WorldWideScience

Sample records for ac quantum transport

  1. AC transport in p-Ge/GeSi quantum well in high magnetic fields

    Drichko, I. L.; Malysh, V. A.; Smirnov, I. Yu.; Golub, L. E.; Tarasenko, S. A. [A.F. Ioffe Physical Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Suslov, A. V. [National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Mironov, O. A. [Warwick SEMINANO R and D Center, University of Warwick Science Park, Coventry CV4 7EZ (United Kingdom); Kummer, M.; Känel, H. von [Laboratorium für Festkörperphysik ETH Zürich, CH-8093 Zürich (Switzerland)

    2014-08-20

    The contactless surface acoustic wave technique is implemented to probe the high-frequency conductivity of a high-mobility p-Ge/GeSi quantum well structure in the regime of integer quantum Hall effect (IQHE) at temperatures 0.3–5.8 K and magnetic fields up to 18 T. It is shown that, in the IQHE regime at the minima of conductivity, holes are localized and ac conductivity is of hopping nature and can be described within the “two-site” model. The analysis of the temperature and magnetic-field-orientation dependence of the ac conductivity at odd filing factors enables us to determine the effective hole g-factor, |g{sub zz}|≈4.5. It is shown that the in-plane component of the magnetic field leads to a decrease in the g-factor as well as increase in the cyclotron mass, which is explained by orbital effects in the complex valence band of germanium.

  2. Kadanoff-Baym approach to time-dependent quantum transport in AC and DC fields

    We have developed a method based on the embedded Kadanoff-Baym equations to study the time evolution of open and inhomogeneous systems. The equation of motion for the Green's function on the Keldysh contour is solved using different conserving many-body approximations for the self-energy. Our formulation incorporates basic conservation laws, such as particle conservation, and includes both initial correlations and initial embedding effects, without restrictions on the time-dependence of the external driving field. We present results for the time-dependent density, current and dipole moment for a correlated tight binding chain connected to one-dimensional non-interacting leads exposed to DC and AC biases of various forms. We find that the self-consistent 2B and GW approximations are in extremely good agreement with each other at all times, for the long-range interactions that we consider. In the DC case we show that the oscillations in the transients can be understood from interchain and lead-chain transitions in the system and find that the dominant frequency corresponds to the HOMO-LUMO transition of the central wire. For AC biases with odd inversion symmetry odd harmonics to high harmonic order in the driving frequency are observed in the dipole moment, whereas for asymmetric applied bias also even harmonics have considerable intensity. In both cases we find that the HOMO-LUMO transition strongly mixes with the harmonics leading to harmonic peaks with enhanced intensity at the HOMO-LUMO transition energy.

  3. Ac response of a coupled double quantum dot

    Xu Jie; W.Z. Shangguan; Zhan Shi-Chang

    2005-01-01

    The effect of phase-breaking process on the ac response of a coupled double quantum dot is studied in this paper based on the nonequilibrium Green function formalism. A general expression is derived for the ac current in the presence of electron-phonon interaction. The ac conductance is numerically computed and the results are compared with those in [Anatram M P and Datts S 1995 Phys. Rev. B 51 7632]. Our results reveal that the inter-dot electron tunnelling interplays with that between dots and electron reservoirs, and contributes prominently to the ac current when inter-dot tunnelling coupling is much larger than the tunnelling coupling between dots and electron reservoirs. In addition, the phase-breaking process is found to have a significant effect on the ac transport through the coupled double dot.

  4. Transport AC losses in YBCO coated conductors

    Majoros, M [Ohio State University, Columbus, OH 43210 (United States); Ye, L [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Velichko, A V [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Coombs, T A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Sumption, M D [Ohio State University, Columbus, OH 43210 (United States); Collings, E W [Ohio State University, Columbus, OH 43210 (United States)

    2007-09-15

    Transport AC loss measurements have been made on YBCO-coated conductors prepared on two different substrate templates-RABiTS (rolling-assisted biaxially textured substrate) and IBAD (ion-beam-assisted deposition). RABiTS samples show higher losses compared with the theoretical values obtained from the critical state model, with constant critical current density, at currents lower than the critical current. An origin of this extra AC loss was demonstrated experimentally by comparison of the AC loss of two samples with different I-V curves. Despite a difference in I-V curves and in the critical currents, their measured losses, as well as the normalized losses, were practically the same. However, the functional dependence of the losses was affected by the ferromagnetic substrate. An influence of the presence of a ferromagnetic substrate on transport AC losses in YBCO film was calculated numerically by the finite element method. The presence of a ferromagnetic substrate increases transport AC losses in YBCO films depending on its relative magnetic permeability. The two loss contributions-transport AC loss in YBCO films and ferromagnetic loss in the substrate-cannot be considered as mutually independent.

  5. Inelastic Quantum Transport

    We solve a Schroedinger equation for inelastic quantum transport that retains full quantum coherence, in contrast to previous rate or Boltzmann equation approaches. The model Hamiltonian is the zero temperature 1D Holstein model for an electron coupled to optical phonons (polaron), in a strong electric field. The Hilbert space grows exponentially with electron position, forming a nonstandard Bethe lattice. We calculate nonperturbatively the transport current, electron-phonon correlations, and quantum diffusion. This system is a toy model for the constantly branching open-quotes wave function of the universe.close quotes copyright 1997 The American Physical Society

  6. Transport through quantum rings

    Antonio, B. A. Z.; Lopes, A.A.; Dias, R. G.

    2014-01-01

    The transport of fermions through nanocircuits plays a major role in mesoscopic physics. Exploring the analogy with classical wave scattering, basic notions of nanoscale transport can be explained in a simple way, even at the level of undergraduate Solid State Physics courses, and more so if these explanations are supported by numerical simulations of these nanocircuits. This paper presents a simple tight-binding method for the study of the conductance of quantum nanorings connected to one-di...

  7. Transport through quantum rings

    The transport of fermions through nanocircuits plays a major role in mesoscopic physics. Exploring the analogy with classical wave scattering, basic notions of nanoscale transport can be explained in a simple way, even at the level of undergraduate solid state physics courses, and more so if these explanations are supported by numerical simulations of these nanocircuits. This paper presents a simple tight-binding method for the study of the conductance of quantum nanorings connected to one-dimensional leads. We show how to address the effects of applied magnetic and electric fields and illustrate concepts such as Aharonov–Bohm conductance oscillations, resonant tunneling and destructive interference. (paper)

  8. Transport through quantum rings

    António, B. A. Z.; Lopes, A. A.; Dias, R. G.

    2013-07-01

    The transport of fermions through nanocircuits plays a major role in mesoscopic physics. Exploring the analogy with classical wave scattering, basic notions of nanoscale transport can be explained in a simple way, even at the level of undergraduate solid state physics courses, and more so if these explanations are supported by numerical simulations of these nanocircuits. This paper presents a simple tight-binding method for the study of the conductance of quantum nanorings connected to one-dimensional leads. We show how to address the effects of applied magnetic and electric fields and illustrate concepts such as Aharonov-Bohm conductance oscillations, resonant tunneling and destructive interference.

  9. Crossover of the Hall-voltage distribution in AC quantum Hall effect

    Akera, H.

    2011-01-01

    The distribution of the Hall voltage induced by low-frequency AC current is studied theoretically in the incoherent linear transport of quantum Hall systems. It is shown that the Hall-voltage distribution makes a crossover from the uniform distribution to a concentrated-near-edges distribution as the frequency is increased or the diagonal conductivity is decreased. This crossover is also reflected in the frequency dependence of AC magnetoresistance.

  10. Crossover of the Hall-voltage distribution in AC quantum Hall effect

    Akera, Hiroshi

    2009-01-01

    The distribution of the Hall voltage induced by low-frequency AC current is studied theoretically in the incoherent linear transport of quantum Hall systems. It is shown that the Hall-voltage distribution makes a crossover from the uniform distribution to a concentrated-near-edges distribution as the frequency is increased or the diagonal conductivity is decreased. This crossover is also reflected in the frequency dependence of AC magnetoresistance.

  11. Noise-induced quantum transport

    Ghosh, Pulak Kumar; Barik, Debashis; Ray, Deb Shankar

    2004-01-01

    We analyze the problem of directed quantum transport induced by external exponentially correlated telegraphic noise. In addition to quantum nature of the heat bath, nonlinearity of the periodic system potential brings in quantum contribution. We observe that quantization, in general, enhances classical current at low temperature, while the differences become insignificant at higher temperature. Interplay of quantum diffusion and quantum correction to system potential is analyzed for various r...

  12. Spin-polarized currents in double and triple quantum dots driven by ac magnetic fields

    Busl, Maria; Platero, Gloria

    2010-01-01

    We analyze transport through both a double quantum dot and a triple quantum dot with inhomogeneous Zeeman splittings in the presence of crossed dc and ac magnetic fields. We find that strongly spin-polarized current can be achieved by tuning the relative energies of the Zeeman-split levels of the dots, by means of electric gate voltages: depending on the energy level detuning, the double quantum dot works either as spin-up or spin-down filter. We show that a triple quantum dot in series under...

  13. Quantum Transport in Semiconductor Nanostructures

    Beenakker, C. W. J.; Houten, van, H.

    2004-01-01

    I. Introduction (Preface, Nanostructures in Si Inversion Layers, Nanostructures in GaAs-AlGaAs Heterostructures, Basic Properties). II. Diffusive and Quasi-Ballistic Transport (Classical Size Effects, Weak Localization, Conductance Fluctuations, Aharonov-Bohm Effect, Electron-Electron Interactions, Quantum Size Effects, Periodic Potential). III. Ballistic Transport (Conduction as a Transmission Problem, Quantum Point Contacts, Coherent Electron Focusing, Collimation, Junction Scattering, Tunn...

  14. Coherent transport through interacting quantum dots

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  15. Coherent transport through interacting quantum dots

    Hiltscher, Bastian

    2012-10-05

    The present thesis is composed of four different works. All deal with coherent transport through interacting quantum dots, which are tunnel-coupled to external leads. There a two main motivations for the use of quantum dots. First, they are an ideal device to study the influence of strong Coulomb repulsion, and second, their discrete energy levels can easily be tuned by external gate electrodes to create different transport regimes. The expression of coherence includes a very wide range of physical correlations and, therefore, the four works are basically independent of each other. Before motivating and introducing the different works in more detail, we remark that in all works a diagrammatic real-time perturbation theory is used. The fermionic degrees of freedom of the leads are traced out and the elements of the resulting reduced density matrix can be treated explicitly by means of a generalized master equation. How this equation is solved, depends on the details of the problem under consideration. In the first of the four works adiabatic pumping through an Aharonov-Bohm interferometer with a quantum dot embedded in each of the two arms is studied. In adiabatic pumping transport is generated by varying two system parameters periodically in time. We consider the two dot levels to be these two pumping parameters. Since they are located in different arms of the interferometer, pumping is a quantum mechanical effect purely relying on coherent superpositions of the dot states. It is very challenging to identify a quantum pumping mechanism in experiments, because a capacitive coupling of the gate electrodes to the leads may yield an undesired AC bias voltage, which is rectified by a time dependent conductance. Therefore, distinguishing features of these two transport mechanisms are required. We find that the dependence on the magnetic field is the key feature. While the pumped charge is an odd function of the magnetic flux, the rectified current is even, at least in

  16. Charge transport and ac response under light illumination in gate-modulated DNA molecular junctions

    Zhang, Yan; Zhu, Wen-Huan; Ding, Guo-Hui; Dong, Bing; Wang, Xue-Feng

    2015-05-01

    Using a two-strand tight-binding model and within nonequilibrium Green's function approach, we study charge transport through DNA sequences {{(GC)}{{NGC}}} and {{(GC)}1}{{(TA)}{{NTA}}}{{(GC)}3} sandwiched between two Pt electrodes. We show that at low temperature DNA sequence {{(GC)}{{NGC}}} exhibits coherent charge carrier transport at very small bias, since the highest occupied molecular orbital in the GC base pair can be aligned with the Fermi energy of the metallic electrodes by a gate voltage. A weak distance dependent conductance is found in DNA sequence {{(GC)}1}{{(TA)}{{NTA}}}{{(GC)}3} with large NTA. Different from the mechanism of thermally induced hopping of charges proposed by the previous experiments, we find that this phenomenon is dominated by quantum tunnelling through discrete quantum well states in the TA base pairs. In addition, ac response of this DNA junction under light illumination is also investigated. The suppression of ac conductances of the left and right lead of DNA sequences at some particular frequencies is attributed to the excitation of electrons in the DNA to the lead Fermi surface by ac potential, or the excitation of electrons in deep DNA energy levels to partially occupied energy levels in the transport window. Therefore, measuring ac response of DNA junctions can reveal a wealth of information about the intrinsic dynamics of DNA molecules.

  17. Quantum transport in carbon nanotubes

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  18. Quantum thermal transport in stanene

    Zhou, Hangbo; Cai, Yongqing; Zhang, Gang; Zhang, Yong-Wei

    2016-07-01

    By way of the nonequilibrium Green's function simulations and analytical expressions, the quantum thermal conductance of stanene is studied. We find that, due to the existence of Dirac fermion in stanene, the ratio of electron thermal conductance and electric conductance becomes a chemical-potential-dependent quantity, violating the Wiedemann-Franz law. This finding is applicable to any two-dimensional (2D) materials that possess massless Dirac fermions. In strong contrast to the negligible electronic contribution in graphene, surprisingly, the electrons and phonons in stanene carry a comparable heat current. The unusual behaviors in stanene widen our knowledge of quantum thermal transport in 2D materials.

  19. Quantum transport and electroweak baryogenesis

    We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.

  20. Quantum transport and electroweak baryogenesis

    Konstandin, Thomas

    2013-02-15

    We review the mechanism of electroweak baryogenesis. The main focus of the review lies on the development of quantum transport equations from first principles in the Kadanoff-Baym framework. We emphasize the importance of the semi-classical force that leads to reliable predictions in most cases. Besides, we discuss the status of electroweak baryogenesis in the light of recent electric dipole moment probes and collider experiments in a variety of models.

  1. AC transport in graphene-based Fabry-Perot devices

    Rocha, Claudia G; Torres, Luis E. F. Foa; Cuniberti, Gianaurelio

    2009-01-01

    We report on a theoretical study of the effects of time-dependent fields on electronic transport through graphene nanoribbon devices. The Fabry-P\\'{e}rot interference pattern is modified by an ac gating in a way that depends strongly on the shape of the graphene edges. While for armchair edges the patterns are found to be regular and can be controlled very efficiently by tuning the ac field, samples with zigzag edges exhibit a much more complex interference pattern due to their peculiar elect...

  2. Transport and Dissipation in Quantum Pumps

    Avron, J. E.; Elgart, A.; Graf, G. M.; Sadun, L.

    2003-01-01

    This paper is about adiabatic transport in quantum pumps. The notion of ``energy shift'', a self-adjoint operator dual to the Wigner time delay, plays a role in our approach: It determines the current, the dissipation, the noise and the entropy currents in quantum pumps. We discuss the geometric and topological content of adiabatic transport and show that the mechanism of Thouless and Niu for quantized transport via Chern numbers cannot be realized in quantum pumps where Chern numbers necessa...

  3. Quantum transport in carbon nanotubes

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the...

  4. Quantum-mechanical wavepacket transport in quantum cascade laser structures

    Lee, S. -C.; Banit, F.; Woerner, M.; Wacker, A.

    2005-01-01

    We present a viewpoint of the transport process in quantum cascade laser structures in which spatial transport of charge through the structure is a property of coherent quantum-mechanical wavefunctions. In contrast, scattering processes redistribute particles in energy and momentum but do not directly cause spatial motion of charge.

  5. Electron transport in quantum dots

    2003-01-01

    When I was contacted by Kluwer Academic Publishers in the Fall of 200 I, inviting me to edit a volume of papers on the issue of electron transport in quantum dots, I was excited by what I saw as an ideal opportunity to provide an overview of a field of research that has made significant contributions in recent years, both to our understanding of fundamental physics, and to the development of novel nanoelectronic technologies. The need for such a volume seemed to be made more pressing by the fact that few comprehensive reviews of this topic have appeared in the literature, in spite of the vast activity in this area over the course of the last decade or so. With this motivation, I set out to try to compile a volume that would fairly reflect the wide range of opinions that has emerged in the study of electron transport in quantum dots. Indeed, there has been no effort on my part to ensure any consistency between the different chapters, since I would prefer that this volume instead serve as a useful forum for the...

  6. Quantum Transport in Graphene Nanonetworks

    Botello Mendez, Andres R [ORNL; Cruz Silva, Eduardo [ORNL; Meunier, Vincent [ORNL; Sumpter, Bobby G [ORNL; Terrones Maldonado, Humberto [ORNL; Terrones Maldonado, Mauricio [ORNL; Romo Herrera, Jose M [ORNL; Charlier, Jean Christophe [Universite Catholique de Louvain; Lopez, Florentino [IPICyT

    2011-01-01

    The quantum transport properties of graphene nanoribbon networks are investigated using first-principles calculations based on density functional theory. Focusing on systems that can be experimentally realized with existing techniques, both in-plane conductance in interconnected graphene nanoribbons and tunneling conductance in out-of-plane nanoribbon intersections were studied. The characteristics of the ab initio electronic transport through in-plane nanoribbon cross-points is found to be in agreement with results obtained with semiempirical approaches. Both simulations confirm the possibility of designing graphene nanoribbon-based networks capable of guiding electrons along desired and predetermined paths. In addition, some of these intersections exhibit different transmission probability for spin up and spin down electrons, suggesting the possible applications of such networks as spin filters. Furthermore, the electron transport properties of out-of-plane nanoribbon cross-points of realistic sizes are described using a combination of firstprinciples and tight-binding approaches. The stacking angle between individual sheets is found to play a central role in dictating the electronic transmission probability within the networks.

  7. Quantum Transport Calculations Using Periodic Boundary Conditions

    Wang, Lin-Wang

    2004-01-01

    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal ground state calculations, thus is makes accurate quantum transport calculations for large systems possible.

  8. Quantum transport calculations for quantum cascade laser structures

    Lee, S. C.; Wacker, A.

    2001-01-01

    We apply a quantum transport theory based on nonequilibrium Green's functions to quantum cascade laser (QCL) structures, treating simultaneously the transmission through the injector regions and the relaxation due to scattering in the active region. The quantum kinetic equations are solved self-consistently using self-energies for interface roughness and phonon scattering processes within the self-consistent Born approximation. In this way, we obtain the current density J, and the average ele...

  9. Time dependent quantum transport through Kondo correlated quantum dots

    Goker, Ali; Gedik, Elif

    2013-01-01

    In this article, we review recent work about time dependent quantum transport through a quantum dot in Kondo regime. This represents a major step towards designing next generation transistors that are expected to replace current MOSFET's in a few years. We first discuss the effects of the density of states of gold contacts on the instantaneous conductance of an asymmetrically coupled quantum dot that is abruptly moved into Kondo regime via a gate voltage. Next, we investigate the effect of st...

  10. Quantum transport in semiconductor nanostructures

    Kubis, Tillmann Christoph

    2009-11-15

    The main objective of this thesis is to theoretically predict the stationary charge and spin transport in mesoscopic semiconductor quantum devices in the presence of phonons and device imperfections. It is well known that the nonequilibrium Green's function method (NEGF) is a very general and all-inclusive scheme for the description of exactly this kind of transport problem. Although the NEGF formalism has been derived in the 1960's, textbooks about this formalism are still rare to find. Therefore, we introduce the NEGF formalism, its fundamental equations and approximations in the first part of this thesis. Thereby, we extract ideas of several seminal contributions on NEGF in literature and augment this by some minor derivations that are hard to find. Although the NEGF method has often been numerically implemented on transport problems, all current work in literature is based on a significant number of approximations with often unknown influence on the results and unknown validity limits. Therefore, we avoid most of the common approximations and implement in the second part of this thesis the NEGF formalism as exact as numerically feasible. For this purpose, we derive several new scattering self-energies and introduce new self-adaptive discretizations for the Green's functions and self-energies. The most important improvements of our NEGF implementation, however, affect the momentum and energy conservation during incoherent scattering, the Pauli blocking, the current conservation within and beyond the device and the reflectionless propagation through open device boundaries. Our uncommonly accurate implementation of the NEGF method allows us to analyze and assess most of the common approximations and to unveil numerical artifacts that have plagued previous approximate implementations in literature. Furthermore, we apply our numerical implementation of the NEGF method on the stationary electron transport in THz quantum cascade lasers (QCLs) and answer

  11. Crossover from quantum to classical transport

    Morr, Dirk K.

    2016-01-01

    Understanding the crossover from quantum to classical transport has become of fundamental importance not only for technological applications due to the creation of sub-10-nm transistors - an important building block of our modern life - but also for elucidating the role played by quantum mechanics in the evolutionary fitness of biological complexes. This article provides a basic introduction into the nature of charge and energy transport in the quantum and classical regimes. It discusses the characteristic transport properties in both limits and demonstrates how they can be connected through the loss of quantum mechanical coherence. The salient features of the crossover physics are identified, and their importance in opening new transport regimes and in understanding efficient and robust energy transport in biological complexes are demonstrated.

  12. The ac quantum Hall resistance as an electrical impedance standard and its role in the SI

    Since 1990, the quantum Hall resistance measured with direct current (dc) has been established to represent and maintain the dc resistance unit and thereby has replaced the former derivation from calculated inductance and capacitance standards. Because of this success, it has been suggested to measure this quantum effect with alternating current (ac) and in this way to derive the units of resistance, capacitance and inductance consistently from the same quantum effect. In this paper, we recall the relations between these units, their role in the determination of the von Klitzing constant and the relations between the fundamental constants involved in the conventional and the quantum approach. Then, we review the first ac measurements of the quantum Hall resistance and show how the difficulties uncovered have been solved by relatively simple means. As a result, the measurement of the ac quantum Hall resistance has become as precise and reliable as its dc counterpart and much more accurate than any conventional impedance artefact. (paper)

  13. Quantum Transport Theory for Photonic Networks

    Lei, Chan U

    2010-01-01

    In this paper, we develop a quantum transport theory to describe photonic transport in photonic networks. The photonic networks concerned in the paper consist of all-optical circuits incorporating photonic bandgap waveguides and driven resonators. The photoncurrents flowing through waveguides are entirely determined from the exact master equation of the driven resonators. The master equation of the driven resonators is obtained by explicitly eliminating all the waveguide degrees of freedom while the back-reactions between resonators and waveguides are fully taken into account. The relations between the driven photonic dynamics and photoncurrents are obtained. The quantum dissipation and quantum noise effects in photonic transport are also fully addressed. As an illustration, the theory is applied to the transport phenomena of a driven nanocavity coupled to two waveguides in photonic crystals. The controllability of photonic transport through the driven resonator is demonstrated.

  14. On quantum hydrodynamic and quantum energy transport models

    Degond, Pierre; Gallego, Samy; Mehats, Florian

    2007-01-01

    In this paper, we consider two recently derived models: the Quantum Hydrodynamic model (QHD) and the Quantum Energy Transport model (QET). We propose different equivalent formulations of these models and we use a commutator formula for stating new properties of the models. A gauge invariance lemma permits to simplify the QHD model for irrotational flows. We finish by considering the special case of a slowly varying temperature and we discuss possible approximations which will b...

