Development of AC impedance methods for evaluating corroding metal surfaces and coatings
Knockemus, Ward
1986-01-01
In an effort to investigate metal surface corrosion and the breakdown of metal protective coatings the AC Impedance Method was applied to zinc chromate primer coated 2219-T87 aluminum. The model 368-1 AC Impedance Measurement System recently acquired by the MSFC Corrosion Research Branch was used to monitor changing properties of coated aluminum disks immersed in 3.5% NaCl buffered at ph 5.5 over three to four weeks. The DC polarization resistance runs were performed on the same samples. The corrosion system can be represented by an electronic analog called an equivalent circuit that consists of transistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for resistances and capacities that can be assigned in the equivalent circuit following a least squares analysis of the data describe changes that occur on the corroding metal surface and in the protective coating. A suitable equivalent circuit was determined that predicts the correct Bode phase and magnitude for the experimental sample. The DC corrosion current density data are related to equivalent circuit element parameters.
Characterization of Plasticized PEO Based Solid Polymer Electrolyte by XRD and AC Impedance Methods
K. Ragavendran
2004-01-01
Full Text Available The ionic conductivity of lithium based solid polymer films prepared from poly (ethylene oxide (PEO and lithium hexafluoarsenate (LiAsF6 with varying compositions of plasticizers likedibutyl sebacate (DBS and ethylene carbonate (EC was measured by AC impedance method. Polymer film composition viz. (PEO8-LiAsF6-(DBS0.4-(EC0.1 has been evaluated as an optimum composition as evidenced from its high conductivity and freestanding ability. The high conductivity observed for the polymer electrolyte with this composition has been attributed to an enhanced amorphous character and a reduced energy barrier to the segmental motion of lithium ions in the matrix. The temperature dependence of conductivity on the polymer films, with and without plasticizers, appears to obey the Arrhenius law. However, the activation energy of the plasticized polymer film is 0.81 KJ/mol, a value considerably lower than 10 KJ/mol obtained for the unplasticized electrolyte, making the polymer to be a prospective candidate as lithium-ion conducting electrolyte for rechargeable lithium batteries.
Mendrek, M. J.; Higgins, R. H.; Danford, M. D.
1988-01-01
To investigate metal surface corrosion and the breakdown of metal protective coatings, the ac impedance method is applied to six systems of primer coated and primer topcoated 4130 steel. Two primers were used: a zinc-rich epoxy primer and a red lead oxide epoxy primer. The epoxy-polyamine topcoat was used in four of the systems. The EG and G-PARC Model 368 ac impedance measurement system, along with dc measurements with the same system using the polarization resistance method, were used to monitor changing properties of coated 4230 steel disks immersed in 3.5 percent NaCl solutions buffered at pH 5.4 over periods of 40 to 60 days. The corrosion system can be represented by an electronic analog called an equivalent circuit consisting of resistors and capacitors in specific arrangements. This equivalent circuit parallels the impedance behavior of the corrosion system during a frequency scan. Values for the resistors and capacitors, that can be assigned in the equivalent circuit following a least-squares analysis of the data, describe changes that occur on the corroding metal surface and in the protective coatings. Two equivalent circuits have been determined that predict the correct Bode phase and magnitude of the experimental sample at different immersion times. The dc corrosion current density data are related to equivalent circuit element parameters. Methods for determining corrosion rate with ac impedance parameters are verified by the dc method.
AC Impedance Behaviour of Black Diamond Films
Haitao YE; Olivier GAUDIN; Richard B.JACKMAN
2005-01-01
The first measurement of impedance on free-standing diamond films from 0.1 Hz to 10 MHz up to 300℃ were reported. A wide range of chemical vapour deposition (CVD) materials were investigated, but here we concentrate are well fitted to a RC parallel circuit model and the equivalent resistance and capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 62 MΩ at room temperature to 4 kΩ at300℃, with an activation energy around 0.51 eV. The equivalent capacitance is maintained at the level of 100 pF up to 300℃ suggesting that the diamond grain boundaries are dominating the conduction. At 400℃, the impedance at low frequencies shows a linear tail, which can be explained that the AC polarization of diamond/Au interface occurs.
Jan Gimsa
2014-11-01
Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.
Breuer, G D; Chow, J H; Lindh, C B; Miller, N W; Numrich, F H; Price, W W; Turner, A E; Whitney, R R
1982-09-01
Improved methods are needed to characterize ac system harmonic behavior for ac filter design for HVDC systems. The purpose of this General Electric Company RP1138 research is to evaluate the present filter design practice and to investigate methods for calculating system harmonic impedances. An overview of ac filter design for HVDC systems and a survey of literature related to filter design have been performed. Two methods for calculating system harmonic impedances have been investigated. In the measurement method, an instrumentation system for measuring system voltage and current has been assembled. Different schemes of using the measurements to calculate system harmonic impedances have been studied. In the analytical method, a procedure to include various operating conditions has been proposed. Computer programs for both methods have been prepared, and the results of the measurement and analytical methods analyzed. A conclusion of the project is that the measurement and analytical methods both provided reasonable results. There are correlations between the measured and analytical results for most harmonics, although there are discrepancies between the assumptions used in the two methods. A sensitivity approach has been proposed to further correlate the results. From the results of the analysis, it is recommended that both methods should be tested further. For the measurement method, more testing should be done to cover different system operating conditions. In the analytical method, more detailed models for representing system components should be studied. In addition, alternative statistical and sensitivity approaches should be attempted.
Impedance Localization Measurements using AC Dipoles in the LHC
Biancacci, Nicolo; Papotti, Giulia; Persson, Tobias; Salvant, Benoit; Tomás, Rogelio
2016-01-01
The knowledge of the LHC impedance is of primary importance to predict the machine performance and allow for the HL-LHC upgrade. The developed impedance model can be benchmarked with beam measurements in order to assess its validity and limit. This is routinely done, for example, moving the LHC collimator jaws and measuring the induced tune shift. In order to localize possible unknown impedance sources, the variation of phase advance with intensity between beam position monitors can be measured. In this work we will present the impedance localization measurements performed at injection in the LHC using AC dipoles as exciter as well as the underlying theory.
MD 349: Impedance Localization with AC-dipole
Biancacci, Nicolo; Metral, Elias; Salvant, Benoit; Papotti, Giulia; Persson, Tobias Hakan Bjorn; Tomas Garcia, Rogelio; CERN. Geneva. ATS Department
2016-01-01
The purpose of this MD is to measure the distribution of the transverse impedance of the LHC by observing the phase advance variation with intensity between the machine BPMs. Four injected bunches with different intensities are excited with an AC dipole and the turn by turn data is acquired from the BPM system. Through post-processing analysis the phase variation along the machine is depicted and, from this information, first conclusions of the impedance distribution can be drawn.
Fiber Materials AC Impedance Characteristics and Principium Analysis
Wang, Jianjun; Li, Xiaofeng
With an invariable amplitude and variable frequency inspiriting, impedance of fiber materials rapidly decrease at first and then increase speedy followed with increasing of signal frequency. For the impedance curve of frequency is section of bathtub, this phenomenon is defined as alternating current electric conductive bathtub effect of fiber material. With analysis tools,of circuit theory and medium polarization theory, the phenomenon can be deeply detected that in AC electric field there are four different kind of currents in fiber material: absorbing current, conductance current, charging current and superficial current. With more analyzing it's discovered this phenomenon can be explained by medium polarize theory. Make using of fiber AC electric conductivity bathtub effect, fast testing equipment on fiber moisture regain can be invent, and disadvantages of conventional impedance technique, such as greatness test error and electrode polarization easily. This paper affords directions to design novel speediness fiber moisture test equipments in theory.
Construction of Tunnel Diode Oscillator for AC Impedance Measurement
Shin, J. H.; Kim, E.
2014-03-01
We construct a tunnel diode oscillator (TDO) to study electromagnetic response of a superconducting thin film. Highly sensitive tunnel diode oscillators allow us to detect extremely small changes in electromagnetic properties such as dielectric constant, ac magnetic susceptibility and magnetoresistance. A tunnel diode oscillator is a self-resonant oscillator of which resonance frequency is primarily determined by capacitance and inductance of a resonator. Amplitude of the signal depends on the quality factor of the resonator. The change in the impedance of the sample electromagnetic coupled to one of inductors in the resonator alters impedance of the inductor, and leads to the shift in the resonance frequency and the change of the amplitude.
AC Complex Impedance Analysis of Doped Strontium Titanate Multifunctional Ceramics
无
2002-01-01
Doped SrTiO3 capacitor-varistor multifunctional ceramics were fabricated by a single sintering process. AC compleximpedance analysis was performed to investigate electrical features ofgrains and grain boundaries for both as-reducedceramic and reoxidized ceramics. The results showed that the as-reduced ceramic exhibited inductive response athigh frequencies above 2 MHz, which is attributed to the contribution of electron behavior in semiconducting grains.The high frequency inductive response disappeared in impedance plots of reoxidized ceramics.
Power flow analysis for droop controlled LV hybrid AC-DC microgrids with virtual impedance
Li, Chendan; Chaudhary, Sanjay; Vasquez, Juan Carlos;
2014-01-01
The AC-DC hybrid microgrid is an effective form of utilizing different energy resources and the analysis of this system requires a proper power flow algorithm. This paper proposes a suitable power flow algorithm for LV hybrid AC-DC microgrid based on droop control and virtual impedance. Droop and...... algorithm makes it a potential method for planning, dispatching and operation of droop controlled LV hybrid AC-DC....... virtual impedance concepts for AC network, DC network and interlinking converter are reviewed so as to model it in the power flow analysis. The validation of the algorithm is verified by comparing it with steady state results from detailed time domain simulation. The effectiveness of the proposed...
AC impedance studies of V2O5 containing glasses
Glasses with composition V2O5-BaO-MO-B2O3(MO=SiO2,GeO2,P2O5) were studied using AC impedance analyzer. The measurements show that conductivities increase with V2O5 contents, and the P2O5 containing glasses have higher conductivities. The electric modulus was analyzed based on the Kohlrausch-Williams-Watts (KWW) relaxation function, φ(t)=exp[-(t/τ0)1-n]. The exponent n increases with V2O5 content. In addition, as the temperature approaches glass transition temperature, n increases with temperature. The results are interpreted in terms of Ngai's coupling model when applied to polaron conductivity relaxation
Li, Chendan; Chaudhary, Sanjay Kumar; Savaghebi, Mehdi;
2016-01-01
In the Low-Voltage (LV) AC microgrids (MGs), with a relatively high R/X ratio, virtual impedance is usually adopted to improve the performance of droop control applied to Distributed Generators (DGs). At the same time, LV DC microgrid using virtual impedance as droop control is emerging without...... adequate power flow studies. In this paper, power flow analyses for both AC and DC microgrids are formulated and implemented. The mathematical models for both types of microgrids considering the concept of virtual impedance are used to be in conformity with the practical control of the distributed...... generators. As a result, calculation accuracy is improved for both AC and DC microgrid power flow analyses, comparing with previous methods without considering virtual impedance. Case studies are conducted to verify the proposed power flow analyses in terms of convergence and accuracy. Investigation of the...
