Subsequent chapters deal with more specialized and advanced topics.

  7. Influence of volcanic activity on the population genetic structure of Hawaiian Tetragnatha spiders: Fragmentation, rapid population growth and the potential for accelerated evolution

    Vandergast, A.G.; Gillespie, R.G.; Roderick, G.K.

    2004-01-01

    Volcanic activity on the island of Hawaii results in a cyclical pattern of habitat destruction and fragmentation by lava, followed by habitat regeneration on newly formed substrates. While this pattern has been hypothesized to promote the diversification of Hawaiian lineages, there have been few attempts to link geological processes to measurable changes in population structure. We investigated the genetic structure of three species of Hawaiian spiders in forests fragmented by a 150-year-old lava flow on Mauna Loa Volcano, island of Hawaii: Tetragnatha quasimodo (forest and lava flow generalist), T. anuenue and T. brevignatha (forest specialists). To estimate fragmentation effects on population subdivision in each species, we examined variation in mitochondrial and nuclear genomes (DNA sequences and allozymes, respectively). Population subdivision was higher for forest specialists than for the generalist in fragments separated by lava. Patterns of mtDNA sequence evolution also revealed that forest specialists have undergone rapid expansion, while the generalist has experienced more gradual population growth. Results confirm that patterns of neutral genetic variation reflect patterns of volcanic activity in some Tetragnatha species. Our study further suggests that population subdivision and expansion can occur across small spatial and temporal scales, which may facilitate the rapid spread of new character states, leading to speciation as hypothesized by H. L. Carson 30 years ago.

  8. Stochastic modeling of Lagrangian accelerations

    Reynolds, Andy

    2002-11-01

    It is shown how Sawford's second-order Lagrangian stochastic model (Phys. Fluids A 3, 1577-1586, 1991) for fluid-particle accelerations can be combined with a model for the evolution of the dissipation rate (Pope and Chen, Phys. Fluids A 2, 1437-1449, 1990) to produce a Lagrangian stochastic model that is consistent with both the measured distribution of Lagrangian accelerations (La Porta et al., Nature 409, 1017-1019, 2001) and Kolmogorov's similarity theory. The later condition is found not to be satisfied when a constant dissipation rate is employed and consistency with prescribed acceleration statistics is enforced through fulfilment of a well-mixed condition.

  9. Tandem accelerators

    After the installation of Ti-acceleration tubes and substantial modifications and additions to the EN tandem accelerator the performance of the machine has stabilized. The voltage behaviour of the tubes obviously improves as conditioning times necessary to run up to 6 MV decrease. A gridded lens has been added at the entrance of the first acceleration tube, and a second foil stripper is now installed in the short dead section between the high-energy tubes. The MP tandem also has been running stably during most of the year. However, beam instabilities originating from the last tube section and wear problems at the low-energy set of pelletron-chains caused some loss of beam time. During the fall, one set of pelletron charging chains has to be replaced after 49,000 hours of operation. In the course of the year, the MP and the EN tandem accelerators finished their 100,000th and 150,000th hours of operations, respectively. Preparations for the installation of the 3 MV negative heavy ion injector for the MP are progressing steadily. External beam transport, terminal ion optics, and data acquisition and control systems are to a major extent completed; the integration of the terminal power supplies has started. After the final assembly of the accelerator column structure, first voltage runs can be performed. (orig.)

  10. Monoallelic expression of the human FOXP2 speech gene

    Adegbola, Abidemi A.; Cox, Gerald F.; Bradshaw, Elizabeth M.; Hafler, David A.; Gimelbrant, Alexander; Chess, Andrew

    2014-01-01

    The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease...

  11. The DISC1 promoter: Characterization and regulation by FOXP2

    Walker, R.; A. Hill; Newman, A; Hamilton, G.; Torrance, H.; ANDERSON,S; Ogawa, F; Derizioti, P.; Nicod, J.; Vernes, S.; Fisher, S; Thomson, P.; Porteous, D.; Evans, K.

    2012-01-01

    Disrupted in schizophrenia 1 (DISC1) is a leading candidate susceptibility gene for schizophrenia, bipolar disorder, and recurrent major depression, which has been implicated in other psychiatric illnesses of neurodevelopmental origin, including autism. DISC1 was initially identified at the breakpoint of a balanced chromosomal translocation, t(1;11) (q42.1;14.3), in a family with a high incidence of psychiatric illness. Carriers of the translocation show a 50% reduction in DISC1 protein level...

  12. Particle acceleration

    Vlahos, L.; Machado, M. E.; Ramaty, R.; Murphy, R. J.; Alissandrakis, C.; Bai, T.; Batchelor, D.; Benz, A. O.; Chupp, E.; Ellison, D.

    1986-01-01

    Data is compiled from Solar Maximum Mission and Hinothori satellites, particle detectors in several satellites, ground based instruments, and balloon flights in order to answer fundamental questions relating to: (1) the requirements for the coronal magnetic field structure in the vicinity of the energization source; (2) the height (above the photosphere) of the energization source; (3) the time of energization; (4) transistion between coronal heating and flares; (5) evidence for purely thermal, purely nonthermal and hybrid type flares; (6) the time characteristics of the energization source; (7) whether every flare accelerates protons; (8) the location of the interaction site of the ions and relativistic electrons; (9) the energy spectra for ions and relativistic electrons; (10) the relationship between particles at the Sun and interplanetary space; (11) evidence for more than one acceleration mechanism; (12) whether there is single mechanism that will accelerate particles to all energies and also heat the plasma; and (13) how fast the existing mechanisms accelerate electrons up to several MeV and ions to 1 GeV.

  13. Accelerator design

    The feasibility of constructing a TeV region electron-positron linear collider in Japan is discussed. The design target of the collider is given as follows: Energy, 1 TeV + 1 TeV; luminosity, 1032-1033/cm2/s; total length, 25km; electric power, 250MW; energy dispersion, 1%-10%; the start of the first experiment, early 1990s. For realizing the above target, the following research and developmental works are necessary. (a) Development of an acceleration tube with short filling time and high shunt resistance. (b) Short pulse microwave source with high peak power. (c) High current, single bunch linac. (d) Beam dynamics. As for the acceleration tube, some possibility is considered: For example, the use of DAW (Disk and Washer) which is being developed for TRISTAN as a traveling-wave tube; and the Jungle Gym-type acceleration tube. As a promising candidate for the microwave source, the Lasertron has been studied. The total cost of the collider construction is estimated to be about 310 billion yen, of which 120 billion yen is for the tunnel and buildings, and 190 billion yen for the accelerator facilities. The operation cost is estimated to be about 3 billion yen per month. (Aoki, K.)

  14. Accelerator operations

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  15. Darwinian Evolution on a Chip

    Paegel, Brian M.; Joyce, Gerald F.

    2008-01-01

    Author Summary The principles of Darwinian evolution are fundamental to understanding biological organization and have been applied to the development of functional molecules in the test tube. Laboratory evolution is greatly accelerated compared with natural evolution, but it usually requires substantial manipulation by the experimenter. Here we describe a system that relies on computer control and microfluidic chip technology to automate the directed evolution of functional molecules, subjec...

  16. MUON ACCELERATION

    BERG,S.J.

    2003-11-18

    One of the major motivations driving recent interest in FFAGs is their use for the cost-effective acceleration of muons. This paper summarizes the progress in this area that was achieved leading up to and at the FFAG workshop at KEK from July 7-12, 2003. Much of the relevant background and references are also given here, to give a context to the progress we have made.

  17. KEKB accelerator

    KEKB, the B-Factory at High Energy Accelerator Research Organization (KEK) recently achieved the luminosity of 1 x 1034 cm-2s-1. This luminosity is two orders higher than the world's level at 1990 when the design of KEKB started. This unprecedented result was made possible by KEKB's innovative design and technology in three aspects - beam focusing optics, high current storage, and beam - beam interaction. Now KEKB is leading the luminosity frontier of the colliders in the world. (author)

  18. Accelerated probabilistic inference of RNA structure evolution

    Holmes Ian

    2005-03-01

    Full Text Available Abstract Background Pairwise stochastic context-free grammars (Pair SCFGs are powerful tools for evolutionary analysis of RNA, including simultaneous RNA sequence alignment and secondary structure prediction, but the associated algorithms are intensive in both CPU and memory usage. The same problem is faced by other RNA alignment-and-folding algorithms based on Sankoff's 1985 algorithm. It is therefore desirable to constrain such algorithms, by pre-processing the sequences and using this first pass to limit the range of structures and/or alignments that can be considered. Results We demonstrate how flexible classes of constraint can be imposed, greatly reducing the computational costs while maintaining a high quality of structural homology prediction. Any score-attributed context-free grammar (e.g. energy-based scoring schemes, or conditionally normalized Pair SCFGs is amenable to this treatment. It is now possible to combine independent structural and alignment constraints of unprecedented general flexibility in Pair SCFG alignment algorithms. We outline several applications to the bioinformatics of RNA sequence and structure, including Waterman-Eggert N-best alignments and progressive multiple alignment. We evaluate the performance of the algorithm on test examples from the RFAM database. Conclusion A program, Stemloc, that implements these algorithms for efficient RNA sequence alignment and structure prediction is available under the GNU General Public License.

  19. Accelerators and the Accelerator Community

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  20. accelerating cavity

    On the inside of the cavitytThere is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  1. Centralized digital control of accelerators

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors

  2. Electron Accelerator Facilities

    Lecture presents main aspects of progress in development of industrial accelerators: adaptation of accelerators primary built for scientific experiments, electron energy and beam power increase in certain accelerator constructions, computer control system managing accelerator start-up, routine operation and technological process, maintenance (diagnostics), accelerator technology perfection (electrical efficiency, operation cost), compact and more efficient accelerator constructions, reliability improvement according to industrial standards, accelerators for MW power levels and accelerators tailored for specific use

  3. Accelerator system and method of accelerating particles

    Wirz, Richard E. (Inventor)

    2010-01-01

    An accelerator system and method that utilize dust as the primary mass flux for generating thrust are provided. The accelerator system can include an accelerator capable of operating in a self-neutralizing mode and having a discharge chamber and at least one ionizer capable of charging dust particles. The system can also include a dust particle feeder that is capable of introducing the dust particles into the accelerator. By applying a pulsed positive and negative charge voltage to the accelerator, the charged dust particles can be accelerated thereby generating thrust and neutralizing the accelerator system.

  4. The Evolution and Development of the Universe

    Vidal, Clement; Auffray, Charles; Blin, Alex H.; Chaline, Jean; Crane, Louis; Durt, Thomas; Ekstig, Borje; Fairlamb, Horace; Greben, Jan; Hengeveld, Rob; Heylighen, Francis; Akkerhuis, Gerard Jagers op; Longo, Giuseppe; Lori, Nicolas F.; Noble, Denis

    2009-01-01

    This document is the Special Issue of the First International Conference on the Evolution and Development of the Universe (EDU 2008). Please refer to the preface and introduction for more details on the contributions. Keywords: acceleration, artificial cosmogenesis, artificial life, Big Bang, Big History, biological evolution, biological universe, biology, causality, classical vacuum energy, complex systems, complexity, computational universe, conscious evolution, cosmological artificial sele...

  5. An Accelerating Cosmology Without Dark Energy

    Steigman, G; R.C. SANTOS; Lima, J.A.S.

    2008-01-01

    The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996) without requiring the presence of dark energy or a cosmological constant. In a recent study Lima et al. (2008, LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations of the recent transition from a decelerating to an accelerating Universe. Here we test the evolution...

  6. Pulsed DC accelerator for laser wakefield accelerator

    For the acceleration of ultra-short, high-brightness electron bunches, a pulsed DC accelerator was constructed. The pulser produced megavolt pulses of 1 ns duration in a vacuum diode. Results are presented from field emission of electrons in the diode. The results indicate that the accelerating gradient in the diode is approximately 1.5 GV/m

  7. Linear Accelerator (LINAC)

    ... News Physician Resources Professions Site Index A-Z Linear Accelerator A linear accelerator (LINAC) customizes high energy x-rays to ... ensured? What is this equipment used for? A linear accelerator (LINAC) is the device most commonly used ...

  8. Pulse propagation in the laser wakefield accelerator

    A high-density regime of the laser wakefield accelerator is reviewed in which enhanced acceleration is achieved via resonant self-modulation of the laser pulse. This requires laser power in excess of the critical power for optical guiding and a plasma wavelength short compared to the laser pulse-length. The evolution of the laser pulse is described, including a discussion of self-modulation and laser-hose instabilities. Examples of self-modulated laser wakefield accelerators are presented. copyright 1996 American Institute of Physics

  9. Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies

    Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

    2011-11-14

    The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization

  10. Diagnostics for laser-driven plasma accelerators

    When generating relativistic plasmas with high power laser systems small-scale particle accelerators can be realized producing particle pulses which exhibit parameters complementary to conventional accelerators. To be able to resolve the physical processes underlying the acceleration mechanisms diagnostics well-suited for this plasma environment need to be designed and realized. In this presentation, several techniques are introduced, and recent results are discussed. They have lead to the first time-resolved visualization of the plasma wave necessary for laser-driven electron acceleration, its non-linear evolution and the actual breaking of the plasma wave. Furthermore, diagnostic techniques relevant for laser-driven ion acceleration based on optical and particle probing are presented.

  11. Controlled quantum evolutions

    Petroni, N C; De Siena, S; Illuminati, F; Petroni, Nicola Cufaro; Martino, Salvatore De; Siena, Silvio De; Illuminati, Fabrizio

    1999-01-01

    We perform a detailed analysis of the non stationary solutions of the evolution (Fokker-Planck) equations associated to either stationary or non stationary quantum states by the stochastic mechanics. For the excited stationary states of quantum systems with singular velocity fields we explicitely discuss the exact solutions for the HO case. Moreover the possibility of modifying the original potentials in order to implement arbitrary evolutions ruled by these equations is discussed with respect to both possible models for quantum measurements and applications to the control of particle beams in accelerators.

  12. Centralized digital control of accelerators

    Melen, R.E.

    1983-09-01

    In contrasting the title of this paper with a second paper to be presented at this conference entitled Distributed Digital Control of Accelerators, a potential reader might be led to believe that this paper will focus on systems whose computing intelligence is centered in one or more computers in a centralized location. Instead, this paper will describe the architectural evolution of SLAC's computer based accelerator control systems with respect to the distribution of their intelligence. However, the use of the word centralized in the title is appropriate because these systems are based on the use of centralized large and computationally powerful processors that are typically supported by networks of smaller distributed processors.

  13. Self accelerating electron Airy beams

    Voloch-Bloch, Noa; Lilach, Yigal; Gover, Avraham; Arie, Ady

    2013-01-01

    We report the first experimental generation and observation of Airy beams of free electrons. The electron Airy beams are generated by diffraction of electrons through a nanoscale hologram, that imprints a cubic phase modulation on the beams' transverse plane. We observed the spatial evolution dynamics of an arc-shaped, self accelerating and shape preserving electron Airy beams. We directly observed the ability of electrons to self-heal, restoring their original shape after passing an obstacle. This electromagnetic method opens up new avenues for steering electrons, like their photonic counterparts, since their wave packets can be imprinted with arbitrary shapes or trajectories. Furthermore, these beams can be easily manipulated using magnetic or electric potentials. It is also possible to efficiently self mix narrow beams having opposite signs of acceleration, hence obtaining a new type of electron interferometer.

  14. Acceleration without Horizons

    Doria, Alaric; Munoz, Gerardo

    2015-01-01

    We derive the metric of an accelerating observer moving with non-constant proper acceleration in flat spacetime. With the exception of a limiting case representing a Rindler observer, there are no horizons. In our solution, observers can accelerate to any desired terminal speed $v_{\\infty} < c$. The motion of the accelerating observer is completely determined by the distance of closest approach and terminal velocity or, equivalently, by an acceleration parameter and terminal velocity.

  15. Method of determination of super-low losses of particles based on analysis of the charge spatial distribution evolution for computer modeling of the beam dynamics in linear accelerator

    Using maximum entropy principle, statistical semi-invariants of high orders, symmetry and excess coefficients, a methodic of super-low losses of beam current in a high capacity accelerator was grounded. An analysis of beam dynamics numerical modelling with coordinated input parameters in the structures with spatial homogenous quadrupole focusing was made

  16. Cosmic acceleration without dark energy

    In this work, we investigate the global dynamics of the universe within the framework of the Interacting Dark Matter (IDM) scenario. Considering that the dark matter obeys the collisional Boltzmann equation, we can obtain analytical solutions of the global density evolution, which can accommodate an accelerated expansion, equivalent to either the quintessence or the standard Λ models. This is possible if there is a disequilibrium between the DM particle creation and annihilation processes with the former process dominating, which creates an effective source term with negative pressure. We also find realistic solutions in which the present time is located after the inflection point.

  17. Neutron induced activation in the EVEDA accelerator materials: Implications for the accelerator maintenance

    The Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility project should result in an accelerator prototype for which the analysis of the dose rates evolution during the beam-off phase is a necessary task for radioprotection and maintenance feasibility purposes. Important aspects of the computational methodology to address this problem are discussed, and dose rates for workers inside the accelerator vault are assessed and found to be not negligible.

  18. Neutron induced activation in the EVEDA accelerator materials: Implications for the accelerator maintenance

    Sanz, J. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain)], E-mail: jsanz@ind.uned.es; Garcia, M.; Sauvan, P.; Lopez, D. [Department of Power Engineering, Universidad Nacional de Educacion a Distancia (UNED), C/Juan del Rosal 12, 28040 Madrid (Spain); Institute of Nuclear Fusion, UPM, 28006 Madrid (Spain); Moreno, C.; Ibarra, A.; Sedano, L. [CIEMAT, 28040 Madrid (Spain)

    2009-04-30

    The Engineering Validation and Engineering Design Activities (EVEDA) phase of the International Fusion Materials Irradiation Facility project should result in an accelerator prototype for which the analysis of the dose rates evolution during the beam-off phase is a necessary task for radioprotection and maintenance feasibility purposes. Important aspects of the computational methodology to address this problem are discussed, and dose rates for workers inside the accelerator vault are assessed and found to be not negligible.

  19. The accelerated observer with back-reaction effects

    R. CasadioDept. of Phys. and INFN, Bologna, Italy; Venturi, G.

    2015-01-01

    The quantum mechanical evolution of an accelerated extended detector coupled to a massless scalar field is exhibited and the back-reaction due to emission or absorption processes computed at first order in the change of the detector's mass and acceleration. An analogy with black hole evaporation is found and illustrated.

  20. The Modern Temperature-Accelerated Dynamics Approach.

    Zamora, Richard J; Uberuaga, Blas P; Perez, Danny; Voter, Arthur F

    2016-06-01

    Accelerated molecular dynamics (AMD) is a class of MD-based methods used to simulate atomistic systems in which the metastable state-to-state evolution is slow compared with thermal vibrations. Temperature-accelerated dynamics (TAD) is a particularly efficient AMD procedure in which the predicted evolution is hastened by elevating the temperature of the system and then recovering the correct state-to-state dynamics at the temperature of interest. TAD has been used to study various materials applications, often revealing surprising behavior beyond the reach of direct MD. This success has inspired several algorithmic performance enhancements, as well as the analysis of its mathematical framework. Recently, these enhancements have leveraged parallel programming techniques to enhance both the spatial and temporal scaling of the traditional approach. We review the ongoing evolution of the modern TAD method and introduce the latest development: speculatively parallel TAD. PMID:26979413

  1. High intensity hadron accelerators

    In this paper we give an introductory discussion of high intensity hadron accelerators with special emphasis on the high intensity feature. The topics selected for this discussion are: Types of acclerator - The principal actions of an accelerator are to confine and to accelerate a particle beam. Focusing - This is a discussion of the confinement of single particles. Intensity limitations - These are related to confinement of intense beams of particles. Power economics - Considerations related to acceleration of intense beams of particles. Heavy ion kinematics - The adaptation of accelerators to accelerate all types of heavy ions

  2. The direction of acceleration

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  3. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  4. Acceleration feature points of unsteady shear flows

    Kasten, Jens; Hotz, Ingrid; Hege, Hans-Christian; Noack, Bernd R; Daviller, Guillaume; Morzynski, Marek

    2014-01-01

    In this paper, we propose a novel framework to extract features such as vortex cores and saddle points in two-dimensional unsteady flows. This feature extraction strategy generalizes critical points of snapshot topology in a Galilean-invariant manner, allows to prioritize features according to their strength and longevity, enables to track the temporal evolution of features, is robust against noise and has no subjective parameters. These characteristics are realized via several constitutive elements. First, acceleration is employed as a feature identifier following Goto and Vassilicos (2006), thus ensuring Galilean invariance. Second, the acceleration magnitude is used as basis for a mathematically well-developed scalar field topology. The minima of this field are called acceleration feature points, a superset of the acceleration zeros. These points are discriminated into vortices and saddle points depending the spectral properties of the velocity Jacobian. Third, all operations are based on discrete topology...

  5. San Francisco Accelerator Conference

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  6. Dielectric Laser Acceleration

    England, R. Joel; Noble, Robert J.; Wu, Ziran; Qi, Minghao

    2013-01-01

    We describe recent advances in the study of particle acceleration using dielectric near-field structures driven by infrared lasers, which we refer to as Dielectric Laser Accelerators. Implications for high energy physics and other applications are discussed.

  7. Standing wave linear accelerator

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  8. Improved plasma accelerator

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  9. High Energy Particle Accelerators

    Audio Productions, Inc, New York

    1960-01-01

    Film about the different particle accelerators in the US. Nuclear research in the US has developed into a broad and well-balanced program.Tour of accelerator installations, accelerator development work now in progress and a number of typical experiments with high energy particles. Brookhaven, Cosmotron. Univ. Calif. Berkeley, Bevatron. Anti-proton experiment. Negative k meson experiment. Bubble chambers. A section on an electron accelerator. Projection of new accelerators. Princeton/Penn. build proton synchrotron. Argonne National Lab. Brookhaven, PS construction. Cambridge Electron Accelerator; Harvard/MIT. SLAC studying a linear accelerator. Other research at Madison, Wisconsin, Fixed Field Alternate Gradient Focusing. (FFAG) Oakridge, Tenn., cyclotron. Two-beam machine. Comments : Interesting overview of high energy particle accelerators installations in the US in these early years. .

