The minimization of ac phase noise in interferometric systems
Filinski, Ignacy; Gordon, R A
1994-01-01
A simple step-by-step procedure, including several novel techniques discussed in the Appendices, is given for minimizing ac phase noise in typical interferometric systems such as two-beam interferometers, holographic setups, four-wave mixers, etc. Special attention is given to index of refraction...... fluctuations, direct mechanical coupling, and acoustic coupling, whose importance in determining ac phase noise in interferometric systems has not been adequately treated. The minimization procedure must be carried out while continuously monitoring the phase noise which can be done very simply by using a...... in optics. Thus, the necessity of eliminating the effects of index of refraction fluctuations which degrade the performance of all interferometers is pointed out as the first priority. A substantial decrease of the effects of all vibrating, rotating, or flowing masses (e.g., cooling lines) in direct...
Noise reduction in AC-coupled amplifiers
Serrano Finetti, Roberto Ernesto; Pallàs Areny, Ramon
2014-01-01
AC-coupled amplifiers are noisier than dc-coupled amplifiers because of the thermal noise of the resistor(s) in the ac-coupling network and the increased contribution of the amplifier input noise current i(n). Both contributions, however, diminish if the corner frequency f(c) of the high-pass filter observed by the signal is lowered, the cost being a longer transient response. At the same time, the presence of large resistors in the ac-coupling network suggests that the use of FET-input ampli...
Chen, Zhi; Yu, Clare C.
2006-03-01
Noise is present in many physical systems and is often viewed as a nuisance. Yet it can also be a probe of microscopic fluctuations. There have been indications recently that the noise in the resistivity increases in the vicinity of the metal-insulator transition. But what are the characteristics of the noise associated with well-understood first and second order phase transitions? It is well known that critical fluctuations are associated with second order phase transitions, but do these fluctuations lead to enhanced noise? We have addressed these questions using Monte Carlo simulations to study the noise in the 2D Ising model which undergoes a second order phase transition, and in the 5-state Potts model which undergoes a first order phase transition. We monitor these systems as the temperature drops below the critical temperature. At each temperature, after equilibration is established, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization per site. We apply different methods, such as the noise power spectrum, the Detrended Fluctuation Analysis (DFA) and the second spectrum of the noise, to analyze the fluctuations in these quantities.
Jitter and phase noise in ring oscillators
Hajimiri, Ali; Limotyrakis, Sotirios; Lee, Thomas H
1999-01-01
A companion analysis of clock jitter and phase noise of single-ended and differential ring oscillators is presented. The impulse sensitivity functions are used to derive expressions for the jitter and phase noise of ring oscillators. The effect of the number of stages, power dissipation, frequency of oscillation, and short-channel effects on the jitter and phase noise of ring oscillators is analyzed. Jitter and phase noise due to substrate and supply noise is discussed, and the effect of symm...
Intrinsic noise-induced phase transitions: beyond the noise interpretation
Carrillo, O.; Ibanes, M.; Garcia-Ojalvo, J.; Casademunt, J.; Sancho, J.M.
2003-01-01
We discuss intrinsic noise effects in stochastic multiplicative-noise partial differential equations, which are qualitatively independent of the noise interpretation (Ito vs. Stratonovich), in particular in the context of noise-induced ordering phase transitions. We study a model which, contrary to all cases known so far, exhibits such ordering transitions when the noise is interpreted not only according to Stratonovich, but also to Ito. The main feature of this model is the absence of a line...
SINGLE PHASE HIGH FREQUENCY AC CONVERTER FOR INDUCTION HEATING APPLICATION
M.A INAYATHULLAAH,; Dr. R. Anita
2010-01-01
The proposed topology reduces the total harmonic distortion (THD) of a high frequency AC/AC Converter well below the acceptable limit. This paper deals with a novel single phase AC/DC/AC soft switching utility frequency AC to high frequency AC converter. In this paper a single phase full bridge inverter with Vienna rectifier as front end is used instead of conventional diode bridge rectifier to provide continuous sinusoidal input current with nearly unity power factor at the source side with ...
SINGLE PHASE HIGH FREQUENCY AC CONVERTER FOR INDUCTION HEATING APPLICATION
M.A INAYATHULLAAH,
2010-12-01
Full Text Available The proposed topology reduces the total harmonic distortion (THD of a high frequency AC/AC Converter well below the acceptable limit. This paper deals with a novel single phase AC/DC/AC soft switching utility frequency AC to high frequency AC converter. In this paper a single phase full bridge inverter with Vienna rectifier as front end is used instead of conventional diode bridge rectifier to provide continuous sinusoidal input current with nearly unity power factor at the source side with extremely low distortion.. This power converter is more suitable and acceptable for cost effective high frequency (HF consumer induction heating applications.
Phase noise and frequency stability in oscillators
Rubiola, Enrico
2009-01-01
Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...
Noise evaluation of automotive A/C compressor
Sameh M. Metwally, Mohamed I. Khalil, Shawki A. Abouel-seoud
2011-01-01
Passenger compartment's interior noise and thermal performance are essential criteria for the driving comfort of vehicles. The air-conditioning system influences both field of comfort. It creates comfortable thermal conditions. On the other hand, the noise radiation of the air-condition system's components can be annoying. The blower, the air distribution ducts and the registers affect air rush noise. In some cases, the refrigerant flow creates hissing noise. Such noise has a great influence ...
Noise in phase-preserving linear amplifiers
Pandey, Shashank; Jiang, Zhang; Combes, Joshua; Caves, Carlton M.
2014-12-01
The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.
Noise in phase-preserving linear amplifiers
Pandey, Shashank; Jiang, Zhang; Combes, Joshua [Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131-0001 (United States); Caves, Carlton M. [Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131-0001, USA and Centre for Engineered Quantum Systems, School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072 (Australia)
2014-12-04
The purpose of a phase-preserving linear amplifier is to make a small signal larger, so that it can be perceived by instruments incapable of resolving the original signal, while sacrificing as little as possible in signal-to-noise. Quantum mechanics limits how well this can be done: the noise added by the amplifier, referred to the input, must be at least half a quantum at the operating frequency. This well-known quantum limit only constrains the second moments of the added noise. Here we provide the quantum constraints on the entire distribution of added noise: any phasepreserving linear amplifier is equivalent to a parametric amplifier with a physical state σ for the ancillary mode; σ determines the properties of the added noise.
Phase noise measurement of phase modulation microwave photonic links
Ye, Quanyi; Chen, Zhengyu; Xu, Zhiguo; Gao, Yingjie
2015-10-01
Microwave photonic links (MPLs) can provide many advantages over traditional coaxial and waveguide solutions due to its low loss, small size, lightweight, large bandwidth, superior stability and immunity to external interference. It has been considered in various applications such as: the transmission of radio frequency (RF) signal over optical carriers, video television transmission, radar and communication systems. Stability of phase of the microwave photonic links is a critical issue in several realistic applications. The delay line technique for phase noise measurement of phase modulation microwave photonic links is measured for the first time. Using this approach, the input signal noise and power supply noise can be effectively cancelled, and it does not require phase locking. The phase noise of a microwave photonic links with a 10 GHz sinusoidal signal is experimentally demonstrated.
Oscillator Phase Noise: A Geometrical Approach
Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens; Johansen, Tom Keinicke
2009-01-01
We construct a coordinate-independent description of oscillator linear response through a decomposition scheme derived independently of any Floquet theoretic results. Trading matrix algebra for a simpler graphical methodology, the text will present the reader with an opportunity to gain an intuit...... intuitive understanding of the well-known phase noise macromodel. The topics discussed in this paper include the following: orthogonal decompositions, AM–PM conversion, and nonhyperbolic oscillator noise response....
Low phase noise digital frequency divider
Lutes, G. F., Jr. (Inventor)
1973-01-01
A low phase noise frequency divider composed of a grating arrangement is disclosed. The grating arrangement supplies selected portions of an input reference signal to be divided to a tuned circuit without any phase noise due to the grating action. The arrangement which in one embodiment consists of an FET is connected to the tuned circuit input to short out the input except when the input reference signal amplitude crosses ground level in a positive direction and a gate enabling signal is present at the gate electrode of the FET. The gate enabling signal alone does not decouple the tuned circuit input from ground, therefore phase noise, due to the leading and trailing edges of each gate-enabling signal, is substantially eliminated.
Phase Noise Influence in Optical OFDM Systems employing RF Pilot Tone for Phase Noise Cancellation
Jacobsen, Gunnar; Xu, Tianhua; Popov, Sergei; Li, Jie; Zhang, Yimo; Friberg, Ari T
2016-01-01
For coherent and direct-detection Orthogonal Frequency Division Multiplexed (OFDM) systems employing radio frequency (RF) pilot tone phase noise cancellation the influence of laser phase noise is evaluated. Novel analytical results for the common phase error and for the (modulation dependent) inter carrier interference are evaluated based upon Gaussian statistics for the laser phase noise. In the evaluation it is accounted for that the laser phase noise is filtered in the correlation signal detection. Numerical results are presented for OFDM systems with 4 and 16 PSK modulation, 200 OFDM bins and baud rate of 1 GS/s. It is found that about 225 km transmission is feasible for the coherent 4PSK-OFDM system over normal (G.652) fiber.
AC shot noise through a quantum dot in the Kondo regime
Yang, Kai-Hua, E-mail: khybjut@yahoo.com.cn [College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China); Wu, Yan-Ju; Chen, Yang [College of Applied Sciences, Beijing University of Technology, Beijing 100124 (China)
2011-08-01
The photon-assisted shot noise through a quantum dot in the Kondo regime is investigated by applying time-dependent canonical transformation and non-crossing approximation technique. A basic formula for the photon-assisted shot noise is obtained. The rich dependence of the shot noise on the external ac field and temperature is displayed. At low temperature and low frequencies, the differential shot noise exhibits staircase behavior. When the temperature increases, the steps are rounded. At elevated frequencies, the photon-assisted tunneling becomes more obvious. We have also found that the Fano factor is enhanced as the ac frequency is enhanced. -- Highlights: → The explicitly photon-assisted shot noise formula through strongly correlated quantum dot is obtained. → The time-dependent canonical transformation and non-crossing approximation technique. → The rich dependence of the shot noise on the external ac field and temperature is displayed. → The Fano factor is enhanced as the ac frequency is enhanced.
Noise evaluation of automotive A/C compressor
Metwally, Sameh M.; Khalil, Mohamed I.; Abouel-seoud, Shawki A. [Automotive and Tractors Dept., Faculty of Engineering, Helwan University, Cairo (Egypt)
2011-07-01
Passenger compartment's interior noise and thermal performance are essential criteria for the driving comfort of vehicles. The air-conditioning system influences both field of comfort. It creates comfortable thermal conditions. On the other hand, the noise radiation of the air-condition system's components can be annoying. The blower, the air distribution ducts and the registers affect air rush noise. In some cases, the refrigerant flow creates hissing noise. Such noise has a great influence on vehicle acoustical comfort and on overall quality perception of a vehicle Therefore, the acoustic performance of air-condition compressors become more important for passenger comfort. At engine idling and at extreme temperatures the air-condition compressor can be audible as the significant sound source. However, the aim of this paper is to quantify air-borne noise characteristics of vehicle air-condition compressor. A simulated experimental model comprises a small wooden box with dimensions of 0.5 x 0.5 x 0.5 m represented the principle of hemi-anechoic room was designed and acoustic characteristics of the sound field inside the box were determined. The air-condition compressor characteristics parameters considered in this paper are fan position and electric motor speed. In addition, a single number of the air column natural frequency is calculated. The results indicate that significant information can be obtained in order to investigate the vehicle air-condition compressor and consequently improve the vehicle interior quietness.
Noise evaluation of automotive A/C compressor
Sameh M. Metwally, Mohamed I. Khalil, Shawki A. Abouel-seoud
2011-05-01
Full Text Available Passenger compartment's interior noise and thermal performance are essential criteria for the driving comfort of vehicles. The air-conditioning system influences both field of comfort. It creates comfortable thermal conditions. On the other hand, the noise radiation of the air-condition system's components can be annoying. The blower, the air distribution ducts and the registers affect air rush noise. In some cases, the refrigerant flow creates hissing noise. Such noise has a great influence on vehicle acoustical comfort and on overall quality perception of a vehicle Therefore, the acoustic performance of air-condition compressors become more important for passenger comfort. At engine idling and at extreme temperatures the air-condition compressor can be audible as the significant sound source. However, the aim of this paper is to quantify air-borne noise characteristics of vehicle air-condition compressor. A simulated experimental model comprises a small wooden box with dimensions of 0.5 x 0.5 x 0.5 m represented the principle of hemi-anechoic room was designed and acoustic characteristics of the sound field inside the box were determined. The air-condition compressor characteristics parameters considered in this paper are fan position and electric motor speed. In addition, a single number of the air column natural frequency is calculated. The results indicate that significant information can be obtained in order to investigate the vehicle air-condition compressor and consequently improve the vehicle interior quietness.
Design of Three Phase Matrix Converter AC-AC Utility Power Supply using SPWM Technique
Sagar.S.Pawar; Prakash.T.Patil
2015-01-01
This paper describes the control analysis and design of an three phase matrix AC-AC utility power supply .The SPWM modulation techniques is used to control the desired output voltage and gives the control output voltage and reduced input harmonic distortions .In this Matrix converter Input is directly connected to output no DC link components is required. Simulation had been done using mat lab simulink and Simulated results are observed
Design of Three Phase Matrix Converter AC-AC Utility Power Supply using SPWM Technique
Sagar. S. Pawar
2015-04-01
Full Text Available This paper describes the control analysis and design of an three phase matrix AC-AC utility power supply .The SPWM modulation techniques is used to control the desired output voltage and gives the control output voltage and reduced input harmonic distortions .In this Matrix converter Input is directly connected to output no DC link components is required. Simulation had been done using mat lab simulink and Simulated results are observed
Low frequency noise of anisotropic magnetoresistors in DC and AC-excited metal detectors
Magnetoresistors can replace induction sensors in applications like non-destructive testing and metal detection, where high spatial resolution or low frequency response is required. Using an AC excitation field the magnetic response of eddy currents is detected. Although giant magnetoresistive (GMR) sensors have higher measuring range and sensitivity compared to anisotropic magnetoresistors (AMR), they show also higher hysteresis and noise especially at low frequencies. Therefore AMR sensors are chosen to be evaluated in low noise measurements with combined processing of DC and AC excitation field with respect to the arrangement of processing electronics. Circuit with a commercial AMR sensor HMC1001 and AD8429 preamplifier using flipping technique exhibited 1-Hz noise as low as 125 pT/√Hz. Without flipping, the 1-Hz noise increased to 246 pT/√Hz.
Shot noise in nano-electronic systems under the perturbation of ac fields
ZHAO Hong-kang
2007-01-01
Current noise exists in circuits and electronic devices generally, and it exhibits specific features as the system reaches nanometer size. The noise in the nano-system where external ac fields are applied plays an important role, since the properties of the fields and the nano-system together govern the resulting noise. In this paper, we present the derivation of shot noise by employing the nonequilibrium Green's function technique. The more general formulas for the current correlation and noise spectral density are given. The system is composed of a central nanosystem coupled to electrodes, and the obtained noise formulas are related to the Green's functions of detailed central regime and the terminals. As an example, we have performed the numerical calculation on a system with a toroidal carbon nanotube coupled to normal metal leads. The noise and Fano factor show intimate relation with the structure of the system and ac fields. The Aharonov-Bohm-like behaviors on the shot noise spectral density and Fano factor are observed to exhibit oscillation structures with period of quantum flux.
A low-noise ac-bridge amplifier for ballistocardiogram measurement on an electronic weighing scale
Ballistocardiography is a non-invasive technique for evaluating cardiovascular health. This note presents an ac-bridge amplifier for low-noise ballistocardiogram (BCG) recording from a modified weighing scale. The strain gauges in a commercial scale were excited by an ac source—square or sine wave—and the differential output voltage resulting from the BCG was amplified and demodulated synchronously with the excitation waveform. A standard BCG amplifier, with a simple dc-bridge excitation, was also built and the performance was compared to both the square- and sine-wave excited ac-bridge amplifiers. The total input-referred voltage noise (rms) integrated over the relevant BCG bandwidth of 0.3–10 Hz was found to be 30 nV (square wave source) or 25 nV (sine-wave source) for the ac-bridge amplifier and 52 nV for the standard amplifier: an improvement of 4.8 dB or 6 dB, respectively. These correspond to input-referred force noise (rms) values of 5 mN, 4 mN and 8.3 mN. The improvement in SNR was also observed in recorded waveforms from a seated subject whose BCG signal was measured with both dc- and ac-bridge circuits. (note)
The low frequency voltage noise and complex AC voltage response to weakly modulated magnetic fields have been studied in a superconducting Pb film with a square lattice of antidots. The temperature was close to Tc and the DC magnetic field was changed between ±1.5 H1 with H1=9.2 Oe corresponding to one vortex per antidot. A narrow band noise near f∼0.55 Hz has been observed which shows different dependences on the magnetic field in 4- and 5-point probe configurations. In the latter configuration one probes the correlation between the noise voltages in the two parts of the sample. We also measured the resistance when, in addition to the DC field, a small AC field with frequency f<177 Hz was applied. The data showed that the complex magnetoresistance response becomes nonlinear below 1/3 of the first matching field
High-frequency noise contribution to phase noise in microwave oscillators and amplifiers
Cibiel, Gilles; Escotte, Laurent; Llopis, Olivier; Chaubet, Michel
2004-05-01
Phase noise of microwave free running sources has always been an important problem in various applications. This noise generates an increased bit error rate in a telecommunication link and degrades the sensitivity of a radar (particularly in the case of Doppler or FM-CW radar). Reducing this noise contribution is a difficult challenge for microwave engineers and circuit designers. The main contributor to this noise is well known to be the microwave transistor and finally an improvement of the oscillator phase noise will result from an optimization of the transistor phase noise. The 10 kHz to 1 MHz offset frequency range is the most important frequency range for many microwave oscillators applications. An improvement of the transistor (or oscillator) phase noise in this frequency range cannot be obtained without a good knowledge of the noise mechanisms involved in the device. In this frequency range, two different mechanisms may be at the origin of the phase noise. The first one involves the conversion to high frequencies of the transistor baseband noise (or 1/f noise) through the devices nonlinearities. The second one is due to the direct superposition of the transistor high frequency noise. This noise is simply added to the carrier, and this contribution may be described using the amplifier noise figure. In this paper, the evidence of the transistor high-frequency noise contribution in residual phase noise data is demonstrated. This behavior is observed in several bipolar devices in which the low-frequency noise contribution has been carefully minimized using an optimized bias network. Then, the phase noise behavior is correlated to nonlinear noise figure measurements. This study has been carried on numerous different microwave transistors, including FET and bipolar devices. An increase of the noise figure with the microwave signal level has been observed in each case.
Dai, Xi; Xiang, Tao; Ng, Tai-Kai; Su, Zhao-Bin
2000-01-01
We study the current noise spectra of a tunnel junction of a metal with strong pairing phase fluctuation and a superconductor. It is shown that there is a characteristic peak in the noise spectrum at the intrinsic Josephson frequency $\\omega_J=2eV$ when $\\omega_J$ is smaller than the pairing gap but larger than the pairing scattering rate. In the presence of an AC voltage, the tunnelling current noise shows a series of characteristic peaks with increasing DC voltage. Experimental observation ...
Quantum noise in parametric amplification under phase-mismatched conditions
Inoue, K.
2016-05-01
This paper studies quantum noise in parametric amplification under phase-mismatched conditions. The equations of motion of the quantum-mechanical field operators, which include phase mismatch under unsaturated conditions are first derived from the Heisenberg equation. Next, the noise figure is evaluated using the solutions of the derived equations. The results indicate that phase mismatch scarcely affects noise property in phase-insensitive amplification while it has a notable effect in case of phase-sensitive amplification.
Phase Noise Measurement in PEP II and the Linac
The Goal of this project is to provide a measurement of the phase of the radio frequency (RF) relative to electron beam traveling down the Stanford Linear Accelerator Center (SLAC). Because the Main Drive Line (MDL) supplies the RF drive and phase reference for the entire accelerator system, the phase accuracy and amount of phase noise present in the MDL are very critical to the functionality of the accelerator. Therefore, a Phase Noise Measurement System was built to measure the phase noise in the liner accelerator (Linac) and PEP II. The system was used to determine the stability of the PEP II RF reference system. In this project a low noise Phase Locked Loop system (PLL) was built to measure timing jitter about sub picoseconds level. The phase noise measured in Master Oscillator using PLL indicates that phase noise is low enough for PEP II to run
Effect of classical noise on the geometric quantum phase
We consider the effect of classical noise applied to the geometric quantum phase of a spin 1/2 in a revolving magnetic field. The Berry phase shows some sensitivity to the noise because the Bloch vector cannot return to its original direction, and the variance caused by noise is proportional to the evolution time
AC system stabilization via phase shift transformer with thyristor commutation
Oliveira, Jose Carlos de; Guimaraes, Geraldo Caixeta; Moraes, Adelio Jose [Uberlandia Univ., MG (Brazil); Abreu, Jose Policarpo G. de [Escola Federal de Engenharia de Itajuba, MG (Brazil); Oliveira, Edimar Jose de [Juiz de Fora Univ., MG (Brazil)
1994-12-31
This article aims to present initially the constructive and operative forms of a phase-shift autotransformer which provides both magnitude and phase angle change through thyristor commutation, including a technic to reduce the number of thyristors. Following, it is proposed a control system to make such equipment an efficient AC system stabilizing tool. It is presented some simulation results to show the operation of this transformer in an electrical system. (author) 3 refs., 11 figs., 3 tabs.
An analytical formulation for phase noise in MEMS oscillators.
Agrawal, Deepak; Seshia, Ashwin
2014-12-01
In recent years, there has been much interest in the design of low-noise MEMS oscillators. This paper presents a new analytical formulation for noise in a MEMS oscillator encompassing essential resonator and amplifier nonlinearities. The analytical expression for oscillator noise is derived by solving a second-order nonlinear stochastic differential equation. This approach is applied to noise modeling of an electrostatically addressed MEMS resonator-based square-wave oscillator in which the resonator and oscillator circuit nonlinearities are integrated into a single modeling framework. By considering the resulting amplitude and phase relations, we derive additional noise terms resulting from resonator nonlinearities. The phase diffusion of an oscillator is studied and the phase diffusion coefficient is proposed as a metric for noise optimization. The proposed nonlinear phase noise model provides analytical insight into the underlying physics and a pathway toward the design optimization for low-noise MEMS oscillators. PMID:25474770
Malik, R.; Kumpera, A.; Olsson, S.L.I.; Andrekson, P. A.; Karlsson, M.