Richardson, John G.
2009-11-17
An impedance estimation method includes measuring three or more impedances of an object having a periphery using three or more probes coupled to the periphery. The three or more impedance measurements are made at a first frequency. Three or more additional impedance measurements of the object are made using the three or more probes. The three or more additional impedance measurements are made at a second frequency different from the first frequency. An impedance of the object at a point within the periphery is estimated based on the impedance measurements and the additional impedance measurements.
AC impedance electrochemical modeling of lithium-ion positive electrodes
Under Department of Energy's Advanced Technology Development Program,various analytical diagnostic studies are being carried out to examine the lithium-ion battery technology for hybrid electric vehicle applications, and a series of electrochemical studies are being conducted to examine the performance of these batteries. An electrochemical model was developed to associate changes that were observed in the post-test analytical diagnostic studies with the electrochemical performance loss during testing of lithium ion batteries. While both electrodes in the lithium-ion cell have been studied using a similar electrochemical model, the discussion here is limited to modeling of the positive electrode. The positive electrode under study has a composite structure made of a layered nickel oxide (LiNi0.8Co0.15Al0.05O2) active material, a carbon black and graphite additive for distributing current, and a PVDF binder all on an aluminum current collector. The electrolyte is 1.2M LiPF6 dissolved in a mixture of EC and EMC and a Celgard micro-porous membrane is used as the separator. Planar test cells (positive/separator/negative) were constructed with a special fixture and two separator membranes that allowed the placement of a micro-reference electrode between the separator membranes (1). Electrochemical studies including AC impedance spectroscopy were then conducted on the individual electrodes to examine the performance and ageing effects in the cell. The model was developed by following the work of Professor Newman at Berkeley (2). The solid electrolyte interface (SEI) region, based on post-test analytical results, was assumed to be a film on the oxide and an oxide layer at the surface of the oxide. A double layer capacity was added in parallel with the Butler-Volmer kinetic expression. The pertinent reaction, thermodynamic, and transport equations were linearized for a small sinusoidal perturbation (3). The resulting system of differential equations was solved numerically
An Impedance-Based Stability Analysis Method for Paralleled Voltage Source Converters
Wang, Xiongfei; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
This paper analyses the stability of paralleled voltage source converters in AC distributed power systems. An impedance-based stability analysis method is presented based on the Nyquist criterion for multiloop system. Instead of deriving the impedance ratio as usual, the system stability is asses...
Ostatná, Veronika; Paleček, Emil
Třesť, 2008. s. 1. [41st Heyrovský Discussion on Electrochemical Impedance Analysis. 15.06.2008-19.06.2008, Třešť] R&D Projects: GA ČR(CZ) GP202/07/P497; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : a.c. impedance * constant current chronopotentiometry * denaturation and aggregation Subject RIV: BO - Biophysics
Ac Impedance Spectroscopy Of Al/A-Sic/C-Si(P)/Al Heterostructure under Illumination
Perný, Milan; Šály, Vladimír; Váry, Michal; Mikolášek, Miroslav; Huran, Jozef; Packa, Juraj
2014-05-01
The amorphous silicon carbide/crystalline silicon heterojunction was prepared and analyzed. The current-voltage (I - V ) measurements showed the barrier properties of prepared sample. Biased impedance spectra of Al/a-SiC/c-Si(p)/Al heterojunction under the standard illumination are reported and analyzed. AC measurements in the illuminated conditions were processed in order to identify electronic behavior using equivalent AC circuit which was suggested and obtained by fitting the measured impedance data. A phenomenon of negative capacitance/resistance in certain frequency range has been observed.
Asymmetrical magneto-impedance in a sandwich film with a transverse anisotropy using an AC bias
Makhnovskiy, D P; Mapps, D J
2000-01-01
A new method of obtaining asymmetrical magneto-impedance in a film system consisting of two outer magnetic layers and an inner conductive lead is proposed, which utilizes a high-frequency longitudinal bias field. For a certain magnetic structure, as in the case of antisymmetrical transverse magnetization in the outer layers, in the presence of a longitudinal DC magnetic field H sub e sub x the AC bias field induces a high-frequency circulatory magnetization which contributes to the voltage measured across the film. Depending on the sign of H sub e sub x , this voltage is in phase or counter-phase with that induced by the current flowing along the film layers. As a result, the total voltage does not respond in the same way to positive and negative H sub e sub x. This process is described in terms of the surface impedance tensor. The contribution to the voltage due to the current and the bias field is given by the diagonal and off-diagonal components of this tensor, respectively, which have a different symmetry...
New methods of measuring normal acoustic impedance
Wayman, James L.
1984-01-01
In recent years new methods based on signal processing technical have been developed to measure the normal acoustic impedance of materials. These methods proved to be considerably faster easier to implement than the SRW method rhey replace. Mathematical, hardware and software aspects of these techniques are discussed and results obtained over a frequency range of 200-4000 Hz for several architectural materials are presented. NPS Foundation Research Program http://archive....
Virtual Impedance Based Fault Current Limiters for Inverter Dominated AC Microgrids
Lu, Xiaonan; Wang, Jianhui; Guerrero, Josep M.;
2016-01-01
), FCLs are employed to suppress the fault current and the subsequent oscillation and even instabilit y in the modern distribution network with microgrids. In this study, rather than involving extra hardware equipment, the functionality of FCL is achieved in the control diagram of DG inv erters by...... employing additional virtual impedance control loops. The proposed VI-FCL features flexible and low-cost implementation and can effectively suppre ss the fault current and the osc illation in the following fault restoration process in AC microgr ids. The systematic model of the inverter dominated AC...
Method for conducting nonlinear electrochemical impedance spectroscopy
Adler, Stuart B.; Wilson, Jamie R.; Huff, Shawn L.; Schwartz, Daniel T.
2015-06-02
A method for conducting nonlinear electrochemical impedance spectroscopy. The method includes quantifying the nonlinear response of an electrochemical system by measuring higher-order current or voltage harmonics generated by moderate-amplitude sinusoidal current or voltage perturbations. The method involves acquisition of the response signal followed by time apodization and fast Fourier transformation of the data into the frequency domain, where the magnitude and phase of each harmonic signal can be readily quantified. The method can be implemented on a computer as a software program.
Using A Particular Sampling Method for Impedance Measurement
Lentka Grzegorz
2014-01-01
The paper presents an impedance measurement method using a particular sampling method which is an alternative to DFT calculation. The method uses a sine excitation signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance is calculated without using Fourier transform. The method was first evaluated in MATLAB by means of simulation. The method was then practically verified in a constructed simple impedance measu...
Effect of temperature on the AC impedance of protein and carbohydrate biopolymers
S Muthulakshmi; S Iyyapushpam; D Pathinettam Padiyan
2014-12-01
The influence of temperature on the electrical behaviour of protein biopolymer papain and carbohydrate biopolymers like gum acacia, gum tragacanth and guar gum has been investigated using AC impedance technique. The observed semi-circles represent the material’s bulk electrical property that indicate the single relaxation process in the biopolymers. An increase in bulk electrical conductivity in the biopolymers with temperature is due to the hopping of charge carriers between the trapped sites. The depression parameter reveals the electrical equivalent circuit for the biopolymers. The AC electrical conductivity in the biopolymers follows the universal power law. From this, it is observed that the AC conductivity is frequency dependent and the biopolymer papain obeys large polaron tunnelling model, gum acacia and gum guar obey ion or electron tunnelling model, and gum tragacanth obeys the correlated barrier hopping model of conduction mechanisms.
The ac quantum Hall resistance as an electrical impedance standard and its role in the SI
Since 1990, the quantum Hall resistance measured with direct current (dc) has been established to represent and maintain the dc resistance unit and thereby has replaced the former derivation from calculated inductance and capacitance standards. Because of this success, it has been suggested to measure this quantum effect with alternating current (ac) and in this way to derive the units of resistance, capacitance and inductance consistently from the same quantum effect. In this paper, we recall the relations between these units, their role in the determination of the von Klitzing constant and the relations between the fundamental constants involved in the conventional and the quantum approach. Then, we review the first ac measurements of the quantum Hall resistance and show how the difficulties uncovered have been solved by relatively simple means. As a result, the measurement of the ac quantum Hall resistance has become as precise and reliable as its dc counterpart and much more accurate than any conventional impedance artefact. (paper)
Using A Particular Sampling Method for Impedance Measurement
Lentka Grzegorz
2014-08-01
Full Text Available The paper presents an impedance measurement method using a particular sampling method which is an alternative to DFT calculation. The method uses a sine excitation signal and sampling response signals proportional to current flowing through and voltage across the measured impedance. The object impedance is calculated without using Fourier transform. The method was first evaluated in MATLAB by means of simulation. The method was then practically verified in a constructed simple impedance measurement instrument based on a PSoC (Programmable System on Chip. The obtained calculation simplification recommends the method for implementation in simple portable impedance analyzers destined for operation in the field or embedding in sensors.
AC Impedance Studies of Polymer Light-emitting Electrochemical Cells and Light-emitting Diodes
Li, Yongfang; Gao, Jun; Heeger, Alan J.; Yu, Gang; Cao, Yong
1998-03-01
The alternating current (ac) impedance of polymer light-emitting electrochemical cells (LECs) is studied and compared with that of polymer light-emitting diodes(LEDs) in the frequency range from 100 Hz to 5 M Hz. The device capacitance, resistance and interface characteristics are analyzed using the frequency dependence of the impedance and plots of the imaginary component of the impedance (Z") vs. the real part (Z'). At low bias voltages, polymer LEDs behave as pure capacitors whereas the polymer blend in the LEC exhibits an ionic conductivity contribution to the impedance. With dc bias higher than the energy gap of the semiconducting polymer (eV > Eg), the Z" vs. Z' plot of the LEC is a flattened semicircle, while that of LED is a semicircle with a small tail at low frequencies. In the LED, the capacitance is independent of voltages, the film resistance decreases as the bias voltage is increased in forward bias due to charge injection at higher voltages. In the LEC, the capacitance increases at voltages sufficient to induce electrochemical redox and doping near the electrodes. From this increase, the thickness of the i-layer of the p-i-n junction is estimated to approximately 0.8 of the film thickness (at the bias voltage of 3 V). Thus, in the LEC under operating conditions, the crossover region from p-type occupies most of the film thickness.
