Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K
2016-01-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
Conformal Transformations and Accelerated Cosmologies
Crooks, James L.; Frampton, Paul H.
2006-01-01
A cosmological theory that predicts a late-time accelerated attractor with a constant dark matter to dark energy ratio can be said to solve the Coincidence Problem. Such cosmologies are naturally generated in the context of non-standard gravity theories under conformal transformation because of the resulting couplings between scalar fields and matter. The present work examines four classes of these transformed theories and finds that only a small subset--those with a single scalar field--are ...
Accelerating cosmologies from exponential potentials
It is learnt that exponential potentials of the form V ∼ exp(-2cφ/Mp) arising from the hyperbolic or flux compactification of higher-dimensional theories are of interest for getting short periods of accelerated cosmological expansions. Using a similar potential but derived for the combined case of hyperbolic-flux compactification, we study a four-dimensional flat (or open) FRW cosmologies and give analytic (and numerical) solutions with exponential behavior of scale factors. We show that, for the M-theory motivated potentials, the cosmic acceleration of the universe can be eternal if the spatial curvature of the 4d spacetime is negative, while the acceleration is only transient for a spatially flat universe. We also briefly discuss about the mass of massive Kaluza-Klein modes and the dynamical stabilization of the compact hyperbolic extra dimensions. (author)
Lattice design of FELI accelerator system
FELI is constructing an S-band linac accelerator system for generating wide range FEL (Free Electron Laser). The accelerator system has for lasing sections, almost isochronous offsetting lattices, and returning lattices. This paper describes the lattice design. (author)
Particle Accelerators Test Cosmological Theory.
Schramm, David N.; Steigman, Gary
1988-01-01
Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)
Modified gravity: walk through accelerating cosmology
Bamba, Kazuharu; Odintsov, Sergei D
2013-01-01
We review the accelerating (mainly, dark energy) cosmologies in modified gravity. Special attention is paid to cosmologies leading to finite-time future singularities in $F(R)$, $F(G)$ and $\\mathcal{F}(R,G)$ modified gravities. The removal of the finite-time future singularities via addition of $R^2$-term which simultaneously unifies the early-time inflation with late-time acceleration is also briefly mentioned. Accelerating cosmology including the scenario unifying inflation with dark energy is considered in $F(R)$ gravity with Lagrange multipliers. In addition, we examine domain wall solutions in $F(R)$ gravity. Furthermore, covariant higher derivative gravity with scalar projectors is explored.
An Accelerating Cosmology Without Dark Energy
Steigman, G; R.C. SANTOS; Lima, J.A.S.
2008-01-01
The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996) without requiring the presence of dark energy or a cosmological constant. In a recent study Lima et al. (2008, LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations of the recent transition from a decelerating to an accelerating Universe. Here we test the evolution...
Symplectic maps for accelerator lattices
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs
Accelerating cosmologies from compactification with a twist
It is demonstrated by explicit solutions of the (4+n)-dimensional vacuum Einstein equations that accelerating cosmologies in the Einstein conformal frame can be obtained by a time-dependent compactification of string/M-theory, even in the case that internal dimensions are Ricci-flat, provided one includes one or more geometric twists. Such acceleration is transient. When both compact hyperbolic internal spaces and geometric twists are included, however, the period of accelerated expansion may be made arbitrarily large
Accelerating cosmologies from compactification with a twist
Neupane, Ishwaree P. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand) and Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu (Nepal)]. E-mail: ishwaree.neupane@canterbury.ac.nz; Wiltshire, David L. [Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu (Nepal)]. E-mail: d.wiltshire@canterbury.ac.nz
2005-07-21
It is demonstrated by explicit solutions of the (4+n)-dimensional vacuum Einstein equations that accelerating cosmologies in the Einstein conformal frame can be obtained by a time-dependent compactification of string/M-theory, even in the case that internal dimensions are Ricci-flat, provided one includes one or more geometric twists. Such acceleration is transient. When both compact hyperbolic internal spaces and geometric twists are included, however, the period of accelerated expansion may be made arbitrarily large.
Conformal symmetries of FRW accelerating cosmologies
We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage
Cosmological acceleration. Dark energy or modified gravity?
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Accelerating cosmology in Rastall's theory
Capone, Monica; Ruggiero, Matteo Luca
2009-01-01
In an attempt to look for a viable mechanism leading to a present day accelerated expansion, we investigate the possibility that the observed cosmic speed up may be recovered in the framework of the Rastall's theory, relying on the non - conservativity of the stress - energy tensor, i.e. $T^{\\mu}_{\
Sp-brane accelerating cosmologies
We investigate time dependent solutions (S-brane solutions) for product manifolds consisting of factor spaces where only one of them is non-Ricci-flat. Our model contains a minimally coupled free scalar field as a matter source. We discuss a possibility of generating late-time acceleration of the Universe. The analysis is performed in conformally related Brans-Dicke and Einstein frames. Dynamical behavior of our Universe is described by its scale factor. Since the scale factors of our Universe are described by different variables in both frames, they can have different dynamics. Indeed, we show that with our S-brane ansatz in the Brans-Dicke frame the stages of accelerating expansion exist for all types of the external space (flat, spherical, and hyperbolic). However, applying the same ansatz for the metric in the Einstein frame, we find that a model with flat external space and hyperbolic compactification of the internal space is the only one with the stage of the accelerating expansion. A scalar field can prevent this acceleration. It is shown that the case of hyperbolic external space in the Brans-Dicke frame is the only model which can satisfy experimental bounds for the fine-structure constant variations. We obtain a class of models where a pair of dynamical internal spaces have fixed total volume. This results in a fixed fine-structure constant. However, these models are unstable and external space is nonaccelerating
In the context of group field theory condensate cosmology, we clarify the extraction of cosmological variables from the microscopic quantum gravity degrees of freedom. We show that an important implication of the second quantized formalism is the dependence of cosmological variables and equations on the quantum gravitational atomic number N (number of spin network vertices/elementary simplices). We clarify the relation of the effective cosmological equations with loop quantum cosmology, understood as an effective (hydrodynamic-like) approximation of a more fundamental quantum gravity theory. By doing so, we provide a fundamental basis to the idea of lattice refinement, showing the dependence of the effective cosmological connection on N, and hence indirectly on the scale factor. Our results open a new arena for exploring effective cosmological dynamics, as this depends crucially on the new observable N, which is entirely of quantum gravitational origin. (paper)
Cosmological Acceleration: Dark Energy or Modified Gravity?
Bludman, Sidney
2006-01-01
We review the evidence for recently accelerating cosmological expansion or "dark energy", either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any Dark Energy constituent. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-...
Diffusive Shock Acceleration at Cosmological Shock Waves
Kang, Hyesung; Ryu, Dongsu
2012-01-01
We reexamine nonlinear diffusive shock acceleration (DSA) at cosmological shocks in the large scale structure of the Universe, incorporating wave-particle interactions that are expected to operate in collisionless shocks. Adopting simple phenomenological models for magnetic field amplification (MFA) by cosmic-ray (CR) streaming instabilities and Alfv'enic drift, we perform kinetic DSA simulations for a wide range of sonic and Alfv'enic Mach numbers and evaluate the CR injection fraction and a...
Cosmological redshift, recession velocities and acceleration measures in FRW cosmologies
Toporensky, A V
2015-01-01
In this methodological note we discuss several topics related to interpretation of some basic cosmological principles. We demonstrate that one of the key points is the usage of synchronous reference frames. The Friedmann-Robertson-Walker one is the most known example of them. We describe how different quantities behave in this frame. Special attention is paid to potentially observable parameters. We discuss different variants for choosing measures of velocity and acceleration representing the Hubble flow, and present illustrative calculations of apparent acceleration in flat $\\Lambda CDM$ model for various epochs. We generalize description of the "tethered" galaxies problem for different velocity measures and equations of state, and illustrate time behavior of velocities and redshifts in the $\\Lambda CDM$ model.
Cosmological acceleration. Dark energy or modified gravity?
Bludman, S.
2006-05-15
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
An Accelerating Cosmology Without Dark Energy
Steigman, G; Lima, J A S
2008-01-01
The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996) without requiring the presence of dark energy or a cosmological constant. In a recent study Lima et al. (2008, LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations of the recent transition from a decelerating to an accelerating Universe. Here we test the evolution of such models at high redshift using the constraint on z_eq, the redshift of the epoch of matter radiation equality, provided by the WMAP constraints on the early Integrated Sachs-Wolfe effect. Since the contribution of baryons and radiation was ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM is tested and constrained at widely-separated epochs (z = z_eq and z = 0) in the evolution of the Universe. This compar...
Lattice QCD input for axion cosmology
Berkowitz, Evan; Rinaldi, Enrico
2015-01-01
One intriguing BSM particle is the QCD axion, which could simultaneously provide a solution to the Strong CP problem and account for some, if not all, of the dark matter density in the universe. This particle is a pNGB of the conjectured Peccei-Quinn (PQ) symmetry of the Standard Model. Its mass and interactions are suppressed by a heavy symmetry breaking scale, $f_a$, whose value is roughly greater than $10^{9}$ GeV (or, conversely, the axion mass, $m_a$, is roughly less than $10^4\\ \\mu \\text{eV}$). The density of axions in the universe, which cannot exceed the relic dark matter density and is a quantity of great interest in axion experiments like ADMX, is a result of the early-universe interplay between cosmological evolution and the axion mass as a function of temperature. The latter quantity is proportional to the second derivative of the QCD free energy with respect to the CP-violating phase, $\\theta$. However, this quantity is generically non-perturbative and previous calculations have only employed ins...
An accelerating cosmology without dark energy
The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Γ = βH+γH0, where H is the Hubble parameter and H0 is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of zeq, the redshift of the epoch of matter — radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (zeq ≈ 3000 and z ≈ 0) in the evolution of the Universe. The comparison of the parameter values, (β, γ), determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on zeq from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for β = 0 this conflict is only at ∼< 2σ, it worsens as β increases from zero
Velocity, Acceleration and Cosmic Distances in Cosmological Special Relativity
Carmeli, Moshe
2001-01-01
In this paper we present the fundamentals of the cosmological special relativity (CSR) by discussing the dynamical concepts of velocity, acceleration and cosmic distances in spacevelocity. These concepts occur in CSR just as those of mass, linear momentum and energy appear in Einstein's special relativity (ESR) in spacetime.
Precision cosmology defeats void models for acceleration
The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, σ8. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.
Learn-As-You-Go Acceleration of Cosmological Parameter Estimates
Aslanyan, Grigor; Price, Layne C
2015-01-01
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of $\\Lambda$CDM posterior probabilities. The computation is significantly accelerated wit...
Cosmic Rays Accelerated at Cosmological Shock Waves
Renyi Ma; Dongsu Ryu; Hyesung Kang
2011-03-01
Based on hydrodynamic numerical simulations and diffusive shock acceleration model, we calculated the ratio of cosmic ray (CR) to thermal energy. We found that the CR fraction can be less than ∼ 0.1 in the intracluster medium, while it would be of order unity in the warm-hot intergalactic medium.
A search for integrable four-dimensional nonlinear accelerator lattices
Nagaitsev, S
2012-01-01
Integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate the effects of space charge and magnetic field errors. To create such an accelerator lattice one has to find magnetic and/or electric field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it presents two examples of integrable nonlinear accelerator lattices, realizable with longitudinal-coordinate-dependent magnetic or electric fields with the stable nonlinear motion, which can be solved in terms of separable variables.
A search for integrable four-dimensional nonlinear accelerator lattices
Nagaitsev, S.; Danilov, V.
2012-01-01
Integrable nonlinear motion in accelerators has the potential to introduce a large betatron tune spread to suppress instabilities and to mitigate the effects of space charge and magnetic field errors. To create such an accelerator lattice one has to find magnetic and/or electric field combinations leading to a stable integrable motion. This paper presents families of lattices with one invariant where bounded motion can be easily created in large volumes of the phase space. In addition, it pre...
Constraints on cold dark matter accelerating cosmologies and cluster formation
We discuss the properties of homogeneous and isotropic flat cosmologies in which the present accelerating stage is powered only by the gravitationally induced creation of cold dark matter (CCDM) particles (Ωm=1). For some matter creation rates proposed in the literature, we show that the main cosmological functions such as the scale factor of the universe, the Hubble expansion rate, the growth factor, and the cluster formation rate are analytically defined. The best CCDM scenario has only one free parameter and our joint analysis involving baryonic acoustic oscillations + cosmic microwave background (CMB) + SNe Ia data yields Ω-tildem=0.28±0.01 (1σ), where Ω-tildem is the observed matter density parameter. In particular, this implies that the model has no dark energy but the part of the matter that is effectively clustering is in good agreement with the latest determinations from the large-scale structure. The growth of perturbation and the formation of galaxy clusters in such scenarios are also investigated. Despite the fact that both scenarios may share the same Hubble expansion, we find that matter creation cosmologies predict stronger small scale dynamics which implies a faster growth rate of perturbations with respect to the usual ΛCDM cosmology. Such results point to the possibility of a crucial observational test confronting CCDM with ΛCDM scenarios through a more detailed analysis involving CMB, weak lensing, as well as the large-scale structure.
Learn-as-you-go acceleration of cosmological parameter estimates
Aslanyan, Grigor; Easther, Richard; Price, Layne C.
2015-09-01
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly.
Future cosmological surveys and the cosmic deceleration/acceleration transition
Full text: Since the discovery of the accelerated expansion of the universe in 1998, considerable effort in cosmology has been devoted to determine the source of this acceleration. The two most common possibilities discussed in the literature are: the existence of an exotic component with sufficiently negative pressure (dark energy) and proper modifications of general relativity at cosmological scales. One way of making progress in determining the cosmic expansion history is through a model by model analysis. Another is to carry out a phenomenological analysis with the use of different parameterizations of the dark energy equation of state, the Hubble parameter or the dark energy density. This procedure may provide interesting pieces of information, but in general a parametrization assumes the existence of dark matter and dark energy and general relativity is in most cases assumed. In this framework, an important question regards the number of parameters necessary to get reliable conclusions. In this framework, a important question regards the number of parameters necessary to get reliable conclusions. In this work we are mainly interested in the following questions: what is the redshift of the transition from decelerated to accelerated expansion? How fast was it? We investigate these by introducing a new parameterization for the deceleration parameter (q) that depends on four parameters: the initial value and final values of q, the redshift of the transition and a quantity related to the width in redshift of such transition. With this formulation we aim to answer the above questions with the minimum amount of assumptions about the dark sector and the fundamental gravitation theory. This kind of parameterization is very interesting because generalize many cosmological models. We investigated, trough simulations, the imposed observational constraints under the class of models mentioned, by future Supernova type Ia (SNIa) surveys, Baryon Acoustic Oscillations (BAO
Rotating and accelerating black holes with cosmological constant
Chen, Yu; Ng, Cheryl; Teo, Edward
2016-01-01
We propose a new form of the rotating C-metric with cosmological constant, which generalises the form found by Hong and Teo for the Ricci-flat case. This solution describes the entire class of spherical black holes undergoing rotation and acceleration in dS or AdS space-time. The new form allows us to identify the complete ranges of coordinates and parameters of this solution. We perform a systematic study of its geometrical and physical properties, and of the various limiting cases that aris...
Rotating and accelerating black holes with cosmological constant
Chen, Yu; Teo, Edward
2016-01-01
We propose a new form of the rotating C-metric with cosmological constant, which generalises the form found by Hong and Teo for the Ricci-flat case. This solution describes the entire class of spherical black holes undergoing rotation and acceleration in dS or AdS space-time. The new form allows us to identify the complete ranges of coordinates and parameters of this solution. We perform a systematic study of its geometrical and physical properties, and of the various limiting cases that arise from it.
Ghost-free F(R) bigravity and accelerating cosmology
Nojiri, Shin' ichi, E-mail: nojiri@phys.nagoya-u.ac.jp [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan); Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya 464-8602 (Japan); Odintsov, Sergei D., E-mail: odintsov@ieec.uab.es [Consejo Superior de Investigaciones Cientificas, ICE/CSIC-IEEC, Campus UAB, Facultat de Ciencies, Torre C5-Parell-2a pl, E-08193 Bellaterra, Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Eurasian National University, Astana (Kazakhstan); TSPU, Tomsk (Russian Federation)
2012-09-19
We propose a bigravity analogue of the F(R) gravity. Our construction is based on recent ghost-free massive bigravity where additional scalar fields are added and the corresponding conformal transformation is implemented. It turns out that F(R) bigravity is easier to formulate in terms of the auxiliary scalars as the explicit presentation in terms of F(R) is quite cumbersome. The consistent cosmological reconstruction scheme of F(R) bigravity is developed in detail, showing the possibility to realize nearly arbitrary physical universe evolution with consistent solution for second metric. The examples of accelerating universe which includes phantom, quintessence and {Lambda}CDM acceleration are worked out in detail and their physical properties are briefly discussed.
Beam optics and lattice design for particle accelerators
Holzer, Bernhard J.
2013-01-01
The goal of this manuscript is to give an introduction into the design of the magnet lattice and as a consequence into the transverse dynamics of the particles in a synchrotron or storage ring. Starting from the basic principles of how to design the geometry of the ring we will briefly review the transverse motion of the particles and apply this knowledge to study the layout and optimization of the principal elements, namely the lattice cells. The detailed arrangement of the accelerator magne...
Integrable Accelerator Lattices With Periodic And Exponential Invariants
This paper presents a new variety of one-dimensional nonlinear integrable accelerator lattices with periodic and exponential invariants in coordinates and momenta. Extension to two-dimensional transverse motion, based on a recently published approach, is discussed. The integrable accelerator lattices represent a continuation of linear systems with Courant-Snyder invariants to the nonlinear domain, where the frequencies of betatron motion 'strongly' depend on betatron amplitudes (the word 'strongly' means that the spread of betatron tunes is comparable to the tune itself). This spread can help to advance beam intensities by introducing a very large Landau damping. Recently, a possible method to realize stable integrable motion in accelerators with 2D transverse magnetic field was suggested (1). In principle, all 1D integrable lattices with short nonlinear lenses can be converted to 2D integrable lattices (we'll show examples of this conversion later in this paper). Reference (2) presented a method to find a vast variety of 1D and 2D integrable systems with invariants, polynomial in coordinates and momenta. The same method was used to find invariants that are harmonic or exponential functions of coordinates and momenta. Here we briefly present the theory and the method, along with solutions for lattices having nonlinear kicks with the aforementioned invariants, and show the behaviour of these integrable lattices in the 2D case with transverse magnetic fields.
Fascinating relation between torus knot and accelerator lattice
We propose a new scheme of lattice design for a compact storage ring in which a design orbit closes after completing multiple turns. The lattice of this type can be realized by placing bending magnets, quadrupole magnets, and other necessary accelerator components on a projected torus knot in the horizontal orbit plane. The ring with this type of lattice may have larger maximum stored charge if operated in multiple-bunch mode, and longer bunch-to-bunch interval if operated in a single-bunch mode. Also, for an electron storage ring as the synchrotron light source, a larger number of straight sections may accommodate with many insertion devices. (author)
PyCOOL — A Cosmological Object-Oriented Lattice code written in Python
There are a number of different phenomena in the early universe that have to be studied numerically with lattice simulations. This paper presents a graphics processing unit (GPU) accelerated Python program called PyCOOL that solves the evolution of scalar fields in a lattice with very precise symplectic integrators. The program has been written with the intention to hit a sweet spot of speed, accuracy and user friendliness. This has been achieved by using the Python language with the PyCUDA interface to make a program that is easy to adapt to different scalar field models. In this paper we derive the symplectic dynamics that govern the evolution of the system and then present the implementation of the program in Python and PyCUDA. The functionality of the program is tested in a chaotic inflation preheating model, a single field oscillon case and in a supersymmetric curvaton model which leads to Q-ball production. We have also compared the performance of a consumer graphics card to a professional Tesla compute card in these simulations. We find that the program is not only accurate but also very fast. To further increase the usefulness of the program we have equipped it with numerous post-processing functions that provide useful information about the cosmological model. These include various spectra and statistics of the fields. The program can be additionally used to calculate the generated curvature perturbation. The program is publicly available under GNU General Public License at https://github.com/jtksai/PyCOOL. Some additional information can be found from http://www.physics.utu.fi/tiedostot/theory/particlecosmology/pycool/
Axion cosmology, lattice QCD and the dilute instanton gas
Borsanyi, S. [Wuppertal Univ. (Germany). Dept. of Physics; Dierigl, M.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fodor, Z. [Wuppertal Univ. (Germany). Dept. of Physics; Forschungszentrum Juelich (Germany). Inst. for Advanced Simulation (IAS), Juelich Supercomputing Centre (JSC); Lorand Eoetvoes Univ., Budapest (Hungary). Inst. for Theoretical Physics; Katz, S.D. [Lorand Eoetvoes Univ., Budapest (Hungary). Inst. for Theoretical Physics; MTA-ELTE Lenduelet Lattice Gauge Theory Research Group, Budapest (Hungary); Mages, S.W. [Rgensburg Univ. (Germany); Forschungszentrum Juelich (Germany). Inst. for Advanced Simulation (IAS), Juelich Supercomputing Centre (JSC); Nogradi, D. [Lorand Eoetvoes Univ., Budapest (Hungary). Inst. for Theoretical Physics; MTA-ELTE Lenduelet Lattice Gauge Theory Research Group, Budapest (Hungary); Califonia Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics; Redondo, J. [Zaragoza Univ. (Spain). Dept. de Fisica Teorica; Max-Planck-Institut fuer Physik, Muenchen (Germany); Szabo, K.K. [Wuppertal Univ. (Germany). Dept. of Physics; Forschungszentrum Juelich (Germany). Inst. for Advanced Simulation (IAS), Juelich Supercomputing Centre (JSC)
2015-08-15
Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.
Axion cosmology, lattice QCD and the dilute instanton gas
Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.
Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user
Halting eternal acceleration with an effective negative cosmological constant
Cardone, Vincenzo F; Nodal, Yoelsy Leiva
2008-01-01
In order to solve the problem of eternal acceleration, a model has been recently proposed including both a negative cosmological constant $\\Lambda$ and a scalar field evolving under the action of an exponential potential. We further explore this model by contrasting it against the Hubble diagram of Type Ia supernovae, the gas mass fraction in galaxy clusters and the acoustic peak and shift parameters. It turns out that the model is able to fit quite well this large dataset so that we conclude that a negative $\\Lambda$ is indeed allowed and could represent a viable mechanism to halt eternal acceleration. In order to avoid problems with theoretical motivations for both a negative $\\Lambda$ term and the scalar field, we reconstruct the gravity Lagrangian $f(R)$ of a fourth order theory of gravity predicting the same dynamics (scale factor and Hubble parameter) as the starting model. We thus end up with a $f(R)$ theory able to both fit the data and solve the problem of eternal acceleration without the need of unu...
Deformed phase space Kaluza-Klein cosmology and late time acceleration
Sabido, M.; Yee-Romero, C.
2016-06-01
The effects of phase space deformations on Kaluza-Klein cosmology are studied. The deformation is introduced by modifying the symplectic structure of the minisuperspace variables. In the deformed model, we find an accelerating scale factor and therefore infer the existence of an effective cosmological constant from the phase space deformation parameter β.
Beam optics and lattice design for particle accelerators
Holzer, Bernhard J
2013-01-01
The goal of this manuscript is to give an introduction into the design of the magnet lattice and as a consequence into the transverse dynamics of the particles in a synchrotron or storage ring. Starting from the basic principles of how to design the geometry of the ring we will briefly review the transverse motion of the particles and apply this knowledge to study the layout and optimization of the principal elements, namely the lattice cells. The detailed arrangement of the accelerator magnets within the cells is explained and will be used to calculate well defined and predictable beam parameters. The more specific treatment of low beta insertions is included as well as the concept of dispersion suppressors that are an indispensable part of modern collider rings.
Fermilab multicore and GPU-accelerated clusters for lattice QCD
As part of the DOE LQCD-ext project, Fermilab designs, deploys, and operates dedicated high performance clusters for lattice QCD (LQCD) computations. We describe the design of these clusters, as well as their performance and the benchmarking processes that were used to select the hardware and the techniques used to handle their NUMA architecture. We discuss the design and performance of a GPU-accelerated cluster that Fermilab deployed in January 2012. On these clusters, the use of multicore processors with increasing numbers of cores has contributed to the steady decrease in price/performance for these calculations over the last decade. In the last several years, GPU acceleration has led to further decreases in price/performance for ported applications.
Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung; Jones, T. W.
2001-01-01
We investigate the production of cosmic ray (CR) protons at cosmological shocks by performing, for the first time, numerical simulations of large scale structure formation that include directly the acceleration, transport and energy losses of the high energy particles. CRs are injected at shocks according to the thermal leakage model and, thereafter, accelerated to a power-law distribution as indicated by the test particle limit of the diffusive shock acceleration theory. The evolution of the...
Accelerating cosmology in modified gravity with scalar field
Shaido, Yulia A.; Sugamoto, Akio
2004-01-01
The modified gravity with 1/R term (R being scalar curvature) and the Einstein-Hilbert term is studied by incorporating the phantom scalar field. A number of cosmological solutions are derived in the presence of the phantom field in the perfect fluid background. It is shown the current inflation obtained in the modified gravity is affected by the existence the phantom field.
The SuperB Accelerator: Overview and Lattice Studies
Biagini, M.E.; Boni, R.; Boscolo, M.; Drago, A.; Guiducci, S.; Preger, M.; Raimondi, P.; Tomassini, S.; Vaccarezza, C.; Zobov, M.; /Frascati; Cai, Y.; Fisher, A.; Heifets, S.; Novokhatski, A.; Pivi, M.T.; Seeman, J.; Sullivan, M.; Wienands, U.; /SLAC; Paoloni, E.; Marchiori, G.; /Pisa U.; Koop, I.; /Novosibirsk, IYF /Daresbury /LBL, Berkeley /CERN /Orsay, LAL /KEK, Tsukuba
2011-11-22
SuperB aims at the construction of a very high luminosity (10{sup 36} cm{sup -2} s{sup -1}) asymmetric e{sup +}e{sup -} Flavour Factory, with possible location at the campus of the University of Rome Tor Vergata, near the INFN Frascati National Laboratory. In this paper the basic principles of the design and details on the lattice are given. SuperB is a new machine that can exploit novel very promising design approaches: (1) large Piwinski angle scheme will allow for peak luminosity of the order of 10{sup 36} cm{sup -2} s{sup -1}, well beyond the current state-of-the-art, without a significant increase in beam currents or shorter bunch lengths; (2) 'crab waist' sextupoles will be used for suppression of dangerous resonances; (3) the low beam currents design presents reduced detector and background problems, and affordable operating costs; (4) a polarized electron beam can produce polarized {tau} leptons, opening an entirely new realm of exploration in lepton flavor physics. SuperB studies are already proving useful to the accelerator and particle physics communities. The principle of operation is being tested at DAFNE. The baseline lattice, based on the reuse of all PEP-II hardware, fits in the Tor Vergata University campus site, near Frascati. A CDR is being reviewed by an International Review Committee, chaired by J. Dainton (UK). A Technical Design Report will be prepared to be ready by beginning of 2010.
Cosmology in an accelerated universe: observations and phenomenology
Sendra Server, Irene
2014-01-01
En las últimas décadas la cosmología ha experimentado notables avances como consecuencia del desarrollo de nuevos experimentos que nos han abastecido con precisos datos observacionales. La calidad de estos datos ha permitido construir una imagen global del universo actual; un universo acelerado compuesto principalmente por materia oscura (23%) distinta a la materia ordinaria (5%), y energía oscura (70%), la componente del universo que contrarresta el efecto gravitatorio y explica la expansión...
Aledo, Juan A.; Rubio, Rafael M.
2016-06-01
We study the scalar curvature of spacelike hypersurfaces in the family of cosmological models known as generalized Robertson-Walker spacetimes, and give several rigidity results under appropriate mathematical and physical assumptions. On the other hand, we show that this family of spacetimes provides suitable models obeying the null convergence condition to explain accelerated expanding universes.
Comment on "Accelerating cosmological expansion from shear and bulk viscosity"
Giovannini, Massimo
2015-01-01
In a recent Letter [Phys. Rev. Lett. 114 091301 (2105)] the cause of the acceleration of the present Universe has been identified with the shear viscosity of an imperfect relativistic fluid even in the absence of any bulk viscous contribution. The gist of this comment is that the shear viscosity, if anything, can only lead to an accelerated expansion over sufficiently small scales well inside the Hubble radius.
An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle
Rubakov, V A
2014-01-01
In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.
de Cesare, Marco; Sakellariadou, Mairi
2016-01-01
We study the cosmological implications of interactions between spacetime quanta in the Group Field Theory (GFT) approach to Quantum Gravity from a phenomenological perspective. Our work represents a first step towards understanding Early Universe Cosmology by studying the dynamics of the emergent continuum spacetime, as obtained from a fundamentally discrete microscopic theory. In particular, we show how GFT interactions lead to a recollapse of the Universe while preserving the bounce replacing the initial singularity, which has already been shown to occur in the free case. It is remarkable that cyclic cosmologies are thus obtained in this framework without any a priori assumption on the geometry of spatial sections of the emergent spacetime. Furthermore, we show how interactions make it possible to have an early epoch of accelerated expansion, which can be made to last for an arbitrarily large number of e-folds, without the need to introduce an ad hoc potential for the scalar field.
Conformal symmetry and accelerating cosmology in teleparallel gravity
Bamba, Kazuharu; Odintsov, Sergei D.; Sáez-Gómez, Diego(Astrophysics, Cosmology and Gravity Centre (ACGC) and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town, South Africa)
2013-01-01
We discuss conformal issues of pure and extended teleparallel gravity. In particular, we present formulations of conformal transformation in teleparallel gravity. Furthermore, we propose conformal scalar and gauge field theories in teleparallel gravity and study conformal torsion gravity. We explicitly demonstrate that a power-law acceleration (including the $\\Lambda$CDM universe) as well as the de Sitter expansion of the universe can be realized in extended teleparallel gravity with a confor...
Fermions as sources of accelerated regimes in cosmology
In this work it is investigated if fermionic sources could be responsible for accelerated periods during the evolution of a universe where a matter field would answer for the decelerated period. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudoscalar invariants. Irreversible processes of energy transfer between the matter and gravitational fields are also considered. It is shown that the fermionic field could behave like an inflaton field in the early universe and as dark energy for an old universe
The possibility of an accelerating cosmology in Rastall's theory
In an attempt to look for a viable mechanism leading to a present day accelerated expansion, we investigate the possibility that the observed cosmic speed up may be recovered in the framework of the Rastall's theory, relying on the non-conservativity of the stress-energy tensor, i.e. Tμv;μ ≠ 0. We derive the modified Friedmann equations and show that they correspond to Cardassian-like equations. We also show that, under suitable assumptions on the equation of state of the matter term sourcing the gravitational field, it is indeed possible to get an accelerated expansion, in agreement with the Hubble diagram of both Type Ia Supernovae (SNeIa) and Gamma Ray Bursts (GRBs). Unfortunately, to achieve such a result one has to postulate a matter density parameter larger than the typical ΩM ≅ 0.3 value inferred from cluster gas mass fraction data. As a further issue, we discuss the possibility to retrieve the Rastall's theory from a Palatini variational principle approach to f(R) gravity. However, such an attempt turns out to be unsuccessful.
Gauss-Bonnet Cosmology Unifying Late and Early-time Acceleration Eras with Intermediate Eras
Oikonomou, V K
2016-01-01
In this paper we demonstrate that with vacuum $F(G)$ gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the $F(G)$ description is no, since the resulting power spectrum is not scale invariant, in contrast to the $F(R)$ description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum $F(G)$ gravity, the evolu...
Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant
Lukierski, J. [University of Wroclaw, Institute for Theoretical Physics, Wroclaw (Poland); University of Valencia, Department of Theoretical Physics, Burjassot (Valencia) (Spain); Zakrzewski, W.J. [University of Durham, Department of Mathematical Sciences, Durham (United Kingdom); Stichel, P.C.
2008-05-15
By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton-Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries. (orig.)
Acceleration-Enlarged Symmetries in Nonrelativistic Space-Time with a Cosmological Constant
Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.
2007-01-01
By considering the nonrelativistic limit of de-Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton-Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries which...
Lattice Design in High-energy Particle Accelerators
Holzer, B J
2014-01-01
This lecture gives an introduction into the design of high-energy storage ring lattices. Applying the formalism that has been established in transverse be am optics, the basic principles of the development of a magnet lattice are explained and the characteristics of the resulting magnet structure are discussed. The periodic assembly of a storage ring cell with its boundary conditions concerning stability and scaling of the beam optics parameters is addressed as well as special lattice insertions such as drifts, mini beta sections, dispersion suppressors, etc. In addition to the exact calculations that are indispensable for a rigorous treatment of the matter, scaling rules are shown and simple rules of thumb are included that enable the lattice designer to do the first estimates and get the basic numbers ‘ on the back of an envelope.