  10. Accelerators for Driving Intense spallation Neutron Sources

    A worldwide trend to replace aging research reactors with accelerator driven neutron sources is currently underway. The ''SARAF'' program at Soreq NRC is a notable example. Setting the background to this trend, a review of the history of accelerator based spallation neutron sources is presented. We follow the evolution of ideas and projects for intense spallation neutron sources. The survey is mainly focused on the properties of the accelerators chosen as drivers throughout the evolution of spallation neutron sources. Since the late 1940s, high-energy proton and deuteron accelerators were developed in view of producing intense neutron sources for various applications related to the nuclear industry, i.e. breeding fissile isotopes, driving nuclear reactors using alternative fuels (like the 'Energy Amplifier') and nuclear waste incineration. However, these projects never progressed beyond the R and D stage. In recent years there is a trend to replace aging reactor-based strong cw neutron sources by pulsed intense spallation sources. Their main applications are in the fields of physics research, material sciences, biology and medicine. Prominent examples of successful projects are ISIS at RAL in Great Britain and SINQ at PSI in Switzerland. Other successful projects are noted in Japan and the US. The clear success of these spallation sources prompted the development of a new generation of more intense spallation neutron sources, notably in Europe (ESS), US (SNS) and Japan (JAERI). Generally, the pulsed spallation neutron sources are based on high-energy proton accelerators. Initially, the proton accelerators were room temperature linacs. In view of the progress relating to properties of RF superconducting resonators and the excellent accumulated experience with cryogenic accelerators, future accelerators for spallation sources will be mostly cryogenic linacs

  11. Maximal Acceleration Is Nonrotating

    Page, Don N.

    1997-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruenc...

  12. Accelerators at school

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  13. A Solid state accelerator

    We present a solid state accelerator concept utilizing particle acceleration along crystal channels by longitudinal electron plasma waves in a metal. Acceleration gradients of order 100 GV/cm are theoretically possible, but channeling radiation limits the maximum attainable energy to 105 TeV for protons. Beam dechanneling due to multiple scattering is substantially reduced by the high acceleration gradient. Plasma wave dissipation and generation in metals are also discussed

  14. Superconducting accelerator technology

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  15. Applications of particle accelerators

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  16. Accelerator development in BARC

    Charged particle accelerators have played crucial role in the field of both basic and applied sciences. This has been possible because the accelerators have been extensively utilized from unraveling the secrets of nature to diverse applications such as implantation, material modification, medical diagnostics and therapy, nuclear energy and clean air and water. The development of accelerators in BARC can be categorized in two broad categories namely proton and heavy ion based accelerators and electron based accelerators. The heavy ion accelerators with sufficiently high energies are currently being used for conducting frontline nuclear and allied research whereas the electron accelerators are being routinely used for various industrial applications. Recently, there is a strong interest for developing the high energy and high intensity accelerators due to their possibility of effective utilization towards concept of energy amplification (Accelerator Driven System), incineration nuclear waste and transmutation. This talk will discuss details of the accelerator development program in BARC with particular emphasis on the recent development at Low Energy High Intensity Proton Accelerator (LEHIPA) Facility in Ion Accelerator Development Division, BARC. (author)

  17. Far field acceleration

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  18. The CERN Accelerator School

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  19. Accelerators and Dinosaurs

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  20. Acceleration: It's Elementary

    Willis, Mariam

    2012-01-01

    Acceleration is one tool for providing high-ability students the opportunity to learn something new every day. Some people talk about acceleration as taking a student out of step. In actuality, what one is doing is putting a student in step with the right curriculum. Whole-grade acceleration, also called grade-skipping, usually happens between…

  1. The Accelerator Reliability Forum

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  2. On evolution of the Universe

    We consider the model of evolution of the Universe, in which Big Bang is an explosion of the photon superstar. The inflationary epoch is not necessary in the model. The model describes the basic observable phenomena: expansion of the Universe with acceleration, homogeneity and isotropy, absence of an antimatter, almost flat metrics

  3. Direct Laser Acceleration in Laser Wakefield Accelerators

    Shaw, Jessica

    2016-01-01

    In this dissertation, the direct laser acceleration (DLA) of ionization-injected electrons in a laser wakefield accelerator (LWFA) operating in the quasi-blowout regime has been investigated through experiment and simulation. In the blowout regime of LWFA, the radiation pressure of an intense laser pulse can push a majority of the plasma electrons out and around the main body of the pulse. The expelled plasma electrons feel the electrostatic field of the relatively-stationary ions and are t...

  4. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015

  5. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    Gareth eJones

    2013-05-01

    Full Text Available Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions (e.g. olfactory receptor genes and genes identified from mutations associated with sensory deficits (e.g. blindness and deafness. For example, the FoxP2 gene, underpinning vocal behaviour and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive olfactory receptor repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a ‘birth-and death’ evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to

  6. Accelerating DSMC data extraction.

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  7. The future of particle accelerators

    Plasma-based accelerators are developing as credible, and compact, accelerators for the future. We review the status and prospects for electron and proton accelerators using laser Wakefield acceleration. (author)

  8. Particle-accelerator decommissioning

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  9. An introduction to acceleration mechanisms

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  10. Particle acceleration by combined diffusive shock acceleration and downstream multiple magnetic island acceleration

    Zank, G. P.; Hunana, P.; Mostafavi, P.; le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.

    2015-09-01

    As a consequence of the evolutionary conditions [28; 29], shock waves can generate high levels of downstream vortical turbulence. Simulations [32-34] and observations [30; 31] support the idea that downstream magnetic islands (also called plasmoids or flux ropes) result from the interaction of shocks with upstream turbulence. Zank et al. [18] speculated that a combination of diffusive shock acceleration (DSA) and downstream reconnection-related effects associated with the dynamical evolution of a “sea of magnetic islands” would result in the energization of charged particles. Here, we utilize the transport theory [18; 19] for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets to investigate a combined DSA and downstream multiple magnetic island charged particle acceleration mechanism. We consider separately the effects of the anti-reconnection electric field that is a consequence of magnetic island merging [17], and magnetic island contraction [14]. For the merging plasmoid reconnection- induced electric field only, we find i) that the particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory, and ii) that the solution is constant downstream of the shock. For downstream plasmoid contraction only, we find that i) the accelerated particle spectrum is a power law in particle speed, flatter than that derived from conventional DSA theory; ii) for a given energy, the particle intensity peaks downstream of the shock, and the peak location occurs further downstream of the shock with increasing particle energy, and iii) the particle intensity amplification for a particular particle energy, f(x, c/c0)/f(0, c/c0), is not 1, as predicted by DSA theory, but increases with increasing particle energy. These predictions can be tested against observations of electrons and ions accelerated at interplanetary shocks and the heliospheric

  11. Accelerator and radiation physics

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  12. Leaky Fermi accelerators

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  13. Accelerator reliability workshop

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  14. Nuclear physics accelerator facilities

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  15. Accelerator reliability workshop

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  16. Switched Matrix Accelerator

    We describe a new concept for a microwave circuit functioning as a charged-particle accelerator at mm-wavelengths, permitting an accelerating gradient higher than conventional passive circuits can withstand consistent with cyclic fatigue. The device provides acceleration for multiple bunches in parallel channels, and permits a short exposure time for the conducting surface of the accelerating cavities. Our analysis includes scalings based on a smooth transmission line model and a complementary treatment with a coupled-cavity simulation. We provide also an electromagnetic design for the accelerating structure, arriving at rough dimensions for a seven-cell accelerator matched to standard waveguide and suitable for bench tests at low power in air at 91.392. GHz. A critical element in the concept is a fast mm-wave switch suitable for operation at high-power, and we present the considerations for implementation in an H-plane tee. We discuss the use of diamond as the photoconductor switch medium

  17. CAS - CERN Accelerator School: RF for Accelerators

    2012-01-01

    These proceedings present the lectures given at the twenty-fourth specialized course organized by the CERN Accelerator School (CAS). The course was held in Ebeltoft, Denmark, from 8-17 June, 2010 in collaboration with Aarhus University, with the topic 'RF for Accelerators' While this topic has been covered by CAS previously, early in the 1990s and again in 2000, it was recognized that recent advances in the field warranted an updated course. Following introductory courses covering the background physics, the course attempted to cover all aspects of RF for accelerators; from RF power generation and transport, through cavity and coupler design, electronics and low level control, to beam diagnostics and RF gymnastics. The lectures were supplemented with several sessions of exercises, which were completed by discussion sessions on the solutions.

  18. Accelerator shielding benchmark problems

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  19. Accelerator shielding benchmark problems

    Hirayama, H.; Ban, S.; Nakamura, T. [and others

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author).

  20. The foxhole accelerating structure

    This report examines some properties of a new type of open accelerating structure. It consists of a series of rectangular cavities, which we call foxholes, joined by a beam channel. The power for accelerating the particles comes from an external radiation source and enters the cavities through their open upper surfaces. Analytic and computer calculations are presented showing that the foxhole is a suitable structure for accelerating relativistic electrons

  1. Japan Accelerator Conference

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation

  2. Superconducting accelerator magnets

    In the near future, a large number of high quality superconducting dipole and quadrupole magnets will be required for construction of the next generation multi-TeV high energy hadron accelerator-colliders. To establish the construction technology of such accelerator- colliders, extensive and world-wide R and D programs are now carrying out at several laboratories. In this paper the important issues in superconducting accelerator magnets such as cables, design, fabrication, testing and cryogenic system are discussed together with some details on coil cross- sectional current configurations, quality control of materials, quench protections, radiation heating and etc. The key technology in superconducting accelerator magnets is summarized

  3. High Gradient Accelerator Research

    Temkin, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Physics. Plasma Science and Fusion Center

    2016-07-12

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  4. High-intensity accelerators

    The design of high-intensity accelerators is described, using examples of machines being built at the Los Alamos National Laboratory. The major design problem with these accelerators is associated with control of beam loss when accelerator intensity is increased. Beam dynamics, beam loss, and the radio-frequency quadrupole structure are discussed in the first part of the chapter followed by an explanation of plans to achieve high-intensity operation in three projects: the Fusion Material Irradiation Tests (a joint effort with the Hanford Development Laboratory in Richland, Washington), the Proton Storage Ring (an addition to the LAMPF accelerator), and the Racetrack Microtron Project

  5. Heavy ion acceleration strategies in the AGS accelerator complex -- 1994 Status report

    The strategies invoked to satisfy the injected beam specifications for the Brookhaven Relativistic Heavy Ion Collider (RHIC) continue to evolve, in the context of the yearly AGS fixed target heavy ion physics runs. The primary challenge is simply producing the required intensity. The acceleration flexibility available particularly in the Booster main magnet power supply and rf accelerating systems, together with variations in the charge state delivered from the Tandem van de Graaff, and accommodation by the AGS main magnet and rf systems allow the possibility for a wide range of options. The yearly physics run provides the opportunity for exploration of these options with the resulting significant evolution in the acceleration plan. This was particularly true in 1994 with strategies involving three different charge states and low and high acceleration rates employed in the Booster. The present status of this work will be presented

  6. Chemical evolution of galaxies

    Initial conditions are probably set by results of Big Bang nucleosynthesis (BBNS) without intervening complications affecting the composition of visible matter so that extrapolation of observed abundances to BBNS products seems fairly secure. Primordial helium and deuterium abundances deduced in this way place upper and lower limits on baryonic density implying that both baryonic and non-baryonic dark matter exist and predicting no more than 3 neutrino flavours as recently confirmed in accelerator experiments. The validity of simple galactic chemical evolution models assumed in extrapolating back to the Big Bang is examined in the light of the frequency distribution of iron or oxygen abundances in the Galactic halo, bulge and disk. (orig.)

  7. Particle Acceleration in an Evolving Network of Unstable Current Sheets

    Vlahos, L; Lepreti, F

    2004-01-01

    We study the acceleration of electrons and protons interacting with localized, multiple, small-scale dissipation regions inside an evolving, turbulent active region. The dissipation regions are Unstable Current Sheets (UCS), and in their ensemble they form a complex, fractal, evolving network of acceleration centers. Acceleration and energy dissipation are thus assumed to be fragmented. A large-scale magnetic topology provides the connectivity between the UCS and determines in this way the degree of possible multiple acceleration. The particles travel along the magnetic field freely without loosing or gaining energy, till they reach a UCS. In a UCS, a variety of acceleration mechanisms are active, with the end-result that the particles depart with a new momentum. The stochastic acceleration process is represented in the form of Continuous Time Random Walk (CTRW), which allows to estimate the evolution of the energy distribution of the particles. It is found that under certain conditions electrons are heated a...

  8. Manufacturing and Testing of Accelerator Superconducting Magnets

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  9. Angular velocities, angular accelerations, and coriolis accelerations

    Graybiel, A.

    1975-01-01

    Weightlessness, rotating environment, and mathematical analysis of Coriolis acceleration is described for man's biological effective force environments. Effects on the vestibular system are summarized, including the end organs, functional neurology, and input-output relations. Ground-based studies in preparation for space missions are examined, including functional tests, provocative tests, adaptive capacity tests, simulation studies, and antimotion sickness.

  10. Accelerator Modeling with MATLAB Accelerator Toolbox

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  11. How Adaptive Learning Affects Evolution: Reviewing Theory on the Baldwin Effect

    Sznajder, B.; Sabelis, M.W.; M. Egas

    2011-01-01

    We review models of the Baldwin effect, i.e., the hypothesis that adaptive learning (i.e., learning to improve fitness) accelerates genetic evolution of the phenotype. Numerous theoretical studies scrutinized the hypothesis that a non-evolving ability of adaptive learning accelerates evolution of genetically determined behavior. However, their results are conflicting in that some studies predict an accelerating effect of learning on evolution, whereas others show a decelerating effect. We beg...

  12. How adaptive learning affects evolution: reviewing theory on the Baldwin effect

    Sznajder, B.; Sabelis, M.W.; M. Egas

    2012-01-01

    We review models of the Baldwin effect, i.e., the hypothesis that adaptive learning (i.e., learning to improve fitness) accelerates genetic evolution of the phenotype. Numerous theoretical studies scrutinized the hypothesis that a non-evolving ability of adaptive learning accelerates evolution of genetically determined behavior. However, their results are conflicting in that some studies predict an accelerating effect of learning on evolution, whereas others show a decelerating effect. We beg...

  13. Accelerator-based BNCT

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the 9Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. - Highlights: • The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. • Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. • The present status and recent progress of the Argentine project will be reviewed. • Topics cover intense ion sources, accelerator tubes, transport of intense beams and beam diagnostics, among others

  14. COLLECTIVE-FIELD ACCELERATION

    Sessler, Andrew M.

    1969-07-04

    Diverse methods proposed for the acceleration of particles by means of collective fields are reviewed. A survey is made of the various currently active experimental programs devoted to investigating collective acceleration, and the present status of the research is briefly noted.

  15. Racetrack linear accelerators

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  16. Hamburg Accelerator Conference (2)

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval

  17. Asia honours accelerator physicists

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  18. Accelerators for energy production

    A tremendous progress of accelerators for these several decades, has been motivated mainly by the research on subnuclear physics. The culmination in high energy accelerators might be SSC, 20 TeV collider in USA, probably the ultimate accelerator being built with the conventional principle. The technology cultivated and integrated for the accelerator development, can now stably offer the high power beam which could be used for the energy problems. The Inertial Confinement Fusion (ICF) with high current, 10 kA and short pulse, 20 ns heavy ion beam (HIB) of mass number ∼200, would be the most promising application of accelerators for energy production. In this scenario, the fuel containing D-T mixture, will be compressed to the high temperature, ∼10 keV and to the high density state, ∼1000 times the solid density with the pressure of ablative plasma or thermal X ray produced by bombarding of high power HIB. The efficiency, beam power/electric power for accelerator, and the repetition rate of HIB accelerators could be most suitable for the energy production. In the present paper, the outline of HIB ICF (HIF) is presented emphasizing the key issues of high current heavy ion accelerator system. (author)

  19. KEK digital accelerator

    Iwashita, T.; Adachi, T.; Takayama, K.; Leo, K. W.; Arai, T.; Arakida, Y.; Hashimoto, M.; Kadokura, E.; Kawai, M.; Kawakubo, T.; Kubo, Tomio; Koyama, K.; Nakanishi, H.; Okazaki, K.; Okamura, K.; Someya, H.; Takagi, A.; Tokuchi, A.; Wake, M.

    2011-07-01

    The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA) is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR) ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  20. Accelerators Beyond The Tevatron?

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  1. Accelerator for nuclear transmutation

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program

  2. Thoughts of accelerator tubes

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  3. Maximal Acceleration Is Nonrotating

    Page, D N

    1998-01-01

    In a stationary axisymmetric spacetime, the angular velocity of a stationary observer that Fermi-Walker transports its acceleration vector is also the angular velocity that locally extremizes the magnitude of the acceleration of such an observer, and conversely if the spacetime is also symmetric under reversing both t and phi together. Thus a congruence of Nonrotating Acceleration Worldlines (NAW) is equivalent to a Stationary Congruence Accelerating Locally Extremely (SCALE). These congruences are defined completely locally, unlike the case of Zero Angular Momentum Observers (ZAMOs), which requires knowledge around a symmetry axis. The SCALE subcase of a Stationary Congruence Accelerating Maximally (SCAM) is made up of stationary worldlines that may be considered to be locally most nearly at rest in a stationary axisymmetric gravitational field. Formulas for the angular velocity and other properties of the SCALEs are given explicitly on a generalization of an equatorial plane, infinitesimally near a symmetry...

  4. Collinear wake field acceleration

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  5. Plasma based accelerators

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  6. Controllable Laser Ion Acceleration

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Takano, M.; Barada, D.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Wang, W. M.; Limpouch, J.; Andreev, A.; Bulanov, S. V.; Sheng, Z. M.; Klimo, O.; Psikal, J.; Ma, Y. Y.; Li, X. F.; Yu, Q. S.

    2016-02-01

    In this paper a future laser ion accelerator is discussed to make the laser-based ion accelerator compact and controllable. Especially a collimation device is focused in this paper. The future laser ion accelerator should have an ion source, ion collimators, ion beam bunchers, and ion post acceleration devices [Laser Therapy 22, 103(2013)]: the ion particle energy and the ion energy spectrum are controlled to meet requirements for a future compact laser ion accelerator for ion cancer therapy or for other purposes. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching would be successfully realized by a multistage laser-target interaction.

  7. Linear induction accelerator

    This paper examines a new layout for the injector and accelerating sectins of a linear induction accelerator. The sections are combined in a single housing: an induction system with a current-pulse generator based on double strip shaping lines laid over ferromagnetic cores; a multichannel spark discharger with forced current division among channels; and a system for core demagnetization and electron-beam formation and transport. The results of formation of an electron beam in the injector system and its acceleration in the first accelerating section of the accelerator for injection of beams with energies of 0.2-0.4 MeV, currents of 1-2 kA, and pulse durations of 60 nsec are given

  8. The Evolution and Development of the Universe

    Vidal, Clément; Blin, Alex H; Chaline, Jean; Crane, Louis; Durt, Thomas; Ekstig, Borje; Fairlamb, Horace; Greben, Jan; Hengeveld, Rob; Heylighen, Francis; Akkerhuis, Gerard Jagers op; Longo, Giuseppe; Lori, Nicolas F; Noble, Denis; Nottale, Laurent; Salthe, Stanley; Stewart, John; Vaas, Ruediger; Van de Vijver, Gertrudis; van Straalen, Nico M

    2009-01-01

    This document is the Special Issue of the First International Conference on the Evolution and Development (EDU 2008). Please refer to the preface and introduction for more details on the contributions. Keywords: acceleration, artificial cosmogenesis, artificial life, Big Bang, Big History, biological evolution, biological universe, biology, causality, classical vacuum energy, complex systems, complexity, computational universe, conscious evolution, cosmological artificial selection, cosmological natural selection, cosmology, critique, cultural evolution, dark energy, dark matter, development of the universe, development, emergence, evolution of the universe evolution, exobiology, extinction, fine-tuning, fractal space-time, fractal, information, initial conditions, intentional evolution, linear expansion of the universe, log-periodic laws, macroevolution, materialism, meduso-anthropic principle, multiple worlds, natural sciences, Nature, ontology, order, origin of the universe, particle hierarchy, philosophy,...

  9. Accelerator programme at CAT

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  10. The miniature accelerator

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  11. Collective ion acceleration

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  12. Collective ion acceleration

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed.

  13. Large electrostatic accelerators

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  14. Friedman—Robertson—Walker Models with Late-Time Acceleration

    In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman—Robertson—Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration. (geophysics, astronomy, and astrophysics)

  15. Friedmann-Robertson-Walker Models with Late-Time Acceleration

    Abdussattar,

    2016-01-01

    In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman-Robertson-Walker (FRW) models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.

  16. Decay process accelerated by tunneling in its very early stage

    Koide, T.; Toyama, F. M.

    2002-01-01

    We examine a fast decay process that arises in the transition period between the Gaussian and exponential decay processes in quantum decay systems. It is usually expected that the decay is decelerated by a confinement potential barrier. However, we find a case where the decay in the transition period is accelerated by tunneling through a confinement potential barrier. We show that the acceleration gives rise to an appreciable effect on the time evolution of the nonescape probability of the de...