Poly Meta-Aminophenol: Chemical Synthesis, Characterization and Ac Impedance Study
Thenmozhi Gopalasamy
2014-01-01
Full Text Available The present work is an investigation of AC impedance behaviour of poly(meta-aminophenol. The polymer was prepared by oxidative chemical polymerization of meta-aminophenol in aqueous HCl using ammonium persulfate as an oxidant at 0–3°C. The synthesized polymer was characterized by GPC, Elemental analysis, UV-VIS-NIR, FT-IR, 1H NMR, XRD, SEM, and TGA-DTA. The AC conductivity and dielectric response were measured at a temperature range from 303 to 383 K in the frequency range of 20 Hz to 106 Hz. The AC conductivity data could be described by the relation σacω=AωS, where the parameter “S” and Rb values decrease in the entire range of study and hence follow Correlated Barrier Hopping conduction mechanism. Both dielectric constant and dielectric loss increase with the decrease of frequency exhibiting strong interfacial polarization at low frequency and the dissipation factor also decreases with frequency. Complex electric modulus and dissipation factor exhibit two relaxation peaks, indicating two-phase structure as indicated by a bimodal distribution of relaxation process. The activation energies corresponding to these two relaxation processes were found to be 0.07 and 0.1 eV.
Analytic methods for calculating coupling impedances
These lecture notes describe a variety of analytic techniques to calculate the longitudinal and transverse impedances of obstacles in a beam pipe. They also treat the effort to shield these impedances from the beam by appropriate use of thin conducting layers. (orig.)
Impedance adaptation methods of the piezoelectric energy harvesting
Kim, Hyeoungwoo
In this study, the important issues of energy recovery were addressed and a comprehensive investigation was performed on harvesting electrical power from an ambient mechanical vibration source. Also discussed are the impedance matching methods used to increase the efficiency of energy transfer from the environment to the application. Initially, the mechanical impedance matching method was investigated to increase mechanical energy transferred to the transducer from the environment. This was done by reducing the mechanical impedance such as damping factor and energy reflection ratio. The vibration source and the transducer were modeled by a two-degree-of-freedom dynamic system with mass, spring constant, and damper. The transmissibility employed to show how much mechanical energy that was transferred in this system was affected by the damping ratio and the stiffness of elastic materials. The mechanical impedance of the system was described by electrical system using analogy between the two systems in order to simply the total mechanical impedance. Secondly, the transduction rate of mechanical energy to electrical energy was improved by using a PZT material which has a high figure of merit and a high electromechanical coupling factor for electrical power generation, and a piezoelectric transducer which has a high transduction rate was designed and fabricated. The high g material (g33 = 40 [10-3Vm/N]) was developed to improve the figure of merit of the PZT ceramics. The cymbal composite transducer has been found as a promising structure for piezoelectric energy harvesting under high force at cyclic conditions (10--200 Hz), because it has almost 40 times higher effective strain coefficient than PZT ceramics. The endcap of cymbal also enhances the endurance of the ceramic to sustain ac load along with stress amplification. In addition, a macro fiber composite (MFC) was employed as a strain component because of its flexibility and the high electromechanical coupling
Validation of a Numerical Method for Determining Liner Impedance
Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.
1996-01-01
This paper reports the initial results of a test series to evaluate a method for determining the normal incidence impedance of a locally reacting acoustically absorbing liner, located on the lower wall of a duct in a grazing incidence, multi-modal, non-progressive acoustic wave environment without flow. This initial evaluation is accomplished by testing the methods' ability to converge to the known normal incidence impedance of a solid steel plate, and to the normal incidence impedance of an absorbing test specimen whose impedance was measured in a conventional normal incidence tube. The method is shown to converge to the normal incident impedance values and thus to be an adequate tool for determining the impedance of specimens in a grazing incidence, multi-modal, nonprogressive acoustic wave environment for a broad range of source frequencies.
Validation of an Impedance Education Method in Flow
Watson, Willie R.; Jones, Michael G.; Parrott, Tony L.
2004-01-01
This paper reports results of a research effort to validate a method for educing the normal incidence impedance of a locally reacting liner, located in a grazing incidence, nonprogressive acoustic wave environment with flow. The results presented in this paper test the ability of the method to reproduce the measured normal incidence impedance of a solid steel plate and two soft test liners in a uniform flow. The test liners are known to be locally react- ing and exhibit no measurable amplitude-dependent impedance nonlinearities or flow effects. Baseline impedance spectra for these liners were therefore established from measurements in a conventional normal incidence impedance tube. A key feature of the method is the expansion of the unknown impedance function as a piecewise continuous polynomial with undetermined coefficients. Stewart's adaptation of the Davidon-Fletcher-Powell optimization algorithm is used to educe the normal incidence impedance at each Mach number by optimizing an objective function. The method is shown to reproduce the measured normal incidence impedance spectrum for each of the test liners, thus validating its usefulness for determining the normal incidence impedance of test liners for a broad range of source frequencies and flow Mach numbers. Nomenclature
The surface impedances and ac critical fields of superconducting thin tin films were studied. These experiments were performed using a superconducting frequency stabilized microwave cavity of high Q. Measurements of the power losses in the cavity and the center frequency of the cavity were used to determine the surface impedance and the critical field of a thin film sample placed in the cavity. In this case a theoretical treatment based on a model proposed by I.O. Kulik was used to fit the data. The general agreement between the modified Kulik treatment and the data, obtained in this experiment, was substantial. The second method was to modify the thin film data to correspond to a bulk situation. This modification was accomplished by taking into account the measuring techniques used and the geometric consideration inherent in the experiment. The comparison between the modified experimental data and calculations obtained from the Mattis-Bardeen bulk model was generally very good. One aspect of the results which was not explained was the presence of a slight increase in the surface resistance in the vicinity of the transition temperature. The critical field measurements were compared to the (1 - (T/T/sub c/)/sup 1/2) dependence predicted by Bardeen. If it is assumed that substantial microwave heating took place in the sample near T/sub c/, then remarkable agreement with the Bardeen model can be reached
The corrosion of historical objects from World War I fields were studied by using two methods: characterization of the corrosion products by Raman Laser Spectroscopy, and behaviour of the corrosion layers by using electrochemical studies. The first technique, previously used, had shown that two layers are present on these objects, containing both different oxides and oxy-hydroxides of iron. In the present part of the work, the A.C. Impedance Spectroscopy was used to show the differences between the two layers concerning the corrosion of these objects. In order to observe the different behaviours, the specimens were studied in three surface states: with the two layers, with the internal layer only, and without oxide. The results have shown that the internal layer limits the corrosion kinetics. Then this layer was especially studied, particularly its porosity, by a comparison of the impedance results in two media with very different conductivity, and the evolution of these results with different immersion times. The buried objects had the behaviour of a porous electrode, due to the presence of the internal layer. Thus, this behaviour can be modelled with the simplified De Levie's theory, considering that each porosity is a semi-infinite hole. It appeared that the corrosion process at the oxidized interface corresponds to the transport in the electrolyte in the pores completed by a part of transport in the solid phase. These properties can be used to predict the long term corrosion behaviour of carbon steels in soils for long periods. (authors)
Stability Analysis of Three-Phase AC Power Systems Based on Measured D-Q Frame Impedances
Wen, Bo
2015-01-01
Small-signal stability is of great concern for distributed power systems with a large number of regulated power converters. These converters are constant-power loads (CPLs) exhibit a negative incremental input resistance within the output voltage regulation bandwidth. In the case of dc systems, design requirements for impedances that guarantee stability have been previously developed and are used in the design and specification of these systems. In terms of three-phase ac systems, a mathemati...
An electrochemical study on Fe-Co-B-Si amorphous electrodes has been conducted. The study was focused on determining the electrochemical impedance spectroscopy (EIS) of four different alloys of Fe-Co-B-Si in various HCl acid solutions. The A.C. impedance and the capacitance of Fe-Co-B-Si, Co-Fe-Ni-B-Si, Co-Fe-Mn-B-Si, and Co-Fe-Ni-Mo-B-Si alloys were obtained in 25, 50, 75 and 100% of HCl acid at room temperature. Electrochemical parameters, i.e., impedance, were found to vary depending on additions of the Ni, Mn, Ni-Mo to Fe-Co-B-Si alloy, the acid concentration, and the nanoscopic surface roughness of the electrodes. Consequently, a correlation between the obtained data is established
Nuclear EMP: stripline test method for measuring transfer impedance
A method for measuring the transfer impedance of flat metal joints for frequencies to 100 MHz has been developed which makes use of striplines. The stripline method, which has similarities to the quadraxial method used for cylindrical components, is described and sets of test results are given. The transfer impedance of a simple joint is modeled as a spurious hyperbolic curve, and a close curve fit to transfer impedance test data from various samples is demonstrated for both the stripline and the quadraxial methods. Validity checks of the test data are discussed using the curve model and other criteria. The method was developed for testing riveted joints which form the avionics bays on B-1s. The joints must provide shielding from EMP currents
Method and device for bio-impedance measurement with hard-tissue applications
Bio-impedance measurements can be used to detect and monitor several properties of living hard-tissues, some of which include bone mineral density, bone fracture healing or dental caries detection. In this paper a simple method and hardware architecture for hard tissue bio-impedance measurement is proposed. The key design aspects of such architecture are discussed and a commercial handheld ac impedance device is presented that is fully certified to international medical standards. It includes a 4-channel multiplexer and is capable of measuring impedances from 10 kΩ to 10 MΩ across a frequency range of 100 Hz to 100 kHz with a maximum error of 5%. The device incorporates several user interface methods and a Bluetooth link for bi-directional wireless data transfer. Low-power design techniques have been implemented, ensuring the device exceeds 8 h of continuous use. Finally, bench test results using dummy cells consisting of parallel connected resistors and capacitors, from 10 kΩ to 10 MΩ and from 20 pF to 100 pF, are discussed
Short circuit currents calculation by using the impedance correction method
Schaefer, W.
1985-01-01
By introduction of correction factors for the impedances of generators and power station unit transformers into the known guidings according to VDE 0102 (basis principle of short circuit current calculation) it is possible to limit the deviation to less then +-5% of the value of the complete superposition method apart from some exceptions. The correction factors are valid for calculation of the maximum short circuit currents considering the practically admissible operating conditions. The separated correction of the impedances of generators and power station unit transformers can be used without restriction for all short circuit points of interest.