Self-accelerating cosmologies and hairy black holes in ghost-free bigravity and massive gravity
We present a survey of the known cosmological and black hole solutions in ghost-free bigravity and massive gravity theories. These can be divided into three classes. First, there are solutions with proportional metrics, which are the same as in General Relativity with a cosmological term, which can be positive, negative or zero. Secondly, for spherically symmetric systems, there are solutions with non-bidiagonal metrics. The g-metric fulfils Einstein equations with a positive cosmological term and a matter source, while the f-metric is anti-de Sitter. The third class contains solutions with bidiagonal metrics, and these can be quite complex. The time-dependent solutions describe homogeneous (isotropic or anisotropic) cosmologies which show a late-time self-acceleration or other types of behavior. The static solutions describe black holes with a massive graviton hair, and also globally regular lumps of energy. None of these are asymptotically flat. Including a matter source gives rise to asymptotically flat solutions which exhibit the Vainshtein mechanism of recovery of General Relativity in a finite region. (paper)
Livio, Mario
2000-12-01
Advance Praise for The Accelerating Universe "The Accelerating Universe is not only an informative book about modern cosmology. It is rich storytelling and, above all, a celebration of the human mind in its quest for beauty in all things." -Alan Lightman, author of Einstein's Dreams "This is a wonderfully lucid account of the extraordinary discoveries that have made the last years a golden period for observational cosmology. But Mario Livio has not only given the reader one clear explanation after another of what astronomers are up to, he has used them to construct a provocative argument for the importance of aesthetics in the development of science and for the inseparability of science, art, and culture." -Lee Smolin, author of The Life of the Cosmos "What a pleasure to read! An exciting, simple account of the universe revealed by modern astronomy. Beautifully written, clearly presented, informed by scientific and philosophical insights." -John Bahcall, Institute for Advanced Study "A book with charm, beauty, elegance, and importance. As authoritative a journey as can be taken through modern cosmology." -Allan Sandage, Observatories of the Carnegie Institution of Washington
Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras
Oikonomou, V. K.
2016-07-01
In this paper we demonstrate that with vacuum F(G) gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the F(G) description is no, since the resulting power spectrum is not scale invariant, in contrast to the F(R) description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum F(G) gravity, the evolution is not compatible with the observational data, in contrast to the F(R) gravity description of the same cosmological evolution.
The Turning Point for the Recent Acceleration of the Universe with a Cosmological Constant
Zhang T. X.
2012-04-01
Full Text Available The turning point and acceleration expansion of the universe are investigated according to the standard cosmological theory with a non-zero cosmological constant. Choosing the Hubble constant H 0 , the radius of the present universe R 0 , and the density parameter in matter Ω M , 0 as three independent parameters, we have analytically examined the other properties of the universe such as the density parameter in dark energy, the cosmologi- cal constant, the mass of the universe, the turning point redshift, the age of the present universe, and the time-dependent radius, expansion rate, velocity, and acceleration pa- rameter of the universe. It is shown that the turning point redshift is only dependent of the density parameter in matter, not explicitly on the Hubble constant and the radius of the present universe. The universe turned its expansion from past deceleration to recent acceleration at the moment when its size was about 3 / 5 of the present size if the density parameter in matter is about 0.3 (or the turning point redshift is 0.67. The expansion rate is very large in the early period and decreases with time to approach the Hubble constant at the present time. The expansion velocity exceeds the light speed in the early period. It decreases to the minimum at the turning point and then increases with time. The minimum and present expansion velocities are determined with the independent parameters. The solution of time-dependent radius shows the universe expands all the time. The universe with a larger present radius, smaller Hubble constant, and / or smaller density parameter in matter is elder. The universe with smaller density parameter in matter accelerates recently in a larger rate but less than unity.
Acceleration-Enlarged Symmetries in Nonrelativistic Space-Time with a Cosmological Constant
Lukierski, J; Zakrzewski, W J
2007-01-01
By considering the nonrelativistic limit of de-Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton-Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries which depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new non-commutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one presented in [1] which possesses accelaration-enlarged Galilean symmetries.
I review the intrinsic properties of neutrinos as deduced from cosmological, astrophysical, and laboratory experiments. Bounds on magnetic moments and theoretical models which yield large moments but small masses are briefly discussed. The MSW solution to the solar neutrino problem is reviewed in light of the existing data from the 37Cl and Kamiokande II experiments. The combined data disfavor the adiabatic solution and tend to support either the large angle solution or the nonadiabatic one. In the former case the 71Ga signal will be suppressed by the same factor as for 37Cl, and in the latter case the suppression factor could be as large as 10 or more. 41 refs
A class of transient acceleration models consistent with Big Bang cosmology
Is it possible that the current cosmic accelerating expansion will turn into a decelerating one? Can this transition be realized by some viable theoretical model that is consistent with the standard Big Bang cosmology? We study a class of phenomenological models with a transient acceleration, based on a dynamical dark energy with a very general form of equation of state pde = βρde − βρdem. It mimics the cosmological constant ρde → const for a small scale factor a, and behaves as a barotropic gas with ρde → a−3(α+1) with α ≥ 0 for large a. The cosmic evolution of four models in the class has been examined in detail, and all yield a smooth transient acceleration. Depending on the specific model, the future universe may be dominated by either dark energy or by matter. In two models, the dynamical dark energy can be explicitly realized by a scalar field with an analytical potential V(φ). Moreover, a statistical analysis shows that the models can be as robust as ΛCDM in confronting the observational data of Type Ia supernovae, cosmic microwave background (CMB) and baryon acoustic oscillation. As improvements over previous studies, our models overcome the problem of over-abundance of dark energy during early eras, and satisfy the constraints on dark energy from WMAP observations of CMB
Freezing, accelerating and slowing directed currents in real time with superimposed driven lattices
Mukhopadhyay, Aritra K; Wulf, Thomas; Schmelcher, Peter
2016-01-01
We provide a generic scheme offering real time control of directed particle transport in superimposed driven lattices. This scheme allows to accelerate, slow and freeze the transport on demand, by switching one of the lattices subsequently on and off. The underlying physical mechanism hinges on a systematic opening and closing of channels between transporting and non-transporting phase space structures upon switching, and exploits cantori structures which generate memory effects in the population of these structures. Our results should allow for real time control of cold thermal atomic ensembles in optical lattices, but might also be useful as a design principle for targeted delivery of molecules or colloids in optical devices.
Freezing, accelerating, and slowing directed currents in real time with superimposed driven lattices
Mukhopadhyay, Aritra K.; Liebchen, Benno; Wulf, Thomas; Schmelcher, Peter
2016-05-01
We provide a generic scheme offering real-time control of directed particle transport using superimposed driven lattices. This scheme allows one to accelerate, slow, and freeze the transport on demand by switching one of the lattices subsequently on and off. The underlying physical mechanism hinges on a systematic opening and closing of channels between transporting and nontransporting phase space structures upon switching and exploits cantori structures which generate memory effects in the population of these structures. Our results should allow for real-time control of cold thermal atomic ensembles in optical lattices but might also be useful as a design principle for targeted delivery of molecules or colloids in optical devices.
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Kipreos, Edward T
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe. PMID:25536116
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Edward T Kipreos
Full Text Available An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT, has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.
LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING.
WANG, S.; WEI, J.; BROWN, K.; GARDNER, C.; LEE, Y.Y.; LOWENSTEIN, D.; PEGGS, S.; SIMOS, N.
2006-06-23
Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling.
LATTICES FOR HIGH-POWER PROTON BEAM ACCELERATION AND SECONDARY BEAM COLLECTION AND COOLING
Rapid cycling synchrotrons are used to accelerate high-intensity proton beams to energies of tens of GeV for secondary beam production. After primary beam collision with a target, the secondary beam can be collected, cooled, accelerated or decelerated by ancillary synchrotrons for various applications. In this paper, we first present a lattice for the main synchrotron. This lattice has: (a) flexible momentum compaction to avoid transition and to facilitate RF gymnastics (b) long straight sections for low-loss injection, extraction, and high-efficiency collimation (c) dispersion-free straights to avoid longitudinal-transverse coupling, and (d) momentum cleaning at locations of large dispersion with missing dipoles. Then, we present a lattice for a cooler ring for the secondary beam. The momentum compaction across half of this ring is near zero, while for the other half it is normal. Thus, bad mixing is minimized while good mixing is maintained for stochastic beam cooling
Miniati, F; Kang, H; Jones, T W; Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung
2001-01-01
We investigate the production of cosmic ray (CR) protons at cosmological shocks by performing, for the first time, numerical simulations of large scale structure formation that include directly the acceleration, transport and energy losses of the high energy particles. CRs are injected at shocks according to the thermal leakage model and, thereafter, accelerated to a power-law distribution as indicated by the test particle limit of the diffusive shock acceleration theory. The evolution of the CR protons accounts for losses due to adiabatic expansion/compression, Coulomb collisions and inelastic p-p scattering. Our results suggest that CR protons produced at shocks formed in association with the process of large scale structure formation could amount to a substantial fraction of the total pressure in the intra-cluster medium. Their presence should be easily revealed by GLAST through detection of gamma-ray flux from the decay of neutral pions produced in inelastic p-p collisions of such CR protons with nuclei o...
Late time acceleration in a non-commutative model of modified cosmology
B. Malekolkalami
2014-12-01
Full Text Available We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.
Super-accelerating bouncing cosmology in asymptotically free non-local gravity
Calcagni, Gianluca [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Modesto, Leonardo [Fudan University, Department of Physics and Center for Field Theory and Particle Physics, Shanghai (China); Nicolini, Piero [Johann Wolfgang Goethe-Universitaet, Frankfurt Institute for Advanced Studies (FIAS) und Institut fuer Theoretische Physik, Frankfurt am Main (Germany)
2014-08-15
Recently, evidence has been collected that a class of gravitational theories with certain non-local operators is renormalizable. We consider one such model which, at the linear perturbative level, reproduces the effective non-local action for the light modes of bosonic closed string-field theory. Using the property of asymptotic freedom in the ultraviolet and fixing the classical behavior of the scale factor at late times, an algorithm is proposed to find general homogeneous cosmological solutions valid both at early and late times. Imposing a power-law classical limit, these solutions (including anisotropic ones) display a bounce, instead of a big-bang singularity, and super-accelerate near the bounce even in the absence of an inflaton or phantom field. (orig.)
Cosmological perturbations of self-accelerating universe in nonlinear massive gravity
We study cosmological perturbations of self-accelerating universe solutions in the recently proposed nonlinear theory of massive gravity, with general matter content. While the broken diffeomorphism invariance implies that there generically are 2 tensor, 2 vector and 2 scalar degrees of freedom in the gravity sector, we find that the scalar and vector degrees have vanishing kinetic terms and nonzero mass terms. Depending on their nonlinear behavior, this indicates either nondynamical nature of these degrees or strong couplings. Assuming the former, we integrate out the 2 vector and 2 scalar degrees of freedom. We then find that in the scalar and vector sectors, gauge-invariant variables constructed from metric and matter perturbations have exactly the same quadratic action as in general relativity. The difference from general relativity arises only in the tensor sector, where the graviton mass modifies the dispersion relation of gravitational waves, with a time-dependent effective mass. This may lead to modification of stochastic gravitational wave spectrum
Late time acceleration in a non-commutative model of modified cosmology
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution
Late time acceleration in a non-commutative model of modified cosmology
Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)
2014-12-12
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.
Accelerated lattice Boltzmann model for colloidal suspensions rheology and interface morphology
Farhat, Hassan; Kondaraju, Sasidhar
2014-01-01
Colloids are ubiquitous in the food, medical, cosmetics, polymers, water purification, and pharmaceutical industries. The thermal, mechanical, and storage properties of colloids are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a convenient and reliable tool for the study of colloids. Accelerated Lattice Boltzmann Model for Colloidal Suspensions introduce the main building-blocks for an improved lattice Boltzmann–based numerical tool designed for the study of colloidal rheology and interface morphology. This book also covers the migrating multi-block used to simulate single component, multi-component, multiphase, and single component multiphase flows and their validation by experimental, numerical, and analytical solutions. Among other topics discussed are the hybrid lattice Boltzmann method (LBM) for surfactant-covered droplets; biological suspensions such as blood; used in conjunction with the suppression of coalescence for investigating the...
Lattice design principles for a recirculated, high energy, SRF electron accelerator
Issues critical to the design of a high energy (over 10 GeV), recirculated, superconducting RF (SRF) based electron accelerator are discussed. These include injection energy, number of passes, type of linac focussing structure (constant gradient or constant focal length), quantum excitation in recirculation arcs, method of beam separation for recirculation, and use of isochronous or nonisochronous transport. An example lattice for a 16 GeV SRF linac with a CEBAF-like footprint is presented
Ishak, Mustapha; Troxel, M A
2013-01-01
Probes of cosmic expansion constitute the main basis for arguments to support or refute a possible apparent acceleration due to uneven dynamics in the universe as described by inhomogeneous cosmological models. We present in this Letter a separate argument based on results from the study of the growth rate of large-scale structure in the universe as modeled by the Szekeres inhomogeneous cosmological models. We use the models in all generality with no assumptions of spherical or axial symmetries. We find that Szekeres inhomogeneous models that fit well the observed expansion history fail to explain the observed late-time suppression of the growth of structure unless a cosmological constant is added to the dynamics.
Odintsov, S D
2016-01-01
We present some cosmological models which unify the late and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of $F(R)$ gravity. Particularly, the first model unifies the late and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the $R^2$ inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination er...
Odintsov, S. D.; Oikonomou, V. K.
2016-06-01
We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration–acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration–acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F
Achromatic and isochronous lattice design of P2DT bending section in RAON accelerator
Jin, Hyunchang, E-mail: hcjin@ibs.re.kr; Jang, Ji-Ho; Jang, Hyojae; Hong, In-Seok; Jeon, Dong-O
2015-09-21
In RAON heavy ion accelerator, generally, the In-flight Fragmentation (IF) and Isotope Separation On-Line (ISOL) systems are employed in order to produce various isotope beams. Out of the isotope beams, the beams generated by the ISOL system are transported from the low energy linac SCL3 to the high energy driver linac SCL2. The post-accelerator to the driver linac transport (P2DT) section that consists of the charge stripper section, the 180° bending section, and the SCL2 matching section is placed between the SCL3 and the SCL2. In this P2DT section, however, the transverse and longitudinal emittance growth can aggravate the beam acceptance of the SCL2. Besides, the growth at the P2DT 180° bending section is considered a significant issue because of the unexpected achromatic effect. Therefore an achromatic and isochronous lattice design should be devised to prevent the transverse and longitudinal emittance from increasing while the multi-charge beams flow through the bending section. This study reports an improved design for the achromatic and isochronous lattice up to the second-order. After satisfying the first-order achromatic and isochronous condition by adjusting the field strength of quadrupoles with this design, the simple and efficient method will be utilized with the aim of getting the minimum number of sextupoles. The research on the collimator for the charge selection at the bending section will be also represented by using the designed lattice.
Achromatic and isochronous lattice design of P2DT bending section in RAON accelerator
In RAON heavy ion accelerator, generally, the In-flight Fragmentation (IF) and Isotope Separation On-Line (ISOL) systems are employed in order to produce various isotope beams. Out of the isotope beams, the beams generated by the ISOL system are transported from the low energy linac SCL3 to the high energy driver linac SCL2. The post-accelerator to the driver linac transport (P2DT) section that consists of the charge stripper section, the 180° bending section, and the SCL2 matching section is placed between the SCL3 and the SCL2. In this P2DT section, however, the transverse and longitudinal emittance growth can aggravate the beam acceptance of the SCL2. Besides, the growth at the P2DT 180° bending section is considered a significant issue because of the unexpected achromatic effect. Therefore an achromatic and isochronous lattice design should be devised to prevent the transverse and longitudinal emittance from increasing while the multi-charge beams flow through the bending section. This study reports an improved design for the achromatic and isochronous lattice up to the second-order. After satisfying the first-order achromatic and isochronous condition by adjusting the field strength of quadrupoles with this design, the simple and efficient method will be utilized with the aim of getting the minimum number of sextupoles. The research on the collimator for the charge selection at the bending section will be also represented by using the designed lattice
Binned Hubble parameter measurements and the cosmological deceleration–acceleration transition
Weighted mean and median statistics techniques are used to combine 23 independent lower redshift, zda=0.74±0.05[30], which is expected in cosmological models with present-epoch energy budget dominated by dark energy as in the standard spatially-flat ΛCDM cosmological model
Lü Jian-Bo; Xu Li-Xin; Liu Mo-Lin; Gui Yuan-Xing
2009-01-01
In the framework of a five-dimensional(5D)bounce cosmological model,a useful function f(z)is obtained by giving a concrete expression of deceleration parameter q(z)=q1+q2/1+1n(1+z).Then usng the obtained Hubble parameter H(z)according to the function f(z),we constrain the accelerating universe from recent cosmic observations:the 192 ESSENCE SNe Ia and the 9 observational H(z)data.The best fitting values of transition redshift zT and current deceleration parameter q0 are given as zT=o.65±0.25-0.12 and q0=-0.76+0.15-0.15(1σ).Furthermore,in the 5D bounce model it can be seen that the evolution of equation of state(EOS)for dark energy ωde can cross over-1 at about z=0.23 and the current value ω0de=1.15＜-1.On the other hand,by giving a concrete expression of model-independent EOS of dark energy ωde,in the 5D bounce model we obtain the best fitting values zT=0.66+0311-0.08 and q0=-0.69+0.10-0.10(1σ)from the recently observed data:the 192 ESSENCE SNe Ia,the observational H(z)data,the 3-year Wilkinson Microwave Anisotropy Probe(WMAP),the Sloan Digital Sky Survey(SDSS)baryon acoustic peak and the x-ray gas mass fraction in clusters.
Cosmology with a time dependent cosmological constant
In the context of the scalar-tensor theories we consider cosmological models with a time dependent cosmological constant. Several toy models are obtained among them there are solutions without singularity and accelerating. (Author)
Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes
Tian Jinping; Yin Yingwu
2004-01-01
A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 ＞MgCl2 ＞CaCl2 ＞NaCl ＞KCl ＞LiClO4 ＞NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate
Odintsov, S. D.; Oikonomou, V. K.
2016-01-01
We study mimetic F (R ) gravity with a potential and Lagrange multiplier constraint. In the context of these theories, we introduce a reconstruction technique which enables us to realize arbitrary cosmologies, given the Hubble rate and an arbitrarily chosen F (R ) gravity. We exemplify our method by realizing cosmologies that are in concordance with current observations (Planck data) and also well-known bouncing cosmologies. The attribute of our method is that the F (R ) gravity can be arbitrarily chosen, so we can have the appealing features of the mimetic approach combined with the known features of some F (R ) gravities, which unify early-time with late-time acceleration. Moreover, we study the existence and the stability of de Sitter points in the context of mimetic F (R ) gravity. In the case of unstable de Sitter points, it is demonstrated that graceful exit from inflation occurs. We also study the Einstein-frame counterpart theory of the Jordan-frame mimetic F (R ) gravity, and we discuss the general properties of the theory and exemplify our analysis by studying a quite interesting (from a phenomenological point of view) model with two scalar fields. We also calculate the observational indices of the two-scalar-field model, by using the two-scalar-field formalism. Furthermore, we extensively study the dynamical system that corresponds to the mimetic F (R ) gravity, by finding the fixed points and studying their stability. Finally, we modify our reconstruction method to function in the inverse way and thus yield which F (R ) gravity can realize a specific cosmological evolution, given the mimetic potential and the Lagrange multiplier.
Kafka, Gene [Illinois Inst. of Technology, Chicago, IL (United States)
2015-05-01
The Integrable Optics Test Accelerator (IOTA) storage ring at Fermilab will serve as the backbone for a broad spectrum of Advanced Accelerator R&D (AARD) experiments, and as such, must be designed with signi cant exibility in mind, but without compromising cost e ciency. The nonlinear experiments at IOTA will include: achievement of a large nonlinear tune shift/spread without degradation of dynamic aperture; suppression of strong lattice resonances; study of stability of nonlinear systems to perturbations; and studies of di erent variants of nonlinear magnet design. The ring optics control has challenging requirements that reach or exceed the present state of the art. The development of a complete self-consistent design of the IOTA ring optics, meeting the demands of all planned AARD experiments, is presented. Of particular interest are the precise control for nonlinear integrable optics experiments and the transverse-to-longitudinal coupling and phase stability for the Optical Stochastic Cooling Experiment (OSC). Since the beam time-of- ight must be tightly controlled in the OSC section, studies of second order corrections in this section are presented.
Analytical Study on the Cosmological Large-scale Structure in an Accelerating Universe
Wang, Xin
2012-01-01
Motivated by the roughly log-normal probability density distribution function (PDF) of the small scale density field, we develop cosmological perturbation theory for the power spectrum of a logarithmically transformed density field with the formalism which is developed in the context of the cosmological renormalized perturbation theory. Compared with the standard perturbation theory, our approach help to regulate the convergence behavior of the perturbation series, and of the Taylor series expansion we use for the logarithmic mapping. The perturbation calculation achieved good agreement with simulation results. Then we consider the topology of the iso-density contour of the density field, especially the genus. The genus is relatively insensitive to nonlinear gravitational evolution, clustering bias and redshift distortion, and is approximately conserved over time as structures grow in Einstein's general relativity, hence it can be used as a robust standard ruler for cosmological measurements. However, in modified gravity models where structures grow with different rates on different scales, the genus should change over time, and therefore it can be used to test the gravity models on large scales. We studied the case of the f(R) theory, DGP brane-world theory as well as phenomenological models. We also forecast how the modified gravity models can be constrained with optical/IR or 21cm surveys in the near future.
Huang, He
In this thesis, I present the results of studies of the structural properties and phase transition of a charge neutral FCC Lattice Gas with Yukawa Interaction and discuss a novel fast calculation algorithm---Accelerated Cartesian Expansion (ACE) method. In the first part of my thesis, I discuss the results of Monte Carlo simulations carried out to understand the finite temperature (phase transition) properties and the ground state structure of a Yukawa Lattice Gas (YLG) model. In this model the ions interact via the potential q iqjexp(-kappar> ij)/rij where qi,j are the charges of the ions located at the lattice sites i and j with position vectors R i and Rj; rij = Ri-Rj, kappa is a measure of the range of the interaction and is called the screening parameter. This model approximates an interesting quaternary system of great current thermoelectric interest called LAST-m, AgSbPbmTem+2. I have also developed rapid calculation methods for the potential energy calculation in a lattice gas system with periodic boundary condition bases on the Ewald summation method and coded the algorithm to compute the energies in MC simulation. Some of the interesting results of the MC simulations are: (i) how the nature and strength of the phase transition depend on the range of interaction (Yukawa screening parameter kappa) (ii) what is the degeneracy of the ground state for different values of the concentration of charges, and (iii) what is the nature of two-stage disordering transition seen for certain values of x. In addition, based on the analysis of the surface energy of different nano-clusters formed near the transition temperature, the solidification process and the rate of production of these nano-clusters have been studied. In the second part of my thesis, we have developed two methods for rapidly computing potentials of the form R-nu. Both these methods are founded on addition theorems based on Taylor expansions. Taylor's series has a couple of inherent advantages: (i) it
Cosmological Shocks in Adaptive Mesh Refinement Simulations and the Acceleration of Cosmic Rays
Skillman, Samuel W.; O'Shea, Brian W.; Hallman, Eric J.; Burns, Jack O.; Michael L. Norman
2008-01-01
We present new results characterizing cosmological shocks within adaptive mesh refinement N-Body/hydrodynamic simulations that are used to predict non-thermal components of large-scale structure. This represents the first study of shocks using adaptive mesh refinement. We propose a modified algorithm for finding shocks from those used on unigrid simulations that reduces the shock frequency of low Mach number shocks by a factor of ~3. We then apply our new technique to a large, (512 Mpc/h)^3, ...
Accelerated Cosmological Models in Modified Gravity tested by distant Supernovae SNIa data
Borowiec, Andrzej; Godlowski, Wlodzimierz; Szydlowski, Marek
2006-01-01
Recent supernovae of type Ia measurements and other astronomical observations suggest that our universe is in accelerating phase of evolution at the present epoch. While a dark energy of unknown form is usually proposed as the most feasible mechanism for the acceleration, there are appears some alternative conception that some effects arising from generalization of Einstein equation can mimic dark energy through a modified Friedmann equation. In this work we investigate some observational con...
The possibility of an accelerating cosmology in Rastall's theory
Capone, M [Dipartimento di Matematica, Universita di Torino, Via Carlo Alberto 10, 10125 - Torino (Italy); Cardone, V F [Dipartimento di Fisica Generale ' Amedeo Avogadro' , Universita di Torino, Via Pietro Giuria 1, 10125 - Torino (Italy); Ruggiero, M L, E-mail: monica.capone@unito.i [UTIU, Universita Telematica Internazionale Uninettuno, Corso Vittorio Emanuele II 39, 00186 - Roma (Italy)
2010-04-01
In an attempt to look for a viable mechanism leading to a present day accelerated expansion, we investigate the possibility that the observed cosmic speed up may be recovered in the framework of the Rastall's theory, relying on the non-conservativity of the stress-energy tensor, i.e. T{sup {mu}}{sub v;{mu}} {ne} 0. We derive the modified Friedmann equations and show that they correspond to Cardassian-like equations. We also show that, under suitable assumptions on the equation of state of the matter term sourcing the gravitational field, it is indeed possible to get an accelerated expansion, in agreement with the Hubble diagram of both Type Ia Supernovae (SNeIa) and Gamma Ray Bursts (GRBs). Unfortunately, to achieve such a result one has to postulate a matter density parameter larger than the typical {Omega}{sub M} {approx_equal} 0.3 value inferred from cluster gas mass fraction data. As a further issue, we discuss the possibility to retrieve the Rastall's theory from a Palatini variational principle approach to f(R) gravity. However, such an attempt turns out to be unsuccessful.
Lorenzo Iorio
2014-01-01
Full Text Available By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t. More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.
Wu, S Q
2001-01-01
The Hawking radiation of Dirac particles in an arbitrarily rectilinearly accelerating Kinnersley black hole with electro-magnetic charge and cosmological constant is investigated by using method of the generalized tortoise coordinate transformation. Both the location and the temperature of the event horizon depend on the time and the polar angle. The Hawking thermal radiation spectrum of Dirac particles is also derived. PACS numbers: 04.70.Dy, 97.60.Lf
Ishak, Mustapha; Whittington, Delilah; Garred, David
2007-01-01
We use the Szekeres inhomogeneous relativistic models in order to fit supernova combined data sets. We show that with a choice of the spatial curvature function that is guided by current observations, the models fit the supernova data as well as the LCDM model without requiring any dark energy component. The Szekeres models were originally derived as an exact solution to Einstein's equations with a general metric that has no symmetries and are regarded in the field as good candidates to represent the true lumpy universe that we observe. The best fit model found is also consistent with the requirement of spatial flatness at CMB scales. While more work remains, the result presented in this first paper appears to support the possibility of apparent acceleration.
Accelerating f(T) gravity models constrained by recent cosmological data
Cardone, Vincenzo F; Camera, Stefano
2012-01-01
Generalised Teleparallel gravity, also referred to as f(T) gravity, has been recently proposed as an extended theory of gravitation able to give rise to an accelerated expansion in a matter only universe. The cosmic speed up is driven by an effective torsion fluid whose equation of state depend on the f(T) function entering the modified gravity Lagrangian. We focus on two particular choices for f(T) which share the nice property to emulate a phantom divide crossing as suggested by some recent data. We check their viability contrasting the predicted background dynamics to the Hubble diagram as traced by both Type Ia Supernovae (SNeIa) and Gamma Ray Bursts (GRBs), the measurement of the rate expansion H(z), the Baryon Acoustic Oscillations (BAOs) at different redshifts, and the Cosmic Microwave Background Radiation (CMBR) distance priors. Both f(T) models turn out to be in very good agreement with this large dataset so that we also investigate whether it is possible to discriminate among them relying on the dif...
Chavanis, Pierre-Henri
2013-01-01
We develop a cosmological model based on a quadratic equation of state p/c^2=-(\\alpha+1){\\rho^2}/{\\rho_P}+\\alpha\\rho-(\\alpha+1)\\rho_{\\Lambda} (where \\rho_P is the Planck density and \\rho_{\\Lambda} the cosmological density) "unifying" vacuum energy and dark energy in the spirit of a generalized Chaplygin gas model. For $\\rho\\rightarrow \\rho_P$, it reduces to p=-\\rho c^2 leading to a phase of early accelerated expansion (early inflation) with a constant density equal to the Planck density \\rho_P (vacuum energy). For $\\rho_{\\Lambda}\\ll\\rho\\ll \\rho_P$, we recover the standard linear equation of state p=\\alpha \\rho c^2 describing radiation (\\alpha=1/3) or pressureless matter (\\alpha=0) and leading to an intermediate phase of decelerating expansion. For $\\rho\\rightarrow \\rho_{\\Lambda}$, we get p=-\\rho c^2 leading to a phase of late accelerated expansion (late inflation) with a constant density equal to the cosmological density \\rho_{\\Lambda} (dark energy). We show a nice symmetry between the early universe (vacuum ...
Single Particle Dynamics in a Quasi-Integrable Nonlinear Accelerator Lattice
Antipov, Sergey A; Valishev, Alexander
2016-01-01
Fermilab is constructing the Integrable Optics Test Accelerator (IOTA) as the centerpiece of the Accelerator R&D Program towards high-intensity circular machines. One of the factors limiting the beam intensity in present circular accelerators is collective instabilities, which can be suppressed by a spread of betatron frequencies (tunes) through the Landau damping mechanism or by an external damper, if the instability is slow enough. The spread is usually created by octupole magnets, which introduce the tune dependence on the amplitude and, in some cases, by a chromatic spread (tune dependence on particle's momentum). The introduction of octupoles usually lead to a resonant behavior and a reduction of the dynamic aperture. One of the goals of the IOTA research program is to achieve a high betatron tune spread, while retaining a large dynamic aperture using conventional octupole magnets in a special but realistic accelerator configuration. In this report, we present results of computer simulations of an el...
Energy production in a thorium subcritical lattice driven by accelerated protons
It has been proposed to sustain a thorium fuel cycle in a tight lattice driven by spallation reactions neutrons, these reactions being initiated by bombarding the lattice with high- energy, high-current, protons. The proposal lacks a consistent evolution calculation of actinides and fission product densities. In order to assess the true potential of the concept, the capacity of a criticality burnup calculation with the WIMS code was tested as a replacement to a source-driven' burnup calculation. Tests of 'source-driven' burnup were conducted with calculations based on a package program combining the high-energy code HETC, the Monte-Carlo code MCNP, and the depletion code KORIGEN. (author). 2 refs., 1 tab
Sanders, R. H.
2005-01-01
I review various ideas on MOND cosmology and structure formation beginning with non-relativistic models in analogy with Newtonian cosmology. I discuss relativistic MOND cosmology in the context of Bekenstein's theory and propose an alternative biscalar effective theory of MOND in which the acceleration parameter is identified with the cosmic time derivative of a matter coupling scalar field. Cosmic CDM appears in this theory as scalar field oscillations of the auxiliary "coupling strength" fi...
Lie-algebraic methods for treating lattice parameter errors in particle accelerators
Healy, L.M.
1986-01-01
Orbital dynamics in particle accelerators and ray tracing in light optics, are examples of Hamiltonian systems. The transformation from initial to final phase space coordinates in such systems is a symplectic map. Lie algebraic techniques have been used with great success in the case of idealized systems to represent symplectic maps by Lie transformations. These techniques allow rapid computation in tracking particles while maintaining complete symplecticity, and easy extraction of analytical quantities such as chromaticities and aberrations. Real accelerators differ from ideal ones in a number of ways. Magnetic or electric devices, designed to guide and focus the beam, may be in the wrong place or have the wrong orientation, and they may not have the intended field strengths. The purpose of this dissertation is to extend the Lie algebraic techniques to treat these misplacement, misalignment, and mispowering errors. Sympletic maps describing accelerators with errors typically have first-order terms. There are two major aspects to creating a Lie algebraic theory of accelerator errors: creation of appropriate maps and their subsequent manipulation and use.
Lie-algebraic methods for treating lattice parameter errors in particle accelerators
Orbital dynamics in particle accelerators and ray tracing in light optics, are examples of Hamiltonian systems. The transformation from initial to final phase space coordinates in such systems is a symplectic map. Lie algebraic techniques have been used with great success in the case of idealized systems to represent symplectic maps by Lie transformations. These techniques allow rapid computation in tracking particles while maintaining complete symplecticity, and easy extraction of analytical quantities such as chromaticities and aberrations. Real accelerators differ from ideal ones in a number of ways. Magnetic or electric devices, designed to guide and focus the beam, may be in the wrong place or have the wrong orientation, and they may not have the intended field strengths. The purpose of this dissertation is to extend the Lie algebraic techniques to treat these misplacement, misalignment, and mispowering errors. Sympletic maps describing accelerators with errors typically have first-order terms. There are two major aspects to creating a Lie algebraic theory of accelerator errors: creation of appropriate maps and their subsequent manipulation and use
Montani, Giovanni
1. Historical picture. 1.1. The concept of universe through the centuries. 1.2. The XIX century knowledge. 1.3. Birth of scientific cosmology. 1.4. The genesis of the hot big bang model. 1.5. Guidelines to the literature -- 2. Fundamental tools. 2.1. Einstein equations. 2.2. Matter fields. 2.3. Hamiltonian formulation of the dynamics. 2.4. Synchronous reference system. 2.5. Tetradic formalism. 2.6. Gauge-like formulation of GR. 2.7. Singularity theorems. 2.8. Guidelines to the literature -- 3. The structure and dynamics of the isotropic universe. 3.1. The RW geometry. 3.2. The FRW cosmology. 3.3. Dissipative cosmologies. 3.4. Inhomogeneous fluctuations in the universe. 3.5. General relativistic perturbation theory. 3.6. The Lemaitre-Tolmann-Bondi spherical solution. 3.7. Guidelines to the literature -- 4. Features of the observed universe. 4.1. Current status: The concordance model. 4.2. The large-scale structure. 4.3. The acceleration of the universe. 4.4. The cosmic microwave background. 4.5. Guidelines to the literature -- 5. The theory of inflation. 5.1. The shortcomings of the standard cosmology. 5.2. The inflationary paradigm. 5.3. Presence of a self-interacting scalar field. 5.4. Inflationary dynamics. 5.5. Solution to the shortcomings of the standard cosmology. 5.6. General features. 5.7. Possible explanations for the present acceleration of the universe. 5.8. Guidelines to the literature -- 6. Inhomogeneous quasi-isotropic cosmologies. 6.1. Quasi-isotropic solution. 6.2. The presence of ultrarelativistic matter. 6.3. The role of a massless scalar field. 6.4. The role of an electromagnetic field. 6.5. Quasi-isotropic inflation. 6.6. Quasi-isotropic viscous solution. 6.7. Guidelines to the literature -- 7. Homogeneous universes. 7.1. Homogeneous cosmological models. 7.2. Kasner solution. 7.3. The dynamics of the Bianchi models. 7.4. Bianchi types VIII and IX models. 7.5. Dynamical systems approach. 7.6. Multidimensional homogeneous universes. 7.7. Guidelines
Borovský, Michal; Weigel, Martin; Barash, Lev Yu.; Žukovič, Milan
2016-02-01
The population annealing algorithm is a novel approach to study systems with rough free-energy landscapes, such as spin glasses. It combines the power of simulated annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo process to bring the population of replicas to the equilibrium even in the low-temperature region. Moreover, it provides a very good estimate of the free energy. The fact that population annealing algorithm is performed over a large number of replicas with many spin updates, makes it a good candidate for massive parallelism. We chose the GPU programming using a CUDA implementation to create a highly optimized simulation. It has been previously shown for the frustrated Ising antiferromagnet on the stacked triangular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freezing of the ferromagnetically ordered chains. We applied the population annealing to study the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = -1). The reached ground states correspond to non-magnetic degenerate states, where chains are antiferromagnetically ordered, but there is no long-range ordering between them, which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.