2014-01-01
We investigate the beating of signal and idler waves, which have imbalanced signal to noise ratios, in a phase-sensitive parametric amplifier. Imbalanced signal to noise ratios are achieved in two ways; first by imbalanced noise loading; second by varying idler to signal input power ratio. In the case of imbalanced noise loading the phase-sensitive amplifier improved the signal to noise ratio from 3 to 6 dB, and in the case of varying idler to signal input power ratio, the signal to noise rat...
Vibration induced phase noise in Mach-Zehnder atom interferometers
Miffre, Alain; Jacquey, Marion; Büchner, Matthias; Trénec, Gérard; Vigué, Jacques
2006-01-01
The high inertial sensitivity of atom interferometers has been used to build accelerometers and gyrometers but this sensitivity makes these interferometers very sensitive to the laboratory seismic noise. This seismic noise induces a phase noise which is large enough to reduce the fringe visibility in many cases. We develop here a model calculation of this phase noise in the case of Mach-Zehnder atom interferometers and we apply this model to our thermal lithium interferometer. We are thus abl...
Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters
Qin, Zian
proposed new active power decoupling method, the ripple power in the converter can be compensated in a more efficient and more compact way. Then, Chapter 5 changes the scope of the thesis to three-phase converters, and the nine-switch converter, as a reduced switch version of two three-phase full......-bridges connected back-to-back, is studied. Application criteria of the nine-switch converter are investigated for reducing the relatively high stress introduced by the less number of switches. In Chapter 6 a rotating speed controller design method is proposed for improving the thermal loading of the three...... to users. Their performances including cost, efficiency, reliability, and so on, therefore are more important concerns than they were. The objective of this thesis is to study and propose advanced design methods for robust ac-dc-ac converters, which are widely used interfaces in energy conversion...
Three-Phase and Six-Phase AC at the Lab Bench
Caplan, George M.
2009-01-01
Utility companies generate three-phase electric power, which consists of three sinusoidal voltages with phase angles of 0 degrees, 120 degrees, and 240 degrees. The ac generators described in most introductory textbooks are single-phase generators, so physics students are not likely to learn about three-phase power. I have developed a simple way…
Phase noise of self-sustained optomechanical oscillators
Fong, King Yan; Poot, Menno; Han, Xu; Tang, Hong X.
2014-01-01
In this paper we present a theory that predicts the phase noise characteristics of self-sustained optomechanical oscillators. By treating the cavity optomechanical system as a feedback loop consisting of an optical cavity and a mechanical resonator, we analytically derive the transfer functions relating the amplitude/phase noise of all the relevant dynamical quantities from the quantum Langevin equations, and obtain a closed-form expressions for the phase noise spectral densities contributed ...
Does a phase shift occur in an AC arc?
Steinmetz, Charles Proteus
2016-01-01
This is a translation of a classic paper in German showing that the apparent power in an AC arc is larger than the active power although no phase shift exists between the voltage and the current, indicating that the reactive power vanishes. The phenomenon studied in this paper gave rise to a variety of mutually conflicting "power triangle" models relating the active, reactive, and apparent powers P, Q, and S whose merits are still under debate today.
Turbo Receiver Design for Phase Noise Mitigation in OFDM Systems
Sridharan, Gokul
2010-01-01
This paper addresses the issue of phase noise in OFDM systems. Phase noise (PHN) is a transceiver impairment resulting from the non-idealities of the local oscillator. We present a case for designing a turbo receiver for systems corrupted by phase noise by taking a closer look at the effects of the common phase error (CPE). Using an approximate probabilistic framework called variational inference (VI), we develop a soft-in soft-out (SISO) algorithm that generates posterior bit-level soft estimates while taking into account the effect of phase noise. The algorithm also provides an estimate of the phase noise sequence. Using this SISO algorithm, a turbo receiver is designed by passing soft information between the SISO detector and an outer forward error correcting (FEC) decoder that uses a soft decoding algorithm. It is shown that the turbo receiver achieves close to optimal performance.
Very low noise AC/DC power supply systems for large detector arrays
Arnaboldi, C.; Baù, A.; Carniti, P.; Cassina, L.; Giachero, A.; Gotti, C.; Maino, M.; Passerini, A.; Pessina, G.
2015-12-01
In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μVRMS (CUORE setup) and 90 μVRMS (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).
Extra phase noise from thermal fluctuations in nonlinear optical crystals
César, J. E. S.; Coelho, A.S.; Cassemiro, K.N.;
2009-01-01
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the d...
Ljusev, Petar; Andersen, Michael Andreas E.
2004-01-01
This paper presents an alternative safe commutation principle for a single phase bidirectional bridge, for use in the new generation of direct single-stage AC-AC audio power amplifiers. As compared with the bridge commutation with load current or source voltage sensing, in this approach it is not...
Phonon effects on the current noise spectra and the ac conductance of a single molecular junction
By using nonequilibrium Green’s functions and the equation of motion method, we formulate a self-consistent field theory for the electron transport through a single-molecule junction (SMJ) coupled with a vibrational mode. We show that the nonequilibrium dynamics of the phonons in a strong electron–phonon coupling regime can be taken into account appropriately in this self-consistent perturbation theory, and the self-energy of the phonons is connected with the current fluctuations in the molecular junction. We calculate the finite-frequency nonsymmetrized noise spectra and the ac conductance, which reveal a wealth of inelastic electron tunneling characteristics on the absorption and emission properties of this SMJ. In the presence of a finite bias voltage and the electron tunneling current, the vibration mode of the molecular junction is heated and driven to an unequilibrated state. The influences of unequilibrated phonons on the current and the noise spectra are investigated. (paper)
Simulation of phase noise for coherent beam combination
Hu, Qi-qi; Huang, Zhi-meng; Tang, Xuan; Luo, Yong-quan; Zhang, Da-yong
2015-02-01
Active coherent beam combination has been a hot area of research for several years. Particular algorithm module is used to stabilize the phase difference between beamlets, and make them coherent. The phase noise increases with the raising power of laser output. Under low power condition, we simulate the phase noise of high power laser amplifier by the Arbitrary Function Generators (AFGs), and send them to the phase modulators to destabilize the phase, to test the performance of the phase lock algorithm. The experimental results show the feasibility.
Evaluation of beam energy fluctuation caused by phase noise
The stability of RF signal sources is quite important for accelerators which have to provide very high quality beams. The RF sources for XFELs, for example, have to satisfy the integrated phase fluctuation less than several tens femtoseconds. The SSB noises of RF reference signal dominate the short-term instabilities of the RF phase of the carrier RF. This phase modulation finally results in the beam energy fluctuation. This presentation gives a quantitative evaluation of the beam energy fluctuations in an electron linear accelerator caused by phase noises comparing a theoretical analysis and experimental results: A simple model, which represents actual RF phase transmission in transmission lines of an electron linac, was introduced to understand how phase noises result the relative phase deference between a beam bunch and accelerating RF fields. In the experiments, we measured the enhanced beam energy fluctuations by modulating the phase of the reference RF signals with an external signal. (author)
Energy Trapping in Low Phase Noise Bulk Acoustic Wave Oscillators
In the design of resonators in low phase noise bulk acoustic wave (BAW) oscillators, maximization of quality factor is the primary target while energy trapping is not typically of concern. Analysis shows that although energy-trapping mode energy outside the electroded region decreases exponentially with distance away from the electrode edge of the wafer, the decaying wave will reflect at the wafer edge to the electroded region and generate a wave with same frequency but different phase which generates mutual modulation with resonant frequency. It is a source of phase noise and mainly affects the near-carrier-frequency phase noise. Two 120 MHz SC-cut 5th overtone UM-1 crystals with similar dynamic equivalent parameters and different shunt capacitances are compared using the same circuit. Experimental results show that energy trapping also needs to be considered in the design of resonators in low phase noise BAW oscillators
Noise-powered probabilistic concentration of phase information
Castaneda, Mario A. Usuga; Muller, C. R.; Wittmann, C.;
2010-01-01
Phase-insensitive optical amplification of an unknown quantum state is known to be a fundamentally noisy operation that inevitably adds noise to the amplified state(1-5). However, this fundamental noise penalty in amplification can be circumvented by resorting to a probabilistic scheme as recentl...
Quantitative appraisal for noise reduction in digital holographic phase imaging.
Montresor, Silvio; Picart, Pascal
2016-06-27
This paper discusses on a quantitative comparison of the performances of different advanced algorithms for phase data de-noising. In order to quantify the performances, several criteria are proposed: the gain in the signal-to-noise ratio, the Q index, the standard deviation of the phase error, and the signal to distortion ratio. The proposed methodology to investigate de-noising algorithms is based on the use of a realistic simulation of noise-corrupted phase data. A database including 25 fringe patterns divided into 5 patterns and 5 different signal-to-noise ratios was generated to evaluate the selected de-noising algorithms. A total of 34 algorithms divided into different families were evaluated. Quantitative appraisal leads to ranking within the considered criteria. A fairly good correlation between the signal-to-noise ratio gain and the quality index has been observed. There exists an anti-correlation between the phase error and the quality index which indicates that the phase errors are mainly structural distortions in the fringe pattern. Experimental results are thoroughly discussed in the paper. PMID:27410587
Quantum repeaters free of polarization disturbance and phase noise
Yin, Zhen-Qiang; Zhao, Yi-bo; Yong YANG; Han, Zheng-Fu; Guo, Guang-Can
2009-01-01
Original quantum repeater protocols based on single-photon interference suffer from phase noise of the channel, which makes the long-distance quantum communication infeasible. Fortunately, two-photon interference type quantum repeaters can be immune to phase noise of the channel. However, this type quantum repeaters may still suffer from polarization disturbance of the channel. Here we propose a quantum repeaters protocol which is free of polarization disturbance of the channel based on the i...
Phase Noise Comparision of Short Pulse Laser Systems
S. Zhang; S. V. Benson; J. Hansknecht; D. Hardy; G. Neil; Michelle D. Shinn
2006-12-01
This paper describes the phase noise measurement on several different mode-locked laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on the state of the art short pulse lasers, especially the drive lasers for photocathode injectors. A comparison between the phase noise of the drive laser pulses, electron bunches and FEL pulses will also be presented.
PHASE NOISE COMPARISON OF SHORT PULSE LASER SYSTEMS
Shukui Zhang; Stephen Benson; John Hansknecht; David Hardy; George Neil; Michelle D. Shinn
2006-08-27
This paper describes phase noise measurements of several different laser systems that have completely different gain media and configurations including a multi-kW free-electron laser. We will focus on state-of-the-art short pulse lasers, especially drive lasers for photocathode injectors. Phase noise comparison of the FEL drive laser, electron beam and FEL laser output also will be presented.
Ljusev, P.; Andersen, Michael A.E.
2005-07-01
This paper presents an alternative safe commutation principle for a single phase bidirectional bridge, for use in the new generation of direct single-stage AC-AC audio power amplifiers. As compared with the bridge commutation with load current or source voltage sensing, in this approach it is not required to do any measurements, thus making it more reliable. Initial testing made on the prototype prove the feasibility of the approach. (au)
Simultaneous de-noising in phase contrast tomography
Koehler, Thomas; Roessl, Ewald
2012-07-01
In this work, we investigate methods for de-noising of tomographic differential phase contrast and absorption contrast images. We exploit the fact that in grating-based differential phase contrast imaging (DPCI), first, several images are acquired simultaneously in exactly the same geometry, and second, these different images can show very different contrast-to-noise-ratios. These features of grating-based DPCI are used to generalize the conventional bilateral filter. Experiments using simulations show a superior de-noising performance of the generalized algorithm compared with the conventional one.
Analysis of MPN, MHN and Phase Noise of a Two-Mode Semiconductor Laser
Ebrahim; Mortazy; Vahid; Ahmadi; Mohammad; Kazem; Moravvej-Farshi; Abbas; Zarifkar
2003-01-01
Intensity noise including Mode Partition Noise (MPN) and Mode Hopping Noise (MHN), and Phase/Frequency Noise Spectrum (FNS) are calculated for a two-mode semiconductor laser. RIN is derived considering of MPN and MHN effect.
Final Report on DE-FG02-04ER46107: Glasses, Noise and Phase Transitions
Yu, Clare C. [Univ. of California, Irvine, CA (United States)
2011-12-31
We showed that noise has distinct signatures at phase transitions in spin systems. We also studied charge noise, critical current noise, and flux noise in superconducting qubits and Josephson junctions.
Removing Background Noise with Phased Array Signal Processing
Podboy, Gary; Stephens, David
2015-01-01
Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.
Multiplicative Noise in Non-equilibrium Phase Transitions: A tutorial
Munoz, Miguel A.
2003-01-01
Stochastic phenomena in which the noise amplitude is proportional to the fluctuating variable itself, usually called {\\it multiplicative noise}, appear ubiquitously in physics, biology, economy and social sciences. The properties of spatially extended systems with this type of stochasticity, paying special attention to the {\\it non-equilibrium phase transitions} these systems may exhibit, are reviewed here. In particular we study and classify the possible universality classes of such transiti...
External non-white noise and nonequilibrium phase transitions
Langevin equations with external non-white noise are considered. A Fokker Planck equation valid in general in first order of the correlation time tau of the noise is derived. In some cases its validity can be extended to any value of tau. The effect of a finite tau in the nonequilibrium phase transitions induced by the noise is analyzed, by means of such Fokker Planck equation, in general, for the Verhulst equation under two different kind of fluctuations, and for a genetic model. It is shown that new transitions can appear and that the threshold value of the parameter can be changed. (orig.)
Vector control of three-phase AC machines system development in the practice
Quang, Nguyen Phung
2008-01-01
Covers the area of vector control of 3-phase AC machines, in particular induction motors with squirrel-cage rotor, permanent excited synchronous motors and doubly-fed induction machines. This title summarizes the basic structure of a field-oriented controlled 3-phase AC drive and grid voltage orientated controlled wind power plant.
R. Ramesh,
2014-03-01
Full Text Available Single phase ac-dc converters having high frequency isolation are implemented in buck, boost, buck-boost configuration with improving the power quality in terms of reducing the harmonics of input current. The paperpropose the circuit configuration, control mechanism, and simulation result for the single phase ac-dc converter.
Ma, Yonghua; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu
2016-04-20
We use a vector phase sensitive amplification (PSA) scheme, which can eliminate the inherent phase noise (PN) to amplitude noise (AN) conversion in a conventional PSA process. A dispersion-engineered silicon strip waveguide is used to investigate the vector PSA scheme at the telecom wavelengths. The phase-dependent gain and phase-to-phase transfer functions as well as constellation diagram at different signal polarization states (SPSs) are numerically analyzed. It is found that the PN to AN conversion is completely suppressed when the SPS is identical to one of the pump polarization states. Moreover, the binary phase shift keying signal is regenerated by the proposed vector PSA scheme, and the error vector magnitude is calculated to assess the regeneration capacity. Our results have potential application in all-optical signal processing. PMID:27140079
Extraction of triplicated PKP phases from noise correlations
Xia, Han H.; Song, Xiaodong; Wang, Tao
2016-04-01
Ambient noise correlation method has been widely used to extract surface waves and tomography. The extraction of body waves has been very limited, but recent reports have suggested promises for deep incident waves. Here we report our first observations of triplicated PKP phases (important phases for studying the Earth's core) and confirm observations of other body-wave core phases from noise correlations. We use dense seismic arrays in South America and China Regional Seismic Networks at distances from 145° to the antipode. We can clearly observe different PKP branches (df, bc and ab) in stacks of the station-station correlations. Both ambient noise and earthquake coda contribute to PKP phases. However, the contributions vary with frequency and with body-wave phases. At shorter periods (5-20 s), three branches of PKP (df, bc and ab) can be extracted from ambient noise and the ab phase from earthquake coda. At longer periods (15-50 s), earthquake coda are effective in generating the df branch, but not the ab branch. The generation of the PKIKP phase (df branch) from earthquake coda does not depend on earthquake focal mechanisms or focal depths. However, earthquakes far from the stations contribute more than events closer by. The best coda window is around 10 000-40 000 s and the best magnitude threshold is Mw greater than 6.8 or 6.9. The observation of triplicated PKP branches from noise correlations provides a new type of data for studying the Earth's deep interior, in particularly the inner core anisotropy, which overcomes some of the limitations of traditional earthquake-based studies (such as limited source distributions and source location errors).
Phase-noise protection in quantum-enhanced differential interferometry
Differential interferometry (DI) with two coupled sensors is a most powerful approach for precision measurements in the presence of strong phase noise. However, DI has been studied and implemented only with classical resources. Here we generalize the theory of differential interferometry to the case of entangled probe states. We demonstrate that, for perfectly correlated interferometers and in the presence of arbitrary large phase noise, sub-shot noise sensitivities—up to the Heisenberg limit—are still possible with a special class of entangled states in the ideal lossless scenario. These states belong to a decoherence free subspace where entanglement is passively protected. Our work paves the way to the full exploitation of entanglement in precision measurements. (paper)
Noise-Induced Phase Transition in Traffic Flow
LIKe-Ping; GAOZi-You
2004-01-01
One of the dynamic phases of the traffic flow is the traffic jam. It appears in traffic flow when the vehicle density is larger than the critical value. In this paper, a new method is presented to investigate the traffic jam when the vehicle density is smaller than the critical value. In our method, we introduce noise into the traffic system after sufficient transient time. Under the effect of noise, the traffic jam appears, and the phase transition from free to synchronized flow occurs in traffic flow. Our method is tested for the deterministic NaSch traffic model. The simulation results demonstrate that there exist a broad range of lower densities at which the noise effect leading to traffic jam can be observed.
Phase retrieval tomography in the presence of noise
Arhatari, B. D.; Gates, W. P.; Eshtiaghi, N.; Peele, A. G.
2010-02-01
We describe the use of single-plane phase retrieval tomography using a laboratory-based x-ray source, under conditions where the retrieval is not formally valid, to present images of the internal structure of an Aerosil granule and a hydrated bentonite gel. The technique provides phase images for samples that interact weakly with the x-ray beam. As the method is less affected by noise than an alternative two-plane phase retrieval method that is otherwise formally valid, object structure can be observed that would not otherwise be seen. We demonstrate our results for phase imaging in tomographic measurements.
A novel phase noise measurement of phase modulation microwave photonic links
Ye, Quanyi; Gao, Yingjie; Yang, Chun
2016-07-01
Microwave photonic links can provide many advantages over traditional coaxial due to its low loss, small size, lightweight, large bandwidth and immunity to external interference. In this paper, a novel phase noise measurement system is built, since the input signal and the power supply noise can be effectively cancelled by a two-arm configuration without the phase locking. Using this approach, the phase noise performance of the 10-GHz phase modulation photonic link has been measured for the first time, evaluated the values of -124 dBc/Hz at 1 kHz offset and -132 dBc/Hz at 10 kHz offset is obtained. Theoretical analysis on the phase noise measurement system calibration is also discussed.
Advanced bridge (interferometric) phase and amplitude noise measurements
Rubiola, E; Rubiola, Enrico; Giordano, Vincent
2005-01-01
The measurement of the close-to-the-carrier noise of rf and microwave devices is a relevant issue in time and frequency metrology and in some fields of electronics, physics and optics. While phase noise is the main concern, amplitude noise is often of interest. The highest sensitivity is achieved with the bridge (interferometric) method, which consists of the amplification and synchronous detection of the noise sidebands after suppressing the carrier by vector subtraction of an equal signal. A substantial progress in understanding the flicker noise mechanism of the interferometer results in new schemes that improve by 20--30 dB the sensitivity at low Fourier frequencies. The article provides the complete theory and detailed design criteria, and reports on the implementation of a prototype. In real-time measurements, a background noise of -175 -180 dBrad^2/Hz has been obtained at f=1 Hz off the 100 MHz carrier. Exploiting correlation and averaging in similar conditions, the sensitivity exceeds -185 dBrad^2/Hz ...
Design & Implementation of High Switching & Low Phase Noise Frequency Synthesizer
Ali M. N. Hassan
2006-01-01
Full Text Available This research describes the design & implementation of frequency synthesizer using single loop Phase lock loop with the following specifications: Frequency range (1.5 2.75 GHz,Step size (1 MHz, Switching time 36.4 µs, & phase noise @10 kHz = -92dBc & spurious -100 dBc The development in I.C. technology provide the simplicity in the design of frequency synthesizer because it implements the phase frequency detector(PFD , prescalar & reference divider in single chip. Therefore our system consists of a single chip contains (low phase noise PFD, charge pump, prescalar & reference divider, voltage controlled oscillator , loop filter & reference oscillator. The single chip is used to provide the following properties :Low power consumptionSmall size, light weight.Flexibility in selecting crystal oscillator frequencies to fit into the system frequency planning.High reliability.The application of this synthesizer in frequency hopping systems, satellite communications & radar because it has high switching speed ,low phase noise & low spurious level.
Noise-Induced Scenario for Inverted Phase Diagrams
We introduce a class of exactly solvable models exhibiting an ordering noise-induced phase transition in which order arises as a result of a balance between the relaxing deterministic dynamics and the randomizing character of the fluctuations. A finite-size scaling analysis of the phase transition reveals that it belongs to the universality class of the equilibrium Ising model. All these results are analyzed in the light of the nonequilibrium probability distribution of the system, which can be obtained analytically. Our results could constitute a possible scenario of inverted phase diagrams in the so-called lower critical solution temperature transitions
Algorithms for Joint Phase Estimation and Decoding for MIMO Systems in the Presence of Phase Noise
Krishnan, Rajet; Colavolpe, Giulio; Amat, Alexandre Graell i; Eriksson, Thomas
2013-01-01
In this work, we derive the maximum a posteriori (MAP) symbol detector for a multiple-input multiple-output system in the presence of Wiener phase noise due to noisy local oscillators. As in single-antenna systems, the computation of the optimal receiver is an infinite dimensional problem and is thus unimplementable in practice. In this purview, we propose three suboptimal, low-complexity algorithms for approximately implementing the MAP symbol detector, which involve joint phase noise estima...
The role of amplitude-to-phase conversion in the generation of oscillator flicker phase noise
Hearn, C. P.
1985-01-01
The role of amplitude-to-phase conversion as a factor in feedback oscillator flicker phase noise is examined. A limiting stage consisting of parallel-connected opposite polarity diodes operating in a circuit environment contining reactance is shown to exhibit amplitude-to-phase conversion. This mechanism coupled with resistive upconversion provides an indirect route for very low frequency flicker noise to be transferred into the phase of an oscillator signal. It is concluded that this effect is more significant in the lower frequency regimes where the onlinear reactances associated with active devices are overwhelmed by linear reactive elements.
Noise and Fano-Factor Control in AC-Driven Aharonov-Casher Ring
Zein W. A.
2011-01-01
Full Text Available The spin dependent current and Fano factor of Aharonov-Casher semiconducting ring is investigated under the effect of microwave, infrared, ultraviolet radiation and magnetic field. Both the average current and the transport noise (Fano factor characteristics are expressed in terms of the tunneling probability for the respective scattering channels. For spin transport induced by microwave and infrared radiation, a random oscillatory behavior of the Fano factor is observed. These oscillations are due to constructive and destructive spin interference effects. While for the case of ultraviolet radiation, the Fano factor becomes constant. This is due to that the oscillations has been washed out by phase averaging (i.e. ensemble dephasing over the spin transport channels. The present investigation is very important for quantum computing and information processing.