A method for suppressing cardiogenic oscillations in impedance pneumography
The transthoracic electrical impedance signal originates from the cardiac and respiratory functions. In impedance pneumography (IP) the lung function is assessed and the cardiac impedance signal, cardiogenic oscillations (CGOs), is considered an additive noise in the measured signal. In order to accurately determine pulmonary flow parameters from the signal, the CGO needs to be attenuated without distorting the respiratory part of the signal. We assessed the suitability of a filtering technique, originally described by Schuessler et al (1998 Ann. Biomed. Eng. 26 260–7) for an esophageal pressure signal, for CGO attenuation in the IP signal. The technique is based on ensemble averaging the CGO events using the electrocardiogram (ECG) R-wave as the trigger signal. Lung volume is known to affect the CGO waveforms. Therefore we modified the filtering method to produce a lung volume-dependent parametric model of the CGO waveform. A simultaneous recording of ECG, IP and pneumotachograph (PNT) was conducted on 41 healthy, sitting adults. The performance of the proposed method was compared to a low-pass filter and a Savitzky–Golay filter in terms of CGO attenuation and respiratory signal distortion. The method was found to be excellent, exhibiting CGO attenuation of 35.0±12.5 dB (mean±SD) and minimal distortion of the respiratory part of the impedance signal
NEW BIOTESTING METHOD WITH THE APPLICATION OF MODERN IMPEDANCE TECHNOLOGIES
Sibirtsev V.S.
2015-03-01
Full Text Available The paper deals with new concepts of biotesting method updating. Modern conductometric technologies and the analysis of microbial «growth curves» are used. The registration occurs in a real time mode for the set of parallel samples. Results are shown for comparison of the proposed impedance biotesting technique with standard cultural determination method for total amount of microorganismes in the tested samples. Results are presented for practical application of the proposed impedance biotesting technique to the analysis as inhibitory action of clorhexidine disinfectant on the vital activity of Escherichia coli, as milk ripening process at the presence of various microorganisms species and protein preparations. The impedance biotesting method, proposed in the present work, provides high level of its own data convergence with the data, being received as a result of application of standard cultural biotesting techniques. Thus, the proposed method has such advantages, as: an opportunity of the detailed information reception about dynamics change of magnitude of population and intensity of test microorganisms metabolism, significant reduction of the culture media amount used, as well as researcher's temporary and labor efforts while the analyses realization, and the growth of analysis objectivity.
On second order shape optimization methods for electrical impedance tomography
Afraites, Lekbir; Dambrine, Marc; Kateb, Djalil
2007-01-01
This paper is devoted to the analysis of a second order method for recovering the \\emph{a priori} unknown shape of an inclusion $\\omega$ inside a body $\\Omega$ from boundary measurement. This inverse problem - known as electrical impedance tomography - has many important practical applications and hence has focussed much attention during the last years. However, to our best knowledge, no work has yet considered a second order approach for this problem. This paper aims to fill that void: we in...
Electrical impedance tomography and the fast multipole method
Bikowski, Jutta; Mueller, Jennifer L.
2004-10-01
A 3-D linearization-based reconstruction algorithm for Electrical Impedance Tomography suitable for breast cancer detection using data collected on a rectangular array was introduced by Mueller et al. [IEEE Biomed. Eng., 46(11), 1999]. By considering the scenario as an electrostatic problem, it is possible to model the electrodes with various charges, facilitating the use of the Fast Multipole Method (FMM) for calculating particle interactions and also supporting the use of different electrode models. In this paper the use of FMM is explained and results in form of reconstructed images from experimental data show that this method is an improvement.
Diffusion and Gas Conversion Analysis of Solid Oxide Fuel Cells at Loads via AC Impedance
Robert U. Payne
2011-01-01
Full Text Available Impedance measurements were conducted under practical load conditions in solid oxide fuel cells of differing sizes. For a 2 cm2 button cell, impedance spectra data were separately measured for the anode, cathode, and total cell. Improved equivalent circuit models are proposed and applied to simulate each of measured impedance data. Circuit elements related to the chemical and physical processes have been added to the total-cell model to account for an extra relaxation process in the spectra not measured at either electrode. The processes to which elements are attributed have been deduced by varying cell temperature, load current, and hydrogen concentration. Spectra data were also obtained for a planar stack of five 61 cm2 cells and the individual cells therein, which were fitted to a simplified equivalent circuit model of the total button cell. Similar to the button cell, the planar cells and stack exhibit a pronounced low-frequency relaxation process, which has been attributed to concentration losses, that is, the combined effects of diffusion and gas conversion. The simplified total-cell model approximates well the dynamic behavior of the SOFC cells and the whole stack.
Recent progress on the factorization method for electrical impedance tomography.
Harrach, Bastian
2013-01-01
The Factorization Method is a noniterative method to detect the shape and position of conductivity anomalies inside an object. The method was introduced by Kirsch for inverse scattering problems and extended to electrical impedance tomography (EIT) by Brühl and Hanke. Since these pioneering works, substantial progress has been made on the theoretical foundations of the method. The necessary assumptions have been weakened, and the proofs have been considerably simplified. In this work, we aim to summarize this progress and present a state-of-the-art formulation of the Factorization Method for EIT with continuous data. In particular, we formulate the method for general piecewise analytic conductivities and give short and self-contained proofs. PMID:24069064
Kim, Chang-Soo; Song, Rak-Hyun; Choi, Byung-Woo [Korea Institute of Energy Research, Taejon (Korea, Republic of)] [and others
1996-12-31
In PAFC, the degradation on cathode electrode caused by carbon corrosion, platinum dissolution and growth is especially severe. An acceleration test is a good technique for evaluating the degradation of electrode performance, because it does not need long time. Coleman et al used thermal cycling and on-off cycling as an acceleration test. Song et al showed that hydrogen shortage decreased the electrode performance more rapidly than that of air shortage in gas shortage test. Honji et al reported that the rate of coarsening of Pt particle is rapid in open circuit potential and this is one of major causes on the performance degradation of electrode. The cathode performance has been studied by using acid absorption, acceleration and ac-impedance measurements as functions of the polytetrafluoroethylene (PTFE) contents and sintering temperatures of the electrode.
A new method to measure the acoustic surface impedance outdoors
In the European countries noise pollution is considered to be one of the most important environmental problems. With respect to traffic noise, different researchers are working on the reduction of noise at the source, on the modelling of the acoustic absorption of the road structure and on the effects of the pavement on the propagation. The aim of this paper is to propose a new method to measure the acoustic impedance of surfaces located outdoors, which allows us to further noise propagation models, in order to evaluate exactly the noise exposure. (authors)
Ren, Yu; Zhou, Xuan; Liu, Xia; Jia, Huan-Huan; Zhao, Xiao-Hui; Wang, Qi-Xue; Han, Lei; Song, Xin; Zhu, Zhi-Yan; Sun, Ting; Jiao, Hong-Xiao; Tian, Wei-Ping; Yang, Yu-Qi; Zhao, Xiu-Lan; Zhang, Lun; Mei, Mei; Kang, Chun-Sheng
2016-04-28
Carcinoma associated fibroblasts (CAFs) produce a nutrient-rich microenvironment to fuel tumor progression and metastasis. Reactive oxygen species (ROS) levels and the inflammation pathway co-operate to transform CAFs. Therefore, elucidating the mechanism mediating the activity of CAFs might identify novel therapies. Abnormal miR-21 expression was reported to be involved in the conversion of resident fibroblasts to CAFs, yet the factor that drives transformation was poorly understood. Here, we reported that high miR-21 expression was strongly associated with lymph node metastasis in breast cancer, and the activation of the miR-21/NF-кB was required for the metastatic promoting effect of CAFs. AC1MMYR2, a small molecule inhibitor of miR-21, attenuated NF-кB activity by directly targeting VHL, thereby blocking the co-precipitation of NF-кB and ß-catenin and nuclear translocation. Taxol failed to constrain the aggressive behavior of cancer cells stimulated by CAFs, whereas AC1MMYR2 plus taxol significantly suppressed tumor migration and invasion ability. Remodeling and depolarization of F-actin, decreased levels of β-catenin and vimentin, and increased E-cadherin were also detected in the combination therapy. Furthermore, reduced levels of FAP-α and α-SMA were observed, suggesting that AC1MMYR2 was competent to reprogram CAFs via the NF-кB/miR-21/VHL axis. Strikingly, a significant reduction of tumor growth and lung metastasis was observed in the combination treated mice. Taken together, our findings identified miR-21 as a critical mediator of metastasis in breast cancer through the tumor environment. AC1MMYR2 may be translated into the clinic and developed as a more personalized and effective neoadjuvant treatment for patients to reduce metastasis and improve the chemotherapy response. PMID:26872723
The factorization method for three dimensional electrical impedance tomography
The use of the factorization method for electrical impedance tomography has been proved to be very promising for applications in the case where one wants to find inhomogeneous inclusions in a known background. In many situations, the inspected domain is three dimensional and is made of various materials. In this case, the main challenge in applying the factorization method is in computing the Neumann Green's function of the background medium. We explain how we solve this difficulty and demonstrate the capability of the factorization method to locate inclusions in realistic inhomogeneous three dimensional background media from simulated data obtained by solving the so-called complete electrode model. We also perform a numerical study of the stability of the factorization method with respect to various modelling errors. (paper)
Low-to-medium-frequency range impedance spectroscopy was used to investigate two series of dried calcium silicate hydrates with or without aluminum atoms, C-S-H and C-A-S-H. Over four decades in frequency, sample Nyquist plots were fitted by adopting an equivalent circuit using constant phase elements (CPE). Conductivity values of the order of 10-9-10-10 S/cm were obtained at 316 K. The presence of CPE characteristic of the depleted semicircle at high frequency was related to a fractal dimension ranging from 2.4 up to 2.7. Above 316 K, the impedance spectra behaved unpredictably due to the dehydration process, while below 316 K the behavior was followed by adopting the modulus loss factor. The associated peak maximum variation is of the Arrhenius-type. The entire behavior may be interpreted by ionic motion and charge accumulation in addition to dielectric polarization at the grain boundaries associated to low fractal surface. (authors)
Adaptive Kaczmarz method for image reconstruction in electrical impedance tomography
We present an adaptive Kaczmarz method for solving the inverse problem in electrical impedance tomography and determining the conductivity distribution inside an object from electrical measurements made on the surface. To best characterize an unknown conductivity distribution and avoid inverting the Jacobian-related term JTJ which could be expensive in terms of computation cost and memory in large-scale problems, we propose solving the inverse problem by applying the optimal current patterns for distinguishing the actual conductivity from the conductivity estimate between each iteration of the block Kaczmarz algorithm. With a novel subset scheme, the memory-efficient reconstruction algorithm which appropriately combines the optimal current pattern generation with the Kaczmarz method can produce more accurate and stable solutions adaptively as compared to traditional Kaczmarz- and Gauss–Newton-type methods. Choices of initial current pattern estimates are discussed in this paper. Several reconstruction image metrics are used to quantitatively evaluate the performance of the simulation results. (paper)
Güren, Onan; Çayören, Mehmet; Tükenmez Ergene, Lale; Akduman, Ibrahim
2014-10-01
A new microwave imaging method that uses microwave contrast agents is presented for the detection and localization of breast tumours. The method is based on the reconstruction of breast surface impedance through a measured scattered field. The surface impedance modelling allows for representing the electrical properties of the breasts in terms of impedance boundary conditions, which enable us to map the inner structure of the breasts into surface impedance functions. Later a simple quantitative method is proposed to screen breasts against malignant tumours where the detection procedure is based on weighted cross correlations among impedance functions. Numerical results demonstrate that the method is capable of detecting small malignancies and provides reasonable localization.