Zhao, Wen
2016-01-01
The foundation of modern cosmology relies on the so-called cosmological principle which states an homogeneous and isotropic distribution of matter in the universe on large scales. However, recent observations, such as the temperature anisotropy of the cosmic microwave background (CMB) radiation, the motion of galaxies in the universe, the polarization of quasars and the acceleration of the cosmic expansion, indicate preferred directions in the sky. If these directions have a cosmological origin, the cosmological principle would be violated, and modern cosmology should be reconsidered. In this paper, by considering the preferred axis in the CMB parity violation, we find that it coincides with the preferred axes in CMB quadrupole and CMB octopole, and they all align with the direction of the CMB kinematic dipole. In addition, the preferred directions in the velocity flows, quasar alignment, anisotropy of the cosmic acceleration, the handedness of spiral galaxies, and the angular distribution of the fine-structu...
Konno, Mitsuru; Ogashiwa, Takeshi; Sunaoshi, Takeshi; Orai, Yoshihisa; Sato, Mitsugu
2014-10-01
We reported investigation of lattice resolution imaging using a Hitachi SU9000 conventional in-lens type cold field emission scanning electron microscope without an aberration corrector at an accelerating voltage of 30kV and discuss the electron optics and optimization of observation conditions for obtaining lattice resolution. It is possible to visualize lattice spacings that are much smaller than the diameter of the incident electron beam through the influence of the superior coherent performance of the cold field emission electron source. The defocus difference between STEM imaging and lattice imaging is found to increase with spherical aberration but it is possible to reduce the spherical aberration by reducing the focal length (f) of the objective lens combined with an experimental sample stage enabling a shorter distance between the objective lens pre-field and the sample. We demonstrate that it is possible to observe the STEM image and crystalline lattice simultaneously. STEM and Fourier transform images are detected for Si{222} lattice fringes and reflection spots, corresponding to 0.157nm. These results reveal the potential and possibility for a measuring technique with excellent precision as a theoretically exact dimension and established the ability to perform high precision measurements of crystal lattices for the structural characterization of semiconductor materials with minimal radiation beam damage. PMID:24290787
Assembly Based Modular Ray Tracing and CMFD Acceleration for BWR Cores with Different Fuel Lattices
The geometry module of the DeCART direct whole core calculation code has been extended in order to analyze BWR cores which might have a mixed loading of different fuel types. First, an assembly based modular ray tracing scheme was implemented for the Method of Characteristic (MOC) calculation, and a CMFD formulation applicable for unaligned mesh conditions was then developed for acceleration the MOC calculation. The new calculation feature has been validated by comparing DeCART BWR assembly calculations with the MCU Monte Carlo calculations. A good agreement identified by the maximum eigenvalue difference of 120 pcm and the maximum pin power error of about 1% has been achieved. The CMFD scheme is shown to reduce the number of MOC iterations by factors of 12-25 without loss of accuracy. (authors)
Chimento, L P; Forte, M [Physics Department, UBA, 1428 Buenos Aires (Argentina); Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L, E-mail: kremer@fisica.ufpr.br, E-mail: devecchi@fisica.ufpr.br, E-mail: chimento@df.uba.ar [Physics Department, UFPR, 81531-990 Curitiba (Brazil)
2011-07-08
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
Solomon, Adam R
2015-01-01
The accelerating expansion of the Universe poses a major challenge to our understanding of fundamental physics. One promising avenue is to modify general relativity and obtain a new description of the gravitational force. Because gravitation dominates the other forces mostly on large scales, cosmological probes provide an ideal testing ground for theories of gravity. In this thesis, we describe two complementary approaches to the problem of testing gravity using cosmology. In the first part, we discuss the cosmological solutions of massive gravity and its generalisation to a bimetric theory. These theories describe a graviton with a small mass, and can potentially explain the late-time acceleration in a technically-natural way. We describe these self-accelerating solutions and investigate the cosmological perturbations in depth, beginning with an investigation of their linear stability, followed by the construction of a method for solving these perturbations in the quasistatic limit. This allows the predictio...
We reported investigation of lattice resolution imaging using a Hitachi SU9000 conventional in-lens type cold field emission scanning electron microscope without an aberration corrector at an accelerating voltage of 30 kV and discuss the electron optics and optimization of observation conditions for obtaining lattice resolution. It is possible to visualize lattice spacings that are much smaller than the diameter of the incident electron beam through the influence of the superior coherent performance of the cold field emission electron source. The defocus difference between STEM imaging and lattice imaging is found to increase with spherical aberration but it is possible to reduce the spherical aberration by reducing the focal length (f) of the objective lens combined with an experimental sample stage enabling a shorter distance between the objective lens pre-field and the sample. We demonstrate that it is possible to observe the STEM image and crystalline lattice simultaneously. STEM and Fourier transform images are detected for Si{222} lattice fringes and reflection spots, corresponding to 0.157 nm. These results reveal the potential and possibility for a measuring technique with excellent precision as a theoretically exact dimension and established the ability to perform high precision measurements of crystal lattices for the structural characterization of semiconductor materials with minimal radiation beam damage. - Highlights: • We investigated the lattice resolution imaging using a conventional in-lens FE-SEM. • STEM images at 30 kV are detected for Si222 lattice fringe, corresponding to 0.157 nm. • These results demonstrate the ability to perform high precision measurements
Vacuum energy and the cosmological constant
Bass, Steven D
2015-01-01
The accelerating expansion of the Universe points to a small positive value for the cosmological constant or vacuum energy density. We discuss recent ideas that the cosmological constant plus LHC results might hint at critical phenomena near the Planck scale.
Srivastava, S. K.
2008-01-01
Here, cosmology is obtained from the variable gravitational constant $ G \\propto \\phi^{-2}$ with $ \\phi(x) $ being a scalar and its fluctuations around the ground state. The gravitational action contains Einstein-Hilbert like term with variable $ G $, kinetic energy and self-interaction potential for $ \\phi(x) $. Two phase transitions take place in this model. The first one takes place at the GUT (grand unified theory) scale $ \\sim 2.45 \\times 10^{14}{\\rm GeV} $, when the early universe exits...
Ryden, Barbara
2002-01-01
Introduction to Cosmology provides a rare combination of a solid foundation of the core physical concepts of cosmology and the most recent astronomical observations. The book is designed for advanced undergraduates or beginning graduate students and assumes no prior knowledge of general relativity. An emphasis is placed on developing the readers' physical insight rather than losing them with complex math. An approachable writing style and wealth of fresh and imaginative analogies from "everyday" physics are used to make the concepts of cosmology more accessible. The book is unique in that it not only includes recent major developments in cosmology, like the cosmological constant and accelerating universe, but also anticipates key developments expected in the next few years, such as detailed results on the cosmic microwave background.
Srivastava, S K
2008-01-01
Here, cosmology is obtained from the variable gravitational constant $ G \\propto \\phi^{-2}$ with $ \\phi(x) $ being a scalar and its fluctuations around the ground state. The gravitational action contains Einstein-Hilbert like term with variable $ G $, kinetic energy and self-interaction potential for $ \\phi(x) $. Two phase transitions take place in this model. The first one takes place at the GUT (grand unified theory) scale $ \\sim 2.45 \\times 10^{14}{\\rm GeV} $, when the early universe exits the inflationay phase and the second one at the electro-weak scale. Spontaneous symmetry breaking takes place around this scale As a consequence, variable $ G $ acquires constant value $G_N$ (the Newtonian gravitational constant).The standard model of cosmology is obtained in the post-second phase transition era. Interestingly, the dark matter and quintessence dark energy are created from the gravitational sector as a combined effect of the linear term of scalar curvature and $ \\phi(x) $ without using non-linear terms of...
Point mass Cosmological Black Holes
Firouzjaee, Javad T
2016-01-01
Real black holes in the universe are located in the expanding accelerating background which are called the cosmological black holes. Hence, it is necessary to model these black holes in the cosmological background where the dark energy is the dominant energy. In this paper, we argue that most of the dynamical cosmological black holes can be modeled by point mass cosmological black holes. Considering the de Sitter background for the accelerating universe, we present the point mass cosmological background in the cosmological de Sitter space time. Our work also includes the point mass black holes which have charge and angular momentum. We study the mass, horizons, redshift structure and geodesics properties for these black holes.
Papantonopoulos, E.
2002-01-01
The aim of these lectures is to give a brief introduction to brane cosmology. After introducing some basic geometrical notions, we discuss the cosmology of a brane universe with matter localized on the brane. Then we introduce an intrinsic curvature scalar term in the bulk action, and analyze the cosmology of this induced gravity. Finally we present the cosmology of a moving brane in the background of other branes, and as a particular example, we discuss the cosmological evolution of a test b...
Miniati, Francesco; Ryu, Dongsu; Jones, T. W.; Kang, Hyesung
2000-01-01
We investigate the dynamical importance of a newly recognized possible source of significant feedback generated during structure formation; namely cosmic ray (CR) pressure. We present evidence for the existence of numerous shocks in the hot gas of galaxy clusters (GCs). We employ for the first time an explicit numerical treatment of CR acceleration and transport in hydro simulations of structure formation. According to our results, CRs provide an important fraction of the total pressure insid...
The invention claims equipment for stabilizing the position of the front covers of the accelerator chamber in cyclic accelerators which significantly increases accelerator reliability. For stabilizing, it uses hydraulic cushions placed between the electromagnet pole pieces and the front chamber covers. The top and the bottom cushions are hydraulically connected. The cushions are disconnected and removed from the hydraulic line using valves. (J.P.)
Testing Fractional Action Cosmology
Shchigolev, V K
2015-01-01
The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests that gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.
Miniati, F; Jones, T W; Kang, H; Miniati, Francesco; Ryu, Dongsu; Kang, Hyesung
2000-01-01
We investigate the dynamical importance of a newly recognized possible source of significant feedback generated during structure formation; namely cosmic ray (CR) pressure. We present evidence for the existence of numerous shocks in the hot gas of galaxy clusters (GCs). We employ for the first time an explicit numerical treatment of CR acceleration and transport in hydro simulations of structure formation. According to our results, CRs provide an important fraction of the total pressure inside GCs, up to several tenths. This was true even at high redshift (z=2), meaning that such non-thermal component could affect the evolution of structure formation.
Tartaglia, Angelo
2015-01-01
Starting from some relevant facts concerning the behaviour of the universe over large scale and time span, the analogy between the geometric approach of General Relativ- ity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time repro- duces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theor...
Bykov, A M; Durret, F
2008-01-01
Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We first discuss the basic properties of standard single-fluid shocks. Cosmological plasma shocks are expected to be collisionless. We then review the plasma processes responsible for the microscopic structure of collisionless shocks. A tiny fraction of the particles crossing the shock is injected into the non-thermal energetic component that could get a substantial part of the ram pressure power dissipated at the shock. The energetic particles penetrate deep into the shock upstream producing an extended shock precursor. Scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong coll...
In recent years different explanations are provided for both an inflation and a recent acceleration in the expansion of the universe. In this Letter we show that a model of physical interest is the modification of general relativity with a Gauss-Bonnet term coupled to a dynamical scalar-field as predicted by certain versions of string theory. This construction provides a model of evolving dark energy that naturally explains a dynamical relaxation of the vacuum energy (gravitationally repulsive pressure) to a small value (exponentially close to zero) after a sufficient number of e-folds. The model also leads to a small deviation from the w=-1 prediction of non-evolving dark energy
Neupane, Ishwaree P. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand) and Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu (Nepal)]. E-mail: ishwaree.neupane@cern.ch; Carter, Benedict M.N. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand)
2006-07-06
In recent years different explanations are provided for both an inflation and a recent acceleration in the expansion of the universe. In this Letter we show that a model hysical interest is the modification of general relativity with a Gauss-Bonnet term coupled to a dynamical scalar-field as predicted by certain versions of string theory. This construction provides a model of evolving dark energy that naturally explains a dynamical relaxation of the vacuum energy (gravitationally repulsive pressure) to a small value (exponentially close to zero) after a sufficient number of e-folds. The model also leads to a small deviation from the w=-1 prediction of non-evolving dark energy.
Cline, James M.
2007-01-01
A brief review of the field of braneworld cosmology, from its inception with the large extra dimension scenario, to aspects of cosmology in warped extra dimensions, including the RS-I and RS-II models, braneworld inflation, the Goldberger-Wise mechanism, mirage cosmology, the radion-induced phase transition in RS-I, possible gravity wave signals, and the DGP model.
Cosmological dark energy effects from entanglement
The thorny issue of relating information theory to cosmology is here addressed by assuming a possible connection between quantum entanglement measures and observable universe. In particular, we propose a cosmological toy model, where the equation of state of the cosmological fluid, which drives the today observed cosmic acceleration, can be inferred from quantum entanglement between different cosmological epochs. In such a way the dynamical dark energy results as byproduct of quantum entanglement.
Cosmological dark energy effects from entanglement
Capozziello, Salvatore, E-mail: capozziello@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Luongo, Orlando [Dipartimento di Fisica, Università di Napoli “Federico II”, Via Cinthia, 80126 Napoli (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Napoli, Via Cinthia, 80126 Napoli (Italy); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México (UNAM) (Mexico); Mancini, Stefano [Scuola di Scienze and Tecnologie, Università di Camerino, 62032 Camerino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sez. di Perugia, Via Pascoli, 06123 Perugia (Italy)
2013-06-03
The thorny issue of relating information theory to cosmology is here addressed by assuming a possible connection between quantum entanglement measures and observable universe. In particular, we propose a cosmological toy model, where the equation of state of the cosmological fluid, which drives the today observed cosmic acceleration, can be inferred from quantum entanglement between different cosmological epochs. In such a way the dynamical dark energy results as byproduct of quantum entanglement.
Some Inflationary Einstein-Aether Cosmologies
Barrow, John D
2012-01-01
We show how to derive several families of accelerating universe solutions to an Einstein-Aether gravity theory. These solutions provide possible descriptions of inflationary behaviour in the early universe and late-time cosmological acceleration.
Zhang Yuan Zhong
2002-01-01
This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The ...
Pecker, Jean-Claude; Narlikar, Jayant
2011-09-01
Part I. Observational Facts Relating to Discrete Sources: 1. The state of cosmology G. Burbidge; 2. The redshifts of galaxies and QSOs E. M. Burbidge and G. Burbidge; 3. Accretion discs in quasars J. Sulentic; Part II. Observational Facts Relating to Background Radiation: 4. CMB observations and consequences F. Bouchet; 5. Abundances of light nuclei K. Olive; 6. Evidence for an accelerating universe or lack of A. Blanchard; Part III. Standard Cosmology: 7. Cosmology, an overview of the standard model F. Bernardeau; 8. What are the building blocks of our universe? K. C. Wali; Part IV. Large-Scale Structure: 9. Observations of large-scale structure V. de Lapparent; 10. Reconstruction of large-scale peculiar velocity fields R. Mohayaee, B. Tully and U. Frisch; Part V. Alternative Cosmologies: 11. The quasi-steady state cosmology J. V. Narlikar; 12. Evidence for iron whiskers in the universe N. C. Wickramasinghe; 13. Alternatives to dark matter: MOND + Mach D. Roscoe; 14. Anthropic principle in cosmology B. Carter; Part VI. Evidence for Anomalous Redshifts: 15. Anomalous redshifts H. C. Arp; 16. Redshifts of galaxies and QSOs: the problem of redshift periodicities G. Burbidge; 17. Statistics of redshift periodicities W. Napier; 18. Local abnormal redshifts J.-C. Pecker; 19. Gravitational lensing and anomalous redshifts J. Surdej, J.-F. Claeskens and D. Sluse; Panel discussion; General discussion; Concluding remarks.
Since 1991, the CEA has studied the physics of hybrid systems, involving a sub-critical reactor coupled with an accelerator. These studies have provided information on the potential of hybrid systems to transmute actinides and, long lived fission products. The potential of such a system remains to be proven, specifically in terms of the physical understanding of the different phenomena involved and their modelling, as well as in terms of experimental validation of coupled systems, sub-critical environment/accelerator. This validation must be achieved through mock-up studies of the sub-critical environments coupled to a source of external neutrons. The MUSE-4 mock-up experiment is planed at the MASURCA facility and will use an accelerator coupled to a tritium target. The great step between the generator used in the past and the accelerator will allow to increase the knowledge in hybrid physic and to decrease the experimental biases and the measurement uncertainties
2 x 2 TeV μ+μ- collider: Lattice and accelerator-detector interface study
The design for a high-luminosity μ+μ- superconducting storage ring is presented based on first-pass calculations. Special attention is paid to two Iowa interaction regions (IR) whose optics are literally interlaced with the collider detectors. Various sources of backgrounds in IR are explored via realistic Monte Carlo simulations. An improved design of the collider lattice in the neighborhood of the interaction points (EP) is determined by the need to reduce significantly background levels in the detectors
This paper is devoted to 100 years after the birth of A.A. Friedman. The discovery of the class of the non-stationary cosmological solutions is the greatest scientific achievement of this man. Friedman's cosmological models lie in the foundation of the modern relativistic cosmology. It follows from the astronomical observations that the large scale structure and evolution of the Universe fit well to the predictions of these models. Friedman's work has raised, for the first time, the problem of multiplicity of cosmological solutions, the problem of selecting of one of them by comparison with the constantly improving observations. Classical (non-quantum) theoretical cosmology deals with a whole space of cosmological solutions. Under investigation are the most general properties of these solutions as well as the initial and boundary conditions which, in agreement with the observations, could lead to the set of solutions most adequately describing the observed world
Ellman, R
2000-01-01
Recently it has become possible to determine the distance to Type Ia supernovae by redshift-independent means. Those new distance determinations exceed the Hubble distance by 10 - 15%. The explanation others propose is that an "antigravity effect" is accelerating the universe' expansion, which had hitherto been thought to be slowing down because of gravitation. That has led to their proposing reinstatement of Einstein's "cosmological constant", a term in his equations introduced to account for gravitation not promptly collapsing the universe and which he disavowed upon Hubble's discovery of the expansion of the universe. And that has further led to their proposing some form of the Ancients' fifth essence, quintessence [the first four being earth, air, fire and water], to account for the "antigravity effect". Any "antigravity effect", regardless of its cause, would have the effect of counteracting ordinary gravitation. Inasmuch as one of the major current problems in cosmology is to identify more gravitation t...
Supernovae as cosmological probes
Nielsen, Jeppe Trost
2015-01-01
The cosmological standard model at present is widely accepted as containing mainly things we do not understand. In particular the appearance of a Cosmological Constant, or dark energy, is puzzling. This was first inferred from the Hubble diagram of a low number of Type Ia supernovae, and later corroborated by complementary cosmological probes. Today, a much larger collection of supernovae is available, and here I perform a rigorous statistical analysis of this dataset. Taking into account how the supernovae are calibrated to be standard candles, we run into some subtleties in the analysis. To our surprise, this new dataset - about an order of bigger than the size of the original dataset - shows, under standard assumptions, only mild evidence of an accelerated universe.
Tartaglia, Angelo
2016-01-01
Starting from some relevant facts concerning the behavior of the universe over large scale and time span, the analogy between the geometric approach of General Relativity and the classical description of an elastic strained material continuum is discussed. Extending the elastic deformation approach to four dimensions it is shown that the accelerated expansion of the universe is recovered. The strain field of space-time reproduces properties similar to the ones ascribed to the dark energy currently called in to explain the accelerated expansion. The strain field in the primordial universe behaves as radiation, but asymptotically it reproduces the cosmological constant. Subjecting the theory to a number of cosmological tests confirms the soundness of the approach and gives an optimal value for the one parameter of the model, i.e. the bulk modulus of the space-time continuum. Finally various aspects of the Strained State Cosmology (SSC) are discussed and contrasted with some non-linear massive gravity theories. The possible role of structure topological defects is also mentioned. The conclusion is that SSC is at least as good as the ΛCDM standard cosmology, giving a more intuitive interpretation of the physical nature of the phenomena.
The cosmological constant puzzle
Bass, Steven D.
2011-01-01
Abstract The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of General Relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 10 56 times smaller than the value expected from quantum fields and Standard Model particle physi...
Observational Aspects of an Inhomogeneous Cosmology
Saulder, Christoph; Zeilinger, Werner W
2012-01-01
One of the biggest mysteries in cosmology is Dark Energy, which is required to explain the accelerated expansion of the universe within the standard model. But maybe one can explain the observations without introducing new physics, by simply taking one step back and re-examining one of the basic concepts of cosmology, homogeneity. In standard cosmology, it is assumed that the universe is homogeneous, but this is not true at small scales (<200 Mpc). Since general relativity, which is the basis of modern cosmology, is a non-linear theory, one can expect some backreactions in the case of an inhomogeneous matter distribution. Estimates of the magnitude of these backreactions (feedback) range from insignificant to being perfectly able to explain the accelerated expansion of the universe. In the end, the only way to be sure is to test predictions of inhomogeneous cosmological theories, such as timescape cosmology, against observational data. If these theories provide a valid description of the universe, one expe...
Chiral Cosmological Models: Dark Sector Fields Description
Chervon, S V
2014-01-01
The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...
Beyond lensing by the cosmological constant
Faraoni, Valerio
2016-01-01
The long-standing problem of whether the cosmological constant affects directly the deflection of light caused by a gravitational lens is reconsidered. We use a new approach based on the Hawking quasilocal mass of a sphere grazed by light rays and on its splitting into local and cosmological parts. Previous literature restricted to the cosmological constant is extended to any form of dark energy accelerating the universe in which the gravitational lens is embedded.
Belinski, V
2009-01-01
The talk at international conference in honor of Ya. B. Zeldovich 95th Anniversary, Minsk, Belarus, April 2009. The talk represents a review of the old results and contemporary development on the problem of cosmological singularity.
These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)
Turner, M S
1998-01-01
For two decades the hot big-bang model as been referred to as the standard cosmology -- and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter; it can extend our understanding of the Universe back to 10^-32 sec. There is now prima facie evidence for the two basic tenets of this new paradigm: flat Universe and scale-invariant spectrum of Gaussian density perturbations, and an avalanche of telling cosmological observations is coming. If inflation + cold dark matter is correct, then there are new, fundamental questions to be answered, most notably the nature of the dark energy that seems to account for 60% of the critical density and how inflation fits into a unified theory of the forces and particles. These are exciting times in cosmology!
Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio
2013-01-01
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
Lesgourges, J.
2013-08-01
We present a self-contained summary of the theory of linear cosmological perturbations. We emphasize the effect of the six parameters of the minimal cosmological model, first, on the spectrum of Cosmic Microwave Background temperature anisotropies, and second, on the linear matter power spectrum. We briefly review at the end the possible impact of a few non-minimal dark matter and dark energy models.
Brane cosmology with curvature corrections
We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)
Silk, Joseph
2008-11-01
The field of cosmology has been transformed since the glorious decades of the 1920's and 1930's when theory and observation converged to develop the current model of the expanding universe. It was a triumph of the theory of general relativity and astronomy. The first revolution came when the nuclear physicists entered the fray. This marked the debut of the hot big bang, in which the light elements were synthesized in the first three minutes. It was soon realised that elements like carbon and iron were synthesized in exploding stars. However helium, as well as deuterium and lithium, remain as George Gamow envisaged, the detritus of the big bang. The climax arrived with one of the most remarkable discoveries of the twentieth century, the cosmic microwave background radiation, in 1964. The fossil glow turned out to have the spectrum of an ideal black body. One could not imagine a stronger confirmation of the hot and dense origin of the universe. This discovery set the scene for the next major advance. It was now the turn of the particle physicists, who realized that the energies attained near the beginning of the universe, and unachievable in any conceivable terrestrial accelerator, provided a unique testing ground for theories of grand unification of the fundamental forces. This led Alan Guth and Andrei Linde in 1980 to propose the theory of inflation, which solved outstanding puzzles of the big bang. One could now understand why the universe is so large and homogeneous, and the origin of the seed fluctuations that gave rise to large-scale structure. A key prediction was that the universe should have Euclidean geometry, now verified to a precision of a few percent. Modern cosmology is firmly embedded in particle physics. It merits a text written by a particle physicist who can however appreciate the contributions of astronomy that provide the foundation and infrastructure for the theory of the expanding universe. There are now several such texts available. The most
Modified geodetic brane cosmology
We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)
Cosmological and astrophysical neutrino mass measurements
Abazajian, K.N.; Calabrese, E.; Cooray, A.;
2011-01-01
Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....
Cosmological and Astrophysical Neutrino Mass Measurements
Abazajian, K N; Cooray, A; De Bernardis, F; Dodelson, S; Friedland, A; Fuller, G M; Hannestad, S; Keating, B G; Linder, E V; Lunardini, C; Melchiorri, A; Miquel, R; Pierpaoli, E; Pritchard, J; Serra, P; Takada, M; Wong, Y Y Y
2011-01-01
Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.
Cosmological Inflation: A Personal Perspective
Kazanas, Demos
2008-01-01
We present a brief review of Cosmological Inflation from the personal perspective of the speaker who almost 30 years ago proposed a way of resolving the problem of Cosmological Horizon by employing certain notions and developments from the field of High Energy Physics. Along with a brief introduction of the Horizon and Flatness problems of standard cosmology, this lecture concentrates on personal reminiscing of the notions and ideas that prevailed and influenced the author's thinking at the time. The lecture then touches upon some more recent developments related to the subject including exact solutions to conformal gravity that provide a first principles emergence of a characteristic acceleration in the universe and concludes with some personal views concerning the direction that the cosmology field has taken in the past couple of decades and certain speculations some notions that may indicate future directions of research.
Quintessential Maldacena-Maoz cosmologies
Maldacena and Maoz have proposed a new approach to holographic cosmology based on Euclidean manifolds with disconnected boundaries. This approach appears, however, to be in conflict with the known geometric results [the Witten-Yau theorem and its extensions] on spaces with boundaries of non-negative scalar curvature. We show precisely how the Maldacena-Maoz approach evades these theorems. We also exhibit Maldacena-Maoz cosmologies with [cosmologically] more natural matter content, namely quintessence instead of Yang-Mills fields, thereby demonstrating that these cosmologies do not depend on a special choice of matter to split the Euclidean boundary. We conclude that if our Universe is fundamentally anti-de Sitter-like [with the current acceleration being only temporary], then this may force us to confront the holography of spaces with a connected bulk but a disconnected boundary. (author)
MOND cosmology from entropic force
We derive the MOND cosmology which is uniquely corresponding to the original MOND at galaxy scales via entropic gravity method. It inherits the key merit of MOND, that is, it reduces the baryonic matter and non-baryonic dark matter into baryonic matter only. For the first time we obtain the critical parameter in MOND, i.e., the transition acceleration ac at cosmological scale. We thus solve the long-standing coincidence problem ac∼cH0. More interestingly, a term like age-graphic dark energy emerges naturally. In the frame of this MOND cosmology, we only need baryonic matter to describe both dark matter and dark energy in standard cosmology.
Cosmological Models and Renormalization Group Flow
Kristjansson, K. R.; Thorlacius, L.
2002-01-01
We study cosmological solutions of Einstein gravity with a positive cosmological constant in diverse dimensions. These include big-bang models that re-collapse, big-bang models that approach de Sitter acceleration at late times, and bounce models that are both past and future asymptotically de Sitter. The re-collapsing and the bounce geometries are all tall in the sense that entire spatial slices become visible to a comoving observer before the end of conformal time, while the accelerating bi...
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years. PMID:27007681
Cosmological tests of modified gravity
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein’s theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard Λ CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
An Improved Cosmological Model
Tsamis, N C
2016-01-01
We study a class of non-local, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense universe the nonlocal screening terms become constant as the universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller anti-screening effect that could explain the current phase of acceleration.
Narimani, Ali; Scott, Douglas
2011-01-01
Although it is possible that some fundamental physical constants could vary in time, it is important to only consider dimensionless combinations, such as the fine structure constant or the equivalent coupling constant for gravity. Once all such dimensionless numbers have been given, then we can be sure that our cosmological picture is governed by the same physical laws as that of another civilization with an entirely different set of units. An additional feature of the standard model of cosmology raises an extra complication, namely that the epoch at which we live is a crucial part of the model. This can be defined by giving the value of any one of the evolving cosmological parameters. It takes some care to avoid inconsistent results for constraints on variable constants, which could be caused by effectively fixing more than one parameter today. We show examples of this effect by considering in some detail the physics of Big Bang nucleosynthesis, recombination and microwave background anisotropies, being care...
A brane universe moving in a curved higher dimensional bulk space is considered. The motion induces a cosmological evolution on the universe brane that is indistinguishable from a similar one induced by matter density on the brane. The phenomenological implications of such an idea are discussed. Various mirage energy densities are found, corresponding to dilute matter driving the cosmological expansion, many having superluminal properties vertical bar w vertical bar >1 or violating the positive energy condition. It is shown that energy density due to the world-volume fields is nicely incorporated into the picture. It is also pointed out that the initial singularity problem is naturally resolved in this context. (author)
Observations indicate the presence of a magnetic field at galactic and cosmological scales. However, the origin of these magnetic fields is not well understood. There is enough motivation to look into the primordial origin of magnetic field, which essentially requires the breaking of conformal invariance of Maxwell's theory. Several mechanisms to generate primordial magnetic field have been proposed. A brief overview of those models has been presented. Central problem of the models within inflationary paradigm has been addressed. Possibilities to generate primordial magnetic field beyond inflationary framework are mentioned. A toy model for bouncing cosmology has been presented to understand the idea of magnetogenesis in such models
Barbosa, C M S; Piattella, O F; Velten, H E S; Zimdahl, W
2015-01-01
We discuss the possibility to implement a viscous cosmological model, attributing to the dark matter component a behaviour described by bulk viscosity. Since bulk viscosity implies negative pressure, this rises the possibility to unify the dark sector. At the same time, the presence of dissipative effects may alleviate the so called small scale problems in the $\\Lambda$CDM model. While the unified viscous description for the dark sector does not lead to consistent results, the non-linear behaviour indeed improves the situation with respect to the standard cosmological model.
Ringwald, A.
2012-01-01
In this master's thesis we study the cosmological consequences of the new scalar field, the axion, that appears in the U(1)_PQ extension of the standard model of particle physics. We start by presenting some essential fragments of the standard model of Big Bang cosmology, that are needed when we describe the evolution of the axion field in the early Universe. We also review the basics of phase transitions in the early Universe, and go through the creation and evolution of the topological defe...
Bouncing cosmologies with viscous fluids
Singh, T.; Chaubey, R.; Singh, Ashutosh
2016-03-01
The bounce in viscous fluid cosmology with inhomogeneous viscous fluids in Friedman-Robertson-Walker (FRW) space-time has been investigated. Different forms for the scale factor have been considered. The general features of the fluids which realize them and the possibility to have an acceleration after the bounce have been discussed.
Bulk scalar field in DGP braneworld cosmology
Ansari, Rizwan ul Haq
2007-01-01
We investigated the effects of bulk scalar field in the braneworld cosmological scenario. The Friedmann equations and acceleration condition in presence of the bulk scalar field for a zero tension brane and cosmological constant are studied. In DGP model the effective Einstein equation on the brane is obtained with bulk scalar field. The rescaled bulk scalar field on the brane in the DGP model behaves as an effective four dimensional field, thus standard type cosmology is recovered. In present study of the DGP model, the late-time accelerating phase of the universe can be explained .
Cosmology with the Square Kilometre Array by SKA-Japan
Yamauchi, Daisuke; Kohri, Kazunori; Namikawa, Toshiya; Oyama, Yoshihiko; Sekiguchi, Toyokazu; Shimabukuro, Hayato; Takahashi, Keitaro; Takahashi, Tomo; Yokoyama, Shuichiro; Yoshikawa, Kohji
2016-01-01
In the past several decades, the standard cosmological model has been established and its parameters have been measured to a high precision, while there are still many of the fundamental questions in cosmology; such as the physics in the very early Universe, the origin of the cosmic acceleration and the nature of the dark matter. The future world's largest radio telescope, Square Kilometre Array (SKA), will be able to open the new frontier of cosmology and will be one of the most powerful tools for cosmology in the next decade. The cosmological surveys conducted by the SKA would have the potential not only to answer these fundamental questions but also deliver the precision cosmology. In this article we briefly review the role of the SKA from the view point of the modern cosmology. The cosmology science led by the SKA-Japan Consortium (SKA-JP) Cosmology Science Working Group is also discussed.
Marsh, David J E
2015-01-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also extraordinarily well-motivated within high energy physics, and so axion cosmology offers us a unique view onto these theories. I present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via the CMB and structure formation up to the present-day Universe. I briefly review the motivation and models for axions in particle physics and string theory. The primary focus is on the population of ultralight axions created via vacuum realignment, and its role as a dark matter (DM) candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute l...