  15. A quantum photonic dissipative transport theory

    Lei, Chan U.; Zhang, Wei-Min

    2012-05-01

    In this paper, a quantum transport theory for describing photonic dissipative transport dynamics in nanophotonics is developed. The nanophotonic devices concerned in this paper consist of on-chip all-optical integrated circuits incorporating photonic bandgap waveguides and driven resonators embedded in nanostructured photonic crystals. The photonic transport through waveguides is entirely determined from the exact master equation of the driven resonators, which is obtained by explicitly eliminating all the degrees of freedom of the waveguides (treated as reservoirs). Back-reactions from the reservoirs are fully taken into account. The relation between the driven photonic dynamics and photocurrents is obtained explicitly. The non-Markovian memory structure and quantum decoherence dynamics in photonic transport can then be fully addressed. As an illustration, the theory is utilized to study the transport dynamics of a photonic transistor consisting of a nanocavity coupled to two waveguides in photonic crystals. The controllability of photonic transport through the external driven field is demonstrated.

  16. Spin-related transport phenomena in HgTe-based quantum well structures

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg0.3Cd0.7Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  17. Spin-related transport phenomena in HgTe-based quantum well structures

    Koenig, Markus

    2007-12-15

    Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/Hg{sub 0.3}Cd{sub 0.7}Te quantum well structures. In our experiments, the existence of the quantum spin Hall (QSH) state was successfully demonstrated for the first time and the presented results provide clear evidence for the charge transport properties of the QSH state. Our experiments provide the first direct observation of the Aharonov-Casher (AC) effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSH relies on the peculiar band structure of the material and the existence of both the spin Hall effect and the AC effect is a consequence of the substantial spin-orbit interaction. (orig.)

  18. Quantum transport of energy in controlled synthetic quantum magnets

    Bermudez, Alejandro; Schaetz, Tobias

    2016-08-01

    We introduce a theoretical scheme that exploits laser cooling and phonon-mediated spin–spin interactions in crystals of trapped atomic ions to explore the transport of energy through a quantum magnet. We show how to implement an effective transport window to control the flow of energy through the magnet even in the absence of fermionic statistics for the carriers. This is achieved by shaping the density of states of the effective thermal reservoirs that arise from the interaction with the external bath of the modes of the electromagnetic field, and can be experimentally controlled by tuning the laser frequencies and intensities appropriately. The interplay of this transport window with the spin–spin interactions is exploited to build an analogue of the Coulomb-blockade effect in nano-scale electronic devices, and opens new possibilities to study quantum effects in energy transport.

  19. Quantum transport in Sierpinski carpets

    van Veen, Edo; Yuan, Shengjun; Katsnelson, Mikhail I.; Polini, Marco; Tomadin, Andrea

    2016-03-01

    Recent progress in the design and fabrication of artificial two-dimensional (2D) materials paves the way for the experimental realization of electron systems moving on complex geometries, such as plane fractals. In this work, we calculate the quantum conductance of a 2D electron gas roaming on a Sierpinski carpet (SC), i.e., a plane fractal with Hausdorff dimension intermediate between 1 and 2. We find that the fluctuations of the quantum conductance are a function of energy with a fractal graph, whose dimension can be chosen by changing the geometry of the SC. This behavior is independent of the underlying lattice geometry.

  20. Dielectric relaxation and ac conductivity behaviour of polyvinyl alcohol–HgSe quantum dot hybrid films

    Here we report a comparative study on the dielectric relaxation and ac conductivity behaviour of pure polyvinyl alcohol (PVA) and PVA–mercury selenide (HgSe) quantum dot hybrid films in the temperature range 298 K ⩽ T ⩽ 420 K and in the frequency range 100 Hz ⩽ f ⩽ 1 MHz. The prepared nanocomposite exhibits a larger dielectric constant as compared to the pure PVA. The real and imaginary parts of the dielectric constants were found to fit appreciably with the modified Cole–Cole equation, from which temperature-dependent values of the relaxation times, free charge carrier conductivity and space charge carrier conductivity were calculated. The relaxation time decreases with the quantum dot's inclusion in the PVA matrix and with an increase in temperature, whereas free charge carrier conductivity and space charge carrier conductivity increases with an increase in temperature. An increase in ac conductivity for the nanocomposites has also been observed, while the charge transport mechanism was found to follow the correlated barrier hopping model in both cases. An easy-path model with a suitable electrical equivalent circuit has been employed to analyse the temperature-dependent impedance spectra. The imaginary part of the complex electric modulus spectra exhibit an asymmetric nature and a non-Debye type of behaviour, which has been elucidated considering a generalized susceptibility function. The electric modulus spectra of the nanocomposite demonstrate a smaller amplitude and broader width, as compared to the pure PVA sample. (paper)

  1. Quantum transport through aromatic molecules

    In this paper, we study the electronic transport properties through aromatic molecules connected to two semi-infinite leads. The molecules are in different geometrical configurations including arrays. Using a nearest neighbor tight-binding approach, the transport properties are analyzed into a Green's function technique within a real-space renormalization scheme. We calculate the transmission probability and the Current-Voltage characteristics as a function of a molecule-leads coupling parameter. Our results show different transport regimes for these systems, exhibiting metal-semiconductor-insulator transitions and the possibility to employ them in molecular devices

  2. Anomalous Thermal Transport in Quantum Wires

    Fazio, Rosario; Hekking, F. W. J.; Khmelnitskii, D. E.

    1997-01-01

    We study thermal transport in a one-dimensional quantum wire, connected to reservoirs. Despite of the absence of electron backscattering, interactions in the wire strongly influence thermal transport. Electrons propagate with unitary transmission through the wire and electric conductance is not affected. Energy, however, is carried by bosonic excitations (plasmons) which suffer from scattering even on scales much larger than the Fermi wavelength. If the electron density varies randomly, plasm...

  3. Correlated quantum transport of density wave electrons.

    Miller, J H; Wijesinghe, A I; Tang, Z; Guloy, A M

    2012-01-20

    Recently observed Aharonov-Bohm quantum interference of the period h/2e in charge density wave rings strongly suggests that correlated density wave electron transport is a cooperative quantum phenomenon. The picture discussed here posits that quantum solitons nucleate and transport current above a Coulomb blockade threshold field. We propose a field-dependent tunneling matrix element and use the Schrödinger equation, viewed as an emergent classical equation as in Feynman's treatment of Josephson tunneling, to compute the evolving macrostate amplitudes, finding excellent quantitative agreement with voltage oscillations and current-voltage characteristics in NbSe(3). A proposed phase diagram shows the conditions favoring soliton nucleation versus classical depinning. PMID:22400766

  4. Conformational Influence on Quantum Transport in Nanostructures

    Maul, Robert

    2010-01-01

    In the present thesis we have studied the interplay of conformational and electronic transport properties in metallic and organic nano-structures. Characterization of the influence of thermal, electrostatic or fabrication-induced structural rearrangement on the conductance characteristics gives new insights into the functionality of nano-scale systems, such as quantum point contacts, nano-wires and nano-particles.

  5. Quantum transport in carbon nanotubes

    Jarillo-Herrero, P.D.

    2005-01-01

    Electronic transport through nanostructures can be very different from trans- port in macroscopic conductors, especially at low temperatures. Carbon na- notubes are tiny cylinders made of carbon atoms. Their remarkable electronic and mechanical properties, together with their small size (a few nm in

  6. Quantum transport in carbon nanotubes

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  7. Quantum transport in semiconductor nanowires

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS) growt

  8. Kwant: a software package for quantum transport

    Kwant is a Python package for numerical quantum transport calculations. It aims to be a user-friendly, universal, and high-performance toolbox for the simulation of physical systems of any dimensionality and geometry that can be described by a tight-binding model. Kwant has been designed such that the natural concepts of the theory of quantum transport (lattices, symmetries, electrodes, orbital/spin/electron-hole degrees of freedom) are exposed in a simple and transparent way. Defining a new simulation setup is very similar to describing the corresponding mathematical model. Kwant offers direct support for calculations of transport properties (conductance, noise, scattering matrix), dispersion relations, modes, wave functions, various Green's functions, and out-of-equilibrium local quantities. Other computations involving tight-binding Hamiltonians can be implemented easily thanks to its extensible and modular nature. Kwant is free software available at http://kwant-project.org/. (paper)

  9. The AC Stark, Stern-Gerlach, and Quantum Zeno Effects in Interferometric Qubit Readout

    Sidles, J. A.

    1996-01-01

    This article describes the AC Stark, Stern-Gerlach, and Quantum Zeno effects as they are manifested during continuous interferometric measurement of a two-state quantum system (qubit). A simple yet realistic model of the interferometric measurement process is presented, and solved to all orders of perturbation theory in the absence of thermal noise. The statistical properties of the interferometric Stern-Gerlach effect are described in terms of a Fokker-Plank equation, and a closed-form expre...

  10. Exciton size and quantum transport in nanoplatelets

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport

  11. Quantum transport in a ring of quantum dots

    Sena Junior, Marcone I.; Macedo, Antonio M.C. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Fisica

    2012-07-01

    Full text: Quantum dots play a central role in the recent technological efforts to build efficient devices to storage, process and transmit information in the quantum regime [1]. One of the reasons for this interest is the relative simplicity with which its control parameters can be changed by experimentalists. Systems with one, two and even arrays of quantum dots have been intensively studied with respect to their efficiency in processing information carried by charge, spin and heat [1]. A particularly useful realization of a quantum dot is a ballistic electron cavity formed by electrostatic potentials in a two-dimensional electron gas. In the chaotic regime, the shape of the dot is statistically irrelevant and the ability to change its form via external gates can be used to generate members of an ensemble of identical systems. From a theoretical point of view, such quantum dots are ideal electron systems in which to study theoretical models combining phase-coherence, chaotic dynamics and Coulomb interactions. In this work, we use the Keldysh non-linear sigma model [2] with a counting field to study electron transport through a ring of four chaotic quantum dots pierced by an Aharonov-Bohm flux. This system is particularly well suited for studying ways to use the weak-localization effect to process quantum information. We derive the quantum circuit equations for this system from the saddle-point condition of the Keldysh action. The results are used to build the action of the corresponding supersymmetric (SUSY) non-linear sigma model. The connection with the random scattering matrix approach is then made via the color-flavor transformation. In the perturbative regime, where weak-localization effects appear, the Keldysh, SUSY and random scattering matrix approaches can be compared by means of independent analytical calculations. We conclude by pointing out the many advantages of our unified approach. [1] For a review, see Yu. V. Nazarov, and Ya. M. Blanter, Quantum

  12. Quantum transport in a ring of quantum dots

    Full text: Quantum dots play a central role in the recent technological efforts to build efficient devices to storage, process and transmit information in the quantum regime [1]. One of the reasons for this interest is the relative simplicity with which its control parameters can be changed by experimentalists. Systems with one, two and even arrays of quantum dots have been intensively studied with respect to their efficiency in processing information carried by charge, spin and heat [1]. A particularly useful realization of a quantum dot is a ballistic electron cavity formed by electrostatic potentials in a two-dimensional electron gas. In the chaotic regime, the shape of the dot is statistically irrelevant and the ability to change its form via external gates can be used to generate members of an ensemble of identical systems. From a theoretical point of view, such quantum dots are ideal electron systems in which to study theoretical models combining phase-coherence, chaotic dynamics and Coulomb interactions. In this work, we use the Keldysh non-linear sigma model [2] with a counting field to study electron transport through a ring of four chaotic quantum dots pierced by an Aharonov-Bohm flux. This system is particularly well suited for studying ways to use the weak-localization effect to process quantum information. We derive the quantum circuit equations for this system from the saddle-point condition of the Keldysh action. The results are used to build the action of the corresponding supersymmetric (SUSY) non-linear sigma model. The connection with the random scattering matrix approach is then made via the color-flavor transformation. In the perturbative regime, where weak-localization effects appear, the Keldysh, SUSY and random scattering matrix approaches can be compared by means of independent analytical calculations. We conclude by pointing out the many advantages of our unified approach. [1] For a review, see Yu. V. Nazarov, and Ya. M. Blanter, Quantum

  13. Quantum transport in semiconductor nanowires

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS) growth. The huge versatility of this material system (e.g. in size and materials) results in a wide range of potential applications in (opto-)electronics. During the last few years many important proofs...

  14. Quantum router based on ac control of qubit chains

    We study the routing of quantum information in qubit chains. This task is achieved by suitably chosen time-dependent local fields acting on the qubits. Employing the physics of coherent destruction of tunneling, we demonstrate that a driving-induced renormalization of the coupling between neighboring qubits provides the key for controlling the transduction of quantum information between permanently coupled qubits. We employ this idea for building a quantum router. Moreover, we discuss the experimental implementation with Penning traps and study the robustness of our protocol under realistic experimental conditions, such as fabrication uncertainties and decoherence.

  15. Complex study of transport AC loss in various 2G HTS racetrack coils

    Chen, Yiran, E-mail: yc315@cam.ac.uk [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Zhang, Min; Chudy, Michal; Matsuda, Koichi; Coombs, Tim [University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA (United Kingdom)

    2013-04-15

    Highlights: ► Comparing transport AC losses of two types of 2G HTS racetrack coils. ► The magnetic substrate in the MAG RABITS coil is the main difference. ► Experimental data agree well with simulation results. ► The transport AC loss in the MAG RABITS coil is 36% higher than that in the IBAD coil. ► It is better to keep all the substrate non-magnetic. -- Abstract: HTS racetrack coils are becoming important elements of an emerging number of superconducting devices such as generators or motors. In these devices the issue of AC loss is crucial, as performance and cooling power are derived from this quantity. This paper presents a comparative study of transport AC loss in two different types of 2G HTS racetrack coils. In this study, both experimental measurements and computer simulation approaches were employed. All the experiments were performed using classical AC electrical method. The finite-element computer model was used to estimate electromagnetic properties and calculate transport AC loss. The main difference between the characterized coils is covered inside tape architectures. While one coil uses tape based on RABITS magnetic substrate, the second coil uses a non-magnetic tape. Ferromagnetic loss caused by a magnetic substrate is an important issue involved in the total AC loss. As a result, the coil with the magnetic substrate surprised with high AC loss and rather low performance.

  16. A scattering matrix approach to quantum pumping: beyond the small-AC-driving-amplitude limit

    In the adiabatic and weak-modulation quantum pump, net electron flow is driven from one reservoir to another by absorbing or emitting an energy quantum ħω from or to the reservoirs. This paper considers high-order dependence of the scattering matrix on the time. Non-sinusoidal behaviour of strong pumping is revealed. The relation between the pumped current and the ac driving amplitude varies from power of 2, 1 to 1/2 when stronger modulation is exerted. Open experimental observation can be interpreted by multi-energy-quantum-related processes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Quantum Transport in Strongly Correlated Systems

    Bohr, Dan

    2007-01-01

    In the past decade there has been a trend towards studying ever smaller devices. Improved experimental techniques have made new experiments possible, one class of which is electron transport through molecules and artificially manufactured structures like quantum dots. In this type of systems...... screening plays a much less significant role than in bulk systems due to the reduced size of the objects, therefore making it necessary to consider the importance of correlations between electrons. The work presented in this thesis deals with quantum transport through strongly correlated systems using the...... describes the leads in momentum-space. We benchmark each of these schemes against exact Greens function results for the conductance in the non-interacting limit, thus demonstrating the accuracy of the lead descriptions. We first use the DMRG implementations to calculate the conductance of an interacting...

  18. Quantum transport in carbon-based nanostructures

    Nemec, Norbert

    2007-01-01

    The electronic structure and the quantum transport properties of graphene, carbon nanotubes and graphene nanoribbons are studied using analytical and numerical tools. Special care is taken in considering fundamental questions of high experimental relevance and in relating the results to experiments. The main focus of the work is on numerical calculations based on the tight-binding description of electrons, also integrating the results of microscopic ab initio calculations a...

  19. Calculating Quantum Transports Using Periodic Boundary Conditions

    Wang, Lin-Wang

    2004-01-01

    An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This new method is based on a method we developed previously, but with an essential change in solving the Schrodinger's equation. As a result of this change, the scattering states can be solved at any given energy. Compared to the previous method, the current method is faster and numerically more stable. The total computational time of the current method is similar to a conventional gr...

  20. The AC Stark, Stern-Gerlach, and Quantum Zeno Effects in Interferometric Qubit Readout

    Sidles, J A

    1996-01-01

    This article describes the AC Stark, Stern-Gerlach, and Quantum Zeno effects as they are manifested during continuous interferometric measurement of a two-state quantum system (qubit). A simple yet realistic model of the interferometric measurement process is presented, and solved to all orders of perturbation theory in the absence of thermal noise. The statistical properties of the interferometric Stern-Gerlach effect are described in terms of a Fokker-Plank equation, and a closed-form expression for the Green's function of this equation is obtained. Thermal noise is added in the form of a externally-applied Langevin force, and the combined effects of thermal noise and measurement are considered. Optical Bloch equations are obtained which describe the AC Stark and Quantum Zeno effects. Spontaneous qubit transitions are shown to be observationally equivalent to transitions induced by external Langevin forces. The effects of delayed choice are discussed. Practical experiments involving trapped ions are suggest...

  1. Directed transport in coupled noisy Josephson junctions controlled via ac signals

    Machura, L.; Spiechowicz, J.; Luczka, J.

    2012-01-01

    Transport properties of two coupled Josephson junctions driven by ac currents and thermal fluctuations are studied with the purpose of determining dc voltage characteristics. It is a physical realization of directed transport induced by a non-biased zero averaged external signal. The ac current is applied either to (A) only one junction as a biharmonic current or (B) is split into two simple harmonic components and separately applied to respective junctions. We identify regimes where junction...

  2. Quantum Transport: The Link between Standard Approaches in Superlattices

    Wacker, Andreas; Jauho, Antti-Pekka

    1998-01-01

    Theories describing electrical transport in semiconductor superlattices can essentially be divided in three disjoint categories: (i) transport in a miniband; (ii) hopping between Wannier-Stark ladders; and (iii) sequential tunneling. We present a quantum transport model, based on nonequilibrium...

  3. Effective equilibrium theory of nonequilibrium quantum transport

    The theoretical description of strongly correlated quantum systems out of equilibrium presents several challenges and a number of open questions persist. Here, we focus on nonlinear electronic transport through an interacting quantum dot maintained at finite bias using a concept introduced by Hershfield [S. Hershfield, Phys. Rev. Lett. 70 2134 (1993)] whereby one can express such nonequilibrium quantum impurity models in terms of the system's Lippmann-Schwinger operators. These scattering operators allow one to reformulate the nonequilibrium problem as an effective equilibrium problem associated with a modified Hamiltonian. In this paper, we provide a pedagogical analysis of the core concepts of the effective equilibrium theory. First, we demonstrate the equivalence between observables computed using the Schwinger-Keldysh framework and the effective equilibrium approach, and relate Green's functions in the two theoretical frameworks. Second, we expound some applications of this method in the context of interacting quantum impurity models. We introduce a novel framework to treat effects of interactions perturbatively while capturing the entire dependence on the bias voltage. For the sake of concreteness, we employ the Anderson model as a prototype for this scheme. Working at the particle-hole symmetric point, we investigate the fate of the Abrikosov-Suhl resonance as a function of bias voltage and magnetic field. - Highlights: → Reformulation of steady-state nonequilibrium quantum transport, following Hershfield. → Derivation of effective equilibrium density operator using the 'open-system' approach. → Equivalence with the Keldysh description and formulas relating the two approaches. → Novel framework to treat interactions perturbatively. → Application to nonequilibrium Anderson model and fate of Abrikosov-Suhl resonance.

  4. The scaling of transport AC losses in Roebel cables with varying strand parameters

    A Roebel cable is a good candidate for low-voltage windings in a high-temperature superconductor (HTS) transformer because of its high current-carrying capability and low AC loss. Transport AC loss measurements were carried out in 1.8 m long 15/5 (fifteen 5 mm wide strands) and 15/4 Roebel cables. The results were compared with those in many Roebel cables composed of 2 mm wide Roebel strands. Comparison of the AC losses hinted that the intrinsic difference in normalized transport AC losses is due to differences in the g/w (ratio of the horizontal gap between the Roebel strands over the Roebel strand width) values. The intrinsic difference was confirmed by measuring transport AC loss in a series of horizontally arranged parallel conductor pairs with various g values. A method to scale transport AC losses in Roebel cables with varying strand parameters was developed. The scaling method will be useful for a rough assessment of AC loss in one-layer solenoid winding coils, such as in a HTS transformer. (papers)

  5. Quantum spin transport in semiconductor nanostructures

    Schindler, Christoph

    2012-05-15

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  6. Quantum spin transport in semiconductor nanostructures

    In this work, we study and quantitatively predict the quantum spin Hall effect, the spin-orbit interaction induced intrinsic spin-Hall effect, spin-orbit induced magnetizations, and spin-polarized electric currents in nanostructured two-dimensional electron or hole gases with and without the presence of magnetic fields. We propose concrete device geometries for the generation, detection, and manipulation of spin polarization and spin-polarized currents. To this end a novel multi-band quantum transport theory, that we termed the multi-scattering Buettiker probe model, is developed. The method treats quantum interference and coherence in open quantum devices on the same footing as incoherent scattering and incorporates inhomogeneous magnetic fields in a gauge-invariant and nonperturbative manner. The spin-orbit interaction parameters that control effects such as band energy spin splittings, g-factors, and spin relaxations are calculated microscopically in terms of an atomistic relativistic tight-binding model. We calculate the transverse electron focusing in external magnetic and electric fields. We have performed detailed studies of the intrinsic spin-Hall effect and its inverse effect in various material systems and geometries. We find a geometry dependent threshold value for the spin-orbit interaction for the inverse intrinsic spin-Hall effect that cannot be met by n-type GaAs structures. We propose geometries that spin polarize electric current in zero magnetic field and analyze the out-of-plane spin polarization by all electrical means. We predict unexpectedly large spin-orbit induced spin-polarization effects in zero magnetic fields that are caused by resonant enhancements of the spin-orbit interaction in specially band engineered and geometrically designed p-type nanostructures. We propose a concrete realization of a spin transistor in HgTe quantum wells, that employs the helical edge channel in the quantum spin Hall effect.

  7. Transport ac losses in Bi-2223 multifilamentary tapes - conductor materials aspect

    Transport ac losses in technical superconductors based on Bi-2223 tape material are influenced by many parameters. The major factors that define the ac performance of such conductors are the following: the size and number of filaments, their geometrical arrangement in the cross-section of the conductor, the twist pitch length, the resistivity of the matrix, the presence of oxide barriers around the filaments and deformation procedures such as sequential pressing or rolling followed by appropriate thermal treatment. In the present paper the above aspects are addressed from the viewpoint of the materials science of technical conductor design. Transport ac losses at power frequencies in different types of Bi-2223 conductor are presented and analysed. The results of conductor design analysis with respect to the coexistence of the superconductor with other materials in the conductor structure are presented. New concepts for minimization of the transport ac losses are discussed in detail. (author)

  8. Nonlocal edge state transport in the quantum spin Hall state

    Roth, Andreas; Bruene, Christoph; Buhmann, Hartmut; Molenkamp, Laurens W.; Maciejko, Joseph; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2009-01-01

    We present direct experimental evidence for nonlocal transport in HgTe quantum wells in the quantum spin Hall regime, in the absence of any external magnetic field. The data conclusively show that the non-dissipative quantum transport occurs through edge channels, while the contacts lead to equilibration between the counter-propagating spin states at the edge. We show that the experimental data agree quantitatively with the theory of the quantum spin Hall effect.

  9. Scaling theory for anomalous semiclassical quantum transport

    Sena-Junior, M. I.; Macêdo, A. M. S.