On second order shape optimization methods for electrical impedance tomography
Afraites, Lekbir; Kateb, Djalil
2007-01-01
This paper is devoted to the analysis of a second order method for recovering the \\emph{a priori} unknown shape of an inclusion $\\omega$ inside a body $\\Omega$ from boundary measurement. This inverse problem - known as electrical impedance tomography - has many important practical applications and hence has focussed much attention during the last years. However, to our best knowledge, no work has yet considered a second order approach for this problem. This paper aims to fill that void: we investigate the existence of second order derivative of the state $u$ with respect to perturbations of the shape of the interface $\\partial\\omega$, then we choose a cost function in order to recover the geometry of $\\partial \\omega$ and derive the expression of the derivatives needed to implement the corresponding Newton method. We then investigate the stability of the process and explain why this inverse problem is severely ill-posed by proving the compactness of the Hessian at the global minimizer.
A method to separate process contributions in impedance spectra by variation of test conditions
Jensen, Søren Højgaard; Hauch, Anne; Hendriksen, Peter Vang; Mogensen, Mogens Bjerg; Bonanos, Nikolaos; Jacobsen, Torben
2007-01-01
Many processes contribute to the overall impedance of an electrochemical cell, and these may be difficult to separate in the impedance spectrum. Here, we present an investigation of a solid oxide fuel cell based on differences in impedance spectra due to a change of operating parameters and present...... the result as the derivative of the impedance with respect to ln(f). The method is used to separate the anode and cathode contributions and to identify various types of processes....
The electrochemically prepared polyaniline-12-molybdophosphoric acid (P12MPA) thin films in conducting emeraldine salt form of polyaniline (PAni) matrix is verified by the presence of redox peaks in the UV-vis spectra for different dopant concentrations. The optical band gap energy in these films is dopant concentration dependant and tunable. From the FTIR spectra, it is evidenced that, the characteristic peaks of PAni is present in P12MPA thus there is only conformational change due to the inclusion of molybdophosphoric acid (12MPA) in the polymer matrix. The amorphous nature of the film is proved from the XRD. XPS peaks of PAni and P12MPA thin films have shown the evidence for the presence of quinoid imine, benzenoid amine and the polaronic nitrogen and the oxidation level is quantitatively analysed. P12MPA has the oxidation level of around 51% which matches with that of protonated emeraldine form. Due to the inclusion of 12MPA, in addition to para coupling of the monomer, ortho coupling also takes place. Impedance analysis shows the role of temperature in crosslinking of polymer chain and dopant anions. The high response of P12MPA (64.8%) towards acetone vapor provides evidence for improved sensing behaviour of the doped polymer.
The ac response in the dielectric regime of thin films consisting of Pd nanoparticles embedded in a ZrO2 insulating matrix, fabricated by co-sputtering, was obtained from impedance spectroscopy measurements (11 Hz–2 MHz) in the temperature range 30–290 K. The response was fitted to an equivalent circuit model whose parameters were evaluated assuming that, as a consequence of the bimodal size distribution of the Pd particles, two mechanisms appear. At low frequencies, a first element similar to a parallel RC circuit dominates the response, due to two competing paths. One of them is associated with thermally-activated tunneling conductance among most of the smallest Pd particles (size ∼ 2 nm), which make up the dc tunneling backbone of the sample. The other one is related to the conductance associated with the capacitive paths among larger Pd particles (size > 5 nm). At low temperature and intermediate frequencies (∼1 kHz), a shortcut process between the larger particles connects regions initially isolated from the backbone at low frequencies. These regions, populated by some additional smaller particles located around two bigger particles, were isolated because the bigger particles separation is too large for the tunneling current. Once connected to the backbone, current may also flow through them by means of the so-called thermally-activated assisted tunneling resistive paths, yielding the second element of the equivalent circuit (a parallel RLC element). At high temperature, the thermal energy shifts the onset of the shortcut process high frequencies and, thus, only the first element is observed. Considering these results, controlling the particle size distribution could be helpful to tune up the frequency at which tunneling conductance dominates the ac response of these granular metals. (paper)
Payne, Robert R. U.
The performance of commercially available fuel cells was tested under a variety of test conditions and models were formulated to explain the experimental results. Several techniques were applied to single cells and groups of cells, each probing a different phenomenon responsible for limiting the power output of the cells. Nonuiformity of fuel cells in a stack can drastically affect the total power output, because a stack of cells in series can only provide as much electrical current as the weakest cell. Uniformity of polymer electrolyte membrane (PEM) fuel cell voltage was measured for each cell of the 47 cells in a Nexa(TM) stack operating with 0 W and 800W supplied to an external load. Manufacturing consistency was assessed by comparing the mean cell potential of 10 different stacks. To minimize the cost of operating a stack, PEM fuel cells must be capable of withstanding higher impurity concentrations, which was accomplished by adding a manual purge line into the fuel exhaust line of a Nexa(TM) stack. The critical flow rate of the anode exhaust was determined by feeding gas diluted with up to 7% N2 to a stack supplying up to 200 W to an external load. The residence time distribution (RTD) of impurities in the stack was evaluated by injecting a pulse of inert gas and simultaneously measuring the time dependent voltage of each cell in the stack. A number of different compartmental flow models were developed to replicate the experimental data, but with minimal success; however, the added exhaust line successfully improved the impurity tolerance of the stack. Determining which and to what extent physical processes limit the electrical output of fuel cells is critical for evaluating system designs and performing diagnostics. Impedance spectroscopy was applied to cells to test the dynamic response of fuel cells and stacks thereof. Equivalent circuit models were fitted to the data, with each circuit element representing a different physical phenomenon. Data were
Electromechanical impedance method to assess dental implant stability
Tabrizi, Aydin; Rizzo, Piervincenzo; Ochs, Mark W.
2012-11-01
The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional bone-implant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocare® implants with a size of 4.3 mm diameter ×13 mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implant-bone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants’ abutment and measuring the admittance of the PZT over time. It was found that the PZT’s admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity.
Electromechanical impedance method to assess dental implant stability
The stability of a dental implant is a prerequisite for supporting a load-bearing prosthesis and establishment of a functional bone–implant system. Reliable and noninvasive methods able to assess the bone interface of dental and orthopedic implants (osseointegration) are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, we propose the electromechanical impedance method as a novel approach for the assessment of dental implant stability. Nobel Biocare® implants with a size of 4.3 mm diameter ×13 mm length were placed inside bovine bones that were then immersed in a solution of nitric acid to allow material degradation. The degradation simulated the inverse process of bone healing. The implant–bone systems were monitored by bonding a piezoceramic transducer (PZT) to the implants’ abutment and measuring the admittance of the PZT over time. It was found that the PZT’s admittance and the statistical features associated with its analysis are sensitive to the degradation of the bones and can be correlated to the loss of calcium measured by means of the atomic absorption spectroscopy method. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of dental implant stability and integrity. (paper)
Complex permittivity of FeCl3/AOT/CCl4 microemulsions probed by AC impedance spectroscopy.
Calandra, Pietro; Ruggirello, Angela; Turco Liveri, Vincenzo
2009-09-01
The complex permittivity of FeCl(3)/AOT/CCl(4) microemulsions in the 1-10(5) Hz frequency range has been measured by the conventional AC complex impedance technique. Measurements as a function of the volume fraction of the dispersed phase (FeCl(3)+AOT) and temperature at fixed salt-to-AOT molar ratio (R, R = 0.5) show that the entrapment of FeCl(3) clusters significantly enhances the local permittivity of the AOT reverse micelles and the number density of charge carriers resulting from the peculiar state of the confined inorganic salt. An estimate of the apparent static permittivity of the FeCl(3) ionic clusters entrapped in the core of AOT reverse micelles gives the very high and quite surprisingly value of about 237. Moreover, a thorough analysis of conductivity data and of their temperature dependence strongly supports the hypothesis that the charge transport in these systems is mainly sustained by a mechanism of hopping consisting in the continuous jumping of charged species within supra-micellar aggregates of AOT reverse micelles whose aggregation is driven by fluctuating opposite charges on contacting micelles. PMID:19481764
The oxygen conductivities and crystallographic properties of niobia-doped yttria-stabilized tetragonal zirconia with 0.0–2.6 wt% Nb2O5 were evaluated by the AC impedance analysis and the X-ray diffraction measurement, respectively. The tetragonality of zirconia increased with niobia content and approached ∼1.017 while the tetragonal-to-monoclinic phase transition occurred above ca. 1 wt% Nb2O5. On the other hand, oxygen conductivities of bulk and grain-boundary (GB) decreased with increasing niobia content. The bulk conductivity controlled the total ionic conductivity at high temperatures, and its activation energy had smaller dependence on temperature than that of GB. In addition to the effect of [VO··] depletion by niobia addition, the behaviors of bulk and GB conductivities might be explained by the decrease of mobility of oxygen ion due to Coulomb repulsion between Nb5+ and VO·· and by no segregation of Nb ions in the space-charge layers, respectively
Yamana, Teppei; Arima, Tatsumi, E-mail: arima@nucl.kyushu-u.ac.jp; Yoshihara, Takatoshi; Inagaki, Yaohiro; Idemitsu, Kazuya
2013-11-15
The oxygen conductivities and crystallographic properties of niobia-doped yttria-stabilized tetragonal zirconia with 0.0–2.6 wt% Nb{sub 2}O{sub 5} were evaluated by the AC impedance analysis and the X-ray diffraction measurement, respectively. The tetragonality of zirconia increased with niobia content and approached ∼1.017 while the tetragonal-to-monoclinic phase transition occurred above ca. 1 wt% Nb{sub 2}O{sub 5}. On the other hand, oxygen conductivities of bulk and grain-boundary (GB) decreased with increasing niobia content. The bulk conductivity controlled the total ionic conductivity at high temperatures, and its activation energy had smaller dependence on temperature than that of GB. In addition to the effect of [V{sub O}{sup ··}] depletion by niobia addition, the behaviors of bulk and GB conductivities might be explained by the decrease of mobility of oxygen ion due to Coulomb repulsion between Nb{sup 5+} and V{sub O}{sup ··} and by no segregation of Nb ions in the space-charge layers, respectively.