Enqvist, K
2012-01-01
The very basics of cosmological inflation are discussed. We derive the equations of motion for the inflaton field, introduce the slow-roll parameters, and present the computation of the inflationary perturbations and their connection to the temperature fluctuations of the cosmic microwave background.
Dynamics of interacting dark energy model in Einstein and Loop Quantum Cosmology
Chen, Songbai; Wang, Bin(Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China); Jing, Jiliang
2008-01-01
We investigate the background dynamics when dark energy is coupled to dark matter in the universe described by Einstein cosmology and Loop Quantum Cosmology. We introduce a new general form of dark sector coupling, which presents us a more complicated dynamical phase space. Differences in the phase space in obtaining the accelerated scaling attractor in Einstein cosmology and Loop Quantum Cosmology are disclosed.
Marsh, David J. E.
2016-07-01
Axions comprise a broad class of particles that can play a major role in explaining the unknown aspects of cosmology. They are also well-motivated within high energy physics, appearing in theories related to CP-violation in the standard model, supersymmetric theories, and theories with extra-dimensions, including string theory, and so axion cosmology offers us a unique view onto these theories. I review the motivation and models for axions in particle physics and string theory. I then present a comprehensive and pedagogical view on the cosmology and astrophysics of axion-like particles, starting from inflation and progressing via BBN, the CMB, reionization and structure formation, up to the present-day Universe. Topics covered include: axion dark matter (DM); direct and indirect detection of axions, reviewing existing and future experiments; axions as dark radiation; axions and the cosmological constant problem; decays of heavy axions; axions and stellar astrophysics; black hole superradiance; axions and astrophysical magnetic fields; axion inflation, and axion DM as an indirect probe of inflation. A major focus is on the population of ultralight axions created via vacuum realignment, and its role as a DM candidate with distinctive phenomenology. Cosmological observations place robust constraints on the axion mass and relic density in this scenario, and I review where such constraints come from. I next cover aspects of galaxy formation with axion DM, and ways this can be used to further search for evidence of axions. An absolute lower bound on DM particle mass is established. It is ma > 10-24eV from linear observables, extending to ma ≳ 10-22eV from non-linear observables, and has the potential to reach ma ≳ 10-18eV in the future. These bounds are weaker if the axion is not all of the DM, giving rise to limits on the relic density at low mass. This leads to the exciting possibility that the effects of axion DM on structure formation could one day be detected
Seeing darkness: the new cosmology
We present some useful ways to visualize the nature of dark energy and the effects of the accelerating expansion on cosmological quantities. Expansion probes such as Type Ia supernovae distances and growth probes such as weak gravitational lensing and the evolution of large scale structure provide powerful tests in complementarity. We present a 'ladder' diagram, showing that in addition to dramatic improvements in precision, next generation probes will provide insight through an increasing ability to test assumptions of the cosmological framework, including gravity beyond general relativity
MOND cosmology from entropic force
Zhang, Hongsheng; Li, Xin-Zhou
2011-01-01
We derive the MOND cosmology which is uniquely corresponding to the original MOND at galaxy scales via entropic gravity method. It inherits the key merit of MOND, that is, it reduces the baryonic matter and non-baryonic dark matter into baryonic matter only. For the first time we obtain the critical parameter in MOND, i.e., the transition acceleration $a_c$ at cosmological scale. We thus solve the long-standing coincidence problem $a_c\\sim cH_{0}$. More interestingly, a term like age-graphic ...
Kirillov, A A
2015-01-01
We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.
Kirillov, A. A.; Savelova, E. P.
2016-05-01
We describe in details the procedure how the Lobachevsky space can be factorized to a space of the constant negative curvature filled with a gas of wormholes. We show that such wormholes have throat sections in the form of tori and are traversable and stable in the cosmological context. The relation of such wormholes to the dark matter phenomenon is briefly described. We also discuss the possibility of the existence of analogous factorizations for all types of homogeneous spaces.
Chen, Pisin
2014-01-01
Recent years have seen tremendous progress in our understanding of the cosmos, which in turn points to even deeper questions to be further addressed. Concurrently the laser technology has undergone dramatic revolutions, providing exciting opportunity for science applications. History has shown that the symbiosis between direct observations and laboratory investigation is instrumental in the progress of astrophysics. We believe that this remains true in cosmology. Current frontier phenomena re...
Capozziello, S; Fatibene, L; Ferraris, M; Garruto, S
2016-01-01
We shall discuss cosmological models in extended theories of gravitation. We shall define a surface, called the model surface, in the space of observable parameters which characterises families of theories. We also show how this surface can be used to compare with observations. The model surface can potentially be used to falsify whole families of models instead reasoning on a single model basis as it is usually done by best fit arguments with observations.
Neves, J C S
2015-01-01
In the Nietzschean philosophy, the concept of force from physics is important to build one of its main concepts: the will to power. The concept of force, which Nietzsche found out in the Classical Mechanics, almost disappears in the physics of the XX century with the Quantum Field Theory and General Relativity. Is the Nietzschean world as contending forces, a Dionysian cosmology, possible in the current science?
Averaging anisotropic cosmologies
Barrow, J D; Barrow, John D.; Tsagas, Christos G.
2006-01-01
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...
Bonanno, Alfio
2011-01-01
We discuss a mechanism that induces a time-dependent vacuum energy on cosmological scales. It is based on the instability induced renormalization triggered by the low energy quantum fluctuations in a Universe with a positive cosmological constant. We employ the dynamical systems approach to study the qualitative behavior of Friedmann-Robertson-Walker cosmologies where the cosmological constant is dynamically evolving according with this nonperturbative scaling at low energies. It will be shown that it is possible to realize a "two regimes" dark energy phases, where an unstable early phase of power-law evolution of the scale factor is followed by an accelerated expansion era at late times.
The screening Horndeski cosmologies
Starobinsky, Alexei A; Volkov, Mikhail S
2016-01-01
We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a $\\Lambda$-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the $\\Lambda$-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the $\\Lambda$-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing "the emergence of time". Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyze the dynamical stability of these solutions and find that all of them are...
Cosmological evolution of a ghost scalar field
Sushkov, S. V.; Kim, S. -W
2004-01-01
We consider a scalar field with a negative kinetic term minimally coupled to gravity. We obtain an exact non-static spherically symmetric solution which describes a wormhole in cosmological setting. The wormhole is shown to connect two homogeneous spatially flat universes expanding with acceleration. Depending on the wormhole's mass parameter $m$ the acceleration can be constant (the de Sitter case) or infinitely growing.
Constraining scalar field dark energy with cosmological observations
Samushia, Lado
2009-01-01
High precision cosmological observations in last decade suggest that about 70% of our universe's energy density is in so called "Dark Energy" (DE). Observations show that DE has negative effective pressure and therefore unlike conventional energy sources accelerates the cosmic expansion instead of decelerating it. DE is highly uniform and has become a dominant component only recently. The simplest candidate for DE is the time-independent cosmological constant $\\Lambda$. Although successful in fitting available data, the cosmological constant model has a number of theoretical shortcomings and because of that alternative models of DE are considered. In one such scenario a cosmological scalar field that slowly rolls down its potential acts like a time-dependent cosmological constant. I have used different independent cosmological data sets to constrain the time dependence of DE's energy density in the framework of the slowly-rolling cosmological scalar field model. Present data favors a time-independent cosmolog...
Brandenberger, Robert H.
2008-01-01
String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...
Religion, theology and cosmology
John T. Fitzgerald
2013-10-01
Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.
Fabris, J C; Rodrigues, D C; Batista, C E M; Daouda, M H
2012-01-01
We review the difficulties of the generalized Chaplygin gas model to fit observational data, due to the tension between background and perturbative tests. We argue that such issues may be circumvented by means of a self-interacting scalar field representation of the model. However, this proposal seems to be successful only if the self-interacting scalar field has a non-canonical form. The latter can be implemented in Rastall's theory of gravity, which is based on a modification of the usual matter conservation law. We show that, besides its application to the generalized Chaplygin gas model, other cosmological models based on Rastall's theory have many interesting and unexpected new features.
Zimdahl, Winfried; Pavón, Diego
2002-01-01
We show that with the help of a suitable coupling between dark energy and cold dark matter it is possible to reproduce any scaling solution $\\rho _{X}\\propto \\rho_{M}a^{\\xi}$, where $\\rho_{X}$ and $\\rho_{M}$ are the densities of dark energy and dark matter, respectively. We demonstrate how the case $\\xi = 1$ alleviates the coincidence problem. Future observations of supernovae at high redshift as well as quasar pairs which are planned to discriminate between different cosmological models will...
Boeyens, Jan CA
2010-01-01
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp
Bardeen, J. M.
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.
Wickramasinghe, N. C.; Hoyle, Fred
1998-07-01
The central regions of galaxies could provide the most promising venues for the large-scale synthesis of prebiotic molecules by Miller-Urey type processes.Exploding supermassive stars would produce the basic chemical elements necessary to form molecules in high-density mass flows under near-thermodynamic conditions. Such molecules are then acted upon by X-rays in a manner that simulates the conditions required for Miller-Urey type processing. The Miller-Urey molecular products could initially lead to the origination and dispersal of microbial life on a cosmological scale. Thereafter the continuing production of such molecules would serve as the feedstock of life.
Networks often represent systems that do not have a long history of study in traditional fields of physics; albeit, there are some notable exceptions, such as energy landscapes and quantum gravity. Here, we consider networks that naturally arise in cosmology. Nodes in these networks are stationary observers uniformly distributed in an expanding open Friedmann–Lemaître–Robertson–Walker universe with any scale factor and two observers are connected if one can causally influence the other. We show that these networks are growing Lorentz-invariant graphs with power-law distributions of node degrees. These networks encode maximum information about the observable universe available to a given observer. (paper)
Magnetohydrodynamic cosmologies
We analyse a class of cosmological models in magnetohydrodynamic regime extending and completing the results of a previous paper. The material content of the models is a perfect fluid plus electromagnetic fields. The fluid is neutral in average but admits an electrical current which satisfies Ohm's law. All models fulfil the physical requirements of near equilibrium thermodynamics and can be favourably used as a more realistic description of the interior of a collapsing star in a magnetohydrodynamic regime with or without a magnetic field. (author)
Brane Cosmology and Higher Derivative Theory
Naboulsi, R
2003-01-01
In this paper, we have considered a cosmological model with density perturbation and decreasing cosmological constant of the form Lambda = 3beta (frac{dot{R}^2}{R^2}) + delta (frac{ddot{R}}{R}), beta, gamma = const. Inspired from brane cosmology, we supposed the presence of exotic density related to the cosmological constant by the formula 2Lambda = 3m^2, where m is a constant having the dimension of Hubble constant. Their effects on the evolution of the spatially, flat FRW cosmoligical model of the Universe is analyzed in the framework of higher derivative theory. The Universe is found to be accelerating with time with no initial singularity for beta < frac{1}{3} and the cosmological constant is found to decrease as t^{-2} but smaller than 3H^2. The presence of interacting scalar field is also discussed.
The velocity field in MOND cosmology
Candlish, G N
2016-01-01
The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAyMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAyMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to $\\Lambda$CDM, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard $\\Lambda$CDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAyMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field ...
Recent Developments in Cosmology and Nucleochronometry
Cosmology is currently entering a new phase of comprehensiveness, precision and confidence. Recent developments in theoretical and observational cosmology (including accelerating expansion, cosmic micro wave background anisotropy and nonzero-mass neutrino oscillations) and nucleochonometry are herein reviewed, presenting the latest values of quasar red-shift, cosmological parameters in the standard model (with concentration up on the Hubble constant and the age of the Universe) and dating information from nuclear astrophysics. The methods and findings of nucleochronology, in the main based up on stellar r-process neutron capture rate data relevant to, e.g., 137Re/137Os chronometry, Th/Eu abundance ratios and Th or U chronometry techniques are discussed in detail. Recent findings concerning the accelerated expansion of the Universe are presented, with consideration given to cosmological implications of, e.g., dark energy, exotic dark matter, cosmic strings and supergravity . In conclusion, some remaining current problems and uncertainties are briefly noted. (author)
The case for the cosmological constant
Varun Sahni
2000-07-01
I present a short overview of current observational results and theoretical models for a cosmological constant. The main motivation for invoking a small cosmological constant (or -term) at the present epoch has to do with observations of high redshift Type Ia supernovae which suggest an accelerating universe. A ﬂat accelerating universe is strongly favoured by combining supernovae observations with observations of CMB anisotropies on degree scales which give the `best-ﬁt’ values ≃ 0.7 and m ≃ 0.3. A time dependent cosmological -term can be generated by scalar ﬁeld models with exponential and power law potentials. Some of these models can alleviate the `ﬁne tuning’ problem which faces the cosmological constant.
Carloni, Sante; Nojiri, Shin'ichi; Odintsov, Sergei D; Oksanen, Markku; Tureanu, Anca
2010-01-01
We propose the most general modified first-order Ho\\v{r}ava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat FRW space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified $F(R)$ Ho\\v{r}ava-Lifshitz gravity is introduced. The study of its ultraviolet properties shows that its $z=3$ version seems to be renormalizable in the same way as the original Ho\\v{r}ava-Lifshitz proposal. The Hamiltonian analysis of the modified $F(R)$ Ho\\v{r}ava-Lifshitz gravity shows that it is in general a consistent theory. The $F(R)$ gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for th...
When the common ground between particle physics, astrophysics and cosmology started to become a developing area, the Institute for Nuclear Research (INR) of the Russian Academy of Sciences had the foresight in 1981 to institute the Baksan Schools on Particles and Cosmology. This now traditional event, held biannually in the Baksan Valley, has gone on to attract international participation. The site is close to the INR Baksan Neutrino Observatory with its underground and surface installations, including the SAGE gallium solar neutrino detector, the Underground Scintillation Telescope, and the 'Carpet' extensive air shower array. Participation is mainly from experimentalists working in non accelerator particle physics and particle astrophysics. The most recent School, held from April 21 to 28, began with an opening address by INR Director V. A. Matveev. J.Frieman reviewed standard big bang cosmology, emphasizing how the recent COBE results and the observations of large scale galaxy clustering fit into a standard cosmology framework. For inflationary cosmology, he showed how different models may be tested through their predictions for large-scale galactic structure and for cosmic microwave background anisotropy. A.Stebbins presented details of the large scale distribution of galaxies which, combined with velocity information and microwave background anisotropy data, provide strong constraints on theories of the origin of primordial inhomogeneities. Inflation requires, and theories of the large scale structure strongly favour the critical value for the cosmic mass density, while, as D.Seckel explained in his lecture on nucleosynthesis and abundances of the light elements, the baryon contribution to this density has to be tens of times smaller. A general review on the observational evidence for dark matter, dark matter particle candidates and the strategy of dark matter searches was given by I. Tkachev, who stressed the gravitational microlensing MACHO
Asymptotic safety and the cosmological constant
Falls, Kevin
2016-01-01
We study the non-perturbative renormalisation of quantum gravity in four dimensions. Taking care to disentangle physical degrees of freedom, we observe the topological nature of conformal fluctuations arising from the functional measure. The resulting beta functions possess an asymptotically safe fixed point with a global phase structure leading to classical general relativity for positive, negative or vanishing cosmological constant. If only the conformal fluctuations are quantised we find an asymptotically safe fixed point predicting a vanishing cosmological constant on all scales. At this fixed point we reproduce the critical exponent, ν = 1/3, found in numerical lattice studies by Hamber. Returning to the full theory we find that by setting the cosmological constant to zero the critical exponent agrees with the conformally reduced theory. This suggests the fixed point may be physical while hinting at solution to the cosmological constant problem.
{\\Lambda}CDM cosmology from matter only
Telkamp, Herman
2015-01-01
I discuss a matter-only interpretation of {\\Lambda}CDM cosmology, based on conservation of energy and assuming a Machian definition of inertia. {\\Lambda}CDM cosmology can be linked to a Newtonian cosmic potential, subject to a propagating gravitational horizon. In a matter-only universe where total energy is conserved, Machian inertia related to the evolving potential may cause both deceleration and acceleration of recession.
Dark Energy and the New Cosmology
Turner, Michael S.
2001-01-01
A successor to the standard hot big-bang cosmology is emerging. It greatly extends the highly successful hot big-bang model. A key element of the New Standard Cosmology is dark energy, the causative agent for accelerated expansion. Dark energy is just possibly the most important problem in all of physics. The only laboratory up to the task of studying dark energy is the Universe itself.
Newtonian cosmology - Problems of cosmological didactics
Skarzynski, E.
1983-03-01
The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.
An introduction to cosmological inflation
An introductory account is given of the inflationary cosmology, which postulates a period of accelerated expansion during the Universe's earliest stages. The historical motivation is briefly outlined, and the modelling of the inflationary epoch explained. The most important aspect of inflation is that it provides a possible model for the origin of structure in the Universe, and key results are reviewed, along with a discussion of the current observational situation and outlook. (author)
Alfaro, Jorge; González, Pablo
2012-01-01
We present a model of the gravitational field based on two symmetric tensors. Gravity is affected by the new field, but outside matter the predictions of the model coincide exactly with general relativity, so all classical tests are satisfied. We find that massive particles do not follow a geodesic while massless particles trajectories are null geodesics of an effective metric. We study the Cosmological case, where we get an accelerated expansion of the universe without dark energy. We also i...
Carroll Sean M.
2001-01-01
Full Text Available This is a review of the physics and cosmology of the cosmological constant. Focusing on recent developments, I present a pedagogical overview of cosmology in the presence of a cosmological constant, observational constraints on its magnitude, and the physics of a small (and potentially nonzero vacuum energy.
Nonlinear growing neutrino cosmology
Ayaita, Youness; Baldi, Marco; Führer, Florian; Puchwein, Ewald; Wetterich, Christof
2016-03-01
The energy scale of dark energy, ˜2 ×10-3 eV , is a long way off compared to all known fundamental scales—except for the neutrino masses. If dark energy is dynamical and couples to neutrinos, this is no longer a coincidence. The time at which dark energy starts to behave as an effective cosmological constant can be linked to the time at which the cosmic neutrinos become nonrelativistic. This naturally places the onset of the Universe's accelerated expansion in recent cosmic history, addressing the why-now problem of dark energy. We show that these mechanisms indeed work in the growing neutrino quintessence model—even if the fully nonlinear structure formation and backreaction are taken into account, which were previously suspected of spoiling the cosmological evolution. The attractive force between neutrinos arising from their coupling to dark energy grows as large as 106 times the gravitational strength. This induces very rapid dynamics of neutrino fluctuations which are nonlinear at redshift z ≈2 . Nevertheless, a nonlinear stabilization phenomenon ensures only mildly nonlinear oscillating neutrino overdensities with a large-scale gravitational potential substantially smaller than that of cold dark matter perturbations. Depending on model parameters, the signals of large-scale neutrino lumps may render the cosmic neutrino background observable.
Ross, Charles H.
2005-04-01
Aristotle thought that the universe was finite and Earth centered. Newton thought that it was infinite. Einstein guessed that the universe was finite, spherical, static, warped, and closed. Hubble's 1930 discovery of the expanding universe, Penzias and Wilson's 1968 discovery of the isotropic CMB, and measurements on light element abundances, however, established a big bang origin. Vera Rubin's 1980 dark matter discovery significantly impacted contending theories. However, 1998 is the year when sufficiently accurate supernova and primordial deuterium data was available to truly explore the universe. CMB anisotropy measurements further extended our cosmological database in 2003. On the theoretical side, Friedmann's 1922 perturbation solution of Einstein's general relativity equations for a static universe has shaped the thought and direction in cosmology for the past 80 years. It describes 3D space as a dynamic function of time. However, 80 years of trying to fit Friedmann's solution to observational data has been a bumpy road - resulting in such counter-intuitive, but necessary, features as rapid inflation, precision tuning, esoteric dark matter, and an accelerating input of esoteric dark energy.
Moffat, J W
2016-01-01
An alternative to the postulate of dark energy required to explain the accelerated expansion of the universe is to adopt an inhomogeneous cosmological model to explain the supernovae data without dark energy. We adopt a void cosmology model, based on the inhomogeneous Lema\\^{i}tre-Tolman-Bondi solution of Einstein's field equations. The model can resolve observational anomalies in the $\\Lambda CDM$ model, such as the discrepancy between the locally measured value of the Hubble constant, $H_0=73.24\\pm 1.74\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$, and the $H_0=66.93\\pm 0.62\\,{\\rm km}\\,{\\rm s}^{-1}\\,{\\rm Mpc}^{-1}$ determined by the Planck satellite data and the $\\Lambda CDM$ model, and the lithium $^{7}{\\rm Li}$ problem, which is a $5\\sigma$ mismatch between the theoretical prediction for the $^{7}{\\rm Li}$ from big bang nucleosynthesis and the value that we observe locally today at $z=0$. The void model can also resolve the tension between the number of massive clusters derived from the Sunyaev-Zel'dovich eff...
Vankov, A.
1998-01-01
The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.
Averaging anisotropic cosmologies
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity
Tsagas, C G
2001-01-01
The vector nature of magnetic fields and the general relativistic geometrical interpretation of gravity lead to a unique coupling between magnetism and spacetime curvature, by effectively transferring the field properties into the spacetime itself. The key magnetic property appears to be the tension of the field lines. Combined with geometry, the magnetic tension triggers a range of rather unexpected effects with profound implications. The field suppresses or boosts density fluctuations depending on the strength of the curvature deformation. It can act as an effective cosmological constant or mimic a time-decaying quintessence. Moreover, even weak magnetic fields become key players when the curvature is strong. For instance, a seed field could halt the accelerated phase in certain inflationary models. The magnetic tension also damps gravity waves and shows an intriguing tendency to smooth out spatial curvature distortions. We describe the nature and the range of these effects and discuss their potential impli...
Cosmology and particle physics
The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology
The Age of Precision Cosmology
Chuss, David T.
2012-01-01
In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.
Dvali-Gabadadze-Porrati Cosmology in Bianchi I brane
Ansari, Rizwan Ul Haq
2008-01-01
The dynamics of Dvali-Gabadadze-Porrati Cosmology (DGP) braneworld with an anisotropic brane is studied. The Friedmann equations and their solutions are obtained for two branches of anisotropic DGP model. The late time behavior in DGP cosmology is examined in the presence of anisotropy which shows that universe enters a self-accelerating phase much later compared to the isotropic case. The acceleration conditions and slow-roll conditions for inflation are obtained.
Observational constraints on dark energy cosmological model parameters
Farooq, Muhammad Omer
2013-01-01
The expansion rate of the Universe changes with time, initially slowing (decelerating) when the universe was matter dominated, because of the mutual gravitational attraction of all the matter in it, and more recently speeding up (accelerating). A number of cosmological observations now strongly support the idea that the Universe is spatially flat (provided the dark energy density is at least approximately time independent) and is currently undergoing an accelerated cosmological expansion. A m...
Kunze, Kerstin E
2016-01-01
Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.
Two Friedman's cosmological papers (1922, 1924) and his own interpretation of the obtained results are briefly reviewed. Discussion follows of Friedman's role in the early development of relativistic cosmology. 18 refs. (author)
Nojiri, S; Oikonomou, V K
2016-01-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to solve the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology, of the perfect fluid with constant equation of state cosmology, of the Type IV singular cosmology and of the $R^2$ inflation cosmology. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation problem might exist, we provide a qualita...
The so-called doubling problem in the lattice description of fermions led to a proof that under certain circumstances chiral gauge theories cannot be defined on the lattice. This is called the no-go theorem. It implies that if Γ/sub/A is defined on a lattice then its infrared limit, which should correspond to the quantum description of the classical action for the slowly varying fields on lattice scale, is inevitably a vector like theory. In particular, if not circumvented, the no-go theorem implies that there is no lattice formulation of the Standard Weinberg-Salam theory or SU(5) GUT, even though the fermions belong to anomaly-free representations of the gauge group. This talk aims to explain one possible attempt at bypassing the no-go theorem. 20 refs
Stornaiolo, Cosimo
2001-01-01
In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...
Roos, Matts
2015-01-01
The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.
Particle physics and cosmology
During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe
Challenges for Inflationary Cosmology
Brandenberger, Robert H.
2004-01-01
Inflationary cosmology has provided a predictive and phenomenologically very successful scenario for early universe cosmology. Attempts to implement inflation using scalar fields, however, lead to models with serious conceptual problems. I will discuss some of the problems, explain why string theory could provide solutions to a subset of these problems, and give a brief overview of ``string gas cosmology'', one of the approaches to merge string theory and early universe cosmology.
Combination and interpretation of observables in Cosmology
Virey Jean-Marc
2010-04-01
Full Text Available The standard cosmological model has deep theoretical foundations but need the introduction of two major unknown components, dark matter and dark energy, to be in agreement with various observations. Dark matter describes a non-relativistic collisionless fluid of (non baryonic matter which amount to 25% of the total density of the universe. Dark energy is a new kind of fluid not of matter type, representing 70% of the total density which should explain the recent acceleration of the expansion of the universe. Alternatively, one can reject this idea of adding one or two new components but argue that the equations used to make the interpretation should be modified consmological scales. Instead of dark matter one can invoke a failure of Newton's laws. Instead of dark energy, two approaches are proposed : general relativity (in term of the Einstein equation should be modified, or the cosmological principle which fixes the metric used for cosmology should be abandonned. One of the main objective of the community is to find the path of the relevant interpretations thanks to the next generation of experiments which should provide large statistics of observationnal data. Unfortunately, cosmological in formations are difficult to pin down directly fromt he measurements, and it is mandatory to combine the various observables to get the cosmological parameters. This is not problematic from the statistical point of view, but assumptions and approximations made for the analysis may bias our interprettion of the data. Consequently, a strong attention should be paied to the statistical methods used to make parameters estimation and for model testing. After a review of the basics of cosmology where the cosmological parameters are introduced, we discuss the various cosmological probes and their associated observables used to extract cosmological informations. We present the results obtained from several statistical analyses combining data of diferent nature but
Disney, M J
2000-01-01
It is argued that some of the recent claims for cosmology are grossly overblown. Cosmology rests on a very small database: it suffers from many fundamental difficulties as a science (if it is a science at all) whilst observations of distant phenomena are difficult to make and harder to interpret. It is suggested that cosmological inferences should be tentatively made and sceptically received.
Tarun Sandeep
2004-10-01
Cosmology is passing through a golden phase of rapid advance. The cosmology workshop at ICGC-2004 attracted a large number of research contributions to diverse topics of cosmology. I attempt to classify and summarize the research work and results of the oral and poster presentations made at the meeting.
Dark Nuclei I: Cosmology and Indirect Detection
Detmold, William; McCullough, Matthew; Pochinsky, Andrew
2014-01-01
In a companion paper (to be presented), lattice field theory methods are used to show that in two-color, two-flavor QCD there are stable nuclear states in the spectrum. As a commonly studied theory of composite dark matter, this motivates the consideration of possible nuclear physics in this and other composite dark sectors. In this work, early Universe cosmology and indirect detection signatures are explored for both symmetric and asymmetric dark matter, highlighting the unique features that...
Duality extended Chaplygin cosmologies with a big rip
Chimento, L P; Chimento, Luis P.; Lazkoz, Ruth
2006-01-01
We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show those modifications can be framed within a theory with self-interacting gravity, where the term self-interaction refers here to the presence of functions of $\\rho$ and $p$ in the right hand side of the Einstein equations. We then discuss the construction of the duals of the cosmologies generated within that framework. After that we investigate the modifications required to generate generalized and modified Chaplygin cosmologies and show that their duals belong to a larger family of cosmologies we call extended Chaplygin cosmologies. Finally, by letting the parameters of those models take values not earlier considered in the literature we show some representatives of that family of cosmologies display sudden future singularities, which indicates their behavior is rather different from generalized or modified Chaplygin gas cosmologies. T...
Scale invariant cosmology I: the vacuum and the cosmological constant
Maeder, Andre
2016-01-01
The source of the acceleration of the expansion of the Universe is still unknown. We examine some consequences of the possible scale invariance of the empty space at large scales. The central hypothesis of this work is that, at macroscopic and large scales where General Relativity may be applied, the empty space in the sense it is used in the Minkowski metric, is also scale invariant. It is shown that if this applies, the Einstein cosmological constant and the scale factor of the scale invariant framework are related by two differential equations.
The Cosmological Constant for the Crystalline Vacuum Cosmic Space Model
Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J
2006-01-01
The value of the cosmological constant arising from a crystalline model for vacuum cosmic space with lattice parameter of the order of the neutron radius [1] has been calculated. The model allows to solve, in an easy way, the problem of the cosmological constant giving the right order of magnitude, which corresponds very well with the mean value of matter density in the universe. The obtained value is about 10 to the power of (-48) square Km. Diffraction experiments with non-thermal neutron beam in cosmic space are proposed to search for the possibility of crystalline structure of vacuum space and to measure the lattice parameter.
A definition of lattice BRS invariance is given. The requirement of lattice BRS invariance successfully replaces that of local gauge invariance as a principle for selecting allowed actions. This replacement also works to any finite order in perturbation theory, but, on the nonperturbative level one encounters an obstacle reflecting the existence of an even number of solutions to the gauge fixing problem. The problem of latticizing the classical action for open bosonic strings discovered by Witten is discussed and a possible direction for dealing with it is pointed out. 3 refs
Philosophical Roots of Cosmology
Ivanovic, M.
2008-10-01
We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.
贾伟; 豆福全; 孙建安; 段文山
2015-01-01
We investigate the tunneling dynamics of the Fermi gases in an optical lattice in the Bose–Einstein condensation (BEC) regime. The three critical scattering lengths and the system energies are found in different cases of Josephson os-cillation (JO), oscillating-phase-type self-trapping (OPTST), running-phase-type self-trapping (RPTST), and self-trapping (ST). It is found that the s-wave scattering lengths have a crucial role on the tunneling dynamics. By adjusting the scattering length in the adiabatic condition, the transition probability changes with the adiabatic periodicity and a rectangular periodic pattern emerges. The periodicity of the rectangular wave depends on the system parameters such as the periodicity of the adjustable parameter, the s-wave scattering length.
Krioukov, Dmitri; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguna, Marian
2012-01-01
Causal sets are an approach to quantum gravity in which the causal structure of spacetime plays a fundamental role. The causal set is a quantum network which underlies the fabric of spacetime. The nodes in this network are tiny quanta of spacetime, with two such quanta connected if they are causally related. Here we show that the structure of these networks in de Sitter spacetime, such as our accelerating universe, is remarkably similar to the structure of complex networks -- the brain or the Internet, for example. Specifically, we show that the node degree distribution of causal sets in de Sitter spacetime is described by a power law with exponent 2, similar to many complex networks. Quantifying the differences between the causal set structure in de Sitter spacetime and in the real universe, we find that since the universe today is relatively young, its power-law exponent is not 2 but 3/4, yet exponent 2 is currently emerging. Finally, we show that as a consequence of a simple geometric duality, the growth d...
Axion-dilaton cosmology and dark energy
We discuss a class of flat FRW cosmological models based on D=4 axion-dilaton gravity universally coupled to cosmological background fluids. In particular, we investigate the possibility of recurrent acceleration, which was recently shown to be generically realized in a wide class of axion-dilaton models, but in absence of cosmological background fluids. We observe that, once we impose the existence of radiation - and matter - dominated earlier stages of cosmic evolution, the axion-dilaton dynamics is altered significantly with respect to the case of pure axion-dilaton gravity. During the matter dominated epoch the scalar fields remain either frozen, due to the large expansion rate, or enter a cosmological scaling regime. In both cases, oscillations of the effective equation of state around the acceleration boundary value are impossible. Models which enter an oscillatory stage in the low redshift regime, on the other hand, are disfavored by observations. We also comment on the viability of the axion-dilaton system as a candidate for dynamical dark energy. In a certain subclass of models, an intermediate scaling regime is succeeded by eternal acceleration. We also briefly discuss the issue of dependence on initial conditions. (orig.)
Entropic Accelerating Universe
Easson, Damien A.; Frampton, Paul H.; Smoot, George F.
2010-01-01
To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic...
Bousso, Raphael
2005-01-25
We study conditions for the existence of asymptotic observables in cosmology. With the exception of de Sitter space, the thermal properties of accelerating universes permit arbitrarily long observations, and guarantee the production of accessible states of arbitrarily large entropy. This suggests that some asymptotic observables may exist, despite the presence of an event horizon. Comparison with decelerating universes shows surprising similarities: Neither type suffers from the limitations encountered in de Sitter space, such as thermalization and boundedness of entropy. However, we argue that no realistic cosmology permits the global observations associated with an S-matrix.
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed
Extending Cosmology: The Metric Approach
Mendoza, Sergio
2012-01-01
Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach
Cosmological parallax-distance formula
Singal, Ashok K.
2015-09-01
The standard cosmological parallax-distance formula, as found in the literature, including text-books and reference books on cosmology, requires a correction. This correction stems from the fact that in the standard text-book derivation it has been ignored that any chosen baseline in a gravitationally bound system does not partake in the cosmological expansion. Though the correction is available in the literature for some time, the text-books still continue to use the older, incorrect formula, and its full implications are not yet fully realized. Apart from providing an alternate correct, closed-form expression that is more suitable and convenient for computations for certain limiting cases of FRW () world models, we also demonstrate how one can compute parallax distance for the currently favored flat-space accelerating-universe (, ) cosmologies. Further, we show that the correction in parallax distance at large redshifts could amount to a factor of three or even more. Moreover, even in an infinite universe the parallax distance does not increase indefinitely with redshift and that even the farthest possible observable point may have a finite parallax angle, a factor that needs to be carefully taken into account when using distant objects as the background field against which the parallax of a foreground object is to be measured. Some other complications that could arise in parallax measurements of a distant source, like that due to the deflection of incoming light by the gravitation field of the Sun and other planetary bodies in the solar system, are pointed out.