    2016-01-01

    Quantum transport through devices coupled to electron reservoirs can be described in terms of the full counting statistics (FCS) of charge transfer. Transport observables, such as conductance and shot-noise power are just cumulants of FCS and can be obtained from the sample's average density of transmission eigenvalues, which in turn can be obtained from a finite element representation of the saddle-point equation of the Keldysh (or supersymmetric) nonlinear sigma model, known as quantum circuit theory. Normal universal metallic behavior in the semiclassical regime is controlled by the presence of a Fabry-Pérot singularity in the average density of transmission eigenvalues. We present general conditions for the suppression of Fabry-Pérot modes in the semiclassical regime in a sample of arbitrary shape, a disordered conductor or a network of ballistic quantum dots, which leads to an anomalous metallic phase. Through a double-scaling limit, we derive a scaling equation for anomalous metallic transport, in the form of a nonlinear differential equation, which generalizes the ballistic-diffusive scaling equation of a normal metal. The two-parameter stationary solution of our scaling equation generalizes Dorokhov's universal single-parameter distribution of transmission eigenvalues. We provide a simple interpretation of the stationary solution using a thermodynamic analogy with a spin-glass system. As an application, we consider a system formed by a diffusive wire coupled via a barrier to normal-superconductor reservoirs. We observe anomalous reflectionless tunneling, when all perfectly transmitting channels are suppressed, which cannot be explained by the usual mechanism of disorder-induced opening of tunneling channels.

  10. Scaling theory for anomalous semiclassical quantum transport

    Quantum transport through devices coupled to electron reservoirs can be described in terms of the full counting statistics (FCS) of charge transfer. Transport observables, such as conductance and shot-noise power are just cumulants of FCS and can be obtained from the sample’s average density of transmission eigenvalues, which in turn can be obtained from a finite element representation of the saddle-point equation of the Keldysh (or supersymmetric) nonlinear sigma model, known as quantum circuit theory. Normal universal metallic behavior in the semiclassical regime is controlled by the presence of a Fabry–Pérot singularity in the average density of transmission eigenvalues. We present general conditions for the suppression of Fabry–Pérot modes in the semiclassical regime in a sample of arbitrary shape, a disordered conductor or a network of ballistic quantum dots, which leads to an anomalous metallic phase. Through a double-scaling limit, we derive a scaling equation for anomalous metallic transport, in the form of a nonlinear differential equation, which generalizes the ballistic-diffusive scaling equation of a normal metal. The two-parameter stationary solution of our scaling equation generalizes Dorokhov’s universal single-parameter distribution of transmission eigenvalues. We provide a simple interpretation of the stationary solution using a thermodynamic analogy with a spin-glass system. As an application, we consider a system formed by a diffusive wire coupled via a barrier to normal-superconductor reservoirs. We observe anomalous reflectionless tunneling, when all perfectly transmitting channels are suppressed, which cannot be explained by the usual mechanism of disorder-induced opening of tunneling channels. (paper)

  11. Quantum inductive circuits under ac and dc fields: Current manifestations of charge discreteness

    It is well known that the electrical current of a quantum inductive circuits with charge discreteness qe displays Bloch-like oscillations (frequency ωB=qeεd-bar ) under a dc external voltage (εd). Here we consider the effect of a superposed ac voltage in the circuit. Resonances are explicitly found. In the limit of small external frequency (ω-bar ωB), the electrical (one-period-averaged) current exist and has always the same sign. This gives us an experimental method to measure discrete charge effects in (quantum) nanometric circuits since the established current is depending on charge discreteness

  12. Quantum tunnelling of magnetization in Mn12-ac studied by 55Mn NMR

    Morello, A.; Bakharev, O. N.; Brom, H. B.; de Jongh, L.J.

    2002-01-01

    We present an ultra-low temperature study (down to T = 20 mK) of the nuclear spin-lattice relaxation (SLR) in the 55Mn nuclei of the molecular magnet Mn12-ac. The nuclear spins act as local probes for the electronic spin fluctuations, due to thermal excitations and to tunnelling events. In the quantum regime (below T = 0.75 K), the nuclear SLR becomes temperature-independent and is driven by fluctuations of the cluster's electronic spin due to the quantum tunnelling of magnetization in the gr...

  13. Transport through multiply connected quantum wires

    Das, Sourin; Rao, Sumathi

    2003-01-01

    We study transport through multiply coupled carbon nano-tubes (quantum wires) and compute the conductances through the two wires as a function of the two gate voltages $g_1$ and $g_2$ controlling the chemical potential of the electrons in the two wires. We find that there is an {\\it equilibrium} cross-conductance, and we obtain its dependence on the temperature and length of the wires. The effective action of the model for the wires in the strong coupling (equivalently Coulomb interaction) li...

  14. Optimal Control Theory for Time-Dependent Quantum Transport

    Zhang, Yu

    2015-01-01

    Optical techniques have been employed to coherently control the quantum transport through nanojunctions. Conventional works on optical control of quantum transport usually applied a tailored electrical pulses to perform specific tasks. In this work, an opposite way is employed and a time-dependent driving field is searched to force the system behave in desired pattern. In order to achieve the goal, an optimal control theory for time-dependent quantum transport is developed. The theory provide...

  15. AC shot noise through a quantum dot in the Kondo regime

    Yang, Kai-Hua, E-mail: khybjut@yahoo.com.cn [College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Wu, Yan-Ju; Chen, Yang [College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China)

    2011-08-01

    The photon-assisted shot noise through a quantum dot in the Kondo regime is investigated by applying time-dependent canonical transformation and non-crossing approximation technique. A basic formula for the photon-assisted shot noise is obtained. The rich dependence of the shot noise on the external ac field and temperature is displayed. At low temperature and low frequencies, the differential shot noise exhibits staircase behavior. When the temperature increases, the steps are rounded. At elevated frequencies, the photon-assisted tunneling becomes more obvious. We have also found that the Fano factor is enhanced as the ac frequency is enhanced. -- Highlights: → The explicitly photon-assisted shot noise formula through strongly correlated quantum dot is obtained. → The time-dependent canonical transformation and non-crossing approximation technique. → The rich dependence of the shot noise on the external ac field and temperature is displayed. → The Fano factor is enhanced as the ac frequency is enhanced.

  16. Quasienergy spectrum and tunneling current in ac-driven triple quantum dot shuttles

    Villavicencio, J [Facultad de Ciencias, Universidad Autonoma de Baja California, Ensenada (Mexico); Maldonado, I [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (Mexico); Cota, E [Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autonoma de Mexico, Ensenada (Mexico); Platero, G, E-mail: villavics@uabc.edu.mx [Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid (Spain)

    2011-02-15

    The dynamics of electrons in ac-driven double quantum dots have been extensively analyzed by means of Floquet theory. In these systems, coherent destruction of tunneling has been shown to occur for certain ac field parameters. In this work we analyze, by means of Floquet theory, the electron dynamics of a triple quantum dot in series attached to electric contacts, where the central dot position oscillates. In particular, we analyze the quasienergy spectrum of this ac-driven nanoelectromechanical system as a function of the intensity and frequency of the ac field and of external dc voltages. For strong driving fields, we derive, by means of perturbation theory, analytical expressions for the quasienergies of the driven oscillator system. From this analysis, we discuss the conditions for coherent destruction of tunneling (CDT) to occur as a function of detuning and field parameters. For zero detuning, and from the invariance of the Floquet Hamiltonian under a generalized parity transformation, we find analytical expressions describing the symmetry properties of the Fourier components of the Floquet states under such a transformation. By using these expressions, we show that in the vicinity of the CDT condition, the quasienergy spectrum exhibits exact crossings which can be characterized by the parity properties of the corresponding eigenvectors.

  17. Quantum transport in superlattice and quantum dot structures

    Murphy, H M

    2000-01-01

    manifestation of oscillations in the current -voltage characteristics of superlattices in the Wannier-Stark transport regime when strong lateral confinement is provided due either to gaps in the folded phonon spectrum or phonon momentum meeting the condition for Bragg reflection. Current-voltage measurements are shown in this chapter for superlattice devices in the Wannier-Stark regime for a range of electric and magnetic fields (B//I). Many oscillations are clearly observed in the I(V) data presented, the possible origins of which are then fully explored. Moving away from superlattices, data involving tunnelling through quantum dots embedded in the barrier of a GaAs/AIAs/GaAs resonant tunnelling diode are presented in chapter 5. Quasi-hydrostatic pressure is used to tune tunnelling through the dots. These results lead to a new picture for the conduction band potential profile of this device, and give us important new information relating to devices incorporating self-assembled quantum dots. More importantly,...

  18. Controlling Quantum Transport with a Programmable Nanophotonic Processor

    Harris, Nicholas; Steinbrecher, Gregory; Mower, Jacob; Lihini, Yoav; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Lloyd, Seth; Englund, Dirk

    Recent experimental and theoretical work has revealed emergent, counter-intuitive quantum transport effects in a range of physical medial including solid-state and biological systems. Photonic integrated circuits are promising platforms for studying such effects. A central goal in for photonic quantum transport simulators has been the ability to rapidly control all parameters of the transport problem. Here, we present a large-scale programmable nanophotonic processor composed of 56 Mach-Zehnder interferometers that enables control over modal couplings and differential phases between modes--enabling observations of Anderson localization, environment-assisted quantum transport, ballistic transport, and a number of intermediate quantum transport regimes. Rapid programmability enables tens of thousands of realizations of disordered and noisy systems. In addition, low loss makes this nanophotonic processor a promising platform for many-boson quantum simulation experiments.

  19. Quantum transport enhancement by time-reversal symmetry breaking

    Quantum mechanics still provides new unexpected effects when considering the transport of energy and information. Models of continuous time quantum walks, which implicitly use time-reversal symmetric Hamiltonians, have been intensely used to investigate the effectiveness of transport. Here we show how breaking time-reversal symmetry in this model can enable directional control, enhancement, and suppression of quantum transport. Examples ranging from exciton transport to complex networks are presented. This opens new prospects for more efficient methods to transport energy and information.

  20. Superconductivity in nanowires. Fabrication and quantum transport

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine. One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so is the investigation and understanding of these properties in the first place. A promising approach is to use carbon nanotubes as well as DNA structures as templates. Many fundamental theoretical questions are still unanswered, e.g. related to the role of quantum fluctuations. This work is tackling them and provides a detailed analysis of the transport properties of such ultrathin wires. It presents an account of theoretical models, charge transport experiments, and also conveys the latest experimental findings regarding fabrication, measurements, and theoretical analysis. In particular, it is the only available resource for the approach of using DNA and carbon nanotubes for nanowire fabrication.

  1. Plasmon assisted transport through disordered array of quantum wires

    Chudnovskiy, A. L.

    2004-01-01

    Phononless plasmon assisted thermally activated transport through a long disordered array of finite length quantum wires is investigated analytically. Generically strong electron plasmon interaction in quantum wires results in a qualitative change of the temperature dependence of thermally activated resistance in comparison to phonon assisted transport. At high temperatures, the thermally activated resistance is determined by the Luttinger liquid interaction parameter of the wires.

  2. Transport through Zero-Dimensional States in a Quantum Dot

    Kouwenhoven, Leo P.; Wees, Bart J. van; Harmans, Kees J.P.M.; Williamson, John G.

    1990-01-01

    We have studied the electron transport through zero-dimensional (0D) states. 0D states are formed when one-dimensional edge channels are confined in a quantum dot. The quantum dot is defined in a two-dimensional electron gas with a split gate technique. To allow electronic transport, connection to t

  3. Quantum Simulator for Transport Phenomena in Fluid Flows

    Mezzacapo, A.; Sanz, M.; Lamata, L.; I. L. Egusquiza; Succi, S; Solano, E.

    2015-01-01

    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, usi...

  4. Quantum Transport Simulations of Nanoscale Materials

    Obodo, Tobechukwu Joshua

    2016-01-07

    Nanoscale materials have many potential advantages because of their quantum confinement, cost and producibility by low-temperature chemical methods. Advancement of theoretical methods as well as the availability of modern high-performance supercomputers allow us to control and exploit their microscopic properties at the atomic scale, hence making it possible to design novel nanoscale molecular devices with interesting features (e.g switches, rectifiers, negative differential conductance, and high magnetoresistance). In this thesis, state-of-the-art theoretical calculations have been performed for the quantum transport properties of nano-structured materials within the framework of Density Functional Theory (DFT) and the Nonequilibrium Green\\'s Function (NEGF) formalism. The switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes is investigated. The molecule presents a configurational bistability, which can be exploited in constructing molecular memories, switches, and sensors. We find that protonation of the terminating thiol groups is at the origin of the change in conductance. H bonding at the thiol group weakens the S-Au bond, and thus lowers the conductance. Our results allow us to re-interpret the experimental data originally attributing the conductance reduction to H dissociation. Also examined is current-induced migration of atoms in nanoscale devices that plays an important role for device operation and breakdown. We studied the migration of adatoms and defects in graphene and carbon nanotubes under finite bias. We demonstrate that current-induced forces within DFT are non-conservative, which so far has only been shown for model systems, and can lower migration barrier heights. Further, we investigated the quantum transport behavior of an experimentally observed diblock molecule by varying the amounts of phenyl (donor) and pyrimidinyl (acceptor) rings under finite bias. We show that a tandem configuration of

  5. Linear ac transport in graphene semiconducting nanosystem with normal-metal electrodes

    Ye, En-Jia; Sun, Yun-Lei; Lan, Jin; Shi, Yi-Jian

    2016-03-01

    Linear ac transport properties are investigated in a graphene semiconducting nanosystem, with the effect of normal-metal electrodes taken into account. We use a tight-binding approach and ac transport theory to study the dc conductance and ac emittance in normal-metal/graphene (NG) and normal-metal/graphene/normal-metal (NGN) systems with armchair-edge graphene. We find that the resonant and semiconducting behaviors in NG and NGN systems are closely related to the spatial-resolved local density of states. Furthermore, features of the size-dependent emittances in the NGN system are investigated. The results suggest a positive correlation between the width and capacitive response, and the capacitive response is robust as the size of the system increases proportionally.

  6. Temperature Dependence of Abnormal Fano Resonance in Photon-Assisted Transport Through a Side-Coupled Quantum Dot

    HU Yin; SONG Hong-Yan; DONG Zheng-Chao; WU Liu-Po; SHI Yao-Ming; ZHOU Shi-Ping

    2008-01-01

    We investigate transport through a perfect quantum wire with a side-coupled quantum dot under an ac find. Time-averaged complex conductance is formulated by using the nonequilibrium Green function (NGF) method. We find that the electron-photon interaction together with the quantum interference of Nectron wave function can lead to anti-resonance in the conductance, which is then useful for tuning coherence and phases of Nectrons. Meanwhile, we study the temperature dependence of the conductance. Interestingly, a peak-structure can be developed at the Fano resonance levels with increasing temperatures.

  7. Quantum Spin Transport in Mesoscopic Interferometer

    Zein W. A.

    2007-10-01

    Full Text Available Spin-dependent conductance of ballistic mesoscopic interferometer is investigated. The quantum interferometer is in the form of ring, in which a quantum dot is embedded in one arm. This quantum dot is connected to one lead via tunnel barrier. Both Aharonov- Casher and Aharonov-Bohm e ects are studied. Our results confirm the interplay of spin-orbit coupling and quantum interference e ects in such confined quantum systems. This investigation is valuable for spintronics application, for example, quantum information processing.

  8. Percolation assisted excitation transport in discrete-time quantum walks

    Štefaňák, M.; Novotný, J.; Jex, I.

    2016-02-01

    Coherent transport of excitations along chains of coupled quantum systems represents an interesting problem with a number of applications ranging from quantum optics to solar cell technology. A convenient tool for studying such processes are quantum walks. They allow us to determine all the process features in a quantitative way. We study the survival probability and the transport efficiency on a simple, highly symmetric graph represented by a ring. The propagation of excitation is modeled by a discrete-time (coined) quantum walk. For a two-state quantum walk, where the excitation (walker) has to leave its actual position to the neighboring sites, the survival probability decays exponentially and the transport efficiency is unity. The decay rate of the survival probability can be estimated using the leading eigenvalue of the evolution operator. However, if the excitation is allowed to stay at its present position, i.e. the propagation is modeled by a lazy quantum walk, then part of the wave-packet can be trapped in the vicinity of the origin and never reaches the sink. In such a case, the survival probability does not vanish and the excitation transport is not efficient. The dependency of the transport efficiency on the initial state is determined. Nevertheless, we show that for some lazy quantum walks dynamical, percolations of the ring eliminate the trapping effect and efficient excitation transport can be achieved.

  9. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    Kajikawa, K., E-mail: kajikawa@sc.kyushu-u.ac.j [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Funaki, K. [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Shikimachi, K.; Hirano, N.; Nagaya, S. [Chubu Electric Power Co., Inc., 20-1 Kitasekiyama, Ohdaka-cho, Midori-ku, Nagoya 459-8522 (Japan)

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean's critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  10. Numerical and theoretical evaluations of AC losses for single and infinite numbers of superconductor strips with direct and alternating transport currents in external AC magnetic field

    Kajikawa, K.; Funaki, K.; Shikimachi, K.; Hirano, N.; Nagaya, S.

    2010-11-01

    AC losses in a superconductor strip are numerically evaluated by means of a finite element method formulated with a current vector potential. The expressions of AC losses in an infinite slab that corresponds to a simple model of infinitely stacked strips are also derived theoretically. It is assumed that the voltage-current characteristics of the superconductors are represented by Bean’s critical state model. The typical operation pattern of a Superconducting Magnetic Energy Storage (SMES) coil with direct and alternating transport currents in an external AC magnetic field is taken into account as the electromagnetic environment for both the single strip and the infinite slab. By using the obtained results of AC losses, the influences of the transport currents on the total losses are discussed quantitatively.

  11. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation.

    Ohba, Tomonori

    2016-01-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2-5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4-0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems. PMID:27363671

  12. Limited Quantum Helium Transportation through Nano-channels by Quantum Fluctuation

    Ohba, Tomonori

    2016-01-01

    Helium at low temperatures has unique quantum properties such as superfluidity, which causes it to behave differently from a classical fluid. Despite our deep understanding of quantum mechanics, there are many open questions concerning the properties of quantum fluids in nanoscale systems. Herein, the quantum behavior of helium transportation through one-dimensional nanopores was evaluated by measuring the adsorption of quantum helium in the nanopores of single-walled carbon nanohorns and AlPO4-5 at 2–5 K. Quantum helium was transported unimpeded through nanopores larger than 0.7 nm in diameter, whereas quantum helium transportation was significantly restricted through 0.4-nm and 0.6-nm nanopores. Conversely, nitrogen molecules diffused through the 0.4-nm nanopores at 77 K. Therefore, quantum helium behaved as a fluid comprising atoms larger than 0.4–0.6 nm. This phenomenon was remarkable, considering that helium is the smallest existing element with a (classical) size of approximately 0.27 nm. This finding revealed the presence of significant quantum fluctuations. Quantum fluctuation determined the behaviors of quantum flux and is essential to understanding unique quantum behaviors in nanoscale systems. PMID:27363671

  13. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    Cui, Ping

    The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO

  14. Quantum transport through 3D Dirac materials

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect

  15. Quantum transport through 3D Dirac materials

    Salehi, M. [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Jafari, S.A., E-mail: jafari@physics.sharif.edu [Department of Physics, Sharif University of Technology, Tehran 11155-9161 (Iran, Islamic Republic of); Center of Excellence for Complex Systems and Condensed Matter (CSCM), Sharif University of Technology, Tehran 1458889694 (Iran, Islamic Republic of)

    2015-08-15

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer–Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  16. Quantum transport through 3D Dirac materials

    Salehi, M.; Jafari, S. A.

    2015-08-01

    Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-Büttiker formalism. Charge carriers in normal metal satisfying the Schrödinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.

  17. Quantum kinetics in transport and optics of semincionductors

    Haug, H

    2008-01-01

    Nanoscale miniaturization and femtosecond laser-pulse spectroscopy require a quantum mechanical description of the carrier kinetics that goes beyond the conventional Boltzmann theory. On these extremely short length and time scales the electrons behave like partially coherent waves. This monograph deals with quantum kinetics for transport in low-dimensional microstructures and for ultra-short laser pulse spectroscopy. The nonequilibrium Green function theory is described and used for the derivation of the quantum kinetic equations. Numerical methods for the solution of the retarded quantum kinetic equations are discussed and results are presented for high-field transport and for mesoscopic transport phenomena. Quantum beats, polarization decay, and non-Markovian behaviour are treated for femtosecond spectroscopy on a microscopic basis. Since the publishing of the first edition in 1996 the nonequilibrium Green function technique has been applied to a large number of new research topics, and the revised edition...

  18. Parallel transport quantum logic gates with trapped ions

    de Clercq, Ludwig; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2015-01-01

    Quantum information processing will require combinations of gate operations and communication, with each applied in parallel to large numbers of quantum systems. These tasks are often performed sequentially, with gates implemented by pulsed fields and information transported either by moving the physical qubits or using photonic links. For trapped ions, an alternative approach is to implement quantum logic gates by transporting the ions through static laser beams, combining qubit operations with transport. This has significant advantages for scalability since the voltage waveforms required for transport can potentially be generated using micro-electronics integrated into the trap structure itself, while both optical and microwave control elements are significantly more bulky. Using a multi-zone ion trap, we demonstrate transport gates on a qubit encoded in the hyperfine structure of a beryllium ion. We show the ability to perform sequences of operations, and to perform parallel gates on two ions transported t...

  19. Nonequilibrium electron transport through quantum dots in the Kondo regime

    Wölfle, Peter; Paaske, Jens; Rosch, Achim; Kroha, Johann

    2005-01-01

    Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how the ...

  20. Numerical Evidence for Robustness of Environment-Assisted Quantum Transport

    Shabani, A; Rabitz., H; Lloyd, S

    2014-01-01

    Recent theoretical studies show that decoherence process can enhance transport efficiency in quantum systems. This effect is known as environment-assisted quantum transport (ENAQT). The role of ENAQT in optimal quantum transport is well investigated, however, it is less known how robust ENAQT is with respect to variations in the system or its environment characteristic. Toward answering this question, we simulated excitonic energy transfer in Fenna-Matthews-Olson (FMO) photosynthetic complex. We found that ENAQT is robust with respect to many relevant parameters of environmental interactions and Frenkel-exciton Hamiltonian including reorganization energy, bath frequency cutoff, temperature, and initial excitations, dissipation rate, trapping rate, disorders, and dipole moments orientations. Our study suggests that the ENAQT phenomenon can be exploited in robust design of highly efficient quantum transport systems.

  1. Transport and AC loss properties of the repaired multifilamentary REBCO superconducting tapes

    Yamasaki, S.; Iwakuma, M.; Funaki, K.; Kato, J.; Chikumoto, T.; Tanabe, K.; Nakao, K.; Izumi, T.; Yamada, Y.; Shiohara, Y.; Saito, T.

    2010-11-01

    For near-future applications of REBa 2Cu 3O 7 (REBCO) coated conductors to electric power cables, transformers and Superconducting Magnetic Energy Storage (SMES), the long taped wires with high performance in the transport properties have been designed and fabricated. Moreover, in order to drastically reduce AC losses in perpendicular field configuration, advanced multifilament YBCO coated conductors (MFYCCs) fabricated with technique of a laser scribing process have been also developed. In the present study, from engineering viewpoints to utilize such advanced conductors, we evaluated the transport and AC loss properties of short MFYCCs with a repaired part or a joint by a diffusion joint technique with the saddle-shaped pickup coil method.