  17. RF linear accelerators

    Wangler, Thomas P

    2008-01-01

    Thomas P. Wangler received his B.S. degree in physics from Michigan State University, and his Ph.D. degree in physics and astronomy from the University of Wisconsin. After postdoctoral appointments at the University of Wisconsin and Brookhaven National Laboratory, he joined the staff of Argonne National Laboratory in 1966, working in the fields of experimental high-energy physics and accelerator physics. He joined the Accelerator Technology Division at Los Alamos National Laboratory in 1979, where he specialized in high-current beam physics and linear accelerator design and technology. In 2007

  18. Entropic accelerating universe

    Easson, Damien A., E-mail: easson@asu.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Phoenix, AZ 85287-1504 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Frampton, Paul H., E-mail: frampton@physics.unc.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Smoot, George F., E-mail: gfsmoot@lbl.go [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Physics Department, University of California, Berkeley, CA 94720 (United States); Institute for the Early Universe, Ewha Womans University and Advanced Academy, Seoul (Korea, Republic of); Chaire Blaise Pascale, Universite Paris Denis Diderot, Paris (France)

    2011-01-31

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  19. Entropic accelerating universe

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.

  20. ACCELERATORS: School prizes

    Dedicated to its goal of encouraging scientists and students to work in the field of particle accelerators, the US Particle Accelerator School (operating since 1981) has switched to a new format. Starting this year, it will offer in alternate years basic accelerator physics plus advanced subjects in both university and symposium styles over four weeks. Expanding the school from two to four weeks gives additional flexibility, and undergraduate participation should be encouraged by university credits being offered for particular courses. In the intervening years, the school will organize six-day topical courses

  1. FMIT accelerator vacuum system

    The Fusion Materials Irradiation Test (FMIT) Facility accelerator is being designed to continuously accelerate 100-mA deuterons to 25 MeV. High vacuum pumping of the accelerator structure and beam lines will be done by ion pumps and titanium sublimation pumps. The design of the roughing system includes a Roots blower/mechanical pump package. For economy the size of the system has been designed to operate at 10-6 torr, where beam particle scattering on residual gases is negligible. For minimum maintenance in this neutron factory, the FMIT vacuum system is designed from the point of view of simplicity and reliability

  2. Hadron accelerators in medicine

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  3. The auroral electron accelerator

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  4. Confronting Twin Paradox Acceleration

    Murphy, Thomas W.

    2016-05-01

    The resolution to the classic twin paradox in special relativity rests on the asymmetry of acceleration. Yet most students are not exposed to a satisfactory analysis of what exactly happens during the acceleration phase that results in the nonaccelerated observer's more rapid aging. The simple treatment presented here offers both graphical and quantitative solutions to the problem, leading to the correct result that the acceleration-induced age gap is 2Lβ years when the one-way distance L is expressed in light-years and velocity β ≡v/c .

  5. Auroral electron acceleration

    Two theories of auroral electron acceleration are discussed. Part 1 examines the currently widely held view that the acceleration is an ordered process in a quasi-static electric field. It is suggested that, although there are many factors seeming to support this theory, the major qualifications and uncertainties that have been identified combine to cast serious doubt over its validity. Part 2 is devoted to a relatively new interpretation in terms of stochastic acceleration in turbulent electric fields. This second theory, which appears to account readily for most known features of the electron distribution function, is considered to provide a more promising approach to this central question in magnetospheric plasma physics. (author)

  6. Accelerated simulated tempering

    We propose a new stochastic global optimization method by accelerating the simulated tempering scheme with random walks executed on a temperature ladder with various transition step sizes. By suitably choosing the length of the transition steps, the accelerated scheme enables the search process to execute large jumps and escape entrapment in local minima, while retaining the capability to explore local details, whenever warranted. Our simulations confirm the expected improvements and show that the accelerated simulated tempering scheme has a much faster convergence to the target distribution than Geyer and Thompson's simulated tempering algorithm and exhibits accuracy comparable to the simulated annealing method

  7. Accelerated simulated tempering

    Li, Yaohang; Protopopescu, Vladimir A.; Gorin, Andrey

    2004-08-01

    We propose a new stochastic global optimization method by accelerating the simulated tempering scheme with random walks executed on a temperature ladder with various transition step sizes. By suitably choosing the length of the transition steps, the accelerated scheme enables the search process to execute large jumps and escape entrapment in local minima, while retaining the capability to explore local details, whenever warranted. Our simulations confirm the expected improvements and show that the accelerated simulated tempering scheme has a much faster convergence to the target distribution than Geyer and Thompson's simulated tempering algorithm and exhibits accuracy comparable to the simulated annealing method.

  8. The particle accelerator

    As the Palais de la Decouverte (in Paris) is the sole scientific vulgarization establishment in the world to operate an actual particle accelerator able to provoke different types of nuclear reactions, the author recalls some historical aspects of the concerned department since the creation of the 'Radioactivity - Atom synthesis' department in 1937. He recalls the experiments which were then performed, the installation of the particle accelerator in 1964 and its renewal. He describes what's going on in this accelerator. He gives an overview of the difficulties faced after it has been decided to move it, of the works which had to be performed, and of radiation protection measures

  9. Accelerator Toolbox for MATLAB

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model particle accelerators and beam transport lines in the MATLAB environment. At SSRL, it has become the modeling code of choice for the ongoing design and future operation of the SPEAR 3 synchrotron light source. AT was designed to take advantage of power and simplicity of MATLAB--commercially developed environment for technical computing and visualization. Many examples in this paper illustrate the advantages of the AT approach and contrast it with existing accelerator code frameworks

  10. SPS accelerating cavity

    1983-01-01

    See photo 8202397: View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  11. SPS accelerating cavity

    1983-01-01

    View towards the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138.

  12. Applicatons of accelerators

    The great diversity of possible applications of accelerators has been demonstrated in the past few years. Apart from the more familiar uses of accelerators for fundamental particle, nuclear, and solid state physics research, the applications range from microscopic trace analysis through cancer therapy to nuclear power and large volume radiation processing. Accelerators are also being used for applied research in proton radiography, radiation damage studies, laser excitation and materials analysis. The required beam properties vary from an extremely low emittance with very low beam current to megawatt beam power with a low level of beam spill. At the Chalk River Nuclear Laboratories developments are underway on applications of accelerators to nuclear fuel breeding and to cancer therapy. (author)

  13. Non-accelerator experiments

    This report discusses several topics which can be investigated without the use of accelerators. Topics covered are: (1) proton decay, (2) atmospheric neutrinos, (3) neutrino detection, (4) muons from Cygnus X-3, and (5) the double-beta decay

  14. Joint International Accelerator School

    CERN Accelerator School

    2014-01-01

    The CERN and US Particle Accelerator Schools recently organised a Joint International Accelerator School on Beam Loss and Accelerator Protection, held at the Hyatt Regency Hotel, Newport Beach, California, USA from 5-14 November 2014. This Joint School was the 13th in a series of such schools, which started in 1985 and also involves the accelerator communities in Japan and Russia.   Photo courtesy of Alfonse Pham, Michigan State University.   The school attracted 58 participants representing 22 different nationalities, with around half from Europe and the other half from Asia and the Americas. The programme comprised 26 lectures, each of 90 minutes, and 13 hours of case study. The students were given homework each day and had an opportunity to sit a final exam, which counted towards university credit. Feedback from the participants was extremely positive, praising the expertise and enthusiasm of the lecturers, as well as the high standard and quality of their lectures. Initial dis...

  15. Rejuvenating CERN's Accelerators

    2004-01-01

    In the coming years and especially in 2005, CERN's accelerators are going to receive an extensive renovation programme to ensure they will perform reliably and effectively when the LHC comes into service.

  16. Vibration control in accelerators

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  17. Acceleration of Logarithmic Convergence

    Gaskin, J. G.; Ford, W. F.

    1998-01-01

    In this paper, we shall give a characterization of all monotonically decreasing sequence of positive terms, whose sum converge and then introduce a Transformation which can be used to accelerate the convergence of a large class of logarithmically convergent series.

  18. Stellar evolution

    Meadows, A J

    2013-01-01

    Stellar Evolution, Second Edition covers the significant advances in the understanding of birth, life, and death of stars.This book is divided into nine chapters and begins with a description of the characteristics of stars according to their brightness, distance, size, mass, age, and chemical composition. The next chapters deal with the families, structure, and birth of stars. These topics are followed by discussions of the chemical composition and the evolution of main-sequence stars. A chapter focuses on the unique features of the sun as a star, including its evolution, magnetic fields, act

  19. Amps particle accelerator definition study

    Sellen, J. M., Jr.

    1975-01-01

    The Particle Accelerator System of the AMPS (Atmospheric, Magnetospheric, and Plasmas in Space) payload is a series of charged particle accelerators to be flown with the Space Transportation System Shuttle on Spacelab missions. In the configuration presented, the total particle accelerator system consists of an energetic electron beam, an energetic ion accelerator, and both low voltage and high voltage plasma acceleration devices. The Orbiter is illustrated with such a particle accelerator system.

  20. A symmetrical rail accelerator

    Igenbergs, E. (Technische Univ. Muenchen, Lehrstuhl fuer Raumfahrttechnik, Richard-Wagner-Strasse 18, 8000 Muenchen 2 (DE))

    1991-01-01

    This paper reports on the symmetrical rail accelerator that has four rails, which are arranged symmetrically around the bore. The opposite rails have the same polarity and the adjacent rails the opposite polarity. In this configuration the radial force acting upon the individual rails is significantly smaller than in a conventional 2-rail configuration and a plasma armature is focussed towards the axis of the barrel. Experimental results indicate a higher efficiency compared to a conventional rail accelerator.

  1. Entropic Accelerating Universe

    Easson, Damien A.; Frampton, Paul H.; Smoot, George F.

    2010-01-01

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic...

  2. Accelerated cyclic corrosion tests

    Prošek T.

    2016-01-01

    Accelerated corrosion testing is indispensable for material selection, quality control and both initial and residual life time prediction for bare and painted metallic, polymeric, adhesive and other materials in atmospheric exposure conditions. The best known Neutral Salt Spray (NSS) test provides unrealistic conditions and poor correlation to exposures in atmosphere. Modern cyclic accelerated corrosion tests include intermittent salt spray, wet and dry phases and eventually other technical p...

  3. Designing reliability into accelerators

    Future accelerators will have to provide a high degree of reliability. Quality must be designed in right from the beginning and must remain a central theme throughout the project. The problem is similar to the problems facing US industry today, and examples of the successful application of quality engineering will be given. Different aspects of an accelerator project will be addressed: Concept, Design, Motivation, Management Techniques, and Fault Diagnosis. The importance of creating and maintaining a coherent team will be stressed

  4. Advanced Accelerator Concepts

    This conference proceedings represent the results of theThird Advanced Accelerator Concepts Workshop held in PortJefferson, New York. The workshop was sponsored by the U.S.Department of Energy, the Office of Navel Research and BrookhavenNational Laboratory. The purpose was to assess new techniques forproduction of ultra-high gradient acceleration and to addressengineering issues in achieving this goal. There are eighty-onepapers collected in the proceedings and all have been abstractedfor the database

  5. Nuclear physics accelerator facilities

    Brief descriptions are given of DOE and Nuclear Physics program operated and sponsored accelerator facilities. Specific facilities covered are the Argonne Tandem/Linac Accelerator System, the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory, the proposed Continuous Beam Accelerator at Newport News, Virginia, the Triangle Universities Nuclear Laboratory at Duke University, the Bevalac and the SuperHILAC at Lawrence Berkeley Laboratory, the 88-Inch Cyclotron at Lawrence Berkeley Laboratory, the Clinton P. Anderson Meson Physics Facility at Los Alamos National Laboratory, the Bates Linear Accelerator Center at Massachusetts Institute of Technology, the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory, the Nuclear Physics Injector at Stanford Linear Accelerator Center, the Texas A and M Cyclotrons, the Tandem/Superconducting Booster Accelerator at the University of Washington and the Tandem Van de Graaff at the A.W. Wright Nuclear Structure Laboratory of Yale University. Included are acquisition cost, research programs, program accomplishments, future directions, and operating parameters of each facility

  6. Multimegawatt cyclotron autoresonance accelerator

    Means are discussed for generation of high-quality multimegawatt gyrating electron beams using rf gyroresonant acceleration. TE111-mode cylindrical cavities in a uniform axial magnetic field have been employed for beam acceleration since 1968; such beams have more recently been employed for generation of radiation at harmonics of the gyration frequency. Use of a TE11-mode waveguide for acceleration, rather than a cavity, is discussed. It is shown that the applied magnetic field and group velocity axial tapers allow resonance to be maintained along a waveguide, but that this is impractical in a cavity. In consequence, a waveguide cyclotron autoresonance accelerator (CARA) can operate with near-100% efficiency in power transfer from rf source to beam, while cavity accelerators will, in practice, have efficiency values limited to about 40%. CARA experiments are described in which an injected beam of up to 25 A, 95 kV has had up to 7.2 MW of rf power added, with efficiencies of up to 96%. Such levels of efficiency are higher than observed previously in any fast-wave interaction, and are competitive with efficiency values in industrial linear accelerators. Scaling arguments suggest that good quality gyrating megavolt beams with peak and average powers of 100 MW and 100 kW can be produced using an advanced CARA, with applications in the generation of high-power microwaves and for possible remediation of flue gas pollutants. copyright 1996 American Institute of Physics

  7. Accelerators for America's Future

    Bai, Mei

    2016-03-01

    Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented

  8. APT accelerator technology

    The proposed accelerator production of tritium (APT) project requires an accelerator that provides a cw proton beam of 100 m A at 1300 MeV. Since the majority of the technical risk of a high-current cw (continuous-wave, 100% DF) accelerator resides in the low-energy section, Los Alamos is building a 20 MeV duplicate of the accelerator front end to confirm design codes, beam performance, and demonstrate operational reliability. We report on design details of this low-energy demonstration accelerator (LEDA) and discuss the integrated design of the full accelerator for the APT plant. LEDA's proton injector is under test and has produced more than 130 mA at 75 keV. Fabrication is proceeding on a 6.7- MeV, 8-meter-long RFQ, and detailed design is underway on coupled-cavity drift-tube linac (CCDTL) structures. In addition, detailed design and technology experiments are underway on medium-beta superconducting cavities to assess the feasibility of replacing the conventional (room-temperature copper) high-energy linac with a linac made of niobium superconducting RF cavities. (author)

  9. Radiation from Accelerated Particles in Shocks and Reconnections

    Nishikawa, K.-I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Fishman, G. J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.; Hartmann, D. H.

    2012-01-01

    We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic jets propagating into an unmagnetized plasmas. Strong magnetic fields generated in the trailing shock contribute to the electrons transverse deflection and acceleration. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants

  10. The industrial applications of high energy electron accelerators

    The Industrial Processing accelerator competes with other processing techniques and although it may have a 'Space Age' image it will only be used by industry if it is economically viable. The area of application that is changing with the evolution of high energy medium power accelerator is the use for medical sterilisation as an alternative to gamma but the future application that is evolving slowly and that will use many kilo watts of electron power is food. The processing accelerator is here to stay and it will extend its application into even more diverse applications in the future than it has in the past. (author)

  11. Schumpeter's Evolution

    Andersen, Esben Sloth

    This draft of a book on Schumpeter is distributed for commenting. It is a stylised intellectual biography that focus on the emergence and extension of the Schumpeterian vision and analysis of economic and social evolution. The draft provides novel interpretations of Schumpeter's six major books. He...... reworking of his basic theory of economic evolution in Development from 1934, and this reworking was continued in Cycles from 1939. Here Schumpeter also tried to handle the statistical and historical evidence on the waveform evolution of the capitalist economy. Capitalism from 1942 modified the model of...... economic evolution and added evolutionary contributions to other social sciences. History, which was published by his widow, was based on his evolutionary theory of the history of economic analysis. This sequential analysis of Schumpeter's six books demonstrates the progress he within his research...

  12. Diffusive Shock Acceleration and Reconnection Acceleration Processes

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.

    2015-12-01

    Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.

  13. Accelerator business in Japan expanding

    Accelerators have become to be used increasingly in Japan in such fields as medicine, physics research and industry. This has caused stiff competition for market share by the manufacturers of accelerators. Electron beam accelerators for industrial use provide an indispensable means for adding values to products, for example, electric cables with incombustible insulators. Linear accelerators for the nondestructive inspection of nuclear components have been widely installed at equipment manufacturing plants. Active efforts have been exerted to develop small synchrotron radiation accelerators for next generation electronic industry. Cyclotrons for producing short life radioisotopes for medical diagnosis and electron beam accelerators for radiation therapy are also used routinely. The suppliers of accelerators include the companies manufacturing heavy electric machinery, heavy machinery and the engineering division of steelmakers. Accelerator physics is being formed, but universities do not yet offer the course regarding accelerators. Accelerator use in Japan and the trend of accelerator manufacturers are reported. (K.I.)

  14. Small type accelerator. Try for accelerator driven system

    Mori, Y

    2003-01-01

    FFAG (Fixed-field alternating gradient) accelerator for accelerator driven subcritical reactor, which aims to change from long-lived radioactive waste to short-lived radioactivity, is introduced. It is ring accelerator. The performance needed is proton as accelerator particle, 10MW (total) beam power, about 1GeV beam energy, >30% power efficiency and continuous beam. The feature of FFAG accelerator is constant magnetic field. PoP (Proof-of-principle)-FFAG accelerator, radial type, was run at first in Japan in 2000. The excursion is about some ten cm. In principle, beam can be injected and extracted at any place of ring. The 'multi-fish' acceleration can accelerate beams to 100% duty by repeating acceleration. 150MeV-FFAG accelerator has been started since 2001. It tried to practical use, for example, treatment of cancer. (S.Y.)

  15. High energy plasma accelerators

    Colinear intense laser beams ω0, kappa0 and ω1, kappa1 shone on a plasma with frequency separation equal to the electron plasma frequency ω/sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ω/sub pe//e of the order of 1GeV/cm for a plasma density of 1018 cm-3 through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed

  16. Relativistic heavy ion accelerators

    There is a growing interest in the scientific community in the use of accelerators to produce relativistic heavy ion beams for a number of purposes. It now appears that relativistic heavy ion collisions may provide an opportunity to study nuclear matter far from equilibrium density, pressure, and temperature. Heavy ion beams can also be used as simulated cosmic rays for astrophysical research and in planning space probes. At present the only relativistic heavy ion accelerator is the Belvalac at LBL. It has been devoted to this use since 1974. The operating experience and capabilities of this machine are reviewed as well as present and planned experimental programs. Designs of accelerators for relativistic heavy ions are discussed. A number of considerations will cause a machine to differ from a proton machine if optimally designed for heavy ion acceleration. A possible set of parameters is presented for an accelerator to produce intense beams of mass 10 to 200 ions, at energies up to 10 GeV/amu

  17. Dielectric laser accelerators

    England, R. Joel; Noble, Robert J.; Bane, Karl; Dowell, David H.; Ng, Cho-Kuen; Spencer, James E.; Tantawi, Sami; Wu, Ziran; Byer, Robert L.; Peralta, Edgar; Soong, Ken; Chang, Chia-Ming; Montazeri, Behnam; Wolf, Stephen J.; Cowan, Benjamin; Dawson, Jay; Gai, Wei; Hommelhoff, Peter; Huang, Yen-Chieh; Jing, Chunguang; McGuinness, Christopher; Palmer, Robert B.; Naranjo, Brian; Rosenzweig, James; Travish, Gil; Mizrahi, Amit; Schachter, Levi; Sears, Christopher; Werner, Gregory R.; Yoder, Rodney B.

    2014-10-01

    The use of infrared lasers to power optical-scale lithographically fabricated particle accelerators is a developing area of research that has garnered increasing interest in recent years. The physics and technology of this approach is reviewed, which is referred to as dielectric laser acceleration (DLA). In the DLA scheme operating at typical laser pulse lengths of 0.1 to 1 ps, the laser damage fluences for robust dielectric materials correspond to peak surface electric fields in the GV /m regime. The corresponding accelerating field enhancement represents a potential reduction in active length of the accelerator between 1 and 2 orders of magnitude. Power sources for DLA-based accelerators (lasers) are less costly than microwave sources (klystrons) for equivalent average power levels due to wider availability and private sector investment. Because of the high laser-to-particle coupling efficiency, required pulse energies are consistent with tabletop microJoule class lasers. Combined with the very high (MHz) repetition rates these lasers can provide, the DLA approach appears promising for a variety of applications, including future high-energy physics colliders, compact light sources, and portable medical scanners and radiative therapy machines.

  18. Accelerating nondiffracting beams

    Yan, Shaohui; Li, Manman; Yao, Baoli, E-mail: yaobl@opt.ac.cn; Yu, Xianghua; Lei, Ming; Dan, Dan; Yang, Yanlong; Min, Junwei; Peng, Tong

    2015-06-05

    We present a set of beams which combine the properties of accelerating beams and (conventional) diffraction-free beams. These beams can travel along a desired trajectory while keeping an approximately invariant transverse profile, which may be (higher-order) Bessel-, Mathieu- or parabolic-nondiffracting-like beams, depending on the initial complex amplitude distribution. A possible application of these beams presented here may be found in optical trapping field. For example, a higher-order Bessel-like beam, which has a hollow (transverse) pattern, is suitable for guiding low-refractive-index or metal particles along a curve. - Highlights: • A set of beams having arbitrary trajectories of accelerating and nondiffracting behaviors are generalized and presented. • Bessel-like accelerating beams are generalized to the higher-order (hollow) version. • Mathieu-like accelerating beams and parabolic-nondiffracting-like accelerating beams are presented. • A possible application of these beams may be found in optical trapping and guiding of particles.