Noise and Fano-factor Control in AC-Driven Aharonov-Casher Ring
Phillips A. H.
2011-01-01
Full Text Available The spin dependent current and Fano factor of Aharonov-Casher semiconducting ring is investigated under the effect of microwave, infrared, ultraviolet radiation and magnetic field. Both the average current and the transport noise (Fano factor characteristics are expressed in terms of the tunneling probability for the respective scattering channels. For spin transport induced by microwave and infrared radiation, a random oscillatory behavior of the Fano factor is observed. These oscillations are due to constructive and destructive spin interference effects. While for the case of ultraviolet radiation, the Fano factor becomes constant. This is due to that the oscillations has been washed out by phase averaging (i.e. ensemble dephasing over the spin transport channels. The present investigation is very important for quantum computing and information processing.
O. Baran
2010-12-01
Full Text Available Our work deals with studies of a noise behavior in space communication systems. Two most important noise types the additive thermal noise and the multiplicative phase noise, respectively, are included. A simple model of the narrowband communication system is created and simulated in the Ansoft Designer system simulator. The additive thermal noise is modeled as AWGN in a communication channel. The phase noise is produced in transmitter and receiver oscillators. The main intention is to investigate the receiver filter bandwidth decrease effect on powers of both noise types. Results proposed in this paper show that for defined system conditions and for a certain filter bandwidth value, the power of the multiplicative phase noise equals to the additive thermal noise power. Another decrease of the filter bandwidth causes the phase noise power exceeding. To demonstrate the noise behavior transparently, input system parameters are properly selected. All simulation results are documented by theoretical calculations. Simulation outcomes express a good coincidence with presumptions and calculations.
Performance Analysis of Phase Controlled Unidirectional and Bidirectional AC Voltage Controllers
Abdul Sattar Larik
2011-01-01
Full Text Available AC voltage controllers are used to vary the output ac voltage from a fixed ac input source. They are also commonly called ac voltage regulators or ac choppers. The output voltage is either controlled by PAC (Phase Angle Control method or on-off control method. Due to various advantages of ac voltage controllers, such as high efficiency, simplicity, low cost and ability to control large amount of power they efficiently control the speed of ac motors, light dimming and industrial heating, etc. These converters are variable structure systems and generate harmonics during the operation which will affect the power quality when connected to system network. During the last couple of years, a number of new semiconductor devices and various power electronic converters has been introduced. Accordingly the subject of harmonics and its problems are of great concern to power industry and customers. In this research work, initially the simulation models of single phase unidirectional and bidirectional ac voltage controllers were developed by using MATLAB software. The harmonics of these models are investigated by simulation. In the end, the harmonics were also analyzed experimentally. The simulated as well as experimental results are presented.
Poor qubits make for rich physics: noise-induced quantum Zeno effects and noise-induced Berry phases
Whitney, Robert S.
2009-01-01
We briefly review three ways that environmental noise can slow-down (or speed-up) quantum transitions; (i) Lamb shifts, (ii) over-damping and (iii) orthogonality catastrophe. We compare them with the quantum Zeno effect induced by observing the system. These effects are relevant to poor qubits (those strongly coupled to noise). We discuss Berry phases generated by the orthogonality catastrophe, and argue that noise may make it easier to observe Berry phases.
Application of Machine Learning Techniques for Amplitude and Phase Noise Characterization
Zibar, Darko; de Carvalho, Luis Henrique Hecker; Piels, Molly;
2015-01-01
In this paper, tools from machine learning community, such as Bayesian filtering and expectation maximization parameter estimation, are presented and employed for laser amplitude and phase noise characterization. We show that phase noise estimation based on Bayesian filtering outperforms...
Thermodynamics aspects of noise-induced phase synchronization
Pinto, Pedro D.; Oliveira, Fernando A.; Penna, André L. A.
2016-05-01
In this article, we present an approach for the thermodynamics of phase oscillators induced by an internal multiplicative noise. We analytically derive the free energy, entropy, internal energy, and specific heat. In this framework, the formulation of the first law of thermodynamics requires the definition of a synchronization field acting on the phase oscillators. By introducing the synchronization field, we have consistently obtained the susceptibility and analyzed its behavior. This allows us to characterize distinct phases in the system, which we have denoted as synchronized and parasynchronized phases, in analogy with magnetism. The system also shows a rich complex behavior, exhibiting ideal gas characteristics for low temperatures and susceptibility anomalies that are similar to those present in complex fluids such as water.
Phase synchronization of neuronal noise in mouse hippocampal epileptiform dynamics.
Serletis, Demitre; Carlen, Peter L; Valiante, Taufik A; Bardakjian, Berj L
2013-02-01
Organized brain activity is the result of dynamical, segregated neuronal signals that may be used to investigate synchronization effects using sophisticated neuroengineering techniques. Phase synchrony analysis, in particular, has emerged as a promising methodology to study transient and frequency-specific coupling effects across multi-site signals. In this study, we investigated phase synchronization in intracellular recordings of interictal and ictal epileptiform events recorded from pairs of cells in the whole (intact) mouse hippocampus. In particular, we focused our analysis on the background noise-like activity (NLA), previously reported to exhibit complex neurodynamical properties. Our results show evidence for increased linear and nonlinear phase coupling in NLA across three frequency bands [theta (4-10 Hz), beta (12-30 Hz) and gamma (30-80 Hz)] in the ictal compared to interictal state dynamics. We also present qualitative and statistical evidence for increased phase synchronization in the theta, beta and gamma frequency bands from paired recordings of ictal NLA. Overall, our results validate the use of background NLA in the neurodynamical study of epileptiform transitions and suggest that what is considered "neuronal noise" is amenable to synchronization effects in the spatiotemporal domain. PMID:23273129
Analysis of phase noise in a spin torque oscillator stabilized by phase locked loop
Tamaru, Shingo; Kubota, Hitoshi; Yakushiji, Kay; Fukushima, Akio; Yuasa, Shinji
2016-05-01
This study analyses phase noise in a spin torque oscillator (STO) stabilized by phase locked loop (PLL). Time domain measurement showed that phase error of the 6.996 GHz signal generated by a STO, which exhibited a random-walk type fluctuation under free running, was suppressed within a standard deviation of 0.408 rad by the PLL. Power spectrum under phase locked oscillation indicated that the PLL had a loop bandwidth of approximately 16 MHz, thus effectively suppressing phase error below 10 MHz. However, it was also found that power spectrum of the residual phase error was distributed much higher than the loop bandwidth.
Event-triggered feedback in noise-driven phase oscillators
Kromer, Justus A; Schimansky-Geier, Lutz
2014-01-01
Using a stochastic nonlinear phase oscillator model, we study the effect of event-triggered feedback on the statistics of interevent intervals. Events are associated with the entering of a new cycle. The feedback is modeled by an instantaneous increase (positive feedback) or decrease (negative feedback) of the oscillators frequency, whenever an event occurs followed by an exponential decay on a slow timescale. In contrast to previous works, we also consider positive feedback that leads to various novel effects. For instance, besides the known excitable and oscillatory regime, that are separated by a saddle-node on invariant circle bifurcation, positive feedback can lead to bistable dynamics and a change of the system's excitability. The feedback has also a strong effect on noise-induced phenomena like coherence resonance or anti-coherence resonance. Both positive and negative feedback can lead to more regular output for particular noise strengths. Finally, we investigate serial correlation in the sequence of ...
Infinite-noise criticality: Nonequilibrium phase transitions in fluctuating environments
Vojta, Thomas; Hoyos, Jose
We study the effects of time-varying environmental noise on nonequilibrium phase transitions in spreading and growth processes. Using the examples of the logistic evolution equation as well as the contact process, we show that such temporal disorder gives rise to a distinct type of critical points at which the effective noise amplitude diverges on long time scales. This leads to enormous density fluctuations characterized by an infinitely broad probability distribution at criticality. We develop a real-time renormalization-group theory that provides a general framework for the effects of temporal disorder on nonequilibrium processes. We also discuss how general this exotic critical behavior is, we illustrate the results by computer simulations, and we touch upon experimental applications of our theory. Supported by the NSF under Grant No. DMR-1205803, by Simons Foundation, by FAPESP under Grant No. 2013/09850-7, and by CNPq under Grant Nos. 590093/2011-8 and 305261/2012-6.
Current and noise in a model of an AC-STM molecule-metal junction
Guyon, R.; Jonckheere, T.; V. Mujica; Crepieux, A.; Martin, T
2004-01-01
The transport properties of a simple model for a finite level structure (a molecule or a dot) connected to metal electrodes in an alternating current scanning tunneling microscope (AC-STM) configuration is studied. The finite level structure is assumed to have strong binding properties with the metallic substrate, and the bias between the STM tip and the hybrid metal-molecule interface has both an AC and a DC component. The finite frequency current response and the zero frequency photo-assist...
Phase noise due to vibrations in Mach-Zehnder atom interferometers
Jacquey, Marion; Miffre, Alain; Büchner, Matthias; Trénec, Gérard; Vigué, Jacques
2006-01-01
Atom interferometers are very sensitive to accelerations and rotations. This property, which has some very interesting applications, induces a deleterious phase noise due to the seismic noise of the laboratory and this phase noise is sufficiently large to reduce the fringe visibility in many experiments. We develop a model calculation of this phase noise in the case of Mach-Zehnder atom interferometers and we apply this model to our thermal lithium interferometer. We are able to explain the o...
Phase Noise Monitor and Reduction by Parametric Saturation Approach in Phase Modulation Systems
XU Ming; ZHOU Zhen; PU Xiao; JI Jian-Hua; YANG Shu-Wen
2011-01-01
Nonlinear phase noise (NLPN) is investigated theoretically and numerically to be mitigated by parametric saturation approach in DPSK systems.The nonlinear propagation equation that incorporates the phase of linear and nonlinear is analyzed with parametric saturation processing (PSP).The NLPN is picked and monitored with the power change factors in the DPSK system.This process can be realized by an optical PSP limiter and a novel apparatus with feedback MZI.The monitor range of phase noise is 0°-90°, which may be reduced to 0°-45°if the monitor factor is about the Stockes wave but not an anti-Stockes wave.It is shown that DPSK signal performance can be improved based on the parametric saturation approach.%@@ Nonlinear phase noise (NLPN) is investigated theoretically and numerically to be mitigated by parametric saturation approach in DPSK systems.The nonlinear propagation equation that incorporates the phase of linear and nonlinear is analyzed with parametric saturation processing (PSP).The NLPN is picked and monitored with the power change factors in the DPSK system.This process can be realized by an optical PSP limiter and a novel apparatus with feedback MZI.The monitor range of phase noise is 0°-90°, which may be reduced to 0°-45° if the monitor factor is about the Stockes wave but not an anti-Stockes wave.It is shown that DPSK signal performance can be improved based on the parametric saturation approach.
Deterministic characterization of phase noise in biomolecular oscillators
On top of the many external perturbations, cellular oscillators also face intrinsic perturbations due the randomness of chemical kinetics. Biomolecular oscillators, distinct in their parameter sets or distinct in their architecture, show different resilience with respect to such intrinsic perturbations. Assessing this resilience can be done by ensemble stochastic simulations. These are computationally costly and do not permit further insights into the mechanistic cause of the observed resilience. For reaction systems operating at a steady state, the linear noise approximation (LNA) can be used to determine the effect of molecular noise. Here we show that methods based on LNA fail for oscillatory systems and we propose an alternative ansatz. It yields an asymptotic expression for the phase diffusion coefficient of stochastic oscillators. Moreover, it allows us to single out the noise contribution of every reaction in an oscillatory system. We test the approach on the one-loop model of the Drosophila circadian clock. Our results are consistent with those obtained through stochastic simulations with a gain in computational efficiency of about three orders of magnitude
Geometric phase of a qubit driven by a phase noise laser under non-Markovian dynamics
Berrada, K., E-mail: kberrada@ictp.it
2014-01-15
Robustness of the geometric phase (GP) with respect to the environmental effects is a basic condition for an effective quantum computation. Here, we study quantitatively the GP of a two-level atom system driven by a phase noise laser under non-Markovian dynamics in terms of different parameters involved in the whole system. We find that with the change of the damping coupling, the GP is very sensitive to its properties exhibiting long collapse and revival phenomena, which play a significant role in enhancing the stabilization and control of the system dynamics. Moreover, we show that the GP can be considered as a tool for testing and characterizing the nature of the qubit–environment coupling. Due to the significance of how a system is quantum correlated with its environment in the construction of a scalable quantum computer, the entanglement dynamics between the qubit with its environment under external classical noise is evaluated and investigated during the time evolution. -- Highlights: •Geometric phase under noise phase laser. •Dynamics of the geometric phase under non-Markovian dynamics in the presence of classical noise. •Solution of master equation of the system in terms atomic inversion. •Nonlocal correlation between the system and its environment under non-Markovianity.
Wu, Kan; Shum, Ping
2010-01-01
The phase noise and intensity noise of a pulse train are theoretically analyzed in the demodulation measurement. The effect of pulse asymmetry is discussed for the first time using Fourier series. Experimentally, photodetectors with different bandwidth and incident power levels are compared to achieve minimum pulse distortion.
The Effect of Noise on the Dirac Phase of Electron in The Presence of Screw Dislocation
Torabi, Reza
2011-01-01
The effect of noise on the Dirac phase of electron in the presence of screw dislocation is studied. An uncorrelated noise, which coincides with the nature of thermal fluctuations, is adopted. Results indicate that the Dirac phase is robust against existing noise in the system.
The effect of noise on the Dirac phase of electron in the presence of screw dislocation
Torabi, Reza, E-mail: rezatorabi@aut.ac.ir [Physics Department, Tafresh University, P.O. Box 39518-79611, Tafresh (Iran, Islamic Republic of)
2012-06-15
The effect of noise on the Dirac phase of electron in the presence of screw dislocation is studied. An uncorrelated noise, which coincides with the nature of thermal fluctuations, is adopted. Results indicate that the Dirac phase is robust against the existing noise in the system.
Residual phase noise measurements of the input section in a receiver
If not designed properly, the input section of an analog down-converter can introduce phase noise that can prevail over other noise sources in the system. In the paper we present residual phase noise measurements of a simplified input section of a classical receiver that is composed of various commercially available mixers and driven by an LO amplifier
Design of a novel phase-decoupling permanent magnet brushless ac motor
Cui, W.; Chau, KT; Jiang, JZ; Fan, Y.
2005-01-01
This paper presents a phase-decoupling permanent magnet brushless ac motor which can offer better controllability, faster response, and smoother torque than its counterparts. The key is due to its different motor configuration and simple scalar control. The motor configuration is so unique that it inherently offers the features of phase decoupling, flux focusing, and flux shaping, hence achieving independent phase control, fast response, and smooth torque. The scalar control is fundamentally ...
Phase noise analysis of clock recovery based on an optoelectronic phase-locked loop
Zibar, Darko; Mørk, Jesper; Oxenløwe, Leif Katsuo; Clausen, Anders
2007-01-01
A detailed theoretical analysis of a clock-recovery (CR) scheme based on an optoelectronic phase-locked loop is presented. The analysis emphasizes the phase noise performance, taking into account the noise of the input data signal, the local voltage-controlled oscillator (VCO), and the laser....... It is shown that a large loop length results in a higher timing jitter of the recovered clock signal. The impact of the loop length on the clock signal jitter can be reduced by using a low-noise VCO and a low loop filter bandwidth. Using the model, the timing jitter of the recovered optical and...... electrical clock signal can be evaluated. We numerically investigate the timing jitter requirements for combined electrical/optical local oscillators, in order for the recovered clock signal to have less jitter than that of the input signal. The timing jitter requirements for the free-running laser and the...
Colored Noise in First-order-like Phase Transition of a Laser System
HE Ying; ZHU Shiqun; LING Yinsheng
2002-01-01
The decoupling theory is employed to analyze the multiplicative colored noise in a single mode laser system. Steady state intensity distribution function is derived when colored noise is included in the laser system. The first-order-like phase transition driven by multiplicative colored noise is investigated and compared with the case of multiplicative white noise. It is shown that the noise correlation time can affect the parameter plane of the first-order-like phase transition. The steady state intensity distributions in a laser system is changed greatly with noise correlation time τ.
A single-phase embedded Z-source DC-AC inverter.
Kim, Se-Jin; Lim, Young-Cheol
2014-01-01
In the conventional DC-AC inverter consisting of two DC-DC converters with unipolar output capacitors, the output capacitor voltages of the DC-DC converters must be higher than the DC input voltage. To overcome this weakness, this paper proposes a single-phase DC-AC inverter consisting of two embedded Z-source converters with bipolar output capacitors. The proposed inverter is composed of two embedded Z-source converters with a common DC source and output AC load. Though the output capacitor voltages of the converters are relatively low compared to those of a conventional inverter, an equivalent level of AC output voltages can be obtained. Moreover, by controlling the output capacitor voltages asymmetrically, the AC output voltage of the proposed inverter can be higher than the DC input voltage. To verify the validity of the proposed inverter, experiments were performed with a DC source voltage of 38 V. By controlling the output capacitor voltages of the converters symmetrically or asymmetrically, the proposed inverter can produce sinusoidal AC output voltages. The experiments show that efficiencies of up to 95% and 97% can be achieved with the proposed inverter using symmetric and asymmetric control, respectively. PMID:25133241
High phase noise tolerant pilot-tone-aided DP-QPSK optical communication systems
Zhang, Xu; Pang, Xiaodan; Deng, Lei;
2012-01-01
In this paper we experimentally demonstrate a novel, high phase-noise tolerant, optical dual polarization (DP) quadrature phase-shift keying (QPSK) communication system based on pilot-tone-aided phase noise cancellation (PNC) algorithm. Vertical cavity surface emitting lasers (VCSELs) with...
Design of a novel phase-decoupling permanent magnet brushless ac motor
Cui, Wei; Chau, K. T.; Jiang, J. Z.; Fan, Ying
2005-05-01
This paper presents a phase-decoupling permanent magnet brushless ac motor which can offer better controllability, faster response, and smoother torque than its counterparts. The key is due to its different motor configuration and simple scalar control. The motor configuration is so unique that it inherently offers the features of phase decoupling, flux focusing, and flux shaping, hence achieving independent phase control, fast response, and smooth torque. The scalar control is fundamentally different from the complicated vector control. It can achieve direct torque control through independent control of the phase currents. The proposed motor is prototyped and experimentally verified.
Fixed switching frequency applied in single-phase boost AC to DC converter
Chen, Tien-Chi; Ou, Jin-Chyz [Dept. of Engineering Science, National Cheng Kung Univ., Tainan (China); Ren, Tsai-Jiun [Dept. of Information Engineering, Kun Shan Univ., Tainan (China)
2009-10-15
The fixed switching frequency control for a single-phase boost AC to DC converter to achieve a sinusoidal line current and unity power factor is proposed in this paper. The relation between the line current error and the fixed switching frequency was developed. For a limit line current error, the minimum switching frequency for a boost AC to DC converter can be achieved. The proposed scheme was implemented using a 32-bit digital signal processor TMS320C32. Simulations and experimental results demonstrate the feasibility and fast dynamic response of the proposed control strategy. (author)
Fixed switching frequency applied in single-phase boost AC to DC converter
The fixed switching frequency control for a single-phase boost AC to DC converter to achieve a sinusoidal line current and unity power factor is proposed in this paper. The relation between the line current error and the fixed switching frequency was developed. For a limit line current error, the minimum switching frequency for a boost AC to DC converter can be achieved. The proposed scheme was implemented using a 32-bit digital signal processor TMS320C32. Simulations and experimental results demonstrate the feasibility and fast dynamic response of the proposed control strategy.
Harmonic detection an AC excited generation system based on in-phase correlation filtering
无
2002-01-01
The paper reports results of investigation on the harmonic detection technique of a complicated power supply system such as an AC excited generation system, which has a variable fundamental frequency and low order harmonics with rich sub-harmonics whose frequencies are lower than the fundamental one. The in-phase correlation filtering technique, based on the frequency shifting principle, is proposed in this paper. Theoretical analysis and experimental results validate the effectiveness of this technique for the harmonic detections of AC excited generation systems.
Noise and ac impedance analysis of ion transfer kinetics at the micro liquid/liquid interface
Josypčuk, Oksana; Holub, Karel; Mareček, Vladimír
2015-01-01
Roč. 56, JUL 2015 (2015), s. 43-45. ISSN 1388-2481 R&D Projects: GA ČR GA13-04630S Institutional support: RVO:61388955 Keywords : noise analysis * liquid/liquid interface * ion transfer kinetics Subject RIV: CG - Electrochemistry Impact factor: 4.847, year: 2014
The Effects of Multiplicative Noise in Relativistic Phase Transitions
Antunes, Nuno D.; Gandra, Pedro; Rivers, Ray J.
2005-01-01
Effective stochastic equations for the continuous transitions of relativistic quantum fields inevitably contain multiplicative noise. We examine the effect of such noise in a numerical simulation of a temperature quench in a 1+1 dimensional scalar theory. We look at out-of-equilibrium defect formation and compare our results with those of stochastic equations with purely additive noise.
Power Controllability of Three-phase Converter with Unbalanced AC Source
Ma, Ke; Chen, Wenjie; Liserre, Marco; Blaabjerg, Frede
2015-01-01
Three-phase DC-AC power converters suffer from power oscillation and overcurrent problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC voltage....... currents. In this work a new series of control strategies which utilize the zerosequence components are proposed to enhance the power control ability under this adverse condition. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...
Power Controllability of Three-phase Converter with Unbalanced AC Source
Ma, Ke; Liserre, Marco; Blaabjerg, Frede
Three-phase DC-AC power converters suffer from power oscillation and overcurrentt problems in case of unbalanced AC source voltage that can be caused by grid/generator faults. Existing solutions to handle these problems are properly selecting and controlling the positive and negative sequence...... converter can enable more flexible control targets, achieving better performances in the delivered power and load current when suffering from unbalanced AC sources....... currents. In this work a new series of control strategies which utilize the zero-sequence components are proposed to enhance the power control ability under this adverse conditions. It is concluded that by introducing proper zero sequence current controls and corresponding circuit configurations, the power...
Noise and Fano-Factor Control in AC-Driven Aharonov-Casher Ring
Phillips A. H.; Ibrahim N. A.; Zein W. A.
2011-01-01
The spin dependent current and Fano factor of Aharonov-Casher semiconducting ring is investigated under the effect of microwave, infrared, ultraviolet radiation and magnetic field. Both the average current and the transport noise (Fano factor) characteristics are expressed in terms of the tunneling probability for the respective scattering channels. For spin transport induced by microwave and infrared radiation, a random oscillatory behavior of the Fano factor is observed. Th...