  2. Transport and AC loss properties of the repaired multifilamentary REBCO superconducting tapes

    Yamasaki, S. [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Iwakuma, M., E-mail: iwakuma@sc.kyushu-u.ac.j [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Funaki, K. [Research Institute of Superconductor Science and Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Kato, J.; Chikumoto, T.; Tanabe, K.; Nakao, K.; Izumi, T.; Yamada, Y.; Shiohara, Y. [International Superconductivity Technology Center, ISTEC, 1-10-13 Shinonome, Koto-ku, Tokyo 135-0062 (Japan); Saito, T. [Fujikura Ltd., 1-5-1 Kiba, Koto-ku, Tokyo 135-8512 (Japan)

    2010-11-01

    For near-future applications of REBa{sub 2}Cu{sub 3}O{sub 7} (REBCO) coated conductors to electric power cables, transformers and Superconducting Magnetic Energy Storage (SMES), the long taped wires with high performance in the transport properties have been designed and fabricated. Moreover, in order to drastically reduce AC losses in perpendicular field configuration, advanced multifilament YBCO coated conductors (MFYCCs) fabricated with technique of a laser scribing process have been also developed. In the present study, from engineering viewpoints to utilize such advanced conductors, we evaluated the transport and AC loss properties of short MFYCCs with a repaired part or a joint by a diffusion joint technique with the saddle-shaped pickup coil method.

  3. Time-resolved electron transport in quantum-dot systems

    In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.

  4. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-06-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

  5. Quantum chemistry and charge transport in biomolecules with superconducting circuits

    García-Álvarez, L.; Las Heras, U.; Mezzacapo, A.; Sanz, M.; Solano, E.; Lamata, L.

    2016-01-01

    We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects. PMID:27324814

  6. Chaotic transport of particles in two-dimensional periodic potentials driven by ac forces

    Guantes, R.; Miret-Artés, Salvador

    2003-01-01

    The diffusive and directed transport of particles in a two-dimensional peridoic potential was studied. The model represents diffusion of atoms adsorbed on metal surfaces under an applied ac electric field in the low-temperature limit. The results show that the second dimension and the potential energy coupling play an important role on both diffusion and net currents, depending on the direction of the drive.

  7. Transport through quantum wells and superlattices on topological insulator surfaces.

    Song, J-T; Li, Y-X; Sun, Q-F

    2014-05-01

    We investigate electron transmission coefficients through quantum wells and quantum superlattices on topological insulator surfaces. The quantum well or superlattice is not constituted by general electronic potential barriers but by Fermi velocity barriers which originate in the different topological insulator surfaces. It is found that electron resonant modes can be renormalized by quantum wells and more clearly by quantum superlattices. The depth and width of a quantum well and superlattice, the incident angle of an electron, and the Fermi energy can be used to effectively tune the electron resonant modes. In particular, the number N of periodic structures that constitute a superlattice can further strengthen these regulating effects. These results suggest that a device could be developed to select and regulate electron propagation modes on topological insulator surfaces. Finally, we also study the conductance and the Fano factor through quantum wells and quantum superlattices. In contrast to what has been reported before, the suppression factors of 0.4 in the conductance and 0.85 in the Fano factor are observed in a quantum well, while the transport for a quantum superlattice shows strong oscillating behavior at low energy and reaches the same saturated values as in the case of a quantum well at sufficiently large energies. PMID:24759077

  8. Long-distance quantum transport dynamics in macromolecules

    Schneider, E.; Faccioli, P.

    2014-04-01

    Using renormalization group methods, we develop a rigorous coarse-grained representation of the dissipative dynamics of quantum excitations propagating inside open macromolecular systems. We show that, at very low spatial resolution, this quantum transport theory reduces to a modified Brownian process, in which quantum delocalization effects are accounted for by means of an effective term in the Onsager-Machlup functional. Using this formulation, we derive a simple analytic solution for the time-dependent probability of observing the quantum excitation at a given point in the macromolecule. This formula can be used to predict the migration of natural or charged quantum excitations in a variety of molecular systems, including biological and organic polymers, organic crystalline transistors, or photosynthetic complexes. For illustration purposes, we apply this method to investigate inelastic electronic hole transport in a long homo-DNA chain.

  9. AC transport current loss analysis for a face-to-face stack of superconducting tapes

    Yoo, Jaeun [Dept. of Physics, Chonbuk National University, Jeonju (Korea, Republic of); Youm, Dojun [Dept. of Physics, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Oh, Sang Soo [Superconducting Materials Research Group, KERI, Changwon (Korea, Republic of)

    2013-06-15

    AC Losses for face to face stacks of four identical coated conductors (CCs) were numerically calculated using the H-formulation combined with the E-J power law and the Kim model. The motive sample was the face to face stack of four 2 mm-wide CC tapes with 2 μm thick superconducting layer of which the critical current density, J{sub c}, was 2.16 x 10{sup 6} A/cm{sup 2} on IBAD-MgO template, which was suggested for the mitigation of ac loss as a round shaped wire by Korea Electrotechnology Research Institute. For the calculation the cross section of the stack was simply modeled as vertically aligned 4 rectangles of superconducting (SC) layers withE=E{sub o}(J(x,y,t)/J{sub c}(B)){sup n} in x-y plane where E{sub o} was 10{sup -6} V/cm, J{sub c} (B) was the field dependence of current density and n was 21. The field dependence of the critical current of the sample measured in four-probe method was employed for J{sub c} (B) in the equation. The model was implemented in the finite element method program by commercial software. The ac loss properties for the stacks were compared with those of single 4 cm-wide SC layers with the same critical current density or the same critical current. The constraint for the simulation was imposed in two different ways that the total current of the stack obtained by integrating J(x,y,t) over the cross sections was the same as that of the applied transport current: one is that one fourth of the external current was enforced to flow through each SC. In this case, the ac loss values for the stacks were lower than those of single wide SC layer. This mitigation of the loss is attributed to the reduction of the normal component of the magnetic field near the SC layers due to the strong expulsion of the magnetic field by the enforced transport current. On the contrary, for the other case of no such enforcement, the ac loss values were greater than those of single 4cm-wide SC layer and. In this case, the phase difference of the current flowing

  10. Transport of quantum states of periodically driven systems

    Breuer, H. P.; Dietz, K.; Holthaus, M.

    1990-01-01

    We discuss the transport of quantum states on quasi-energy surfaces of periodically driven systems and establish their non-trivial structure. The latter is shown to be caused by diabatic transitions at lines of narrow avoided crossings. Some experimental consequences pertaining to adiabatic transport and Landau-Zener transitions among Floquet states are briefly sketched.

  11. Quantum coherence in ion channels: Resonances, Transport and Verification

    Vaziri, A

    2010-01-01

    Recently it was demonstrated that long-lived quantum coherence exists during excitation energy transport in photosynthesis. It is a valid question up to which length, time and mass scales quantum coherence may extend, how to one may detect this coherence and what if any role it plays for the dynamics of the system. Here we suggest that the selectivity filter of ion channels may exhibit quantum coherence which might be relevant for the process of ion selectivity and conduction. We show that quantum resonances could provide an alternative approch to ultrafast 2D spectroscopy to probe these quantum coherences. We demonstrate that the emergence of resonances in the conduction of ion channels that are modulated periodicallly by time dependent external electric fields can serve as signitures of quantum coherence in such a system. Assessments of experimental feasibility and specific paths towards the experimental realization of such experiments are presented. We show that this may be probed by direct 2-D spectroscop...

  12. Quantum thermometry using the ac Stark shift within the Rabi model

    Higgins, Kieran D B; Gauger, Erik M

    2012-01-01

    A quantum two level system coupled to a harmonic oscillator represents a ubiquitous physical system. New experiments in circuit QED and nano-electromechanical systems (NEMS) achieve unprecedented coupling strength at large detuning between qubit and oscillator, thus requiring a theoretical treatment beyond the Jaynes Cummings model. Here we present a new method for describing the qubit dynamics in this regime, based on an oscillator correlation function expansion of a non-Markovian master equation in the polaron frame. Our technique yields a new numerical method as well as a succinct approximate expression for the qubit dynamics. We obtain a new expression for the ac Stark shift and show that this enables practical and precise qubit thermometry of an oscillator.

  13. Incoherent transport in clean quantum critical metals

    Davison, Richard A; Hartnoll, Sean A

    2015-01-01

    In a clean quantum critical metal, and in the absence of umklapp, most d.c. conductivities are formally infinite due to momentum conservation. However, there is a particular combination of the charge and heat currents which has a finite, universal conductivity. In this paper, we describe the physics of this conductivity $\\sigma_Q$ in quantum critical metals obtained by charge doping a strongly interacting conformal field theory. We show that it satisfies an Einstein relation and controls the diffusivity of a conserved charge in the metal. We compute $\\sigma_Q$ in a class of theories with holographic gravitational duals. Finally, we show how the temperature scaling of $\\sigma_Q$ depends on certain critical exponents characterizing the quantum critical metal. The holographic results are found to be reproduced by the scaling analysis, with the charge density operator becoming marginal in the emergent low energy quantum critical theory.

  14. Scattering matrix approach to non-stationary quantum transport

    Moskalets, Michael V

    2012-01-01

    The aim of this book is to introduce the basic elements of the scattering matrix approach to transport phenomena in dynamical quantum systems of non-interacting electrons. This approach admits a physically clear and transparent description of transport processes in dynamical mesoscopic systems promising basic elements of solid-state devices for quantum information processing. One of the key effects, the quantum pump effect, is considered in detail. In addition, the theory for a recently implemented new dynamical source - injecting electrons with time delay much larger than the electron coherence time - is offered. This theory provides a simple description of quantum circuits with such a single-particle source and shows in an unambiguous way that the tunability inherent to the dynamical systems leads to a number of unexpected but fundamental effects.

  15. Hidden symmetries enhance quantum transport in Light Harvesting systems

    Zech, Tobias; Wellens, Thomas; Buchleitner, Andreas

    2012-01-01

    For more than 50 years we have known that photosynthetic systems harvest solar energy with almost unit {\\it quantum efficiency}. However, recent experimental evidence of {\\it quantum coherence} during the excitonic energy transport in photosynthetic organisms challenges our understanding of this fundamental biological function. Currently, and despite numerous efforts, the causal connection between coherence and efficiency is still a matter of debate. We show, through the study of extensive simulations of quantum coherent transport on networks, that three dimensional structures characterized by centro-symmetric Hamiltonians are statistically more efficient than random arrangements. Moreover, we demonstrate that the experimental data available for the electronic Hamiltonians of the Fenna-Mathew-Olson (FMO) complex of sulfur bacteria and of the crypophyte PC645 complex of marine algae are consistent with this strong correlation of centro-symmetry with quantum efficiency. These results show that what appears to b...

  16. Noise-enhanced quantum transport on a closed loop using quantum walks

    Chandrashekar, C. M.; Busch, Th.

    2012-01-01

    We study the effect of noise on the transport of a quantum state from a closed loop of $n-$sites with one of the sites as a sink. Using a discrete-time quantum walk dynamics, we demonstrate that the transport efficiency can be enhanced with noise when the number of sites in the loop is small and reduced when the number of sites in the loop grows. By using the concept of measurement induced disturbance we identify the regimes in which genuine quantum effects are responsible for the enhanced tr...

  17. Background charges and quantum effects in quantum dots transport spectroscopy

    Pierre M.; Hofheinz M.; Jehl X.; Sanquer M.; Molas G.; Vinet M.; Deleonibus S.

    2009-01-01

    We extend a simple model of a charge trap coupled to a single-electron box to energy ranges and parameters such that it gives new insights and predictions readily observable in many experimental systems. We show that a single background charge is enough to give lines of differential conductance in the stability diagram of the quantum dot, even within undistorted Coulomb diamonds. It also suppresses the current near degeneracy of the impurity charge, and yields negative differential lines far ...

  18. Charge transport through weakly open one dimensional quantum wires

    Kopnin, N. B.; Galperin, Y. M.; Vinokur, V.M.

    2008-01-01

    We consider resonant transmission through a finite-length quantum wire connected to leads via finite transparency junctions. The coherent electron transport is strongly modified by the Coulomb interaction. The low-temperature current-voltage ($IV$) curves show step-like dependence on the bias voltage determined by the distance between the quantum levels inside the conductor, the pattern being dependent on the ratio between the charging energy and level spacing. If the system is tuned close to...

  19. Spin and edge channel dependent transport through quantum dots

    We investigate the influence of spin polarized currents and non-equilibrated edge channels on the transport properties of a single quantum dot. Polarized currents are realized by the manual depletion of edge channels in high magnetic fields via a metallic top gate covering the source contact in the system. We observe a suppression and enhancement in the conductance of the quantum dot dependent on the edge channel configuration in the leads.

  20. Spin and edge channel dependent transport through quantum dots

    Ridder, T; Rogge, M C; Haug, R J [Institut fuer Festkoerperphysik, Gottfried Wilhelm Leibniz Universitaet Hannover, Appelstrasse 2, D-30167 Hannover (Germany)], E-mail: ridder@nano.uni-hannover.de

    2008-11-12

    We investigate the influence of spin polarized currents and non-equilibrated edge channels on the transport properties of a single quantum dot. Polarized currents are realized by the manual depletion of edge channels in high magnetic fields via a metallic top gate covering the source contact in the system. We observe a suppression and enhancement in the conductance of the quantum dot dependent on the edge channel configuration in the leads.

  1. Control of exciton transport using quantum interference

    Lusk, Mark T.; Stafford, Charles A.; Zimmerman, Jeramy D.; Carr, Lincoln D.

    2015-12-01

    It is shown that quantum interference can be employed to create an exciton transistor. An applied potential gates the quasiparticle motion and also discriminates between quasiparticles of differing binding energy. When implemented within nanoscale assemblies, such control elements could mediate the flow of energy and information. Quantum interference can also be used to dissociate excitons as an alternative to using heterojunctions. A finite molecular setting is employed to exhibit the underlying discrete, two-particle, mesoscopic analog to Fano antiresonance. Selected entanglement measures are shown to distinguish regimes of behavior which cannot be resolved from population dynamics alone.

  2. Structure of Quantum Chaotic Wavefunctions Ergodicity, Localization, and Transport

    Kaplan, L

    1999-01-01

    We discuss recent developments in the study of quantum wavefunctions and transport in classically ergodic systems. Surprisingly, short-time classical dynamics leaves permanent imprints on long-time and stationary quantum behavior, which are absent from the long-time classical motion. These imprints can lead to quantum behavior on single-wavelength or single-channel scales which are very different from random matrix theory expectations. Robust and quantitative predictions are obtained using semiclassical methods. Applications to wavefunction intensity statistics and to resonances in open systems are discussed.

  3. Phonon affected transport through molecular quantum

    Loos, Jan; Koch, T.; Alvermann, A.; Bishop, A. R.; Fehske, H.

    2009-01-01

    Roč. 21, č. 39 (2009), 395601/1-395601/18. ISSN 0953-8984 Institutional research plan: CEZ:AV0Z10100521 Keywords : quantum dots * electron - phonon interaction * polarons Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.964, year: 2009

  4. DC and AC transport properties on La0.8Sr0.2MnO3

    Zhantao Wei; Xinsheng Yang; Li Lv; Min Zhang; Yong Zhang

    2014-01-01

    Magnetoresistive sensor can be widely used in modern transportation field, such as the vehicle positioning and navigation system, vehicle detection system, and intelligent transportation system. In order to improve the efficiency of magnetoresistive sensor, we synthesized La0.8Sr0.2MnO3 polycrystalline bulks at different sintering temperatures and investigated their DC and AC transport properties in this work. As a result, all samples showed insulator-metal (I-M) phase transition, and the transition temperature (TI-M) shifted to higher temperature with the increase of sintering temperature. The TI-M measured at different AC frequencies was smaller than that measured at DC condition, which implied that the I-M phase transition was suppressed at AC frequencies. The resistivity mea-sured at high AC frequencies was larger than that measured at low AC frequencies, which could be attributed to the change of the magnetic penetration depth (d). However, the room-temperature AC-magnetoresistance (MR) at low frequencies was much larger than that at high frequencies and room-temperature DC-MR. These findings demon-strate that reducing the AC frequency is an effective way for enhancing the room-temperature MR, which can be used to promote the efficiency of magnetoresistive sensor.

  5. Analytical results in coherent quantum transport for periodic quantum dot

    Mardaani, Mohammad; Esfarjani, Keivan

    2004-01-01

    In this paper we have calculated electron transport coefficient in ballistic regime through a periodic dot sandwiched between uniform leads. We have calculated the Green's function (GF), density of states (Dos) and the coherent transmission coefficient (conductance) fully analytically. The quasi gap, bound states energies, the energy and wire-length dependence of the GF and conductance for this system are also derived.

  6. Some analytic results in coherent quantum transport

    Mardaani, Mohammad; Esfarjani, Keivan

    2004-01-01

    A quantum wire of uniform cross section (but with eventual disorder) with three regions: dot, left lead, and right lead, is considered. Assuming that the same unitary transformation diagonalizes all unit cells of this wire, we propose a new formula for the calculation of the Greens function (GF) and the coherent transmission coefficient. This formula allows to calculate these quantitites much faster than the standard methods. In particular, the problem of a uniform dot (simple cubic uniform d...

  7. Quantum transport efficiency and Fourier's law

    Manzano, Daniel; Tiersch, Markus; Asadian, Ali; Briegel, Hans J.

    2011-01-01

    We analyze the steady-state energy transfer in a chain of coupled two-level systems connecting two thermal reservoirs. Through an analytic treatment we find that the energy current is independent of the system size, hence violating Fourier's law of heat conduction. The classical diffusive behavior in Fourier's law of heat conduction can be recovered by introducing decoherence to the quantum systems constituting the chain. Implications of these results on energy transfer in biological light ha...

  8. Theory of quantum transport at nanoscale an introduction

    Ryndyk, Dmitry A

    2016-01-01

    This book is an introduction to a rapidly developing field of modern theoretical physics – the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universität Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Büttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the...

  9. Electron Transport in Quantum Dots and Heat Transport in Molecules

    Kirsanskas, Gediminas

    Since the invention of the transistor in 1947 and the development of integrated circuits in the late 1950’s, there was a rapid progress in the development and miniaturization of the solid state devices and electronic circuit components. This miniaturization raises a question “How small do we have...... to make a device in order to get fundamentally new properties?” [1], or more concretely, when do the quantum effects become important. During the last 30 years, the innovations in fabrication and cooling techniques allowed to produce nanometer scale solid-state or single molecule-based devices...... in all three directions, which makes it effectively zero dimensional and corresponds to discrete electronic orbitals (levels) and excitation spectrum. This is analogous to the situation in atoms, where confinement potential replaces the potential of the nucleus, thus quantum dots are often referred...

  10. Quantum Model of Energy Transport in Collagen Molecules

    XIAO Yi; LIN Xian-Zhe

    2001-01-01

    A semi-quantum model for energy transport in collagen molecules is presented. Soliton-like dynamics of this model is investigated numerically without and with the temperature effect taking into account. It is found that in both the cases energy can transport for a long distance along the collagen chain. This indicates that collagen molecules can be taken as a candidate for the acupuncture channel.

  11. Distribution of tunnelling times for quantum electron transport

    Rudge, Samuel; Kosov, Daniel

    2016-01-01

    In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junc...

  12. Nonlinearly-enhanced energy transport in many dimensional quantum chaos

    Brambila, D. S.

    2013-08-05

    By employing a nonlinear quantum kicked rotor model, we investigate the transport of energy in multidimensional quantum chaos. This problem has profound implications in many fields of science ranging from Anderson localization to time reversal of classical and quantum waves. We begin our analysis with a series of parallel numerical simulations, whose results show an unexpected and anomalous behavior. We tackle the problem by a fully analytical approach characterized by Lie groups and solitons theory, demonstrating the existence of a universal, nonlinearly-enhanced diffusion of the energy in the system, which is entirely sustained by soliton waves. Numerical simulations, performed with different models, show a perfect agreement with universal predictions. A realistic experiment is discussed in two dimensional dipolar Bose-Einstein-Condensates (BEC). Besides the obvious implications at the fundamental level, our results show that solitons can form the building block for the realization of new systems for the enhanced transport of matter.

  13. Charge transport and localization in atomically coherent quantum dot solids

    Whitham, Kevin; Yang, Jun; Savitzky, Benjamin H.; Kourkoutis, Lena F.; Wise, Frank; Hanrath, Tobias

    2016-05-01

    Epitaxial attachment of quantum dots into ordered superlattices enables the synthesis of quasi-two-dimensional materials that theoretically exhibit features such as Dirac cones and topological states, and have major potential for unprecedented optoelectronic devices. Initial studies found that disorder in these structures causes localization of electrons within a few lattice constants, and highlight the critical need for precise structural characterization and systematic assessment of the effects of disorder on transport. Here we fabricated superlattices with the quantum dots registered to within a single atomic bond length (limited by the polydispersity of the quantum dot building blocks), but missing a fraction (20%) of the epitaxial connections. Calculations of the electronic structure including the measured disorder account for the electron localization inferred from transport measurements. The calculations also show that improvement of the epitaxial connections will lead to completely delocalized electrons and may enable the observation of the remarkable properties predicted for these materials.

  14. Number-resolved master equation approach to quantum measurement and quantum transport

    Li, Xin-Qi

    2016-08-01

    In addition to the well-known Landauer-Büttiker scattering theory and the nonequilibrium Green's function technique for mesoscopic transports, an alternative (and very useful) scheme is quantum master equation approach. In this article, we review the particle-number ( n)-resolved master equation ( n-ME) approach and its systematic applications in quantum measurement and quantum transport problems. The n-ME contains rich dynamical information, allowing efficient study of topics such as shot noise and full counting statistics analysis. Moreover, we also review a newly developed master equation approach (and its n-resolved version) under self-consistent Born approximation. The application potential of this new approach is critically examined via its ability to recover the exact results for noninteracting systems under arbitrary voltage and in presence of strong quantum interference, and the challenging non-equilibrium Kondo effect.

  15. Effects of spin-orbit coupling on quantum transport

    Bardarson, Jens Hjorleifur

    2008-01-01

    The effect of spin-orbit coupling on various quantum transport phenomena is considered. The main topics discussed are: * How spin-orbit coupling can induce shot noise through trajectory splitting. * How spin-orbit coupling can degrade electron-hole entanglement (created by a tunnel barrier) by mo

  16. The Landauer-Büttiker formula and resonant quantum transport

    Cornean, Horia; Jensen, Arne; Moldoveanu, Valeriu

    2006-01-01

    We give a short presentation of two recent results. The first one is a rigorous proof of the Landauer-Büttiker formula, and the second one concerns resonant quantum transport. The detailed results are in [2]. In the last section we present the results of som numerical computations on a model system...

  17. Chaotic Dynamics and Transport in Classical and Quantum Systems

    NONE

    2003-07-01

    The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations.

  18. The Landauer-Büttiker formula and resonant quantum transport

    Cornean, Horia Decebal; Jensen, Arne; Moldoveanu, Valeriu

    We give a short presentation of two recent results. The firrst one is a rigorous proof of the Landauer-Büttiker formula, and the second one concerns resonant quantum transport. The detailed results are in [2]. In the last section we present the results of some numerical computations on a model...

  19. Chaotic Dynamics and Transport in Classical and Quantum Systems

    The aim of this summer school is to provide a set of extended and pedagogical lectures, on the major present-day topics in dynamical systems and statistical mechanics including applications. Some articles are dedicated to chaotic transport in plasma turbulence and to quantum chaos. This document gathers the summaries of some presentations

  20. What is novel in quantum transport for mesoscopics?

    Mukunda P Das; Frederick Green

    2006-07-01

    The understanding of mesoscopic transport has now attained an ultimate simplicity. Indeed, orthodox quantum kinetics would seem to say little about mesoscopics that has not been revealed – nearly effortlessly – by more popular means. Such is far from the case, however. The fact that kinetic theory remains very much in charge is best appreciated through the physics of a quantum point contact. While discretization of its conductance is viewed as the exclusive result of coherent, single-electron-wave transmission, this does not begin to address the paramount feature of all metallic conduction: dissipation. A perfect quantum point contact still has finite resistance, so its ballistic carriers must dissipate the energy gained from the applied field. How do they manage that? The key is in standard many-body quantum theory, and its conservation principles.