Hon Tat Hui
2010-01-01
Full Text Available A short review of the receiving-mutual-impedance method (RMIM for mutual coupling compensation in direction finding applications using linear array is conducted. The differences between the conventional-mutual-impedance method (CMIM and RMIM, as well as the three different determination methods for receiving mutual impedance (RMI, will be discussed in details. As an example, direction finding with better accuracies is used for demonstrating the superiority of mutual coupling compensation using RMIM.
Hon Tat Hui; Hoi Shun Lui
2010-01-01
A short review of the receiving-mutual-impedance method (RMIM) for mutual coupling compensation in direction finding applications using linear array is conducted. The differences between the conventional-mutual-impedance method (CMIM) and RMIM, as well as the three different determination methods for receiving mutual impedance (RMI), will be discussed in details. As an example, direction finding with better accuracies is used for demonstrating the superiority of mutual coupling compensation u...
Measurement of longitudinal impedance for a KAON test pipe model with TSD-calibration method
The authors report measurements of longitudinal impedances for a KAON factory beam pipe model by means of the TSD-calibration method. The experimental method and the results are discussed. The frequency band is from 48 MHz up to 900 MHz, within which range the method produces measured impedances accurate enough to be useful in indicating whether a test pipe will have a suitably low impedance
Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography
Hoffmann, Kristoffer; Knudsen, Kim
2014-01-01
For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...
Application of impedance spectroscopy method for analysis of benzanol fuels
Mamykin A. V.
2015-06-01
Full Text Available The authors have developed a method for express control of three component «gasoline-alcohol-water» fuel mixtures based on the spectral impedance investigation of benzanol mixture in the frequency range of 500 Hz — 10 kHz. A correlation dependence between the dielectric constant and the specific resistance of the fuel mixture on content of ethanol and water in the mixture has been found. On the basis of this dependence a calibration nomogram to quantify the gasoline and water-alcohol components content in the test benzanol fuel in the actual range of concentrations has been formed. The nomogram allows determining the water-alcohol and gasoline parts in the analyzed fuel with an error of no more than 1% vol., while the strength of water-alcohol solution is determined with an error of no more than 0.8% vol. The obtained nomogram can also give information about critical water content in the benzanol fuel to prevent its eventual phase separation. It is shown that the initial component composition of different gasoline brands has no significant effect on the electrical characteristics of the studied benzanol fuels, which makes the evaluation of alcohol and water content in the fuel sufficiently accurate. for practical applications.
Kim, Jaehong; Guerrero, Josep M.; Rodriguez, Pedro; Teodorescu, Remus; Nam, Kwanghee
2011-01-01
A decentralized power control method in a singlephase flexible acmicrogrid is proposed in this paper. Droop control is widely considered to be a good choice for managing the power flows between microgrid converters in a decentralized manner. In this work, to enhance the power loop dynamics, droop...
无
2007-01-01
1 Results Investigations on the sensing mechanism is important for understanding the electrical responses of humidity sensors to humidity change,and could provide guidelines for the design and synthesis of humidity sensitive materials with desirable properties.In this work,the sensing mechanism of humidity sensors based on quaternized poly(4-vinylpyridine) (PVP)/carbon black (CB) composite[1] was studied by measuring their AC impedance spectra at various humidities at room temperature.Under low humidity...
Kinoshita, Katsuyuki
2015-02-01
We have developed a method for detecting fatigue in aluminum alloys that is based on a applying a ferromagnetic electroless Ni–Co–P plating and then using an electromagnetic impedance (EMI) method to determine its permeability properties by measuring the high-frequency AC impedance of a coil sensor in the presence of a static magnetic field. The results obtained confirmed that this method can estimate the fatigue evolution of a specimen until the point at which the cumulative strain becomes saturated by using measurements obtained by the EMI method under tensile deformation and FEM analysis results. - Highlights: • Plating aluminum alloy with Ni–Co–P film increases its fatigue strength by 13−16%. • The tensile direction is the stress induced “hard axis” of the Ni–Co–P plating. • In-plane permeability determines the coil impedance for out-of-plane excitation. • This method can measure fatigue up to saturation of the substrate's residual strain.
We have developed a method for detecting fatigue in aluminum alloys that is based on a applying a ferromagnetic electroless Ni–Co–P plating and then using an electromagnetic impedance (EMI) method to determine its permeability properties by measuring the high-frequency AC impedance of a coil sensor in the presence of a static magnetic field. The results obtained confirmed that this method can estimate the fatigue evolution of a specimen until the point at which the cumulative strain becomes saturated by using measurements obtained by the EMI method under tensile deformation and FEM analysis results. - Highlights: • Plating aluminum alloy with Ni–Co–P film increases its fatigue strength by 13−16%. • The tensile direction is the stress induced “hard axis” of the Ni–Co–P plating. • In-plane permeability determines the coil impedance for out-of-plane excitation. • This method can measure fatigue up to saturation of the substrate's residual strain
Comparison of Methods for Stroke Volume Computing from Impedance Cardiography
Jurák, Pavel; Halámek, Josef; Vondra, Vlastimil; Kára, T.; Nykodým, J.; Číp, Ondřej; Eisenberger, M.; Leinveber, P.; Fráňa, P.; Meluzín, J.; Souček, M.
Brno : Brno University of Technology, 2004, s. 69-71. ISBN 80-214-2633-0. ISSN 1211-412X. [Biosignal 2004 /17./. Brno (CZ), 23.06.2004-25.06.2004] R&D Projects: GA ČR GA102/02/1339 Keywords : Impedance Cardiography * Stroke Volume Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery
An Analytical Method of Auxiliary Sources Solution for Plane Wave Scattering by Impedance Cylinders
Larsen, Niels Vesterdal; Breinbjerg, Olav
Analytical Method of Auxiliary Sources solutions for plane wave scattering by circular impedance cylinders are derived by transformation of the exact eigenfunction series solutions employing the Hankel function wave transformation. The analytical Method of Auxiliary Sources solution thus obtained...
Frequency Synchronization Analysis in Digital lock-in Methods for Bio-impedance Determination
Brajkovič Robert; Žagar Tomaž; Križaj Dejan
2014-01-01
The lock-in method is one of the most frequently used methods for reconstruction of measured signals and as such frequently applied in the (bio)impedance method to determine the modulus and phase of the (bio)impedance. In implementation of the method in a (bio)impedance measurement device one has to consider possible non synchronized frequencies of the reference and the analyzed signals as well as potential sources of noise. In this work we analyzed these errors theoretically and experimental...
An impedance-based high-throughput method for evaluating the cytotoxicity of nanoparticles
Impedance-based assays can constitute a reliable alternative to the conventional methods used in nanotoxicology due to the important advantages of being label-free and monitoring the cells in real-time. In this study, the suitability of impedance-monitoring for the screening of nanoparticle (NP)-induced cytotoxicity was assessed. The effect of titanium dioxide (TiO2)-NPs on cellular proliferation, viability, spreading, and detachment from substrate was evaluated by continuous impedance-based measurements made with an xCELLigence system. Fibroblasts seeded in microelectrode-embedded E-plates were exposed to spherical anatase nano-TiO2 (5, 10, and 40 nm in diameter) for up to 120 h. An alternative excitation signal (20 mV control voltage amplitude) was applied at 10, 25, and 50 kHz to the microelectrodes in the E-plates. Cells attached to the electrode surfaces act as insulators and lead to an increase in impedance. For validating the impedance-method, Trypan Blue exclusion and ultrahigh resolution imaging (URI) were employed. The general trend observed was a decrease in impedance following exposure to TiO2-NPs. Impedance-based results were in most instances in accordance with those from the Trypan Blue exclusion and URI assays indicating that the impedance-based approach has merit. Further studies are needed to validate it as a high-throughput method for evaluating NPs' cytotoxicity.
An impedance-based high-throughput method for evaluating the cytotoxicity of nanoparticles
Cimpan, M. R.; Mordal, T.; Schölermann, J.; Allouni, Z. E.; Pliquett, U.; Cimpan, E.
2013-04-01
Impedance-based assays can constitute a reliable alternative to the conventional methods used in nanotoxicology due to the important advantages of being label-free and monitoring the cells in real-time. In this study, the suitability of impedance-monitoring for the screening of nanoparticle (NP)-induced cytotoxicity was assessed. The effect of titanium dioxide (TiO2)-NPs on cellular proliferation, viability, spreading, and detachment from substrate was evaluated by continuous impedance-based measurements made with an xCELLigence system. Fibroblasts seeded in microelectrode-embedded E-plates were exposed to spherical anatase nano-TiO2 (5, 10, and 40 nm in diameter) for up to 120 h. An alternative excitation signal (20 mV control voltage amplitude) was applied at 10, 25, and 50 kHz to the microelectrodes in the E-plates. Cells attached to the electrode surfaces act as insulators and lead to an increase in impedance. For validating the impedance-method, Trypan Blue exclusion and ultrahigh resolution imaging (URI) were employed. The general trend observed was a decrease in impedance following exposure to TiO2-NPs. Impedance-based results were in most instances in accordance with those from the Trypan Blue exclusion and URI assays indicating that the impedance-based approach has merit. Further studies are needed to validate it as a high-throughput method for evaluating NPs' cytotoxicity.
Improved Design Methods for Robust Single- and Three-Phase ac-dc-ac Power Converters
Qin, Zian
proposed new active power decoupling method, the ripple power in the converter can be compensated in a more efficient and more compact way. Then, Chapter 5 changes the scope of the thesis to three-phase converters, and the nine-switch converter, as a reduced switch version of two three-phase full......-bridges connected back-to-back, is studied. Application criteria of the nine-switch converter are investigated for reducing the relatively high stress introduced by the less number of switches. In Chapter 6 a rotating speed controller design method is proposed for improving the thermal loading of the three...... to users. Their performances including cost, efficiency, reliability, and so on, therefore are more important concerns than they were. The objective of this thesis is to study and propose advanced design methods for robust ac-dc-ac converters, which are widely used interfaces in energy conversion...