Zentner, A R
2003-01-01
Improvements in observational techniques have transformed cosmology into a field inundated with ever-expanding, high-quality data sets and driven cosmology toward a standard model where the classic cosmological parameters are accurately measured. I briefly discuss some of the methods used to determine cosmological parameters, particularly primordial nucleosynthesis, the magnitude- redshift relation of supernovae, and cosmic microwave background anisotropy. I demonstrate how cosmological data can be used to complement particle physics and constrain extensions to the Standard Model. Specifically, I present bounds on light particle species and the properties of unstable, weakly-interacting, massive particles. Despite the myriad successes of the emerging standard cosmological model, unanswered questions linger. Numerical simulations of structure formation predict galactic central densities that are considerably higher than observed. They also reveal hundreds of satellites orbiting Milky Way-like galaxies while th...
Cosmological models and stability
Andersson, Lars
2013-01-01
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiri Bicak at this conference Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed...
Newtonian and Relativistic Cosmologies
Green, Stephen R
2011-01-01
Cosmological N-body simulations are now being performed using Newtonian gravity on scales larger than the Hubble radius. It is well known that a uniformly expanding, homogeneous ball of dust in Newtonian gravity satisfies the same equations as arise in relativistic FLRW cosmology, and it also is known that a correspondence between Newtonian and relativistic dust cosmologies continues to hold in linearized perturbation theory in the marginally bound/spatially flat case. Nevertheless, it is far from obvious that Newtonian gravity can provide a good global description of an inhomogeneous cosmology when there is significant nonlinear dynamical behavior at small scales. We investigate this issue in the light of a perturbative framework that we have recently developed, which allows for such nonlinearity at small scales. We propose a relatively straightforward "dictionary"---which is exact at the linearized level---that maps Newtonian dust cosmologies into general relativistic dust cosmologies, and we use our "order...
Cosmology and particle physics
This paper comprises the contents of four lectures in which the author illustrates the two-way nature of the interplay between the fields of cosmology and particle physics by focusing on several specifics: a review of the standard cosmology, concentrating on primordial nucleosynthesis; baryogenesis; monopoles; and the case in which a very early first-order phase transition associated with spontaneous symmetry breaking has the potential to explain some very fundamental cosmological facts
Balbi Amedeo
2013-09-01
Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.
Non-perturbative phenomena are essential to understanding quantum chromodynamics (QCD), the theory of the strong interactions. The particles observed are mesons and baryons, but the fundamental fields are quarks and gluons. Most properties of the hadrons are inaccessible in perturbation theory. Aside from their mere existence, the most blatant example is the mass spectrum. The lack of an accurate, reasonably precise, calculation of the mass spectrum is a major piece of unfinished business for theoretical particle physics. In addition, a wide variety of other non-perturbative calculations in QCD are necessary to interpret ongoing experiments. For example, it is impossible to extract the Cabibbo-Kobayashi-Maskawa angles without knowing matrix elements of operators in the K, D and B mesons. Furthermore, non-perturbative analyses of quarkonia can determine the strong coupling constant with uncertainties already comparable to perturbative analyses of high-energy data. These lectures cover lattice field theory, the only general, systematic approach that can address quantitatively the non-perturbative questions raised above. Sects. 2--8 explain how to formulate quantum field theory on a lattice and why lattice field theory is theoretically well-founded. Sect. 9 sketches some analytic calculations in scalar lattice field theory. They serve as an example of how lattice field theory can contribute to particle physics without necessarily using computers. Sect. 10 turns to the most powerful tool in lattice field theory: large-scale Monte Carlo integration of the functional integral. Instead of discussing algorithms in gory detail, the general themes of computational field theory are discussed. The methods needed for spectroscopy, weak matrix elements, and the strong coupling constant are reviewed. 52 refs., 7 figs., 1 tab
Dark Energy and the Cosmological Constant: A Brief Introduction
Harvey, Alex
2009-01-01
The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…
The finite-element method enables us to convert the operator differential equations of a quantum field theory into operator difference equations. These difference equations are consistent with the requirements of quantum mechanics and they do not exhibit fermion doubling, a problem that frequently plagues lattice treatments of fermions. Guage invariance can also be incorporated into the difference equations. On a finite lattice the operator difference equations can be solved in closed form. For the case of the Schwinger model the anomaly is computed and results in excellent agreement are obtained with the known continuum value
Multi-scale gravity and cosmology
Calcagni, Gianluca
2013-01-01
The gravitational dynamics and cosmological implications of three classes of recently introduced multi-scale spacetimes (with, respectively, ordinary, weighted and q-derivatives) are discussed. These spacetimes are non-Riemannian: the metric structure is accompanied by an independent measure-differential structure with the characteristics of a multi-fractal, namely, different dimensionality at different scales and, at ultra-short distances, a discrete symmetry known as discrete scale invariance. Under this minimal paradigm, five general features arise: (a) the big-bang singularity can be replaced by a finite bounce, (b) the cosmological constant problem is reinterpreted, since accelerating phases can be mimicked by the change of geometry with the time scale, without invoking a slowly rolling scalar field, (c) the discreteness of geometry at Planckian scales can leave an observable imprint of logarithmic oscillations in cosmological spectra and (d) give rise to an alternative mechanism to inflation or (e) to a...
The supernova cosmology cookbook: Bayesian numerical recipes
Karpenka, N V
2015-01-01
Theoretical and observational cosmology have enjoyed a number of significant successes over the last two decades. Cosmic microwave background measurements from the Wilkinson Microwave Anisotropy Probe and Planck, together with large-scale structure and supernova (SN) searches, have put very tight constraints on cosmological parameters. Type Ia supernovae (SNIa) played a central role in the discovery of the accelerated expansion of the Universe, recognised by the Nobel Prize in Physics in 2011. The last decade has seen an enormous increase in the amount of high quality SN observations, with SN catalogues now containing hundreds of objects. This number is expected to increase to thousands in the next few years, as data from next-generation missions, such as the Dark Energy Survey and Large Synoptic Survey Telescope become available. In order to exploit the vast amount of forthcoming high quality data, it is extremely important to develop robust and efficient statistical analysis methods to answer cosmological q...
Cosmological 3-point correlators from holography
McFadden, Paul
2011-01-01
We investigate the non-Gaussianity of primordial cosmological perturbations using holographic methods. In particular, we derive holographic formulae that relate all cosmological 3-point correlation functions, including both scalar and tensor perturbations, to stress-energy correlation functions of a holographically dual three-dimensional quantum field theory. These results apply to general single scalar inflationary universes that at late times approach either de Sitter spacetime or accelerating power-law cosmologies. We further show that in Einstein gravity all 3-point functions involving tensors can be obtained from correlators containing only positive helicity gravitons, with the ratios of these to the correlators involving one negative helicity graviton being given by universal functions of momenta, irrespectively of the potential of the scalar field. As a by-product of this investigation, we obtain holographic formulae for the full 3-point function of the stress-energy tensor along general holographic RG...
Dissipative or Conservative cosmology with dark energy ?
Szydlowski, M; Hrycyna, Orest; Szydlowski, Marek
2006-01-01
All evolutional paths for all admissible initial conditions of FRW cosmological models with dissipative dust fluid (described by dark matter, baryonic matter and dark energy) are analysed using dynamical system approach. With that approach, one is able to see how generic the class of solutions leading to the desired property -- acceleration -- is. The theory of dynamical systems also offers a possibility of investigating all possible solutions and their stability with tools of Newtonian mechanics of a particle moving in 1D potential which is parametrised by the cosmological scale factor. We demonstrate that flat cosmology with bulk viscosity can be treated as a conservative system with a potential function of the Chaplygin gas type. We characterise the class of dark energy models that admit late time de Sitter attractor solution in terms of the potential function of corresponding conservative system. We argue that inclusion of dissipation effects makes the model more realistic because of its structural stabil...
Grand unified models and cosmology
Jeannerot, Rachel
2006-01-01
The cosmological consequences of particle physics grand unified theories (GUTs) are studied. Cosmological models are implemented in realistic particle physics models. Models consistent from both particle physics and cosmological considerations are selected. (...)
Bouncing models with a cosmological constant
Pinto-Neto, Nelson; Pereira, Stella; Siffert, Beatriz [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2011-07-01
Full text: Bouncing models have been proposed by many authors as a complementation, or even as an alternative to inflation for the description of the very early and dense Universe. However, most bouncing models contain a contracting phase from a very large and rarefied state, where dark energy might have had an important role as it has today in accelerating our large Universe. In that case, its presence can modify substantially the initial conditions and evolution of cosmological perturbations, changing the known results already obtained in the literature concerning their amplitude and spectrum. In this paper, we assume the simplest and most appealing candidate for dark energy, the cosmological constant, and evaluate its influence on the evolution of cosmological perturbations during the contracting phase of a bouncing model, which also contains a perfect fluid with constant equation of state parameter w. We show that the spectrum and the amplitude of the perturbations are substantially altered by the presence of a cosmological constant with value tuned to give the present acceleration of the Universe. In this case, one needs the presence of a stiff matter fluid in the contracting phase, which can be modelled by a scalar field with kinetic energy much greater than its potential energy, very plausible in this situation, in order to have a scale invariant spectrum of perturbations in the expanding phase, contrary to the case without a cosmological constant, where a dust fluid is required. The difference resides on the vacuum state choice we have to make when a cosmological constant is present. (author)
Cosmology in time asymmetric extensions of general relativity
Leon, Genly
2015-01-01
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result...
Exact Scalar-Tensor Cosmological Solutions via Noether Symmetry
Belinchón, J A; Mak, M K
2016-01-01
In this paper, we investigate the Noether symmetries of a generalized scalar-tensor, Brans-Dicke type cosmological model, in which we consider explicit scalar field dependent couplings to the Ricci scalar, and to the scalar field kinetic energy, respectively. We also include the scalar field self-interaction potential into the gravitational action. From the condition of the vanishing of the Lie derivative of the gravitational cosmological Lagrangian with respect to a given vector field we obtain three cosmological solutions describing the time evolution of a spatially flat Friedman-Robertson-Walker Universe filled with a scalar field. The cosmological properties of the solutions are investigated in detail, and it is shown that they can describe a large variety of cosmological evolutions, including models that experience a smooth transition from a decelerating to an accelerating phase.
Exact scalar-tensor cosmological solutions via Noether symmetry
Belinchón, J. A.; Harko, T.; Mak, M. K.
2016-02-01
In this paper, we investigate the Noether symmetries of a generalized scalar-tensor, Brans-Dicke type cosmological model, in which we consider explicit scalar field dependent couplings to the Ricci scalar, and to the scalar field kinetic energy, respectively. We also include the scalar field self-interaction potential into the gravitational action. From the condition of the vanishing of the Lie derivative of the gravitational cosmological Lagrangian with respect to a given vector field we obtain three cosmological solutions describing the time evolution of a spatially flat Friedman-Robertson-Walker Universe filled with a scalar field. The cosmological properties of the solutions are investigated in detail, and it is shown that they can describe a large variety of cosmological evolutions, including models that experience a smooth transition from a decelerating to an accelerating phase.
The velocity field in MOND cosmology
Candlish, G. N.
2016-08-01
The recently developed code for N-body/hydrodynamics simulations in Modified Newtonian Dynamics (MOND), known as RAYMOND, is used to investigate the consequences of MOND on structure formation in a cosmological context, with a particular focus on the velocity field. This preliminary study investigates the results obtained with the two formulations of MOND implemented in RAYMOND, as well as considering the effects of changing the choice of MOND interpolation function, and the cosmological evolution of the MOND acceleration scale. The simulations are contrived such that structure forms in a background cosmology that is similar to Λcold dark matter, but with a significantly lower matter content. Given this, and the fact that a fully consistent MOND cosmology is still lacking, we compare our results with a standard ΛCDM simulation, rather than observations. As well as demonstrating the effectiveness of using RAYMOND for cosmological simulations, it is shown that a significant enhancement of the velocity field is likely an unavoidable consequence of the gravitational modification implemented in MOND, and may represent a clear observational signature of such a modification. It is further suggested that such a signal may be clearest in intermediate-density regions such as cluster outskirts and filaments.
Astroparticle physics and cosmology
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, γ-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology
Schulte-Ladbeck, Regina; Brinks, Elias; Kravtsov, Andrey
2010-01-01
Dwarf galaxies provide opportunities for drawing inferences about the processes in the early universe by observing our "cosmological backyard"-the Local Group and its vicinity. This special issue of the open-access journal Advances in Astronomy is a snapshot of the current state of the art of dwarf-galaxy cosmology.
Particle physics and cosmology
The authors describe the connection between cosmology and particle physics in an introductory way. In this connection the big bang theory and unified gauge models of strong, electromagnetic, and weak interactions are considered. Furthermore cosmological nucleosynthesis is discussed in this framework, and the problem of cosmic neutrinos is considered with special regards to its rest mass. (HSI).
Hawking, S. W.
2001-09-01
The large N approximation should hold in cosmology even at the origin of the universe. I use ADS-CFT to calculate the effective action and obtain a cosmological model in which inflation is driven by the trace anomaly. Despite having ghosts, this model can agree with observations.
McAllister, Liam; Silverstein, Eva
2007-01-01
We give an overview of the status of string cosmology. We explain the motivation for the subject, outline the main problems, and assess some of the proposed solutions. Our focus is on those aspects of cosmology that benefit from the structure of an ultraviolet-complete theory.
Kiritsis, Elias; Kofinas, Georgios
2009-01-01
The cosmological equations suggested by the non-relativistic renormalizable gravitational theory proposed by Ho\\v{r}ava are considered. It is pointed out that the early universe cosmology has features that may give an alternative to inflation and the theory may be able to escape singularities.
Cosmological models in the generalized Einstein action
We have studied the evolution of the Universe in the generalized Einstein action of the form R + β R2, where R is the scalar curvature and β = const. We have found exact cosmological solutions that predict the present cosmic acceleration. These models predict an inflationary de-Sitter era occurring in the early Universe. The cosmological constant (Λ) is found to decay with the Hubble constant (H) as, Λ ∝ H4. In this scenario the cosmological constant varies quadratically with the energy density (ρ), i.e., Λ ∝ ρ2. Such a variation is found to describe a two-component cosmic fluid in the Universe. One of the components accelerated the Universe in the early era, and the other in the present era. The scale factor of the Universe varies as a ∼ tn = 1/2 in the radiation era. The cosmological constant vanishes when n = 4/3 and n =1/2. We have found that the inclusion of the term R2 mimics a cosmic matter that could substitute the ordinary matter. (author)
Entropic accelerating universe
Easson, Damien A., E-mail: easson@asu.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and School of Earth and Space Exploration and Beyond Center, Arizona State University, Phoenix, AZ 85287-1504 (United States); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030 (United States); Frampton, Paul H., E-mail: frampton@physics.unc.ed [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599 (United States); Smoot, George F., E-mail: gfsmoot@lbl.go [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568 (Japan); Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Physics Department, University of California, Berkeley, CA 94720 (United States); Institute for the Early Universe, Ewha Womans University and Advanced Academy, Seoul (Korea, Republic of); Chaire Blaise Pascale, Universite Paris Denis Diderot, Paris (France)
2011-01-31
To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.
Entropic accelerating universe
To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lemaitre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the entropy and temperature intrinsic to the horizon of the universe due to the information holographically stored there. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on the horizon surface screen. We consider an additional quantitative approach inspired by surface terms in general relativity and show that this leads to the entropic accelerating universe.
Verde, L
2013-01-01
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be toa rigorous in derivations, nor to give a full historical overview. The idea is to provide a 'taste' of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school web site: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/. (author)
Kehagias, Alex
2016-01-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to both scalar and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic d...
Cosmology and particle physics
Turner, Michael S.
1988-01-01
The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.
Accelerating Universe and Event Horizon
He, Xiao-Gang(INPAC, SKLPPC and Department of Physics, Shanghai Jiao Tong University, Shanghai, China)
2001-01-01
It has been argued in the literature that if a universe is expanding with an accelerating rate indefinitely, it presents a challenge to string theories due to the existence of event horizons. We study the fate of a currently accelerating universe. We show that the universe will continue to accelerate indefinitely if the parameter $\\omega = p/\\rho$ of the equation of state is a constant, no matter how many different types of energy (matter, radiation, quintessence, cosmological constant and et...
Cosmological Solutions in Biconnection and Bimetric Gravity Theories
Sergiu I. Vacaru
2013-01-01
We show how generic off--diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive gravity using the anholonomic frame deformation method. Such metrics describe the late time acceleration due to effective cosmological terms induced by nonlinear off--diagonal interactions and graviton mass and include matter, graviton mass and other effective sources modelling nonlinear gravitational and matter fields interactions with polarization of phy...
Accelerating Expansion of the Universe with Nonlinear Spinors
Gu, Ying-Qiu
2006-01-01
The accelerating expansion of the present Universe is an exciting challenge to the standard cosmology, which reflects that our current theories on matter have some incompletion. In this paper, we analyze the cosmological model with nonlinear spinor fields source in detail. The results may be able to provide a natural explanation for the puzzles of the acceleration and negative pressure.
Two scalar field cosmology from coupled one-field models
Moraes, P H R S
2014-01-01
One possible description for the current accelerated expansion of the universe is quintessence dynamics. The basic idea of quintessence consists of analyzing cosmological scenarios driven by scalar fields. In this work we present some interesting features on the cosmological scenario obtained from the solutions of an effective two scalar field model in a flat space-time. This effective model was constructed by coupling two single scalar field systems in a nontrivial way via an extension method. The solutions related to the fields allowed us to compute analytical cosmological parameters. The behavior of these parameters are highlighted, as well as the different epochs obtained from them.
Phase Space of Anisotropic $R^n$ Cosmologies
Leon, Genly
2014-01-01
We construct general anisotropic cosmological scenarios governed by an $f(R)=R^n$ gravitational sector. Focusing then on some specific geometries, and modelling the matter content as a perfect fluid, we perform a phase-space analysis. We analyze the possibility of accelerating expansion at late times, and additionally, we determine conditions for the parameter $n$ for the existence of phantom behavior, contracting solutions as well as of cyclic cosmology. Furthermore, we analyze if the universe evolves towards the future isotropization without relying on a cosmic no-hair theorem. Our results indicate that anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors compared to the simple isotropic scenarios.
A New Type of Isotropic Cosmological Model
Naboulsi, R
2003-01-01
The Einstein equations with quantum one-loop contributions of conformally covariant matter fields in the poresence of frac{1}{t^2} decaying matter density and decaying cosmological constant is used to study an isotropic homogenous FRW space-time. We show that scale factor depends on the sums of contributions from quantum fields with different spin values. For some specific values of this later, the Universe could be in an accelerated regime.
The Construction of Sudden Cosmological Singularities
Barrow, John D; Tsokaros, A
2010-01-01
Solutions of the Friedmann-Lemaitre cosmological equations of general relativity have been found with finite-time singularities that are everywhere regular, have regular Hubble expansion rate, and obey the strong-energy conditions but possess pressure and acceleration singularities at finite time that are not associated with geodesic incompleteness. We show how these solutions with sudden singularities can be constructed using fractional series methods and find the limiting form of the equation of state on approach to the singularity.
Cosmological perturbations in teleparallel Loop Quantum Cosmology
Haro, Jaime, E-mail: jaime.haro@upc.edu [Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)
2013-11-01
Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce provided by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.
Kehagias, A.; Riotto, A.
2016-05-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.
2016-06-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein–Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity.
Bouncing Cosmologies: Progress and Problems
Brandenberger, Robert
2016-01-01
We review the status of bouncing cosmologies as alternatives to cosmological inflation for providing a description of the very early universe, and a source for the cosmological perturbations which are observed today. We focus on the motivation for considering bouncing cosmologies, the origin of fluctuations in these models, and the challenges which various implementations face.
Testing cosmology with galaxy clusters
Rapetti Serra, David Angelo
2011-01-01
cosmology. There will be an emphasis on timely interdisciplinary topics: • critical tests of inflationary cosmology • advances in fundamental cosmology • applications of string theory (AdS/CMT) • particle and string phenomenology • new experimental particle physics results • and cosmological probes such as...
Cosmological models and gravitational lenses
Full text: The large amount of observational data collected since the early last century by Surveys as: CLASS, SNAP, SDSS and others, made the tests possible cosmological models. What stands out most is one that uses gravitational lensing, which serves as a complement to tests with SNe-Ia. Currently, the observations indicate that the universe is accelerated expansion. Moreover to that we have the cosmic structures we observe today as the need to add more material. A proposal usual to solve these problems is to propose the existence of two dark components. This name comes from the constituents emitted any radiation. However, despite both not emit radiation they must distort space-time somehow. Thus, when a beam of light from any source in this region spreads geometrically modified, will have its trajectory changed. Therefore, the phenomenon of gravitational lensing allows infer indirectly the amount of dark matter in the universe. Moreover, the study of gravitational lensing enables to obtain cosmological parameters as the Hubble constant and density parameter. Moreover, this effect can heaven be used to detect exoplanets, or also as a natural telescope. In this study aims to assess some cosmological models using gravitational lenses and the CLASS data in tests with fluids quartessence. Such fluids are useful for treating the matter and dark energy as a single fluid. Unlike the model LambdaCDM that treats separately, i.e. in this model the universe consists of baryons, radiation, dust, dark matter and dark energy. We will use the statistics of gravitational lensing to make a comparison between the generalized Chaplygin gas and the viscous fluid. In addition, an application of statistics to the CLASS lenses will be applied in models well accepted by the scientific community. (author)
Neutrino physics from Cosmology
Hannestad, Steen
2013-01-01
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties.
Magnetogenesis in bouncing cosmology
Qian, Peng; Easson, Damien A; Guo, Zong-Kuan
2016-01-01
We consider the process of magnetogenesis in the context of nonsingular bounce cosmology. We show that large primordial magnetic fields can be generated during contraction without encountering strong coupling and backreaction issues. The fields may seed large-scale magnetic fields with observationally interesting strengths. This result leads to a theoretical constraint on the relation of the energy scale of the bounce cosmology to the number of effective e-folding of the contracting phase in the case of scale invariance for the power spectrum of primordial magnetic fields. We show that this constraint can be satisfied in a sizable region of the parameter space for the nonsingular bounce cosmology.
Neutrino physics from Cosmology
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties.
Neutrino properties from cosmology
Hannestad, S.
2013-01-01
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....
Cosmological bounds on oscillating dark energy models
We study the cosmological constraints on the two purely phenomenological models of oscillating dark energy. In these oscillating models, the equation of state of dark energy varies periodically. The periodic equation of state may provide the natural way to unify the early acceleration (inflation) and the late time acceleration of the Universe. These models give the effective way to tackle the cosmic coincidence problem. We examine the observational constraints on the oscillatory models from the latest observational data including the gold sample of 182 SNe type Ia, the shift parameter, R, given by the WMAP and the BAO measurements from the SDSS
Radio Relics in Cosmological Simulations
M. Hoeft; S. E. Nuza; S. Gottlöber; R. J. van Weeren; H. J. A. Röttgering; M. Brüggen
2011-12-01
Radio relics have been discovered in many galaxy clusters. They are believed to trace shock fronts induced by cluster mergers. Cosmological simulations allow us to study merger shocks in detail since the intra-cluster medium is heated by shock dissipation. Using high resolution cosmological simulations, identifying shock fronts and applying a parametric model for the radio emission allows us to simulate the formation of radio relics. We analyze a simulated shock front in detail. We find a rather broad Mach number distribution. The Mach number affects strongly the number density of relativistic electrons in the downstream area, hence, the radio luminosity varies significantly across the shock surface. The abundance of radio relics can be modeled with the help of the radio power probability distribution which aims at predicting radio relic number counts. Since the actual electron acceleration efficiency is not known, predictions for the number counts need to be normalized by the observed number of radio relics. For the characteristics of upcoming low frequency surveys we find that about thousand relics are awaiting discovery.
Post-inflationary brane cosmology
Mazumdar, Anupam
2000-01-01
The brane cosmology has invoked new challenges to the usual Big Bang cosmology. In this paper we present a brief account on thermal history of the post-inflationary brane cosmology. We have realized that it is not obvious that the post-inflationary brane cosmology would always deviate from the standard Big Bang cosmology. However, if it deviates some stringent conditions on the brane tension are to be satisfied. In this regard we study various implications on gravitino production and its abun...
An extension of the cosmological standard model with a bounded Hubble expansion rate
Cortés, J. L.; Induráin, J.
2009-01-01
Abstract The possibility of having an extension of the cosmological standard model with a Hubble expansion rate H constrained to a finite interval is considered. Two periods of accelerated expansion arise naturally when the Hubble expansion rate approaches to the two limiting values. The new description of the history of the universe is confronted with cosmological data and with several theoretical ideas going beyond the standard cosmological model.
Unified phantom cosmology: inflation, dark energy and dark matter under the same standard
S. Capozziello; Nojiri, S.; Odintsov, S.D.
2005-01-01
Phantom cosmology allows to account for dynamics and matter content of the universe tracing back the evolution to the inflationary epoch, considering the transition to the non-phantom standard cosmology (radiation/matter dominated eras) and recovering the today observed dark energy epoch. We develop the unified phantom cosmology where the same scalar plays the role of early time (phantom) inflaton and late-time Dark Energy. The recent transition from decelerating to accelerating phase is desc...
Solution to the Cosmological Constant Problem by Gauge Theory of Gravity
WU Ning; Germano Resconi; ZHENG Zhi-Peng; XU Zhan; ZHANG Da-Hua; RUAN Tu-Nan
2003-01-01
Based on geometry picture of gravitational gauge theory, the cosmological constant is determined theoreti-cally. The cosmological constant is related to the average energy density of gravitational gauge field. Because the energydensity of gravitational gauge field is negative, the cosmological constant is positive, which generates repulsive force onstars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude of theorder of about 10-52m-2, which is well consistent with experimental results.
Holographic Cosmology from BIonic Solutions
Sepehri, Alireza; Setare, Mohammad Reza; Ali, Ahmed Farag
2015-01-01
In this paper, we will use a BIonic solution for analysing the holographic cosmology. A BIonic solution is a configuration of a D-brane and an anti-D-brane connected by a wormhole. A BIonic configuration can form due to a transition of fundamental black strings. After the BIon has formed, the wormhole in the BIon will act act as a channel for the energy to flow into the D3-brane. This will increase the degrees of freedom of the D3-brane causing inflation. The inflation will end when the wormhole gets annihilated. However, as the distance between the D3-brane and the anti-D3-brane reduces, tachyonic states get created. These tachyonic states will lead to the formation of a new wormhole. This new wormhole will again increasing the degrees of freedom on the D3-brane causing late time acceleration.
Cosmological model with dynamical curvature
Stichel, Peter C
2016-01-01
We generalize the recently introduced relativistic Lagrangian darkon fluid model (EPJ C (2015) 75:9) by starting with a self-gravitating geodesic fluid whose energy-momentum tensor is dust-like with a nontrivial energy flow. The corresponding covariant propagation and constraint equations are considered in a shear-free nonrelativistic limit whose analytic solutions determine the 1st-order relativistic correction to the spatial curvature. This leads to a cosmological model where the accelerated expansion of the Universe is driven by a time-dependent spatial curvature without the need for introducing any kind of dark energy. We derive the differential equation to be satisfied by the area distance for this model.
Performance comparisons of low emittance lattices
The results of a performance analysis of four low emittance electron storage ring lattices provided to the authors by various members of the Lattice Working Group is presented. Altogether, four lattices were investigated. The beam energies of the four lattices are, respectively, 1.1, 2, 3, 4 GeV). A brief summary of the lattice parameters relevant to this study is given. The performance issues studied include an estimation of the longitudinal emittance expected for each lattice based on the effects of the longitudinal microwave instability, an estimation of the transverse emittance growth of the (required) dense bunches under the influence of intrabeam scattering (IBS), and an estimate of the Touschek lifetime. The analysis described here has been carried out with the LBL accelerator physics code ZAP
Cosmological Probes for Supersymmetry
Maxim Khlopov
2015-05-01
Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!
Cosmological diagrammatic rules
B. Giddings, Steven; Sloth, Martin Snoager
2010-01-01
A simple set of diagrammatic rules is formulated for perturbative evaluation of ``in-in" correlators, as is needed in cosmology and other nonequilibrium problems. These rules are both intuitive, and efficient for calculational purposes....
Cosmological Ontology and Epistemology
Page, Don N
2014-01-01
In cosmology, we would like to explain our observations and predict future observations from theories of the entire universe. Such cosmological theories make ontological assumptions of what entities exist and what their properties and relationships are. One must also make epistemological assumptions or metatheories of how one can test cosmological theories. Here I shall propose a Bayesian analysis in which the likelihood of a complete theory is given by the normalized measure it assigns to the observation used to test the theory. In this context, a discussion is given of the trade-off between prior probabilities and likelihoods, of the measure problem of cosmology, of the death of Born's rule, of the Boltzmann brain problem, of whether there is a better principle for prior probabilities than mathematical simplicity, and of an Optimal Argument for the Existence of God.
Building Cosmological Frozen Stars
Kastor, David
2016-01-01
Janis-Newman-Winicour (JNW) spacetimes generalize the Schwarzschild solution to include a massless scalar field. Although suffering from naked singularities, they share the `frozen star' features of Schwarzschild black holes. Cosmological versions of the JNW spacetimes were discovered some time ago by Husain, Martinez and Nunez and by Fonarev. Unlike Schwarzschild-deSitter black holes, these solutions are dynamical, and the scarcity of exact solutions for dynamical black holes in cosmological backgrounds motivates their further study. Here we show how the cosmological JNW spacetimes can be built, starting from simpler, static, higher dimensional, vacuum `JNW brane' solutions via two different generalized dimensional reduction schemes that together cover the full range of JNW parameter space. Cosmological versions of a BPS limit of charged dilaton black holes are also known. JNW spacetimes represent a different limiting case of the charged, dilaton black hole family. We expect that understanding this second da...
Baryogenesis and cosmological antimatter
Dolgov, A D
2009-01-01
Possible mechanisms of baryogenesis are reviewed. Special attention is payed to those which allow for creation of astronomically significant domains or objects consisting of antimatter. Observational manifestations of cosmological antimatter are discussed.
This chapter presents lectures on big-bang cosmology; contents of the universe (especially neutrinos); matterantimatter asymmetry; and mysteries in the sky. Discusses dynamic equations of cosmology; the relation to Hubble parameters; simple solutions; the global structure of the universe (fixed cosmic time); global structure (dynamics); red-shift; observational handles on closure questions; notable events in universal history; neutrino decoupling; density of the neutrino gas; the mass limit on cosmologically stable neutrinos; nucleosynthesis; neutrino stability; neutrino mass and galaxy formation; evidence for asymmetry; requirements for a theory of asymmetry; a simple scenario (drift and decay); microscopics; thermalization; horizons; background radiation; a large entropy; monopoles; and a cosmological constant. Presents discussions featuring D'Hoker, Wilczek, Teller and others
Theoretical and observational foundations of cosmology are presented. The evidence of the latter is discussed. Distance, here, is defined and determined. Theoretical models, in both non-relativistic and general relativistic cases are discussed. Theoretical and observational developments are given
Neutrino Astrophysics And Cosmology
Abazajian, Kevork N
2001-01-01
Although physical cosmology is becoming a field rich in data, the theoretical basis for several aspects of standard cosmological models are spectacularly devoid of firm foundations. On the other hand, the standard model of particle physics has successfully described an enormous quantity of experimental data, with one exception lying in the neutrino sector from observations of the atmospheric neutrino flux. This dissertation intersects both fields, as an interplay of the problems confronting theoretical cosmology and the tremendous success of the standard model of particle physics. And, in return, the successes of the standard cosmology may give insights into new particle physics, particularly neutrino physics. In this interplay, this dissertation studies the production of sterile neutrino dark matter in the early universe, constraints on this scenario, including radiative decays in galactic clusters. The effects of nonthermal neutrinos resulting from neutrino transformation on big bang nucleosynthesis are stu...
Turner, M S
1999-01-01
For two decades the hot big-bang model as been referred to as the standard cosmology -- and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
A new type of cosmological history which includes large-scale entropy production is proposed. These cosmologies are based on a reinterpretation of the matter-energy stress tensor in Einsteins equations. This modifies the usual adiabatic energy conservation laws, thereby leading to a possible irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This new point of view results from the consideration of thermodynamics of open systems in the framework of cosmology. It appears that the usual initial singularity is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. The universe evolves through an inflationary phase. This appears to be an attractor independent of the initial vacuum fluctuation
Statistical Inference in Cosmology
Sellentin, Elena
2016-01-01
Analysis of cosmic data is the only way to determine whether General Relativity is the law of gravity also on the largest scales in our Universe. The current standard model of cosmology, ΛCDM, is based on General Relativity, and fits all currently available data flawlessly. However, theoretical dissatisfaction with ΛCDM exists: cosmological data probe gravitational interactions, and ΛCDM fits the data only because it introduces two components of startling gravitional behavio...
Magnetohydrodynamics and Plasma Cosmology
Kleidis, K; Papadopoulos, D B; Vlahos, L
2005-01-01
We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.
Daywitt W. C.
2009-04-01
Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.
Cosmological phase transitions
Kolb, E.W. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Chicago Univ., IL (United States)
1993-10-01
If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B.
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented,...
Cosmology: A research briefing
1995-01-01
As part of its effort to update topics dealt with in the 1986 decadal physics survey, the Board on Physics and Astronomy of the National Research Council (NRC) formed a Panel on Cosmology. The Panel produced this report, intended to be accessible to science policymakers and nonscientists. The chapters include an overview ('What Is Cosmology?'), a discussion of cosmic microwave background radiation, the large-scale structure of the universe, the distant universe, and physics of the early universe.
Quantum Cosmology: Effective Theory
Bojowald, Martin
2012-01-01
Quantum cosmology has traditionally been studied at the level of symmetry-reduced minisuperspace models, analyzing the behavior of wave functions. However, in the absence of a complete full setting of quantum gravity and detailed knowledge of specific properties of quantum states, it remained difficult to make testable predictions. For quantum cosmology to be part of empirical science, it must allow for a systematic framework in which corrections to well-tested classical equations can be deri...