  1. Transport ac loss of elliptical thin strips with a power-law E(J) relation

    Jia, Chen-Xi; Chen, Du-Xing; Li, Shuo; Fang, Jin

    2015-10-01

    The transport ac loss Q of an elliptical thin strip of critical current I c with a power-law relation E\\propto {J}n is accurately computed as a function of current amplitude I m and frequency f. The resulting Q({I}m) is normalized to q({i}m) following the Norris critical-state formula, and converted to {q}*({i}m*) at a critical frequency f c based on a transport scaling law. Having a set of {q}*({i}m*) at several values of n as a base, a general expression of {q}*({i}m*,n) is obtained, which can be used to easily calculate q({i}m) for any practical purposes.

  2. Fabrication and AC transport losses for Ag-sheathed Bi-2223 tapes using rectangular deformation process

    The AC transport losses in self-field at 77 K have been investigated for the Ag-sheathed Bi-2223 multifilamentary tapes prepared by rectangular deformation process. The rectangular wires with 20 (5 x 4 arrangement) filaments and different aspect ratio of their cross-section were fabricated by two-axial rolling machine, and subsequently they were converted to the tape-form conductors by the one-axial flat rolling and heat treatments. The initial configurations of rectangular wires before applying the flat rolling affect the filament shape near the tape edge in the final tapes. Furthermore, transport loss behaviors for investigated tapes also depend on the initial configurations of rectangular wires, although the main contribution to the losses comes from the hysteresis loss of the superconductor. This may be caused by the difference in filament shape and lateral Jc distributions in the cross-section of each tape samples

  3. Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures

    Greck, Peter

    2012-11-26

    We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.

  4. Transport ac loss in a rectangular thin strip with power-law E(J) relation

    Highlights: • Transport ac loss in a thin strip with power-law E(J) is systematically computed. • The scaled results can be accurately used for strips with any critical current and frequency. • Experiments may be unambiguously compared with modeling results at a critical frequency. - Abstract: Transport ac losses of a rectangular thin strip obeying relation E/Ec=(J/Jc)n with a fixed critical current Ic and n=5,10,20,30, and 40 are accurately computed at a fixed frequency f as functions of the current amplitude Im. The results may be interpolated and scaled to those at any values of Ic,f, and 5⩽n⩽40. Normalized in the same way as that in Norris’ analytical formula derived from the critical-state model and converting f to a critical frequency fc, the modeling results may be better compared with the Norris formula and experimental data. A complete set of calculated modeling data are given with necessary formulas to be easily used by experimentalists in any particular case

  5. Transport ac loss in a rectangular thin strip with power-law E(J) relation

    Li, Shuo [School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China); Chen, Du-Xing, E-mail: chendx3008@hotmail.com [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain); Fan, Yu; Fang, Jin [School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044 (China)

    2015-01-15

    Highlights: • Transport ac loss in a thin strip with power-law E(J) is systematically computed. • The scaled results can be accurately used for strips with any critical current and frequency. • Experiments may be unambiguously compared with modeling results at a critical frequency. - Abstract: Transport ac losses of a rectangular thin strip obeying relation E/E{sub c}=(J/J{sub c}){sup n} with a fixed critical current I{sub c} and n=5,10,20,30, and 40 are accurately computed at a fixed frequency f as functions of the current amplitude I{sub m}. The results may be interpolated and scaled to those at any values of I{sub c},f, and 5⩽n⩽40. Normalized in the same way as that in Norris’ analytical formula derived from the critical-state model and converting f to a critical frequency f{sub c}, the modeling results may be better compared with the Norris formula and experimental data. A complete set of calculated modeling data are given with necessary formulas to be easily used by experimentalists in any particular case.

  6. Effect of combining a DC bias current with an AC transport current on AC losses in a High Temperature Superconductor

    Dolez, Patricia; Ligneris, Benoit des; Aubin, Marcel; Zhu, When; Cave, Julian

    1998-01-01

    Creating complex flux configurations by superposing a dc current or magnetic field onto the ac current in a type II superconducting tape should lead to a variety of peculiar behaviors. An example is the appearance of the Clem valley, a minimum in the ac losses as a function of the dc bias amplitude, which has been theoretically studied by LeBlanc et al., in the continuation of Clem's calculations. These situations have been investigated by applying a dc current to a silver-gold sheathed Bi-22...

  7. Edge-state blockade of transport in quantum dot arrays

    Benito, Mónica; Niklas, Michael; Platero, Gloria; Kohler, Sigmund

    2016-03-01

    We propose a transport blockade mechanism in quantum dot arrays and conducting molecules based on an interplay of Coulomb repulsion and the formation of edge states. As a model we employ a dimer chain that exhibits a topological phase transition. The connection to a strongly biased electron source and drain enables transport. We show that the related emergence of edge states is manifest in the shot noise properties as it is accompanied by a crossover from bunched electron transport to a Poissonian process. For both regions we develop a scenario that can be captured by a rate equation. The resulting analytical expressions for the Fano factor agree well with the numerical solution of a full quantum master equation.

  8. Charge transport through a semiconductor quantum dot-ring nanostructure

    Transport properties of a gated nanostructure depend crucially on the coupling of its states to the states of electrodes. In the case of a single quantum dot the coupling, for a given quantum state, is constant or can be slightly modified by additional gating. In this paper we consider a concentric dot–ring nanostructure (DRN) and show that its transport properties can be drastically modified due to the unique geometry. We calculate the dc current through a DRN in the Coulomb blockade regime and show that it can efficiently work as a single-electron transistor (SET) or a current rectifier. In both cases the transport characteristics strongly depend on the details of the confinement potential. The calculations are carried out for low and high bias regime, the latter being especially interesting in the context of current rectification due to fast relaxation processes. (paper)

  9. Hydrodynamic transport in strongly coupled disordered quantum field theories

    Lucas, Andrew

    2015-01-01

    We compute direct current (dc) thermoelectric transport coefficients in strongly coupled quantum field theories without long lived quasiparticles, at finite temperature and charge density, and disordered on long wavelengths compared to the length scale of local thermalization. Many previous transport computations in strongly coupled systems are interpretable hydrodynamically, despite formally going beyond the hydrodynamic regime. This includes momentum relaxation times previously derived by the memory matrix formalism, and non-perturbative holographic results; in the latter case, this is subject to some important subtleties. Our formalism may extend some memory matrix computations to higher orders in the perturbative disorder strength, as well as give valuable insight into non-perturbative regimes. Strongly coupled metals with quantum critical contributions to transport generically transition between coherent and incoherent metals as disorder strength is increased at fixed temperature, analogous to mean field...

  10. Quantum transport in molecular devices and graphene

    Heersche, H. B.

    2006-01-01

    As a result of progress in nanotechnology, smaller and smaller electronic circuits can be made. The stage of electrically contacting even a single molecule has now been reached. This stimulates both fundamental and applied research alike. Molecular electronics is hence a booming new field that draws a lot of attention. In this research project we have studied fundamental electrical transport properties of single molecules at low temperatures. In collaboration with chemists, a special kind of ...

  11. Observation of quantum interference in molecular charge transport

    Guedon, Constant M.; Valkenier, Hennie; Markussen, Troels;

    2012-01-01

    , phenomena such as giant magnetoresistance(5), Kondo effects(6) and conductance switching(7-11) have been observed in single molecules, and theorists have predicted that it should also be possible to observe quantum interference in molecular conductors(12-18), but until now all the evidence for such...... behaviour has been indirect. Here, we report the observation of destructive quantum interference in charge transport through two-terminal molecular junctions at room temperature. We studied five different rigid p-conjugated molecular wires, all of which form self-assembled monolayers on a gold surface, and...

  12. Quantum transport modelling of silicon nanobeams using heterogeneous computing scheme

    Harb, M.; Michaud-Rioux, V.; Zhu, Y.; Liu, L.; Zhang, L.; Guo, H.

    2016-03-01

    We report the development of a powerful method for quantum transport calculations of nanowire/nanobeam structures with large cross sectional area. Our approach to quantum transport is based on Green's functions and tight-binding potentials. A linear algebraic formulation allows us to harness the massively parallel nature of Graphics Processing Units (GPUs) and our implementation is based on a heterogeneous parallel computing scheme with traditional processors and GPUs working together. Using our software tool, the electronic and quantum transport properties of silicon nanobeams with a realistic cross sectional area of ˜22.7 nm2 and a length of ˜81.5 nm—comprising 105 000 Si atoms and 24 000 passivating H atoms in the scattering region—are investigated. The method also allows us to perform significant averaging over impurity configurations—all possible configurations were considered in the case of single impurities. Finally, the effect of the position and number of vacancy defects on the transport properties was considered. It is found that the configurations with the vacancies lying closer to the local density of states (LDOS) maxima have lower transmission functions than the configurations with the vacancies located at LDOS minima or far away from LDOS maxima, suggesting both a qualitative method to tune or estimate optimal impurity configurations as well as a physical picture that accounts for device variability. Finally, we provide performance benchmarks for structures as large as ˜42.5 nm2 cross section and ˜81.5 nm length.

  13. Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals

    The electrical impedance properties of UV-illuminated (λ = 310 nm) charged, conductive domain walls (CDWs) in 5 mol% magnesium-doped lithium niobate (LNO) single crystals are investigated on the nm-length scale using nanoimpedance microscopy (NIM) as well as by comparing the macroscopically measured complex impedance response between multi- and single-domain LNO samples. Similar to the case of dc conductivity, a higher conductivity of domain walls (DWs) compared to the bulk insulating matrix was observed. The contrast between DWs and bulk is most pronounced at lower frequencies (f < 200 Hz) due to the large bulk capacitance at higher frequencies. Moreover, the simultaneous application of both an ac and dc bias results in an increased real part of the ac DW current. Also, equivalent circuits accurately describing both the domain and CDW contributions were developed; as a result we are able to analyze and quantify the complex dielectric conductive behavior of both bulk and CDWs in LNO within the framework of the mixed conduction model. Hopping of excited charge carriers along the CDWs was identified as the dominant charge transport process. (paper)

  14. Physical and electrical models for interpreting AC and DC transport measurements in polymer solar cells

    McIntyre, Max; Tzolov, Marian; Cossel, Raquel; Peeler, Seth

    We have fabricated and studied bulk heterojunction solar cells using a mixture of the low bandgap material PCPDTBT and PCBM-C60. Our transport studies show that the devices in dark have good rectification and they respond to AC voltage as a simple RC circuit. The illumination causes an additional contribution to the impedance, which varies with the level of illumination. One proposed model is that photo-generated charges can become trapped in potential wells. These charges then follow a Debye relaxation process, which contributes to a varying dielectric constant. Another proposed model is based on a RC circuit model with two capacitors which can describe the varying capacitance behavior. The physical mechanism for this model is that photo-generated charges become accumulated at the interface between PCPDTBT and PCBM-C60 and form an additional layer of charge. We will show that our circuit models and their analogous physical models can predict the AC and DC responses of polymer solar cells.

  15. Spin-polarized quantum transport through an Aharonov-Bohm quantum-dot-ring

    Wang Jian-Ming; Wang Rui; Liang Jiu-Qing

    2007-01-01

    In this paper the quantum transport through an Aharonov-Bohm (AB) quantum-dot-ring with two dot-array arms described by a single-band tight-binding Hamiltonian is investigated in the presence of additional magnetic fields applied to the dot-array arms to produce spin flip of electrons. A far richer interference pattern than that in the charge transport alone is found. Besides the usual AB oscillation the tunable spin polarization of the current by the magnetic flux is a new observation and is seen to be particularly useful in technical applications. The spectrum of transmission probability is modulated by the quantum dot numbers on the up-arc and down-arc of the ring, which, however, does not affect the period of the AB oscillation.

  16. Parallel Transport Quantum Logic Gates with Trapped Ions.

    de Clercq, Ludwig E; Lo, Hsiang-Yu; Marinelli, Matteo; Nadlinger, David; Oswald, Robin; Negnevitsky, Vlad; Kienzler, Daniel; Keitch, Ben; Home, Jonathan P

    2016-02-26

    We demonstrate single-qubit operations by transporting a beryllium ion with a controlled velocity through a stationary laser beam. We use these to perform coherent sequences of quantum operations, and to perform parallel quantum logic gates on two ions in different processing zones of a multiplexed ion trap chip using a single recycled laser beam. For the latter, we demonstrate individually addressed single-qubit gates by local control of the speed of each ion. The fidelities we observe are consistent with operations performed using standard methods involving static ions and pulsed laser fields. This work therefore provides a path to scalable ion trap quantum computing with reduced requirements on the optical control complexity. PMID:26967401

  17. Fractional quantum mechanics on networks: Long-range dynamics and quantum transport.

    Riascos, A P; Mateos, José L

    2015-11-01

    In this paper we study the quantum transport on networks with a temporal evolution governed by the fractional Schrödinger equation. We generalize the dynamics based on continuous-time quantum walks, with transitions to nearest neighbors on the network, to the fractional case that allows long-range displacements. By using the fractional Laplacian matrix of a network, we establish a formalism that combines a long-range dynamics with the quantum superposition of states; this general approach applies to any type of connected undirected networks, including regular, random, and complex networks, and can be implemented from the spectral properties of the Laplacian matrix. We study the fractional dynamics and its capacity to explore the network by means of the transition probability, the average probability of return, and global quantities that characterize the efficiency of this quantum process. As a particular case, we explore analytically these quantities for circulant networks such as rings, interacting cycles, and complete graphs. PMID:26651751

  18. Charge transport in strongly coupled quantum dot solids

    Kagan, Cherie R.; Murray, Christopher B.

    2015-12-01

    The emergence of high-mobility, colloidal semiconductor quantum dot (QD) solids has triggered fundamental studies that map the evolution from carrier hopping through localized quantum-confined states to band-like charge transport in delocalized and hybridized states of strongly coupled QD solids, in analogy with the construction of solids from atoms. Increased coupling in QD solids has led to record-breaking performance in QD devices, such as electronic transistors and circuitry, optoelectronic light-emitting diodes, photovoltaic devices and photodetectors, and thermoelectric devices. Here, we review the advances in synthesis, assembly, ligand treatments and doping that have enabled high-mobility QD solids, as well as the experiments and theory that depict band-like transport in the QD solid state. We also present recent QD devices and discuss future prospects for QD materials and device design.

  19. Phase Coherent Charge Transport in Graphene Quantum Billiards

    Lau, Chun Ning

    2008-03-01

    As an emergent model system for condensed matter physics and a promising electronic material, graphene's electrical transport properties has become a subject of intense focus. Via low temperature transport spectroscopy on single and bi-layer graphene devices, we show that the minimum conductivity value is geometry dependent and approaches the theoretical value of 4e^2/πh only for wide and short graphene strips. Moreover, we observe periodic conductance oscillations with bias and gate voltages, arising from quantum interference of multiply-reflected waves of charges in graphene. When graphene is coupled to superconducting electrodes, we observe gate tunable supercurrent and sub-gap structures, which originate from multiple Andreev reflection at the graphene-superconductor interfaces. Our results demonstrate that graphene can act as a quantum billiard with a long phase coherence length. This work was supported in part by DOD/DMEA-H94003-06-2-0608.

  20. Distribution of tunnelling times for quantum electron transport

    Rudge, Samuel L.; Kosov, Daniel S.

    2016-03-01

    In electron transport, the tunnelling time is the time taken for an electron to tunnel out of a system after it has tunnelled in. We define the tunnelling time distribution for quantum processes in a dissipative environment and develop a practical approach for calculating it, where the environment is described by the general Markovian master equation. We illustrate the theory by using the rate equation to compute the tunnelling time distribution for electron transport through a molecular junction. The tunnelling time distribution is exponential, which indicates that Markovian quantum tunnelling is a Poissonian statistical process. The tunnelling time distribution is used not only to study the quantum statistics of tunnelling along the average electric current but also to analyse extreme quantum events where an electron jumps against the applied voltage bias. The average tunnelling time shows distinctly different temperature dependence for p- and n-type molecular junctions and therefore provides a sensitive tool to probe the alignment of molecular orbitals relative to the electrode Fermi energy.

  1. Stationary quantum coherence and transport in disordered networks

    We examine the excitation transport across quantum networks that are continuously driven by a constant and incoherent source. In particular we investigate the coherence properties of incoherently driven networks by employing recent tools from entanglement theory that enable a rigorous interpretation of coherence in the site basis. With these tools at hand we identify coherent delocalization of excitations over several sites to be a crucial prerequisite for highly efficient transport across networks driven by an incoherent source. These results are set into context with the latest discussion of the occurrence of coherence in molecular complexes that are driven by incoherent sun light. (paper)

  2. Cooperative emission in transport setting through a quantum dot

    Schuetz, Martin J.A.; Kessler, Eric M.; Giedke, Geza; Cirac, Juan Ignacio [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)

    2012-07-01

    We theoretically show that intriguing features of coherent many-body physics can be observed in electron transport through a quantum dot (QD). In particular, we show that electron transport in the Pauli-blockade regime is coherently enhanced by hyperfine interaction (HF) with the nuclear spin ensemble in the QD. For an initially polarized nuclear system this leads to a strong current peak in close analogy with superradiant emission of photons from atomic ensembles. This effect could be observed with realistic experimental parameters and would provide clear evidence of coherent HF dynamics of nuclear spin ensembles in QDs.

  3. Transport properties of mid-infrared colloidal quantum dot films

    Lhuillier, Emmanuel; Keuleyan, Sean; Guyot-Sionnest, Philippe

    2012-01-01

    The transport and thermal properties of HgTe colloidal quantum dot films with cut-off wavelengths in the mid-IR are investigated. The cut-off wavelength of this material can be tuned over the 3-5 \\mu m range, which makes it a promising alternative to existing high cost detectors. Post deposition processes such as ligand exchange and atomic layer deposition are investigated as a way to increase the carrier mobility.

  4. Quantum Spin Transport and Collective Magnetic Dynamics in Heterostructures

    Bender, Scott Andrew

    2014-01-01

    This thesis advances the theory of quantum and semiclassical transport in magnetic heterostructures. In the solid state, angular momentum can be carried by individual electrons and collective modes. The flow of angular momentum (a spin current), central to the operation of spintronic devices, is generated by the application of electric and magnetic fields and temperature gradients. In what follows, we explore the physics of such nonequilibrium spin currents in magnetic structures, involving a...

  5. Quantum transport through STM-lifted single PTCDA molecules

    Pump, Florian; Temirov, Ruslan; Neucheva, Olga; Soubatch, Serguei; Tautz, Stefan; Rohlfing, Michael; Cuniberti, Gianaurelio

    2008-01-01

    Using a scanning tunneling microscope we have measured the quantum conductance through a PTCDA molecule for different configurations of the tip-molecule-surface junction. A peculiar conductance resonance arises at the Fermi level for certain tip to surface distances. We have relaxed the molecular junction coordinates and calculated transport by means of the Landauer/Keldysh approach. The zero bias transmission calculated for fixed tip positions in lateral dimensions but different tip substrat...

  6. Effects of spin-orbit coupling on quantum transport

    Bardarson, Jens Hjorleifur

    2008-01-01

    The effect of spin-orbit coupling on various quantum transport phenomena is considered. The main topics discussed are: * How spin-orbit coupling can induce shot noise through trajectory splitting. * How spin-orbit coupling can degrade electron-hole entanglement (created by a tunnel barrier) by mode mixing. * Mesoscopic Spin Hall effect: longitudinal charge current leads to transverse spin currents in a chaotic electron cavity which has universal fluctuations around a zero mean. * How smooth d...

  7. Quantum isotope effects in gas transport through polymers

    A quantum mechanical model has been developed for the transport of very light and small gas molecules through polymers. The experimental results on isotope effects in diffusion, permeation, and solvation of H2 and D2 in polymer membranes made of polyethylene terephthalate, polyethylene, and polyvinylchloride can be interpreted by the model. Approximate information about the geometrical dimensions of the normal and activated energy state of polymers can be gained. (author)

  8. Quantum Interference Effects in Electronic Transport through Nanotube Contacts

    Buia, Calin; Buldum, Alper; Lu, Jian Ping

    2002-01-01

    Quantum interference has dramatic effects on electronic transport through nanotube contacts. In optimal configuration the intertube conductance can approach that of a perfect nanotube ($4e^2/h$). The maximum conductance increases rapidly with the contact length up to 10 nm, beyond which it exhibits long wavelength oscillations. This is attributed to the resonant cavity-like interference phenomena in the contact region. For two concentric nanotubes symmetry breaking reduces the maximum intertu...

  9. Quantum effective potential, electron transport and conformons in biopolymers

    In the Kirchhoff model of a biopolymer, conformation dynamics can be described in terms of solitary waves, for certain special cross-section asymmetries. Applying this to the problem of electron transport, we show that the quantum effective potential arising due to the bends and twists of the polymer enables us to formalize and quantify the concept of a conformon that has been hypothesized in biology. Its connection to the soliton solution of the cubic nonlinear Schroedinger equation emerges in a natural fashion

  10. Dynamics of heat and mass transport in a quantum insulator

    Łącki, Mateusz; Delande, Dominique; Zakrzewski, Jakub

    2015-04-01

    The real-time evolution of two pieces of quantum insulators, initially at different temperatures, is studied when they are glued together. Specifically, each subsystem is taken as a Bose-Hubbard model in a Mott insulator state. The process of temperature equilibration via heat transfer is simulated in real time using the minimally entangled typical thermal states algorithm. The analytic theory based on quasiparticle transport is also given.

  11. Quantum transport in the cylindrical nanosize silicon-based MOSFET

    Balaban, S. N.; Pokatilov, E. P.; Fomin, V. M.; Gladilin, V. N.; Devreese, J. T.; Magnus, W.; W. Schoenmaker; Van Rossum, M.; Soree, B.

    2000-01-01

    A model is developed for a detailed investigation of the current flowing through a cylindrical nanosize MOSFET with a close gate electrode. The quantum mechanical features of the lateral charge transport are described by Wigner distribution function which is explicitly dealing with electron scattering due to acoustic phonons and acceptor impurities. A numerical simulation is carried out to obtain a set of I-V characteristics for various channel lengths. It is demonstrated that inclusion of th...

  12. Quantum Transport Phenomena Of Two-Dimensional Mesoscopic Structures

    Szaszkó-Bogár Viktor

    2015-01-01

    The dissertation is strongly related to quantum theory of spin systems. Spintronics (or spin electronics) is a promising field that has a kind of multidisciplinary nature in solid state physics. The aim of the research in this rapidly developing field is the control and manipulation of spin degrees of freedom in various material samples. Spintronics concentrates on the basic physical principles underlying the generation of carrier spin-polarization, spin dynamics, and spin-polarized transport...