Perturbation method for calculation of narrow-band impedance and trapped modes
An iterative method for calculation of the narrow-band impedance is described for a system with a small variation in boundary conditions, so that the variation can be considered as a perturbation. The results are compared with numeric calculations. The method is used to relate the origin of the trapped modes with the degeneracy of the spectrum of an unperturbed system. The method also can be applied to transverse impedance calculations. 6 refs., 6 figs., 1 tab
Beam-chamber interaction in accelerators. Methods for calculating coupling impedances
A review of methods for calculating the coupling impedances of the vacuum chamber of accelerators is given. The definitions of the coupling impedances, their properties and relations to the wake potentials are discussed in detail. The main attention is paid to the techniques applied at low frequencies and in the resonant region. An attempt to classify these methods is made. The paper presents a collection of formulae and can be used as a reference guide. 126 refs.; 1 fig.; 1 tab
Ultrahigh impedance method to assess electrostatic accelerator performance
Lobanov, Nikolai R.; Linardakis, Peter; Tsifakis, Dimitrios
2015-06-01
This paper describes an investigation of problem-solving procedures to troubleshoot electrostatic accelerators. A novel technique to diagnose issues with high-voltage components is described. The main application of this technique is noninvasive testing of electrostatic accelerator high-voltage grading systems, measuring insulation resistance, or determining the volume and surface resistivity of insulation materials used in column posts and acceleration tubes. In addition, this technique allows verification of the continuity of the resistive divider assembly as a complete circuit, revealing if an electrical path exists between equipotential rings, resistors, tube electrodes, and column post-to-tube conductors. It is capable of identifying and locating a "microbreak" in a resistor and the experimental validation of the transfer function of the high impedance energy control element. A simple and practical fault-finding procedure has been developed based on fundamental principles. The experimental distributions of relative resistance deviations (Δ R /R ) for both accelerating tubes and posts were collected during five scheduled accelerator maintenance tank openings during 2013 and 2014. Components with measured Δ R /R >±2.5 % were considered faulty and put through a detailed examination, with faults categorized. In total, thirty four unique fault categories were identified and most would not be identifiable without the new technique described. The most common failure mode was permanent and irreversible insulator current leakage that developed after being exposed to the ambient environment. As a result of efficient in situ troubleshooting and fault-elimination techniques, the maximum values of |Δ R /R | are kept below 2.5% at the conclusion of maintenance procedures. The acceptance margin could be narrowed even further by a factor of 2.5 by increasing the test voltage from 40 V up to 100 V. Based on experience over the last two years, resistor and insulator
Electrometric method to determine the surface impedance of an ice-sea water bilayer system
Bashkuev, Yu. B.; Naguslaeva, I. B.; Khaptanov, V. B.; Dembelov, M. G.
2016-02-01
An electrometric method to determine the surface impedance of an ice-sea water bilayer system is suggested. The complex impedance (its magnitude and phase) of this system is determined at very low, low, and medium frequencies from electrometric, rather than radio, measurements. For the ice-sea water system, it is sufficient to determine the conductivity and thickness of a water sample from drilling data.
Impedance ratio method for urine conductivity-invariant estimation of bladder volume
Thomas Schlebusch; Jakob Orschulik; Jaakko Malmivuo; Steffen Leonhardt; Dorothea Leonhäuser; Joachim Grosse; Michael Kowollik; Ruth Kirschner-Hermanns; Marian Walter
2014-01-01
Non-invasive estimation of bladder volume could help patients with impaired bladder volume sensation to determine the right moment for catheterisation. Continuous, non-invasive impedance measurement is a promising technology in this scenario, although influences of body posture and unknown urine conductivity limit wide clinical use today. We studied impedance changes related to bladder volume by simulation, in-vitro and in-vivo measurements with pigs. In this work, we present a method to redu...
Impedance and a.c. conductivity studies of Ba(Pr1/2Nb1/2)O3 ceramic
K Amar Nath; K Prasad; K P Chandra; A R Kulkarni
2013-08-01
Impedance and electrical conduction studies of Ba(Pr1/2Nb1/2)O3 ceramic prepared through conventional ceramic fabrication technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group, $\\bar{3}$. EDAX and SEM studies were carried out to study the quality and purity of compound. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using impedance data. Complex impedance as well as electric modulus analyses suggested dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in Ba(Pr1/2Nb1/2)O3. The a.c. conductivity data were used to evaluate density of states at Fermi level, minimum hopping length and apparent activation energy.
Impedance and a.c. conductivity studies of Ba(Pr1/2Nb1/2)O3 ceramic
Impedance and electrical conduction studies of Ba(Pr1/2Nb1/2)O3 ceramic prepared through conventional ceramic fabrication technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group, Pm3¯m. EDAX and SEM studies were carried out to study the quality and purity of compound. To find a correlation between the response of the real system and idealized model circuit composed of discrete electrical components, the model fittings were presented using impedance data. Complex impedance as well as electric modulus analyses suggested dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in Ba(Pr1/2Nb1/2)O3. The a.c. conductivity data were used to evaluate density of states at Fermi level, minimum hopping length and apparent activation energy. (author)
Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis
Hossan, Mohammad Robiul; Dillon, Robert; Dutta, Prashanta
2014-08-01
Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface-immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.
Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis
Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices
Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis
Hossan, Mohammad Robiul [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States); Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034-5209 (United States); Dillon, Robert [Department of Mathematics, Washington State University, Pullman, WA 99164-3113 (United States); Dutta, Prashanta, E-mail: dutta@mail.wsu.edu [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920 (United States)
2014-08-01
Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of the hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.
Ansu K. Roy
2013-06-01
Full Text Available Lead-free piezoelectric perovskite ceramic (Bi0.5Na0.50.95Ba0.05TiO3 (BNT-BT0.05, prepared by conventional high temperature solid state reaction technique at 1160 °C/3h in air atmosphere, is investigated by impedance and modulus spectroscopy in a temperature range 35–400 °C, over a frequency range 100 Hz–1 MHz. The crystal structure, microstructure, and piezoelectric properties as well as the AC conductivity of the sample were studied. Powder X-ray diffraction pattern derived from the resulting data at the room temperature subjected to Rietveld refinements and Williamson-Hall plot analysis confirmed the formation of phase pure compound with monoclinic unit cells having a crystallite-size ~33.8 nm. Observed SEM micrograph showed a uniform distribution of grains inside the sample having an average grain size ~3 mm. Longitudinal piezoelectric charge coefficient of the sample poled under a DC electric field of ~ 2.5 kV/mm at 80 °C in a silicone oil bath was found to be equal to 95 pC/N. The frequency and temperature dependent electrical data analysed in the framework of AC conductivity, complex impedance as well as electric modulus formalisms showed negative temperature coefficient of resistance (NTCR character of the material and the dielectric relaxation in the material to be of non-Debye type. Double power law for the frequency-dependence of AC conductivity and Jump Relaxation Model (JRM were found to explain successfully the mechanism of charge transport in BNT-BT0.05.
A relationship between characteristic impedance and its fabrication method of the electrode edge in stripline-type beam potion monitors (SBPMs) was investigated on the basis of experiments and theoretical calculations. The upgrade of the SBPMs with higher accuracy and resolution in the beam-position measurement is strongly required in the Super KEK B-factory (SKEKB), which has been started in 2010 while the main development of the SBPMs is for the signal-detection system. Such SBPMs are widely used in order to precisely measure the transverse beam positions in linear accelerators. Although conventional SBPMs were first developed at the KEKB injector linac in 1995, the author has reconsidered the fabrication method with having higher mechanical accuracy. As a result it was found that the modification of the fabrication method clearly affected the characteristic impedance of the electrode. In this report, the modification of the fabrication method and its quantitative effect to the characteristic impedance are discussed in detail. (author)
A New Method of On-line Grid Impedance Estimation for PV Inverter
Teodorescu, Remus; Asiminoaei, Lucian; Blaabjerg, Frede;
2004-01-01
The recent increase in photo-voltaic (PV) installations calls for new and better power quality requirements with respect to connection to the grid supply. Therefore, different methods are typically used for continuous grid monitoring, usually by using external devices. In this paper a new method...... for on-line measuring the grid impedance is presented. The presented method requires no extra hardware being accommodated by typical PV inverters, sensors and CPU, to provide a fast and low cost approach of on-line impedance measurement. By injecting a non-characteristic harmonic current and measuring...
On the Use of Experimental Methods to Improve Confidence in Educed Impedance
Jones, Michael G.; Watson, Willie R.
2011-01-01
Results from impedance eduction methods developed by NASA Langley Research Center are used throughout the acoustic liner community. In spite of recent enhancements, occasional anomalies persist with these methods, generally at frequencies where the liner produces minimal attenuation. This investigation demonstrates an experimental approach to educe impedance with increased confidence over a desired frequency range, by combining results from successive tests with different cavity depths. A series of tests is conducted with three wire-mesh facesheets, for which the results should be weakly dependent on source sound pressure level and mean grazing flow speed. First, a raylometer is used to measure the DC flow resistance of each facesheet. These facesheets are then mounted onto a frame and a normal incidence tube is used to determine their respective acoustic impedance spectra. A comparison of the acoustic resistance component with the DC flow resistance for each facesheet is used to validate the measurement process. Next, each facesheet is successively mounted onto three frames with different cavity depths, and a grazing flow impedance tube is used to educe their respective acoustic impedance spectra with and without mean flow. The no-flow results are compared with those measured in the normal incidence tube to validate the impedance eduction method. Since the anti-resonance frequency varies with cavity depth, each sample provides robust results over a different frequency range. Hence, a combination of results can be used to determine the facesheet acoustic resistance. When combined with the acoustic reactance, observed to be weakly dependent on the source sound pressure level and grazing flow Mach number, the acoustic impedance can be educed with increased confidence. Representative results of these tests are discussed, and the complete database is available in electronic format upon request.
Anji Reddy Polu; Ranveer Kumar
2011-08-01
Polyvinyl alcohol (PVA)–polyethylene glycol (PEG) based solid polymer blend electrolytes with magnesium nitrate have been prepared by the solution cast technique. Impedance spectroscopic technique has been used, to characterize these polymer electrolytes. Complex impedance analysis was used to calculate bulk resistance of the polymer electrolytes. The a.c.-impedance data reveal that the ionic conductivity of PVA–PEG–Mg(NO3)2 system is changed with the concentration of magnesium nitrate, maximum conductivity of 9.63 × 10-5 S/cm at room temperature was observed for the system of PVA–PEG–Mg(NO3)2 (35–35–30). However, ionic conductivity of the above system increased with the increase of temperature, and the highest conductivity of 1.71 × 10-3 S/cm was observed at 100°C. The effect of ionic conductivity of polymer blend electrolytes was measured by varying the temperature ranging from 303 to 373 K. The variation of imaginary and real parts of dielectric constant with frequency was studied.
An approach to the diagnosis of metabolic syndrome by the multi-electrode impedance method
Furuya, N.; Sakamoto, K.; Kanai, H.