  19. Accelerators for atomic energy research

    The research and educational activities accomplished using accelerators for atomic energy research were studied. The studied items are research subjects, facility operation, the number of master theses and doctor theses on atomic energy research using accelerators and the future role of accelerators in atomic energy research. The strategy for promotion of the accelerator facility for atomic energy research is discussed. (author)

  20. Plasma-based accelerator structures

    Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas

  1. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  2. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of ∼50 pC total charge were accelerated to energies up to 450 MeV with a divergence of ∼2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 1018 cm-3 the maximum electric field strength in the plasma wave was determined to be ∼160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length, was found to be 4.9 mm

  3. Uniform Acceleration in General Relativity

    Friedman, Yaakov

    2016-01-01

    We extend de la Fuente and Romero's defining equation for uniform acceleration in a general curved spacetime from linear acceleration to the full Lorentz covariant uniform acceleration. In a flat spacetime background, we have explicit solutions. We use generalized Fermi-Walker transport to parallel transport the Frenet basis along the trajectory. In flat spacetime, we obtain velocity and acceleration transformations from a uniformly accelerated system to an inertial system. We obtain the time dilation between accelerated clocks. We apply our acceleration transformations to the motion of a charged particle in a constant electromagnetic field and recover the Lorentz-Abraham-Dirac equation.

  4. Superconducting Accelerator Magnets

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  5. Entropic Accelerating Universe

    Easson, Damien A; Smoot, George F

    2010-01-01

    To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lema\\^{i}tre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the temperature intrinsic to the information holographically stored on the screen which is the surface of the universe. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on a surface screen. We consider an additional quantitative approach based upon the entropy and surface terms usually neglected in General Relativity and show that this leads to the entropic accelerating universe.

  6. Superconducting accelerator magnet design

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  7. Accelerators for therapy

    In the past decades circular and linear electron accelerators have been developed for clinical use in radiation therapy of tumors with the aim of achieving a high radiation dose in the tumor and as low as possible dose in the adjacent normal tissues. Today about one thousand accelerators are in medical use throughout the world and many hundred thousand patients are treated every day with accelerator-produced radiation. There exists, however, a large number of patients who cannot be treated satisfactorily in this way. New types of radiations such as neutrons, negative pions, protons and heavy ions were therefore tested recently. The clinical experience with these radiations and with new types of treatment procedures indicate that in future the use of a scanning beam of high energy protons might be optimal for the treatment of tumors. (orig.)

  8. UHECR acceleration at GRB internal shocks

    Globus, Noemie; Mochkovitch, Robert; Parizot, Etienne

    2014-01-01

    We study the acceleration of CR protons and nuclei at GRB internal shocks. Physical quantities and their time evolution are estimated using the internal shock modeling implemented by Daigne & Mochkovitch 1998. We consider different hypotheses about the way the energy dissipated at internal shocks is shared between accelerated CR, e- and B field. We model CR acceleration at mildly relativistic shocks, including all the significant energy loss processes. We calculate CR and neutrino release from single GRBs, assuming that nuclei heavier than protons are present in the relativistic wind. Protons can only reach maximum energies of ~ 10^19.5 eV, while intermediate and heavy nuclei are able to reach values of ~ 10^20 eV and above. The spectra of nuclei escaping from the acceleration site are found to be very hard while the combined spectrum of protons and neutrons is much softer. We calculate the diffuse UHECR flux expected on Earth using the GRB luminosity function from Wanderman & Piran 2010. Only the mod...

  9. Microelectromechanical acceleration-sensing apparatus

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  10. Studies of accelerated compact toruses

    In an earlier publication we considered acceleration of plasma rings (Compact Torus). Several possible accelerator configurations were suggested and the possibility of focusing the accelerated rings was discussed. In this paper we consider one scheme, acceleration of a ring between coaxial electrodes by a B/sub theta/ field as in a coaxial rail-gun. If the electrodes are conical, a ring accelerated towards the apex of the cone undergoes self-similar compression (focusing) during acceleration. Because the allowable acceleration force, F/sub a/ = kappaU/sub m//R where (kappa -2, the accelerating distance for conical electrodes is considerably shortened over that required for coaxial electrodes. In either case, however, since the accelerating flux can expand as the ring moves, most of the accelerating field energy can be converted into kinetic energy of the ring leading to high efficiency

  11. CERN: Accelerator school

    Full text: Jyvaskyla, a university town in central Finland, was the setting for last year's General Accelerator School organized by the CERN Accelerator School. Well over a hundred students - more than for some time - followed two weeks of lectures on a broad spectrum of accelerator topics, the first step en route to becoming the designers, builders and operators of the surprisingly large number of, accelerators of all kinds either built or planned throughout Europe and further afield. This was the fifth such school organized by CAS in a biennial cycle which alternates this introductory level with more advanced tuition. The next, advanced, school will be from 20 October - 1 November, hosted by Athens University on the Greek Island of Rhodes. (Application details will become available in Spring but would-be participants should already reserve the dates.) After Finland, the CAS caravan moved to Benalmadena near Malaga in Spain where, together with Seville University, they organized one of the joint US-CERN schools held every two years and focusing on frontier accelerator topics. This time the subject was electron-positron factories - machines for high luminosity experiments in phi, tau-charm, beauty and Z physics. Experts from both sides of the Atlantic and from Japan shared their knowledge with an equally representative audience and probed the many intensity related phenomena which must be mastered to reach design performance. A number of these topics will receive extended coverage in the next specialist CAS School which is a repeat - by public demand - of the highly successful radiofrequency course held in Oxford in 1991. This school will be in Capri, Italy, with the support of the University of Naples from 29 April to 5 May. Details and application forms are now available by e-mail (CASRF@CERNVM.CERN.CH), by fax (+41 22 7824836) or from Suzanne von Wartburg, CERN Accelerator School, 1211 Geneva 23, Switzerland

  12. Nuclear Physics accelerator facilities

    The Nuclear Physics program requires the existence and effective operation of large and complex accelerator facilities. These facilities provide the variety of projectile beams upon which virtually all experimental nuclear research depends. Their capability determine which experiments can be performed and which cannot. Seven existing accelerator facilities are operated by the Nuclear Physics program as national facilities. These are made available to all the Nation's scientists on the basis of scientific merit and technical feasibility of proposals. The national facilities are the Clinton P. Anderson Meson Physics Facility (LAMPF) at Los Alamos National Laboratory; the Bates Linear Accelerator Center at Massachusetts Institute of Technology; the Bevalac at Lawrence Berkeley Laboratory; the Tandem/AGS Heavy Ion Facility at Brookhaven National Laboratory; the ATLAS facility at Argonne National Laboratory; the 88-Inch Cyclotron at Lawrence Berkeley Laboratory; the Holifield Heavy Ion Research Facility at Oak Ridge National Laboratory. The Nuclear Physics Injector at the Stanford Linear Accelerator Center (SLAC) enables the SLAC facility to provide a limited amount of beam time for nuclear physics research on the same basis as the other national facilities. To complement the national facilities, the Nuclear Physics program supports on-campus accelerators at Duke University, Texas A and M University, the University of Washington, and Yale University. The facility at Duke University, called the Triangle Universities Nuclear Laboratory (TUNL), is jointly staffed by Duke University, North Carolina State University, and the University of North Carolina. These accelerators are operated primarily for the research use of the local university faculty, junior scientists, and graduate students

  13. Numerical Model of the DARHT Accelerating Cell

    Hughes, Thomas P; Genoni, Thomas C; Kang, Mike; Prichard, Benjamin A

    2005-01-01

    The DARHT-2 facility at Los Alamos National Laboratory accelerates a 2 microsecond electron beam using a series of inductive accelerating cells. The cell inductance is provided by large Metglas cores, which are driven by a pulse-forming network. The original cell design was susceptible to electrical breakdown near the outer radius of the cores. We developed a numerical model for the magnetic properties of Metglas over the range of dB/dt (magnetization rate) relevant to DARHT. The model was implemented in a radially-resolved circuit code, and in the LSP* electromagnetic code. LSP simulations showed that the field stress distribution across the outer radius of the cores was highly nonuniform. This was subsequently confirmed in experiments at LBNL. The calculated temporal evolution of the electric field stress inside the cores approximately matches experimental measurements. The cells have been redesigned to greatly reduce the field stresses along the outer radius.

  14. Stratified wake of an accelerating hydrofoil

    Ben-Gida, Hadar; Gurka, Roi

    2015-01-01

    Wakes of towed and self-propelled bodies in stratified fluids are significantly different from non-stratified wakes. Long time effects of stratification on the development of the wakes of bluff bodies moving at constant speed are well known. In this experimental study we demonstrate how buoyancy affects the initial growth of vortices developing in the wake of a hydrofoil accelerating from rest. Particle image velocimetry measurements were applied to characterize the wake evolution behind a NACA 0015 hydrofoil accelerating in water and for low Reynolds number and relatively strong and stably stratified fluid (Re=5,000, Fr~O(1)). The analysis of velocity and vorticity fields, following vortex identification and an estimate of the circulation, reveal that the vortices in the stratified fluid case are stretched along the streamwise direction in the near wake. The momentum thickness profiles show lower momentum thickness values for the stratified late wake compared to the non-stratified wake, implying that the dra...

  15. Intermittent Sea Level Acceleration

    Olivieri, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Bologna, Bologna, Italia; Spada, G.; Dipartimento di Scienze di Base e Fondamenti, Università di Urbino Carlo Bo, Urbino

    2013-01-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea{level acceleration for the last 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, con firm the existence of a global sea level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0:01 mm/yr2. However, di fferently from previous studies, we discuss how change points or ...

  16. Acceleration of polarized particles

    The spin kinetics of polarized beams in circular accelerators is reviewed in the case of spin-1/2 particles (electrons and protons) with emphasis on the depolarization phenomena. The acceleration of polarized proton beams in synchrotrons is described together with the cures applied to reduce depolarization, including the use of 'Siberian Snakes'. The in-situ polarization of electrons in storage rings due to synchrotron radiation is studied as well as depolarization in presence of ring imperfections. The applications of electron polarization to accurately calibrate the rings in energy and to use polarized beams in colliding-beam experiments are reviewed. (author) 76 refs., 19 figs., 1 tab

  17. Space charge wave accelerators

    We present an account of experimental observations showing control of the wave phase velocity for a slow wave, measurements of the wave electric field, and indicate how these results might apply to an ion accelerator. An interesting and new possibility is also indicated, namely the use of fast waves for electron accelerators. In this case preliminary estimates indicate that comparable field gradients to those already obtained in the slow wave scheme should be obtainable in fast waves and that these field gradients can be maintained at phase velocities close to the speed of light. (orig./HSI)

  18. High intensity hadron accelerators

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  19. Seismic surveying and accelerators

    The paper deals with an investigation into the impact of earth vibrations on charged particle beams in modern colliders. It is ascertained that the displacement of accelerator magnetic elements from the perfect position results in the excitation of betatron oscillations and distortion of particle orbit position. The results of experimental investigations into seismic noises are presented for ASR, SSC, DESY and KEK. The rms orbit displacement in accelerators is estimated relying on the law of earth diffusion motion, according to which the variance of relative displacements is proportional to the distance between these points and time of observation. 6 refs., 3 figs., 2 tabs

  20. Interfacing to accelerator instrumentation

    As the sensory system for an accelerator, the beam instrumentation provides a tremendous amount of diagnostic information. Access to this information can vary from periodic spot checks by operators to high bandwidth data acquisition during studies. In this paper, example applications will illustrate the requirements on interfaces between the control system and the instrumentation hardware. A survey of the major accelerator facilities will identify the most popular interface standards. The impact of developments such as isochronous protocols and embedded digital signal processing will also be discussed

  1. Cosmic ray acceleration search in Supernova Remnants

    Galactic Supernova Remnants (SNRs) are among the best candidates as source of cosmic rays due to energetics, observed rate of explosion and as possible sites where the Fermi mechanisms naturally plays a key role. Evidence of hadronic acceleration processes taking place in SNRs are being collected with the Fermi-LAT, whose sensitivity in the range 100MeV–100GeV is crucial for disentangling possible hadronic contribution from inverse Compton or bremsstrahlung leptonic component. A survey of the detected SNRs will be given, focusing the attention on the role of the environment and the evolution stage of the SNR in the interpretation of the observed γ-ray spectra

  2. Cosmic ray acceleration search in Supernova Remnants

    Giordano, Francesco; Di Venere, Leonardo [Dipartimento di Fisica M. Merlin dell' Università e del Politecnico di Bari, I-70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy)

    2014-11-15

    Galactic Supernova Remnants (SNRs) are among the best candidates as source of cosmic rays due to energetics, observed rate of explosion and as possible sites where the Fermi mechanisms naturally plays a key role. Evidence of hadronic acceleration processes taking place in SNRs are being collected with the Fermi-LAT, whose sensitivity in the range 100MeV–100GeV is crucial for disentangling possible hadronic contribution from inverse Compton or bremsstrahlung leptonic component. A survey of the detected SNRs will be given, focusing the attention on the role of the environment and the evolution stage of the SNR in the interpretation of the observed γ-ray spectra.

  3. Investigation of toroidal acceleration and potential acceleration forces in EAST and J-TEXT plasmas

    Wang, Fudi; Pan, Xiayun; Cheng, Zhifeng; Chen, Jun; Cao, Guangming; Wang, Yuming; Han, Xiang; Li, Hao; Wu, Bin; Chen, Zhongyong; Bitter, Manfred; Hill, Kenneth; Rice, John; Morita, Shigeru; Li, Yadong; Zhuang, Ge; Ye, Minyou; Wan, Baonian; Shi, Yuejiang

    2014-01-01

    In order to produce intrinsic rotation, bulk plasmas must be collectively accelerated by the net force exerted on them, which results from both driving and damping forces. So, to study the possible mechanisms of intrinsic rotation generation, it is only needed to understand characteristics of driving and damping terms because the toroidal driving and damping forces induce net acceleration which generates intrinsic rotation. Experiments were performed on EAST and J-TEXT for ohmic plasmas with net counter- and co-current toroidal acceleration generated by density ramping up and ramping down. Additionally on EAST, net co-current toroidal acceleration was also formed by LHCD or ICRF. For the current experimental results, toroidal acceleration was between - 50 km/s^2 in counter-current direction and 70 km/s^2 in co-current direction. According to toroidal momentum equation, toroidal electric field (E\\-(\\g(f))), electron-ion toroidal friction, and toroidal viscous force etc. may play roles in the evolution of toroi...

  4. SPS accelerating cavity

    CERN PhotoLab

    1981-01-01

    One of the SPS accelerating cavities (200 MHz, travelling wave structure). The power that is fed into the upstream end of the cavity is extracted at the downstream end and sent into a dump load. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8011289, 8302397.

  5. SPS accelerating cavity

    1983-01-01

    See photo 8302397: View from the downstream end of one of the SPS accelerating cavities (200 MHz, travelling wave structure). See 7603195 and 8011289 for more details, 7411032 for the travelling wave structure, and also 8104138. Giacomo Primadei stands on the left.

  6. Hamburg Accelerator Conference

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). A natural highlight was the recent commissioning success of the HERA electron-proton collider at Hamburg's DESY Laboratory and its first high energy electron-proton collision data. This gave the meeting the feel of a family event celebrating a newborn

  7. Heavy ion accelerator GANIL

    This article presents GANIL, a large national heavy ion accelerator. The broad problems of nuclear physics, atomic physics, astrophysics and physics of condensed media which can be approached and studied with this machine are discussed first, after which the final construction project is described. The project comprises a circular injector, a separated sector cyclotron up beam stripper, and a second separated cyclotron downstream

  8. Dissociation by acceleration

    Peeters, K.; Zamaklar, M.

    2008-01-01

    We show that mesons, described using rotating relativistic strings in a holographic setup, undergo dissociation when their acceleration 'a' exceeds a value which scales with the angular momentum 'J' as a_max ~ \\sqrt{T_s/J}, where 'T_s' is the string tension.

  9. Dissociation by acceleration

    2007-01-01

    We show that mesons, described using rotating relativistic strings in a holographic setup, undergo dissociation when their acceleration 'a' exceeds a value which scales with the angular momentum 'J' as a_max ~ \\sqrt{T_s/J}, where 'T_s' is the string tension.

  10. The CERN accelerator complex

    De Melis, Cinzia

    2016-01-01

    The LHC is the last ring (dark blue line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  11. SPS accelerating cavity

    1980-01-01

    One of the SPS acceleration cavities (200 MHz, travelling wave structure). On the ceiling one sees the coaxial transmission line which feeds the power from the amplifier, located in a surface building above, to the upstream end of the cavity. See 7603195 for more details, 7411032 for the travelling wave structure, and also 8104138, 8302397.

  12. Accelerators in the sky

    The author surveys the large body of evidence showing that there are very efficient mechanisms capable of accelerating particles to high energies under very different astrophysical conditions. The circumstances whereby huge amounts of relativistic and ultrarelativistic particles such as one finds in a) cosmic rays, b) supernova remnants and c) radio galaxies and quasars are produced are considered. (Auth.)

  13. Prospects for Accelerator Technology

    Todd, Alan

    2011-02-01

    Accelerator technology today is a greater than US$5 billion per annum business. Development of higher-performance technology with improved reliability that delivers reduced system size and life cycle cost is expected to significantly increase the total accelerator technology market and open up new application sales. Potential future directions are identified and pitfalls in new market penetration are considered. Both of the present big market segments, medical radiation therapy units and semiconductor ion implanters, are approaching the "maturity" phase of their product cycles, where incremental development rather than paradigm shifts is the norm, but they should continue to dominate commercial sales for some time. It is anticipated that large discovery-science accelerators will continue to provide a specialty market beset by the unpredictable cycles resulting from the scale of the projects themselves, coupled with external political and economic drivers. Although fraught with differing market entry difficulties, the security and environmental markets, together with new, as yet unrealized, industrial material processing applications, are expected to provide the bulk of future commercial accelerator technology growth.

  14. Radioisotope Dating with Accelerators.

    Muller, Richard A.

    1979-01-01

    Explains a new method of detecting radioactive isotopes by counting their accelerated ions rather than the atoms that decay during the counting period. This method increases the sensitivity by several orders of magnitude, and allows one to find the ages of much older and smaller samples. (GA)

  15. Accelerating News Issue 5

    Szeberenyi, A

    2013-01-01

    In this spring issue, we look at developments towards higher luminosity and higher energy colliders. We report on the technology developed for the remote powering of the LHC magnets and studies of diagnostics based on higher order mode port signals. We also inform you about the main outcome of the TIARA survey on market needs for accelerator scientists.

  16. The CERN Accelerator School

    2016-01-01

      Introduction to accelerator physics This course will take place in Istanbul, Turkey, from 18 to 30 September 2016. It is now open for registration, and further information can be found here: http://cas.web.cern.ch/cas/Turkey-2016/Turkey-advert.html

  17. The CERN Accelerator School

    2016-01-01

    Introduction to accelerator physics This course will take place in Budapest, Hungary, from 2 to 14 October 2016. It is now open for registration and further information can be found at: http://cas.web.cern.ch/cas/Hungary2016/Hungary-advert.html and http://indico.cern.ch/event/532397/.

  18. The CERN accelerator complex

    Haffner, Julie

    2013-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  19. The CERN accelerator complex

    Christiane Lefèvre

    2008-01-01

    The LHC is the last ring (dark grey line) in a complex chain of particle accelerators. The smaller machines are used in a chain to help boost the particles to their final energies and provide beams to a whole set of smaller experiments, which also aim to uncover the mysteries of the Universe.

  20. Superconducting traveling wave accelerators

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 106 in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 103, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRA reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table

  1. Accelerating Fermionic Molecular Dynamics

    Clark, M. A.; Kennedy, A. D.

    2004-01-01

    We consider how to accelerate fermionic molecular dynamics algorithms by introducing n pseudofermion fields coupled with the nth root of the fermionic kernel. This reduces the maximum pseudofermionic force, and thus allows a larger molecular dynamics integration step size without hitting an instability in the integrator.

  2. The Bevalac accelerator

    Presented are the characteristics of the Bevatron and SuperHilac heavy ion accelerators in a very general manner. Some aspects of their application in the field of biological medicine and some of the interesting results obtained in experiments on nuclear physics are mentioned. (Author). 20 refs, 2 figs, 2 tabs

  3. GEANT4 simulations for beam emittance in a linear collider based on plasma wakefield acceleration

    Alternative acceleration technologies are currently under development for cost-effective, robust, compact, and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance evolution of a witness beam through elastic scattering from gaseous media and under transverse focusing wakefields is studied

  4. Representing Evolution

    Hedin, Gry

    2012-01-01

    article discusses Willumsen's etching in the context of evolutionary theory, arguing that Willumsen is a rare example of an artist who not only let the theory of evolution fuel his artistic imagination, but also concerned himself with a core issue of the theory, namely to what extent it could be applied...

  5. Cepheid evolution

    A review of the phases of stellar evolution relevant to Cepheid variables of both Types I and II is presented. Type I Cepheids arise as a result of normal post-main sequence evolutionary behavior of many stars in the intermediate to massive range of stellar masses. In contrast, Type II Cepheids generally originate from low-mass stars of low metalicity which are undergoing post core helium-burning evolution. Despite great progress in the past two decades, uncertainties still remain in such areas as how to best model convective overshoot, semiconvection, stellar atmospheres, rotation, and binary evolution as well as uncertainties in important physical parameters such as the nuclear reaction rates, opacity, and mass loss rates. The potential effect of these uncertainties on stellar evolution models is discussed. Finally, comparisons between theoretical predictions and observations of Cepheid variables are presented for a number of cases. The results of these comparisons show both areas of agreement and disagreement with the latter result providing incentive for further research

  6. Acceleration of Black Hole Universe

    Zhang, Tianxi

    2012-05-01

    An alternative cosmological model called black hole universe has been recently proposed by the author. According to this model, the universe originated from a hot star-like black hole, and gradually grew up through a supermassive black hole to the present state by accreting ambient materials and merging with other black holes. The entire space is structured with an infinite number of layers hierarchically. The innermost three layers are the universe that we live, the outside space called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer has an infinite radius and limits to zero for both the mass density and absolute temperature. All layers or universes are governed by the same physics, the Einstein general theory of relativity with the Robertson-Walker metric of space-time, and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. In this study. we will analyze the acceleration of black hole universe that accretes its ambient matter in an increasing rate. We will also compare the result obtained from the black hole universe model with the measurement of type Ia supernova and the result from the big bang cosmology.