Cosmological phase transitions
If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions
Cosmology with Doppler Lensing
Bacon, David; Andrianomena, Sambatra; Clarkson, Chris; Bolejko, C.; Maartens, Roy
2014-01-01
Doppler lensing is the apparent change in object size and magnitude due to peculiar velocities. Objects falling into an overdensity appear larger on its near side, and smaller on its far side, than typical objects at the same redshifts. This effect dominates over the usual gravitational lensing magnification at low redshift. Doppler lensing is a promising new probe of cosmology, and we explore in detail how to utilize the effect with forthcoming surveys. We present cosmological simulations of...
A simple cosmology with a varying fine structure constant
We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure 'constant', α, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in α , while fitting the observed accelerating Universe and evidence for small α variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eoetvoes experiments, are proposed
The interacting and non-constant cosmological constant
We propose a time-varying cosmological constant with a fixed equation of state, which evolves mainly through its interaction with the background during most of the long history of the universe. However, such interaction does not exist in the very early and the late-time universe and produces the acceleration during these eras when it becomes very nearly a constant. It is found that after the initial inflationary phase, the cosmological constant, which we call as lambda parameter, rolls down from a large constant value to another but very small constant value and further dominates the present epoch showing up in the form of the dark energy driving the acceleration. (author)
Cosmological Models and Stability
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
Cosmological perturbations in teleparallel Loop Quantum Cosmology
Haro, Jaime
2013-01-01
Cosmological perturbations in Loop Quantum Cosmology (LQC) could be studied from two totally different ways. The first one, called holonomy corrected LQC, is performed in the Hamiltonian framework, where the Asthekar connection is replaced by a suitable sinus function (holonomy correction), in order to have a well-defined quantum analogue. The alternative approach is based in the fact that isotropic LQC could be also obtained as a particular case of teleparallel $F(T)$ gravity (teleparallel LQC). Then, working in the Lagrangian framework and using the well-know perturbation equations in $F(T)$ gravity, we have obtained, in teleparallel LQC, the equations for scalar and tensor perturbations, and the corresponding Mukhanov-Sasaki equations. For scalar perturbations, our equation only differs from the one obtained by holonomy corrections in the velocity of sound, leading both formulations, essentially to the same scale invariant power spectrum when a matter-dominated universe is considered. However for tensor pe...
String cosmology versus standard and inflationary cosmology
Gasperini, M
2000-01-01
This paper presents a review of the basic, model-independent differences between the pre-big bang scenario, arising naturally in a string cosmology context, and the standard inflationary scenario. We use an unconventional approach in which the introduction of technical details is avoided as much as possible, trying to focus the reader's attention on the main conceptual aspects of both scenarios. The aim of the paper is not to conclude in favour either of one or of the other scenario, but to raise questions that are left to the reader's meditation. Warnings: the paper does not contain equations, and is not intended as a complete review of all aspects of string cosmology.
BOOK REVIEW: Observational Cosmology Observational Cosmology
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
On cosmic acceleration without dark energy
Kolb, E.W.; /Fermilab /Chicago U., Astron. Astrophys. Ctr. /Chicago U., EFI; Matarrese, S.; /Padua U. /INFN, Padua; Riotto, A.; /INFN, Padua
2005-06-01
We elaborate on the proposal that the observed acceleration of the Universe is the result of the backreaction of cosmological perturbations, rather than the effect of a negative-pressure dark energy fluid or a modification of general relativity. Through the effective Friedmann equations describing an inhomogeneous Universe after smoothing, we demonstrate that acceleration in our local Hubble patch is possible even if fluid elements do not individually undergo accelerated expansion. This invalidates the no-go theorem that there can be no acceleration in our local Hubble patch if the Universe only contains irrotational dust. We then study perturbatively the time behavior of general-relativistic cosmological perturbations, applying, where possible, the renormalization group to regularize the dynamics. We show that an instability occurs in the perturbative expansion involving sub-Hubble modes, which indicates that acceleration in our Hubble patch may originate from the backreaction of cosmological perturbations on observable scales.
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations. PMID:26181770
A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints
L. Kantha
2016-01-01
Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.
Multi-scale gravity and cosmology
Calcagni, Gianluca
2013-12-01
The gravitational dynamics and cosmological implications of three classes of recently introduced multi-scale spacetimes (with, respectively, ordinary, weighted and q-derivatives) are discussed. These spacetimes are non-Riemannian: the metric structure is accompanied by an independent measure-differential structure with the characteristics of a multi-fractal, namely, different dimensionality at different scales and, at ultra-short distances, a discrete symmetry known as discrete scale invariance. Under this minimal paradigm, five general features arise: (a) the big-bang singularity can be replaced by a finite bounce, (b) the cosmological constant problem is reinterpreted, since accelerating phases can be mimicked by the change of geometry with the time scale, without invoking a slowly rolling scalar field, (c) the discreteness of geometry at Planckian scales can leave an observable imprint of logarithmic oscillations in cosmological spectra and (d) give rise to an alternative mechanism to inflation or (e) to a fully analytic model of cyclic mild inflation, where near scale invariance of the perturbation spectrum can be produced without strong acceleration. Various properties of the models and exact dynamical solutions are discussed. In particular, the multi-scale geometry with weighted derivatives is shown to be a Weyl integrable spacetime.
Particle theory and cosmology. Progress report, April 1, 1985-March 31, 1986
A review of work in progress is given for models, using properties of particle interactions to extrapolate to energy realms which exceed accelerator limits. In addition models are discussed for cosmology and astrophysics. 28 refs.,
Modern cosmology: Interactive computer simulations that use recent observational surveys
Moldenhauer, Jacob; Engelhardt, Larry; Stone, Keenan M.; Shuler, Ezekiel
2013-06-01
We present a collection of new, open-source computational tools for numerically modeling recent large-scale observational data sets using modern cosmology theory. These tools allow both students and researchers to constrain the parameter values in competitive cosmological models, thereby discovering both the accelerated expansion of the universe and its composition (e.g., dark matter and dark energy). These programs have several features to help the non-cosmologist build an understanding of cosmological models and their relation to observational data, including a built-in collection of several real observational data sets. The current list of built-in observations includes several recent supernovae Type-Ia surveys, baryon acoustic oscillations, the cosmic microwave background radiation, gamma-ray bursts, and measurements of the Hubble parameter. In this article, we discuss specific results for testing cosmological models using these observational data.
Modern Cosmology: Interactive Computer Simulations that use Recent Observational Surveys
Moldenhauer, Jacob; Stone, Keenan; Shuler, Ezekiel
2013-01-01
We present a collection of new, open-source computational tools for numerically modeling recent large-scale observational data sets using modern cosmology theory. Specifically, these tools will allow both students and researchers to constrain the parameter values in competitive cosmological models, thereby discovering both the accelerated expansion of the universe and its composition (e.g., dark matter and dark energy). These programs have several features to help the non-cosmologist build an understanding of cosmological models and their relation to observational data: a built-in collection of several real observational data sets; sliders to vary the values of the parameters that define different cosmological models; real-time plotting of simulated data; and $\\chi^2$ calculations of the goodness of fit for each choice of parameters (theory) and observational data (experiment). The current list of built-in observations includes several recent supernovae Type Ia surveys, baryon acoustic oscillations, the cosmi...
Born-Infeld cosmology with scalar Born-Infeld matter
Jana, Soumya
2016-01-01
Cosmology in Eddington-inspired Born-Infeld gravity is investigated using a scalar Born-Infeld field (eg. tachyon condensate) as matter. In this way, both in the gravity and matter sectors we have Born-Infeld-like structures characterised by their actions and via two separate constants, $\\kappa$ and $\\alpha_T^2$ respectively. With a particular choice of the form of $\\dot{\\phi}$ (time derivative of the Born-Infeld scalar), analytical cosmological solutions are found. Thereafter, we explore some of the unique features of the corresponding cosmological spacetimes. For $\\kappa>0$, our solution has a de Sitter-like expansion both at early and late times, with an intermediate deceleration sandwiched between the accelerating phases. On the other hand, when $\\kappa0$ solution, are as good as in $\\Lambda$CDM cosmology. However, the $\\kappa<0$ solution has to be discarded due to the occurrence of a bounce at an unacceptably low redshift.
Evolving Lorentzian wormholes supported by phantom matter and cosmological constant
In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made of phantom energy in the presence of a cosmological constant. We derive analytical evolving wormhole geometries by supposing that the radial tension of the phantom matter, which is negative to the radial pressure, and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. In this case the presence of a cosmological constant ensures accelerated expansion of the wormhole configurations. More specifically, for positive cosmological constant we have wormholes which expand forever and, for negative cosmological constant we have wormholes which expand to a maximum value and then recollapse. At spatial infinity the energy density and the pressures of the anisotropic phantom matter threading the wormholes vanish; thus these evolving wormholes are asymptotically vacuum Λ-Friedmann models with either open or closed or flat topologies.
Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions
Zubairi, Omair; Weber, Fridolin
2013-04-01
In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.
Cosmology in massive gravity with effective composite metric
Heisenberg, Lavinia
2016-01-01
This paper is dedicated to scrutinizing the cosmology in massive gravity. A matter field of the dark sector is coupled to an effective composite metric while a standard matter field couples to the dynamical metric in the usual way. For this purpose, we study the dynamical system of cosmological solutions by using phase analysis, which provides an overview of the class of cosmological solutions in this setup. This also permits us to study the critical points of the cosmological equations together with their stability. We show the presence of stable attractor de Sitter critical points relevant to the late-time cosmic acceleration. Furthermore, we study the tensor, vector and scalar perturbations in the presence of standard matter fields and obtain the conditions for the absence of ghost and gradient instabilities. Hence, massive gravity in the presence of the effective composite metric can accommodate interesting dark energy phenomenology, that can be observationally distinguished from the standard model accord...
Thomas Precession by Uniform Acceleration
Pardy, Miroslav
2015-01-01
We determine the nonlinear transformations between coordinate systems which are mutually in a constant symmetrical accelerated motion. The maximal acceleration limit follows from the kinematical origin and it is an analogue of the maximal velocity in special relativity. We derive the dependence of mass, length, time, Doppler effect, Cherenkov effect and transition radiation angle on acceleration as an analogue phenomena in special theory of relativity. The last application of our method is the Thomas precession by uniform acceleration with the possible role in the modern physics and cosmology. The comparison of derived results with other relativistic methods is necessary.
Thermal Tachyacoustic Cosmology
Agarwal, Abhineet
2014-01-01
An intriguing possibility that can address pathologies in both early universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. non-renormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early universe is the Tachyacoustic (or Speedy Sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study Thermal Tachyacoustic Cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early universe, around the scale of Grand Unified Theories (GUT scale; $T\\sim 10^{15}$ GeV), during which the speed of sound drops by $25$ orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of ten...
Thermal tachyacoustic cosmology
Agarwal, Abhineet; Afshordi, Niayesh
2014-08-01
An intriguing possibility that can address pathologies in both early Universe cosmology (i.e. the horizon problem) and quantum gravity (i.e. nonrenormalizability), is that particles at very high energies and/or temperatures could propagate arbitrarily fast. A concrete realization of this possibility for the early Universe is the tachyacoustic (or speedy sound) cosmology, which could also produce a scale-invariant spectrum for scalar cosmological perturbations. Here, we study thermal tachyacoustic cosmology (TTC), i.e. this scenario with thermal initial conditions. We find that a phase transition in the early Universe, around the scale of the grand unified theory (GUT scale; T ˜1015 GeV), during which the speed of sound drops by 25 orders of magnitude within a Hubble time, can fit current CMB observations. We further discuss how production of primordial black holes constrains the cosmological acoustic history, while coupling TTC to Horava-Lifshitz gravity leads to a lower limit on the amplitude of tensor modes (r≳10-3), that are detectable by CMBpol (and might have already been seen by the BICEP-Keck Collaboration).
Schramm, D.N. [Chicago Univ., IL (United States)]|[Fermi National Accelerator Lab., Batavia, IL (United States); Fields, B.; Thomas, D. [Chicago Univ., IL (United States)
1992-01-01
The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin.
The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin
Conceptual Problems in Cosmology
Vieira, F J Amaral
2011-01-01
In this essay a critical review of present conceptual problems in current cosmology is provided from a more philosophical point of view. In essence, a digression on how could philosophy help cosmologists in what is strictly their fundamental endeavor is presented. We start by recalling some examples of enduring confrontations among philosophers and physicists on what could be contributed by the formers to the day-time striving of the second ones. Then, a short review of the standard model Friedmann-Lema\\^itre-Robertson-Walter (FLRW) of cosmology is given. It seems apparent that cosmology is living a golden age with the advent of observations of high precision. Nonetheless, a critical revisiting of the direction in which it should go on appears also needed, for misconcepts like "quantum backgrounds for cosmological classical settings" and "quantum gravity unification" have not been properly constructed up-to-date. Thus, knowledge-building in cosmology, more than in any other field, should begin with visions of...
The Accelerator Markup Language and the Universal Accelerator Parser
A major obstacle to collaboration on accelerator projects has been the sharing of lattice description files between modeling codes. To address this problem, a lattice description format called Accelerator Markup Language (AML) has been created. AML is based upon the standard eXtensible Markup Language (XML) format; this provides the flexibility for AML to be easily extended to satisfy changing requirements. In conjunction with AML, a software library, called the Universal Accelerator Parser (UAP), is being developed to speed the integration of AML into any program. The UAP is structured to make it relatively straightforward (by giving appropriate specifications) to read and write lattice files in any format. This will allow programs that use the UAP code to read a variety of different file formats. Additionally, this will greatly simplify conversion of files from one format to another. Currently, besides AML, the UAP supports the MAD lattice format
A college course on relativity and cosmology
Cheng, Ta-Pei
2015-01-01
This advanced undergraduate text introduces Einstein's general theory of relativity. The topics covered include geometric formulation of special relativity, the principle of equivalence, Einstein's field equation and its spherical-symmetric solution, as well as cosmology. An emphasis is placed on physical examples and simple applications without the full tensor apparatus. It begins by examining the physics of the equivalence principle and looks at how it inspired Einstein's idea of curved spacetime as the gravitational field. At a more mathematically accessible level, it provides a metric description of a warped space, allowing the reader to study many interesting phenomena such as gravitational time dilation, GPS operation, light deflection, precession of Mercury's perihelion, and black holes. Numerous modern topics in cosmology are discussed from primordial inflation and cosmic microwave background to the dark energy that propels an accelerating universe. Building on Cheng's previous book, 'Relativity, Grav...
A cosmological study in massive gravity theory
A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory
A Cosmological Study in Massive Gravity theory
Pan, Supriya
2015-01-01
A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.
Cosmological extrapolation of modified Newtonian dynamics
The regime of modified Newtonian dynamics (MOND), which is used in astronomy to describe gravitating systems of the island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of the region under consideration. We show that such an extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of the evolving Universe, that are determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons, and photon and neutrino radiation, without any dark matter. (paper)
Cosmology calculations almost without general relativity
Jordan, T F
2003-01-01
The Friedmann equation can be derived for a Newtonian universe. Changing mass density to energy density gives exactly the Friedmann equation of general relativity. Accounting for work done by pressure then yields the two Einstein equations that govern the expansion of the universe. Descriptions and explanations of radiation pressure and vacuum pressure are added to complete a basic kit of cosmology tools. It provides a basis for teaching cosmology to undergraduates in a way that quickly equips them to do basic calculations. This is demonstrated with calculations involving: characteristics of the expansion for densities dominated by radiation, matter, or vacuum; the closeness of the density to the critical density; how much vacuum energy compared to matter energy is needed to make the expansion accelerate; and how little is needed to make it stop. Travel time and luninosity distance are calculated in terms of the redshift and the densities of matter and vacuum energy, using a scaled Friedmann equation with the...
f(T) teleparallel gravity and cosmology
Cai, Yi-Fu; De Laurentis, Mariafelicia; Saridakis, Emmanuel N
2015-01-01
Over the past decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f(T) gravity, where f(T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f(T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f(T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to v...
A cosmological study in massive gravity theory
Pan, Supriya, E-mail: span@research.jdvu.ac.in; Chakraborty, Subenoy, E-mail: schakraborty@math.jdvu.ac.in
2015-09-15
A detailed study of the various cosmological aspects in massive gravity theory has been presented in the present work. For the homogeneous and isotropic FLRW model, the deceleration parameter has been evaluated, and, it has been examined whether there is any transition from deceleration to acceleration in recent past, or not. With the proper choice of the free parameters, it has been shown that the massive gravity theory is equivalent to Einstein gravity with a modified Newtonian gravitational constant together with a negative cosmological constant. Also, in this context, it has been examined whether the emergent scenario is possible, or not, in massive gravity theory. Finally, we have done a cosmographic analysis in massive gravity theory.
Lensing effects in inhomogeneous cosmological models
Ghassemi, Sima; Mansouri, Reza
2009-01-01
Concepts developed in the gravitational lensing techniques such as shear, convergence, tangential and radial arcs maybe used to see how tenable inhomogeneous models proposed to explain the acceleration of the universe models are. We study the widely discussed LTB cosmological models. It turns out that for the observer sitting at origin of a global LTB solution the shear vanishes as in the FRW models, while the value of convergence is different which may lead to observable cosmological effects. We also consider Swiss-cheese models proposed recently based on LTB with an observer sitting in the FRW part. It turns out that they have different behavior as far as the formation of radial and tangential arcs are concerned.
Cosmological special relativity the large scale structure of space, time and velocity
Carmeli, Moshe
2002-01-01
This book presents Einstein's theory of space and time in detail, and describes the large-scale structure of space, time and velocity as a new cosmological special relativity. A cosmological Lorentz-like transformation, which relates events at different cosmic times, is derived and applied. A new law of addition of cosmic times is obtained, and the inflation of the space at the early universe is derived, both from the cosmological transformation. The relationship between cosmic velocity, acceleration and distances is given. In the appendices gravitation is added in the form of a cosmological g
Did Cosmology Trigger the Origin of the Solar System?
Blome, H.-J.; Wilson, T. L.
2011-01-01
It is a matter of curious coincidence that the Solar System formed 4.6 billion years ago around the same epoch that the Friedmann-Lemaitre (FL) universe became -dominated or dark-energy-dominated, where is the cosmological constant. This observation was made in the context of known gravitational anomalies that affect spacecraft orbits during planetary flyby's and the Pioneer anomaly, both possibly having connections with cosmology. In addition, it has been known for some time that the Universe is not only expanding but accelerating as well. Hence one must add the onset of cosmological acceleration in the FL universe as having a possible influence on the origin of the Solar System. These connections will now be examined in greater detail.
New massive bigravity cosmologies with double matter coupling
Lagos, Macarena
2016-01-01
We study a previously largely unexplored branch of homogeneous and isotropic background solutions in ghost-free massive bigravity with consistent double matter coupling. For a certain family of parameters we find `self-inflated' FLRW cosmologies, i.e. solutions with an accelerated early-time period during the radiation-dominated era. In addition, these solutions also display an accelerated late-time period closely mimicking GR with a cosmological constant. Interestingly, within this family, the particular case of $\\beta_1=\\beta_3=0$ gives bouncing cosmologies, where there is an infinite contracting past, a non-zero minimum value of the scale factor at the bounce, and an infinite expanding future.
Evolving Horava Cosmological Horizons
Fathi, Mohsen
2016-01-01
Several sets of radially propagating null congruence generators are exploited in order to form 3-dimensional marginally trapped surfaces, referred to as black hole and cosmological apparent horizons in a Horava universe. Based on this method, we deal with the characteristics of the 2-dimensional space-like spheres of symmetry and the peculiarities of having trapping horizons. Moreover, we apply this method in standard expanding and contracting FLRW cosmological models of a Horava universe to investigate the conditions under which the extra parameters of the theory may lead to trapped/anti-trapped surfaces both in the future and in the past. We also include the cases of negative time, referred to as the finite past, and discuss the formation of anti-trapped surfaces inside the cosmological apparent horizons.
Global cosmological parameters are now known to an accuracy totally unexpected ten years ago, and considerable improvements are expected in the next decade both from space missions and ground-based facilities. Although there were some early indications, convincing evidences of the existence of dark energy appeared in the late 90's. This definitely makes the measurement of cosmological parameters more complicated, because the nature of this component of the universe is totally unknown, and present data only constraints the simplest scenarios. We will review here how dark energy existence was established and confirmed, and the current observational constraints we can place. We will also describe the observational approaches expected to provide new cosmological constrains over approximately the next decade
Perfect Quantum Cosmological Bounce
Gielen, Steffen; Turok, Neil
2016-07-01
We study quantum cosmology with conformal matter comprising a perfect radiation fluid and a number of conformally coupled scalar fields. Focusing initially on the collective coordinates (minisuperspace) associated with homogeneous, isotropic backgrounds, we are able to perform the quantum gravity path integral exactly. The evolution describes a "perfect bounce", in which the Universe passes smoothly through the singularity. We extend the analysis to spatially flat, anisotropic universes, treated exactly, and to generic inhomogeneous, anisotropic perturbations treated at linear and nonlinear order. This picture provides a natural, unitary description of quantum mechanical evolution across a cosmological bounce. We provide evidence for a semiclassical description in which all fields pass "around" the cosmological singularity along complex classical paths.
Efstathiou, George
2007-01-01
This article is the written version of the closing talk presented at the conference `A Century of Cosmology' held at San Servolo, Italy, in August 2007. I focus on the prospects of constraining fundamental physics from cosmological observations, using the search for gravitational waves from inflation and constraints on the equation of state of dark energy as topical examples. I argue that it is important to strike a balance between the importance of a scientific discovery against the likelihood of making the discovery in the first place. Astronomers should be wary of embarking on large observational projects with narrow and speculative scientific goals. We should maintain a diverse range of research programmes as we move into a second century of cosmology. If we do so, discoveries that will reshape fundamental physics will surely come.
Cosmological Perturbations in Antigravity
Oltean, Marius
2014-01-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely-signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the Standard Model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically-complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity", during each successive transition from a Big Crunch to a Big Bang. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, its cosmological solutions are stable at the perturbative level.
General relativity and cosmology
Bucher, Martin
2015-01-01
This year marks the hundredth anniversary of Einstein's 1915 landmark paper "Die Feldgleichungen der Gravitation" in which the field equations of general relativity were correctly formulated for the first time, thus rendering general relativity a complete theory. Over the subsequent hundred years physicists and astronomers have struggled with uncovering the consequences and applications of these equations. This contribution, which was written as an introduction to six chapters dealing with the connection between general relativity and cosmology that will appear in the two-volume book "One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity," endeavors to provide a historical overview of the connection between general relativity and cosmology, two areas whose development has been closely intertwined.
General relativity and cosmology
Bucher, Martin; Ni, Wei-Tou
2015-10-01
This year marks the 100th anniversary of Einstein’s 1915 landmark paper “Die Feldgleichungen der Gravitation” in which the field equations of general relativity were correctly formulated for the first time, thus rendering general relativity a complete theory. Over the subsequent hundred years, physicists and astronomers have struggled with uncovering the consequences and applications of these equations. This paper, which was written as an introduction to six chapters dealing with the connection between general relativity and cosmology that will appear in the two-volume book One Hundred Years of General Relativity: From Genesis and Empirical Foundations to Gravitational Waves, Cosmology and Quantum Gravity, endeavors to provide a historical overview of the connection between general relativity and cosmology, two areas whose development has been closely intertwined.
Panel Discussion Vi: Cosmology
Anderson, E.; Dolgov, A.; Crothers, S.; Mitra, A.; Rubakov, V.; Zakharov, A.
2014-03-01
Questions to discuss: * To what extent are Dark Matter and Dark Energy necessary to explain the observed properties of the Universe? * Why are the Dark matter profiles so universal at the galactic scales? * Are there viable candidates of modified gravitational dynamics to exclude the dark components of Universe? * Do we have any perspectives to distinguish the Dark Energy from the cosmological constant? * Are there any certain indications for sterile neutrinos in the cosmos? * How does the Planck data change the view of inflation in the early Universe? What could be the origin of the inflaton plateau? So far, what else is interesting about the Planck data? * What are the nearest crucial points in cosmological observations? * Can we be more decisive discriminating between the anthropic principle, the superstringy landscape, fine tuning or dynamics as reasons for the cosmological coincidences?
Peebles, P J E
1998-01-01
We have fossil evidence from the thermal background radiation that our universe expanded from a considerably hotter denser state. We have a well defined and testable description of the expansion, the relativistic Friedmann-Lemaitre model. Its observational successes are impressive but I think hardly enough for a convincing scientific case. The lists of observational constraints and free hypotheses within the model have similar lengths. The scorecard on the search for concordant measures of the mass density parameter and the cosmological constant shows that the high density Einstein-de Sitter model is challenged, but that we cannot choose between low density models with and without a cosmological constant. That is, the relativistic model is not strongly overconstrained, the usual test of a mature theory. Work in progress will greatly improve the situation and may at last yield a compelling test. If so, and the relativistic model survives, it will close one line of research in cosmology: we will know the outlin...
LATTICE: an interactive lattice computer code
LATTICE is a computer code which enables an interactive user to calculate the functions of a synchrotron lattice. This program satisfies the requirements at LBL for a simple interactive lattice program by borrowing ideas from both TRANSPORT and SYNCH. A fitting routine is included
Cosmological Consequences of QCD Phase Transition(s) in Early Universe
Tawfik, A
2008-01-01
We discuss the cosmological consequences of QCD phase transition(s) on the early universe. We argue that our recent knowledge about the transport properties of quark-gluon plasma (QGP) should throw additional lights on the actual time evolution of our universe. Understanding the nature of QCD phase transition(s), which can be studied in lattice gauge theory and verified in heavy ion experiments, provides an explanation for cosmological phenomenon stem from early universe.
Dissipative or conservative cosmology with dark energy?
All evolutional paths for all admissible initial conditions of FRW cosmological models with dissipative dust fluid (described by dark matter, baryonic matter and dark energy) are analyzed using dynamical system approach. With that approach, one is able to see how generic the class of solutions leading to the desired property-acceleration-is. The theory of dynamical systems also offers a possibility of investigating all possible solutions and their stability with tools of Newtonian mechanics of a particle moving in a one-dimensional potential which is parameterized by the cosmological scale factor. We demonstrate that flat cosmology with bulk viscosity can be treated as a conservative system with a potential function of the Chaplygin gas type. We characterize the class of dark energy models that admit late time de Sitter attractor solution in terms of the potential function of corresponding conservative system. We argue that inclusion of dissipation effects makes the model more realistic because of its structural stability. We also confront viscous models with SNIa observations. The best fitted models are obtained by minimizing the χ2 function which is illustrated by residuals and χ2 levels in the space of model independent parameters. The general conclusion is that SNIa data supports the viscous model without the cosmological constant. The obtained values of χ2 statistic are comparable for both the viscous model and ΛCDM model. The Bayesian information criteria are used to compare the models with different power-law parameterization of viscous effects. Our result of this analysis shows that SNIa data supports viscous cosmology more than the ΛCDM model if the coefficient in viscosity parameterization is fixed. The Bayes factor is also used to obtain the posterior probability of the model
The Cosmological Constant for the Crystalline Vacuum Cosmic Space Model
Montemayor-Aldrete, J A; Morales-Mori, A; Mendoza-Allende, A; Montemayor-Varela, A; Castillo-Mussot, M; Vazquez, G J
2005-01-01
The value of the cosmological constant arising from a crystalline model for vacuum cosmic space with lattice parameter of the order of the neutron radius [1] has been calculated. The model allows to solve, in an easy way, the problem of the cosmological constant giving the right order of magnitude, which corresponds very well with the mean value of matter density in the universe. The obtained value is about 10-48 Km-2. Diffraction experiments with non-thermal neutron beam in cosmic space are proposed to search for the possibility of crystalline structure of vacuum space and to measure the lattice parameter. PACS numbers: 98.80.Es, 04.20.-q, 03.65.-w, 61.50.-f, 98.80.Ft
Testing Foundations of Modern Cosmology
ZHANG Pengjie
2011-01-01
1. Introduction Our understanding of the universe has been greatly advanced over the last two decades and a standard cosmology paradigm is now well established. Standard cosmology is based upon the cosmological principle that our universe is statistically homogeneous and isotropic. It is also based upon general relativity with a non-zero cosmological constant. In such a framework, our universe is composed of about 4% ordinary matter （baryonic matter）,
Brane cosmology in teleparallel gravity
Atazadeh, K
2014-01-01
We consider cosmology of brane-world scenario in the frame work of teleparallel gravity in that way matter is localized on the brane. We show that the cosmology of such branes is different from the standard cosmology in teleparallelism. In particular, we obtain a class of new solutions with a constant five-dimensional radius and cosmologically evolving brane in the context of constant torsion $f(T)$ gravity.
A New General Relativistic Cosmology
Wagh, Sanjay M.
2002-01-01
In this work, we outline a new general relativistic cosmology. In this cosmology, the universe originates in the infinite past from sparsely distributed neutral matter and ends in the infinite future as a hot, relativistic plasma. The spatial distribution of matter on the "initial" hyper-surface is {\\em arbitrary}. Hence, observed structures can arise in this cosmology from suitable "initial" density contrast. The red-shifts of different objects in this cosmology are indicative of their diffe...
Quantum cosmology and eternal inflation
Vilenkin, Alexander
2002-01-01
This contribution consists of two parts. In the first part, I review the tunneling approach to quantum cosmology and comment on the alternative approaches. In the second part, I discuss the relation between quantum cosmology and eternal inflation. In particular, I discuss whether or not we need quantum cosmology in the light of eternal inflation, and whether or not quantum cosmology makes any testable predictions.
2011-01-01
The twentieth century elevated our understanding of the Universe from its early stages to what it is today and what is to become of it. Cosmology is the weapon that utilizes all the scientific tools that we have created to feel less lost in the immensity of our Universe. The standard model is the theory that explains the best what we observe. Even with all the successes that this theory had, two main questions are still to be answered: What is the nature of dark matter and dark energy? This book attempts to understand these questions while giving some of the most promising advances in modern cosmology.
Some cosmological implications of the recently proposed fourth-rank theory of gravitation are studied. The model exhibits the possibility of being free from the horizon and flatness problems at the price of introducing a negative pressure. The field equations we obtain are compatible with kobs=0 and Ωobstclas approx. 1020tPlanck approx. 10-23s. When interpreted at the light of General Relativity the treatment is shown to be almost equivalent to that of the standard model of cosmology combined with the inflationary scenario. Hence, an interpretation of the negative pressure hypothesis is provided. (author). 8 refs
Measuring Neutrinos with Cosmology
Knox, Lloyd
2016-03-01
Along with a thermal distribution of photons, we expect a thermal distribution of neutrinos to have been produced in the big bang. Although direct detection of the cosmic neutrino background (CNB) is extremely difficult, if not impossible, there is much we are learning indirectly about the CNB from its gravitational influences. I will review constraints from cosmic microwave background observations on the energy density in the CNB, present a recent detection of supersonic evolution of density perturbations in the CNB, and discuss constraints on neutrino masses from cosmological observables. I will also look toward what we can expect from future cosmological surveys, such as CMB-S4.
2012-01-01
This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.
Relativistic Cosmology Revisited
Crothers S. J.
2007-04-01
Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity
Cosmology, inflation, and supersymmetry
Cosmological consequences of supersymmetric grand unified models based on the Witten-O'Raifeartaigh potential are discussed. In particular we study the development of the phase transition in the spontaneous breaking of supersymmetry. We find that in realistic models where light fields feel supersymmetry breaking only through coupling to massive fields, e.g., the Geometric Hierarchy model, the universe does not inflate or reheat. Thus, the standard cosmological flatness, monopole, and horizon problems remain. In addition, we find that the transition is never completed, in the sense that the universe remains dominated by coherent Higgs field energy, resulting in an apparent matter dominated universe with Ω greater than or equal to 1030
Silk, Joseph
2011-01-01
Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p
Moss, Ian G
2015-01-01
The discovery of the Standard Model Higgs boson opens up a range of speculative cosmological scenarios, from the formation of structure in the early universe immediately after the big bang, to relics from the electroweak phase transition one nanosecond after the big bang, on to the end of the present-day universe through vacuum decay. Higgs physics is wide-ranging, and gives an impetus to go beyond the Standard Models of particle physics and cosmology to explore the physics of ultra-high energies and quantum gravity.
Non equilibrium relativistic cosmology
A certain systematization through the discussion of results already known on cosmology and the presentation of new ones is given. In section 2 a brief review of the necessary mathematical background is also given. The theory of perturbation of Friedmann-like Universes is presented in section 3. The reduction of Einstein's equations for homogeneous Universes to an autonomous planar system of differential equations is done in section 4. Finally in section 5 the alternative gravitational non-minimal coupling and its consequences to cosmology are discussed. (Author)
Wands, David
1999-01-01
A simple model of the brane-world cosmology has been proposed, which is characterized by four parameters, the bulk cosmological constant, the spatial curvature of the universe, the radiation strength arising from bulk space-time and the breaking parameter of $Z_2$-symmetry. The bulk space-time is assumed to be locally static five-dimensional analogue of the Schwarzschild-anti-de Sitter space-time, and then the location of three-brane is determined by metric junction. The resulting Friedmann e...
Conformal symmetry and holographic cosmology
Skenderis, K.; Bzowski, A.W.
2013-01-01
This thesis presents a novel approach to cosmology using gauge/gravity duality. Analysis of the implications of conformal invariance in field theories leads to quantitative cosmological predictions which are in agreement with current data. Furthermore, holographic cosmology extends the theory of inflation beyond classical gravity.
Anisotropic cosmological models in $f (R, T)$ theory of gravitation
Shri Ram; Priyanka; Manish Kumar Singh
2013-07-01
A class of non-singular bouncing cosmological models of a general class of Bianchi models filled with perfect fluid in the framework of $f (R, T)$ gravity is presented. The model initially accelerates for a certain period of time and decelerates thereafter. The physical behaviour of the model is also studied.