  13. Electronic transport through a quantum-dot molecule

    Coutinho, Renato Maximo; Souza, Fabricio Macedo de [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Fisica. Grupo de Nanociencia

    2012-07-01

    Full text: Electron transport through quantum dot (QD) systems has been extensively studied both experimentally and theoretically. Many fascinating phenomena have emerged, such as the periodic oscillations of linear conductance as a function of gate voltage [1], the characteristic I-V in the nonlinear transport regime and the Kondo effect observed in a system composed of a quantum dot coupled to leads [2]. In this work we study the electronic transport in a array of quantum dots coupled to each other and to two electron reservoirs. An external bias voltage is applied along the structure in order to drive the system out of equilibrium. In the present work we apply nonequilibrium Green function technique [3] to calculate current, transmission coefficient, shot-noise and Fano factor in a quantum-dot molecular array attached to a left and to a right lead [4,5]. In the presence of an external source-drain bias voltage, a charge current flows in the system, thus generating shot-noise. We pay particular attention on the relation between molecular geometry and the noise signal. We note that depending on the molecular configuration, the shot-noise can be suppressed to values further below the characteristic 0.5 observed in tunneling junctions. This indicates that the molecular configuration gives rise to an enhancement of the charge transport correlation. In particular, as the molecular sites becomes randomly distributed the transport correlation tends to increase, with Fano factors reaching values close to 0.4 . The present results provides an alternative way to figure out the molecular structure based on the shot-noise signature. References: [1] J.H.F. Scott-Thomas, et al, Phys. Rev. Lett. 62 (1989) 583. [2] M.Pustilnik, I.I. Glazman, Phys. Rev. Lett. 87 (2001) 216601. [3] H. Haug, A.P. Jauho, Quantum Kinects in Transport and Optics of Semiconductors, Springer, Berlin, 1996. [4] Yu Liu, Yisong Zheng, Weijiang Gong, Tianquan Lu, Phys. Lett. A 360 (2006) 154-163. [5] W

  14. Quantum dynamics and entanglement in coherent transport of atomic population

    In this work we look at the quantum dynamics of the process known as either transport without transit, or coherent transfer of atomic population, of a Bose–Einstein condensate from one well of a lattice potential to another, non-adjacent well, without macroscopic occupation of the well between the two. This process has previously been analysed and in this work we extend those analyses by considering the effects of quantum statistics on the dynamics and entanglement properties of the condensate modes in the two relevant wells. In order to do this, we go beyond the mean-field analysis of the Gross–Pitaevskii type approach and utilize the phase-space stochastic methods so well known in quantum optics. In particular, we use the exact positive-P representation where it is suitable, and the approximate truncated Wigner representation otherwise. We find strong agreement between the results of these two methods, with the mean-field dynamics not depending on the initial quantum states of the trapped condensate. We find that the entanglement properties do depend strongly on the initial quantum states, with quantitatively different results found for coherent and Fock states. Comparison of the two methods gives us confidence that the truncated Wigner representation delivers accurate results for this system and is thus a useful method as the collisional nonlinearity increases and the positive-P results fail to converge. (paper)

  15. I-V curve of Bi-2223/Ag tapes in overload conditions determined from AC transport data

    The influence of dynamics on the dissipation at electrical charge transport in superconductors can be investigated by comparing the resistive part of AC transport loss with the prediction deduced from DC I-V curve. The complication is that in the AC regime a hysteretic loss is present, generating a voltage that is similar to that produced by the I-V curve. We present how the signal due to hysteresis loss can be eliminated from the total voltage measured with AC transport current, and the DC I-V curve deduced from its fundamental and higher harmonics can be constructed. The experiments were performed on two samples prepared from the same tape. The voltage was monitored using contact as well as contact-less method. Its harmonics (up to 7th) were decomposed to the parts that are out of phase and in phase with transport current, using a lock-in amplifier. The experiments were focused on the over critical current regime up to AC currents with amplitudes 3 times exceeding the tape critical current. We show how from these data the basic parameters characterising the I-V curve of the composite tape, i.e. its critical current, the slope and the normal state resistivity, can be determined

  16. Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers.

    Greck, Peter; Birner, Stefan; Huber, Bernhard; Vogl, Peter

    2015-03-01

    We present a novel and very efficient method for calculating quantum transport in quantum cascade lasers (QCLs). It follows the nonequilibrium Green's function (NEGF) framework but sidesteps the calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. This method generalizes the phenomenological Büttiker probe model by taking into account individual scattering mechanisms. It is orders of magnitude more efficient than a fully self-consistent NEGF calculation for realistic devices. We apply this method to a new THz QCL design which works up to 250 K - according to our calculations. PMID:25836876

  17. Quantum Transport from first principles, status, prospects and future directions

    Taylor, Jeremy

    2004-03-01

    In recent years, significant progress has been made in the measurement of quantum transport properties of nanoscale devices. From a theoretical/computational point of view, an important challenge is to understand the collected data so that the basic physics of nanoscale conduction can be established. This task requires the development of appropriate theoretical formalisms and associated modeling tools which are capable of making quantitative predictions without invoking phenomenological parameters. In the recent 5 years I have been involved in the development of a formalism within density functional theory, which allows for self-consistent modeling of quantum transport properties at the molecular scale under external bias and gate potentials. This formalism is based on a DFT analysis within the Keldysh nonequilibrium Green's functions (NEGF) framework, and has been implemented in the McDcal, TranSIESTA and lately the TranSIESTAC software. With our latest developments, the complexity of quantum transport calculations approaches conventional electronic structure methods, and becomes a standard method for the computational science toolbox. In this talk I will review our most recent results on the comparison between theoretical calculated current-voltage characteristics and experimental measurements, including both atomic wires and molecular systems. An important issue here is the accuracy of both experimental and theoretical approaches and I will discuss how the theoretical limit within a certain model chemistry can be systematically approached. The examples also illustrate how theoretical modelling can give new insight into the underlying transport mechanisms, by reviling information on the scattering states and electron transmission channels.

  18. The quantum Goldilocks effect: on the convergence of timescales in quantum transport

    Lloyd, Seth; Shabani, Alireza; Rabitz, Herschel

    2011-01-01

    Excitonic transport in photosynthesis exhibits a wide range of time scales. Absorption and initial relaxation takes place over tens of femtoseconds. Excitonic lifetimes are on the order of a nanosecond. Hopping rates, energy differences between chromophores, reorganization energies, and decoherence rates correspond to time scales on the order of picoseconds. The functional nature of the divergence of time scales is easily understood: strong coupling to the electromagnetic field over a broad band of frequencies yields rapid absorption, while long excitonic lifetimes increase the amount of energy that makes its way to the reaction center to be converted to chemical energy. The convergence of the remaining time scales to the centerpoint of the overall temporal range is harder to understand. In this paper we argue that the convergence of timescales in photosynthesis can be understood as an example of the `quantum Goldilocks effect': natural selection tends to drive quantum systems to the degree of quantum coheren...

  19. Quantum Simulation via Filtered Hamiltonian Engineering: Application to Perfect Quantum Transport in Spin Networks

    Ajoy, Ashok; Cappellaro, Paola

    2013-05-01

    We propose a method for Hamiltonian engineering that requires no local control but only relies on collective qubit rotations and field gradients. The technique achieves a spatial modulation of the coupling strengths via a dynamical construction of a weighting function combined with a Bragg grating. As an example, we demonstrate how to generate the ideal Hamiltonian for perfect quantum information transport between two separated nodes of a large spin network. We engineer a spin chain with optimal couplings starting from a large spin network, such as one naturally occurring in crystals, while decoupling all unwanted interactions. For realistic experimental parameters, our method can be used to drive almost perfect quantum information transport at room temperature. The Hamiltonian engineering method can be made more robust under decoherence and coupling disorder by a novel apodization scheme. Thus, the method is quite general and can be used to engineer the Hamiltonian of many complex spin lattices with different topologies and interactions.

  20. Time-dependent density functional theory for quantum transport

    Zheng, Xiao; Mo, Yan; Koo, SiuKong; Tian, Heng; Yam, ChiYung; Yan, YiJing

    2010-01-01

    Based on our earlier works [Phys. Rev. B 75, 195127 (2007) & J. Chem. Phys. 128, 234703 (2008)], we propose a formally exact and numerically convenient approach to simulate time-dependent quantum transport from first-principles. The proposed approach combines time-dependent density functional theory with quantum dissipation theory, and results in a useful tool for studying transient dynamics of electronic systems. Within the proposed exact theoretical framework, we construct a number of practical schemes for simulating realistic systems such as nanoscopic electronic devices. Computational cost of each scheme is analyzed, with the expected level of accuracy discussed. As a demonstration, a simulation based on the adiabatic wide-band limit approximation scheme is carried out to characterize the transient current response of a carbon nanotube based electronic device under time-dependent external voltages.

  1. Photonic quantum transport in a nonlinear optical fiber

    Hafezi, Mohammad; Gritsev, Vladimir; Demler, Eugene; Lukin, Mikhail D

    2009-01-01

    We theoretically study the transmission of few-photon quantum fields through a strongly nonlinear optical medium. We develop a general approach to investigate non-equilibrium quantum transport of bosonic fields through a finite-size nonlinear medium and apply it to a recently demonstrated experimental system where cold atoms are loaded in a hollow-core optical fiber. We show that when the interaction between photons is effectively repulsive, the system acts as a single-photon switch. In the case of attractive interaction, the system can exhibit either anti-bunching or bunching, associated with the resonant excitation of bound states of photons by the input field. These effects can be observed by probing statistics of photons transmitted through the nonlinear fiber.

  2. Photonic quantum transport in a nonlinear optical fiber

    Hafezi, M.; Chang, D. E.; Gritsev, V.; Demler, E. A.; Lukin, M. D.

    2011-06-01

    We theoretically study the transmission of few-photon quantum fields through a strongly nonlinear optical medium. We develop a general approach to investigate nonequilibrium quantum transport of bosonic fields through a finite-size nonlinear medium and apply it to a recently demonstrated experimental system where cold atoms are loaded in a hollow-core optical fiber. We show that when the interaction between photons is effectively repulsive, the system acts as a single-photon switch. In the case of attractive interaction, the system can exhibit either antibunching or bunching, associated with the resonant excitation of bound states of photons by the input field. These effects can be observed by probing statistics of photons transmitted through the nonlinear fiber.

  3. Spin-dependent thermoelectric transport through double quantum dots

    Wang Qiang; Xie Hai-Qing; Jiao Hu-Jun; Li Zhi-Jian; Nie Yi-Hang

    2012-01-01

    We study the thermoelectric transport through a double-quantum-dot system with spin-dependent interdot coupling and ferromagnetic electrodes by means of the non-equilibrium Green's function in the linear response regime.It is found that the thermoelectric coefficients are strongly dependent on the splitting of the interdot coupling,the relative magnetic configurations,and the spin polarization of leads.In particular,the thermoelectric efficiency can reach a considerable value in the parallel configuration when the effective interdot coupling and the tunnel coupling between the quantum dots and the leads for the spin-down electrons are small.Moreover,the thermoelectric efficiency increases with the intradot Coulomb interaction increasing and can reach very high values at appropriate temperatures.In the presence of the magnetic field,the spin accumulation in the leads strongly suppresses the thermoelectric efficiency,and a pure spin thermopower can be obtained.

  4. Non-Markovian dynamics of quantum systems: formalism, transport coefficients

    Full text: The generalized Linbland equations with non-stationary transport coefficients are derived from the Langevin equations for the case of nonlinear non-Markovian noise [1]. The equations of motion for the collective coordinates are consistent with the generalized quantum fluctuation dissipation relations. The microscopic justification of the Linbland axiomatic approach is performed. Explicit expressions for the time-dependent transport coefficients are presented for the case of FC- and RWA-oscillators and a general linear coupling in coordinate and in momentum between the collective subsystem and heat bath. The explicit equations for the correlation functions show that the Onsanger's regression hypothesis does not hold exactly for the non-Markovian equations of motion. However, under some conditions the regression of fluctuations goes to zero in the same manner as the average values. In the low and high temperature regimes we found that the dissipation leads to long-time tails in correlation functions in the RWA-oscillator. In the case of the FC-oscillator a non-exponential power-like decay of the correlation function in coordinate is only obtained only at the low temperature limit. The calculated results depend rather weakly on the memory time in many applications. The found transient times for diffusion coefficients Dpp(t), Dqp(t) and Dqq(t) are quite short. The value of classical diffusion coefficients in momentum underestimates the asymptotic value of quantum one Dpp(t), but the asymptotic values of classical σqqc and quantum σqq second moments are close due to the negativity of quantum mixed diffusion coefficient Dqp(t)

  5. Using the Chebychev expansion in quantum transport calculations

    Popescu, Bogdan; Rahman, Hasan; Kleinekathöfer, Ulrich, E-mail: u.kleinekathoefer@jacobs-university.de [Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen (Germany)

    2015-04-21

    Irradiation by laser pulses and a fluctuating surrounding liquid environment can, for example, lead to time-dependent effects in the transport through molecular junctions. From the theoretical point of view, time-dependent theories of quantum transport are still challenging. In one of these existing transport theories, the energy-dependent coupling between molecule and leads is decomposed into Lorentzian functions. This trick has successfully been combined with quantum master approaches, hierarchical formalisms, and non-equilibrium Green’s functions. The drawback of this approach is, however, its serious limitation to certain forms of the molecule-lead coupling and to higher temperatures. Tian and Chen [J. Chem. Phys. 137, 204114 (2012)] recently employed a Chebychev expansion to circumvent some of these latter problems. Here, we report on a similar approach also based on the Chebychev expansion but leading to a different set of coupled differential equations using the fact that a derivative of a zeroth-order Bessel function can again be given in terms of Bessel functions. Test calculations show the excellent numerical accuracy and stability of the presented formalism. The time span for which this Chebychev expansion scheme is valid without any restrictions on the form of the spectral density or temperature can be determined a priori.

  6. Transport, Charge Sensing, and Quantum Control in Si/SiGe Double Quantum Dots

    Wang, Ke; Koppinen, Panu; Dovzhenko, Yuliya; Petta, Jason

    2011-03-01

    Si/SiGe quantum dots hold great promise as ultra-coherent qubits. In comparison with the GaAs system, Si has a weaker hyperfine interaction due to the zero nuclear spin of 28 Si and smaller spin-orbit coupling due to its lighter atomic weight. However, the fabrication of highly controllable Si/SiGe quantum dots is complicated by valley degeneracy, the larger effective electron mass, and the difficulty of obtaining high quality samples. Here we develop a robust fabrication process for depletion mode Si/SiGe quantum dots, demonstrating high quality ohmic contacts and low-leakage Pd top gates. We report DC transport measurements as well as charge sensing in single and double quantum dots. The quantum dot gate electrode pattern allows a relatively high level of control over the confinement potential, tunneling rates, and electron occupation. Funded by the Sloan and Packard Foundations, NSF, and DARPA QuEST. We thank Jag Shah for logistical support.

  7. Quantum dot transport in soil, plants, and insects

    Al-Salim, Najeh [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand); Barraclough, Emma; Burgess, Elisabeth [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Clothier, Brent, E-mail: brent.clothier@plantandfood.co.nz [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Deurer, Markus; Green, Steve [New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Manawatu Mail Centre, Palmerston North 4442 (New Zealand); Malone, Louise [New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Victoria Street West, Auckland 1142 (New Zealand); Weir, Graham [Industrial Research Ltd, P.O. Box 31310, Lower Hutt 5040 (New Zealand)

    2011-08-01

    Environmental risk assessment of nanomaterials requires information not only on their toxicity to non-target organisms, but also on their potential exposure pathways. Here we report on the transport and fate of quantum dots (QDs) in the total environment: from soils, through their uptake into plants, to their passage through insects following ingestion. Our QDs are nanoparticles with an average particle size of 6.5 nm. Breakthrough curves obtained with CdTe/mercaptopropionic acid QDs applied to columns of top soil from a New Zealand organic apple orchard, a Hastings silt loam, showed there to be preferential flow through the soil's macropores. Yet the effluent recovery of QDs was just 60%, even after several pore volumes, indicating that about 40% of the influent QDs were filtered and retained by the soil column via some unknown exchange/adsorption/sequestration mechanism. Glycine-, mercaptosuccinic acid-, cysteine-, and amine-conjugated CdSe/ZnS QDs were visibly transported to a limited extent in the vasculature of ryegrass (Lolium perenne), onion (Allium cepa) and chrysanthemum (Chrysanthemum sp.) plants when cut stems were placed in aqueous QD solutions. However, they were not seen to be taken up at all by rooted whole plants of ryegrass, onion, or Arabidopsis thaliana placed in these solutions. Leafroller (Lepidoptera: Tortricidae) larvae fed with these QDs for two or four days, showed fluorescence along the entire gut, in their frass (larval feces), and, at a lower intensity, in their haemolymph. Fluorescent QDs were also observed and elevated cadmium levels detected inside the bodies of adult moths that had been fed QDs as larvae. These results suggest that exposure scenarios for QDs in the total environment could be quite complex and variable in each environmental domain. - Research highlights: {yields} Quantum dots are transported rapidly through soil but half were retained. {yields} Intact roots of plants did not take up quantum dots. Excised plants

  8. Quantum dot transport in soil, plants, and insects

    Environmental risk assessment of nanomaterials requires information not only on their toxicity to non-target organisms, but also on their potential exposure pathways. Here we report on the transport and fate of quantum dots (QDs) in the total environment: from soils, through their uptake into plants, to their passage through insects following ingestion. Our QDs are nanoparticles with an average particle size of 6.5 nm. Breakthrough curves obtained with CdTe/mercaptopropionic acid QDs applied to columns of top soil from a New Zealand organic apple orchard, a Hastings silt loam, showed there to be preferential flow through the soil's macropores. Yet the effluent recovery of QDs was just 60%, even after several pore volumes, indicating that about 40% of the influent QDs were filtered and retained by the soil column via some unknown exchange/adsorption/sequestration mechanism. Glycine-, mercaptosuccinic acid-, cysteine-, and amine-conjugated CdSe/ZnS QDs were visibly transported to a limited extent in the vasculature of ryegrass (Lolium perenne), onion (Allium cepa) and chrysanthemum (Chrysanthemum sp.) plants when cut stems were placed in aqueous QD solutions. However, they were not seen to be taken up at all by rooted whole plants of ryegrass, onion, or Arabidopsis thaliana placed in these solutions. Leafroller (Lepidoptera: Tortricidae) larvae fed with these QDs for two or four days, showed fluorescence along the entire gut, in their frass (larval feces), and, at a lower intensity, in their haemolymph. Fluorescent QDs were also observed and elevated cadmium levels detected inside the bodies of adult moths that had been fed QDs as larvae. These results suggest that exposure scenarios for QDs in the total environment could be quite complex and variable in each environmental domain. - Research highlights: → Quantum dots are transported rapidly through soil but half were retained. → Intact roots of plants did not take up quantum dots. Excised plants did slightly.

  9. Electron transport through a quantum dot assisted by cavity photons

    Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2013-01-01

    We investigate transient transport of electrons through a single-quantum-dot controlled by a plunger gate. The dot is embedded in a finite wire that is weakly coupled to leads and strongly coupled to a single cavity photon mode. A non-Markovian density-matrix formalism is employed to take into account the full electron-photon interaction in the transient regime. In the absence of a photon cavity, a resonant current peak can be found by tuning the plunger gate voltage to lift a many-body state...

  10. A Statistical Theory of Designed Quantum Transport Across Disordered Networks

    Walschaers, Mattia; Wellens, Thomas; Buchleitner, Andreas

    2014-01-01

    We explain how centrosymmetry, together with a dominant doublet in the local density of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport between two predefined sites of a random network of two-level systems. Starting from a generalisation of the chaos assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behaviour of characteristic statistical properties with the size of the network.

  11. Efficient wave-function matching approach for quantum transport calculations

    Sørensen, Hans Henrik Brandenborg; Hansen, Per Christian; Petersen, Dan Erik;

    2009-01-01

    The wave-function matching (WFM) technique has recently been developed for the calculation of electronic transport in quantum two-probe systems. In terms of efficiency it is comparable to the widely used Green's function approach. The WFM formalism presented so far requires the evaluation of all...... calculation. This approach makes it feasible to apply iterative techniques to efficiently determine the few required bulk modes, which allows for a significant reduction of the computational expense of the WFM method. We illustrate the efficiency of the method on a carbon nanotube field...

  12. Statistical theory of designed quantum transport across disordered networks.

    Walschaers, Mattia; Mulet, Roberto; Wellens, Thomas; Buchleitner, Andreas

    2015-04-01

    We explain how centrosymmetry, together with a dominant doublet of energy eigenstates in the local density of states, can guarantee interference-assisted, strongly enhanced, strictly coherent quantum excitation transport between two predefined sites of a random network of two-level systems. Starting from a generalization of the chaos-assisted tunnelling mechanism, we formulate a random matrix theoretical framework for the analytical prediction of the transfer time distribution, of lower bounds of the transfer efficiency, and of the scaling behavior of characteristic statistical properties with the size of the network. We show that these analytical predictions compare well to numerical simulations, using Hamiltonians sampled from the Gaussian orthogonal ensemble. PMID:25974468

  13. Simplified Quantum Transport Theory for Finite Bias and Temperature

    Zhang, Xiaoguang; Wu, Yuning; Pantelides, Sokrates

    We reformulate the Landauer-Buttiker formula for quantum transport by explicitly accounting for the energy and bias voltage dependence of the transmission probability. Under the assumption of a constant electric field, a simple formula for the differential conductance under a finite bias and at a finite temperature is derived that does not require a nonequilibrium self-consistent calculation. Calculation for the tunneling current through Au-Benzendithiol-Au molecular junction shows excellent agreement with the nonequilibrium Green's function (NEGF) method at zero temperature. Temperature dependent I-V curves for a number of devices are demonstrated. Supported by NSF Grant 1508898.

  14. Nonequilibrium transport at a dissipative quantum phase transition.

    Chung, Chung-Hou; Le Hur, Karyn; Vojta, Matthias; Wölfle, Peter

    2009-05-29

    We investigate the nonequilibrium transport near a quantum phase transition in a generic and relatively simple model, the dissipative resonant level model, that has many applications for nanosystems. We formulate a rigorous mapping and apply a controlled frequency-dependent renormalization group approach to compute the nonequilibrium current in the presence of a finite bias voltage V and a finite temperature T. For V-->0, we find that the conductance has its well-known equilibrium form, while it displays a distinct nonequilibrium profile at finite voltage. PMID:19519125

  15. Opto-electronic and quantum transport properties of semiconductor nanostructures

    Sabathil, M.

    2005-01-01

    In this work a novel and efficient method for the calculation of the ballistic transport properties of open semiconductor nanostructures connected to external reservoirs is presented. It is based on the Green's function formalism and reduces the effort to obtain the transmission and the carrier density to a single solution of a hermitian eigenvalue problem with dimensions proportional to the size of the decoupled device and the multiple inversion of a small matrix with dimensions proportional to the size of the contacts to the leads. Using this method, the 4-band GaAs hole transport through a 2-dimensional three-terminal T-junction device, and the resonant tunneling current through a 3-dimensional InAs quantum dot molecule embedded into an InP heterostructure have been calculated. The further extension of the method into a charge self-consistent scheme enables the efficient prediction of the IV-characteristics of highly doped nanoscale field effect transistors in the ballistic regime, including the influence of quasi bound states and the exchange-correlation interaction. Buettiker probes are used to emulate the effect of inelastic scattering on the current for simple 1D devices, systematically analyzing the dependence of the density of states and the resulting self-consistent potential on the scattering strength. The second major topic of this work is the modeling of the optical response of quantum confined neutral and charged excitons in single and coupled self-assembled InGaAs quantum dots. For this purpose the existing device simulator nextnano{sup 3} has been extended to incorporate particle-particle interactions within the means of density functional theory in local density approximation. In this way the exciton transition energies for neutral and charged excitons as a function of an externally applied electric field have been calculated, revealing a systematic reduction of the intrinsic dipole with the addition of extra holes to the exciton, a finding

  16. Electron transport through a quantum dot assisted by cavity photons

    We investigate transient transport of electrons through a single quantum dot controlled by a plunger gate. The dot is embedded in a finite wire with length Lx assumed to lie along the x-direction with a parabolic confinement in the y-direction. The quantum wire, originally with hard-wall confinement at its ends, ±Lx/2, is weakly coupled at t = 0 to left and right leads acting as external electron reservoirs. The central system, the dot and the finite wire, is strongly coupled to a single cavity photon mode. A non-Markovian density-matrix formalism is employed to take into account the full electron–photon interaction in the transient regime. In the absence of a photon cavity, a resonant current peak can be found by tuning the plunger-gate voltage to lift a many-body state of the system into the source–drain bias window. In the presence of an x-polarized photon field, additional side peaks can be found due to photon-assisted transport. By appropriately tuning the plunger-gate voltage, the electrons in the left lead are allowed to undergo coherent inelastic scattering to a two-photon state above the bias window if initially one photon was present in the cavity. However, this photon-assisted feature is suppressed in the case of a y-polarized photon field due to the anisotropy of our system caused by its geometry. (paper)

  17. Electron transport through a quantum dot assisted by cavity photons

    Abdullah, Nzar Rauf; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2013-11-01

    We investigate transient transport of electrons through a single quantum dot controlled by a plunger gate. The dot is embedded in a finite wire with length Lx assumed to lie along the x-direction with a parabolic confinement in the y-direction. The quantum wire, originally with hard-wall confinement at its ends, ±Lx/2, is weakly coupled at t = 0 to left and right leads acting as external electron reservoirs. The central system, the dot and the finite wire, is strongly coupled to a single cavity photon mode. A non-Markovian density-matrix formalism is employed to take into account the full electron-photon interaction in the transient regime. In the absence of a photon cavity, a resonant current peak can be found by tuning the plunger-gate voltage to lift a many-body state of the system into the source-drain bias window. In the presence of an x-polarized photon field, additional side peaks can be found due to photon-assisted transport. By appropriately tuning the plunger-gate voltage, the electrons in the left lead are allowed to undergo coherent inelastic scattering to a two-photon state above the bias window if initially one photon was present in the cavity. However, this photon-assisted feature is suppressed in the case of a y-polarized photon field due to the anisotropy of our system caused by its geometry.