  7. Cosmic Ray Protons Accelerated at Cosmological Shocks and Their Impact on Groups and Clusters of Galaxies

    Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung; Jones, T. W.

    2001-01-01

    We investigate the production of cosmic ray (CR) protons at cosmological shocks by performing, for the first time, numerical simulations of large scale structure formation that include directly the acceleration, transport and energy losses of the high energy particles. CRs are injected at shocks according to the thermal leakage model and, thereafter, accelerated to a power-law distribution as indicated by the test particle limit of the diffusive shock acceleration theory. The evolution of the...

  8. Transmission electron microscope interfaced with ion accelerators and its application to materials science

    Abe, Hiroaki; Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Hojou, Kiichi; Furuno, Shigemi; Tsukamoto, Tetsuo

    1997-03-01

    We have developed the transmission/analytical electron microscope interfaced with two sets of ion accelerators (TEM-Accelerators Facility) at JAERI-Takasaki. The facility is expected to provide quantitative insights into radiation effects, such as damage evolution, irradiation-induced phase transformation and their stability, through in-situ observation and analysis under ion and/or electron irradiation. The TEM-Accelerators Facility and its application to materials research are reviewed. (author)

  9. Accelerated Evolution of Enhancer Hotspots in the Mammal Ancestor.

    Holloway, AK; Bruneau, BG; Sukonnik, T; Rubenstein, JL; Pollard, KS

    2016-01-01

    Mammals have evolved remarkably different sensory, reproductive, metabolic, and skeletal systems. To explore the genetic basis for these differences, we developed a comparative genomics approach to scan whole-genome multiple sequence alignments to identify regions that evolved rapidly in an ancestral lineage but are conserved within extant species. This pattern suggests that ancestral changes in function were maintained in descendants. After applying this test to therian mammals, we identifie...

  10. Chromosomal speciation and molecular divergence - Accelerated evolution in rearranged chromosomes

    Navarro, Arcadi; Barton, Nick

    2003-01-01

    Humans and their closest evolutionary relatives, the chimpanzees, differ in ~1.24% of their genomic DNA sequences. The fraction of these changes accumulated during the speciation processes that have separated the two lineages may be of special relevance in understanding the basis of their differences. We analyzed human and chimpanzee sequence data to search for the patterns of divergence and polymorphism predicted by a theoretical model of speciation. According to the model, positively select...

  11. Sexual selection accelerates signal evolution during speciation in birds

    Seddon, Nathalie; Botero, Carlos A.; Tobias, Joseph A.; Dunn, Peter O.; MacGregor, Hannah E. A.; Rubenstein, Dustin R.; J Albert C Uy; Weir, Jason T.; Whittingham, Linda A.; Safran, Rebecca J.

    2013-01-01

    Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence ...

  12. Nonlinear dynamics in particle accelerators

    Dilão, Rui

    1996-01-01

    This book is an introductory course to accelerator physics at the level of graduate students. It has been written for a large audience which includes users of accelerator facilities, accelerator physicists and engineers, and undergraduates aiming to learn the basic principles of construction, operation and applications of accelerators.The new concepts of dynamical systems developed in the last twenty years give the theoretical setting to analyse the stability of particle beams in accelerator. In this book a common language to both accelerator physics and dynamical systems is integrated and dev

  13. Accelerator mass spectrometry programme at Mumbai pelletron accelerator facility

    The Accelerator Mass Spectrometry (AMS) programme and the related developments based on the Mumbai Pelletron accelerator are described. The initial results of the measurement of the ratio, 36Cl / Cl in water samples are presented. (author)

  14. Time-Dependent Stochastic Acceleration Model for the Fermi Bubbles

    Sasaki, Kento; Terasawa, Toshio

    2015-01-01

    We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin-Helmholtz, Rayleigh-Taylor or Richtmyer-Meshkov instabilities, and plasma particles are continuously accelerated by the interaction with the turbulence. The turbulence gradually decays as it goes away from the shock fronts. Adopting a phenomenological model for the stochastic acceleration, we explicitly solve the temporal evolution of the particle energy distribution in the turbulence. Our results show that the spatial distribution of high-energy particles is different from those for a steady solution. We also show that the contribution of electrons escaped from the acceleration regions significantly softens the photon spectrum. The photon spectrum and surface brightness profile are reproduced by our models. If the escape efficiency is very high, the radio flux from the escaped low-energy electrons can be comparable to that of the WMAP haze. We also demonstrate hadronic models with the s...

  15. Gravitational acceleration and edge effects in molecular clouds

    Li, Guang-Xing; Megeath, Tom; Wyrowski, Friedrich

    2016-01-01

    Gravity plays important roles in the evolution of molecular clouds. We present an acceleration mapping method to estimate the acceleration induced by gravitational interactions in molecular clouds based on observational data. We find that the geometry of a region has a significant impact on the behavior of gravity. In the Pipe nebula which can be approximated as a gas filament, we find that gravitational acceleration can effectively compress the end of this filament, which may have triggered star formation. We identify this as the "gravitational focusing" effect proposed by Burkert & Hartman (2004). In the sheet-like IC348-B3 region, gravity can lead to collapse at its edge, while in the centrally condensed NGC1333 cluster-forming region gravity can drive accretion towards the center. In general, gravitational acceleration tends to be enhanced in the localized regions around the ends of the filaments and the edges of sheet-like structures. Neglecting magnetic fields, these "gravitational focusing" and "ed...

  16. accelerating cavity from LEP

    This is an accelerating cavity from LEP, with a layer of niobium on the inside. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment. These challenging requirements pushed European industry to new achievements. 256 of these cavities are now used in LEP to double the energy of the particle beams.

  17. Review of accelerator instrumentation

    Some of the problems associated with the monitoring of accelerator beams, particularly storage rings' beams, are reviewed along with their most common solutions. The various electrode structures used for the measurement of beam current, beam position, and the detection of the bunches' transverse oscillations, yield pulses with sub-nanosecond widths. The electronics for the processing of these short pulses involves wide band techniques and circuits usually not readily available from industry or the integrated circuit market: passive or active, successive integrations, linear gating, sample-and-hold circuits with nanosecond acquisition time, etc. This report also presents the work performed recently for monitoring the ultrashort beams of colliding linear accelerators or single-pass colliders. To minimize the beam emittance, the beam position must be measured with a high resolution, and digitized on a pulse-to-pulse basis. Experimental results obtained with the Stanford two-mile Linac single bunches are included

  18. Hardware Accelerated Simulated Radiography

    Laney, D; Callahan, S; Max, N; Silva, C; Langer, S; Frank, R

    2005-04-12

    We present the application of hardware accelerated volume rendering algorithms to the simulation of radiographs as an aid to scientists designing experiments, validating simulation codes, and understanding experimental data. The techniques presented take advantage of 32 bit floating point texture capabilities to obtain validated solutions to the radiative transport equation for X-rays. An unsorted hexahedron projection algorithm is presented for curvilinear hexahedra that produces simulated radiographs in the absorption-only regime. A sorted tetrahedral projection algorithm is presented that simulates radiographs of emissive materials. We apply the tetrahedral projection algorithm to the simulation of experimental diagnostics for inertial confinement fusion experiments on a laser at the University of Rochester. We show that the hardware accelerated solution is faster than the current technique used by scientists.

  19. Review of ion accelerators

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here

  20. RFQ accelerator development

    Radio frequency quadrupole (RFQ) accelerators have established themselves as highly efficient and potential tools for delivering intense beams of the order of 100 mA or more. They are being employed as injectors to high energy machines used for basic sciences, spallation neutron sources, fusion devices and accelerator breeders. They have also made their mark as neutron generators, ion implanters, x-ray generators, etc. Realising the importance of this programme, Bhabha Atomic Research Centre initiated a totally indigenous effort to develop RFQs for the light as well as heavy ion beams. A low power RFQ for the proton and deuteron beams is already in the final phase of commissioning. (author). 30 refs., 14 figs., 2 tabs

  1. Accelerator research studies

    This progress report for the Accelerator Research Studies program at the University of Maryland covers the second year (June 1, 1989 to May 31, 1990) of the current three-year contract period from June 1, 1988 to May 31, 1991, funded by the Department of Energy under Contract No. AC05-85ER40216. The research program is divided into three separate tasks, as follows: the study of Transport and Longitudinal Compression of Intense, High-Brightness Beams; the study of Collective Ion Acceleration by Intense Electron Beams and Pulse-Powered Plasma Focus; the study of Microwave Sources and Parameter Scaling for High-Frequency Linacs. This report consists of three sections in which the progress for each task is documented separately. An introduction and synopsis is presented at the beginning of the progress report for each task

  2. Particle accelerator physics

    Wiedemann, Helmut

    2015-01-01

    This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics. The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense bea...

  3. Accelerators for Cancer Therapy

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  4. Accelerator research studies

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under contract number AC05-85ER40216-8, is currently in the third year of its three-year funding cycle. This Renewal Proposal requests DOE support for the next three-year period from June 1, 1991 to May 31, 1994. It documents the progress made during the past year and outlines the proposed research program for the next three years. The program consisted of the following three tasks: Task A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' Task B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' Task C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders.'' These tasks will be discussed in this paper

  5. Accelerator research studies

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, ''Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, ''Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, ''Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks

  6. Accelerator research studies

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the first year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams, TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams; TASK C, Study of a Gyroklystron High-power Microwave Source for Linear Colliders. In this report we document the progress that has been made during the past year for each of the three tasks

  7. Advanced medical accelerator design

    This report describes the design of an advanced medical facility dedicated to charged particle radiotherapy and other biomedical applications of relativistic heavy ions. Project status is reviewed and some technical aspects discussed. Clinical standards of reliability are regarded as essential features of this facility. Particular emphasis is therefore placed on the control system and on the use of technology which will maximize operational efficiency. The accelerator will produce a variety of heavy ion beams from helium to argon with intensities sufficient to provide delivered dose rates of several hundred rad/minute over large, uniform fields. The technical components consist of a linac injector with multiple PIG ion sources, a synchrotron and a versatile beam delivery system. An overview is given of both design philosophy and selected accelerator subsystems. Finally, a plan of the facility is described

  8. Mitochondrial Evolution

    Gray, Michael W

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineag...

  9. Particle acceleration by pulsars

    The evidence that pulsars accelerate relativistic particles is reviewed, with emphasis on the γ-ray observations. The current state of knowledge of acceleration in strong waves is summarized, with emphasis on the inability of consistent theories to accelerate very high energy particles without converting too much energy into high energy photons. The state of viable models for pair creation by pulsars is summarized, with the conclusion that pulsars very likely lose rotational energy in winds instead of in superluminous strong waves. The relation of the pair creation models to γ-ray observations and to soft X-ray observations of pulsars is outlined, with the conclusion that energetically viable models may exist, but none have yet yielded useful agreement with the extant data. Some paths for overcoming present problems are discussed. The relation of the favored models to cosmic rays is discussed. It is pointed out that the pairs made by the models may have observable consequences for observation of positrons in the local cosmic ray flux and for observations of the 511 keV line from the interstellar medium. Another new point is that asymmetry of plasma supply from at least one of the models may qualitatively explain the gross asymmetry of the X-ray emission from the Crab nebula. It is also argued that acceleration of cosmic ray nuclei by pulsars, while energetically possible, can occur only at the boundary of the bubbles blown by the pulsars, if the cosmic ray composition is to be anything like that of the known source spectrum

  10. LEP copper accelerating cavities

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  11. Accelerator Experiments for Astrophysics

    Ng, Johnny S. T.

    2003-01-01

    Many recent discoveries in astrophysics involve phenomena that are highly complex. Carefully designed experiments, together with sophisticated computer simulations, are required to gain insights into the underlying physics. We show that particle accelerators are unique tools in this area of research, by providing precision calibration data and by creating extreme experimental conditions relevant for astrophysics. In this paper we discuss laboratory experiments that can be carried out at the S...

  12. GPU accelerated face detection

    Mäkelä, J.

    2013-01-01

    Graphics processing units have massive parallel processing capabilities, and there is a growing interest in utilizing them for generic computing. One area of interest is computationally heavy computer vision algorithms, such as face detection and recognition. Face detection is used in a variety of applications, for example the autofocus on cameras, face and emotion recognition, and access control. In this thesis, the face detection algorithm was accelerated with GPU using OpenCL. The goal was...

  13. Compact pulsed accelerator

    The formation of fast pulses from a current charged transmission line and opening switch is described. By employing a plasma focus as an opening switch and diode in the prototype device, a proton beam of peak energy 250 keV is produced. The time integrated energy spectrum of the beam is constructed from a Thomson spectrograph. Applications of this device as an inexpensive and portable charged particle accelerator are discussed. 7 refs., 5 figs., 1 tab

  14. Future Accelerator Magnet Needs

    Devred, Arnaud; Yamamoto, A

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R&D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb3Sn along with fabrication and cost issues are also discussed.

  15. GPU accelerated dislocation dynamics

    Ferroni, Francesco; Tarleton, Edmund; Fitzgerald, Steven

    2014-09-01

    In this paper we analyze the computational bottlenecks in discrete dislocation dynamics modeling (associated with segment-segment interactions as well as the treatment of free surfaces), discuss the parallelization and optimization strategies, and demonstrate the effectiveness of Graphical Processing Unit (GPU) computation in accelerating dislocation dynamics simulations and expanding their scope. Individual algorithmic benchmark tests as well as an example large simulation of a thin film are presented.

  16. The role of fossil DNA in Paleoanthropolog y: FOXP2, Neanderthals, and language

    Antonio BENÍTEZ BURRACO

    2011-10-01

    Full Text Available Fossil DNA analysis may become an important source of evidence in Paleoanthropology, in the sense that it may throw light on the inconclusiveness of more traditional evidence that discipline is concerned with (fossil reconstructions, etc.. However, caution is in order: if paleogenetic evidence is not rightly understood, inferences brought to the fore from it could be as ambiguous as the more traditional body of evidence. Our paper makes the point that prudence is required when trying to draw inferences about behavior or cognition from the fossil DNA analysis. We illustrate such a point by discussing the recent discovery of the modern FOPX2 gene version in Neanderthals. Many paleoanthropologists have taken that discovery to be the definitive proof of the existence of complex language in that species. We will aim at showing that the aforementioned inference cannot be automatically established: it is based on a simplistic and reductionist view, which assumes, among many other aspects, that genes are simple causal agents, and that a direct link does exist between genes and characters.

  17. Laser-driven electron accelerators

    The following possibilities are discussed: inverse free electron laser (wiggler accelerator); inverse Cerenkov effect; plasma accelerator; dielectric tube; and grating linac. Of these, the grating acceleraton is considered the most attractive alternative

  18. Continuous Directed Evolution of Enzymes with Novel Substrate Specificity

    Carlson, Jacob Charles

    2013-01-01

    Methodological advances in directed evolution have already made it possible to discover useful biomolecules within months to years. A further acceleration of this process might make it possible to address outstanding challenges, or needs for which the current timescale is a fundamental barrier. To realize these goals would require transformative methodological advances in directed evolution. In Chapter One, current methods in directed evolution are briefly reviewed. In Chapter Two, a general ...

  19. Accelerated Profile HMM Searches.

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  20. Oxidised cosmic acceleration

    We give detailed proofs of several new no-go theorems for constructing flat four-dimensional accelerating universes from warped dimensional reduction. These new theorems improve upon previous ones by weakening the energy conditions, by including time-dependent compactifications, and by treating accelerated expansion that is not precisely de Sitter. We show that de Sitter expansion violates the higher-dimensional null energy condition (NEC) if the compactification manifold M is one-dimensional, if its intrinsic Ricci scalar R-ring vanishes everywhere, or if R-ring and the warp function satisfy a simple limit condition. If expansion is not de Sitter, we establish threshold equation-of-state parameters w below which accelerated expansion must be transient. Below the threshold w there are bounds on the number of e-foldings of expansion. If M is one-dimensional or R-ring everywhere vanishing, exceeding the bound implies the NEC is violated. If R-ring does not vanish everywhere on M, exceeding the bound implies the strong energy condition (SEC) is violated. Observationally, the w thresholds indicate that experiments with finite resolution in w can cleanly discriminate between different models which satisfy or violate the relevant energy conditions

  1. Accelerated GLAS exposure station

    The Geoscience Laser Altimeter System (GLAS) is being developed by NASA/GSFC to measure the dynamics of the ice sheet mass balance, land, and cloud and atmospheric properties. An instrument altimetric resolution of 10 cm per shot is required. The laser transmitter will be a diode pumped, Q-switched, Nd:YAG laser producing 1064 nm, 100 mJ, 4 ns pulses at 40 Hz repetition rate in a TEM∞ mode. A minimum lifetime goal of 2 billion shots is required per laser transmitter. The performance of the GLAS laser can be limited by physical damage to the optical components caused by the interaction of intense laser energy with the optical coatings and substrates. Very little data exists describing the effects of long duration laser exposure, of 4 ns pulses, on an optical component. An Accelerated GLAS Exposure Station (AGES) is being developed which will autonomously operate and monitor the GLAS laser at an accelerated rate of 500 Hz. The effects of a large number of laser shots will be recorded. Parameters to be monitored include: laser power, pulsewidth, beam size, laser diode drive current and power, Q-switch drive voltage, temperature, and humidity. For comparison, one set of AGES-sister optical components will be used in the non-accelerated GLAS laser and another will be evaluated by a commercial optical damage test facility

  2. Linac transport and acceleration

    The acceleration of intense bunches maintaining high brightness is limited both by single-particle effects, e.g., misalignments, injection errors, and rf-steering, and collective phenomena, where the effects of the longitudinal and transverse wakefield on particles within a single bunch are the most severe. The working group has considered both problems and potentials of linac acceleration from ∼50 MeV to 1 GeV for free electron laser (FEL) applications, as well as from a few Gev to 1 TeV for linear colliders. The outlook for free electron lasers is bright: no fundamental problems seem to arise in the acceleration of peak currents in excess of 100 A with small emittance and low momentum spread. The situation of linear colliders is more complex and more difficult. Two examples, one operating at 11.4 GHz, the other at 30 GHz, are used to illustrate some of the difficulties and the exceedingly tight tolerances required. Both examples are based on round beams, and thus neither benefit from the advantages of flat beams nor address the increased care required in transporting beams of very small emittance in one plane. The working group acknowledges, but did not explore, promising concepts for colliders based on RF superconductivity

  3. TRACKING ACCELERATOR SETTINGS

    Recording setting changes within an accelerator facility provides information that can be used to answer questions about when, why, and how changes were made to some accelerator system. This can be very useful during normal operations, but can also aid with security concerns and in detecting unusual software behavior. The Set History System (SHS) is a new client-server system developed at the Collider-Accelerator Department of Brookhaven National Laboratory to provide these capabilities. The SHS has been operational for over two years and currently stores about IOOK settings per day into a commercial database management system. The SHS system consists of a server written in Java, client tools written in both Java and C++, and a web interface for querying the database of setting changes. The design of the SHS focuses on performance, portability, and a minimal impact on database resources. In this paper, we present an overview of the system design along with benchmark results showing the performance and reliability of the SHS over the last year

  4. Laser driven particle acceleration

    This dissertation summarizes the last ten years of research at the Laboratory of Applied Optics on laser-plasma based electron acceleration. The main result consists of the development and study of a relativistic electron source with unique properties: high energy (100-300 MeV) in short distances (few millimeters), mono-energetic, ultra-short (few fs), stable and tunable. The manuscript describes the steps that led to understanding the physics, and then mastering it in order to produce this new electron source. Non linear propagation of the laser pulse in the plasma is first presented, with phenomena such as non linear wakefield excitation, relativistic and ponderomotive self-focusing in the short pulse regime, self-compression. Acceleration and injection of electrons are then reviewed from a theoretical perspective. Experimental demonstrations of self-injection in the bubble regime and then colliding pulse injection are then presented. These experiments were among the first to produce monoenergetic, high quality, stable and tunable electron beams from a laser-plasma accelerator. The last two chapters are dedicated to the characterization of the electron beam using transition radiation and to its applications to gamma radiography and radiotherapy. Finally, the perspectives of this research are presented in the conclusion. Scaling laws are used to determine the parameters that the electron beams will reach using peta-watt laser systems currently under construction. (author)

  5. CESR Test Accelerator

    Rubin, David L

    2013-01-01

    The Cornell Electron Storage Ring (CESR) was reconfigured in 2008 as a test accelerator to investigate the physics of ultra-low emittance damping rings. During the approximately 40 days/year available for dedicated operation as a test accelerator, specialized instrumentation is used to measure growth and mitigation of the electron cloud, emittance growth due to electron cloud, intra-beam scattering, and ions, and single and multi-bunch instabilities generated by collective effects. The flexibility of the CESR guide field optics and the integration of accelerator modeling codes with the control system have made possible an extraordinary range of experiments. Findings at CesrTA with respect to electron cloud effects, emittance tuning techniques, and beam instrumentation for measuring electron cloud, beam sizes, and beam positions are the basis for much of the design of the ILC damping rings as documented in the ILC-Technical Design Report. The program has allowed the Cornell group to cultivate the kind of talen...

  6. Optimizing accelerator technology

    Katarina Anthony

    2012-01-01

    A new EU-funded research and training network, oPAC, is bringing together 22 universities, research centres and industry partners to optimize particle accelerator technology. CERN is one of the network’s main partners and will host 5 early-stage researchers in the BE department.   A diamond detector that will be used for novel beam diagnostics applications in the oPAC project based at CIVIDEC. (Image courtesy of CIVIDEC.) As one of the largest Marie Curie Initial Training Networks ever funded by the EU – to the tune of €6 million – oPAC extends well beyond the particle physics community. “Accelerator physics has become integral to research in almost every scientific discipline – be it biology and life science, medicine, geology and material science, or fundamental physics,” explains Carsten P. Welsch, oPAC co-ordinator based at the University of Liverpool. “By optimizing the operation of accelerators, all of these...