Interplay of noise and coupling in heterogeneous ensembles of phase oscillators
Zanette, Damian H.
2009-01-01
We study the effects of noise on the collective dynamics of an ensemble of coupled phase oscillators whose natural frequencies are all identical, but whose coupling strengths are not the same all over the ensemble. The intensity of noise can also be heterogeneous, representing diversity in the individual responses to external fluctuations. We show that the desynchronization transition induced by noise may be completely suppressed, even for arbitrarily large noise intensities, is the distribut...
Enhancement of VCO Linearity and Phase Noise by Implementing Frequency Locked Loop
Ayranci, E; Christensen, K; Andreani, Pietro
2007-01-01
noise frequency detector without a reference frequency (frequency-to-voltage converter), which is the most critical component of the FLL, is also presented in a 0.25 mum BiCMOS process. Linearization and approximately 15 dBc/Hz phase noise suppression is demonstrated over a moderate phase noise LC VCO......This paper investigates the on-chip implementation of a frequency locked loop (FLL) over a VCO that decreases the phase noise and linearizes the transfer function. Implementation of the FLL inside a PLL is also investigated and a possible application is highlighted. Design of a special kind of low...
A Non-linear Controller for Single-Phase AC-AC Power Converter to meet UPS Performance Index
Abdelhafid Ait Elmahjoub
2012-07-01
Full Text Available This article focuses on AC-AC power converter that can be used for uninterruptible power supply (UPS. The converter is built on two stages: a AC-DC input stage and a DC-AC output stage. The two blocks are connected by an intermediate DC bus. The aim of control is threefold: i power factor correction ii regulation of DC bus iii generating a sinusoidal voltage at the output. The synthesis of controllers has been achieved through the technique of nonlinear backstepping control. A detailed analysis of the stability control system is presented. The performances of regulators have been validated by numerical simulation in MATLAB / SIMULINK.
tACS phase locking of frontal midline theta oscillations disrupts working memory performance
Bankim Subhash Chander
2016-05-01
Full Text Available Frontal midline theta (FMT oscillations (4-8Hz are strongly related to cognitive and executive control during mental tasks such as memory processing, arithmetic problem solving or sustained attention. While maintenance of temporal order information during a working memory (WM task was recently linked to FMT phase, a positive correlation between FMT power, WM demand and WM performance was shown. However, the relationship between these measures is not well understood, and it is unknown whether purposeful FMT phase manipulation during a WM task impacts FMT power and WM performance. Here we present evidence that FMT phase manipulation mediated by transcranial alternating current stimulation (tACS can block WM demand-related FMT power increase and disrupt normal WM performance. Methods: 20 healthy volunteers were assigned to one of two groups (group A, group B and performed a 2-back task across a baseline block (block 1 and an intervention block (block 2 while 275-sensor magnetoencephalography (MEG was recorded. After no stimulation was applied during block 1, participants in group A received tACS oscillating at their individual FMT frequency over the prefrontal cortex (PFC while group B received sham stimulation during block 2. After assessing and mapping phase locking values (PLV between the tACS signal and brain oscillatory activity across the whole brain, FMT power and WM performance were assessed and compared between blocks and groups. Results: During block 2 of group A but not B, FMT oscillations showed increased PLV across task-related cortical areas underneath the frontal tACS electrode. While WM task-related FMT power increase (FMTpower and WM performance were comparable across groups in block 1, tACS resulted in lower FMTpower and WM performance compared to sham stimulation in block 2. Conclusion: tACS-related manipulation of FMT phase can disrupt WM performance and influence WM task-related FMT power increase. This finding may have
Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system
García-Armada, Ana; CALVO-RAMÓN, Miguel
1998-01-01
This letter analyzes the phase noise effects on an orthogonal frequency division multiplexing (OFDM) signal and its dependence with the sub-carrier spacing. Pilot-based channel estimation, which has been suggested as a means of combating the channel effects, can also correct the phase noise effects under some circumstances, which are investigated
The ferromagnetic phase transition in Sr1-xCaxRuO3 thin films studied by noise spectroscopy
Fluctuation (noise) spectroscopy is a powerful tool to investigate the intrinsic dynamics of charge carriers coupled to lattice vibrations and defects, or magnetic and electronic excitations. In principle, one can access the autocorrelation function describing the kinetics of the fluctuating carriers. We employ an ac-technique to study the excess 1/f-type noise at different temperatures and magnetic fields for samples Sr1-xCaxRuO3 with various Ca concentrations x. In particular, in our low-frequency studies we are interested in the energy distribution of fluctuators causing the excess noise in the vicinity of the ferromagnetic transition in the energy range of 1 meV-1 eV. To this end, we use a phenomenological random fluctuation model and compare the noise data to complementary measurements of the Hall effect. Also, we are investigating the differences of the low-temperature dynamical properties as a function of Ca doping, in particular close to the ferromagnetic quantum phase transition, where TC→0 for xc=0.7.
Delocalization of Phase Perturbations and the Stability of AC Electricity Grids
Kettemann, S.
2015-01-01
The energy transition towards an increased supply of renewable energy raises concerns that existing electricity grids, built to connect few centralized large power plants with consumers, may become more difficult to control and stabilized with a rising number of decentralized small scale generators. Here, we aim to study therefore, how local phase perturbations which may be caused by local power fluctuations, affect the AC grid stability. To this end, we start from nonlinear power balance equ...
Vector control of three-phase AC/DC front-end converter
J S Siva Prasad; Tushar Bhavsar; Rajesh Ghosh; G Narayanan
2008-10-01
A vector control scheme is presented for a three-phase AC/DC converter with bi-directional power ﬂow capability. A design procedure for selection of control parameters is discussed. A simple algorithm for unit-vector generation is presented. Starting current transients are studied with particular emphasis on high-power applications, where the line-side inductance is low. A starting procedure is presented to limit the transients. Simulation and experimental results are also presented.
T. Musch
2003-01-01
Full Text Available The generation of analogue frequency ramps with non-fractional phase-locked-loops (PLL is a cost effective way of linearising varactor controlled oscillators (VCO. In case that the VCO shows a high phase-noise level, a single non-fractional PLL is not able to suppress the phase-noise of the VCO sufficiently. The reason for this is the limited loopbandwidth of the PLL. In the field of precise measurements a high phase-noise level is mostly not tolerable. Examples of VCO-types with an extremely high phase noise level are integrated millimetre wave oscillators based on GaAs-HEMT technology. Both, a low quality factor of the resonator and a high flicker-noise corner frequency of the transistors are the main reason for the poor phase-noise behaviour. On the other hand this oscillator type allows a cost effective implementation of a millimetre-wave VCO. Therefore, a cascaded two-loop structure is presented that is able to linearise a VCO and additionally to reduce its phase-noise significantly.
Noise is all around you, from televisions and radios to lawn mowers and washing machines. Normally, you ... sensitive structures of the inner ear and cause noise-induced hearing loss. More than 30 million Americans ...
Dissemination stability and phase noise specification of fiber-cascaded RF frequency dissemination
Gao, C; Zhu, Xi; Yuan, Y B; Wang, L J
2015-01-01
Over the past decade, fiber based frequency dissemination has achieved significant progresses in following aspects. To study the dissemination stability and phase noise specifications of the fiber-cascaded RF frequency dissemination system, we perform a lab-top experiment using three sets of RF modulated frequency dissemination systems. They are linked by 50 km + 50 km +45 km fiber spools. The dissemination stabilities of each segments and whole system are measured simultaneously. After that, the phase noise of each segment is also measured and the result shows that the phase noise spectrums of recovered frequency signal can be optimized via narrow band phase lock loop.
Investigation of Electrode Erosion Mechanism of Multi-Phase AC Arc by High-Speed Video Camera
A multi-phase AC arc has been applied to the glass melting technology. However, the electrode erosion is one of the most considerable issues to be solved. In order to investigate the erosion mechanism of the multi-phase AC arc, the combination of the high-speed video camera and the band-pass filters was introduced to measure the electrode temperature. Results indicated the tip temperature of the electrode surface in the 12-phase arc was lower than that in the 2-phase arc, while erosion rate in 12-phase arc was higher than that in the 2-phase arc. Furthermore, the dynamic behaviour of the vapours in the arc was investigated by using the same high-speed camera system. The tungsten electrode mainly evaporates at the anodic period during AC cycle. The oxygen concentration in the arc increases with larger number of the phases, resulting in the higher erosion rate in the 12-phase arc.
Measured Aperture-Array Noise Temperature of the Mark II Phased Array Feed for ASKAP
Chippendale, A P; Beresford, R J; Hampson, G A; Shaw, R D; Hayman, D B; Macleod, A; Forsyth, A R; Hay, S G; Leach, M; Cantrall, C; Brothers, M L; Hotan, A W
2015-01-01
We have measured the aperture-array noise temperature of the first Mk. II phased array feed that CSIRO has built for the Australian Square Kilometre Array Pathfinder telescope. As an aperture array, the Mk. II phased array feed achieves a beam equivalent noise temperature less than 40 K from 0.78 GHz to 1.7 GHz and less than 50 K from 0.7 GHz to 1.8 GHz for a boresight beam directed at the zenith. We believe these are the lowest reported noise temperatures over these frequency ranges for ambient-temperature phased arrays. The measured noise temperature includes receiver electronics noise, ohmic losses in the array, and stray radiation from sidelobes illuminating the sky and ground away from the desired field of view. This phased array feed was designed for the Australian Square Kilometre Array Pathfinder to demonstrate fast astronomical surveys with a wide field of view for the Square Kilometre Array.
Phase noise modeling in LC oscillators implemented in SiGe technology
M.Bouhouche; S.Latreche; C.Gontrand
2013-01-01
This paper addresses phase noise analysis of a radiofrequency LC oscillator built around a SiGe heterojunction bipolar transistor (HBT) realized in a 0.35 μm BiCMOS process,as an active device.First,we give a brief background to SiGe HBT device physics.The key point is to initiate quantitative analysis on the influence of defects induced during extrinsic base implantation on electric performances of this device.These defects are responsible for the current fluctuations at the origin of low frequency noise in BiCMOS technologies.Next,we investigate the effect of implantation defects as a source of noise in semiconductors on the phase noise of a radiofrequency LC oscillator.We observe their influence on the oscillator phase noise,and we quantify the influence of their energy distribution in the semiconductor gap.Second,we give a behavioral model of an LC oscillator containing a SiGe HBT as an active device.The key goal is to study the susceptibility of a radiofrequency oscillator built around a SiGe HBT to phase noise disturbance sources.Based on the time variance behavior of phase noise in oscillators,transient simulations (in the time domain) were used to analyze the time-dependent noise sensitivity of the oscillator.
Low-Complexity Tracking of Laser and Nonlinear Phase Noise in WDM Optical Fiber Systems
Yankov, Metodi Plamenov; Fehenberger, Tobias; Barletta, Luca;
2015-01-01
on averaging, and therefore does not experience high error floors at high SNR in severe phase noise scenarios. The laser linewidth (LLW) tolerance is thereby increased for the entire SNR region compared to previous DD methods. In IDRA WDM links, the algorithm is shown to effectively combat the...... combined effect of both laser phase noise and non-linear phase noise, which cannot be neglected in such scenarios. In a more practical lumped amplification scheme, we show near-optimal performance for 16 QAM, 64 QAM, and 256 QAM with LLW up to 100 kHz, and reasonable performance for LLW of 1 MHz for 16 QAM...
Phase Noise of the Radio Frequency (RF) Beatnote Generated by a Dual-Frequency VECSEL
De, Syamsundar; Fsaifes, Ihsan; Pillet, Grégoire; Baili, Ghaya; Goldfarb, Fabienne; Alouini, Mehdi; Sagnes, Isabelle; Bretenaker, Fabien
2013-01-01
We analyze, both theoretically and experimentally, the phase noise of the radio frequency (RF) beatnote generated by optical mixing of two orthogonally polarized modes in an optically pumped dual-frequency Vertical External Cavity Surface Emitting Laser (VECSEL). The characteristics of the RF phase noise within the frequency range of 10 kHz - 50 MHz are investigated for three different nonlinear coupling strengths between the two lasing modes. In the theoretical model, we consider two different physical mechanisms responsible for the RF phase noise. In the low frequency domain (typically below 500 kHz), the dominant contribution to the RF phase noise is shown to come from the thermal fluctuations of the semicondutor active medium induced by pump intensity fluctuations. However, in the higher frequency domain (typically above 500 kHz), the main source of RF phase noise is shown to be the pump intensity fluctuations which are transfered to the intensity noises of the two lasing modes and then to the phase noise...
Wu, R; Makinwa, K.A.A.; Huijsing, J.H.
2009-01-01
This paper presents a chopper instrumentation amplifier for interfacing precision thermistor bridges. For high CMRR and DC gain, the amplifier employs a three-stage current-feedback topology with nested-Miller compensation. By chopping both the input and intermediate stages of the amplifier, a 1 mHz 1/f noise corner was achieved at an input-referred noise power spectral density (PSD) of 15 nV/Â¿Hz. To reduce chopper ripple, the amplifier employs a continuous-time AC-coupled ripple reduction l...
Experimental and theoretical studies of a dual-frequency laser free from anti-phase noise
El Amili, Abdelkrim; De, Syamsundar; Loas, Goulc'Hen; Bretenaker, Fabien; Alouini, Mehdi
2013-01-01
Strong reduction of the anti-phase intensity noise is shown in a two-polarization dual-frequency solid-state laser. The spectral behavior of the intensity noise correlations between the two orthogonally polarized modes is investigated, both experimentally and theoretically.
Dimensioning BCH codes for coherent DQPSK systems with laser phase noise and cycle slips
Leong, Miu Yoong; Larsen, Knud J.; Jacobsen, Gunnar;
2014-01-01
Forward error correction (FEC) plays a vital role in coherent optical systems employing multi-level modulation. However, much of coding theory assumes that additive white Gaussian noise (AWGN) is dominant, whereas coherent optical systems have significant phase noise (PN) in addition to AWGN. Thi...
Effect of thermal noise on the phase locking of a Josephson fluxon oscillator
Grønbech-Jensen, Niels; Salerno, Mario; Samuelsen, Mogens Rugholm
1992-01-01
The influence of thermal noise on fluxon motion in a long Josephson junction is investigated when the motion is phase locked to an external microwave signal. It is demonstrated that the thermal noise can be treated theoretically within the context of a two-dimensional map that models the dynamics...
Deng, Lei; Pang, Xiaodan; Zhang, Xu; Yu, Xianbin; Liu, Deming; Tafur Monroy, Idelfonso
2013-01-01
We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor.......We report on the transmission of 8 Gb/s 0 dB PAPR 16QAM-OFDM W-band (75-110 GHz) signals over 22.8km SMF without phase noise compensation by using a phase modulator in the optical heterodyne up-convertor....
A New Transformerless Single-Phase Buck-Boost AC Voltage Regulator
YALCIN, F.
2016-05-01
Full Text Available Voltage regulation is one of the important goals for electrical sources and consumers. In this paper a new transformerless single-phase AC voltage regulator based on buck-boost converter topology is presented. The regulator circuit has a simple structure using only two bidirectional active switches, one inductor and one capacitor. A closed loop control system is implemented for the proposed regulator operation. A control law depending on the instantaneous values of the regulator's real input and desired output voltage is obtained and supports the PI controller. The control law allows the controller to obtain efficient pulse width modulation (PWM switching duty ratio for the desired output voltage when the input voltage has surges or fluctuations and the output load is changed. An experimental laboratory setup has been implemented for the proposed AC voltage regulator. The obtained results demonstrate that the proposed topology is capable of and efficient for both bucking and boosting the input AC voltage to a high quality output voltage with a low total harmonic distortion (THD for different input voltage and load conditions.
Research of low-frequency model of a low noise microwave frequency (phase) detector
Ri, Bak Son; Solodkov, O. V.
2009-01-01
The analysis of a low frequency model of an original microwave frequency (phase) detector with amplitude modulator, shift generator and subtracting unit is performed and the results of experimental research are presented. This research leads to a conclusion on the possibility of suppressing the most intensive phase noise at the output of the considered frequency (phase) detector.
Recent Developments in Measuring Signal and Noise in Phased Array Feeds at CSIRO
Chippendale, A P; Bannister, K; Nikolic, N; Hotan, A W; Smart, K W; Shaw, R D; Hayman, D B; Hay, S G
2016-01-01
We describe recent developments in measuring both signal and noise in phased array feeds for radio astronomy at CSIRO. A number of new techniques are introduced and illustrated with a selection of results.
Design of Three Phase Solar-Based 4.5kw Ac Power Inverter Station
Dr.J.C. Onuegbu
2013-07-01
Full Text Available The design model of a 4.50Kilowatt, 3-phase, 50 hertz solar-based power generating station was examined by the paper. The power station is a dual source input generating station using 8 series connected 100A, 12V batteries per phase as backup, the solar panels being the main frame. An inverter of 12Volt direct current input voltage was incorporated to supply an output of 3-phase, 220Volts and 50 hertz alternating current. A charging circuit was installed to monitor charging level and to preserve the accumulator’s life span. The paper also looked into the solar-based power station component design model. The batteries therein are back-up and the system will ensure 24-hours reliable power supply. The setup has a normally closed switching relay ready to pickup the auxiliary battery supply within a few milliseconds after the solar source voltage drops below a stipulated level. The three phase a.c. voltage was achieved using standby on-line circuit with cascaded 741-based flip-flop at the base of the transistor drivers of the 3-phase power transformer. This model circuit reduced the load on each phase winding and facilitated reliable and uninterruptible power supply. The delta-wyeconnected transformer will guarantee proper phase shift of 120 degrees that will emulate alternating current voltage similar to the conventional generator voltage.
Intensity and phase noise correlations in a dual-frequency VECSEL operating at telecom wavelength
De, Syamsundar; Bouchoule, Sophie; Alouini, Mehdi; Bretenaker, Fabien
2015-01-01
The amplitude and phase noises of a dual-frequency vertical-external-cavity surface-emitting laser (DF-VECSEL) operating at telecom wavelength are theoretically and experimentally investigated in detail. In particular, the spectral behavior of the correlation between the intensity noises of the two modes of the DF-VECSEL is measured. Moreover, the correlation between the phase noise of the radio-frequency (RF) beatnote generated by optical mixing of the two laser modes with the intensity noises of the two modes is investigated. All these spectral behaviors of noise correlations are analyzed for two different values of the nonlinear coupling between the laser modes. We find that to describe the spectral behavior of noise correlations between the laser modes, it is of utmost importance to have a precise knowledge about the spectral behavior of the pump noise, which is the dominant source of noise in the frequency range of our interest (10 kHz to 35 MHz). Moreover, it is found that the noise correlation also dep...
Phase-field simulation of dendritic sidebranching induced by thermal noise
朱昌盛; 王智平; 荆涛; 柳百成
2004-01-01
The influence of undercooling and noise magnitude on dendritic sidebranching during crystal growth was investigated by simulation of a phase-field model which incorporates thermal noise. It is shown that, the sidebranching is not influenced with inclusion of the nonconserved noise, therefore, in order to save the computational costs it is often neglected; while conserved noise drives the morphological instability and is dominant origin of sidebranching. The dependence of temperature field on magnitude of thermal noise is apparent, when Fu gets an appropriate value, noise can induce sidebranching but not influence the dendritic tip operating state. In the small undercooled melt, the thermal diffusion layer collected around the dendrite is thick, which suppresses the growth of its sidebranching and makes the dendrite take on the morphology of no sidebranching, but when the undercooling is great,the thermal diffusion layer is thin, which is advantageous to the growth of the sidebranching and the dendrite presents the morphology of the developed sidebranching.
Atomic-ensemble-based quantum repeater against general polarization and phase noise
We present a quantum repeater architecture based on atomic ensembles, which is free of polarization and phase noise. With only simple optical elements, we can obtain the uncorrupted entanglement in the noisy channel. Even if the channel suffers from the general polarization and phase noise, the fidelity of transmitted qubits in our protocol can be stable and have no dependence on the noise parameter, which is a significant advantage compared with previous protocols. Moveover, we can even improve the fidelity by using time delayers. The proposed quantum repeater is feasible and useful in the long-distance quantum entanglement distribution and may be promising in other quantum-information applications.
Cao, Yuan; Chan, Erwin H W; Wang, Xudong; Feng, Xinhuan; Guan, Bai-ou
2015-10-15
A photonic microwave quadrature filter is presented. It has a very simple structure, very low phase imbalance, and high signal-to-noise ratio performance. Experimental results are presented that demonstrate a photonic microwave quadrature filter with a 3 dB operating frequency range of 10.5-26.5 GHz, an amplitude and phase imbalance of less than ±0.3 dB and ±0.15°, and a signal-to-noise ratio of more than 121 dB in a 1 Hz noise bandwidth. PMID:26469589
Absence of phase-dependent noise in time-domain reflectivity studies of impulsively excited phonons
Hussain, A.
2010-06-17
There have been several reports of phase-dependent noise in time-domain reflectivity studies of optical phonons excited by femtosecond laser pulses in semiconductors, semimetals, and superconductors. It was suggested that such behavior is associated with the creation of squeezed phonon states although there is no theoretical model that directly supports such a proposal. We have experimentally re-examined the studies of phonons in bismuth and gallium arsenide, and find no evidence of any phase-dependent noise signature associated with the phonons. We place an upper limit on any such noise at least 40–50 dB lower than previously reported.
Noise-and delay-induced phase transitions of the dimer–monomer surface reaction model
Highlights: ► We study the dimer–monomer surface reaction model. ► We show that noise induces first-order irreversible phase transition (IPT). ► Combination of noise and time-delayed feedback induce first- and second-order IPT. ► First- and second-order IPT is viewed as noise-and delay-induced phase transitions. - Abstract: The effects of noise and time-delayed feedback in the dimer–monomer (DM) surface reaction model are investigated. Applying small delay approximation, we construct a stochastic delayed differential equation and its Fokker–Planck equation to describe the state evolution of the DM reaction model. We show that the noise can only induce first-order irreversible phase transition (IPT) characteristic of the DM model, however the combination of the noise and time-delayed feedback can simultaneously induce first- and second-order IPT characteristics of the DM model. Therefore, it is shown that the well-known first- and second-order IPT characteristics of the DM model may be viewed as noise-and delay-induced phase transitions.
Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.
1982-01-01
Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.