Improving Initial Conditions for Cosmological $N$-Body Simulations
Garrison, Lehman H.; Eisenstein, Daniel J.; Ferrer, Douglas; Metchnik, Marc V.; Pinto, Philip A.
2016-01-01
In cosmological $N$-body simulations, the representation of dark matter as discrete "macroparticles" suppresses the growth of structure. This effect occurs even on scales many times larger than the particle spacing; for example, modes above $k_{\\rm Nyquist}/4$ inherit a 1 to 3% error in the matter power spectrum at $z=1$. Particle linear theory (PLT) (Marcos et al. 2006) analytically describes this effect for particle lattices and reveals that the continuum growing modes are not the proper la...
Notes on the compatibility of type Ia supernovae data and varying--$G$ cosmology
Shojai, F
2013-01-01
Observational data for type Ia supernovae, shows that the expansion of the universe is accelerated. This accelerated expansion can be described by a cosmological constant or by dark energy models like quintessence. An interesting question may be raised here. Is it possible to describe the accelerated expansion of universe using varying--$G$ cosmological models? Here we shall show that the price for having accelerated expansion in slow--varying--$G$ models (in which the dynamical terms of $G$ are ignored) is to have highly non--conserved matter and also that it is in contradiction with other data.
Transient cosmic acceleration from interacting fluids
Recent investigations seem to favor a cosmological dynamics according to which the accelerated expansion of the Universe may have already peaked and is now slowing down again. As a consequence, the cosmic acceleration may be a transient phenomenon. We investigate a toy model that reproduces such a background behavior as the result of a time-dependent coupling in the dark sector which implies a cancelation of the ''bare'' cosmological constant. With the help of a statistical analysis of Supernova Type Ia (SNIa) data we demonstrate that for a certain parameter combination a transient accelerating phase emerges as a pure interaction effect
The New Era of Precision Cosmology: Testing Gravity at Large Scales
Prescod-Weinstein, Chanda
2011-01-01
Cosmic acceleration may be the biggest phenomenological mystery in cosmology today. Various explanations for its cause have been proposed, including the cosmological constant, dark energy and modified gravities. Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy ore modified gravity implement the Press & Schechter formalism (PGF). However, does the PGF apply in all cosmologies? The search is on for a better understanding of universality in the PGF In this talk, I explore the potential for universality and talk about what dark matter haloes may be able to tell us about cosmology. I will also discuss the implications of this and new cosmological experiments for better understanding our theory of gravity.
An Introduction to General Relativity and Cosmology
-Walker geometry and the FL models. The rest of part II, two lengthy chapters, deals with two classes of solutions of Einstein's field equations that represent spatially inhomogeneous cosmological models, and that contain the FL models as a special case. Parts of these two chapters are based on Krasinski's book on inhomogeneous cosmologies, with the difference that the present work does not attempt to be comprehensive, but instead provides clear derivations of the most important results. A potential reader may ask how this book differs from other texts on general relativity. It is unique in a number of respects. First is the authors' emphasis on spatially inhomogeneous cosmological models, i.e. models that do not satisfy the cosmological principle. The authors appear to have reservations about the almost universal preference in the cosmological community for working within the framework of the FL models, combined with the inflationary scenario in the very early universe, and these reservations motivate the above emphasis. They remind the reader that the FL models are based on the cosmological principle, which has a philosophical rather than a physical status, since it cannot be directly tested by observation. In other words, observations alone do not uniquely select the FL models. Moreover the interpretation of cosmological observations depends on the choice of the underlying spacetime geometry. For example, there is ambiguity in inferring the spatial distribution of matter from redshift measurements. The authors discuss in some detail the work of Kurki-Suonio and Liang to illustrate this point. They also refer to Celerier who shows that the high redshift type Ia supernovae observations are compatible with a Lemaitre-Tolman model with zero cosmological constant, i.e. these observations do not imply that the universe is accelerating if one considers models more general than the FL models, in contrast to the usual interpretation. The authors also give a critique of the cosmological
Challenges to Self-Acceleration in Modified Gravity
Lombriser, Lucas
2016-01-01
The likely association of a weak short gamma-ray burst observed by the Fermi GBM experiment with the gravitational wave detection GW150914 by the aLIGO instruments implies that self-accelerated Horndeski scalar-tensor theories cannot be linearly shielded. This breaks the dark degeneracy in the large-scale structure that limited a rigorous discrimination between acceleration from modified gravity and from a cosmological constant or dark energy. Signatures of a self-acceleration must therefore manifest in the linear, unscreened cosmological structure. We describe the minimal modification required for self-acceleration and show that its maximum likelihood yields a 2.4-sigma poorer fit to cosmological observations compared to a cosmological constant, which, although marginally still possible, questions the concept of cosmic acceleration from a genuine scalar-tensor modification of gravity.
Cosmic acceleration driven by mirage inhomogeneities
A cosmological model based on an inhomogeneous D3-brane moving in an AdS5 x S5 bulk is introduced. Although there are no special points in the bulk, the brane universe has a centre and is isotropic around it. The model has an accelerating expansion and its effective cosmological constant is inversely proportional to the distance from the centre, giving a possible geometrical origin for the smallness of a present-day cosmological constant. Besides, if our model is considered as an alternative of early-time acceleration, it is shown that the early stage accelerating phase ends in a dust-dominated FRW homogeneous universe. Mirage-driven acceleration thus provides a dark matter component for the brane universe final state. We finally show that the model fulfils the current constraints on inhomogeneities
Constraining the $\\Lambda$CDM and Galileon models with recent cosmological data
Neveu, J; Astier, P; Besançon, M; Guy, J; Möller, A; Babichev, E
2016-01-01
The Galileon theory belongs to the class of modified gravity models that can explain the late-time accelerated expansion of the Universe. In previous works, cosmological constraints on the Galileon model were derived, both in the uncoupled case and with a disformal coupling of the Galileon field to matter. There, we showed that these models agree with the most recent cosmological data. In this work, we used updated cosmological data sets to derive new constraints on Galileon models, including the case of a constant conformal Galileon coupling to matter. We also explored the tracker solution of the uncoupled Galileon model. After updating our data sets, especially with the latest \\textit{Planck} data and BAO measurements, we fitted the cosmological parameters of the $\\Lambda$CDM and Galileon models. The same analysis framework as in our previous papers was used to derive cosmological constraints, using precise measurements of cosmological distances and of the cosmic structure growth rate. We showed that all te...
Supersymmetric inflationary cosmology
An action is presented, within the framework of supergravity unification, which satisfies all experimental and cosmological constraints. In intermediate scale, around 1010 - 1011 GeV, arises from a critical examination of inflation, supersymmetry breaking, fermion masses, proton decay, baryogenesis, and electroweak breaking - including neutrino oscillations and CP violation. Careful consideration is given to some relevant calculations. 86 refs., 10 figs., 5 tabs
Supersymmetric inflationary cosmology
We view the general requirement imposed on cosmology by particle physics. In particular, we discuss a model which includes inflation, supersymmetry and Grand Unification. We show how this model can be used to put an upper bound on the proton life-time
Cosmology with vector distortion
Jimenez, Jose Beltran
2016-01-01
We consider an extension of Weyl geometry with the most general connection linearly determined by a vector field. We discuss some of the geometrical properties within this framework and then we construct gravitational theories leading to an interesting class of vector-tensor theories with cosmological applications.
B B Bhowmik; A Rajput
2004-06-01
Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.
Copter: Cosmological perturbation theory
Carlson, Jordan
2013-04-01
Copter is a software package for doing calculations in cosmological perturbation theory. Specifically, Copter includes code for computing statistical observables in the large-scale structure of matter using various forms of perturbation theory, including linear theory, standard perturbation theory, renormalized perturbation theory, and many others. Copter is written in C++ and makes use of the Boost C++ library headers.
The Cosmological Parameters 2014
Lahav, Ofer
2014-01-01
This is a review article for The Review of Particle Physics 2014 (aka the Particle Data Book). It forms a compact review of knowledge of the cosmological parameters at the beginning of 2014. Topics included are Parametrizing the Universe; Extensions to the standard model; Probes; Bringing observations together; Outlook for the future.
Quantifying concordance in cosmology
Seehars, Sebastian; Grandis, Sebastian; Amara, Adam; Refregier, Alexandre
2016-05-01
Quantifying the concordance between different cosmological experiments is important for testing the validity of theoretical models and systematics in the observations. In earlier work, we thus proposed the Surprise, a concordance measure derived from the relative entropy between posterior distributions. We revisit the properties of the Surprise and describe how it provides a general, versatile, and robust measure for the agreement between data sets. We also compare it to other measures of concordance that have been proposed for cosmology. As an application, we extend our earlier analysis and use the Surprise to quantify the agreement between WMAP 9, Planck 13, and Planck 15 constraints on the Λ CDM model. Using a principle component analysis in parameter space, we find that the large Surprise between WMAP 9 and Planck 13 (S =17.6 bits, implying a deviation from consistency at 99.8% confidence) is due to a shift along a direction that is dominated by the amplitude of the power spectrum. The Planck 15 constraints deviate from the Planck 13 results (S =56.3 bits), primarily due to a shift in the same direction. The Surprise between WMAP and Planck consequently disappears when moving to Planck 15 (S =-5.1 bits). This means that, unlike Planck 13, Planck 15 is not in tension with WMAP 9. These results illustrate the advantages of the relative entropy and the Surprise for quantifying the disagreement between cosmological experiments and more generally as an information metric for cosmology.
Culture and Children's Cosmology
Siegal, Michael; Butterworth, George; Newcombe, Peter A.
2004-01-01
In this investigation, we examined children's knowledge of cosmology in relation to the shape of the earth and the day-night cycle. Using explicit questioning involving a choice of alternative answers and 3D models, we carried out a comparison of children aged 4-9 years living in Australia and England. Though Australia and England have a close…
Primack, Joel R.
1999-01-01
The cosmological parameters that I will emphasize are the Hubble parameter $H_0 \\equiv 100 h$ km s$^{-1}$ Mpc$^{-1}$, the age of the universe $t_0$, the average matter density $\\Omega_m$, the baryonic matter density $\\Omega_b$, the neutrino density $\\Omega_\
A set of spatially homogeneous and isotropic cosmological geometries generated by a class of non-perfect is investigated fluids. The irreversibility if this system is studied in the context of causal thermodynamics which provides a useful mechanism to conform to the non-violation of the causal principle. (author)
Sefusatti, Emiliano; /Fermilab /CCPP, New York; Crocce, Martin; Pueblas, Sebastian; Scoccimarro, Roman; /CCPP, New York
2006-04-01
The present spatial distribution of galaxies in the Universe is non-Gaussian, with 40% skewness in 50 h{sup -1} Mpc spheres, and remarkably little is known about the information encoded in it about cosmological parameters beyond the power spectrum. In this work they present an attempt to bridge this gap by studying the bispectrum, paying particular attention to a joint analysis with the power spectrum and their combination with CMB data. They address the covariance properties of the power spectrum and bispectrum including the effects of beat coupling that lead to interesting cross-correlations, and discuss how baryon acoustic oscillations break degeneracies. They show that the bispectrum has significant information on cosmological parameters well beyond its power in constraining galaxy bias, and when combined with the power spectrum is more complementary than combining power spectra of different samples of galaxies, since non-Gaussianity provides a somewhat different direction in parameter space. In the framework of flat cosmological models they show that most of the improvement of adding bispectrum information corresponds to parameters related to the amplitude and effective spectral index of perturbations, which can be improved by almost a factor of two. Moreover, they demonstrate that the expected statistical uncertainties in {sigma}s of a few percent are robust to relaxing the dark energy beyond a cosmological constant.
Turner, M S
1999-01-01
For two decades the hot big-bang model has been referred to as the standard cosmology -- and for good reason. For just as long cosmologists have known that there are fundamental questions that are not addressed by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all large-scale structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm, and an avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the mysterious dark-energy component. These are exciting times in cosmology!
Cosmological dynamical systems
Leon, Genly
2014-01-01
In this book are studied, from the perspective of the dynamical systems, several Universe models. In chapter 1 we give a bird's eye view on cosmology and cosmological problems. Chapter 2 is devoted to a brief review on some results and useful tools from the qualitative theory of dynamical systems. They provide the theoretical basis for the qualitative study of concrete cosmological models. Chapters 1 and 2 are a review of well-known results. Chapters 3, 4, 5 and 6 are devoted to our main results. In these chapters are extended and settled in a substantially different, more strict mathematical language, several results obtained by one of us in arXiv:0812.1013 [gr-qc]; arXiv:1009.0689 [gr-qc]; arXiv:0904.1577[gr-qc]; and arXiv:0909.3571 [hep-th]. In chapter 6, we provide a different approach to the subject discussed in astro-ph/0503478. Additionally, we perform a Poincar\\'e compactification process allowing to construct a global phase space containing all the cosmological information in both finite and infinite...
Harko, Tiberiu [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lobo, Francisco S.N. [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edificío C8, 1749-016 Lisboa (Portugal); Otalora, G. [Departamento de Física, ICE, Universidade Federal de Juiz de Fora, Caixa Postal 36036-330, Minas Gerais (Brazil); Saridakis, Emmanuel N., E-mail: t.harko@ucl.ac.uk, E-mail: flobo@cii.fc.ul.pt, E-mail: gotalora@fisica.ufjf.br [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece)
2014-12-01
We present an extension of f(T) gravity, allowing for a general coupling of the torsion scalar T with the trace of the matter energy-momentum tensor T. The resulting f(T,T) theory is a new modified gravity, since it is different from all the existing torsion or curvature based constructions. Applied to a cosmological framework, it leads to interesting phenomenology. In particular, one can obtain a unified description of the initial inflationary phase, the subsequent non-accelerating, matter-dominated expansion, and then the transition to a late-time accelerating phase. Additionally, the effective dark energy sector can be quintessence or phantom-like, or exhibit the phantom-divide crossing during the evolution. Moreover, in the far future the universe results either to a de Sitter exponential expansion, or to eternal power-law accelerated expansions. Finally, a detailed study of the scalar perturbations at the linear level reveals that f(T,T) cosmology can be free of ghosts and instabilities for a wide class of ansatzes and model parameters.
Kinyon, Michael
2012-01-01
Categorical skew lattices are a variety of skew lattices on which the natural partial order is especially well behaved. While most skew lattices of interest are categorical, not all are. They are characterized by a countable family of forbidden subalgebras. We also consider the subclass of strictly categorical skew lattices.
Quantum cosmology - science of Genesis
Quantum cosmology, the marriage between the theories of the microscopic and macroscopic Universe, is examined in an attempt to explain the birth of the Universe in the 'big bang'. A quantum cosmological model of the Universe does not exist, but a rough approximation, or 'poor man's' version of quantum cosmology has been developed. The idea is to combine the theory of quantum mechanics with the classical cosmological solutions to obtain a quantum mechanical version of cosmology. Such a model of quantum cosmology is described -here the quantum universe behaves like a hydrogen atom with the Planck length replacing the Bohr radius. Properties of quantum cosmologies and the significance of the Planck length are both discussed. (UK)
Inhomogeneous cosmologies with tachyonic dust as dark matter
Das, A
2003-01-01
A cosmology is considered driven by a stress-energy tensor consisting of perfect fluid, tachyonic dust and a cosmological constant. The inflationary, radiation dominated and matter dominated eras are investigated in detail. In all three eras, the tachyonic pressure decreases with increasing radius of the universe and is thus minimal in the matter dominated era. The gravitational effects of the tachyon, however, may still strongly affect the universe at present time. In case the tachyonic pressure is positive, it enhances the matter {\\em density} and is a candidate for dark matter. In the case where the tachyonic pressure is negative, the recent acceleration of the universe can be understood without the need for a cosmological constant. However, an ever-expanding universe has to be accepted unless a negative cosmological term is present. In a later section, the extension to a variable cosmological term is investigated and a specific model is put forward such that recent acceleration and future re-collapse is p...
Quantum Cosmology, Inflation and Cosmological Constant
Darabi, F
2004-01-01
We study a classical model of gravitation in which a self interacting scalar field is coupled to gravity with the metric undergoing a continuous signature transition. We show that by appropriate duality transformations on the parameters of the scalar field potential one obtains dual signature changing classical solutions for the Einstein field equations. These dual classical solutions correspond to the same quantum cosmology. This suggests that, if the solutions of the Wheeler-DeWitt equation are assumed to be more primitive than the classical solutions, we may arrange for a reasonable jump of dual classical solutions passing through the signature changing hypersurface, provided we introduce a distribution of such dual potentials over Euclidean and Lorentzian regions. This may serve as an alternative scenario for the quantum creation of the Lorentzian universe in which the quantum jumps of dual signature changing classical solutions may play the role of a finite inflation, accompanied by phase transitions, in...
Particle Pair Production in Cosmological General Relativity
Oliveira, Firmin J.
2012-01-01
The Cosmological General Relativity (CGR) of Carmeli, a 5-dimensional (5-D) theory of time, space and velocity, predicts the existence of an acceleration a_0 = c / tau due to the expansion of the universe, where c is the speed of light in vacuum, tau = 1 / h is the Hubble-Carmeli time constant, where h is the Hubble constant at zero distance and no gravity. The Carmeli force on a particle of mass m is F_c = m a_0, a fifth force in nature. In CGR, the effective mass density rho_eff = rho - rho...
Some cosmological consequences of Weyl invariance
We examine some Weyl invariant cosmological models in the framework of generalized dilaton gravity, in which the action is made of a set of N conformally coupled scalar fields. It will be shown that when the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the scalar fields EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations
Accelerated expansion and the virial theorem
Hansen, Steen H
2012-01-01
When dark matter structures form and equilibrate they have to release a significant amount of energy in order to obey the virial theorem. Since dark matter is believed to be unable to radiate, this implies that some of the accreted dark matter particles must be ejected with high velocities. These ejected particles may then later hit other cosmological structures and deposit their momentum within these structures. This induces a pressure between the cosmological structures which opposes the effect of gravity and may therefore mimic a cosmological constant. We estimate the magnitude of this effect and find that it may be as large as the observed accelerated expansion. Our estimate is accurate only within a few orders of magnitude. It is therefore important to make a much more careful calculation of this redshift dependent effect, before beginning to interpret the observed accelerated expansion as a time dependent generalization of a cosmological constant.
The Future of Theoretical Physics and Cosmology
Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.
2009-08-01
Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space
Averaging Problem in Cosmology and Macroscopic Gravity
Zalaletdinov, Roustam
2007-01-01
The Averaging problem in general relativity and cosmology is discussed. The approach of macroscopic gravity to resolve the problem is presented. An exact cosmological solution to the equations of macroscopic gravity is given and its properties are discussed. Contents: 1. Introduction to General Relativity 2. General Relativity -> Relativistic Cosmology 3. Introduction to Relativistic Cosmology 4. Relativistic Cosmology -> Mathematical Cosmology 5. Averaging Problem in Relativistic Cosmology 6...
Kosyakov, B P
2005-01-01
It is widely believed that the large redshifts for distant supernovae are explained by the vacuum energy dominance, or, in other words, by the cosmological constant in Einstein's equations, which is responsible for the anti-gravitation effect. A tacit assumption is that particles move along a geodesic for the background metric. This is in the same spirit as the consensus regarding the uniform Galilean motion of a free electron. However, there is a runaway solution to the Lorentz--Dirac equation governing the behavior of a radiating electron, in addition to the Galilean solution. Likewise, a runaway solution to the entire system of equations, both gravitation and matter equations of motion including, may provide an alternative explanation for the accelerated expansion of the Universe, without recourse to the hypothetic cosmological constant.
NONE
2006-11-15
This year's Nobel prize is welcome recognition for cosmology. Back in the 1960s, according to Paul Davies' new book The Goldilocks Enigma (see 'Seeking anthropic answers' in this issue), cynics used to quip that there is 'speculation, speculation squared - and cosmology'. Anyone trying to understand the origin and fate of the universe was, in other words, dealing with questions that were simply impractical - or even impossible - to answer. But that has all changed with the development of new telescopes, satellites and data-processing techniques - to the extent that cosmology is now generally viewed as a perfectly acceptable branch of science. If anyone was in any doubt of cosmology's new status, the Royal Swedish Academy of Sciences last month gave the subject welcome recognition with the award of this year's Nobel prize to John Mather and George Smoot (see pp6-7; print version only). The pair were the driving force behind the COBE satellite that in 1992 produced the now famous image of the cosmic microwave background. The mission's data almost certainly proved that the universe started with a Big Bang, while tiny fluctuations in the temperature signal between different parts of the sky were shown to be the seeds of the stars and galaxies we see today. These results are regarded by many as the start of a new era of 'precision cosmology'. But for cosmologists, the job is far from over. There are still massive holes in our understanding of the cosmos, notably the nature of dark matter and dark energy, which together account for over 95% of the total universe. Indeed, some regard dark energy and matter as just ad hoc assumptions needed to fit the data. (Hypothetical particles called 'axions' are one possible contender for dark matter (see pp20-23; print version only), but don't bet your house on it.) Some physicists even think it makes more sense to adjust Newtonian gravity rather than invoke dark
This year's Nobel prize is welcome recognition for cosmology. Back in the 1960s, according to Paul Davies' new book The Goldilocks Enigma (see 'Seeking anthropic answers' in this issue), cynics used to quip that there is 'speculation, speculation squared - and cosmology'. Anyone trying to understand the origin and fate of the universe was, in other words, dealing with questions that were simply impractical - or even impossible - to answer. But that has all changed with the development of new telescopes, satellites and data-processing techniques - to the extent that cosmology is now generally viewed as a perfectly acceptable branch of science. If anyone was in any doubt of cosmology's new status, the Royal Swedish Academy of Sciences last month gave the subject welcome recognition with the award of this year's Nobel prize to John Mather and George Smoot (see pp6-7; print version only). The pair were the driving force behind the COBE satellite that in 1992 produced the now famous image of the cosmic microwave background. The mission's data almost certainly proved that the universe started with a Big Bang, while tiny fluctuations in the temperature signal between different parts of the sky were shown to be the seeds of the stars and galaxies we see today. These results are regarded by many as the start of a new era of 'precision cosmology'. But for cosmologists, the job is far from over. There are still massive holes in our understanding of the cosmos, notably the nature of dark matter and dark energy, which together account for over 95% of the total universe. Indeed, some regard dark energy and matter as just ad hoc assumptions needed to fit the data. (Hypothetical particles called 'axions' are one possible contender for dark matter (see pp20-23; print version only), but don't bet your house on it.) Some physicists even think it makes more sense to adjust Newtonian gravity rather than invoke dark matter. But the notion that cosmology is in crisis, as argued by some
Probing Gravitation, Dark Energy, and Acceleration
Linder, Eric V.
2004-01-01
The acceleration of the expansion of the universe arises from unknown physical processes involving either new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to characterize the properties of the dark energy or gravity through cosmological observations and compare and distinguish between them. In fact, close consistencies exist between a dark energy equation of state function w(z) and changes to the framework of the Friedmann cosmologi...
$C$-field cosmological models: revisited
Yadav, A K; Ray, Saibal; Rahaman, F; Sardar, I H
2015-01-01
We investigate plane symmetric space-time filled with perfect fluid in the $C$-field cosmology of Hoyle and Narlikar. A new class of exact solutions have been obtained by considering the creation field $C$ as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing $C$-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially it is shown that some of our solutions of $C$-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters and noted that the model in a unique way represents both the features of the accelerating as well as decelerating Universe depending on the parameters and thus seems provides glimpses of the oscillating or cyclic model of th...
Dynamical Vacuum against a rigid Cosmological Constant
Sola, Joan; Gomez-Valent, Adria; Nunes, Rafael C
2016-01-01
When we are approaching the centenary of the introduction of the cosmological constant $\\Lambda$ by Einstein in his gravitational field equations, and after about two decades of the first observational papers confirming the existence of a non-vanishing, positive, $\\Lambda$ as the most likely explanation for the observed acceleration of the Universe, we are still facing the question whether $\\Lambda$ is truly a fundamental constant of Nature or a mildly evolving dynamical variable. In this work we compare three types of cosmological scenarios involving dynamical vacuum energy in interaction with matter. By performing an overall fit to the cosmological observables $SNIa+BAO+H(z)+LSS+CMB$, we find that the dynamical $\\Lambda$ models are significantly more favored than the $\\Lambda$CDM, suggesting that a rigid $\\Lambda$-term is excluded at $\\sim 3\\sigma$ c.l. This conclusion is strongly supported by Akaike and Bayesian information criteria which render more than 10 points of difference in favor of the dynamical v...
Entropic Accelerating Universe
Easson, Damien A; Smoot, George F
2010-01-01
To accommodate the observed accelerated expansion of the universe, one popular idea is to invoke a driving term in the Friedmann-Lema\\^{i}tre equation of dark energy which must then comprise 70% of the present cosmological energy density. We propose an alternative interpretation which takes into account the temperature intrinsic to the information holographically stored on the screen which is the surface of the universe. Dark energy is thereby obviated and the acceleration is due to an entropic force naturally arising from the information storage on a surface screen. We consider an additional quantitative approach based upon the entropy and surface terms usually neglected in General Relativity and show that this leads to the entropic accelerating universe.
Brane cosmology in string/M-theory and cosmological parameters estimation
Wu, Qiang
In this dissertation, I mainly focus on two subjects: (I) highly effective and efficient parameter estimation algorithms and their applications to cosmology; and (II) the late cosmic acceleration of the universe in string/M theory. In Part I, after developing two highly successful numerical codes, I apply them to study the holographical dark energy model and ΛCMD model with curvature. By fitting these models with the most recent observations, I find various tight constraints on the parameters involved in the models. In part II, I develop the general formulas to describe orbifold branes in both string and M theories, and then systematical study the two most important issues: (1) the radion stability and radion mass; and (2) the localization of gravity, the effective 4D Newtonian potential. I find that the radion is stable and its mass is in the order of GeV, which is well above the current observational constraints. The gravity is localized on the TeV brane, and the spectra of the gravitational Kluza-Klein towers are discrete and have a mass gap of TeV. The contributions of high order Yukawa corrections to the Newtonian potential are negligible. Using the large extra dimensions, I also show that the cosmological constant can be lowered to its current observational value. Applying the formulas to cosmology, I study several models in the two theories, and find that a late transient acceleration of the universe is a generic feature of our setups.
f(R) gravity cosmology in scalar degree of freedom
The models of f(R) gravity belong to an important class of modified gravity models where the late time cosmic accelerated expansion is considered as the manifestation of the large scale modification of the force of gravity. f(R) gravity models can be expressed in terms of a scalar degree of freedom by explicit redefinition of model's variable. Here we report about the study of the features of cosmological parameters and hence the cosmological evolution using the scalar degree of freedom of the f(R) = ξRn gravity model in the Friedmann-Lemaître-Robertson-Walker (FLRW) background
Relativistic Hydrodynamic Cosmological Perturbations
Hwang, J
1999-01-01
Relativistic cosmological perturbation analyses can be made based on several different fundamental gauge conditions. In the pressureless limit the variables in certain gauge conditions show the correct Newtonian behaviors. Considering the general curvature ($K$) and the cosmological constant ($\\Lambda$) in the background medium, the perturbed density in the comoving gauge, and the perturbed velocity and the perturbed potential in the zero-shear gauge show the same behavior as the Newtonian ones in general scales. In the first part, we elaborate these Newtonian correspondences. In the second part, using the identified gauge-invariant variables with correct Newtonian correspondences, we present the relativistic results with general pressures in the background and perturbation. We present the general super-sound-horizon scale solutions of the above mentioned variables valid for general $K$, $\\Lambda$, and generally evolving equation of state. We show that, for vanishing $K$, the super-sound-horizon scale evoluti...
Relativistic Fractal Cosmologies
Ribeiro, Marcelo B
2009-01-01
This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...
Cosmological magnetic field survival
Barrow, John D
2011-01-01
It is widely believed that primordial magnetic fields are dramatically diluted by the expansion of the universe. As a result, cosmological magnetic fields with residual strengths of astrophysical relevance are generally sought by going outside standard cosmology, or by extending conventional electromagnetic theory. Nevertheless, the survival of strong B-fields of primordial origin is possible in spatially open Friedmann universes without changing conventional electromagnetism. The reason is the hyperbolic geometry of these spacetimes, which slows down the adiabatic magnetic decay-rate and leads to their superadiabatic amplification on large scales. So far, the effect has been found to operate on Friedmannian backgrounds containing either radiation or a slow-rolling scalar field. We show here that the superadiabatic amplification of large-scale magnetic fields, generated by quantum fluctuations during inflation, is essentially independent of the type of matter that fills the universe and appears to be a generi...
Quantum cosmology is to quantum gravity what the Bohr model is to the full quantum mechanical description of the hydrogen atom. In quantum cosmology one attempts to give a quantum-mechanical meaning to classical solutions of general relativity. This is discussed in this chapter. The approach is illustrated by quantizing only the conformal degree of freedom of the gravitational field, in particular the Friedmann-Robertson-Walker models. And, as in the hydrogen atom, the classical singularity of general relativity is avoided and one has analogous stationary states in the quantum Universe. The chapter ends with a model of the fundamental role that the Planck length may play as the universal cutoff in all field theories, thus ridding the theory of ultra-violet divergences. Two appendices introduce field theory in the Schroedinger representation and the Schroedinger equation for quantum gravity, namely the Wheeler-De Wit equation. (author). 38 refs.; 2 figs.; 1 tab
Holography from quantum cosmology
Rashki, M
2014-01-01
The Weyl-Wigner-Groenewold-Moyal formalism of deformation quantization is applied to the closed Friedmann-Lema\\^itre-Robertson-Walker (FLRW) cosmological model. We show that the phase space average for the surface of the apparent horizon is quantized in units of the Planck's surface, and that the total entropy of the universe is also quantized. Taking into account these two concepts, it is shown that 't Hooft conjecture on the cosmological holographic principle (CHP) in radiation and dust dominated quantum universes is satisfied as a manifestation of quantization. This suggests that the entire universe (not only inside the apparent horizon) can be seen as a two-dimensional information structure encoded on the apparent horizon.
Skaanes, Thea
2015-01-01
intimately linked to women and to aspects of the social and cosmological identity of the individual makers. one object is a materi- alisation of the woman’s name and it leads to an examination by interview of naming practices more generally. Naming a child gives it a spirit and places the child in a strong...... spirit-beings of the named. In this ritual we nd that dancers when calling names of women do so through the mediating power objects. The article concludes by considering death, the dead body and the role of the objects in death. The approach taken is not intended to be holistic, but rather a presentation......Abstract: This article concerns Hadza cosmology examined through objects, rituals and the Hadza concept of epeme. A brief background to the Hadza and the eldwork that informs this study is followed by a close analysis of three key objects that are central to the argument presented. The objects are...
Gariazzo, Stefano
2016-01-01
In this Thesis I discuss several recent results obtained using the CMB spectra measured by Planck and several other cosmological probes. Extensions of the $\\Lambda$CDM model are studied, including the presence of an additional sterile neutrino (motivated by the short-baseline oscillation anomalies) and of a thermal axion. The degeneracies of the cosmological effects of these particles with the power spectrum of primordial perturbations are tested. We also show that the power spectrum of initial scalar perturbations can be degenerate with the presence of primordial non-Gaussianities, thus affecting the constraints on the non-Gaussianity parameter $f_{NL}$. Finally, an effective interaction between dark energy and dark matter is studied.
Rich, James
2009-01-01
The book is aimed at astrophysics students and professional physicists who wish to understand the basics of cosmology and general relativity as well as the observational foundations of the LambdaCDM model of the Universe. The book provides a self-contained introduction to general relativity that is based on the homogeneity and isotropy of the local universe. The simplicity of this space allows general relativity to be presented in a very elementary manner while laying the foundation for the treatment of more complicated problems. The new edition presents the most recent observations, including those of CMB anisotropies by WMAP and of Baryon Acoustic Oscillations by SDSS. Future observational and theoretical challenges for the understanding of dark energy and dark matter are discussed. From 1st edition reviews: "The book provides a comprehensive and thorough explication of current cosmology at a level appropriate for a beginning graduate student or an advanced and motivated undergraduate. ... This is an extrem...
The Cosmological Memory Effect
Tolish, Alexander
2016-01-01
The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat FLRW cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of $(1 + z)$.
Bojowald, Martin
2015-01-01
In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity: De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting "microscopic" degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.
Integrable Cosmological Potentials
Sokolov, V V
2016-01-01
The problem of classification of the Einstein--Friedman cosmological Hamiltonians $H$ with a single scalar inflaton field $\\varphi$ that possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint $H=0$ is considered. Necessary and sufficient conditions for the existence of first, second, and third degree integrals are derived. These conditions have the form of ODEs for the cosmological potential $V(\\varphi)$. In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in a parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described and sporadic superintegrable cases are discussed.
Brane cosmological evolution in a bulk with cosmological constant
Binetruy, Pierre; Deffayet, Cedric; Ellwanger, Ulrich; Langlois, David
1999-01-01
We consider the cosmology of a ``3-brane universe'' in a five dimensional (bulk) space-time with a cosmological constant. We show that Einstein's equations admit a first integral, analogous to the first Friedmann equation, which governs the evolution of the metric in the brane, whatever the time evolution of the metric along the fifth dimension. We thus obtain the cosmological evolution in the brane for any equation of state describing the matter in the brane, without needing the dependence o...
A Proposed Scale-Dependent Cosmology for the Inhomogeneous Cosmology
Kim, Chung Wook; Song, Jeonghyeon
1995-01-01
We propose a scale-dependent cosmology in which the Robertson--Walker metric and the Einstein equation are modified in such a way that $\\Omega_0$, $H_0$ and the age of the Universe all become scale-dependent. Its implications on the observational cosmology and possible modifications of the standard Friedmann cosmology are discussed. For example, the age of the Universe in this model is longer than that of the standard model.