  7. Acceleration during magnetic reconnection

    Beresnyak, Andrey [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  8. An Accelerating Cosmology Without Dark Energy

    Steigman, G; Lima, J A S

    2008-01-01

    The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996) without requiring the presence of dark energy or a cosmological constant. In a recent study Lima et al. (2008, LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations of the recent transition from a decelerating to an accelerating Universe. Here we test the evolution of such models at high redshift using the constraint on z_eq, the redshift of the epoch of matter radiation equality, provided by the WMAP constraints on the early Integrated Sachs-Wolfe effect. Since the contribution of baryons and radiation was ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM is tested and constrained at widely-separated epochs (z = z_eq and z = 0) in the evolution of the Universe. This compar...

  9. Overview of accelerators in medicine

    Accelerators used for medicine include synchrotrons, cyclotrons, betatrons, microtrons, and electron, proton, and light ion linacs. Some accelerators which were formerly found only at physics laboratories are now being considered for use in hospital-based treatment and diagnostic facilities. This paper presents typical operating parameters for medical accelerators and gives specific examples of clinical applications for each type of accelerator, with emphasis on recent developments in the field

  10. Electron accelerators for environmental protection

    The primary objective of this publication is to provide information suitable for electron accelerators implementation in facilities applying radiation technology for environmental protection. It should be noticed that radiation processing has been successfully used in the fields of crosslinking polymer curing and medical products sterilization for more than 40 years. Practical application of radiation technology today extends on SO2 and NOx removal from the flue gas (one of major power intensive radiation processing), destruction and removal of organic chemicals from water, decreasing bacteria content in the irradiated sludge and waste water. On the other hand the increased awareness of environmental pollution hazards and more stringent waste regulations in many countries may open stronger support for environmentally oriented technologies. This publication provides an evaluation of electron accelerators capabilities in respect of environmental applications where technological and economical criteria are now well defined. In order to determine the potential of electron accelerators, the literature data were examined as well visits and meetings with various accelerator manufacturers were performed by the author. Experience of the author in accelerator facilities construction and exploitation including those which were used for environmental protection are significant part of this publication. The principle of accelerator action was described in Chapter 1. Early development, accelerator classification and fields of accelerators application were included to this chapter as well. Details of accelerator construction was described in Chapter 2 to illustrate physical capability of accelerators to perform the function of ionizing radiation source. Electron beam extraction devices, under beam equipment, electron beam parameters and measuring methods were characterized in this chapter as well. Present studies of accelerator technology was described in Chapter 3, where direct

  11. ACCELERATORS: Nonlinear dynamics in Sardinia

    In the last few years, two schools devoted to accelerator physics have been set up, one on either side of the Atlantic. The US School on High Energy Particle Accelerators has organized Summer Schools on the physics of particle accelerators, hosted by the major American Laboratories, each year since 1981

  12. High intensity circular proton accelerators

    Circular machines suitable for the acceleration of high intensity proton beams include cyclotrons, FFAG accelerators, and strong-focusing synchrotrons. This paper discusses considerations affecting the design of such machines for high intensity, especially space charge effects and the role of beam brightness in multistage accelerators. Current plans for building a new generation of high intensity 'kaon factories' are reviewed. 47 refs

  13. Cosmic Acceleration and the Helicity-0 Graviton

    de Rham, Claudia; Heisenberg, Lavinia; Pirtskhalava, David

    2010-01-01

    We explore cosmology in the decoupling limit of a non-linear covariant extension of Fierz-Pauli massive gravity obtained recently in arXiv:1007.0443. In this limit the theory is a scalar-tensor model of a unique form defined by symmetries. We find that it admits a self-accelerated solution, with the Hubble parameter set by the graviton mass. The negative pressure causing the acceleration is due to a condensate of the helicity-0 component of the massive graviton, and the background evolution, in the approximation used, is indistinguishable from the \\Lambda CDM model. Fluctuations about the self-accelerated background are stable for a certain range of parameters involved. Most surprisingly, the fluctuation of the helicity-0 field above its background decouples from an arbitrary source in the linearized theory. We also show how massive gravity can remarkably screen an arbitrarily large cosmological constant in the decoupling limit, while evading issues with ghosts. The obtained static solution is stable against ...

  14. Radiation from Shock-Accelerated Particles

    Nishikawa, Ken-ichi; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.; Sol, H.; Pohl, M.; Hartmann, D. H.; Fishman, G. J.

    2012-01-01

    Plasma instabilities excited in collisionless shocks are responsible for particle acceleration, generation of magnetic fields , and associated radiation. We have investigated the particle acceleration and shock structure associated with an unmagnetized relativistic jet propagating into an unmagnetized plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. The shock structure depends on the composition of the jet and ambient plasma (electron-positron or electron-ions). Strong electromagnetic fields are generated in the reverse , jet shock and provide an emission site. These magnetic fields contribute to the electron's transverse deflection behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. The detailed properties of the radiation are important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jet shocks, and supernova remnants

  15. Plasma acceleration in the Martian magnetotail

    Esteban Hernandez, Rosa; Modolo, Ronan; Leblanc, François; Chaufray, Jean-Yves; Curry, Shannon M.; Steckiewicz, Morgane; Connerney, John E. P.; McFadden, James P.; Jakosky, Bruce M.; Brain, David A.; DiBraccio, Gina A.; Romanelli, Norberto; Halekas, Jasper S.; Mitchell, David L.

    2016-04-01

    Since November 2014, the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft has been collecting data from Mars's upper atmosphere and induced magnetosphere (Jakosky et al., 2015). Evidences of escaping planetary ions have been reported from earlier missions as Mars-Express (Barabash et al., 2007) and more recently from MAVEN (e.g. Dong et al., 2015, Brain et al., 2015). Our goal is to determine the acceleration mechanism responsible for the energization of planetary ions in the Martian plasma sheet. MAVEN has a full plasma package with a magnetometer and plasma particles instruments, which allow to address the question of plasma particle acceleration. According to Dubinin et al. (2011), the j x B force due to magnetic shear stresses of the draped field lines is expected to play a major role in such energization process. On MAVEN data, we have first identified and characterized current sheet crossings taking place in Mars' magnetotail and then tested the Walén relation to infer the significance of the j x B force in the particle's energization. To characterize the plasma sheet crossing we have worked with MAVEN magnetometer (MAG, Connerney et al., SSR, 2015) and mass spectrometer (STATIC, McFadden et al., SSR, 2015) data, focusing on a particular event. We have performed a minimum variance analysis, on the magnetic field observations which allows to characterize the current sheet. We present results of the Walén test and our conclusions on planetary plasma acceleration in the plasma sheet region.

  16. Advanced Accelerator Applications University Participation Program

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability. In the six years of this program, we saw the evolution of the national transmutation concepts go from the use of accelerators to fast reactors. We also saw an emphasis on gas-cooled reactors for both high temperature heat and deep burn of nuclear fuel. At the local level, we saw a great birth at UNLV of two new academic programs Fall term of 2004 and the addition of 10 academic and research faculty. The Ph.D. program in Radiochemistry has turned into one of the nation's most visible and successful programs; and, the M.S. program in Materials and Nuclear Engineering initiated Nuclear Engineering academic opportunities which took a long time to come. Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability

  17. High intensity proton accelerator program

    Industrial applications of proton accelerators to the incineration of the long-lived nuclides contained in the spent fuels have long been investigated. Department of Reactor Engineering of Japan Atomic Energy Research Institute (JAERI) has formulated the Accelerator Program through the investigations on the required performances of the accelerator and its development strategies and also the research plan using the accelerator. Outline of the Program is described in the present report. The target of the Program is the construction of the Engineering Test Accelerators (ETA) of the type of a linear accelerator with the energy 1.5 GeV and the proton current ∼10 mA. It is decided that the construction of the Basic Technology Accelerator (BTA) is necessary as an intermediate step, aiming at obtaining the required technical basis and human resources. The Basic Technology Accelerator with the energy of 10 MeV and with the current of ∼10 mA is composed of the ion source, RFQ and DTL, of which system forms the mock-up of the injector of ETA. Development of the high-β structure which constitutes the main acceleration part of ETA is also scheduled. This report covers the basic parameters of the Basic Technology Accelerator (BTA), development steps of the element and system technologies of the high current accelerators and rough sketch of ETA which can be prospected at present. (J.P.N.)

  18. APT accelerator. Topical report

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation's stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century

  19. VLHC accelerator physics

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  20. APT accelerator. Topical report

    Lawrence, G.; Rusthoi, D. [comp.] [ed.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  1. Final Report for "Modeling Electron Cloud Diagnostics for High-Intensity Proton Accelerators"

    Seth A Veitzer

    2009-09-25

    Electron clouds in accelerators such as the ILC degrade beam quality and limit operating efficiency. The need to mitigate electron clouds has a direct impact on the design and operation of these accelerators, translating into increased cost and reduced performance. Diagnostic techniques for measuring electron clouds in accelerating cavities are needed to provide an assessment of electron cloud evolution and mitigation. Accurate numerical modeling of these diagnostics is needed to validate the experimental techniques. In this Phase I, we developed detailed numerical models of microwave propagation through electron clouds in accelerating cavities with geometries relevant to existing and future high-intensity proton accelerators such as Project X and the ILC. Our numerical techniques and simulation results from the Phase I showed that there was a high probability of success in measuring both the evolution of electron clouds and the effects of non-uniform electron density distributions in Phase II.

  2. ACCELERATING NANO-TECHNOLOGICAL

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in...

  3. 2014 CERN Accelerator Schools

    2014-01-01

    A specialised school on Power Converters will be held in Baden, Switzerland, from 7 to 14 May 2014. Please note that the deadline for applications is 7 FEBRUARY 2014. A course on Introduction to Accelerator Physics will be held in Prague, Czech Republic, from 31 August to 12 September 2014. Applications are now open for this school; the application deadline is 25 APRIL 2014. Further information on these schools and other CAS events can be found on the CAS website and on the Indico page. For further information please contact Barbara.strasser@cern.ch

  4. Hardware Accelerated Power Estimation

    Coburn, Joel; Raghunathan, Anand

    2011-01-01

    In this paper, we present power emulation, a novel design paradigm that utilizes hardware acceleration for the purpose of fast power estimation. Power emulation is based on the observation that the functions necessary for power estimation (power model evaluation, aggregation, etc.) can be implemented as hardware circuits. Therefore, we can enhance any given design with "power estimation hardware", map it to a prototyping platform, and exercise it with any given test stimuli to obtain power consumption estimates. Our empirical studies with industrial designs reveal that power emulation can achieve significant speedups (10X to 500X) over state-of-the-art commercial register-transfer level (RTL) power estimation tools.

  5. Plasma wake field accelerator

    A new scheme of electron acceleration, employing relativistic electron bunches in a cold plasma, is analyzed. The wake field of a leading bunch is derived in a single-particle model. We then extend the model to include finite bunch length effect. In particular, we discuss the relation between the charge distributions of the driving bunch and the energies transformable to the trailing electrons. It is shown that for symmetric charge distribution of the driving bunches, the maximum energy gain for a driven electron is 2γ0mc2. This limitation can be overcome by introducing asymmetric charge distributions. 13 refs., 5 figs

  6. Accelerated Innovation Pilot

    Davis, Jeffrey

    2012-01-01

    Opportunities: I. Engage NASA team (examples) a) Research and technology calls . provide suggestions to AES, HRP, OCT. b) Use NASA@Work to solicit other ideas; (possibly before R+D calls). II. Stimulate collaboration (examples) a) NHHPC. b) Wharton Mack Center for Technological Innovation (Feb 2013). c) International ] DLR ] :envihab (July 2013). d) Accelerated research models . NSF, Myelin Repair Foundation. III. Engage public Prizes (open platform: InnoCentive, yet2.com, NTL; Rice Business Plan, etc.) IV. Use same methods to engage STEM.

  7. Electron Acceleration by a Focused Gaussian Laser Pulse in Vacuum

    何峰; 余玮; 陆培祥; 徐涵

    2004-01-01

    By numerically solving the relativistic equations of motion of a single electron in laser fields modeled by a Gaussian laser beam, we get the trajectory and energy of the electron. When the drifting distance is comparable to or even longer than the corresponding Rayleigh length, the evolution of the beam waist cannot be neglected. The asymmetry of intensity in acceleration and deceleration leads to the conclusion that the electron can be accelerated effectively and extracted by the longitudinal ponderomotive force. For intensities above, an electron's energy gain about MeV can be realized, and the energetic electron is parallel with the propagation axis.

  8. Diagnostics for studies of novel laser ion acceleration mechanisms

    Diagnostic for investigating and distinguishing different laser ion acceleration mechanisms has been developed and successfully tested. An ion separation wide angle spectrometer can simultaneously investigate three important aspects of the laser plasma interaction: (1) acquire angularly resolved energy spectra for two ion species, (2) obtain ion energy spectra for multiple species, separated according to their charge to mass ratio, along selected axes, and (3) collect laser radiation reflected from and transmitted through the target and propagating in the same direction as the ion beam. Thus, the presented diagnostic constitutes a highly adaptable tool for accurately studying novel acceleration mechanisms in terms of their angular energy distribution, conversion efficiency, and plasma density evolution

  9. Dark Energy Coupled with Relativistic Dark Matter in Accelerating Universe

    张杨

    2003-01-01

    Recent observations favour an accelerating Universe dominated by the dark energy. We take the effective YangMills condensate as the dark energy and couple it to a relativistic matter which is created by the decaying condensate. The dynamic evolution has asymptotic behaviour with finite constant energy densities, and the fractional densities Ω∧~ 0.7 for dark energy and Ωm ~ 0.3 for relativistic matter are achieved at proper values of the decay rate. The resulting expansion of the Universe is in the de Sitter acceleration.

  10. CHEMICAL EVOLUTION

    Calvin, Melvin

    1965-06-01

    How did life come to be on the surface of the earth? Darwin himself recognized that his basic idea of evolution by variation and natural selection must be a continuous process extending backward in time through that period in which the first living things arose and into the period of 'Chemical Evolution' which preceded it. We are approaching the examination of these events by two routes. One is to seek for evidence in the ancient rocks of the earth which were laid down prior to that time in which organisms capable of leaving their skeletons in the rocks to be fossilized were in existence. This period is sometime prior to approximately 600 million years ago. The earth is believed to have taken its present form approximately 4700 million years ago. We have found in rocks whose age is about 1000 million years certain organic molecules which are closely related to the green pigment of plants, chlorophyll. This seems to establish that green plants were already fluorishing prior to that time. We have now found in rocks of still greater age, namely, 2500 million years, the same kinds of molecules mentioned above which can be attributed to the presence of living organisms. If these molecules are as old as the rocks, we have thus shortened the time available for the generation of the complex biosynthetic sequences which give rise to these specific hydrocarbons (polyisoprenoids) to less than 2000 million years.

  11. Evolution of Chinese airport network

    Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo; Cai, Kai-Quan

    2010-09-01

    With the rapid development of the economy and the accelerated globalization process, the aviation industry plays a more and more critical role in today’s world, in both developed and developing countries. As the infrastructure of aviation industry, the airport network is one of the most important indicators of economic growth. In this paper, we investigate the evolution of the Chinese airport network (CAN) via complex network theory. It is found that although the topology of CAN has remained steady during the past few years, there are many dynamic switchings inside the network, which have changed the relative importance of airports and airlines. Moreover, we investigate the evolution of traffic flow (passengers and cargoes) on CAN. It is found that the traffic continues to grow in an exponential form and has evident seasonal fluctuations. We also found that cargo traffic and passenger traffic are positively related but the correlations are quite different for different kinds of cities.

  12. Evolution of Chinese airport network

    Zhang, Jun; Du, Wen-Bo; Cai, Kai-Quan

    2011-01-01

    With the rapid development of economy and the accelerated globalization process, the aviation industry plays more and more critical role in today's world, in both developed and developing countries. As the infrastructure of aviation industry, the airport network is one of the most important indicators of economic growth. In this paper, we investigate the evolution of Chinese airport network (CAN) via complex network theory. It is found that although the topology of CAN remains steady during the past several years, there are many dynamic switchings inside the network, which changes the relative relevance of airports and airlines. Moreover, we investigate the evolution of traffic flow (passengers and cargoes) on CAN. It is found that the traffic keeps growing in an exponential form and it has evident seasonal fluctuations. We also found that cargo traffic and passenger traffic are positively related but the correlations are quite different for different kinds of cities.

  13. Chicago particle accelerator conference

    Naturally, emphasis at the Particle Accelerator Conference in Chicago in March was on work in the US, just as the newly instituted European Particle Accelerator Conference places emphasis on work in the 'old continent'. All will come together at the international conference in Japan in August. The proposed US Superconducting Supercollider (SSC) was highlighted in the opening talk at Chicago. Progress on this inchoate project to explore the TeV (1000 GeV) energy region by colliding 20 TeV proton beams was reported by the recently-appointed Director of the SSC Laboratory, Roy Schwitters. He reviewed the physics challenges and described progress and plans towards full authorization of construction.This year, the SSC conceptual design will be transformed into a 'site specific' report, now that the location at Waxahachie in Ellis County, Texas, has been selected. The Central Design Group, based in Berkeley for the past few years, will soon move to the Waxahachie region. The top management structure is taking shape and an International Advisory Committee is being formed

  14. Accelerator research studies

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  15. Accelerator School Success

    2004-01-01

    Accelerator specialists don't grow on trees: training them is the job of the CERN Accelerator School (CAS). Group photo during visit to the Daresbury Laboratory. CAS and the CCLRC Daresbury Laboratory jointly organised a specialised school on Power Converters in Warrington, England from 12-18 May 2004. The last CAS Power Converter course was in 1990, so there was plenty of ground to cover. The challenging programme proposed a review of the state of the art and the latest developments in the field, including 30 hours of tuition. The school also included a visit to the CCLRC Daresbury laboratory, a one-day excursion to Liverpool and Chester and a themed (Welsh medieval) dinner at the school's closure. A record attendance of 91 students of more than 20 different nationalities included not only participants from Europe and North America but also from Armenia, Taiwan, India, Turkey, Iran and for the first time, fee-paying students from China and Australia. European industry showed a welcome and solid interest in...

  16. Medical Proton Accelerator Project

    A project for a medical proton accelerator for cancer treatment is outlined. The project is motivated by the need for a precise modality for cancer curing especially in children. Proton therapy is known by its superior radiation and biological effectiveness as compared to photon or electron therapy. With 26 proton and 3 heavy-ion therapy complexes operating worldwide only one (p) exists in South Africa, and none in south Asia and the Middle East. The accelerator of choice should provide protons with energy 75 MeV for eye treatment and 250 MeV for body treatment. Four treatment rooms are suggested: two with isocentric gantries, one with fixed beams and one for development. Passive scanning is recommended. The project can serve Middle East and North Africa with ∼ 400 million populations. The annual capacity of the project is estimated as 1,100 to be compared with expected radiation cases eligible for proton cancer treatment of not less than 200,000

  17. Broadband accelerator control network

    A broadband data communications network has been implemented at BNL for control of the Alternating Gradient Synchrotron (AG) proton accelerator, using commercial CATV hardware, dual coaxial cables as the communications medium, and spanning 2.0 km. A 4 MHz bandwidth Digital Control channel using CSMA-CA protocol is provided for digital data transmission, with 8 access nodes available over the length of the RELWAY. Each node consists of an rf modem and a microprocessor-based store-and-forward message handler which interfaces the RELWAY to a branch line implemented in GPIB. A gateway to the RELWAY control channel for the (preexisting) AGS Computerized Accelerator Operating system has been constructed using an LSI-11/23 microprocessor as a device in a GPIB branch line. A multilayer communications protocol has been defined for the Digital Control Channel, based on the ISO Open Systems Interconnect layered model, and a RELWAY Device Language defined as the required universal language for device control on this channel

  18. Washington Accelerator Conference

    Highlights of the 1993 Particle Accelerator Conference, held in Washington in May, were picked out in the previous issue (page 18). Talks on the big hadron colliders reflected the sea-change in the accelerator world where the scale, complexity and cost of the front-line projects has slowed the pace of developments (not unlike the scene in particle physics itself). Speaking before the anti-SSC vote in the House of Representatives in June, Dick Briggs reviewed the situation at the SSC Superconducting Supercollider in Ellis County, Texas. The linac building is near completion and the Low Energy Booster will be ready to receive components early next year. Tunnelling for the Main Ring is advancing rapidly with four boring machines in action. Five miles of tunnel have been completed since January and the pace has now stepped up to nearly a mile each week. The superconducting magnet news is good. Following the successful initial string test of a half cell of the magnet lattice, a two-ring full cell with all associated services is being assembled. The mechanical robustness of the magnet design was confirmed when a dipole was taken to 9.7 T when cooled to 1.8 K. In the Magnet Test Lab itself, ten test stands are installed and equipped

  19. Accelerator Technology: Geodesy and Alignment for Particle Accelerators

    Missiaen, D

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.9 Geodesy and Alignment for Particle Accelerators' of the Chapter '8 Accelerator Technology' with the content: 8.9 Geodesy and Alignment for Particle Accelerators 8.9.1 Introduction 8.9.2 Reference and Co-ordinate Systems 8.9.3 Definition of the Beam Line on the Accelerator Site 8.9.4 Geodetic Network 8.9.5 Tunnel Preliminary Works 8.9.6 The Alignment References 8.9.7 Alignment of Accelerator Components 8.9.8 Permanent Monitoring and Remote Alignment of Low Beta Quadrupoles 8.9.9 Alignment of Detector Components

  20. 2014 Joint International Accelerator School: Beam Loss and Accelerator Protection

    JAS - Joint US-CERN-Japan-Russia Accelerator School

    2016-01-01

    Many particle accelerators operate with very high beam power and very high energy stored in particle beams as well as in magnet systems. In the future, the beam power in high intensity accelerators will further increase. The protection of the accelerator equipment from the consequences of uncontrolled release of the energy is essential. This was the motivation for organizing a first school on beam losses and accelerator protection (in general referred to as machine protection). During the school the methods and technologies to identify, mitigate, monitor and manage the technical risks associated with the operation of accelerators with high-power beams or subsystems with large stored energy were presented. At the completion of the school the participants should have been able to understand the physical phenomena that can damage machine subsystems or interrupt operations and to analyze an accelerator facility to produce a register of technical risks and the corresponding risk mitigation and management strategie...