Noise properties of grating-based x-ray phase contrast computed tomography
Purpose: To investigate the properties of tomographic grating-based phase contrast imaging with respect to its noise power spectrum and the energy dependence of the achievable contrast to noise ratio. Methods: Tomographic simulations of an object with 11 cm diameter constituted of materials of biological interest were conducted at different energies ranging from 25 to 85 keV by using a wave propagation approach. Using a Monte Carlo simulation of the x-ray attenuation within the object, it is verified that the simulated measurement deposits the same dose within the object at each energy. Results: The noise in reconstructed phase contrast computed tomography images shows a maximum at low spatial frequencies. The contrast to noise ratio reaches a maximum around 45 keV for the simulated object. The general dependence of the contrast to noise on the energy appears to be independent of the material. Compared with reconstructed absorption contrast images, the reconstructed phase contrast images show sometimes better, sometimes worse, and sometimes similar contrast to noise, depending on the material and the energy. Conclusions: Phase contrast images provide additional information to the conventional absorption contrast images and might thus be useful for medical applications. However, the observed noise power spectrum in reconstructed phase contrast images implies that the usual trade-off between noise and resolution is less efficient for phase contrast imaging compared with absorption contrast imaging. Therefore, high-resolution imaging is a strength of phase contrast imaging, but low-resolution imaging is not. This might hamper the clinical application of the method, in cases where a low spatial resolution is sufficient for diagnosis.
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gated Technique
Jothi Baskar A
2015-06-01
Full Text Available This project presents the low phase noise cmos quadrature voltage control oscillator using clock gating technique. Here the colpitts vco is used to split the capacitance in the Qvco circuit producing quadrature output. The startup condition in the oscillator is improved by using enhancement [12].This QVCO performs the operation anti phase injection locking fordevice reuse [8]. The new clock gating technique is used to reduce the power with thepower supply 1.5v. The QVCO uses a 0.5mwith phase error of 0.4 and exhibits a phase noise of -118dBc/HZ at 1MHZ offset at the centre frequency of 500MHZ. Index terms: current switching, clock gating, phase noise, Qvco
Extended Kalman filtering for joint mitigation of phase and amplitude noise in coherent QAM systems.
Pakala, Lalitha; Schmauss, Bernhard
2016-03-21
We numerically investigate our proposed carrier phase and amplitude noise estimation (CPANE) algorithm using extend Kalman filter (EKF) for joint mitigation of linear and non-linear phase noise as well as amplitude noise on 4, 16 and 64 polarization multiplexed (PM) quadrature amplitude modulation (QAM) 224 Gb/s systems. The results are compared to decision directed (DD) carrier phase estimation (CPE), DD phase locked loop (PLL) and universal CPE (U-CPE) algorithms. Besides eliminating the necessity of phase unwrapping function, EKF-CPANE shows improved performance for both back-to-back (BTB) and transmission scenarios compared to the aforementioned algorithms. We further propose a weighted innovation approach (WIA) of the EKF-CPANE which gives an improvement of 0.3 dB in the Q-factor, compared to the original algorithm. PMID:27136830
Temporal phase mask encrypted optical steganography carried by amplified spontaneous emission noise.
Wu, Ben; Wang, Zhenxing; Shastri, Bhavin J; Chang, Matthew P; Frost, Nicholas A; Prucnal, Paul R
2014-01-13
A temporal phase mask encryption method is proposed and experimentally demonstrated to improve the security of the stealth channel in an optical steganography system. The stealth channel is protected in two levels. In the first level, the data is carried by amplified spontaneous emission (ASE) noise, which cannot be detected in either the time domain or spectral domain. In the second level, even if the eavesdropper suspects the existence of the stealth channel, each data bit is covered by a fast changing phase mask. The phase mask code is always combined with the wide band noise from ASE. Without knowing the right phase mask code to recover the stealth data, the eavesdropper can only receive the noise like signal with randomized phase. PMID:24515055
ICI mitigation in concurrent multi-band receiver due to the phase noise and IQ imbalance
Lee, Hui-Kyu; Ryu, Heung-Gyoon
2012-06-01
For the next generation long-term evolution (LTE) advanced mobile communication system, 100 MHz bandwidth and 1 Gbit/s data speed are needed. However, there is not enough and wide vacant frequency band. Therefore, spectrum aggregation method has been studied to extend available frequency bands. Frequency synthesiser and power amplifier of transceiver should cover this wide bandwidth. The phase noise and In-phase and quadrature (IQ) imbalance would increase, which would be a serious problem in this transceiver. Also, signal-to-noise ratio becomes degraded because of nonlinearity and the quantisation noises of the Analog-to-digital conversion (ADC) in the receiver. Uplink of LTE-advanced uses Aggregated DFT-spread (NxDFT-S) orthogonal frequency division multiplexing (OFDM) signals. Since the effect of the phase noise and IQ imbalance are more serious in the multi-band Discrete Fourier transform (DFT)-spreading OFDM system, we like to analyse the effect of inter-carrier interference in frequency domain of receiver and the degradation of bit error rate (BER) performance. Also, by the channel response in frequency domain of the uplink system, we separate phase noise and IQ imbalance effect. Finally, we like to propose a compensation method that estimates the channel exactly and removes IQ imbalance and phase noise. Simulation result shows that the proposed method achieves the 2 dB performance gain of BER = 10-4.
A low phase noise microwave source for atomic spin squeezing experiments in 87Rb
We describe and characterize a simple, low cost, low phase noise microwave source that operates near 6.800 GHz for agile, coherent manipulation of ensembles of 87Rb. Low phase noise is achieved by directly multiplying a low phase noise 100 MHz crystal to 6.8 GHz using a nonlinear transmission line and filtering the output with custom band-pass filters. The fixed frequency signal is single sideband modulated with a direct digital synthesis frequency source to provide the desired phase, amplitude, and frequency control. Before modulation, the source has a single sideband phase noise near -140 dBc/Hz in the range of 10 kHz-1 MHz offset from the carrier frequency and -130 dBc/Hz after modulation. The resulting source is estimated to contribute added spin-noise variance 16 dB below the quantum projection noise level during quantum nondemolition measurements of the clock transition in an ensemble 7 x 10587Rb atoms.
Phase-unwrapping algorithm for images with high noise content based on a local histogram
Meneses, Jaime; Gharbi, Tijani; Humbert, Philippe
2005-03-01
We present a robust algorithm of phase unwrapping that was designed for use on phase images with high noise content. We proceed with the algorithm by first identifying regions with continuous phase values placed between fringe boundaries in an image and then phase shifting the regions with respect to one another by multiples of 2pi to unwrap the phase. Image pixels are segmented between interfringe and fringe boundary areas by use of a local histogram of a wrapped phase. The algorithm has been used successfully to unwrap phase images generated in a three-dimensional shape measurement for noninvasive quantification of human skin structure in dermatology, cosmetology, and plastic surgery.
Lassen, Mikael; Balslev-Harder, David; Petersen, Jan C
2014-01-01
A photoacoustic (PA) sensor based on higher order acoustic modes is demonstrated. The PA sensor is designed to enhance the gas-detection performance and simultaneously suppress ambient noise sources (e.g. flow noise, electrical noise and external acoustic noise). Two microphones are used and positioned such that the PA signals are ($\\pi$) out of phase. Ambient acoustic noise are approximately in the same phase and will be subtracted and thus improve the SNR. In addition, by placing the gas in- and outlets so that the gas flows through the node of the first higher order membrane mode the coupling of flow noise is approximately 20 dB lower compared with flow through the fundamental mode at 5 L/min. The noise reduction and thus the increase in sensitivity is demonstrated by measuring vibrational lines of methanol and methane using a broadband interband cascade laser emitting radiation at 3.38 $\\mu$m. A signal-to-noise improvement of 20 (26 dB) using higher order modes are demonstrated compared with the fundament...
Design and noise analysis of a fully-differential charge pump for phase-locked loops
A fully-differential charge pump (FDCP) with perfect current matching and low output current noise is realized for phase-locked loops (PLLs). An easily stable common-mode feedback (CMFB) circuit which can handle high input voltage swing is proposed. Current mismatch and current noise contribution from the CMFB circuit is minimized. In order to optimize PLL phase noise, the output current noise of the FDCP is analyzed in detail and calculated with the sampling principle. The calculation result agrees well with the simulation. Based on the noise analysis, many methods to lower output current noise of the FDCP are discussed. The fully-differential charge pump is integrated into a 1-2 GHz frequency synthesizer and fabricated in an SMIC CMOS 0.18 μm process. The measured output reference spur is -64 dBc to -69 dBc. The in-band and out-band phase noise is -95 dBc/Hz at 3 kHz frequency offset and -123 dBc/Hz at 1 MHz frequency offset respectively.
More on the 1/f(2) phase noise performance of CMOS differential-pair LC-tank oscillators
Andreani, Pietro; Fard, Ali
2006-01-01
This paper presents a rigorous phase noise analysis in the 1/f2 region for the differential CMOS LC-tank oscillator with both nMOS and pMOS switch pairs. A compact, closed-form phase noise equation is obtained, accounting for the noise contributions from both tank losses and transistors currents...
M. Sandhya
2015-03-01
Full Text Available There is ever increasing interest in underwater noise control onboard ships as part of concerted efforts to reduce ship’s radiated noise. Reduction of radiated noise is considered important as it will affect the performance of hydro-acoustic systems such as sonars, echo sounders, towed systems, etc. Out of three major sources of noise onboard ships, viz., machinery, propeller, and hydrodynamic noise, propeller noise is considered a major source beyond certain speed at which propellers cavitate produces cavitation noise. The inception speed of propeller cavitation is generally accompanied by sudden increase in radiated noise level of 8-15 dB when measured using a hydrophone placed on the seabed. This paper attempts to establish the concept of quadratic phase coupling index as an indicator to detect inception of cavitation of ship propellers. This concept was tested on actual ship radiated noise data measured at sea for evaluating its effectiveness.Defence Science Journal, Vol. 65, No. 1, January 2015, pp.53-62, DOI:http://dx.doi.org/10.14429/dsj.65.7885
Liu, Xiong; Wang, Peng; Loh, Poh Chiang;
2011-01-01
/DC rectifier and DC/AC inverter. A small size DC-link capacitor can be achieved through coordination control of rectifier and inverter to cancel the second-order oscillation power. Maximum available phase difference between rectifier’s and inverter’s modulation references is investigated to be dependent on...... their modulation indices of the six-switch converter, and high modulation indices are proved to be feasible for second-order power cancellation in the DC-link based on the phase difference analysis. Both reduced switch numbers and DC electrolytic capacitor size can be achieved using the proposed...
Solid-state dual-frequency laser free from anti-phase noise
El Amili, Abdelkrim; Loas, Goulc'Hen; De, Syamsundar; Schwartz, Sylvain; Feugnet, Gilles; Pocholle, Jean-Paul; Bretenaker, Fabien; Alouini, Mehdi
2013-01-01
Dual-frequency solid-state lasers are attractive for a large number of applications such as microwave photonics, spectroscopy, and metrology. As far as dual-frequency lasers are considered, the intensity noise spectrum of each eigenmode exhibits two peaks lying at the well-known in-phase and anti-phase eigen-frequencies of two coupled oscillators. The in-phase noise, which corresponds to the standard relaxation oscillations of the laser, can be reduced either electronically or optically using...
Numerical Verification of an Analytical Model for Phase Noise in MEMS Oscillators.
Agrawal, D K; Bizzarri, F; Brambilla, A; Seshia, A A
2016-08-01
A new analytical formulation for phase noise in MEMS oscillators was recently presented encompassing the role of essential nonlinearities in the electrical and mechanical domains. In this paper, we validate the effectiveness of the proposed analytical formulation with respect to the unified theory developed by Demir et al. describing phase noise in oscillators. In particular, it is shown that, over a range of the second-order mechanical nonlinear stiffness of the MEMS resonator, both models exhibit an excellent match in the phase diffusion coefficient calculation for a square-wave MEMS oscillator. PMID:27295660
On estimating the phase of periodic waveform in additive Gaussian noise, part 2
Rauch, L. L.
1984-11-01
Motivated by advances in signal processing technology that support more complex algorithms, a new look is taken at the problem of estimating the phase and other parameters of a periodic waveform in additive Gaussian noise. The general problem was introduced and the maximum a posteriori probability criterion with signal space interpretation was used to obtain the structures of optimum and some suboptimum phase estimators for known constant frequency and unknown constant phase with an a priori distribution. Optimal algorithms are obtained for some cases where the frequency is a parameterized function of time with the unknown parameters and phase having a joint a priori distribution. In the last section, the intrinsic and extrinsic geometry of hypersurfaces is introduced to provide insight to the estimation problem for the small noise and large noise cases.
The Noise-Sensitivity Phase Transition in Compressed Sensing
Donoho, David L; Montanari, Andrea
2010-01-01
Consider the noisy underdetermined system of linear equations: y=Ax0 + z0, with n x N measurement matrix A, n \\rhoMSE(\\delta). The phase boundary \\rho = \\rhoMSE(\\delta) is identical to the previously-known phase transition curve for equivalence of l1 - l0 minimization in the k-sparse noiseless case. Hence a single phase boundary describes the fundamental phase transitions both for the noiseless and noisy cases. Extensive computational experiments validate the predictions of this formalism, including the exis tence of game theoretical structures underlying it. Underlying our formalism is the AMP algorithm introduced earlier by the authors. Other papers by the authors detail expressions for the formal MSE of AMP and its close connection to l1-penalized reconstruction. Here we derive the minimax formal MSE of AMP and then read out results for l1-penalized reconstruction.
Inhomogeneity of the phase space of the damped harmonic oscillator under Levy noise
Cao, Zhan; Luo, Hong-Gang; 10.1103/PhysRevE.85.042101
2012-01-01
The damped harmonic oscillator under symmetric L\\'{e}vy white noise shows inhomogeneous phase space, which is in contrast to the homogeneous one of the same oscillator under the Gaussian white noise, as shown in a recent paper [I. M. Sokolov, W. Ebeling, and B. Dybiec, Phys. Rev. E \\textbf{83}, 041118 (2011)]. The inhomogeneity of the phase space shows certain correlation between the coordinate and the velocity of the damped oscillator under symmetric L\\'{e}vy white noise. In the present work we further explore the physical origin of these distinguished features and find that it is due to the combination of the damped effect and heavy tail of the noise. We demonstrate directly this in the reduced coordinate $\\tilde{x}$ versus velocity $\\tilde{v}$ plots and identify the physics of the anti-association of the coordinate and velocity.
Szczesniak, Pawel
2013-01-01
AC voltage frequency changes is one of the most important functions of solid state power converters. The most desirable features in frequency converters are the ability to generate load voltages with arbitrary amplitude and frequency, sinusoidal currents and voltages waveforms; the possibility of providing unity power factor for any load; and, finally, a simple and compact power circuit. Over the past decades, a number of different frequency converter topologies have appeared in the literature, but only the converters with either a voltage or current DC link are commonly used in industrial app
Xu, Tianhua; Popov, Sergei; Li, Jie; Sergeyev, Sergey; Friberg, Ari T; Liu, Tiegen; Zhang, Yimo
2016-01-01
The performance of long-haul coherent optical fiber transmission system is significantly affected by the equalization enhanced phase noise (EEPN), due to the interaction between the electronic dispersion compensation (EDC) and the laser phase noise. In this paper, we present a comprehensive study on different chromatic dispersion (CD) compensation and carrier phase recovery (CPR) approaches, in the n-level phase shift keying (n-PSK) and the n-level quadrature amplitude modulation (n-QAM) coherent optical transmission systems, considering the impacts of EEPN. Four CD compensation methods are considered: the time-domain equalization (TDE), the frequency-domain equalization (FDE), the least mean square (LMS) adaptive equalization are applied for EDC, and the dispersion compensating fiber (DCF) is employed for optical dispersion compensation (ODC). Meanwhile, three carrier phase recovery methods are also involved: a one-tap normalized least mean square (NLMS) algorithm, a block-wise average (BWA) algorithm, and a...
QI Xin; HOU Zhi-ling; TIAN Jian-long
2005-01-01
Magnetic Barkhausen Noise (MBN) is a phenomenon of electromagnetic energy emission due to the movement of magnetic domain walls inside ferromagnetic materials when they are locally magnetized by an altercoil attached to the surface of the material being magnetized and the noise carries the message of the characteristics of the material such as stresses, hardness, phase content, etc. Based on the characteristic of the noise, research about the relationship between the welding stresses in the welding assembly and the noise, the fatigue damage of the plate structure and the noise, and the influence of heat treatment and the variation of phase content to the noise are carried out in this paper.
Gottardi, Luciano; Gao, Jan-R; Hartog, Roland den; Hijmering, Richard; Hoevers, Henk; Khosropanah, Pourya; de Korte, Piet; van der Kuur, Jan; Lindeman, Mark; Ridder, Marcel
2016-01-01
SRON is developing the Frequency Domain Multiplexing (FDM) readout and the ultra low NEP TES bolometers array for the infrared spectrometer SAFARI on board of the Japanese space mission SPICA. The FDM prototype of the instrument requires critical and complex optimizations. For single pixel characterization under AC bias we are developing a simple FDM system working in the frequency range from 1 to 5 MHz, based on the open loop read-out of a linearized two-stage SQUID amplifier and high Q lithographic LC resonators. We describe the details of the experimental set-up required to achieve low power loading (< 1 fW) and low noise (NEP $\\sim 10^{-19} W/Hz^{1/2}$) in the TES bolometers. We conclude the paper by comparing the performance of a $4 \\cdot 10^{-19} W/Hz^{1/2}$ TES bolometer measured under DC and AC bias.
Phase noise effects on turbulent weather radar spectrum parameter estimation
Lee, Jonggil; Baxa, Ernest G., Jr.
1990-01-01
Accurate weather spectrum moment estimation is important in the use of weather radar for hazardous windshear detection. The effect of the stable local oscillator (STALO) instability (jitter) on the spectrum moment estimation algorithm is investigated. Uncertainty in the stable local oscillator will affect both the transmitted signal and the received signal since the STALO provides transmitted and reference carriers. The proposed approach models STALO phase jitter as it affects the complex autocorrelation of the radar return. The results can therefore by interpreted in terms of any source of system phase jitter for which the model is appropriate and, in particular, may be considered as a cumulative effect of all radar system sources.
Phase Noise in the Delta Kicked Rotor: From Quantum to Classical
White, D H; Ruddell, S. K.; Hoogerland, M.D.
2014-01-01
We experimentally investigate the effects of phase noise on the resonant and non-resonant dynamics of the atom-optics kicked rotor. Employing sinusoidal phase modulation at various frequencies, resonances are found corresponding to periodic phase shifts, resulting in the effective transformation of quantum anti-resonances into resonances and vice-versa. The stability of the resonance is analysed, with the aid of experiments, epsilon-classical theory and numerical simulations, and is found to ...
Simulations of Noise in Phase-Separated Transition-Edge Sensors for SuperCDMS
Anderson, A J; Pyle, M; Figueroa-Feliciano, E; McCarthy, K; Doughty, T; Cherry, M; Young, B
2011-01-01
We briefly review a simple model of superconducting-normal phase-separation in transition-edge sensors in the SuperCDMS experiment. After discussing some design considerations relevant to the TES in the detectors, we study noise sources in both the phase-separated and phase-uniform cases. Such simulations are valuable for optimizing the critical temperature and TES length of future SuperCDMS detectors.
Background: Although CT urography (CTU) is widely used for the evaluation of the entire urinary tract, the most important drawback is the radiation exposure. Purpose: To evaluate the effect of a noise reduction filter (NRF) using a phantom and to quantitatively and qualitatively compare excretory phase (EP) images using a low noise index (NI) with those using a high NI and postprocessing NRF (pNRF). Material and Methods: Each NI value was defined for a slice thickness of 5 mm, and reconstructed images with a slice thickness of 1.25 mm were assessed. Sixty patients who were at high risk of developing bladder tumors (BT) were divided into two groups according to whether their EP images were obtained using an NI of 9.88 (29 patients; group A) or an NI of 20 and pNRF (31 patients; group B). The CT dose index volume (CTDIvol) and the contrast-to-noise ratio (CNR) of the bladder with respect to the anterior pelvic fat were compared in both groups. Qualitative assessment of the urinary bladder for image noise, sharpness, streak artifacts, homogeneity, and the conspicuity of polypoid or sessile-shaped BTs with a short-axis diameter greater than 10 mm was performed using a 3-point scale. Results: The phantom study showed noise reduction of approximately 40% and 76% dose reduction between group A and group B. CTDIvol demonstrated a 73% reduction in group B (4.6 ± 1.1 mGy) compared with group A (16.9 ± 3.4 mGy). The CNR value was not significantly different (P = 0.60) between group A (16.1 ± 5.1) and group B (16.6 ± 7.6). Although group A was superior (P < 0.01) to group B with regard to image noise, other qualitative analyses did not show significant differences. Conclusion: EP images using a high NI and pNRF were quantitatively and qualitatively comparable to those using a low NI, except with regard to image noise
Microwave photonic link with improved phase noise using a balanced detection scheme
Hu, Jingjing; Gu, Yiying; Tan, Wengang; Zhu, Wenwu; Wang, Linghua; Zhao, Mingshan
2016-07-01
A microwave photonic link (MPL) with improved phase noise performance using a dual output Mach-Zehnder modulator (DP-MZM) and balanced detection is proposed and experimentally demonstrated. The fundamental concept of the approach is based on the two complementary outputs of DP-MZM and the destructive combination of the photocurrent in balanced photodetector (BPD). Theoretical analysis is performed to numerical evaluate the additive phase noise performance and shows a good agreement with the experiment. Experimental results are presented for 4 GHz, 8 GHz and 12 GHz transmission link and an 11 dB improvement of phase noise performance at 10 MHz offset is achieved compared to the conventional intensity-modulation and direct-detection (IMDD) MPL.
Phase noise analysis of injected gain switched comb source for coherent communications.
Zhou, Rui; Huynh, Tam N; Vujicic, Vidak; Anandarajah, Prince M; Barry, Liam P
2014-04-01
We present experimentally and analytically the phase noise characterization of an externally injected gain switched comb source. The results reveal the residual high frequency FM noise in the comb lines, which stays unnoticed in the optical linewidth value but leads to an increased phase-error variance. The potential impact of the residual phase noise is investigated in a 10.7 GBaud optical DQPSK system where a 2 dB power penalty is recorded at BER of 10(-9). In a 10.7 GBaud digital coherent QPSK system no penalty is observed but with 5 GBaud 16-QAM format a 3 dBpenalty exists at the FEC limit of 4.4e-3. PMID:24718188
Experimental Investigations on PV Powered SVM-DTC Induction Motor without AC Phase Current Sensors
T. Muthamizhan
2014-05-01
Full Text Available The paper presents a low-cost, phase-current reconstruction algorithm for space vector modulated direct torque controlled induction motor using the information obtained from only one shunt resistor which is in series with low side switches in a conventional three-phase inverter. The aim is to develop a low-cost high - performance induction motor drive. It uses the dc-link voltage and dc current to reconstruct the stator currents needed to estimate the motor flux and the electromagnetic torque. Photovoltaic arrays convert solar power to dc electric power; uses chopper and dc-ac inverter to fed three phase Induction Motor. The chopper used here is current fed full bridge boost dc-dc converter, which is preferred and extensively used in high voltage applications and advantageous over voltage fed converters. The inverter switches are controlled by PWM techniques obtained from SVM-DTC of IM. The experimental investigations are given to prove the ability of the proposed scheme of reproducing the performances of a SVM- DTC IM drive.