  18. Quantum transport through a Coulomb blockaded quantum emitter coupled to a plasmonic dimer.

    Goker, A; Aksu, H

    2016-01-21

    We study the electron transmission through a Coulomb blockaded quantum emitter coupled to metal nanoparticles possessing plasmon resonances by employing the time-dependent non-crossing approximation. We find that the coupling of the nanoparticle plasmons with the excitons results in a significant enhancement of the conductance through the discrete state with higher energy beyond the unitarity limit while the other discrete state with lower energy remains Coulomb blockaded. We show that boosting the plasmon-exciton coupling well below the Kondo temperature increases the enhancement adding another quantum of counductance upon saturation. Finite bias and increasing emitter resonance energy tend to reduce this enhancement. We attribute these observations to the opening of an additional transport channel via the plasmon-exciton coupling. PMID:26686761

  19. Ab initio quantum transport calculations using plane waves

    Garcia-Lekue, A.; Vergniory, M. G.; Jiang, X. W.; Wang, L. W.

    2015-08-01

    We present an ab initio method to calculate elastic quantum transport at the nanoscale. The method is based on a combination of density functional theory using plane wave nonlocal pseudopotentials and the use of auxiliary periodic boundary conditions to obtain the scattering states. The method can be applied to any applied bias voltage and the charge density and potential profile can either be calculated self-consistently, or using an approximated self-consistent field (SCF) approach. Based on the scattering states one can straightforwardly calculate the transmission coefficients and the corresponding electronic current. The overall scheme allows us to obtain accurate and numerically stable solutions for the elastic transport, with a computational time similar to that of a ground state calculation. This method is particularly suitable for calculations of tunneling currents through vacuum, that some of the nonequilibrium Greens function (NEGF) approaches based on atomic basis sets might have difficulty to deal with. Several examples are provided using this method from electron tunneling, to molecular electronics, to electronic devices: (i) On a Au nanojunction, the tunneling current dependence on the electrode-electrode distance is investigated. (ii) The tunneling through field emission resonances (FERs) is studied via an accurate description of the surface vacuum states. (iii) Based on quantum transport calculations, we have designed a molecular conformational switch, which can turn on and off a molecular junction by applying a perpendicular electric field. (iv) Finally, we have used the method to simulate tunnel field-effect transistors (TFETs) based on two-dimensional transition-metal dichalcogenides (TMDCs), where we have studied the performance and scaling limits of such nanodevices and proposed atomic doping to enhance the transistor performance.

  20. Fate and transport of some selected PhACs in a river receiving a high load of treated sewage

    Bendz, D.; Ginn, T. R.; Paxeus, N.

    2003-04-01

    Pharmaceutical active compounds (PhACs) have lately been acknowledged to constitute a risk for humans and for the terrestrial and aquatic environment. Human and veterinary applications are the main sources of PhACs in the environment and the major pathway are excretion and discharge to the environment. Sewage treatment plants (STPs) play a crucial role for the introduction of the human PhACs in the environment through its removal efficiency and by separating these compounds into two exposure pathways associated with the aquatic and the solid (sludge) phase, respectively. Actually, STPs are recognized as being the main point discharge sources of human PhACs to the aquatic environment. In this study the fate and transport of a selected human PhACs belonging to different therapeutic classes (NSAIDs- non-steroidal antiinflamatory drugs, lipid regulators, antiepileptics, antibiotics and &beta-blockers) are investigated in a small river in the very south of Sweden receiving a high load of treated wastewater. In addition to the PhACs, triclosan (commonly used biocide) was included in this study. Water samples were taken of incoming and outgoing wastewater from the treatment plant, at the effluent in the river, and along the river up to 8 kilometers downstream were the river flows into the sea. After enrichment by solid-phase extraction the compounds were analyzed using GC-MS (methylated derivatives) or LC-MS/MS. In addition to the target compounds a screening analysis of the extracts revealed the presence of other wastewater related pollutants (caffeine, flame retardants, antioxidants). Several of the investigated substances demonstrate a surprising persistence in the aquatic environment. This emphasizes the need for a broader view on the concept of persistence by taking into account the recharge/loading rate in addition to removal mechanisms; transformation, volatility and physical sequestration by solids and the influence of different environmental media (Soil organic

  1. Quantum transport in nanowire-based hybrid devices

    Guenel, Haci Yusuf

    2013-05-08

    We have studied the low-temperature transport properties of nanowires contacted by a normal metal as well as by superconducting electrodes. As a consequence of quantum coherence, we have demonstrated the electron interference effect in different aspects. The mesoscopic phase coherent transport properties were studied by contacting the semiconductor InAs and InSb nanowires with normal metal electrodes. Moreover, we explored the interaction of the microscopic quantum coherence of the nanowires with the macroscopic quantum coherence of the superconductors. In superconducting Nb contacted InAs nanowire junctions, we have investigated the effect of temperature, magnetic field and electric field on the supercurrent. Owing to relatively high critical temperature of superconducting Nb (T{sub c} ∝ 9 K), we have observed the supercurrent up to 4 K for highly doped nanowire-based junctions, while for low doped nanowire-based junctions a full control of the supercurrent was achieved. Due to low transversal dimension of the nanowires, we have found a monotonous decay of the critical current in magnetic field dependent measurements. The experimental results were analyzed within narrow junction model which has been developed recently. At high bias voltages, we have observed subharmonic energy gap structures as a consequence of multiple Andreev reflection. Some of the nanowires were etched, such that the superconducting Nb electrodes are connected to both ends of the nanowire rather than covering the surface of the nanowire. As a result of well defined nanowire-superconductor interfaces, we have examined quasiparticle interference effect in magnetotransport measurements. Furthermore, we have developed a new junction geometry, such that one of the superconducting Nb electrodes is replaced by a superconducting Al. Owing to the smaller critical magnetic field of superconducting Al (B{sub c} ∝ 15-50,mT), compared to superconducting Nb (B{sub c} ∝ 3 T), we were able to studied

  2. Kinesin-2 KIF3AC and KIF3AB Can Drive Long-Range Transport along Microtubules.

    Guzik-Lendrum, Stephanie; Rank, Katherine C; Bensel, Brandon M; Taylor, Keenan C; Rayment, Ivan; Gilbert, Susan P

    2015-10-01

    Mammalian KIF3AC is classified as a heterotrimeric kinesin-2 that is best known for organelle transport in neurons, yet in vitro studies to characterize its single molecule behavior are lacking. The results presented show that a KIF3AC motor that includes the native helix α7 sequence for coiled-coil formation is highly processive with run lengths of ∼1.23 μm and matching those exhibited by conventional kinesin-1. This result was unexpected because KIF3AC exhibits the canonical kinesin-2 neck-linker sequence that has been reported to be responsible for shorter run lengths observed for another heterotrimeric kinesin-2, KIF3AB. However, KIF3AB with its native neck linker and helix α7 is also highly processive with run lengths of ∼1.62 μm and exceeding those of KIF3AC and kinesin-1. Loop L11, a component of the microtubule-motor interface and implicated in activating ADP release upon microtubule collision, is significantly extended in KIF3C as compared with other kinesins. A KIF3AC encoding a truncation in KIF3C loop L11 (KIF3ACΔL11) exhibited longer run lengths at ∼1.55 μm than wild-type KIF3AC and were more similar to KIF3AB run lengths, suggesting that L11 also contributes to tuning motor processivity. The steady-state ATPase results show that shortening L11 does not alter kcat, consistent with the observation that single molecule velocities are not affected by this truncation. However, shortening loop L11 of KIF3C significantly increases the microtubule affinity of KIF3ACΔL11, revealing another structural and mechanistic property that can modulate processivity. The results presented provide new, to our knowledge, insights to understand structure-function relationships governing processivity and a better understanding of the potential of KIF3AC for long-distance transport in neurons. PMID:26445448

  3. Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes

    Mostame, Sarah; Tsomokos, Dimitris I; Aspuru-Guzik, Alán

    2011-01-01

    In the initial stage of photosynthesis, light-harvested energy is transferred with remarkably high efficiency to a reaction center, with the vibrational environment assisting the transport mechanism. It is of great interest to mimic this process with present-day technologies. Here we propose an analog quantum simulator of open system dynamics, where noise engineering of the environment has a central role. In particular, we propose the use of superconducting qubits for the simulation of exciton transport in the Fenna-Matthew-Olson protein, a prototypical photosynthetic complex. Our method allows for a single-molecule implementation and the investigation of energy transfer pathways as well as non-Markovian and spatiotemporal noise-correlation effects.

  4. Quantum Transport through a Triple Quantum Dot System in the Presence of Majorana Bound States

    Jiang, Zhao-Tan; Cao, Zhi-Yuan; Zhong, Cheng-Cheng

    2016-05-01

    We study the electron transport through a special quantum-dot (QD) structure composed of three QDs and two Majorana bound states (MBSs) using the nonequilibrium Green's function technique. This QD-MBS ring structure includes two channels with the two coupled MBSs being Channel 1 and one QD being Channel 2, and three types of transport processes such as the electron transmission (ET), the Andreev reflection (AR), and the crossed Andreev reflection (CAR). By comparing the ET, AR, and CAR processes through Channels 1 and 2, we make a systematic study on the transport properties of the QD-MBS ring. It is shown that there appear two kinds of characteristic transport patterns for Channels 1 and 2, as well as the interplay between the two patterns. Of particular interest is that there exists an AR-assisted ET process in Channel 2, which is different from that in Channel 1. Thus a clear “X” pattern due to the ET and AR processes appears in the ET, AR, and CAR transmission coefficients. Moreover, we study how Channel 2 affects the three transport processes when Channel 1 is tuned in the ET and CAR regimes. It is shown that the transport properties of the ET, AR and CAR processes can be adjusted by tuning the energy level of the QD embedded in Channel 2. We believe this research should be a helpful reference for understanding the transport properties in the QD-MBS coupled systems. Supported by National Natural Science Foundation of China under Grant No. 11274040, and by the Program for New Century Excellent Talents in University under Grant No. NCET-08-0044

  5. Spin Quantum Kinetics in Relaxation and Transport of Semiconductors

    Lee, Han-Chieh; Mou, Chung-Yu; Lyon, Stephen A.

    2007-03-01

    Generalized Kadanoff-Baym Equation (GKBE) with spin degree of freedom is firstly presented and its theoretical framework of applications, which aims to semiconductor quantum kinetics in femtosecond and nanometer scales, demonstrated. The GKBE was constructed by Green functions thermally averaging Pauli equation of motion with using Langreth theorem. As applied for relaxation, Kadanoff-Baym ansatz was made and carrier-carrier scattering (CCS) with random-phase approximation considered. The derivation can simulate an evolution of excited carriers spreading via CCS, buildup of magnetic field by Rashba effect and formation of spin relaxation, where energy non-conserving event and memory effect are figured out. For transport, retarded Green functions were retrieved from spin Dyson equation as an input for GKBE with the presence of electron-phonon (impurity) interaction. The part is useful for spin Hall effect in precisely estimating spin current and accumulation in nanostructures or ballistic regime.

  6. Spin-dependent quantum transport effects in Cu nanowires

    In this work we investigate quantum transport in Cu nanowires created by bringing macroscopic Cu wires into and out of contact under an applied magnetic field in air. Here we show that a 70% magneto-conductance effect can be seen in a Cu nanowire in a field of 2 mT at room temperature. We propose that this phenomenon is a consequence of spin filtering due to the adsorption of atmospheric oxygen modifying the electronic band structure and introducing spin-split conduction channels. This is a remarkable result since bulk Cu is not magnetic and it may provide a new perspective in the quest for spintronic devices. (letter to the editor)

  7. Spin transport properties in double quantum rings connected in series*

    Du Jian; Wang Suxin; Pan Jianghong

    2011-01-01

    A new model of metal/semiconductor/metal double-quantum-ring connected in series is proposed and the transport properties in this model are theoretically studied. The results imply that the transmission coefficient shows periodic variations with increasing semiconductor ring size. The effects of the magnetic field and Rashba spin-orbit interaction on the transmission coefficient for two kinds of spin state electrons are different. The number of the transmission coefficient peaks is related to the length ratio between the upper ann and the half circumference of the ring. In addition, the transmission coefficient shows oscillation behavior with enhanced external magnetic field, and the corresponding average value is related to the two leads' relative position.

  8. Transport through Intrinsic Quantum Dots in Interacting Carbon Nanotubes

    Thorwart, Michael; Egger, Reinhold; Grifoni, Milena

    Single-wall carbon nanotubes (SWNTs) constitute molecular wires with remarkable electronic properties. Due to the special nature of their electronic bands, SWNTs have been predicted to exhibit Tomonaga-Luttinger liquid (TLL) rather than Fermi liquid behavior at low energy scales. We focus on the effects of electronic correlations, treated within a TLL model, in a SWNT containing two impurities defining a small island for electrons (i.e., a quantum dot). We present analytical and numerical results for the linear conductance, obtained from a master equation approach and dynamical quantum Monte Carlo simulations, respectively. The one dimensional character of transport is reflected in unconventional Coulomb blockade features for temperatures smaller than the level spacing in the dot. In this regime, TLL correlations among tunneling events require a generalization of the standard uncorrelated sequential tunneling picture for intermediate barrier transmission and strong interactions. In that case, correlated sequential tunneling processes can dominate, which lead to a different temperature dependence of the peak conductance. For sufficiently low temperatures, the simulations reveal a universal coherent resonant tunneling regime for arbitrary barrier transmission.

  9. Two-band electron transport in a double quantum well

    Fletcher, R.; Tsaousidou, M.; Smith, T.; Coleridge, P. T.; Wasilewski, Z. R.; Feng, Y.

    2005-04-01

    The carrier densities and mobilities have been measured for the first two populated subbands in a GaAs double quantum well (DQW) as a function of the top gate voltage Vg . The densities and quantum mobilities ( μiq , i=1,2 ) were obtained from the de Haas-Shubnikov oscillations. The transport mobilities (μit) were determined from the semiclassical low-field magnetoresistance with intersubband scattering taken into account. At 0.32K the experimental data on both μit and μiq , as a function of Vg , lie on two curves which cross at the resonance point as expected from theoretical considerations. At 1.09K and 4.2K the μit curves no longer cross at resonance, but show a gap. The reason for this is not known. The mobilities have been calculated in the low-temperature limit within the Boltzmann framework by assuming that they are limited by scattering due to ionized impurities located at the outside interfaces. The assumption of short-range scattering is justified by the relatively small value of the ratio μit/μiq that is measured in the present system. The theoretical values obtained for μit and μiq are in reasonable agreement with the experiment for all values of Vg examined. We have also calculated the resistivity and intersubband scattering rates of the DQW as a function of Vg and again find good agreement with measured values.

  10. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  11. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    Shit, Anindita [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Chattopadhyay, Sudip, E-mail: sudip_chattopadhyay@rediffmail.com [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Chaudhuri, Jyotipratim Ray, E-mail: jprc_8@yahoo.com [Department of Physics, Katwa College, Katwa, Burdwan 713130 (India)

    2012-03-13

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: Black-Right-Pointing-Pointer Transport of a quantum Brownian particle in a periodic potential has been addressed. Black-Right-Pointing-Pointer Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. Black-Right-Pointing-Pointer A coordinate transformation is used to recast QSE with constant diffusion. Black-Right-Pointing-Pointer Transport properties increases in comparison to the corresponding classical result. Black-Right-Pointing-Pointer This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  12. Experimental control of transport resonances in a coherent quantum rocking ratchet.

    Grossert, Christopher; Leder, Martin; Denisov, Sergey; Hänggi, Peter; Weitz, Martin

    2016-01-01

    The ratchet phenomenon is a means to get directed transport without net forces. Originally conceived to rectify stochastic motion and describe operational principles of biological motors, the ratchet effect can be used to achieve controllable coherent quantum transport. This transport is an ingredient of several perspective quantum devices including atomic chips. Here we examine coherent transport of ultra-cold atoms in a rocking quantum ratchet. This is realized by loading a rubidium atomic Bose-Einstein condensate into a periodic optical potential subjected to a biharmonic temporal drive. The achieved long-time coherence allows us to resolve resonance enhancement of the atom transport induced by avoided crossings in the Floquet spectrum of the system. By tuning the strength of the temporal modulations, we observe a bifurcation of a single resonance into a doublet. Our measurements reveal the role of interactions among Floquet eigenstates for quantum ratchet transport. PMID:26852803

  13. Experimental control of transport resonances in a coherent quantum rocking ratchet

    Grossert, Christopher; Leder, Martin; Denisov, Sergey; Hänggi, Peter; Weitz, Martin

    2016-02-01

    The ratchet phenomenon is a means to get directed transport without net forces. Originally conceived to rectify stochastic motion and describe operational principles of biological motors, the ratchet effect can be used to achieve controllable coherent quantum transport. This transport is an ingredient of several perspective quantum devices including atomic chips. Here we examine coherent transport of ultra-cold atoms in a rocking quantum ratchet. This is realized by loading a rubidium atomic Bose-Einstein condensate into a periodic optical potential subjected to a biharmonic temporal drive. The achieved long-time coherence allows us to resolve resonance enhancement of the atom transport induced by avoided crossings in the Floquet spectrum of the system. By tuning the strength of the temporal modulations, we observe a bifurcation of a single resonance into a doublet. Our measurements reveal the role of interactions among Floquet eigenstates for quantum ratchet transport.

  14. Quantum transport through anisotropic molecular magnets: Hubbard Green function approach

    We extend the Green function approach to quantum transport through an anisotropic molecular magnet system with the help of Hubbard operators. Based on the single molecular magnet model, we reformulate the large spin and the total Hamiltonian in the language of Hubbard operators and obtain analytical expressions of the retarded Green function in sequential tunneling and Kondo regimes. In addition to this, we show the connection of our method to the master equation method in sequential regime and discuss a simple isotropic case in Kondo regime, in which we find a three-peak Kondo structure, a feature characterizing the isotropic exchange interaction between the localized electron and large spin. -- Highlights: ► We study transport through single molecular magnets by Green function approach. ► Large spin is expressed by Hubbard operators. ► Analytical formulas for the retarded Green's function are derived in two regimes. ► The connection of our method to the master equation is discussed. ► We find a three-peak Kondo structure.

  15. Transport through a Strongly Correlated Quantum-Dot with Fano Interference

    Wu, B. H.; J. C. Cao; Ahn, Kang-Hun

    2005-01-01

    We present the transport properties of a strongly correlated quantum dot attached to two leads with a side coupled non-interacting quantum dot. Transport properties are analyzed using the slave boson mean field theory which is reliable in the zero temperature and low bias regime. It is found that the transport properties are determined by the interplay of two fundamental physical phenomena,i.e. the Kondo effects and the Fano interference. The linear conductance will depart from the unitary li...

  16. Phonon-limited low-field mobility in silicon: Quantum transport vs. linearized Boltzmann Transport Equation

    We propose to check and validate the approximations made in dissipative quantum transport (QT) simulations solved in the Non-equilibrium Green's Function formalism by comparing them with the exact solution of the linearized Boltzmann Transport Equation (LB) in the stationary regime. For that purpose, we calculate the phonon-limited electron and hole mobility in bulk Si and ultra-scaled Si nanowires for different crystal orientations 〈100〉, 〈110〉, and 〈111〉. In both QT and LB simulations, we use the same sp3d5s* tight-binding model to describe the electron/hole properties and the same valence-force-field approach to account for the phonon properties. It is found that the QT simplifications work well for electrons, but are less accurate for holes, where a renormalization of the phonon scattering strength is proved useful to improve the results

  17. Phonon-limited low-field mobility in silicon: Quantum transport vs. linearized Boltzmann Transport Equation

    Rhyner, Reto; Luisier, Mathieu

    2013-12-01

    We propose to check and validate the approximations made in dissipative quantum transport (QT) simulations solved in the Non-equilibrium Green's Function formalism by comparing them with the exact solution of the linearized Boltzmann Transport Equation (LB) in the stationary regime. For that purpose, we calculate the phonon-limited electron and hole mobility in bulk Si and ultra-scaled Si nanowires for different crystal orientations ⟨100⟩, ⟨110⟩, and ⟨111⟩. In both QT and LB simulations, we use the same sp3d5s* tight-binding model to describe the electron/hole properties and the same valence-force-field approach to account for the phonon properties. It is found that the QT simplifications work well for electrons, but are less accurate for holes, where a renormalization of the phonon scattering strength is proved useful to improve the results.

  18. AC Transport Losses Calculation in a Bi-2223 Current Lead Using Thermal Coupling With an Analytical Formula

    Berger, Kévin; Lévêque, Jean; Netter, Denis; Douine, Bruno; Rezzoug, Abderrezak

    2005-01-01

    When a superconductor is fed with an alternating current, the temperature rise created by the losses tends to reduce the current carrying capacity. If the amplitude of the current exceeds the value of the critical current, then the losses become particularly high and the thermal heating considerable. In this paper, a numerical and an analytical model which allow to estimate AC transport losses are presented. These models, which use the expression of Ic(T) and n(T), are available for any appli...

  19. Quantum Transport Simulation of High-Power 4.6-μm Quantum Cascade Lasers

    Olafur Jonasson

    2016-06-01

    Full Text Available We present a quantum transport simulation of a 4.6- μ m quantum cascade laser (QCL operating at high power near room temperature. The simulation is based on a rigorous density-matrix-based formalism, in which the evolution of the single-electron density matrix follows a Markovian master equation in the presence of applied electric field and relevant scattering mechanisms. We show that it is important to allow for both position-dependent effective mass and for effective lowering of very thin barriers in order to obtain the band structure and the current-field characteristics comparable to experiment. Our calculations agree well with experiments over a wide range of temperatures. We predict a room-temperature threshold field of 62 . 5 kV/cm and a characteristic temperature for threshold-current-density variation of T 0 = 199 K . We also calculate electronic in-plane distributions, which are far from thermal, and show that subband electron temperatures can be hundreds to thousands of degrees higher than the heat sink. Finally, we emphasize the role of coherent tunneling current by looking at the size of coherences, the off-diagonal elements of the density matrix. At the design lasing field, efficient injection manifests itself in a large injector/upper lasing level coherence, which underscores the insufficiency of semiclassical techniques to address injection in QCLs.