  1. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 1

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  2. CAS CERN Accelerator School: Advanced accelerator physics. Proceedings. Vol. 2

    This advanced course on general accelerator physics is the second of the biennial series given by the CERN Accelerator School and follows on from the first basic course given at Gif-sur-Yvette, Paris, in 1984. Stress is placed on the mathematical tools of Hamiltonian mechanics and the Vlasov and Fokker-Planck equations, which are widely used in accelerator theory. The main topics treated in this present work include: nonlinear resonances, chromaticity, motion in longitudinal phase space, growth and control of longitudinal and transverse beam emittance, space-charge effects and polarization. The seminar programme treats some specific accelerator techniques, devices, projects and future possibilities. (orig.)

  3. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of accelerator physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  4. CERN Accelerator School: Registration open for Advanced Accelerator Physics course

    2015-01-01

    Registration is now open for the CERN Accelerator School’s Advanced Accelerator Physics course to be held in Warsaw, Poland from 27 September to 9 October 2015.   The course will be of interest to physicists and engineers who wish to extend their knowledge of Accelerator Physics. The programme offers core lectures on accelerator physics in the mornings and a practical course with hands-on tuition in the afternoons.  Further information can be found at: http://cas.web.cern.ch/cas/Poland2015/Warsaw-advert.html http://indico.cern.ch/event/361988/

  5. Community Evolution

    Bródka, Piotr; Kazienko, Przemysław

    2016-01-01

    The continuous interest in the social network area contributes to the fast development of this field. The new possibilities of obtaining and storing data facilitate deeper analysis of the entire social network, extracted social groups and single individuals as well. One of the most interesting research topic is the network dynamics and dynamics of social groups in particular, it means analysis of group evolution over time. It is the natural step forward after social community extraction. Having communities extracted, appropriate knowledge and methods for dynamic analysis may be applied in order to identify changes as well as to predict the future of all or some selected groups. Furthermore, knowing the most probably change of a given group some additional steps may be performed in order to change this predicted future according to specific needs. Such ability would be a powerful tool in the hands of human resource managers, personnel recruitment, marketing, telecommunication companies, etc.

  6. HL-LHC Accelerator

    Zimmermann, F

    2013-01-01

    The tentative schedule, key ingredients, as well as progress of pertinent R&D and component prototypes for the LHC luminosity upgrade, "HL-LHC," are reviewed. Also alternative scenarios based on performance-improving consolidations (PICs) instead of a full upgrade are discussed. Tentative time schedules and expected luminosity evolutions for the different scenarios are sketched. The important role of HL-LHC development as a step towards a future HE-LHC or VHE-LHC is finally highlighted. Presented at "Higgs & Beyond" Conference Tohoku University, Sendai 7 June 2013.

  7. Electrostatic accelerators fundamentals and applications

    2005-01-01

    Electrostatic accelerators are an important and widespread subgroup within the broad spectrum of modern, large particle acceleration devices. They are specifically designed for applications that require high-quality ion beams in terms of energy stability and emittance at comparatively low energies (a few MeV). Their ability to accelerate virtually any kind of ion over a continuously tunable range of energies make them a highly versatile tool for investigations in many research fields including, but not limited to, atomic and nuclear spectroscopy, heavy ion reactions, accelerator mass spectroscopy as well as ion-beam analysis and modification. The book is divided into three parts. The first part concisely introduces the field of accelerator technology and techniques that emphasize their major modern applications. The second part treats the electrostatic accelerator per se: its construction and operational principles as well as its maintenance. The third part covers all relevant applications in which electrosta...

  8. Accelerator Technology for the Mankind

    Sultansoy, S

    2006-01-01

    Particle accelerators technology is one of the generic technologies which is locomotive of the development in almost all fields of science and technology. According to the U.S. Department of Energy: "Accelerators underpin every activity of the Office of Science and, increasingly, of the entire scientific enterprise. From biology to medicine, from materials to metallurgy, from elementary particles to the cosmos, accelerators provide the microscopic information that forms the basis for scientific understanding and applications. The combination of ground and satellite based observatories and particle accelerators will advance our understanding of our world, our galaxy, our universe, and ourselves." Because of this, accelerator technology should become widespread all over the world. Existing situation shows that a large portion of the world, namely the South and Mid-East, is poor on the accelerator technology. UNESCO has recognized this deficit and started SESAME project in Mid-East, namely Jordan. Turkic Acceler...

  9. Lectures in accelerator theory

    Lecture I deals with the behavior of particles in the nonlinear field arising from the electromagnetic interaction of colliding beams. The case treated, that of counter-rotating proton beams crossing each other at a non-zero angle, has the simple feature that the force between the beam is one dimensional. In lecture II, an analysis of the development of traveling waves on particle beams is presented. The situation studied is that of a uniform beam current in a circular accelerator and the excitation for the coherent motion is induced by the resistivity of the vacuum chamber wall. Finally, in lecture III, a description of the current accumulation process used at the proton storage rings at CERN (The ISR) is given. Particle pulses of rather low average current are injected and stored along the length and width of the vacuum chamber. The efficiency is very high and large currents (over 40 amperes) have been achieved

  10. Accelerator vacuum system elements

    Some elements of vacuum systems are investigated. Considerable attention has been given to the investigation into peculiarities in pumping out of a ionoguide for transportation of an accelerated charged particles beam the spread of which often attains a considerable length. The number of pumps over the ionoguide length is experimentally determined. It is shown that as a result of ionoguide warm-up the pumping out time is considerably reduced maximum permissible pressure is decreased by two orders and lesser rate of pump pumping out is required. The investigations have shown that when operating the ionoguide there is no necessity in setting up seals between the ionoguide and magnetodischarged pump. The causes of the phenomenon in which the pressure near the pump is greater than in the end of the ionoguide, are impurities carried in by the pump into the ionoguide volume and the pumping out capacity of the pressure converter

  11. ACCELERATING NANO-TECHNOLOGICAL

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in...... that opportunities are generally poorly appreciated by the industry and research communities alike. It is found that the construction industry is characterized by low-tech trajectories where dedicated innovation networks are often too fragile for innovations to stabilize and diffuse. The institutional...

  12. The entangled accelerating universe

    González-Díaz, Pedro F

    2009-01-01

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum the...

  13. SPS accelerating cavity

    1976-01-01

    The SPS started up with 2 accelerating cavities (each consisting of 5 tank sections) in LSS3. They have a 200 MHz travelling wave structure (see 7411032 and 7802190) and 750 kW of power is fed to each of the cavities from a 1 MW tetrode power amplifier, located in a surface building above, via a coaxial transmission line. Clemens Zettler, builder of the SPS RF system, is standing at the side of one of the cavities. In 1978 and 1979 another 2 cavities were added and entered service in 1980. These were part of the intensity improvement programme and served well for the new role of the SPS as proton-antiproton collider. See also 7411032, 8011289, 8104138, 8302397.

  14. Self-accelerated Universe

    Kosyakov, B P

    2005-01-01

    It is widely believed that the large redshifts for distant supernovae are explained by the vacuum energy dominance, or, in other words, by the cosmological constant in Einstein's equations, which is responsible for the anti-gravitation effect. A tacit assumption is that particles move along a geodesic for the background metric. This is in the same spirit as the consensus regarding the uniform Galilean motion of a free electron. However, there is a runaway solution to the Lorentz--Dirac equation governing the behavior of a radiating electron, in addition to the Galilean solution. Likewise, a runaway solution to the entire system of equations, both gravitation and matter equations of motion including, may provide an alternative explanation for the accelerated expansion of the Universe, without recourse to the hypothetic cosmological constant.

  15. Testing Gravity on Accelerators

    Kalaydzhyan, Tigran

    2016-01-01

    Weak equivalence principle (WEP) is one of the cornerstones of the modern theories of gravity, stating that the trajectory of a freely falling test body is independent of its internal structure and composition. Even though WEP is known to be valid for the normal matter with a high precision, it has never been experimentally confirmed for relativistic matter and antimatter. We make an attempt to constrain possible deviations from WEP utilizing the modern accelerator technologies. We analyze the (absence of) vacuum Cherenkov radiation, photon decay, anomalous synchrotron losses and the Compton spectra to put limits on the isotropic Lorentz violation and further convert them to the constraints on the difference between the gravitational and inertial masses of the relativistic electrons/positrons. Our main result is the 0.1% limit on the mentioned difference.

  16. Gauss-Bonnet Cosmology Unifying Late and Early-time Acceleration Eras with Intermediate Eras

    Oikonomou, V K

    2016-01-01

    In this paper we demonstrate that with vacuum $F(G)$ gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the $F(G)$ description is no, since the resulting power spectrum is not scale invariant, in contrast to the $F(R)$ description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum $F(G)$ gravity, the evolu...

  17. Accelerated expansion from braneworld models with variable vacuum energy

    De Leon, J P

    2004-01-01

    In braneworld models a variable vacuum energy may appear if the size of the extra dimension changes during the evolution of the universe. In this scenario the acceleration of the universe is related not only to the variation of the cosmological term, but also to the time evolution of $G$ and, possibly, to the variation of other fundamental "constants" as well. This is because the expansion rate of the extra dimension appears in different contexts, notably in expressions concerning the variation of rest mass and electric charge. We concentrate our attention on spatially-flat, homogeneous and isotropic, brane-universes where the matter density decreases as an inverse power of the scale factor, similar (but at different rate) to the power law in FRW-universes of general relativity. We show that these braneworld cosmologies are consistent with the observed accelerating universe and other observational requirements. In particular, $G$ becomes constant and $\\Lambda_{(4)} \\approx const \\times H^2$ asymptotically in ...

  18. Accelerating Universe and Event Horizon

    He, Xiao-Gang(INPAC, SKLPPC and Department of Physics, Shanghai Jiao Tong University, Shanghai, China)

    2001-01-01

    It has been argued in the literature that if a universe is expanding with an accelerating rate indefinitely, it presents a challenge to string theories due to the existence of event horizons. We study the fate of a currently accelerating universe. We show that the universe will continue to accelerate indefinitely if the parameter $\\omega = p/\\rho$ of the equation of state is a constant, no matter how many different types of energy (matter, radiation, quintessence, cosmological constant and et...

  19. Cast dielectric composite linear accelerator

    Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  20. Particle accelerator development: Selected examples

    Wei, Jie

    2016-03-01

    About 30 years ago, I was among several students mentored by Professor Yang at Stony Brook to enter the field of particle accelerator physics. Since then, I have been fortunate to work on several major accelerator projects in USA and in China, guided and at times directly supported by Professor Yang. The field of accelerator physics is flourishing worldwide both providing indispensable tools for fundamental physics research and covering an increasingly wide spectrum of applications beneficial to our society.

  1. Collective accelerator for electron colliders

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  2. Accelerator science in medical physics

    Peach, K.; Wilson, P.; Jones, B

    2011-01-01

    The use of cyclotrons and synchrotrons to accelerate charged particles in hospital settings for the purpose of cancer therapy is increasing. Consequently, there is a growing demand from medical physicists, radiographers, physicians and oncologists for articles that explain the basic physical concepts of these technologies. There are unique advantages and disadvantages to all methods of acceleration. Several promising alternative methods of accelerating particles also have to be considered sin...

  3. Stationary plasma accelerator - ATON engine

    The principles of a stationary plasma accelerator (engine) with closed electron drift are described. The accelerator has record integral characteristics. A method for analysis of operating process features in the integral characteristics is proposed. Results are presented of local measurements of the plasma parameters in the accelerator channel and in the leaving plasma jet Main attention is paid to determination of the part of twice ionized ions in the plasma flow

  4. Accelerator control systems in China

    Three accelerator facilities were built in the past few years, the 2.8 GeV electron positron collider BEPC, the heavy ion SSC cyclotron accelerator HIRFL and the 800 MeV synchrotron radiation storage ring HESYRL. Aimed at different research areas, they represent a new generation of accelerator in China. This report describes the design philosophy, the structure, performance as well as future improvements of the control systems of the these facilities. (author)

  5. Superposed-laser electron acceleration

    A new mechanism is proposed for electron acceleration by using two superposed laser beams in vacuum. In this mechanism, an electron is accelerated by the longitudinal component of the wave electric field in the overlapped region of two laser beams. Single-particle computations and analytical works are performed in order to demonstrate the viability. These results show that the electron can be accelerated well in this proposed mechanism. (author)

  6. New Accelerator Projects

    There is large number of ambitious accelerator projects with promising performances in the near (and short term) future which aims at exploring energy and/or luminosity frontiers and Complementary aspects of various particles species. High Energy Physics requirements are extremely demanding with challenging parameters: entering into the new territories of the tera-scale data, high Energy or/and High (Integrated) Luminosity, high performance, high availability, long lifetime, luminosity leveling etc.. New projects are more and more challenging: larger, more powerful, more expensive, technology above present standard. Innovative ideas and breakthrough on novel technologies are key for HEP adventure. Aggressive R and D is imperative on beam and Technology related, on cost and power consumption mitigation.. There is ambitious Test Facilities to address feasibility. More and more time and (M and P) resources are required from first ideas to project proposal: it is of prime importance to launch R and D early, explore all possible options of schemes and technologies (anticipating future Physics requests), make realistic status and schedule estimates (preserve credibility and make reasonable plans). Global Collaboration is mandatory from the R and D phase to the construction and operation in order to make best use of limited resources and available expertise as inspired from successful collaborations on Detectors. The global strategy of new accelerator projects in truly world-wide collaboration aims at: - defining all various Projects and Technology options worth exploring, - taking advantage of global teams made of world-wide experts, and of synergies to address common issues (generic R and D) of various projects, - preparing together plethora of project proposals to cover Physics Landscape (ready for window opportunity), - developing Collaborative/Competition (Experts in Collaboration, Technology and Projects options in Competition), - Joining resources on (few) selected

  7. Om religion og evolution

    Geertz, Armin W.

    kulturens kausale virkning på den menneskelige kognition og ikke mindst den hominine evolution. Ud fra, hvad vi ved om den menneskelige evolution, ses det, at den hominine evolution har en dybde, som sjældent medtænkes i teorier og hypoteser om den menneskelige evolution. Den menneskelige evolution er...

  8. Feature-based Analysis of Plasma-based Particle Acceleration Data

    Ruebel, Oliver; Geddes, Cameron G.R.; Chen, Min; Cormier-Michel, Estelle; Bethel, E. Wes

    2013-07-05

    Plasma-based particle accelerators can produce and sustain thousands of times stronger acceleration fields than conventional particle accelerators, providing a potential solution to the problem of the growing size and cost of conventional particle accelerators. To facilitate scientific knowledge discovery from the ever growing collections of accelerator simulation data generated by accelerator physicists to investigate next-generation plasma-based particle accelerator designs, we describe a novel approach for automatic detection and classification of particle beams and beam substructures due to temporal differences in the acceleration process, here called acceleration features. The automatic feature detection in combination with a novel visualization tool for fast, intuitive, query-based exploration of acceleration features enables an effective top-down data exploration process, starting from a high-level, feature-based view down to the level of individual particles. We describe the application of our analysis in practice to analyze simulations of single pulse and dual and triple colliding pulse accelerator designs, and to study the formation and evolution of particle beams, to compare substructures of a beam and to investigate transverse particle loss.

  9. Superconducting Radiofrequency (SRF) Acceleration Technology

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  10. Physics Needs for Future Accelerators

    Lykken, Joseph D.

    2000-01-01

    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics dr...

  11. Thomas Precession by Uniform Acceleration

    Pardy, Miroslav

    2015-01-01

    We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.

  12. Chameleon field and the late time acceleration of the Universe

    Narayan Banerjee; Sudipta Das; Koyel Ganguly

    2010-03-01

    In the present work, it is shown that a chameleon scalar field having a non-minimal coupling with dark matter can give rise to a smooth transition from a decelerated to an accelerated phase of expansion for the Universe. It is surprising to note that the coupling with the chameleon scalar field hardly affects the evolution of the dark matter sector, which still redshifts as −3.

  13. Disassortative mixing accelerates consensus in the naming game

    Yang, Han-Xin

    2015-01-01

    In this paper, we study the role of degree mixing in the naming game. It is found that consensus can be accelerated on disassortative networks. We provide a qualitative explanation of this phenomenon based on clusters statistics. Compared with assortative mixing, disassortative mixing can promote the merging of different clusters, thus resulting in a shorter convergence time. Other quantities, including the evolutions of the success rate, the number of total words and the number of different words, are also studied.

  14. Disassortative mixing accelerates consensus in the naming game

    In this paper, we study the role of degree mixing in the naming game. It is found that consensus can be accelerated on disassortative networks. We provide a qualitative explanation of this phenomenon based on cluster statistics. Compared with assortative mixing, disassortative mixing can promote the merging of different clusters, thus resulting in a shorter convergence time. Other quantities, including the evolution of the success rate, the number of total words and the number of different words, are also studied. (paper)

  15. Physics of beam self-modulation in plasma wakefield accelerators

    Lotov, K. V. [Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-10-15

    The self-modulation instability is a key effect that makes possible the usage of nowadays proton beams as drivers for plasma wakefield acceleration. Development of the instability in uniform plasmas and in plasmas with a small density up-step is numerically studied with the focus at nonlinear stages of beam evolution. The step parameters providing the strongest established wakefield are found, and the mechanism of stable bunch train formation is identified.

  16. Short Acceleration Times from Superdiffusive Shock Acceleration in the Heliosphere

    Perri, S.; Zimbardo, G.

    2015-12-01

    The analysis of time profiles of particles accelerated at interplanetary shocks allows particle transport properties to be inferred. The frequently observed power-law decay upstream, indeed, implies a superdiffusive particle transport when the level of magnetic field variance does not change as the time interval from the shock front increases. In this context, a superdiffusive shock acceleration (SSA) theory has been developed, allowing us to make predictions of the acceleration times. In this work we estimate for a number of interplanetary shocks, including the solar wind termination shock, the acceleration times for energetic protons in the framework of SSA and we compare the results with the acceleration times predicted by standard diffusive shock acceleration. The acceleration times due to SSA are found to be much shorter than in the classical model, and also shorter than the interplanetary shock lifetimes. This decrease of the acceleration times is due to the scale-free nature of the particle displacements in the framework of superdiffusion. Indeed, very long displacements are possible, increasing the probability for particles far from the front of the shock to return, and short displacements have a high probability of occurrence, increasing the chances for particles close to the front to cross the shock many times.

  17. Intense tera-hertz laser driven proton acceleration in plasmas

    Sharma, A.; Tibai, Z.; Hebling, J.

    2016-06-01

    We investigate the acceleration of a proton beam driven by intense tera-hertz (THz) laser field from a near critical density hydrogen plasma. Two-dimension-in-space and three-dimension-in-velocity particle-in-cell simulation results show that a relatively long wavelength and an intense THz laser can be employed for proton acceleration to high energies from near critical density plasmas. We adopt here the electromagnetic field in a long wavelength (0.33 THz) regime in contrast to the optical and/or near infrared wavelength regime, which offers distinct advantages due to their long wavelength ( λ = 350 μ m ), such as the λ 2 scaling of the electron ponderomotive energy. Simulation study delineates the evolution of THz laser field in a near critical plasma reflecting the enhancement in the electric field of laser, which can be of high relevance for staged or post ion acceleration.

  18. Stochastic particle acceleration by plasma waves in AGN jets

    The free energy stored in the stressed magnetic fields in AGN jets could be dissipated via generating turbulent plasma waves. The authors review several key wave-particle resonant interactions and point out the importance of a broad wave spectrum. Under several idealized assumptions, they show that the transit-time damping process can accelerate electrons to TeV energies in an AGN jet environment, and present a preliminary calculation on the evolution of plasma wave, electron, and photon distributions. The authors especially emphasize several open questions on particle acceleration by waves, and argue that a plausible scenario is to energize electrons out of the thermal background via transit-time damping and further accelerate them by the parallel propagating right-handed waves

  19. Stochastic Particle Acceleration in Turbulence Generated by the Magnetorotational Instability

    Kimura, Shigeo S; Suzuki, Takeru K; Inutsuka, Shu-ichiro

    2016-01-01

    We investigate stochastic particle acceleration in accretion flows. It is believed that the magnetorotational instability (MRI) generates turbulence inside accretion flows and that cosmic rays (CRs) are accelerated by the turbulence. We calculate equations of motion for CRs in the turbulent fields generated by MRI with the shearing box approximation without back reaction to the field. The results show that the CRs randomly gain or lose their energies through the interaction with the turbulent fields. The CRs diffuse in the configuration space anisotropically: The diffusion coefficient in direction of the unperturbed flow is about twenty times higher than the Bohm coefficient, while those in the other directions are only a few times higher than the Bohm. The momentum distribution is isotropic, and its evolution can be described by the diffusion equation in momentum space where the diffusion coefficient is a power-law function of the CR momentum. We show that the shear acceleration efficiently works for energet...