Hammer, Jan; Belzig, Wolfgang
2011-01-01
We study the quantum noise of the electronic current in a double-barrier system with a single resonant level. In the framework of the Landauer formalism, we treat the double barrier as a quantum coherent scattering region that can exchange photons with a coupled electric field, e.g., a laser beam or a periodic ac bias voltage. As a consequence of the manifold parameters that are involved in this system, a complicated steplike structure arises in the nonsymmetrized current-current autocorrelat...
Noise propagation in x-ray phase-contrast imaging and computed tomography
Three phase-retrieval algorithms, based on the transport-of-intensity equation and on the contrast transfer function for propagation-based imaging, and on the linearized geometrical optics approximation for analyser-based imaging, are investigated. The algorithms are compared in terms of their effect on propagation of noise from projection images to the corresponding phase-retrieved images and further to the computed tomography (CT) images/slices of a monomorphous object reconstructed using filtered backprojection algorithm. The comparison is carried out in terms of an integral noise characteristic, the variance, as well as in terms of a simple figure-of-merit, i.e. signal-to-noise ratio per unit dose. A gain factor is introduced that quantitatively characterizes the effect of phase retrieval on the variance of noise in the reconstructed projection images and in the axial slices of the object. Simple analytical expressions are derived for the gain factor and the signal-to-noise ratio, which indicate that the application of phase-retrieval algorithms can increase these parameters by up to two orders of magnitude compared to raw projection images and conventional CT, thus allowing significant improvement in the image quality and/or reduction of the x-ray dose delivered to the patient. (paper)
A flow pattern characterization of electrohydrodynamically (EHD) induced flow phenomena of a stratified dielectric fluid situated in an ac corona discharge field is conducted by a Schlieren optical system. A high voltage application to a needle-plate electrode arrangement in gas-phase normally initiates a conductive type EHD gas flow. Although the EHD gas flow motion initiated from the corona discharge electrode has been well known as corona wind, no comprehensive study has been conducted for an EHD fluid flow motion of the stratified dielectric liquid that is exposed to the gas-phase ac corona discharge. The experimentally observed result clearly presents the liquid-phase EHD flow phenomenon induced from the gas-phase EHD flow via an interfacial momentum transfer. The flow phenomenon is also discussed in terms of the gas-phase EHD number under the reduced gas pressure (reduced interfacial momentum transfer) conditions
Novel Rx IQ mismatch compensation considering laser phase noise for CO-OFDM system
Ma, Xiurong; Ding, Zhaocai; Li, Kun; Wang, Xiao
2015-08-01
In this paper, a novel compensation scheme for receiver (Rx) in-phase/quadrature (IQ) mismatch is proposed in coherent optical orthogonal frequency division multiplexing (CO-OFDM) system in the presence of laser phase noise. In this scheme, laser phase noise and channel distortion were combined as a new channel transfer factor, the IQ mismatch factor and initial channel transfer factor can be estimated independently based on the relationship of IQ mismatch factors. And the channel transfer factor can be updated on a symbol-by-symbol basis which retrieves an estimation of the phase noise value by extracting and averaging the phase drift of all OFDM sub-channels. Numerical results indicate that when the phase and amplitude mismatch are 10° and 2 dB respectively, a 1.6 dB optical signal-to noise ratio is improved at laser linewidth of 60 kHz. Furthermore, the complexity of the proposed method is analyzed in terms of the number of required complex multiplications per bit.
Experimental demonstration of a dual-frequency laser free from anti-phase noise
El Amili, Abdelkrim; Loas, Goulc'Hen; De, Syamsundar; Schwartz, Sylvain; Feugnet, Gilles; Pocholle, Jean-Paul; Bretenaker, Fabien; Alouini, Mehdi
2012-01-01
A reduction of more than 20 dB of the intensity noise at the anti-phase relaxation oscillation frequency is experimentally demonstrated in a two-polarization dual-frequency solid-state laser without any optical or electronic feedback loop. Such a behavior is inherently obtained by aligning the two orthogonally polarized oscillating modes with the crystallographic axes of a (100)-cut neodymium-doped yttrium aluminum garnet active medium. The anti-phase noise level is shown to increase as soon ...
In this study, a UHF oscillator is High Stability frequency Oscillator to improve phase noise of Superconducting Acceleratory. The main blocks of PLL have been designed including voltage controlled oscillator, phase frequency detector, and charge pump. The LC VCO has been used for a better noise property and low-power design. The source and drain junctions of PMOS transistors are used as the varactor diodes. The Analog Device has been used for the external pre-scaler and N-divider to divide VCO frequency and a third order RC filter is designed for the loop filter. The contents are internal and external study, methodology and results, achievement and contribution and others
Ultra-low phase noise all-optical microwave generation setup based on commercial devices
A. Didier; Millo, J.; Grop, S.; Dubois, B.; Bigler, E.; Rubiola, E.; Lacroûte, C.; Kersalé, Y.
2015-01-01
In this paper, we present a very simple design based on commercial devices for the all-optical generation of ultra-low phase noise microwave signals. A commercial, fibered femtosecond laser is locked to a laser that is stabilized to a commercial ULE Fabry-Perot cavity. The 10 GHz microwave signal extracted from the femtosecond laser output exhibits a single sideband phase noise $\\mathcal{L}(f)=-104 \\ \\mathrm{dBc}/\\mathrm{Hz}$ at 1 Hz Fourier frequency, at the level of the best value obtained ...
Optical phase noise engineering via acousto-optic interaction and its interferometric applications
Satapathy, Nandan; Bannerjee, Sourish; Ramachandran, Hema
2013-01-01
We exercise rapid and fine control over the phase of light by transferring digitally gen- erated phase jumps from radio frequency (rf) electrical signals onto light by means of acousto-optic interaction. By tailoring the statistics of phase jumps in the electrical signal and thereby engineering the optical phase noise, we manipulate the visibil- ity of interference fringes in a Mach-Zehnder interferometer that incorporates two acousto-optic modulators. Such controlled dephasing finds applications in modern experiments involving the spread or diffusion of light in an optical network. Further, we analytically show how engineered partial phase noise can convert the dark port of a stabilised interferometer to a weak source of highly correlated photons.
Design optimizations of phase noise, power consumption and frequency tuning for VCO
To meet the requirements of the low power Zigbee system, VCO design optimizations of phase noise, power consumption and frequency tuning are discussed in this paper. Both flicker noise of tail bias transistors and up-conversion of flicker noise from cross-coupled pair are reduced by improved self-switched biasing technology, leading to low close-in phase noise. Low power is achieved by low supply voltage and triode region biasing. To linearly tune the frequency and get constant gain, distributed varactor structure is adopted. The proposed VCO is fabricated in SMIC 0.18-μm CMOS process. The measured linear tuning range is from 2.38 to 2.61 GHz. The oscillator exhibits low phase noise of −77.5 dBc/Hz and −122.8 dBc/Hz at 10 kHz and 1 MHz offset, respectively, at 2.55 GHz oscillation frequency while dissipating 2.7 mA from 1.2 V supply voltage, which well meet design specifications. (semiconductor integrated circuits)
Xu, Zongbo; Xia, Jianghai; Luo, Yinhe; Cheng, Feng; Pan, Yudi
2016-04-01
People have calculated Rayleigh-wave phase velocities from vertical component of ambient seismic noise for several years. Recently, researchers started to extract Love waves from transverse component recordings of ambient noise, where "transverse" is defined as the direction perpendicular to a great-circle path or a line in small scale through observation sensors. Most researches assumed Rayleigh waves could be negligible, but Rayleigh waves can exist in the transverse component when Rayleigh waves propagate in other directions besides radial direction. In study of data acquired in western Junggar Basin near Karamay city, China, after processing the transverse component recordings of ambient noise, we obtain two energy trends, which are distinguished with Rayleigh-wave and Love-wave phase velocities, in the frequency-velocity domain using multichannel analysis of surface waves (MASW). Rayleigh waves could be also extracted from the transverse component data. Because Rayleigh-wave and Love-wave phase velocities are close in high frequencies (>0.1 Hz), two kinds of surface waves might be merged in the frequency-velocity domain. Rayleigh-wave phase velocities may be misidentified as Love-wave phase velocities. To get accurate surface-wave phase velocities from the transverse component data using seismic interferometry in investigating the shallow geology, our results suggest using MASW to calculate real Love-wave phase velocities.
Experimental demonstration of a dual-frequency laser free from anti-phase noise
Amili, Abdelkrim El; De, Syamsundar; Schwartz, Sylvain; Feugnet, Gilles; Pocholle, Jean-Paul; Bretenaker, Fabien; Alouini, Mehdi
2012-01-01
A reduction of more than 20 dB of the intensity noise at the anti-phase relaxation oscillation frequency is experimentally demonstrated in a two-polarization dual-frequency solid-state laser without any optical or electronic feedback loop. Such a behavior is inherently obtained by aligning the two orthogonally polarized oscillating modes with the crystallographic axes of a (100)-cut neodymium-doped yttrium aluminum garnet active medium. The anti-phase noise level is shown to increase as soon as one departs from this peculiar configuration, evidencing the predominant role of the nonlinear coupling constant. This experimental demonstration opens new perspectives on the design and realization of extremely low noise dual-frequency solid-state lasers.
Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner
Müller, Mark, E-mail: mark-mueller@ph.tum.de; Yaroshenko, Andre; Velroyen, Astrid; Tapfer, Arne [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Bech, Martin [Medical Radiation Physics, Lund University, Barngatan 2:1, 221 85 Lund (Sweden); Pauwels, Bart; Bruyndonckx, Peter; Sasov, Alexander [Bruker microCT, Kartuizersweg 3B, B-2550 Kontich (Belgium); Pfeiffer, Franz [Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Institut für diagnostische und interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München, 81675 München (Germany); Institute for Advanced Study, Technische Universität München, 85748 Garching (Germany)
2015-12-15
In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed.
Contrast-to-noise ratio optimization for a prototype phase-contrast computed tomography scanner
In the field of biomedical X-ray imaging, novel techniques, such as phase-contrast and dark-field imaging, have the potential to enhance the contrast and provide complementary structural information about a specimen. In this paper, a first prototype of a preclinical X-ray phase-contrast CT scanner based on a Talbot-Lau interferometer is characterized. We present a study of the contrast-to-noise ratios for attenuation and phase-contrast images acquired with the prototype scanner. The shown results are based on a series of projection images and tomographic data sets of a plastic phantom in phase and attenuation-contrast recorded with varying acquisition settings. Subsequently, the signal and noise distribution of different regions in the phantom were determined. We present a novel method for estimation of contrast-to-noise ratios for projection images based on the cylindrical geometry of the phantom. Analytical functions, representing the expected signal in phase and attenuation-contrast for a circular object, are fitted to individual line profiles of the projection data. The free parameter of the fit function is used to estimate the contrast and the goodness of the fit is determined to assess the noise in the respective signal. The results depict the dependence of the contrast-to-noise ratios on the applied source voltages, the number of steps of the phase stepping routine, and the exposure times for an individual step. Moreover, the influence of the number of projection angles on the image quality of CT slices is investigated. Finally, the implications for future imaging purposes with the scanner are discussed
A Three-Phase Dual-Input Matrix Converter for Grid Integration of Two AC Type Energy Resources
Liu, Xiong; Wang, Peng; Chiang Loh, Poh;
2013-01-01
-switch voltage source converter replaced by a nine-switch configuration. With the additional three switches, the proposed DIMC can provide six in put terminals, which make it possible to integrate two independent ac sources into a single grid-tied power electronics interface. The proposed converter has input......This paper proposes a novel dual-input matrix converter (DIMC) to integrate two three-phase ac type energy resources to a power grid. The proposed matrix converter is developed based on the traditional indirect matrix converter under reverse power flow operation mode, but with its six...
Contrast-to-noise in X-ray differential phase contrast imaging
Engel, K.J.; Geller, D.; Koehler, T.; Martens, G.; Schusser, S.; Vogtmeier, G.; Roessl, E.
2011-01-01
A quantitative theory for the contrast-to-noise ratio (CNR) in differential phase contrast imaging (DPCI) is proposed and compared to that of images derived from classical absorption contrast imaging (ACI). Most prominently, the CNR for DPCI contains the reciprocal of thespatial wavelength to be ima
Noise-shaping all-digital phase-locked loops modeling, simulation, analysis and design
Brandonisio, Francesco
2014-01-01
This book presents a novel approach to the analysis and design of all-digital phase-locked loops (ADPLLs), technology widely used in wireless communication devices. The authors provide an overview of ADPLL architectures, time-to-digital converters (TDCs) and noise shaping. Realistic examples illustrate how to analyze and simulate phase noise in the presence of sigma-delta modulation and time-to-digital conversion. Readers will gain a deep understanding of ADPLLs and the central role played by noise-shaping. A range of ADPLL and TDC architectures are presented in unified manner. Analytical and simulation tools are discussed in detail. Matlab code is included that can be reused to design, simulate and analyze the ADPLL architectures that are presented in the book. • Discusses in detail a wide range of all-digital phase-locked loops architectures; • Presents a unified framework in which to model time-to-digital converters for ADPLLs; • Explains a procedure to predict and simulate phase noise in oscil...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gated Technique
Jothi Baskar A; Kalpana R
2015-01-01
This project presents the low phase noise cmos quadrature voltage control oscillator using clock gating technique. Here the colpitts vco is used to split the capacitance in the Qvco circuit producing quadrature output. The startup condition in the oscillator is improved by using enhancement [12].This QVCO performs the operation anti phase injection locking fordevice reuse [8]. The new clock gating technique is used to reduce the power with thepower supply 1.5v. The QVCO uses a ...
Parametric study of EEG sensitivity to phase noise during face processing
Bennett Patrick J
2008-10-01
Full Text Available Abstract Background The present paper examines the visual processing speed of complex objects, here faces, by mapping the relationship between object physical properties and single-trial brain responses. Measuring visual processing speed is challenging because uncontrolled physical differences that co-vary with object categories might affect brain measurements, thus biasing our speed estimates. Recently, we demonstrated that early event-related potential (ERP differences between faces and objects are preserved even when images differ only in phase information, and amplitude spectra are equated across image categories. Here, we use a parametric design to study how early ERP to faces are shaped by phase information. Subjects performed a two-alternative force choice discrimination between two faces (Experiment 1 or textures (two control experiments. All stimuli had the same amplitude spectrum and were presented at 11 phase noise levels, varying from 0% to 100% in 10% increments, using a linear phase interpolation technique. Single-trial ERP data from each subject were analysed using a multiple linear regression model. Results Our results show that sensitivity to phase noise in faces emerges progressively in a short time window between the P1 and the N170 ERP visual components. The sensitivity to phase noise starts at about 120–130 ms after stimulus onset and continues for another 25–40 ms. This result was robust both within and across subjects. A control experiment using pink noise textures, which had the same second-order statistics as the faces used in Experiment 1, demonstrated that the sensitivity to phase noise observed for faces cannot be explained by the presence of global image structure alone. A second control experiment used wavelet textures that were matched to the face stimuli in terms of second- and higher-order image statistics. Results from this experiment suggest that higher-order statistics of faces are necessary but not
Makda, Ishtiyaq Ahmed; Nymand, Morten
2015-01-01
This paper presents the common-mode noise analysis and modeling of a phase-shifted full-bridge forward converter. The common-mode noise source due to a transformer inter-winding capacitance is considered for the case of study. The generated common-mode noise voltage-source in a converter is......-shifted forward converter is built to verify the theoretical analysis. This study shows that the primary-to-secondary transformer winding capacitance creates a very significant amount of common-mode noise current in a phase-shifted forward converter....... analytically determined, which then leads to a common-mode noise modeling of a phase-shifted converter. Using a proposed model, common-mode noise-current harmonics are calculated and a fully analytical filter design procedure is presented to comply with the CISPR-11 standard. Finally, a prototype phase...
Impulsive noise reduction in digital phase-sensitive demodulation by nonlinear filtering
Phase-sensitive demodulation is widely used in many systems, e.g. impedance measurement, communication, sonar and radar. In most cases, white noise is assumed in system design and analysis. However, impulsive noise is often encountered in many applications, which imposes challenges for a phase-sensitive demodulator (PSD). This paper presents a nonlinear filter for removing impulsive noise prior to the PSD. Unlike its linear counterparts, it is analysed in the time domain rather than in the frequency domain, making it easier to implement. The performance of the proposed method is compared to a standard PSD with a low-pass filter to suppress the impulsive noise and the theoretical limits of the signal-to-noise ratio (SNR) is analysed. The theoretical prediction has been validated by numerical simulation and experiment. Experimental results show that the proposed method can achieve SNR improvement of 10.8 dB or greater when impulse rate α = 0.01. Statistical analysis shows that 97.2% of the impulses can be rejected by the median filter of length 3 when impulse rate is less than or equal to 0.1. (paper)
Measuring Noise Temperatures of Phased-Array Antennas for Astronomy at CSIRO
Chippendale, Aaron; Hay, Stuart
2014-01-01
We describe the development of a noise-temperature testing capability for phased-array antennas operating in receive mode from 0.7 GHz to 1.8 GHz. Sampled voltages from each array port were recorded digitally as the zenith-pointing array under test was presented with three scenes: (1) a large microwave absorber at ambient temperature, (2) the unobstructed radio sky, and (3) broadband noise transmitted from a reference antenna centred over and pointed at the array under test. The recorded voltages were processed in software to calculate the beam equivalent noise temperature for a maximum signal-to-noise ratio beam steered at the zenith. We introduced the reference-antenna measurement to make noise measurements with reproducible, well-defined beams directed at the zenith and thereby at the centre of the absorber target. We applied a detailed model of cosmic and atmospheric contributions to the radio sky emission that we used as a noise-temperature reference. We also present a comprehensive analysis of measureme...
李蔚; 梅君瑶; 韩庆生; 王腾
2009-01-01
The analytical expression of bit error probability in a balanced differential phase-shift keying(DPSK) optical receiver considering nonlinear phase noise and EDFA ASE noise is given,which is very useful to estimate the performance of DPSK balanced and unbalanced receiver in optical communication system.Through analysis,if only nonlinear phase noise is considered,both the balance and unbalanced receivers have the same performances.But if adding the ASE noise of EDFA,the balanced receiver is better.
Schmeissner, Roman; Jacquard, Clément; Fabre, Claude; Treps, Nicolas
2014-01-01
The sensitivity of homodyne timing measurements with femtosecond lasers is only limited by the amplitude and phase noise. We describe a novel method to analyze the phase noise of a Ti:Sa oscillator relative to the standard quantum limit. The broadband passive cavity used to this aim also filters lowest levels of classical noise at sidebands above 100kHz detection frequency. Leading to quantum limited carrier-envelope-phase noise at $\\mu$s-timescales, it can improve the sensitivity of a highly sensitive, homodyne timing jitter measurement by 2 orders of magnitude.
Newkirk, Michael A.; Vahala, Kerry J.
1992-01-01
By the method of amplitude-phase decorrelation, intensity noise from a distributed feedback semiconductor laser is passively reduced up to 14.5 dB below its intrinsic level. At high laser power, reduction to 1.3 dB above the photon shot noise level is observed. The results agree with a simple model incorporating a power-independent source of phase noise in the laser rate equations.
Dielectric permittivity, ac conductivity and phase transition in hydroxyl ammonium sulfate
Abdel Kader, M M; Aboud, A I; Abdelmonem, H [Department of Physics, Faculty of Science, Cairo University (Egypt); Elzayat, M Y [Department of Physics, Faculty of Science, Fayoum University (Egypt); Hammad, T R, E-mail: mmahmodakader@yahoo.com [Department of Physics, Faculty of Science, Helwan University (Egypt)
2011-03-15
The complex dielectric permittivity ({epsilon}*={epsilon}'-j{epsilon}'') and ac conductivity {sigma} ({omega}, T) as a function of temperature (90-375 K) and frequency (0.4 kHz to {approx}100 kHz) were measured in this work for polycrystalline samples of hydroxyl ammonium sulfate, (NH{sub 3}OH){sub 2}SO{sub 4}. The measured electrical parameters revealed the existence of a structural phase transition at T{approx}312 K, which was further confirmed by a differential thermal analysis thermogram, where a clear endothermic peak centered at {approx}312 K is observed. Regarding the charge transport mechanism, it is likely that the behavior of frequency-dependent conductivity follows the universal dynamic response {sigma} ({omega},T)=A(T) {omega}{sup s(T)}. Moreover, the temperature dependence of the frequency exponent s (0{<=}s{<=}1) suggests the quantum mechanical tunneling model to be the most likely one that describes the electrical transport mechanism. The data correlate with the crystal structure and the hydrogen-bonding system.
Krishnan, Rajet; Khanzadi, M. Reza; Eriksson, Thomas; Svensson, Tommy
2013-01-01
In this paper, we address the classical problem of maximum-likelihood (ML) detection of data in the presence of random phase noise. We consider a system, where the random phase noise affecting the received signal is first compensated by a tracker/estimator. Then the phase error and its statistics are used for deriving the ML detector. Specifically, we derive an ML detector based on a Gaussian assumption for the phase error probability density function (PDF). Further without making any assumpt...
A Method to Eliminate Effect of Phase Noise in OFDM Synchronization System
无
1999-01-01
OFDM (the orthogonal frequency division multiplexing) and its variety DMT (the discrete multitone) as delegates of the multicarrier modulation technology have given a big impact on the conventional data communication applications. Based on the theoretic a analysis of the OFDM technology, the impact of phase noise that introduced by the bit and symbol timing mechanism is discussed. Then a pilot correction and the cyclic prefix protection method are put forwarded to deal with the problem. These methods have been used in our experimental OFDM cable modem system to cope with the impulse noise and narrow band interference in the HFC (hybrid fiber and coax) upstream channel.