  20. Tunable Hybrid Quantum Electrodynamics from Non-Linear Electron Transport

    Schiró, Marco; Hur, Karyn Le

    2013-01-01

    Recent advances in quantum electronics have allowed to engineer hybrid nano-devices comprising on chip a microwave electromagnetic resonator coupled to an artificial atom, a quantum dot. These systems realize novel platforms to explore non-equilibrium quantum impurity physics with light and matter. Coupling the quantum dot system to reservoir leads (source and drain) produces an electronic current as well as dissipation when applying a bias voltage across the system. Focusing on a standard mo...

  1. Quantum dot transport in soil, plants, and insects.

    Al-Salim, Najeh; Barraclough, Emma; Burgess, Elisabeth; Clothier, Brent; Deurer, Markus; Green, Steve; Malone, Louise; Weir, Graham

    2011-08-01

    Environmental risk assessment of nanomaterials requires information not only on their toxicity to non-target organisms, but also on their potential exposure pathways. Here we report on the transport and fate of quantum dots (QDs) in the total environment: from soils, through their uptake into plants, to their passage through insects following ingestion. Our QDs are nanoparticles with an average particle size of 6.5 nm. Breakthrough curves obtained with CdTe/mercaptopropionic acid QDs applied to columns of top soil from a New Zealand organic apple orchard, a Hastings silt loam, showed there to be preferential flow through the soil's macropores. Yet the effluent recovery of QDs was just 60%, even after several pore volumes, indicating that about 40% of the influent QDs were filtered and retained by the soil column via some unknown exchange/adsorption/sequestration mechanism. Glycine-, mercaptosuccinic acid-, cysteine-, and amine-conjugated CdSe/ZnS QDs were visibly transported to a limited extent in the vasculature of ryegrass (Lolium perenne), onion (Allium cepa) and chrysanthemum (Chrysanthemum sp.) plants when cut stems were placed in aqueous QD solutions. However, they were not seen to be taken up at all by rooted whole plants of ryegrass, onion, or Arabidopsis thaliana placed in these solutions. Leafroller (Lepidoptera: Tortricidae) larvae fed with these QDs for two or four days, showed fluorescence along the entire gut, in their frass (larval feces), and, at a lower intensity, in their haemolymph. Fluorescent QDs were also observed and elevated cadmium levels detected inside the bodies of adult moths that had been fed QDs as larvae. These results suggest that exposure scenarios for QDs in the total environment could be quite complex and variable in each environmental domain. PMID:21632093

  2. Quench behavior of Sr0.6K0.4Fe2As2/Ag tapes with AC and DC transport currents at different temperature

    Liu, Qi; Zhang, Guomin; Yang, Hua; Li, Zhenming; Liu, Wei; Jing, Liwei; Yu, Hui; Liu, Guole

    2016-09-01

    In applications, superconducting wires may carry AC or DC transport current. Thus, it is important to understand the behavior of normal zone propagation in conductors and magnets under different current conditions in order to develop an effective quench protection system. In this paper, quench behavior of Ag sheathed Sr0.6K0.4Fe2As2 (Sr-122 in the family of iron-based superconductor) tapes with AC and DC transport current is reported. The measurements are performed as a function of different temperature (20 K-30 K), varying transport current and operating frequency (50 Hz-250 Hz). The focus of the research is the minimum quench energy (MQE), the normal zone propagation velocity (NZPV) and the comparison of the related results with AC and DC transport current.

  3. Time-dependent quantum transport through an interacting quantum dot beyond sequential tunneling: second-order quantum rate equations

    A general theoretical formulation for the effect of a strong on-site Coulomb interaction on the time-dependent electron transport through a quantum dot under the influence of arbitrary time-varying bias voltages and/or external fields is presented, based on slave bosons and the Keldysh nonequilibrium Green's function (GF) techniques. To avoid the difficulties of computing double-time GFs, we generalize the propagation scheme recently developed by Croy and Saalmann to combine the auxiliary-mode expansion with the celebrated Lacroix's decoupling approximation in dealing with the second-order correlated GFs and then establish a closed set of coupled equations of motion, called second-order quantum rate equations (SOQREs), for an exact description of transient dynamics of electron correlated tunneling. We verify that the stationary solution of our SOQREs is able to correctly describe the Kondo effect on a qualitative level. Moreover, a comparison with other methods, such as the second-order von Neumann approach and Hubbard-I approximation, is performed. As illustrations, we investigate the transient current behaviors in response to a step voltage pulse and a harmonic driving voltage, and linear admittance as well, in the cotunneling regime. (paper)

  4. Contaminación acústica en el transporte sanitario urgente por carretera Acoustic contamination in urgent medical transportation by road

    Ballesteros, S.; S. Lorrio; Molina, I.; M. Áriz

    2012-01-01

    Fundamento. Determinar los niveles de exposición a ruido durante el transporte sanitario urgente por carretera y describir la percepción de deterioro de la función auditiva en los trabajadores del sector y el empleo de mecanismos de protección acústica. Metodología. Estudio observacional realizado en Bizkaia (España). Mediante dosimetrías sonométricas se registraron los valores instantáneos máximos de nivel sonoro (Lpico) y niveles continuos equivalentes (Leq) medidos en una ambulancia tipo d...

  5. Quantum noise in ac-driven resonant-tunneling double barrier structures: Photon-assisted tunneling vs. electron anti-bunching

    Hammer, Jan; Belzig, Wolfgang

    2011-01-01

    We study the quantum noise of the electronic current in a double-barrier system with a single resonant level. In the framework of the Landauer formalism, we treat the double barrier as a quantum coherent scattering region that can exchange photons with a coupled electric field, e.g., a laser beam or a periodic ac bias voltage. As a consequence of the manifold parameters that are involved in this system, a complicated steplike structure arises in the nonsymmetrized current-current autocorrelat...

  6. Edge-channel transport of dirac fermions in graphene quantum hall junctions

    Dirac fermions exhibit various characteristic transport phenomena in graphene. Particularly in high magnetic fields, the electronic states of Dirac fermions are quantized into Landau levels, and graphene shows a half-integer quantum Hall effect. Here, we discuss the edge-channel picture in graphene quantum Hall junctions and review experiments on the quantum Hall effect in graphene in-plane unipolar and bipolar junctions. (author)

  7. Coherent electronic transport in a multimode quantum channel with Gaussian-type scatterers

    Bardarson, Jens Hjorleifur; Magnusdottir, Ingibjorg; Gudmundsdottir, Gudny; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2004-01-01

    Coherent electron transport through a quantum channel in the presence of a general extended scattering potential is investigated using a T-matrix Lippmann-Schwinger approach. The formalism is applied to a quantum wire with Gaussian type scattering potentials, which can be used to model a single impurity, a quantum dot or more complicated structures in the wire. The well known dips in the conductance in the presence of attractive impurities is reproduced. A resonant transmission peak in the co...

  8. Spin-Dependent Transport through the Finite Array of Quantum Dots: Spin Gun

    Avdonin, S. A.; Dmitrieva, L. A.; Yu. A. Kuperin; Sartan, V. V.

    2003-01-01

    The problem of spin-dependent transport of electrons through a finite array of quantum dots attached to 1D quantum wire (spin gun) for various semiconductor materials is studied. The Breit-Fermi term for spin-spin interaction in the effective Hamiltonian of the device is shown to result in a dependence of transmission coefficient on the spin orientation. The difference of transmission probabilities for singlet and triplet channels can reach few percent for a single quantum dot. For several qu...

  9. A variational approach for dissipative quantum transport in a wide parameter space

    Zhang, Yu; Yam, ChiYung; Kwok, YanHo; Chen, GuanHua

    2015-09-01

    Recent development of theoretical method for dissipative quantum transport has achieved notable progresses in the weak or strong electron-phonon coupling regime. However, a generalized theory for dissipative quantum transport in a wide parameter space had not been established. In this work, a variational polaron theory for dissipative quantum transport in a wide range of electron-phonon coupling is developed. The optimal polaron transformation is determined by the optimization of the Feynman-Bogoliubov upper bound of free energy. The free energy minimization ends up with an optimal mean-field Hamiltonian and a minimal interaction Hamiltonian. Hence, second-order perturbation can be applied to the transformed system, resulting in an accurate and efficient method for the treatment of dissipative quantum transport with different electron-phonon coupling strength. Numerical benchmark calculation on a single site model coupled to one phonon mode is presented.

  10. Coupled electron-phonon transport from molecular dynamics with quantum baths

    Lu, Jing Tao; Wang, J. S.

    2009-01-01

    Based on generalized quantum Langevin equations for the tight-binding wavefunction amplitudes and lattice displacements, electron and phonon quantum transport are obtained exactly using molecular dynamics (MD) in the ballistic regime. The electron-phonon interactions can be handled with a quasi-c...

  11. Quantum spin transport through Aharonov-Bohm ring with a tangent magnetic field

    Li Zhi-Jian

    2005-01-01

    Quantum spin transport in a mesoscopic Aharonov-Bohm ring with two leads subject to a magnetic field with circular configuration is investigated by means of one-dimensional quantum waveguide theory. Within the framework magnetic flux or by the tangent magnetic field. In particular, the spin flips can be induced by hopping the AB magnetic flux or the tangent field.

  12. A hybrid classical-quantum transport model for the simulation of Carbon Nanotube transistors

    Jourdana, Clément; Pietra, Paola

    2014-01-01

    In this paper, we propose a hybrid classical-quantum approach to study the electron transport in strongly confined nanostructures. The device domain is made of an active zone (where quantum effects are strong) sandwiched between two electron reservoirs (where the transport is considered highly collisional). A one dimensional effective mass Schrödinger system is coupled with a drift-diffusion model, both taking into account the peculiarities due to the strong confinement and to the two dimensi...

  13. Transport phenomena in quantum wells and wires in presence of disorder and interactions

    Vettchinkina, Valeria

    2012-01-01

    Present-day electronics employ circuits of smaller and smaller dimensions, and today the length scales are so small that the laws of physics which rule micro-cosmos, quantum mechanics, become directly important. This thesis reports on theoretical work on electron transport in different nanostructures. We have studied semiconductor quantum wells, layered materials where each layer can be only a few atomic layers thick, and transport in thin atomic wires. The layered materials have been stud...

  14. Phononless thermally activated transport through a disordered array of quantum wires

    Chudnovskiy, A. L.

    2005-01-01

    Phononless plasmon assisted transport through a long disordered array of finite length quantum wires is investigated analytically. Two temperature regimes, the low- and the high-temperature ones, with qualitatively different temperature dependencies of thermally activated resistance are identified. The characteristics of plasmon assisted and phonon assisted transport mechanisms are compared. Generically strong electron-electron interaction in quantum wires results in a qualitative change of t...

  15. Scanning Gate Spectroscopy of transport across a Quantum Hall Nano-Island

    Martins, F.; Faniel, S.; Rosenow, B.; Pala, M. G.; Sellier, H.; S. Huant; L. Desplanque; Wallart, X; Bayot, V.; Hackens, B.

    2013-01-01

    We explore transport across an ultra-small Quantum Hall Island (QHI) formed by closed quan- tum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to first localize and then study a single QHI near a quantum point contact. The presence of Coulomb diamonds in the spectroscopy con- firms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias...

  16. Time-resolved electron transport in quantum-dot systems; Zeitaufgeloester Elektronentransport in Quantendotsystemen

    Croy, Alexander

    2010-06-30

    In this thesis the time-resolved electron transport in quantum dot systems was studied. For this two different formalisms were presented: The nonequilibrium Green functions and the generalized quantum master equations. For both formalisms a propagation method for the numerical calculation of time-resolved expectation values, like the occupation and the electron current, was developed. For the demonstration of the propagation method two different question formulations were considered. On the one hand the stochastically driven resonant-level model was studied. On the other hand the pulse-induced transport through a double quantum dot was considered.

  17. Scanning gate spectroscopy of transport across a quantum Hall nano-island

    Martins, F.; Faniel, S.; Rosenow, B.; Pala, M. G.; Sellier, H.; Huant, S.; Desplanque, L.; Wallart, X.; Bayot, V.; Hackens, B.

    2013-01-01

    We explore transport across an ultra-small quantum Hall island (QHI) formed by closed quantum Hall edge states and connected to propagating edge channels through tunnel barriers. Scanning gate microscopy and scanning gate spectroscopy are used to first localize and then study a single QHI near a quantum point contact. The presence of Coulomb diamonds in the spectroscopy confirms that Coulomb blockade governs transport across the QHI. Varying the microscope tip bias as well as current bias across the device, we uncover the QHI discrete energy spectrum arising from electronic confinement and we extract estimates of the gradient of the confining potential and of the edge state velocity.

  18. Global coherence of quantum evolutions based on decoherent histories: Theory and application to photosynthetic quantum energy transport

    Allegra, Michele; Giorda, Paolo; Lloyd, Seth

    2016-04-01

    Assessing the role of interference in natural and artificial quantum dynamical processes is a crucial task in quantum information theory. To this aim, an appropriate formalism is provided by the decoherent histories framework. While this approach has been deeply explored from different theoretical perspectives, it still lacks of a comprehensive set of tools able to concisely quantify the amount of coherence developed by a given dynamics. In this paper, we introduce and test different measures of the (average) coherence present in dissipative (Markovian) quantum evolutions, at various time scales and for different levels of environmentally induced decoherence. In order to show the effectiveness of the introduced tools, we apply them to a paradigmatic quantum process where the role of coherence is being hotly debated: exciton transport in photosynthetic complexes. To spot out the essential features that may determine the performance of the transport, we focus on a relevant trimeric subunit of the Fenna-Matthews-Olson complex and we use a simplified (Haken-Strobl) model for the system-bath interaction. Our analysis illustrates how the high efficiency of environmentally assisted transport can be traced back to a quantum recoil avoiding effect on the exciton dynamics, that preserves and sustains the benefits of the initial fast quantum delocalization of the exciton over the network. Indeed, for intermediate levels of decoherence, the bath is seen to selectively kill the negative interference between different exciton pathways, while retaining the initial positive one. The concepts and tools here developed show how the decoherent histories approach can be used to quantify the relation between coherence and efficiency in quantum dynamical processes.

  19. Phonon-limited low-field mobility in silicon: Quantum transport vs. linearized Boltzmann Transport Equation

    Rhyner, Reto, E-mail: rhyner@iis.ee.ethz.ch; Luisier, Mathieu, E-mail: mluisier@iis.ee.ethz.ch [Integrated Systems Laboratory, ETH Zürich, Gloriastr. 35, 8092 Zürich (Switzerland)

    2013-12-14

    We propose to check and validate the approximations made in dissipative quantum transport (QT) simulations solved in the Non-equilibrium Green's Function formalism by comparing them with the exact solution of the linearized Boltzmann Transport Equation (LB) in the stationary regime. For that purpose, we calculate the phonon-limited electron and hole mobility in bulk Si and ultra-scaled Si nanowires for different crystal orientations 〈100〉, 〈110〉, and 〈111〉. In both QT and LB simulations, we use the same sp{sup 3}d{sup 5}s{sup *} tight-binding model to describe the electron/hole properties and the same valence-force-field approach to account for the phonon properties. It is found that the QT simplifications work well for electrons, but are less accurate for holes, where a renormalization of the phonon scattering strength is proved useful to improve the results.

  20. Quantum graphs as an effect tool for modeling of particle transport in discrete structures and networks

    Full text: Quantum graphs were introduced in physics more than X decades ago to describe electron transport in organic molecules. In mid eighties of the last century Schrodinger equation on graphs became subject of extensive study and boundary conditions, Green functions and the properties were treated comprehensively [1-3]. In nineties quantum graphs have been attractive topic in quantum chaos theory. However, on the practical viewpoint they can quite attractive for modelling of particle transport and quantum dynamics in discrete structures such as nanoscale networks, lattice structures, molecular wires etc. In this talk the introduction in quantum graphs are presented and prospects for their future practical applications are discussed. (author), References: [1] Tsampikos Kottos and Uzy Smilansky, Ann.Phys., 76, 274, (1999). [2] Sven Gnutzmann and Uzy Smilansky, Adv.Phys. 55, 527, (2006). [3] S. GnutzmannJ.P. Keating b, F. Piotet, Ann.Phys., 325, 2595, (2010).

  1. Quantum Transport on Disordered and Noisy Networks: An Interplay of Structural Complexity and Uncertainty

    Walschaers, Mattia; Schlawin, Frank; Wellens, Thomas; Buchleitner, Andreas

    2016-03-01

    We discuss recent research on quantum transport in complex materials, from photosynthetic light-harvesting complexes to photonic circuits. We identify finite, disordered networks as the underlying backbone and as a versatile framework to gain insight into the specific potential of nontrivial quantum dynamical effects to characterize and control transport on complex structures. We discriminate authentic quantum properties from classical aspects of complexity and briefly address the impact of interactions, nonlinearities, and noise. We stress the relevance of what we call the nonasymptotic realm, physical situations in which neither the relevant time- and length-scales, the number of degrees of freedom, or constituents tend to very small or very large values, nor do global symmetries or disorder fully govern the dynamics. Although largely uncharted territory, we argue that novel, intriguing and nontrivial questions for experimental and theoretical work emerge, with the prospect of a unified understanding of complex quantum transport phenomena in diverse physical settings.

  2. Cavity-photon-switched coherent transient transport in a double quantum waveguide

    Abdullah, Nzar Rauf, E-mail: nra1@hi.is; Gudmundsson, Vidar, E-mail: vidar@raunvis.hi.is [Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik (Iceland); Tang, Chi-Shung [Department of Mechanical Engineering, National United University, 1, Lienda, 36003 Miaoli, Taiwan (China); Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2014-12-21

    We study a cavity-photon-switched coherent electron transport in a symmetric double quantum waveguide. The waveguide system is weakly connected to two electron reservoirs, but strongly coupled to a single quantized photon cavity mode. A coupling window is placed between the waveguides to allow electron interference or inter-waveguide transport. The transient electron transport in the system is investigated using a quantum master equation. We present a cavity-photon tunable semiconductor quantum waveguide implementation of an inverter quantum gate, in which the output of the waveguide system may be selected via the selection of an appropriate photon number or “photon frequency” of the cavity. In addition, the importance of the photon polarization in the cavity, that is, either parallel or perpendicular to the direction of electron propagation in the waveguide system is demonstrated.

  3. Effect of wire arrangements on AC transport losses in cylindrical conductors composed of Ag-sheathed Bi2223 tapes

    The AC transport self-field losses at 77 K were investigated on the double-layer cylindrical conductors composed of Ag-sheathed Bi2223 tapes. The multifilamentary tapes as the strands are arranged in a parallel way on the cylindrical former with a diameter of 10.5 mm. The loss values are strongly influenced by the arrangements of tape strands in the conductors. The loss generation in conductors enhances with increasing of the separation between the layers and gap length between the adjacent tapes in the outer-layer. From the numerical calculations of the loss density distributions per-cycle in the conductors, it is suggested that the difference in loss values for each conductor is attributed to the magnetic flux distributions due to self-field and loss generations in tape strands, varying with the arrangement of tape strands in the conductors

  4. Ballistic transport through coupled T-shaped quantum wires

    Lin, Yuh-Kae; Lin, Kao-Chin; Chuu, Der-San

    2003-01-01

    The ballistic conductance of a coupled $T$-shaped semiconductor quantum wire (CTQW) are studied. Two types of CTQW are considered, one of which is a $\\Pi $-shaped quantum wire ($\\Pi $QW) which consists of two transverse wires on the same side of the main wire and the other a $\\Pi $-clone quantum wire ($\\Pi $CQW) which consists of two transverse wires on the opposite sides of the main wire. The mode matching method and Landauer-Buttiker theory are employed to study the energy dependence of the...

  5. Competition of static magnetic and dynamic photon forces in electronic transport through a quantum dot.

    Rauf Abdullah, Nzar; Tang, Chi-Shung; Manolescu, Andrei; Gudmundsson, Vidar

    2016-09-21

    We investigate theoretically the balance of the static magnetic and the dynamical photon forces in the electron transport through a quantum dot in a photon cavity with a single photon mode. The quantum dot system is connected to external leads and the total system is exposed to a static perpendicular magnetic field. We explore the transport characteristics through the system by tuning the ratio, [Formula: see text], between the photon energy, [Formula: see text], and the cyclotron energy, [Formula: see text]. Enhancement in the electron transport with increasing electron-photon coupling is observed when [Formula: see text]. In this case the photon field dominates and stretches the electron charge distribution in the quantum dot, extending it towards the contact area for the leads. Suppression in the electron transport is found when [Formula: see text], as the external magnetic field causes circular confinement of the charge density around the dot. PMID:27420809

  6. Quantum-based spectroscopy and efficient energy transport with biomolecules

    León Montiel, Roberto de Jesús

    2014-01-01

    For many years, the fields of quantum optics and biology have rarely shared a common path. In quantum optics, most of the concepts and techniques developed over the years stand for systems where only a few degrees of freedom are considered and, more importantly, where the systems under study are assumed to be completely isolated from their surrounding environment. This situation is far from what we can find in nature. Biological complexes are, by definition, warm, wet and noisy systems subjec...

  7. Nonlinear transport in coupled quantum dots: A stationary probability approach

    GONG JianPing; DUAN SuQing; YAN WeiXian; ZHAO XianGeng

    2009-01-01

    The stationary tunneling current and differential conductance of the coupled quantum dots system with split-gates are calculated by generalizing the Beenaker's linear response theory for the description of the Coulomb-blockade oscillations of the conductance in the single quantum dot. The calculation of the charging diagram in parallel through the double dot as function of the two side-gate voltages shows a remarkable agreement with the recent experimental results by Hatano et al. (Science, 2005, 309: 268-271)

  8. Flow diagram of the longitudinal and Hall conductivities in ac regime in the disordered graphene quantum Hall system

    We numerically study the behavior of σxy(ω) and σxx (ω) for graphene QHE system in the ac (frequency ω) domain. We interpret these conductivities with the dynamical scaling analysis. We also discuss the temperature flow of σxy(ω) — σxx(ω) diagram for graphene QHE system in the ac region.

  9. Non-Fermi liquid transport and 'universal' ratios in quantum Griffiths phases

    We use the semi-classical Boltzmann equation to investigate transport properties such as electrical resistivity, thermal resistivity, thermopower, and the Peltier coefficient of disordered metals close to an antiferromagnetic quantum phase transition. In the quantum Griffiths phase, the electrons are scattered by spin-fluctuations in the rare regions. This leads to singular temperature dependencies not just at the quantum critical point, but in the entire Griffiths phase. We show that the resulting non-universal power-laws in transport properties are controlled by the same Griffiths exponent λ which governs the thermodynamics. λ takes the value zero at the quantum critical point and increases throughout the Griffiths phase. We also study some of the 'universal' ratios commonly used to characterize Fermi-liquid behavior.

  10. Electric field geometries dominate quantum transport coupling in silicon nanoring

    Lee, Tsung-Han, E-mail: askaleeg@gmail.com, E-mail: sfhu.hu@gmail.com; Hu, Shu-Fen, E-mail: askaleeg@gmail.com, E-mail: sfhu.hu@gmail.com [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2014-03-28

    Investigations on the relation between the geometries of silicon nanodevices and the quantum phenomenon they exhibit, such as the Aharonov–Bohm (AB) effect and the Coulomb blockade, were conducted. An arsenic doped silicon nanoring coupled with a nanowire by electron beam lithography was fabricated. At 1.47 K, Coulomb blockade oscillations were observed under modulation from the top gate voltage, and a periodic AB oscillation of ΔB = 0.178 T was estimated for a ring radius of 86 nm under a high sweeping magnetic field. Modulating the flat top gate and the pointed side gate was performed to cluster and separate the many electron quantum dots, which demonstrated that quantum confinement and interference effects coexisted in the doped silicon nanoring.