  20. CAS CERN Accelerator School: Second general accelerator physics course

    The course on general accelerator physics given at Aarhus is basically a repeat of that organised by the CERN Accelerator School at Gif-sur-Yvette, Paris in September 1984 and whose proceedings were published as CERN Yellow Report 85-19 (1985). However, the opportunity was taken to improve or extend certain subjects while introducing new ones and it is these which are included in the present proceedings. The lectures treated here include accelerator optics, insertions, image and space charge forces, neutralisation, diagnostics and intra-beam scattering while the seminar programme includes a number of specialised accelerator topics. Reports on a separate series of seminars organised by the University of Aarhus, Denmark, and devoted to advanced technology arising from general accelerator physics are also included, as well as errata to CERN 85-19. (orig.)

  1. CAS CERN Accelerator School superconductivity in particle accelerators

    One of the objectives of the CERN Accelerator School is to run courses on specialised topics in the particle accelerator field. The present volume contains the proceedings of one such course, this time organized in conjunction with the Deutsches Elektronen Synchrotron (DESY) on the subject of superconductivity in particle accelerators. This course reflects the very considerable progress made over the last few years in the use of the technology for the magnet and radio-frequency systems of many large and small accelerators already in use or nearing completion, while also taking account of the development work now going on for future machines. The lectures cover the theory of superconductivity, cryogenics and accelerator magnets and cavities, while the seminars include superfluidity, superconductors, special magnets and the prospects for high-temperature superconductors. (orig.)

  2. Insect evolution.

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology. PMID:26439349

  3. Particle Acceleration and Heating by Turbulent Reconnection

    Vlahos, Loukas; Isliker, Heinz; Tsiolis, Vassilios; Anastasiadis, Anastasios

    2016-01-01

    Turbulent flows in the solar wind, large scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains "turbulent reconnection". We constructed a 2D grid on which a number of randomly chosen grid points are acting as {\\bf scatterers} (i.e.\\ magnetic clouds or current sheets). In particular, we study how test particles respond inside this collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, their escape time distribution and we determine the transport coefficients from the particle dynamics. We have shown that our model describes very well the second order Fermi energization of non relativistic plasmas in open or periodic numerical boxes, when using magnetic clouds as scatterers. Replacing the "magnetic clouds" with current sheets, we have proven that the processes are much more efficient and particle heating and acceleration depends on...

  4. LHC Accelerator Fault Tracker - First Experience

    Apollonio, Andrea; Roderick, Chris; Schmidt, Ruediger; Todd, Benjamin; Wollmann, Daniel

    2016-01-01

    Availability is one of the key performance indicators of LHC operation, being directly correlated with integrated luminosity production. An effective tool for availability tracking is a necessity to ensure a coherent capture of fault information and relevant dependencies on operational modes and beam parameters. At the beginning of LHC Run 2 in 2015, the Accelerator Fault Tracking (AFT) tool was deployed at CERN to track faults or events affecting LHC operation. Information derived from the AFT is crucial for the identification of areas to improve LHC availability, and hence LHC physics production. For the 2015 run, the AFT has been used by members of the CERN Availability Working Group, LHC Machine coordinators and equipment owners to identify the main contributors to downtime and to understand the evolution of LHC availability throughout the year. In this paper the 2015 experience with the AFT for availability tracking is summarised and an overview of the first results as well as an outlook to future develo...

  5. Photon mirror acceleration in the quantum regime

    Mendonça, J. T., E-mail: josetitomend@gmail.com [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil); Fedele, R., E-mail: renato.fedele@na.infn.it [Dipartimento di Fisica, Universitá di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy)

    2014-12-15

    Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.

  6. Groupware requirements evolution patterns

    Pumareja, Dulce Trinidad

    2013-01-01

    Requirements evolution is a generally known problem in software development. Requirements are known to change all throughout a system's lifecycle. Nevertheless, requirements evolution is a poorly understood phenomenon. Most studies on requirements evolution focus on changes to written specifications

  7. Has Human Evolution Stopped?

    Templeton, Alan R.

    2010-01-01

    It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important ...

  8. An accelerating cosmology without dark energy

    The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Γ = βH+γH0, where H is the Hubble parameter and H0 is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of zeq, the redshift of the epoch of matter — radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (zeq ≈ 3000 and z ≈ 0) in the evolution of the Universe. The comparison of the parameter values, (β, γ), determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on zeq from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for β = 0 this conflict is only at ∼< 2σ, it worsens as β increases from zero

  9. ICT accelerators for radiation applications

    Several ICT accelerators were designed and constructed during the past two decades and are now in use in some factories and institutes in various parts of China. The specifications, design considerations, construction specialities and information about the applications of these accelerators are given in the present paper. (author)

  10. Correct and efficient accelerator programming

    Cohen, Albert; Donaldson, Alistair F.; Huisman, Marieke; Katoen, Joost-Pieter

    2013-01-01

    This report documents the program and the outcomes of Dagstuhl Seminar 13142 “Correct and Efficient Accelerator Programming”. The aim of this Dagstuhl seminar was to bring together researchers from various sub-disciplines of computer science to brainstorm and discuss the theoretical foundations, design and implementation of techniques and tools for correct and efficient accelerator programming.

  11. Thomas Edison Accelerated Elementary School.

    Levin, Henry M.; Chasin, Gene

    This paper describes early outcomes of a Sacramento, California, elementary school that participated in the Accelerated Schools Project. The school, which serves many minority and poor students, began training for the project in 1992. Accelerated Schools were designed to advance the learning rate of students through a gifted and talented approach,…

  12. Lorentz contraction and accelerated systems

    Tartaglia, Angelo; Ruggiero, Matteo Luca

    2003-01-01

    The paper discusses the problem of the Lorentz contraction in accelerated systems, in the context of the special theory of relativity. Equal proper accelerations along different world lines are considered, showing the differences arising when the world lines correspond to physically connected or disconnected objects. In all cases the special theory of relativity proves to be completely self-consistent

  13. Accelerator technology for the mankind

    Full text: Particle accelerators technology is one of the generic technologies which is locomotive of the development in almost all fields of science and technology. According to the U. S. Department of Energy: Accelerators underpin every activity of the Office of Science and, increasingly, of the entire scientific enterprise. From biology to medicine, from materials to metallurgy, from elementary particles to the cosmos, accelerators provide the microscopic information that forms the basis for scientific understanding and applications. The combination of ground and satellite based observatories and particle accelerators will advance our understanding of our world, our galaxy, our universe, and ourselves. Because of this, accelerator technology should become widespread all over the world. Existing situation shows that a large portion of the world, namely the South and Mid-East, is poor on the accelerator technology. UNESCO has recognized this deficit and started SESAME project in Mid-East, namely Jordan. Turkic Accelerator Complex (TAC) project is more comprehensive and ambitious project, from the point of view of it includes light sources, particle physics experiments and proton and secondary beam applications. At this stage, TAC project includes: Linac-ring type charm factory; Synchrotron light source based on positron ring; Free electron laser based on electron linac; GeV scale proton accelerator; TAC-Test Facility

  14. Lorentz contraction and accelerated systems

    The paper discusses the problem of the Lorentz contraction in accelerated systems, in the context of the special theory of relativity. Equal proper accelerations along different world lines are considered, showing the differences arising when the world lines correspond to physically connected or disconnected objects. In all cases the special theory of relativity proves to be completely self-consistent

  15. Software for virtual accelerator designing

    The article discusses appropriate technologies for software implementation of the Virtual Accelerator. The Virtual Accelerator is considered as a set of services and tools enabling transparent execution of computational software for modeling beam dynamics in accelerators on distributed computing resources. Distributed storage and information processing facilities utilized by the Virtual Accelerator make use of the Service-Oriented Architecture (SOA) according to a cloud computing paradigm. Control system tool-kits (such as EPICS, TANGO), computing modules (including high-performance computing), realization of the GUI with existing frameworks and visualization of the data are discussed in the paper. The presented research consists of software analysis for realization of interaction between all levels of the Virtual Accelerator and some samples of middle-ware implementation. A set of the servers and clusters at St.-Petersburg State University form the infrastructure of the computing environment for Virtual Accelerator design. Usage of component-oriented technology for realization of Virtual Accelerator levels interaction is proposed. The article concludes with an overview and substantiation of a choice of technologies that will be used for design and implementation of the Virtual Accelerator. (authors)

  16. New directions in linear accelerators

    Current work on linear particle accelerators is placed in historical and physics contexts, and applications driving the state of the art are discussed. Future needs and the ways they may force development are outlined in terms of exciting R and D challenges presented to today's accelerator designers. 23 references, 7 figures

  17. Introduction to RF linear accelerators

    The basic features of RF linear accelerators are described. The concept of the 'loaded cavity', essential for the synchronism wave-particle, is introduced, and formulae describing the action of electromagnetic fields on the beam are given. The treatment of intense beams is mentioned, and various existing linear accelerators are presented as examples. (orig.)

  18. The Brookhaven Accelerator Test Facility

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO2 laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs

  19. COMPASS Accelerator Design Technical Overview

    Nanni, Emilio; Dolgashev, Valery; Tantawi, Sami; Neilson, Jeff; /SLAC

    2016-03-14

    This report is a survey of technical options for generating a MeV-class accelerator for space based science applications. The survey was performed focusing on the primary technical requirements of the accelerator in the context of a satellite environment with its unique challenges of limited electrical power (PE), thermal isolation, dimensions, payload requirement and electrical isolation.

  20. Industrial accelerators and their applications

    Hamm, Marianne E

    2012-01-01

    This unique new book is a comprehensive review of the many current industrial applications of particle accelerators, written by experts in each of these fields. Readers will gain a broad understanding of the principles of these applications, the extent to which they are employed, and the accelerator technology utilized. The book also serves as a thorough introduction to these fields for non-experts and laymen. Due to the increased interest in industrial applications, there is a growing interest among accelerator physicists and many other scientists worldwide in understanding how accelerators are used in various applications. The government agencies that fund scientific research with accelerators are also seeking more information on the many commercial applications that have been or can be developed with the technology developments they are funding. Many industries are also doing more research on how they can improve their products or processes using particle beams.

  1. Heavy ion accelerators at GSI

    The status of the Unilac heavy ion linear accelerator at GSI, Darmstadt is given. A schematic overall plan view of the Unilac is shown and its systems are described. List of isotopes and intensities accelerated at the Unilac is presented. The experimental possibilities at GSI should be considerably extended by a heavy ion synchrotron (SIS 18) in combination with an experimental storage ring (ESR). A prototype of the rf-accelerating system of the synchrotron has been built and tested. Prototypes for the quadrupole and dipole magnets for the ring are being constructed. The SIS 18 is desigmed for a maximum magnetic rigidity of 18Tm so that neon can be accelerated to 2 GeV/W and uranium to 1 GeV/u. The design allows also the acceleration of protons up to 4.5 GeV. The ESR permits to storage fully stripped uranium ions up to an energy of approximately R50 MeV/u

  2. Computer codes in accelerator domain

    In this report a list of computer codes for calculations in accelerator physics is presented. The codes concern the design of accelerator shieldings, beam dynamics of synchrotrons and storage rings, the simulation of radiation fields in accelerators, the design of RF cavities, beam dynamics of microtrons, the optics of charged-particle beams, the design of accelerator components, the calculation of magnetic fields, the computation of thermal and mechanical processes in accelerator structures, the design of magnets, and the optimization of beam lines. Most of the codes are written in FORTRAN. (HSI) nge of computational results and pieces of software via E-mail. Also outstanding is the problem of a more efficient application of the known and tested forms of communication, e.g. selection and systematization of the data on the available program packages, Workshops of the interested users and unification of experts into working groups. (orig.)

  3. Ion sources for electrostatic accelerators

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  4. Linear Accelerating Superluminal Motion Model

    Zhou, J F; Li, T P; Su, Y; Venturi, T

    2004-01-01

    Accelerating superluminal motions were detected recently by multi-epoch Very Long Baseline Interferometry (VLBI) observations. Here, a Linear Accelerating Superluminal Motion (LASM) model is proposed to interpret the observed phenomena. The model provides a direct and accurate way to estimate the viewing angle of a relativistic jet. It also predicts that both Doppler boosting and deboosting effects may take place in an accelerating forward jet. The LASM model is applied to the data of the quasar 3C 273, and the initial velocity, acceleration and viewing angle of its three components are derived through model fits. The variations of the viewing angle suggest that a supermassive black hole binary system may exist in the center of 3C273. The gap between the inner and outer jet in some radio loud AGNs my be explained in terms of Doppler deboosting effects when the components accelerate to ultra-relativistic speed.

  5. Particle Acceleration in Astrophysical Sources

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  6. EXHIBITION: Accelerated Particles

    2004-01-01

    An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's 50th anniversary celebrations. Fifty candles for CERN, an international laboratory renowned for fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting exhibitions of plastic arts and performances entitled: Accelerated Particles. Several works will be exhibited and performed in two 'salons'. Salon des matières: An exhibition of plastic arts From Tues 12 October to Wed 3 November 2004 Tuesdays to Fridays: 16:00 to 19:00 Saturdays: 14:00 to 18:00 Exhibition open late on performance nights, entrance free Salon des particules: Musical and visual performances Tues 12 and Mon 25 October from 20:00 to 23:00 Preview evening for both events: Tues 12 October from 18:...

  7. Is Global Warming Accelerating?

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  8. Pulsed Superconductivity Acceleration

    Liepe, M

    2000-01-01

    The design of the proposed linear collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities, operated in pulsed mode. Within the framework of an international collaboration the TESLA Test Facility (TTF) has been set up at DESY, providing the infrastructure for cavity R&D towards higher gradients. More than 60 nine-cell cavities were tested, accelerating gradients as high as 30 MV/m were measured. In the second production of TTF-cavities the average gradient was measured to be 24.7 MV/m. Two modules, each containing eight resonators, are presently used in the TTF-linac. These cavities are operated in pulsed mode: 0.8 ms constant gradient with up to 10 Hz repetitions rate. We will focus on two aspects: Firstly, the cavity fabrication and treatment is discussed, allowing to reach high gradients. Latest results of single cell cavities will be shown, going beyond 40 MV/m. Secondly, the pulsed mode operation of superconducting cavities is reviewed. This includes Lorentz force detuning, mechanic...

  9. LHC Dipoles Accelerate

    2001-01-01

    Andrezej Siemko (left), Peter Sievers (centre), and Lucio Rossi (right), have the exciting challenge of preparing and testing 2000 magnets for the LHC. The LHC is going to require a lot of powerful magnets by the time it begins operation in 2006. More specifically, it is going to need 130 special magnets, 400 quadrupoles, and a whopping 1250 dipoles! Preparing and testing these magnets for the conditions they will encounter in the LHC is not an easy task. But evaluation of the most recently received magnet, from the German company Noell, is showing that while the monumental task of receiving and testing nearly 2000 magnets is going to be exhausting, the goals are definitely attainable. At the moment and over the next year, pre-series magnets (the magnets that CERN uses to fine tune performance) are arriving slowly (90 in total will arrive), but by 2003 the rate of series magnet arrival will accelerate to 9 per week, that's over 450 in a single year! And working with these magnets when they arrive is tough. ...

  10. SPS RF Accelerating Cavity

    1979-01-01

    This picture shows one of the 2 new cavities installed in 1978-1979. The main RF-system of the SPS comprises four cavities: two of 20 m length and two of 16.5 m length. They are all installed in one long straight section (LSS 3). These cavities are of the travelling-wave type operating at a centre frequency of 200.2 MHz. They are wideband, filling time about 700 ns and untuned. The power amplifiers, using tetrodes are installed in a surface building 200 m from the cavities. Initially only two cavities were installed, a third cavity was installed in 1978 and a forth one in 1979. The number of power amplifiers was also increased: to the first 2 MW plant a second 2 MW plant was added and by end 1979 there were 8 500 kW units combined in pairs to feed each of the 4 cavities with up to about 1 MW RF power, resulting in a total accelerating voltage of about 8 MV. See also 7412016X, 7412017X, 7411048X

  11. Actinides, accelerators and erosion

    Fifield L.K.

    2012-10-01

    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  12. EXHIBITION: Accelerated Particles

    2004-01-01

    http://www.cern.ch/cern50/ An exhibition of plastic arts and two evenings of performances by sound and visual artists as part of CERN's fiftieth anniversary celebrations. The fiftieth anniversary of a world famous organization like CERN, an international laboratory specializing in fundamental research, is a cause for celebration. Since March this year, Geneva and neighbouring parts of France have been the venues for a wealth of small and large-scale events, which will continue until November. Given CERN's location in the commune of Meyrin, the ForuMeyrin is hosting two "salons" consisting of an exhibition of plastic arts and evenings of music and visual arts performances with the collective title of "Accelerated Particles". Several works will be exhibited and performed. Salon des matières: An exhibition of plastic arts Until Wednesday 3 November 2004. Tuesdays to Fridays: 4.00 p.m. to 7.00 p.m. Saturdays: 2.00 p.m. to 6.00 p.m. Doors open late on the evening of the performances. Salon des ...

  13. Accelerating quantum universe

    Kuzmichev, V E

    2007-01-01

    The exactly solvable quantum model of the homogeneous, isotropic and closed universe filled with a uniform scalar field and a perfect fluid which defines a reference frame is considered. The equations of the model are reduced to the form which allows a direct comparison between them and the equations of the Einstein classical theory of gravity. It is shown that matter in the universe has a component in a form of a condensate of massive zero-momentum excitation quanta of oscillations of a primordial scalar field which behaves as an antigravitating medium. The theory predicts an accelerating expansion of the universe even if the vacuum energy density vanishes. An antigravitating effect of a condensate has a purely quantum nature. It is ensured by quantum transitions between close states of the universe with different masses of a condensate. It is shown that in a state with large quantum numbers (in semi-classical approximation) the universe has to look effectively like spatially flat with a deceleration paramet...

  14. The entangled accelerating universe

    Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman-Hawking and Gidding-Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.

  15. Nudging Evolution?

    Katharine N. Farrell

    2013-12-01

    Full Text Available This Special Feature, "Nudging Evolution? Critical Exploration of the Potential and Limitations of the Concept of Institutional Fit for the Study and Adaptive Management of Social-Ecological Systems," aims to contribute toward the development of social theory and social research methods for the study of social-ecological system dynamics. Our objective is to help strengthen the academic discourse concerning if, and if so, how, to what extent, and in what concrete ways the concept of institutional "fit" might play a role in helping to develop better understanding of the social components of interlinkages between the socioeconomic-cultural and ecological dynamics of social-ecological systems. Two clearly discernible patterns provide a map of this Special Feature: (1 One pattern is the authors' positions regarding the place and role of normativity within their studies and assessment of institutional fit. Some place this at the center of their studies, exploring phenomena endogenous to the process of defining what constitutes institutional fit, whereas others take the formation of norms as a phenomenon exogenous to their study. (2 Another pattern is the type of studies presented: critiques and elaborations of the theory, methods for judging qualities of fit, and/or applied case studies using the concept. As a body of work, these contributions highlight that self-understanding of social-ecological place, whether explicit or implicit, constitutes an important part of the study object, i.e., the role of institutions in social-ecological systems, and that this is, at the same time, a crucial point of reference for the scholar wishing to evaluate what constitutes institutional fit and how it might be brought into being.

  16. Rapid Evolution of Novel Traits in Microorganisms

    Selifonova, Olga; Valle, Fernando; Schellenberger, Volker

    2001-01-01

    The use of natural microorganisms in biotransformations is frequently constrained by their limited tolerance to the high concentrations of metabolites and solvents required for effective industrial production. In many cases, more robust strains have to be generated by random mutagenesis and selection. This process of directed evolution can be accelerated in mutator strains, which carry defects in one or more of their DNA repair genes. However, in order to use mutator strains, it is essential ...

  17. Computer codes for particle accelerator design and analysis: A compendium. Second edition

    The design of the next generation of high-energy accelerators will probably be done as an international collaborative efforts and it would make sense to establish, either formally or informally, an international center for accelerator codes with branches for maintenance, distribution, and consultation at strategically located accelerator centers around the world. This arrangement could have at least three beneficial effects. It would cut down duplication of effort, provide long-term support for the best codes, and provide a stimulating atmosphere for the evolution of new codes. It does not take much foresight to see that the natural evolution of accelerator design codes is toward the development of so-called Expert Systems, systems capable of taking design specifications of future accelerators and producing specifications for optimized magnetic transport and acceleration components, making a layout, and giving a fairly impartial cost estimate. Such an expert program would use present-day programs such as TRANSPORT, POISSON, and SUPERFISH as tools in the optimization process. Such a program would also serve to codify the experience of two generations of accelerator designers before it is lost as these designers reach retirement age. This document describes 203 codes that originate from 10 countries and are currently in use. The authors feel that this compendium will contribute to the dialogue supporting the international collaborative effort that is taking place in the field of accelerator physics today

  18. CAS - CERN Accelerator School: Course on Superconductivity for Accelerators

    2014-01-01

    These proceedings collate lectures given at the twenty-seventh specialized course organised by the CERN Accelerator School (CAS). The course was held at the Ettore Majorana Foundation and Centre for Scientific Culture (EMFCSC) in Erice, Italy, from 24 April to 4 May 2013. Following recapitulation lectures on basic accelerator physics and superconductivity, the course covered topics related to the design, production and operation of superconducting RF systems and superconducting magnets for accelerators. The participants pursued one of six case studies in order to get ’hands-on’ experience of the issues connected with the design of superconducting systems. A series of topical seminars completed the programme.

  19. Velocity bunching in travelling wave accelerator with low acceleration gradient

    Huang, Rui-Xuan; Li, Wei-Wei; Jia, Qi-Ka

    2013-01-01

    We present the analytical and simulated results concerning the influences of the acceleration gradient in the velocity bunching process, which is a bunch compression scheme that uses a traveling wave accelerating structure as a compressor. Our study shows that the bunch compression application with low acceleration gradient is more tolerant to phase jitter and more successful to obtain compressed electron beam with symmetrical longitudinal distribution and low energy spread. We also present a transverse emittance compensation scheme to compensate the emittance growth caused by the increasing of the space charge force in the compressing process that is easy to be adjusted for different compressing factors.

  20. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.