The author summarizes some of the many questions and answers which have been raised over the years regarding the nature of matter, the origin of its forms and the associated concept of cosmology including the formation of the universe, our place in it and its course of evolution. An examination of the development of the classical concept of matter and its subsequent transformations within the space-time fields of relativity and quantum theory is also presented
The cosmological singularity problem
Craps, Ben
2010-01-01
Despite impressive phenomenological successes, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Depending on the model, one would like to understand how appropriate initial conditions were selected at the big bang singularity, or how a pre-existing contracting universe underwent a big crunch/big bang transition, if such transitions are possible at all. In this talk, after an introduction to these questions, an attempt is described to st...
The Atacama Cosmology Telescope
Kosowsky, Arthur
2004-01-01
The Atacama Cosmology Telescope (ACT) project is described. This multi-institution collaboration aims to produce arcminute-resolution and micro-Kelvin sensitivity maps of the microwave background temperature over 200 square degrees of the sky in three frequency bands. We give a brief overview of the scientific motivations for such a map, followed by a design outline of our six-meter custom telescope, an overview of our proposed bolometer array detector technology, and site considerations and ...
Topics in inflationary cosmologies
Several aspects of inflationary cosmologies are discussed. An introduction to the standard hot big bang cosmological model is reviewed, and some of the problems associated with it are presented. A short review of the proposals for solving the cosmological conundrums of the big bang model is presented. Old and the new inflationary scenarios are discussed and shown to be unacceptable. Some alternative scenarios especially those using supersymmetry are reviewed briefly. A study is given of inflationary models where the same set of fields that breaks supersymmetry is also responsible for inflation. In these models, the scale of supersymmetry breaking is related to the slope of the potential near the origin and can thus be kept low. It is found that a supersymmetry breaking scale of the order of the weak breaking scale. The cosmology obtained from the simplest of such models is discussed in detail and it is shown that there are no particular problems except a low reheating temperature and a violation of the thermal constraint. A possible solution to the thermal constraint problem is given by introducing a second field, and the role played by this second field in the scenario is discussed. An alternative mechanism for the generation of baryon number within the framework of supergravity inflationary models is studied using the gravitational couplings of the heavy fields with the hidden sector (the sector which breaks supersymmetry). This mechanism is applied to two specific models - one with and one without supersymmetry breaking. The baryon to entropy ratio is found to be dependent on parameters which are model dependent. Finally, the effect of direct coupling between the two sectors on results is related, 88 refs., 6 figs
Inertia in Friedmann cosmologies
Teuber, J.; Hjorth, P.G.
1987-02-11
Assuming the validity of Mach's principle, we present a formalism allowing the calculation of inertial reaction forces having the mass distribution of an entire Friedmann model as their source. In this scheme, the density parameter characterizing the Friedmann model appears in Newton's second law which in this form can be regarded as a statement about cosmology. We discuss a possible observational consequence and its relation to variable-G theories.
Statistical Methods in Cosmology
Verde, L.
2010-03-01
The advent of large data-set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists rely on data where a host of useful information is enclosed, but is encoded in a non-trivial way. The challenges in extracting this information must be overcome to make the most of a large experimental effort. Even after having converged to a standard cosmological model (the LCDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from it, the number of parameters is even larger. Dealing with such a high dimensional parameter space and finding parameters constraints is a challenge on itself. Cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, cosmologists in many cases want to find out, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, sophisiticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those.
The fractal cosmological model
Rozgacheva, I. K.; Agapov, A. A.
2011-01-01
The fractal cosmological model which accounts for observable fractal properties of the Universe's large-scale structure is constructed. In this framework these properties are consequences of the rotary symmetry of charged scalar meson matter field (complex field). They may be explained through a conception of the Universe as an assembly of self-similar space-time domains. We have found the scale invariant solutions of Einstein's equation and Lagrange's field equation. For the solution the spa...
Cosmological Perturbations in Antigravity
Oltean, Marius; Brandenberger, Robert
2014-01-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely-signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the Standard Model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically-complete cyclic cos...
Supersymmetry and quantum cosmology
The development of the N = 4 supersymmetric approach to quantum cosmology based on the non-compact global O(d,d) symmetries of the effective action is given. The N = 4 supersymmetric action whose bosonic sector is invariant under O(d,d) is determined. A representation for supercharges is obtained and the form of the zero and one-fermion quantum states leading to the Wheeler-DeWitt equation is found. (author)
Cosmology, Clusters and Calorimeters
Figueroa-Feliciano, Enectali
2005-01-01
I will review the current state of Cosmology with Clusters and discuss the application of microcalorimeter arrays to this field. With the launch of Astro-E2 this summer and a slew of new missions being developed, microcalorimeters are the next big thing in x-ray astronomy. I will cover the basics and not-so-basic concepts of microcalorimeter designs and look at the future to see where this technology will go.
Nguyen, Le-Huy; Parwani, Rajesh R.
2008-01-01
We study the effects of an information-theoretically motivated nonlinear correction to the Wheeler-deWitt equation in the minisuperspace scheme for flat, $k=0$, Friedmann-Robertson-Walker (FRW) universes. When the only matter is a cosmological constant, the nonlinearity can provide a barrier that screens the original Big Bang, leading to the quantum creation of a universe through tunneling just as in the $k=1$ case. When the matter is instead a free massless scalar field, the nonlinearity can...
Inertia in Friedmann cosmologies
Assuming the validity of Mach's principle, it is presented a formalism allowing the calculation of inertial reaction forces having the mass distribuition of the entire Friedmann model as their source. In this scheme, the density parameter characterizing the Friedmann model appears in Newton's second law which in this form can be regarded as statement about cosmology. A possible observational consequence and its relation to variable-g theories are discussed
Cosmology and the Sinusoidal Potential
Bartlett, David F.
2006-06-01
The nature of dark matter (and dark energy) remains a mystery. An alternative is being explored by several scientists: changing Newton's (and Einstein's) field equations. The sinusoidal potential is the latest attempt[1]. Here the gravitational law is alternately attractive and repulsive:φ = -GM cos(kor)/r, where λo=2π/ko = 1/20 of the distance from the sun to the center of the Milky Way. The proposal accommodates several structural features of the Milky Way including, paradoxically, its spiral shape and flat rotation curve. The sinusoidal potential's unique feature is strong galactic tidal forces (dg/dr). These may explain why the new planetoid Sedna is securely between the Kuiper Belt and the Oort cloud and why distant comets are more influenced by galactic tides that are in the r, rather than the z-direction.At this meeting I discuss the consequences of the sinusoidal potential for cosmology. Here the alternation of attraction and repulsion gives (i) an open universe, and (ii) gravitational lensing which is usually weak, but occasionally very strong. An open universe is one that, asymptotically, has a size R which varies directly as time t. The open universe conflicts both with the old Einstein-deSitter model (R α t2/3} and the new accelerating one. The evidence for an accelerating universe decisively rejects the Einstein-deSitter model. The rejection of an open (or empty) universe is less secure. This rejection is influenced by the different ways the groups studying the brightness of supernovae use the HST. Surprising additional inputs include neutrino masses, the equivalence principle, LSB galaxies, and "over-luminous" Sn1a. I thank Mostafa Jon Dadras and Patrick Motl for early help and John Cumalat for continual support. [1] D.F. Bartlett, "Analogies between electricity and gravity", Metrologia 41, S115-S124 (2004).
A review on the lattice design of large hadron colliders
The conceptual evolution of the accelerator lattice design is discussed. Indicated are aspects of IR design. We emphasize the cancellation of stop-band width in the cluster design. The case of symmetric vs antisymmetric design is also discussed. The SSC lattice is used as an example. 9 refs
Cosmological perturbations in antigravity
Oltean, Marius; Brandenberger, Robert
2014-10-01
We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.
Revisiting Cosmological parameter estimation
Prasad, Jayanti
2014-01-01
Constraining theoretical models with measuring the parameters of those from cosmic microwave background (CMB) anisotropy data is one of the most active areas in cosmology. WMAP, Planck and other recent experiments have shown that the six parameters standard $\\Lambda$CDM cosmological model still best fits the data. Bayesian methods based on Markov-Chain Monte Carlo (MCMC) sampling have been playing leading role in parameter estimation from CMB data. In one of the recent studies \\cite{2012PhRvD..85l3008P} we have shown that particle swarm optimization (PSO) which is a population based search procedure can also be effectively used to find the cosmological parameters which are best fit to the WMAP seven year data. In the present work we show that PSO not only can find the best-fit point, it can also sample the parameter space quite effectively, to the extent that we can use the same analysis pipeline to process PSO sampled points which is used to process the points sampled by Markov Chains, and get consistent res...
On the basis of colorimetric data a composite spectrum of quasars is established from the visible to the Lyman's limit. Its agreement with the spectrum of the quasar 3C273, obtained directly, confirms the homogeneity of these objects. The compatibility of the following hypotheses: negligible evolution of quasars, Friedmann type model of the universe with cosmological constant, is studied by means of two tests: a non-correlation test adopted to the observation conditions and the construction of diagrams (absolute magnitude, volume) using the K-correction deduced from the composite spectrum. This procedure happens to give relatively well-defined values of the parameters; the central values of the density parameter, the reduced curvature and the reduced cosmological constant are: Ω0=0.053, k0=0.245, lambda-zero=1.19, which correspond to a big bang model, eternally expanding, spatially finite, in which Hubble's parameter H is presently increasing. This model responds well to different cosmological tests: density of matter, diameter of radio sources, age of the universe. Its characteristics suggest various cosmogonic mechanisms, espacially mass formation by growth of empty spherical bubbles
Cosmological phase transitions
If the universe stated from conditions of high temperature and density, there should have been a series of phase transitions associated with spontaneous symmetry breaking. The cosmological phase transitions could have observable consequences in the present Universe. Some of the consequences including the formation of topological defects and cosmological inflation are reviewed here. One of the most important tools in building particle physics models is the use of spontaneous symmetry breaking (SSB). The proposal that there are underlying symmetries of nature that are not manifest in the vacuum is a crucial link in the unification of forces. Of particular interest for cosmology is the expectation that are the high temperatures of the big bang symmetries broken today will be restored, and that there are phase transitions to the broken state. The possibility that topological defects will be produced in the transition is the subject of this section. The possibility that the Universe will undergo inflation in a phase transition will be the subject of the next section. Before discussing the creation of topological defects in the phase transition, some general aspects of high-temperature restoration of symmetry and the development of the phase transition will be reviewed. 29 references, 1 figure, 1 table
Magueijo, Joao; Kibble, T W B
2013-01-01
Using the chiral representation for spinors we present a particularly transparent way to generate the most general spinor dynamics in a theory where gravity is ruled by the Einstein-Cartan-Holst action. In such theories torsion need not vanish, but it can be re-interpreted as a 4-fermion self-interaction within a torsion-free theory. The self-interaction may or may not break parity invariance, and may contribute positively or negatively to the energy density, depending on the couplings considered. We then examine cosmological models ruled by a spinorial field within this theory. We find that while there are cases for which no significant cosmological novelties emerge, the self-interaction can also turn a mass potential into an upside-down Mexican hat potential. Then, as a general rule, the model leads to cosmologies with a bounce, for which there is a maximal energy density, and where the cosmic singularity has been removed. These solutions are stable, and range from the very simple to the very complex.
Gelmini, Graciela B
1996-01-01
Talks given at the V Taller de Particulas y Campos (V-TPyC) and V Taller Latinoam. de Fenomenologia de las Interac. Fundam. (V-TLFIF), Puebla, Mexico, 10/30 - 11/3 1995. These lectures are devoted to elementary particle physicists and assume the reader has very little or no knowledge of cosmology and astrophysics. After a brief historical introduction to the development of modern cosmology and astro-particles in which the Hot Big Bang model is defined, the Robertson-Walker metric and the dynamics of the Friedmann-Robertson-Walker cosmology are discussed in section 2. In section 3 the main observational features of the Universe are reviewed, including a description of our neighbourhood, homogeneity and isotropy, the cosmic background radiation, the expansion, the age and the matter content of the Universe. A brief account of the thermal history of the Universe follows in section 4, and relic abundances are discussed in section 5. Section 6 is devoted to primordial nucleosynthesis, section 7 to structure format...
Particle Physics and Cosmology
Pralavorio, P
2015-01-01
Today, both particle physics and cosmology are described by few parameter Standard Models, i.e. it is possible to deduce consequence of particle physics in cosmology and vice verse. The former is examined in this lecture, in light of the recent systematic exploration of the electroweak scale by the LHC experiments. The two main results of the first phase of the LHC, the discovery of a Higgs-like particle and the absence so far of new particles predicted by "natural" theories beyond the Standard Model (supersymmetry, extra-dimension and composite Higgs) are put in a historical context to enlighten their importance and then presented extensively. To be complete, a short review from the neutrino physics, which can not be probed at LHC, is also given. The ability of all these results to resolve the 3 fundamental questions of cosmology about the nature of dark energy and dark matter as well as the origin of matter-antimatter asymmetry is discussed in each case.
Cosmology in generalized Proca theories
De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-01-01
We consider a massive vector field with derivative interactions that propagates only the 3 desired polarizations (besides two tensor polarizations from gravity) with second-order equations of motion in curved space-time. The cosmological implications of such generalized Proca theories are investigated for both the background and the linear perturbation by taking into account the Lagrangian up to quintic order. In the presence of a matter fluid with a temporal component of the vector field, we derive the background equations of motion and show the existence of de Sitter solutions relevant to the late-time cosmic acceleration. We also obtain conditions for the absence of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations in the small-scale limit. Our results are applied to concrete examples of the general functions in the theory, which encompass vector Galileons as a specific case. In such examples, we show that the de Sitter fixed point is always a stable attractor and study viable ...
Shahidi, Shahab
2012-01-01
In this proposal we study the problem of the virial mass discrepancy in the context of DGP brane gravity. DGP model is a kind of brane-world model such that the corrections to the usual gravity occurred in the large distance limit relative to the distance scale of the model defined as a ratio of the brane Planck scale to the bulk Planck scale. The extra dimension of this model is noncompact. This model is composed with an Einstein-Hilbert action in 5 dimensions plus an induced 4D action guarantees the existence of gravity on the brane. The importance of this model is that it can explain the self-acceleration of our universe without use of any type of dark energy. The virial mass discrepancy is an important problem in cosmology and it can be explained by dark matter. This is due to our various ways in measurement of the mass of the galaxy clusters. One of the ways we can measure the mass of a cluster of galaxies is to measure the galaxy masses and then add them up to obtain the cluster mass. Another way is to ...
A varying-α brane world cosmology
We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models. (author)
A Varying-alpha Brane World Cosmology
Youm, Donam
2001-01-01
We study the brane world cosmology in the RS2 model where the electric charge varies with time in the manner described by the varying fine-structure constant theory of Bekenstein. We map such varying electric charge cosmology to the dual variable-speed-of-light cosmology by changing system of units. We comment on cosmological implications for such cosmological models.
Fourth International Meeting on Gravitation and Cosmology
Aguilar, José; Barrera, Luz; Accelerated Cosmic Expansion
2014-01-01
This volume provides both an update and a review of the state of alternative theories of gravity, in connection with the issue of the accelerated expansion of the universe. Different theoretical proposals explain the acceleration in cosmic expansion, generating the dark energy issue and opening the possibilities of alternative theories of gravity (besides general relativity). Related issues, such as the problem of dark matter, are also surveyed in order to give the readers profound insight on the subject from different points of view. Comprised of short talks and plenary lectures given by leading experts in the field, some of them with brilliant and historic contributions, this book allows the reader to find referenced surveys in topics like f(R) theories, the dark matter and dark energy issues, Modified Newtonian Dynamics (MOND) scenarios, f(T) theories, scalar-tensor theories derived from non-Riemannian geometries, emergent universes, the cosmological constant and other topics of current interest for physic...
Backreaction mechanism in multifluid and extended cosmologies
Jiménez, Jose Beltrán [Centre for Cosmology, Particle Physics and Phenomenology, Institute of Mathematics and Physics, Louvain University, 2 Chemin du Cyclotron, 1348 Louvain-la-Neuve (Belgium); Cruz-Dombriz, Álvaro de la [Departamento de Física Teórica I, Ciudad Universitaria, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Dunsby, Peter K.S.; Sáez-Gómez, Diego, E-mail: jose.beltran@uclouvain.be, E-mail: dombriz@fis.ucm.es, E-mail: peter.dunsby@uct.ac.za, E-mail: diego.saezgomez@uct.ac.za [Astrophysics, Cosmology and Gravity Centre (ACGC), University of Cape Town, Rondebosch 7701, Cape Town (South Africa)
2014-05-01
One possible explanation for the present observed acceleration of the Universe is the breakdown of homogeneity and isotropy due to the formation of non-linear structures. How inhomogeneities affect the averaged cosmological expansion rate and lead to late-time acceleration is generally considered to be due to some backreaction mechanism. In the recent literature most averaging calculations have focused their attention on General Relativity together with pressure-free matter. In this communication we focus our attention on more general scenarios, including imperfect fluids as well as alternative theories of gravity, and apply an averaging procedure to them in order to determine possible backreaction effects. For illustrative purposes, we present our results for dark energy models, quintessence and Brans-Dicke theories. We also provide a discussion about the limitations of frame choices in the averaging procedure.
Some Cosmological Consequences of Weyl Invariance
Álvarez, Enrique; Herrero-Valea, Mario
2015-01-01
Some Weyl invariant cosmological models are examined in the framework of dilaton gravity. It will be shown that When the FRW ansatz for the spacetime metric is assumed, the Ward identity for conformal invariance guarantees that the gravitational equations hold whenever the matter EM do so. It follows that any scale factor can solve the theory provided a non-trivial profile for a dilaton field. In particular, accelerated expansion is a natural solution to the full set of equations. When two or more scalar fields are coupled to gravity in a Weyl invariant way there is an antigravity phase in which the effective Newton constant is negative. This phase is separated from the atractive gravity phase by a strong coupling barrier. Nevertheles, and perhaps contradicting na\\"ive beliefs, the antigravity phase does not imply accelerated expansion, although it is compatible with it.
Double Field Theory Inspired Cosmology
Wu, Houwen
2014-01-01
Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We find two sets of solutions in double field theory cosmology, respecting or violating the strong (weak) constraint. Both sets of solutions naturally contain the pre- and post-big bang evolutions in one single line element. This novel feature opens a window for possible resolution of the cosmic amnesia. We also demonstrate that the scale factor duality in the standard string cosmology is nothing but the T-duality in double field theory. The scale dual dilatons in the standard string cosmology is simply the usual diffeomorphic scalar dilaton $\\phi$ and dual diffeomorphic scalar dilaton $\\tilde\\phi$ in double field theory. Furthermore, we identify the "sh...
Benoit-Lévy, Aurélien; Chardin, Gabriel
2014-05-01
We study an unconventional cosmology, in which we investigate the consequences that antigravity would pose to cosmology. We present the main characteristics of the Dirac-Milne Universe, a cosmological model where antimatter has a negative active gravitational mass. In this non-standard Universe, separate domains of matter and antimatter coexist at our epoch without annihilation, separated by a gravitationally induced depletion zone. We show that this cosmology does not require a priori the Dark Matter and Dark Energy components of the standard model of cosmology. Additionally, inflation becomes an unnecessary ingredient. Investigating this model, we show that the classical cosmological tests such as primordial nucleosynthesis, Type Ia supernovæ and Cosmic Microwave Background are surprisingly concordant.
Scientific Realism and Primordial Cosmology
Azhar, Feraz
2016-01-01
We discuss scientific realism from the perspective of modern cosmology, especially primordial cosmology: i.e. the cosmological investigation of the very early universe. We first (Section 2) state our allegiance to scientific realism, and discuss what insights about it cosmology might yield, as against "just" supplying scientific claims that philosophers can then evaluate. In particular, we discuss: the idea of laws of cosmology, and limitations on ascertaining the global structure of spacetime. Then we review some of what is now known about the early universe (Section 3): meaning, roughly, from a thousandth of a second after the Big Bang onwards(!). The rest of the paper takes up two issues about primordial cosmology, i.e. the very early universe, where "very early" means, roughly, much earlier (logarithmically) than one second after the Big Bang: say, less than $10^{-11}$ seconds. Both issues illustrate that familiar philosophical threat to scientific realism, the under-determination of theory by data---on a...
The natural science of cosmology
Peebles, P J E
2012-01-01
The network of cosmological tests is tight enough now to show that the relativistic Big Bang cosmology is a good approximation to what happened as the universe expanded and cooled through light element production and evolved to the present. I explain why I reach this conclusion, comment on the varieties of philosophies informing searches for a still better cosmology, and offer an example for further study, the curious tendency of some classes of galaxies to behave as island universes.
Brane and Nonisotropic Bianchi Cosmology
Naboulsi, R
2003-01-01
In this letter, we use Einstein field equations in the presence of gravitino cosmological density derived in a previous paper [1] to study a spatially honogenous, nonisotropic cosmological model, in particular the Bianchi IV model. We find a axisymmetric Universe, free of singularity in the past, asymptotically flat as time grows, and admit the presence of gravitino mass as missing energy and positive cosmological constant as Lambda > 3m^2.
Quintessential Maldacena-Maoz Cosmologies
McInnes, Brett
2004-01-01
Maldacena and Maoz have proposed a new approach to holographic cosmology based on Euclidean manifolds with disconnected boundaries. This approach appears, however, to be in conflict with the known geometric results [the Witten-Yau theorem and its extensions] on spaces with boundaries of non-negative scalar curvature. We show precisely how the Maldacena-Maoz approach evades these theorems. We also exhibit Maldacena-Maoz cosmologies with [cosmologically] more natural matter content, namely quin...
Cosmology for high energy physicists
The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs
Perturbations in loop quantum cosmology
Agullo, Ivan; Nelson, William
2012-01-01
The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, Quantum Gravity, phase of the universe. Here we describe how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB.
$\\Psi$-Epistemic Quantum Cosmology?
Evans, Peter W; Thébault, Karim P Y
2016-01-01
This paper provides a prospectus for a new way of thinking about the wavefunction of the universe: a $\\Psi$-epistemic quantum cosmology. We present a proposal that, if successfully implemented, would resolve the cosmological measurement problem and simultaneously allow us to think sensibly about probability and evolution in quantum cosmology. Our analysis draws upon recent work on the problem of time in quantum gravity, upon causally-symmetric local hidden variable theories, and upon a dynamical origin for the cosmological arrow of time. Our conclusion weighs the strengths and weaknesses of the approach and points towards paths for future development.
Perturbations in loop quantum cosmology
The era of precision cosmology has allowed us to accurately determine many important cosmological parameters, in particular via the CMB. Confronting Loop Quantum Cosmology with these observations provides us with a powerful test of the theory. For this to be possible, we need a detailed understanding of the generation and evolution of inhomogeneous perturbations during the early, quantum gravity phase of the universe. Here, we have described how Loop Quantum Cosmology provides a completion of the inflationary paradigm, that is consistent with the observed power spectra of the CMB
An introduction to modern cosmology
Liddle, Andrew
2015-01-01
An Introduction to Modern Cosmology Third Edition is an accessible account of modern cosmological ideas. The Big Bang Cosmology is explored, looking at its observational successes in explaining the expansion of the Universe, the existence and properties of the cosmic microwave background, and the origin of light elements in the universe. Properties of the very early Universe are also covered, including the motivation for a rapid period of expansion known as cosmological inflation. The third edition brings this established undergraduate textbook up-to-date with the rapidly evolving observation
A stringy alternative to inflation: The cosmological slingshot scenario
We propose a cosmological model where the universe is a probe brane moving in a warped throat on a Calabi-Yau space. A non-zero angular momentum in transverse space results in a turning point in the probe brane trajectory, and leads to a bouncing cosmology as experienced by an observer living on the brane, with a decelerated contraction followed by an accelerating expansion and with no cosmic singularity. Although the number of e-foldings is low (less than 2), standard cosmological problems are solved in our model. Moreover, due to the non-zero angular momentum of the brane, there is no bing-bang singularity. Finally, density perturbations are calculated in the model and the result is a flat spectrum with spectral index n ∼ 1 and slightly red-shifted in compatibility with WMAP data. (author)
Cosmological and astrophysical constraints on tachyon dark energy models
Martins, C J A P
2016-01-01
Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant $\\alpha$. Here we take advantage of recent observational progress and use a combination of background cosmological observations of Type Ia supernovas and astrophysical and local measurements of $\\alpha$ to improve constraints on this class of models. We show that the constraints on $\\alpha$ imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state $(1+w_0)<2.4\\times10^{-7}$ at the $99.7\\%$ confidence level. Therefore current and forthcoming standard background cosmology observational probes can't distinguish this class of models from a cosmological constant, while detections of $\\alpha$ variations could possibly do so since they would have a characteristic redshift dependence.
Cosmological perturbations in massive bigravity: I. Linear growth of structures
Solomon, Adam R; Koivisto, Tomi S
2014-01-01
The ghost-free theory of massive gravity with two dynamical metrics has been shown to produce viable cosmological expansion, where the late-time acceleration of the Universe is due to the finite range of the gravitational interaction instead of a nonzero cosmological constant. Here the cosmological perturbations are studied in these theories. The full perturbation equations are presented in a general gauge and analyzed focusing on subhorizon scales during the matter-dominated era. An evolution equation for the matter inhomogeneities and the parameters quantifying the deviations from general relativistic structure formation are expressed in terms of five functions whose forms are determined directly by the coupling parameters in the theory. The evolution equation has a similar structure to Horndeski-type scalar-tensor theories, exhibiting a modified growth rate and scale-dependence at intermediate wavenumbers. The theory predictions are confronted with observational data on both background expansion and large-...
Is cosmography a useful tool for testing cosmology?
Busti, Vinicius C; de la Cruz-Dombriz, Alvaro; Saez-Gomez, Diego
2015-01-01
Model-independent methods in cosmology have become an essential tool in order to deal with an increasing number of theoretical alternatives for explaining the late-time acceleration of the Universe. In principle, this provides a way of testing the Cosmological Concordance (or $\\Lambda$CDM) model under different assumptions and to rule out whole classes of competing theories. One such model-independent method is the so-called cosmographic approach, which relies only in the homogeneity and isotropy of the Universe on large scales. We show that this method suffers from many shortcomings, providing biased results depending on the auxiliary variable used in the series expansion and is unable to rule out models or adequately reconstruct theories with higher-order derivatives in either the gravitational or matter sector. Consequently, in its present form, this method seems unable to provide reliable or useful results for cosmological applications.
Reactor lattice transport calculations
The present lecture is a continuation of the lecture on Introduction to the Neutron Transport Phenomena. It comprises three aspects of lattice calculations. First the idea of a reactor lattice is introduced. Then the main definitions used in reactor lattice analysis are given, and finally two basic methods applied for solution of the transport equations are defined. Several remarks on secondary results from lattice transport calculations are added. (author)
Sober Topological Molecular Lattices
张德学; 李永明
2003-01-01
A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.
Querying Relational Concept Lattices
Azmeh, Zeina; Huchard, Marianne; Napoli, Amedeo; Rouane Hacene, Amine Mohamed; Valtchev, Petko
2011-01-01
Relational Concept Analysis (RCA) constructs conceptual abstractions from objects described by both own properties and inter-object links, while dealing with several sorts of objects. RCA produces lattices for each category of objects and those lattices are connected via relational attributes that are abstractions of the initial links. Navigating such interrelated lattice family in order to find concepts of interest is not a trivial task due to the potentially large size of the lattices and t...
Marichal, Jean-Luc
2007-01-01
We define the concept of weighted lattice polynomial functions as lattice polynomial functions constructed from both variables and parameters. We provide equivalent forms of these functions in an arbitrary bounded distributive lattice. We also show that these functions include the class of discrete Sugeno integrals and that they are characterized by a median based decomposition formula.
Zakrzewski, W J
2004-01-01
We consider some lattices and look at discrete Laplacians on these lattices. In particular we look at solutions of the equation $\\triangle(1)\\phi = \\triangle(2)Z$ where $\\triangle(1)$ and $\\triangle(2)$ are two such laplacians on the same lattice. We discuss solutions of this equation in some special cases.
Bojowald Martin
2008-07-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time.
Bojowald Martin
2005-12-01
Full Text Available Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of space-time arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
The Physics of Quark-Gluon Plasma is a new emerging branch of particle physics, closely connected with nuclear physics, astrophysics and cosmology. In Nature this form of matter has probably existed during the early phases of the Universe and possibly exists even today in some very special form, such as dark matter and strange quark matter in the interior of neutron stars. Cosmology needs a proper candidate to explain theoretically the existence of invisible matter in the Universe. In connection with missing mass and primordial nucleosynthesis, the early Universe quark - hadron phase transition leads to interesting cosmological consequences via the ratio of baryon number densities, R, between the QGP and HRG phases. Treating the QGP phase as a system of interacting relativistic massless particles and by adjusting the QCD scale parameter, we can reduce the value of R in our model with admissible values of the bag constant B. This low value of R at low phase transition temperature or B may be useful to reproduce the light element abundances and to explain the existence of the quark matter in the Universe. The inclusion of the Hagedorn's pressure ensemble correction in the HRG phase and its effect on R has been studied. The end of the QGP era and the beginning of the hadronic era can be calculated using the cosmic quark - hadron phase transition. The early history of a Friedmann Universe can be reconstructed. We conclude that the non-standard big bang theory can explain both PNS and dark matter problems, using the results of the early Universe phase transition from QGP to hadronic phase. Possibility of the formation of strange quark matter will be discussed briefly. (author). 25 refs
Dymnikova, Irina
2003-06-01
In the spherically symmetric case the dominant energy condition, together with the requirement of regularity of a density and finiteness of the mass, defines the family of asymptotically flat globally regular solutions to the Einstein minimally coupled equations which includes the class of metrics asymptotically de Sitter as r --> 0 and asymptotically Schwarzschild as r --> ∞. A source term connects smoothly de Sitter vacuum in the origin with the Minkowski vacuum at infinity and corresponds to anisotropic vacuum defined macroscopically by the algebraic structure of its stress-energy tensor invariant under boosts in the radial direction. Dependently on parameters, geometry describes vacuum nonsingular black and white holes, and self-gravitating particle-like structures. ADM mass for this class is related to both de Sitter vacuum trapped inside an object and to breaking of space-time symmetry. This class of metrics is easily extended to the case of nonzero cosmological constant at infinity. The source term connects then smoothly two de Sitter vacua and corresponds to extension of the Einstein cosmological term Λgμν to an r-dependent cosmological term Λμν. In this approach a constant scalar Λ associated with a vacuum density Λ = 8πGρvac, becomes a tensor component Λtt associated explicitly with a density component of a perfect fluid tensor whose vacuum properties follow from its symmetry and whose variability follows from the Bianchi identities. In this review we outline and discuss Λμν geometry and its applications.
Exploring Cosmology with Supernovae
Li, Xue
-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB...... distributions of a cluster of galaxies. We also theoretically deduce time delay. The second Section is dedicated to SN. Progenitor models of different types of SNe are investigated. SNe Ia and their application as standard candles are discussed....
Choi, Kiwoon; Chun, Eung Jin; Kim, Hang Bae
1998-01-01
In string/M-theory with a large compactification radius, some axion-like moduli can be much lighter than the gravitino. Generic moduli in gauge-mediated supersymmetry breaking models also have a mass far below the weak scale. Motivated by these, we examine the cosmological implications of light moduli for the mass range from the weak scale to an extremely small scale of order 10^{-26} eV, and obtain an upper bound on the initial moduli misalignment for both cases with and without a late entro...
Cosmology from quantum potential
Farag Ali, Ahmed, E-mail: ahmed.ali@fsc.bu.edu.eg [Center for Fundamental Physics, Zewail City of Science and Technology, Giza, 12588 (Egypt); Dept. of Physics, Faculty of Sciences, Benha University, Benha, 13518 (Egypt); Das, Saurya, E-mail: saurya.das@uleth.c [Department of Physics and Astronomy, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, T1K 3M4 (Canada)
2015-02-04
It was shown recently that replacing classical geodesics with quantal (Bohmian) trajectories gives rise to a quantum corrected Raychaudhuri equation (QRE). In this article we derive the second order Friedmann equations from the QRE, and show that this also contains a couple of quantum correction terms, the first of which can be interpreted as cosmological constant (and gives a correct estimate of its observed value), while the second as a radiation term in the early universe, which gets rid of the big-bang singularity and predicts an infinite age of our universe.
Inflation and Cosmological Perturbations
Guth, Alan H.
2003-01-01
This talk, which was presented at Stephen Hawking's 60th birthday conference, begins with a discussion of the early development of the theory of inflationary density perturbations. Stephen played a crucial role in this work, at every level. Much of the foundation for this work was laid by Stephen's 1966 paper on cosmological density perturbations, and by his 1977 paper with Gary Gibbons on quantum field theory in de Sitter space. Stephen was a major participant in the new work, and he was als...
Krishnan, Chethan; Raju, Avinash; Roy, Shubho; Thakur, Somyadip
2014-02-01
We construct cosmological solutions of higher spin gravity in 2+1 dimensional de Sitter space. We show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary conformal field theory partition function, and it reduces to Gibbons-Hawking thermodynamics in the spin-2 case. By using the prescription of Maldacena, we relate the thermodynamics of these solutions to those of higher spin black holes in AdS3.
Fagundes, Helio V
2008-01-01
This paper deals with two aspects of relativistic cosmologies with closed (compact and boundless) spatial sections. These spacetimes are based on the theory of General Relativity, and admit a foliation into space sections, which are spacelike hypersurfaces satisfying the postulate of the closure of space: each is a 3-dimensional closed Riemannian manifold. The discussed topics are: (1) A comparison, previously obtained, between Thurston's geometries and Bianchi-Kantowski-Sachs metrics for such 3-manifolds is here clarified and developed. (2) Some implications of global inhomogeneity for locally homogeneous 3-spaces of constant curvature are analyzed from an observational viewpoint.