A low phase noise and low spur PLL frequency synthesizer for GNSS receivers
A low phase noise and low spur phase locked loop (PLL) frequency synthesizer for use in global navigation satellite system (GNSS) receivers is proposed. To get a low spur, the symmetrical structure of the phase frequency detector (PFD) produces four control signals, which can reach the charge pump (CP) simultaneously, and an improved CP is realized to minimize the charge sharing and the charge injection and make the current matched. Additionally, the delay is controllable owing to the programmable PFD, so the dead zone of the CP can be eliminated. The output frequency of the VCO can be adjusted continuously and precisely by using a programmable LC-TANK. The phase noise of the VCO is lowered by using appropriate MOS sizes. The proposed PLL frequency synthesizer is fabricated in a 0.18 μm mixed-signal CMOS process. The measured phase noise at 1 MHz offset from the center frequency is −127.65 dBc/Hz and the reference spur is −73.58 dBc. (semiconductor integrated circuits)
Simple digital phase-measuring algorithm for low-noise heterodyne interferometry
Kokuyama, Wataru; Ohta, Akihiro; Hattori, Koichiro
2016-01-01
We present a digital algorithm for measuring the phase difference between two sinusoidal signals that combines the modified fringe-counting method with two-sample zero crossing to enable sequential signal processing. This technique can be applied to a phase meter for measuring dynamic phase differences with high resolution, particularly for heterodyne interferometry. The floor noise obtained from a demonstration with an electrical apparatus is $5\\times10^{-8} \\mathrm{rad/\\sqrt{Hz}}$ at frequencies above approximately 0.1 Hz. In addition, by applying this method to a commercial heterodyne interferometer, the floor-noise level is confirmed to be $7\\times10^{-14} \\mathrm{m/\\sqrt{Hz}}$ from 4 kHz to 1 MHz. We also confirm the validity of the algorithm by comparing its results with those from a standard homodyne interferometer for measuring shock-motion peak acceleration greater than 5000 m/s^2 and a 10 mm stroke.
Noise analysis of grating-based x-ray differential phase contrast imaging
The sensitivity of x-ray radiographic images, meaning the minimal detectable change in the thickness or in the index of refraction of a sample, is directly related to the uncertainty of the measurement method. In the following work, we report on the recent development of quantitative descriptions for the stochastic error of grating-based differential phase contrast imaging (DPCi). Our model includes the noise transfer characteristics of the x-ray detector and the jitter of the phase steps. We find that the noise in DPCi depends strongly on the phase stepping visibility and the sample properties. The results are supported by experimental evidence acquired with our new instrument with a field of view of 50x70 mm2. Our conclusions provide general guidelines to optimize grating interferometers for specific applications and problems.
Lebrun, R; Jenkins, A; Dussaux, A; Locatelli, N; Tsunegi, S; Grimaldi, E; Kubota, H; Bortolotti, P; Yakushiji, K; Grollier, J; Fukushima, A; Yuasa, S; Cros, V
2015-07-01
We investigate experimentally the synchronization of vortex based spin transfer nano-oscillators to an external rf current whose frequency is at multiple integers, as well as at an integer fraction, of the oscillator frequency. Through a theoretical study of the locking mechanism, we highlight the crucial role of both the symmetries of the spin torques and the nonlinear properties of the oscillator in understanding the phase locking mechanism. In the locking regime, we report a phase noise reduction down to -90 dBc/Hz at 1 kHz offset frequency. Our demonstration that the phase noise of these nanoscale nonlinear oscillators can be tuned and eventually lessened, represents a key achievement for targeted radio frequency applications using spin torque devices. PMID:26182117
Characterization of a DFG comb showing quadratic scaling of the phase noise with frequency.
Puppe, Thomas; Sell, Alexander; Kliese, Russell; Hoghooghi, Nazanin; Zach, Armin; Kaenders, Wilhelm
2016-04-15
We characterize an Er:fiber laser frequency comb that is passively carrier envelope phase-stabilized via difference frequency generation at a wavelength of 1550 nm. A generic method to measure the comb linewidth at different wavelengths is demonstrated. By transferring the properties of a comb line to a cw external cavity diode laser, the phase noise is subsequently measured by tracking the delayed self-heterodyne beat note. This relatively simple characterization method is suitable for a broad range of optical frequencies. Here, it is used to characterize our difference frequency generation (DFG) comb over nearly an optical octave. With repetition-rate stabilization, a radiofrequency reference oscillator limited linewidth is achieved. A lock to an optical reference shows out-of-loop linewidths of the comb at the hertz level. The phase noise measurements are in excellent agreement with the elastic tape model with a fix point at zero frequency. PMID:27082368
Low phase noise GaAs HBT VCO in Ka-band
Design and fabrication of a Ka-band voltage-controlled oscillator (VCO) using commercially available 1-μm GaAs heterojunction bipolar transistor technology is presented. A fully differential common-emitter configuration with a symmetric capacitance with a symmetric inductance tank structure is employed to reduce the phase noise of the VCO, and a novel π-feedback network is applied to compensate for the 180° phase shift. The on-wafer test shows that the VCO exhibits a phase noise of −96.47 dBc/Hz at a 1 MHz offset and presents a tuning range from 28.312 to 28.695 GHz. The overall dc current consumption of the VCO is 18 mA with a supply voltage of −6 V The chip area of the VCO is 0.7 × 0.7 mm2. (semiconductor integrated circuits)
Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B
2016-05-21
The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields. PMID:27100408
Allner, S.; Koehler, T.; Fehringer, A.; Birnbacher, L.; Willner, M.; Pfeiffer, F.; Noël, P. B.
2016-05-01
The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.
Amyan, Adham; Das, Pintu; Mueller, Jens [Physikalisches Institut, Goethe-Universitaet Frankfurt, Frankfurt am Main (Germany); Brandenburg, Jens [Max-Planck-Institute for Chemical Physics of Solids, Dresden (Germany); Schneider, Melanie; Moshnyaga, Vasily; Gegenwart, Philipp [Physikalisches Institut, Georg-August Universitaet Goettingen, Goettingen (Germany)
2010-07-01
Fluctuation (noise) spectroscopy is a powerful tool to investigate the intrinsic dynamics of charge carriers coupled to lattice vibrations and defects, or magnetic and electronic excitations. In principle, one can access the autocorrelation function describing the kinetics of the fluctuating carriers. We employ an ac-technique to study the excess 1/f-type noise at different temperatures and magnetic fields for samples Sr{sub 1-x}Ca{sub x}RuO{sub 3} with various Ca concentrations x. In particular, in our low-frequency studies we are interested in the energy distribution of fluctuators causing the excess noise in the vicinity of the ferromagnetic transition in the energy range of 1 meV-1 eV. To this end, we use a phenomenological random fluctuation model and compare the noise data to complementary measurements of the Hall effect. Also, we are investigating the differences of the low-temperature dynamical properties as a function of Ca doping, in particular close to the ferromagnetic quantum phase transition, where T{sub C}{yields}0 for x{sub c}=0.7.
The Single-Phase AC-DC Conversion Circuit with Power Factor Adjustable%功率因数可调单相AC-DC变换电路∗
杨力; 张师斌; 赵宁
2015-01-01
This design is a single-phase AC-DC conversion circuit with power factor adjustable based on UCC28019A. MSP430 is selected as the control core. We adopt the high precision 24-bitΣ-ΔADC to measure the input voltage RMS,the input current RMS,the active power RMS,the power factor and some other parameters. The power-factor correction is accomplished by UCC28019A. By controlling the digital phase shift circuit to shift the phase of the current feedback signal,the power factor can be set in the range of 0.8 to 1.0. By detecting the output current and voltage,the circuit has the function of 2.5A overcurrent protection and 36V regulated output.%基于UCC28019A设计的功率因数可调单相AC-DC变换电路。 MSP430单片机作为其控制核心，使用高精度24 bitΣ-Δ型ADC采样，可完成对输入电压有效值、输入电流有效值、有功功率有效值、功率因数等参数的测量。由UCC28019A完成功率因数的校正，通过控制数字移相电路对外围电流反馈信号移相，实现功率因数在0.8~1.0范围内的调整。本设计还可通过对输出电流和电压的监测，实现2.5 A过流保护和36 V稳压输出的功能。
Raco, Valerio; Bauer, Robert; Tharsan, Srikandarajah; Gharabaghi, Alireza
2016-01-01
Background: The corticospinal excitability indexed by motor evoked potentials (MEPs) following transcranial magnetic stimulation (TMS) of the sensorimotor cortex is characterized by large variability. The instantaneous phase of cortical oscillations at the time of the stimulation has been suggested as a possible source of this variability. To explore this hypothesis, a specific phase needs to be targeted by TMS pulses with high temporal precision. Objective: The aim of this feasibility study was to introduce a methodology capable of exploring the effects of phase-dependent stimulation by the concurrent application of alternating current stimulation (tACS) and TMS. Method: We applied online calibration and closed-loop TMS to target four specific phases (0°, 90°, 180° and 270°) of simultaneous 20 Hz tACS over the primary motor cortex (M1) of seven healthy subjects. Result: The integrated stimulation system was capable of hitting the target phase with high precision (SD ± 2.05 ms, i.e., ± 14.45°) inducing phase-dependent MEP modulation with a phase lag (CI95% = −40.37° to −99.61°) which was stable across subjects (p = 0.001). Conclusion: The combination of different neuromodulation techniques facilitates highly specific brain state-dependent stimulation, and may constitute a valuable tool for exploring the physiological and therapeutic effect of phase-dependent stimulation, e.g., in the context of neurorehabilitation. PMID:27252625
Collective phase dynamics of globally coupled oscillators: Noise-induced anti-phase synchronization
Kawamura, Yoji
2013-01-01
We formulate a theory for the collective phase description of globally coupled noisy limit-cycle oscillators exhibiting macroscopic rhythms. Collective phase equations describing such macroscopic rhythms are derived by means of a two-step phase reduction. The collective phase sensitivity and collective phase coupling functions, which quantitatively characterize the macroscopic rhythms, are illustrated using three representative models of limit-cycle oscillators. As an important result of the ...
Lie, Donald Y. C.; Lopez, J.
2011-04-01
A fully monolithic 1-Dimensional (1-D) AC-coupled Voltage-Controlled-Oscillators (VCOs) phased-array network design will be presented in this paper. This radio-frequency (RF) VCO array integrates on-chip inductors, varactors and bias current sources and it contains an odd number of VCOs AC-coupled through on-chip switchable resistor networks using MOSFETs. The measured results and SPICE simulated performance of the monolithic unit cell VCO agree reasonably well. Realistic circuit simulations in IBM 7HP 0.18 um BiCMOS design kit indicate promising results of the 1-D coupled-VCO array by showing the design can control the phasing of this on-chip VCO-array by means of tuning the edge elements and/or by varying the coupling strength via different resistor values using the on-chip MOSFET switches. Simulation data shows that it can offer high directivity and a possible element-to-element phase tuning arrangement that allows a ˜±20-30° degree coverage from broadside without the need for phase shifters or additional circuitry complexity. This AC-coupled 1-D VCO array, therefore, shows great potential for RF active antennas applications to perform wide angle beam steering for the highly used S-band.
Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft
Gibert, Ferran; Karnesis, Nikolaos; Gesa, Lluís; Martín, Víctor; Mateos, Ignacio; Lobo, Alberto; Flatscher, Reinhold; Gerardi, Domenico; Burkhardt, Johannes; Guzmán, Felipe; Heinzel, Gerhard; Danzmann, Karsten
2014-01-01
During the On-Station Thermal Test campaign of the LISA Pathfinder the data and diagnostics subsystem was tested in nearly space conditions for the first time after integration in the satellite. The results showed the compliance of the temperature measurement system, obtaining temperature noise around $10^{-4}\\,{\\rm K}\\, {\\rm Hz}^{-1/2}$ in the frequency band of $1-30\\;{\\rm mHz}$. In addition, controlled injection of heat signals to the suspension struts anchoring the LISA Technology Package (LTP) Core Assembly to the satellite structure allowed to experimentally estimate for the first time the phase noise contribution through thermo-elastic distortion of the LTP interferometer, the satellite's main instrument. Such contribution was found to be at $10^{-12}\\,{\\rm m}\\, {\\rm Hz}^{-1/2}$, a factor of 30 below the measured noise at the lower end of the measurement bandwidth ($1\\,{\\rm mHz}$).
Wide band low phase noise QVCO based on superharmonic injection locking
Yalan, Xu; Jinguang, Jiang; Jianghua, Liu
2016-01-01
A wide band, injection-coupled LC quadrature voltage control oscillator is presented. In the proposed circuit, two oscillators are injection locked by coupling their second-order harmonics in anti-phase, forcing the outputs of two oscillators into a quadrature phase state. As the common-mode point sampling the second harmonic frequency, flicker noise of the tail current is suppressed, the phase noise is reduced. The proposed design accomplishes a wide tuning frequency range by a combination of using a 5-bit switch capacitor array (SCA) for discrete tuning in addition to linearly varying AMOS varactors for continuous tuning. The proposed design has been fabricated and verified in a 0.18 μm TSMC CMOS technology process. The measurement indicates that the quadrature voltage controlled oscillator has a 41.7% tuning range from 3.53 to 5.39 GHz. The measured phase noise is 127.98 dBc/Hz at 1 MHz offset at a 1.8 V supply voltage with a power consumption of 12 mW at a carrier frequency of 4.85 GHz. Project supporteded by the National Natural Science Foundation of China (No. 41274047) and the Guangdong Province Science and Technology Program (No. 2013B090500049).
Wang, Kai; Luo, Yinhe; Yang, Yingjie
2016-05-01
We collect two months of ambient noise data recorded by 35 broad-band seismic stations in a 9 × 11 km area (1-3 km station interval) near Karamay, China, and do cross-correlation of noise data between all station pairs. Array beamforming analysis of the ambient noise data shows that ambient noise sources are unevenly distributed and the most energetic ambient noise mainly comes from azimuths of 40°-70°. As a consequence of the strong directional noise sources, surface wave components of the cross-correlations at 1-5 Hz show clearly azimuthal dependence, and direct dispersion measurements from cross-correlations are strongly biased by the dominant noise energy. This bias renders that the dispersion measurements from cross-correlations do not accurately reflect the interstation velocities of surface waves propagating directly from one station to the other, that is, the cross-correlation functions do not retrieve empirical Green's functions accurately. To correct the bias caused by unevenly distributed noise sources, we adopt an iterative inversion procedure. The iterative inversion procedure, based on plane-wave modeling, includes three steps: (1) surface wave tomography, (2) estimation of ambient noise energy and biases and (3) phase velocities correction. First, we use synthesized data to test the efficiency and stability of the iterative procedure for both homogeneous and heterogeneous media. The testing results show that: (1) the amplitudes of phase velocity bias caused by directional noise sources are significant, reaching ˜2 and ˜10 per cent for homogeneous and heterogeneous media, respectively; (2) phase velocity bias can be corrected by the iterative inversion procedure and the convergence of inversion depends on the starting phase velocity map and the complexity of the media. By applying the iterative approach to the real data in Karamay, we further show that phase velocity maps converge after 10 iterations and the phase velocity maps obtained using
Phase transitions in the majority-vote model with two types of noises
Vieira, Allan R
2015-01-01
In this work we study the majority-vote model with the presence of two distinc noises. The first one is the usual noise $q$, that represents the probability that a given agent follows the minority opinion of his/her social contacts. On the other hand, we consider the independent behavior, such that an agent can choose his/her own opinion $+1$ or $-1$ with equal probability, independent of the group's norm. We study the impact of the presence of such two kinds of stochastic driving in the phase transitions of the model, considering the mean field and the square lattice cases. Our results suggest that the model undergoes a nonequilibrium order-disorder phase transition even in the absence of the noise $q$, due to the independent behavior, but this transition may be suppressed. In addition, for both topologies analyzed, we verified that the transition is in the same universality class of the equilibrium Ising model, i.e., the critical exponents are not affected by the presence of the second noise, associated wit...
Phase transitions in the majority-vote model with two types of noises
Vieira, Allan R.; Crokidakis, Nuno
2016-05-01
In this work we study the majority-vote model with the presence of two distinct noises. The first one is the usual noise q, that represents the probability that a given agent follows the minority opinion of his/her social contacts. On the other hand, we consider the independent behavior, such that an agent can choose his/her own opinion + 1 or - 1 with equal probability, independent of the group's norm. We study the impact of the presence of such two kinds of stochastic driving in the phase transitions of the model, considering the mean field and the square lattice cases. Our results suggest that the model undergoes a nonequilibrium order-disorder phase transition even in the absence of the noise q, due to the independent behavior, but this transition may be suppressed. In addition, for both topologies analyzed, we verified that the transition is in the same universality class of the equilibrium Ising model, i.e., the critical exponents are not affected by the presence of the second noise, associated with independence.
Noise and Vibration Monitoring for Premium Efficiency IE 3 Three-Phase Induction Motors
NISTOR, C. G.
2015-08-01
Full Text Available The paper presents the original SV-100 platform that enables low-cost and very high accuracy determinations of noise and vibration levels. The aim of the proposed platform is to achieve an effective integration of the two topics of this analysis: vibrations and noises. To the best of our knowledge, no low price, dedicated compact platform with embedded measuring instruments exists. For proving the practical utility of the proposed platform, two induction motors of 7.5 kW and 11 kW, respectively, in single-layer winding, at 1000 rpm, with IE3 premium efficiency were analyzed. This analysis is required because, according to IEC60034-30 standard, the IE3 efficiency standard has become mandatory for induction motors of rated power greater than 7.5 kW. Therefore, in order to improve the motor operating efficiency, the power losses caused by noises and vibrations have to be reduced. Several variants of supply were studied, i.e., by the three-phase 50 Hz network and by a three-phase inverter at 40, 50 and 60 Hz, respectively. The experimental determinations of noises are presented comparatively, by using a Bruel&Kjaer sonometer and by using the new platform SV-100. The results are compared with the IEC60034 standard.
Stability Analysis of Three-Phase AC Power Systems Based on Measured D-Q Frame Impedances
Wen, Bo
2015-01-01
Small-signal stability is of great concern for distributed power systems with a large number of regulated power converters. These converters are constant-power loads (CPLs) exhibit a negative incremental input resistance within the output voltage regulation bandwidth. In the case of dc systems, design requirements for impedances that guarantee stability have been previously developed and are used in the design and specification of these systems. In terms of three-phase ac systems, a mathemati...
Geometric Phases, Noise and Non-adiabatic Effects in Multi-level Superconducting Systems
Berger, S.; Pechal, M.; Abdumalikov, A. A.; Steffen, L.; Fedorov, A.; Wallraff, A.; Filipp, S.
2012-02-01
Geometric phases depend neither on time nor on energy, but only on the trajectory of the quantum system in state space. In previous studies [1], we have observed them in a Cooper pair box qubit, a system with large anharmonicity. We now make use of a superconducting transmon-type qubit with low anharmonicity to study geometric phases in a multi-level system. We measure the contribution of the second excited state to the geometric phase and find very good agreement with theory treating higher levels perturbatively. Furthermore, we quantify non-adiabatic corrections by decreasing the manipulation time in order to optimize our geometric gate. Geometric phases have also been shown to be resilient against adiabatic field fluctuations [2]. Here, we analyze the effect of artificially added noise on the geometric phase for different system trajectories. [1] P. J. Leek et al., Science 318, 1889 (2007) [2] S. Filipp et al., Phys. Rev. Lett. 102, 030404 (2009)
A New Technique for Reduction the Phase Induced Intensity Noise in SAC-OCDMA Systems
Abd, Thanaa Hussein; Aljunid, Syed Alwee; Fadhil, Hilal Adnan
2011-12-01
A new code for reduction the phase induced intensity noise has been presented. The new code is proposed for Spectral Amplitude-Coding Optical Code Division Multiple Accesses (SAC-OCDMA). This new code family we call it Dynamic Cyclic Shift (DCS) code. The DCS code reduced the effect of Multi Access Interference (MAI) due to it is the property of variable cross correlation. We find that the performance of the DCS code is a batter than other SAC-OCDMA codes such as; Random Diagonal (RD) code, Modified Quadratic Congruence (MQC) code and Modified Frequency Hopping (MFH) code. Through the mathematical calculation and simulation analysis, for the bit-error rate of DCS code is significantly better than other SAC-OCDMA codes, the effect of Phase Induced Intensity Noise is reduced. In addition, proofof-principle simulations of 10 Gb/s for 20 km have been successfully demonstrated and achieved low BER compared to the other codes.
A low-phase-noise digitally controlled crystal oscillator for DVB TV tuners
Zhao Wei; Lu Lei; Tang Zhangwen, E-mail: zwtang@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)
2010-07-15
This paper presents a 25-MHz fully-integrated digitally controlled crystal oscillator (DCXO) with automatic amplitude control (AAC). The DCXO is based on Colpitts topology for one-pin solution. The AAC circuit is introduced to optimize the phase noise performance. The automatic frequency control is realized by a 10-bit thermometer-code segmental tapered MOS capacitor array, ensuring a {approx} 35 ppm tuning range and {approx} 0.04 ppm frequency step. The measured phase noise results are -139 dBc/Hz at 1 kHz and -151 dBc/Hz at 10 kHz frequency offset, respectively. The chip consumes 1 mA at 1.8V supply and occupies 0.4 mm{sup 2} in a 0.18-{mu}m CMOS process.
A low-phase-noise digitally controlled crystal oscillator for DVB TV tuners
Wei, Zhao; Lei, Lu; Zhangwen, Tang
2010-07-01
This paper presents a 25-MHz fully-integrated digitally controlled crystal oscillator (DCXO) with automatic amplitude control (AAC). The DCXO is based on Colpitts topology for one-pin solution. The AAC circuit is introduced to optimize the phase noise performance. The automatic frequency control is realized by a 10-bit thermometer-code segmental tapered MOS capacitor array, ensuring a ~ 35 ppm tuning range and ~ 0.04 ppm frequency step. The measured phase noise results are -139 dBc/Hz at 1 kHz and -151 dBc/Hz at 10 kHz frequency offset, respectively. The chip consumes 1 mA at 1.8V supply and occupies 0.4 mm2 in a 0.18-μm CMOS process.
A low-phase-noise digitally controlled crystal oscillator for DVB TV tuners
This paper presents a 25-MHz fully-integrated digitally controlled crystal oscillator (DCXO) with automatic amplitude control (AAC). The DCXO is based on Colpitts topology for one-pin solution. The AAC circuit is introduced to optimize the phase noise performance. The automatic frequency control is realized by a 10-bit thermometer-code segmental tapered MOS capacitor array, ensuring a ∼ 35 ppm tuning range and ∼ 0.04 ppm frequency step. The measured phase noise results are -139 dBc/Hz at 1 kHz and -151 dBc/Hz at 10 kHz frequency offset, respectively. The chip consumes 1 mA at 1.8V supply and occupies 0.4 mm2 in a 0.18-μm CMOS process.
Dissemination stability and phase noise specification of fiber-cascaded RF frequency dissemination
Gao, C.; Wang, B.; Zhu, Xi; Yuan, Y. B.; Wang, L. J.
2015-01-01
Over the past decade, fiber based frequency dissemination has achieved significant progresses in following aspects. To study the dissemination stability and phase noise specifications of the fiber-cascaded RF frequency dissemination system, we perform a lab-top experiment using three sets of RF modulated frequency dissemination systems. They are linked by 50 km + 50 km +45 km fiber spools. The dissemination stabilities of each segments and whole system are measured simultaneously. After that,...
Contrast-to-noise in X-ray differential phase contrast imaging
Engel, K.J.; Geller, D; Koehler, T.; Martens, G.; Schusser, S.; Vogtmeier, G.; Roessl, E
2011-01-01
A quantitative theory for the contrast-to-noise ratio (CNR) in differential phase contrast imaging (DPCI) is proposed and compared to that of images derived from classical absorption contrast imaging (ACI). Most prominently, the CNR for DPCI contains the reciprocal of thespatial wavelength to be imaged, the fringe visibility, and a tunable factor dependent on the system geometry. DPCI is thus potentiallybeneficial especially for the imaging of small object structures. We demonstrate CNR calcu...
STUDY OF THE EFFECTIVENESS OF ANTI-PHASE TECHNIQUE FOR COMMON MODE NOISE SUPPRESSION
无
2001-01-01
This paper discusses the properties of a novel boost converter with auxiliary anti-phase winding approach resulting in low conducted common code noise level. A simplified equivalent circuit of the proposed boost converter is modeled to analyze its performance and to show the influence of the parasitic winding capaci- tance, as well as the stray capacitances of the switching waveform nodes into the earth plane. Simulation and experimental results are shown to verify the concept.
Prediction error filtering has been found very useful for the identification of the depth phases corresponding to weak and shallow events. Its applicability can be further improved provided the ambient seismic noise is reduced by some means. A parametric model based on autoregressive (AR) method has been shown to be suitable for this purpose. In this method, the noise preceding the signal is modelled as an AR process. The time series comprising pre-event noise and the composite waveform consisting of P and the PP phases is filtered using the above AR model. Due to this filtering, the original time series is changed into a new time series. Though the P signal structure changes, the structure of the reflected or the depth phase also changes the same way. The spectrum of the new modified signal will be close to S(w)/N(w), where S(w) is the P wave spectrum and N(w) is the spectrum corresponding to the preceding noise in the original time series. The modified signal will have predominant amplitudes around the frequencies w, for which S(w) happens to be large compared to N(w). However, the new time series will be contaminated with a band limited white noise series. By appropriate digital filtering of the new time series and after remodelling the filtered time series using AR method, it has been shown that the onsets of the depth phases from very weak signals can be successfully extracted. A signal having signal to noise ratio (SNR) of 2 or more can be successfully subjected to this method for locating the onsets of the depth phases. For even weaker signals (SNR ≅ 1 ), one can subject the array beams to this method for the extraction of the depth phases. (author)
Kongskov, Rasmus Dalgas; Jørgensen, Jakob Sauer; Poulsen, Henning Friis;
2016-01-01
Classical reconstruction methods for phase-contrast tomography consist of two stages: phase retrieval and tomographic reconstruction. A novel algebraic method combining the two was suggested by Kostenko et al. [Opt. Express 21, 12185 (2013) [CrossRef], and preliminary results demonstrated improve...
Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.
2016-05-01
Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz).
Ishizawa, A.; Nishikawa, T.; Goto, T.; Hitachi, K.; Sogawa, T.; Gotoh, H.
2016-01-01
Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise “booster” for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040
Ishizawa, A; Nishikawa, T; Goto, T; Hitachi, K; Sogawa, T; Gotoh, H
2016-01-01
Low-noise millimetre-wave signals are valuable for digital sampling systems, arbitrary waveform generation for ultra-wideband communications, and coherent radar systems. However, the phase noise of widely used conventional signal generators (SGs) will increase as the millimetre-wave frequency increases. Our goal has been to improve commercially available SGs so that they provide a low-phase-noise millimetre-wave signal with assistance from an electro-optics-modulator-based optical frequency comb (EOM-OFC). Here, we show that the phase noise can be greatly reduced by bridging the vast frequency difference between the gigahertz and terahertz ranges with an EOM-OFC. The EOM-OFC serves as a liaison that magnifies the phase noise of the SG. With the EOM-OFC used as a phase noise "booster" for a millimetre-wave signal, the phase noise of widely used SGs can be reduced at an arbitrary frequency f (6 ≦ f ≦ 72 GHz). PMID:27185040
Laser phase induced intensity noise in fiber-optic signal processing and sensing systems
Arie, Ady
1991-03-01
The effects of random phase fluctuations in laser output on the performance of optical systems was studied. The statistical nature of phase induced intensity noise (PIIN) was measured and analysed by studying its probability density function and the second and fourth moments of the optical field at the output of several multiple path systems. The properties of the semiconductor laser, including broad spectral linewidth and non-Lorentzian line shape were shown to have significant influence on the generated PIIN. The PIIN statistics was first studied via the probability density function (PDF) of the beat signal obtained from a two-beam interferometer fed by the laser. Two distinct operating regimes could be defined, according to the ratio between the interferometer delay and the laser coherence time. Analytical expressions were obtained for statistical averages of the PIIN at the output of a general multiple path system; they represent the variance and autocovariance, and the power spectral density of the PIIN at the system output. The non-Lorentzian lineshape of the semiconductor laser was taken into account and the results obtained were found to differ from the Lorentzian model predictions; power spectrum measurements by means of a Mach-Zehnder interferometer confirmed the theoretical model. Analysis of the PIIN for complex signal processing systems comprising several subsystems showed that the PIIN spectrum was determined by two mechanisms: noise generation and noise filtration.
Llopis, Francisco
2013-01-01
The circuit presented in this paper aims at providing three 40 Vpp 50Hz AC voltages sources with 120-degree phase separation between them. This is a fully analogue circuit that uses standard, low-cost electronic components without resorting to a microcontroller as previously proposed by Shirvasar et al [1]. This circuit may serve as a basis for a low-voltage 3P-AC power supply that students may safely use to realize experiments, i.e. about the principles and applications of three-phase AC power lines, without the risk of electric shocks.
Noise-induced phase transition in the model of human virtual stick balancing
Zgonnikov, Arkady
2016-01-01
Humans face the task of balancing dynamic systems near an unstable equilibrium repeatedly throughout their lives. Much research has been aimed at understanding the mechanisms of intermittent control in the context of human balance control. The present paper deals with one of the recent developments in the theory of human intermittent control, namely, the double-well model of noise-driven control activation. We demonstrate that the double-well model can reproduce the whole range of experimentally observed distributions under different conditions. Moreover, we show that a slight change in the noise intensity parameter leads to a sudden shift of the action point distribution shape, that is, a phase transition is observed.
Impact of laser phase and amplitude noises on streak camera temporal resolution
Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement with a streak camera combined with a Ti:Al2O3 solid state laser oscillator and also a fiber oscillator
Noise-induced absorbing phase transition in a model of opinion formation
Vieira, Allan R
2016-01-01
In this work we study a 3-state ($+1$, $-1$, $0$) opinion model in the presence of noise and disorder. We consider pairwise competitive interactions, with a fraction $p$ of those interactions being negative (disorder). Moreover, there is a noise $q$ that represents the probability of an individual spontaneously change his opinion to the neutral state. Our aim is to study how the increase/decrease of the fraction of neutral agents affects the critical behavior of the system and the evolution of opinions. We derive analytical expressions for the order parameter of the model, as well as for the stationary fraction of each opinion, and we show that there are distinct phase transitions. One is the usual ferro-paramagnetic transition, that is in the Ising universality class. In addition, there are para-absorbing and ferro-absorbing transitions, presenting the directed percolation universality class. Our results are complemented by numerical simulations.
Anatomical background noise power spectrum in differential phase contrast breast images
Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong
2015-03-01
In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.
Bouchier, Aude; Saleh, Khaldoun; Merrer, Pierre-Henri; Llopis, Olivier
2011-01-01
Ultra high-Q optical resonators are interesting for microwave generation. We present the theoretical and experimental optimization of resonant fibre rings in order to reduce the phase noise of narrow linewidth microwave photonics oscillators.
Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography
Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging
Four-switch three-phase space-vector PWM AC-DC converter
Klíma, J.; Škramlík, Jiří; Valouch, Viktor
2008-01-01
Roč. 95, č. 4 (2008), s. 383-397. ISSN 0020-7217 Institutional research plan: CEZ:AV0Z20570509 Keywords : AC-DC converter * space-vector pulsewidth modulation * rectifier Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.567, year: 2008
Lloret, Juan; Ramos, Francisco; Xue, Weiqi;
2011-01-01
Different optical filtering scenarios involving microwave photonic phase shifters based on semiconductor optical amplifiers are investigated numerically as well as experimentally with respect to noise performance. Investigations on the role of the modulation depth and number of elements in cascaded...... shifting stages are also carried out. Suppression of the noise level by more than 5 dB has been achieved in schemes based on band-pass optical filtering when three phase shifting stages are cascaded....
A time-variant analysis of the 1/f^(2) phase noise in CMOS parallel LC-Tank quadrature oscillators
Andreani, Pietro
2006-01-01
This paper presents a study of 1/f2 phase noise in quadrature oscillators built by connecting two differential LC-tank oscillators in a parallel fashion. The analysis clearly demonstrates the necessity of adopting a time-variant theory of phase noise, where a more simplistic, time-invariant approach fails to explain numerical simulation results even at the qualitative level. Two topologies of 5-GHz parallel quadrature oscillators are considered, and compact but nevertheless highly general, cl...
Simple digital phase-measuring algorithm for low-noise heterodyne interferometry
Kokuyama, Wataru; Nozato, Hideaki; Ohta, Akihiro; Hattori, Koichiro
2016-08-01
We present a digital algorithm for measuring the phase of a sinusoidal signal that combines the modified digital fringe-counting method with two-sample zero crossing to enable sequential signal processing. This technique can be applied to a phase meter for measuring dynamic phase differences between two sinusoidal signals with high resolution, particularly for heterodyne interferometry. The floor noise obtained from a demonstration with an electrical apparatus is 5× {{10}-8} \\text{rad}\\text{/}{{\\sqrt{\\text{Hz}}}{}} at frequencies above approximately 0.1 Hz for 80 kHz signal frequency. In addition, by applying this method to a commercial heterodyne interferometer with a modulation frequency of 80 MHz, the floor-noise level is confirmed to be 7× {{10}-14}\\text{m}\\text{/}{{\\sqrt{\\text{Hz}}}{}} from 4 kHz to 1 MHz. We also confirm the validity of the algorithm by comparing its results with those from a standard homodyne interferometer for measuring shock-motion peak acceleration greater than 5000 \\text{m} {{\\text{s}}-2} and a 10 mm stroke.
Shagam, R.N.
1998-09-01
A novel method for the measurement of the change in index of refraction vs. temperature (dn/dT) of fused silica and calcium fluoride at the 193 nm wavelength has been developed in support of thermal modeling efforts for the development of 193 nm-based photolithographic exposure tools. The method, based upon grating lateral shear interferometry, uses a transmissive linear grating to divide a 193 nm laser beam into several beam paths by diffraction which propagate through separate identical material samples. One diffracted order passing through one sample overlaps the undiffracted beam from a second sample and forms interference fringes dependent upon the optical path difference between the two samples. Optical phase delay due to an index change from heating one of the samples causes the interference fringes to change sinusoidally with phase. The interferometer also makes use of AC phase measurement techniques through lateral translation of the grating. Results for several samples of fused silica and calcium fluoride are demonstrated.
Sanjeevikumar Padmanaban
2015-09-01
Full Text Available This paper considered a six-phase (asymmetrical induction motor, kept 30° phase displacement between two set of three-phase open-end stator windings configuration. The drive system consists of four classical three-phase voltage inverters (VSIs and all four dc sources are deliberately kept isolated. Therefore, zero-sequence/homopolar current components cannot flow. The original and effective power sharing algorithm is proposed in this paper with three variables (degree of freedom based on synchronous field oriented control (FOC. A standard three-level space vector pulse width modulation (SVPWM by nearest three vectors (NTVs approach is adopted to regulate each couple of VSIs. The proposed power sharing algorithm is verified by complete numerical simulation modeling (Matlab/Simulink-PLECS software of whole ac drive system by observing the dynamic behaviors in different designed condition. Set of results are provided in this paper, which confirms a good agreement with theoretical development.
Padmanaban, Sanjeevikumar; Grandi, Gabriele; Blaabjerg, Frede;
2015-01-01
This paper considered a six-phase (asymmetrical) induction motor, kept 30 phase displacement between two set of three-phase open-end stator windings configuration. The drive system consists of four classical three-phase voltage inverters (VSIs) and all four dc sources are deliberately kept isolated....... Therefore, zero-sequence/homopolar current components cannot flow. The original and effective power sharing algorithm is proposed in this paper with three variables (degree of freedom) based on synchronous field oriented control (FOC). A standard three-level space vector pulse width modulation (SVPWM) by...... nearest three vectors (NTVs) approach is adopted to regulate each couple of VSIs. The proposed power sharing algorithm is verified by complete numerical simulation modeling (Matlab/ Simulink-PLECS software) of whole ac drive system by observing the dynamic behaviors in different designed condition. Set of...
Estimation of MIMO channel capacity from phase-noise impaired measurements
Pedersen, Troels; Yin, Xuefeng; Fleury, Bernard Henri
2008-01-01
Due to the significantly reduced cost and effort for system calibration time-division multiplexing (TDM) is a commonly used technique to switch between the transmit and receive antennas in multiple-input multiple-output (MIMO) radio channel sounding. Nonetheless, Baum et al. [1], [2] have shown...... that phase noise of the transmitter and receiver local oscillators, when it is assumed to be a white Gaussian random process, can cause large errors of the estimated channel capacity of a low-rank MIMO channel when the standard channel matrix estimator is used. Experimental evidence shows that...
Microwave Oscillator with Phase Noise Reduction Using Nanoscale Technology for Wireless Systems
Aqeeli, Mohammed Ali M
2015-01-01
This thesis introduces, for the first time, a novel 4-bit, metal-oxide-metal (MOM) digital capacitor switching array (MOMDCSA) which has been implemented into a wideband CMOS voltage controlled oscillator (VCO) for 5 GHz WiMAX/WLAN applications. The proposed MOMDCSA is added both in series and parallel to nMOS varactors. For further gain linearity, a wider tuning range and minor phase noise variations, this varactor bank is connected in parallel to four nMOS varactor pairs, each of which is b...
Tahir, I.; Dexter, A.; Carter, Richard G.
2005-01-01
Low-power continuous wave ``cooker'' magnetrons driven from industrial-quality switch-mode power supplies have been frequency locked by driving them as current-controlled oscillators in a phase-lock loop (PLL). The noise performance of these frequency-locked oscillators is reported as a function of heater power. The injection of -30- to -40-dB signals derived from the reference oscillator of the PLL into the magnetron's output waveguide while the anode current is controlled by the PLL is show...
Arias, A; Shlyagin, M G; Miridonov, S V; Manuel, Rodolfo Martinez
2015-11-16
We propose and experimentally demonstrate a simple approach to realize a phase-sensitive correlation optical time-domain reflectometer (OTDR) suitable for detection and localization of dynamic perturbations along a single-mode optical fiber. It is based on the quantum phase fluctuations of a coherent light emitted by a telecom DFB diode laser. Truly random probe signals are generated by an interferometer with the optical path difference exceeding the coherence length of the laser light. Speckle-like OTDR traces were obtained by calculating cross-correlation functions between the probe light and the light intensity signals returned back from the sensing fiber. Perturbations are detected and localized by monitoring time variations of correlation amplitude along the fiber length. Results of proof-of-concept experimental testing are presented using an array of ultra-low-reflectivity fiber Bragg gratings as weak reflectors. PMID:26698514
A consideration of the signal-to-noise ratio in phase contrast mammography
Kato, Yuri; Fujita, Naotoshi; Kodera, Yoshie
2010-04-01
Recently, with developments in medicine, digital systems such as computed radiography (CR) and flat-panel detector (FPD) systems are being employed for mammography instead of analog systems such as the screen-film system. Phase-contrast mammography (PCM) is a commercially available digital system that uses images with a magnification of 1.75x. To study the effect of the air gap in PCM, we measured the scatter fraction ratio (SFR) and calculated the signal-to-noise ratio (SNR) in PCM, and compared it to that in conventional mammography (CM). Then, to extend the SNR to the spatial frequency domain, we calculated the noise equivalent quanta (NEQ) and detective quantum efficiency (DQE) used by the modulation transfer function (MTF), noise power spectrum of the pixel value (NPSΔPV), gradient of the digital characteristic curve, and number of X-ray photons. The obtained results indicated that the SFR of the PCM was as low as that of the CM with a grid. When the exposure dose was constant, the SNR of the PCM was the highest in all systems. Moreover, the NEQ and DQE for the PCM were higher than those for the CM (G-) in the spatial frequency domain over 2.5 cycles/mm. These results showed that the number of scattered X-rays was reduced sufficiently by the air gap in the PCM and the NEQ and DQE for PCM were influenced by the presampled MTF in the high-spatial-frequency domain.
Yu, Nan
Time-delay-interferometer (TDI) is well established as an effective technique to mitigate laser phase noises in laser interferometer gravitational wave detection (GWD). Just as important in the TDI scheme is the ability to suppress the rf local oscillator noise (LO) in the optical heterodyne measurements. We show that LO noises can be effectively and elegantly cancelled by employing optical frequency combs in which the rf signal phases are coherent with the optical phases. In addition, the deployment of optical combs eliminates the need for separate ultra-stable oscillators. This is a simpler and more reliable approach than the modulation scheme, and it can be applied to the most generalized TDI combinations. In this proposed effort, we will investigate the application of optical combs in TDI and demonstrate in a test bed simultaneous noise cancellations in both ranging lasers and rf LOs in a generalized TDI configuration.
Noise and analyzer-crystal angular position analysis for analyzer-based phase-contrast imaging
The analyzer-based phase-contrast x-ray imaging (ABI) method is emerging as a potential alternative to conventional radiography. Like many of the modern imaging techniques, ABI is a computed imaging method (meaning that images are calculated from raw data). ABI can simultaneously generate a number of planar parametric images containing information about absorption, refraction, and scattering properties of an object. These images are estimated from raw data acquired by measuring (sampling) the angular intensity profile of the x-ray beam passed through the object at different angular positions of the analyzer crystal. The noise in the estimated ABI parametric images depends upon imaging conditions like the source intensity (flux), measurements angular positions, object properties, and the estimation method. In this paper, we use the Cramér–Rao lower bound (CRLB) to quantify the noise properties in parametric images and to investigate the effect of source intensity, different analyzer-crystal angular positions and object properties on this bound, assuming a fixed radiation dose delivered to an object. The CRLB is the minimum bound for the variance of an unbiased estimator and defines the best noise performance that one can obtain regardless of which estimation method is used to estimate ABI parametric images. The main result of this paper is that the variance (hence the noise) in parametric images is directly proportional to the source intensity and only a limited number of analyzer-crystal angular measurements (eleven for uniform and three for optimal non-uniform) are required to get the best parametric images. The following angular measurements only spread the total dose to the measurements without improving or worsening CRLB, but the added measurements may improve parametric images by reducing estimation bias. Next, using CRLB we evaluate the multiple-image radiography, diffraction enhanced imaging and scatter diffraction enhanced imaging estimation techniques
Phase noise in pulsed Doppler lidar and limitations on achievable single-shot velocity accuracy
Mcnicholl, P.; Alejandro, S.
1992-01-01
The smaller sampling volumes afforded by Doppler lidars compared to radars allows for spatial resolutions at and below some sheer and turbulence wind structure scale sizes. This has brought new emphasis on achieving the optimum product of wind velocity and range resolutions. Several recent studies have considered the effects of amplitude noise, reduction algorithms, and possible hardware related signal artifacts on obtainable velocity accuracy. We discuss here the limitation on this accuracy resulting from the incoherent nature and finite temporal extent of backscatter from aerosols. For a lidar return from a hard (or slab) target, the phase of the intermediate frequency (IF) signal is random and the total return energy fluctuates from shot to shot due to speckle; however, the offset from the transmitted frequency is determinable with an accuracy subject only to instrumental effects and the signal to noise ratio (SNR), the noise being determined by the LO power in the shot noise limited regime. This is not the case for a return from a media extending over a range on the order of or greater than the spatial extent of the transmitted pulse, such as from atmospheric aerosols. In this case, the phase of the IF signal will exhibit a temporal random walk like behavior. It will be uncorrelated over times greater than the pulse duration as the transmitted pulse samples non-overlapping volumes of scattering centers. Frequency analysis of the IF signal in a window similar to the transmitted pulse envelope will therefore show shot-to-shot frequency deviations on the order of the inverse pulse duration reflecting the random phase rate variations. Like speckle, these deviations arise from the incoherent nature of the scattering process and diminish if the IF signal is averaged over times greater than a single range resolution cell (here the pulse duration). Apart from limiting the high SNR performance of a Doppler lidar, this shot-to-shot variance in velocity estimates has a
Optimal bandpass sampling strategies for enhancing the performance of a phase noise meter
Measurement of phase noise affecting oscillators or clocks is a fundamental practice whenever the need of a reliable time base is of primary concern. In spite of the number of methods or techniques either available in the literature or implemented as personalities in general-purpose equipment, very accurate measurement results can be gained only through expensive, dedicated instruments. To offer a cost-effective alternative, the authors have already realized a DSP-based phase noise meter, capable of assuring good performance and real-time operation. The meter, however, suffers from a reduced frequency range (about 250 kHz), and needs an external time base for input signal digitization. To overcome these drawbacks, the authors propose the use of bandpass sampling strategies to enlarge the frequency range, and of an internal time base to make standalone operation much more feasible. After some remarks on the previous version of the meter, key features of the adopted time base and proposed sampling strategies are described in detail. Results of experimental tests, carried out on sinusoidal signals provided both by function and arbitrary waveform generators, are presented and discussed; evidence of the meter's reliability and efficacy is finally given
2006-01-01
Full Text Available This paper presents a complete noise analysis of a ΣΔ -based fractional- N phase-locked loop (PLL based frequency synthesizer. Rigorous analytical and empirical formulas have been given to model various phase noise sources and spurious components and to predict their impact on the overall synthesizer noise performance. These formulas have been applied to an integrated multiband WLAN frequency synthesizer RFIC to demonstrate noise minimization through judicious choice of loop parameters. Finally, predicted and measured phase jitter showed good agreement. For an LO frequency of 4.3 GHz, predicted and measured phase noise was 0.50 ° rms and 0.535 ° rms, respectively.
Tanaka, Manabu; Hashizume, Taro; Imatsuji, Tomoyuki; Nawata, Yushi; Watanabe, Takayuki
2015-09-01
A multi-phase AC arc has been developed for applications in various fields of engineering because it possesses unique advantages such as high energy efficiency. However, understanding of fundamental phenomena in the multi-phase AC arc is still insufficient for practical use. Purpose of this study is to investigate electrode erosion mechanism by high-speed visualization of the electrode metal vapor in the arc. Results indicated that the electrode mainly evaporated at anodic period, leading to the arc constriction. Moreover, evaporation of W electrode with 2wt% La2O3 at the anodic period was much higher than that with 2wt% ThO2. This can be explained by different properties of these oxide additives. Evaporation of the oxide additive resulted in the arc constriction, which accelerated the evaporation of W electrode. Therefore, addition of La2O3 with lower melting and boiling point than ThO2 lead to stronger arc constriction, resulting in severer evaporation of W electrode.