2010-04-01
It is well known that metabolic syndrome can induce myocardial infarction and cerebral infarction. So, it is very important to measure the visceral fat volume. In the electric impedance method, information in the vicinity of the electrodes is strongly reflected. Therefore, we propose a new multi-electrode arrangement method based on the impedance sensitivity theorem to measure the visceral fat volume. This electrode arrangement is designed to enable high impedance sensitivity in the visceral and subcutaneous fat regions. Currents are simultaneously applied to several current electrodes on the body surface, and one voltage electrode pair is arranged on the body surface near the organ of interest to obtain the visceral fat information and another voltage electrode pair is arranged on the body surface near the current electrodes to obtain the subcutaneous fat information. A simulation study indicates that by weighting the impedance sensitivity distribution, as in our method, a high-sensitivity region in the visceral and the subcutaneous fat regions can be formed. In addition, it was confirmed that the visceral fat volume can be estimated by the measured impedance data.
A direct-display oscillation method for measurement of respiratory impedance.
Franetzki, M; Prestele, K; Korn, V
1979-05-01
The basic principle of the method described here is derived from a variant of the oscillation method. A reference impedance is connected to the mouth; between these two an oscillating flow is imposed. As a reference impedance we use a flexible tube, which acts as a virtually pure inductance or inertance. Respiration is hardly impeded. The only measured parameter is the alternating pressure in front of the mouth and this is easily picked up by a simple microphone. In contrast to former direct-display methods, the inertia and elasticity of the respiratory gas and the respiratory tract, i.e., airways including lungs and thorax, are also taken into account for the evaluation. The respiratory resistance is studied as a complex parameters, i.e., as an impedance. With the aid of diagrams or via electronic computation circuitry, the direct and continuous display of all impedance components such as its magnitude and phase, resistance, and reactance is possible. They can be read out as a function of time, respiratory flow, or volume. PMID:468614
Impedance feedback control for scanning electrochemical microscopy.
Alpuche-Aviles, M A; Wipf, D O
2001-10-15
A new constant-distance imaging method based on the relationship between tip impedance and tip-substrate separation has been developed for the scanning electrochemical microscope. The tip impedance is monitored by application of a high-frequency ac voltage bias between the tip and auxiliary electrode. The high-frequency ac current is easily separated from the dc-level faradaic electrochemistry with a simple RC filter, which allows impedance measurements during feedback or generation/collection experiments. By employing a piezo-based feedback controller, we are able to maintain the impedance at a constant value and, thus, maintain a constant tip-substrate separation. Application of the method to feedback and generation/collection experiments with tip electrodes as small as 2 microm is presented. PMID:11681463
A Convergent Method of Auxiliary Sources for Two-Dimensional Impedance Scatterers With Edges
Karamehmedovic, Mirza; Breinbjerg, Olav
2001-01-01
A modification to the Method of Auxiliary Sources (MAS) is introduced which renders the method operational for two-dimensional impedance scatterers with edges. The modification consists in letting the auxiliary surface converge to the scatterer physical surface for increasing number of auxiliary ...
Mohamed-Rachid Boulassel
2015-11-01
Full Text Available Objectives: Obtaining accurate platelet counts in microcytic blood samples is challenging, even with the most reliable automated haematology analysers. The CELL-DYN™ Sapphire (Abbott Laboratories, Chicago, Illinois, USA analyser uses both optical density and electronic impedance methods for platelet counting. This study aimed to evaluate the accuracy of optical density and electrical impedance methods in determining true platelet counts in thrombocytopaenic samples with microcytosis as defined by low mean corpuscular volume (MCV of red blood cells. Additionally, the impact of microcytosis on platelet count accuracy was evaluated. Methods: This study was carried out between February and December 2014 at the Haematology Laboratory of the Sultan Qaboos University Hospital in Muscat, Oman. Blood samples were collected and analysed from 189 patients with thrombocytopaenia and MCV values of <76 femtolitres. Platelet counts were tested using both optical and impedance methods. Stained peripheral blood films for each sample were then reviewed as a reference method to confirm platelet counts. Results: The platelet counts estimated by the impedance method were on average 30% higher than those estimated by the optical method (P <0.001. The estimated intraclass correlation coefficient was 0.52 (95% confidence interval: 0.41–0.62, indicating moderate reliability between the methods. The degree of agreement between methods ranged from -85.5 to 24.3 with an estimated bias of -30, suggesting that these methods generate different platelet results. Conclusion: The impedance method significantly overestimated platelet counts in microcytic and thrombocytopaenic blood samples. Further attention is therefore needed to improve the accuracy of platelet counts, particularly for patients with conditions associated with microcytosis.
Experimental facility and void fraction calibration methods for impedance probes
An experimental facility was designed and constructed with aims of to calibrate a capacitance probe for gas-liquid flow void fraction measurements. The facility is composed of a metallic hack with a vertical 2,300 mm high glass tube with 38 mm ID with stagnant water and compressed air bubbling system simulating the gas phase (vapor). At the lower part, a mixing section with a porous media element releases the air bubbles into the water, and the compressed air flow is measured by two calibrated rotameters. At the upper part a stagnant water tank separates the liquid and gas. Two pressure taps are located near the lower and upper sides of the glass tube for pressure difference measurement. The pressure difference is used for low void fraction values (0-15%) calibration methods, as described in the work. Two electrically controlled quick closing valves are installed between the porous media element and the upward separation tank for high void fraction values measurement (15-50%) used to calibrate the capacitance probe. The experimental facility design, construction, capacitance probe calibration methods and results, as well as flow pattern visualization, are presented. Finally, the capacitance probe will be installed on a natural circulation circuit mounted at the Nuclear Engineering Center (CEN/IPEN/CNEN-SP) for measurement of the instantaneous bulk void. Instantaneous signals generated by the capacitance probe will allow the determination of natural circulation loop global energy balance. (author)
Impedance-Source Networks for Electric Power Conversion Part II
Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede;
2015-01-01
-source-network-based power converters has been covered in a previous paper and main topologies were discussed from an application point of view. Now Part II provides a comprehensive review of the most popular control and modulation strategies for impedance-source network-based power converters/inverters. These methods are......Impedance-source networks cover the entire spectrum of electric power conversion applications (dc-dc, dc-ac, ac-dc, ac-ac) controlled and modulated by different modulation strategies to generate the desired dc or ac voltage and current at the output. A comprehensive review of various impedance...... topology at a certain power level, switching frequency and demanded dynamic response....
Hamada, R [R and D Center, Panasonic Healthcare Co., Ltd., 2131-1, Minanikata, Toon, Ehime (Japan); Takayama, H; Shonishi, Y; Hisajima, T; Mao, L; Nakano, M; Suehiro, J, E-mail: hamada.ryo@jp.panasonic.com [Department of Electrical and Electronic Engineering, Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka (Japan)
2011-08-17
In this study, the concept design for the improvement of the bacterial detection sensitivity of the DEPIM (Dielectrophoretic Impedance Measurement) method has been proposed. The cells in the micro-chamber are repelled and concentrated by n-DEP (negative dielectrophosesis). The concentrated cells are captured by p-DEP (positive DEP) and detected by measuring the change in the electrical impedance. The numerical simulations and the preliminary test were performed to investigate the effectiveness of the n-DEP concentration. When n-DEP concentration was employed, the increase in the rate of the conductance became approximately two times higher than that obtained without n-DEP.
In this study, the concept design for the improvement of the bacterial detection sensitivity of the DEPIM (Dielectrophoretic Impedance Measurement) method has been proposed. The cells in the micro-chamber are repelled and concentrated by n-DEP (negative dielectrophosesis). The concentrated cells are captured by p-DEP (positive DEP) and detected by measuring the change in the electrical impedance. The numerical simulations and the preliminary test were performed to investigate the effectiveness of the n-DEP concentration. When n-DEP concentration was employed, the increase in the rate of the conductance became approximately two times higher than that obtained without n-DEP.
Impedance ratio method for urine conductivity-invariant estimation of bladder volume
Thomas Schlebusch
2014-09-01
Full Text Available Non-invasive estimation of bladder volume could help patients with impaired bladder volume sensation to determine the right moment for catheterisation. Continuous, non-invasive impedance measurement is a promising technology in this scenario, although influences of body posture and unknown urine conductivity limit wide clinical use today. We studied impedance changes related to bladder volume by simulation, in-vitro and in-vivo measurements with pigs. In this work, we present a method to reduce the influence of urine conductivity to cystovolumetry and bring bioimpedance cystovolumetry closer to a clinical application.
Method, system and computer-readable media for measuring impedance of an energy storage device
Morrison, John L.; Morrison, William H.; Christophersen, Jon P.; Motloch, Chester G.
2016-01-26
Real-time battery impedance spectrum is acquired using a one-time record. Fast Summation Transformation (FST) is a parallel method of acquiring a real-time battery impedance spectrum using a one-time record that enables battery diagnostics. An excitation current to a battery is a sum of equal amplitude sine waves of frequencies that are octave harmonics spread over a range of interest. A sample frequency is also octave and harmonically related to all frequencies in the sum. A time profile of this sampled signal has a duration that is a few periods of the lowest frequency. A voltage response of the battery, average deleted, is an impedance of the battery in a time domain. Since the excitation frequencies are known and octave and harmonically related, a simple algorithm, FST, processes the time profile by rectifying relative to sine and cosine of each frequency. Another algorithm yields real and imaginary components for each frequency.
A method of phase control and impedance matching of mutually coupled ICRF antennas in LHD
In the Large Helical Device (LHD), the installation of a pair of ion cyclotron range of frequencies (ICRF) antennas from upper and lower ports is planned. These antennas are geometrically symmetrical and located side by side. By changing the current phase on the straps, the wave number parallel to the magnetic field line can be controlled. However, antenna impedances will also be changed and reflected power will increase due to mutual coupling. For efficient power injection and the protection of tetrode tubes, the parameters of impedance matching devices must be controlled together with the current phase. A method was formulated and trials of phase control and impedance matching were successfully conducted with a simplified two-port dummy antenna. (author)
Karamehmedovic, Mirza; Breinbjerg, Olav
2002-01-01
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....
Sørensen, Stefan; Nielsen, Hans Ove
2002-01-01
% deviation to other methods. The correction is done by adjusting he earth return path impedance for the cable model, and will thereby form the basis for a future comparison with measured data from a real full scale earth fault experiment on a mixed line and cable network....
Swelling kinetics characterization of polymer gels by the method of impedance spectrometry
A method for swelling kinetics determination of polymer gel made of alginate (a natural bio polymer) has been presented by working with impedance analyser and measurement of the frequency spectra of electrical conductance and dielectric loss of calcium alginate gel exposed to sodium salt fluid. (Author)
Absorption and impedance boundary conditions for phased geometrical-acoustics methods
Jeong, Cheol-Ho
2012-01-01
Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, both absorption coefficients and surface impedances of the boundary surfaces can be used, but no guideline has been...... reasonable results with some exceptions at low frequencies for acoustically soft materials....
System and method for determining stator winding resistance in an AC motor using motor drives
Lu, Bin; Habetler, Thomas G; Zhang, Pinjia
2013-02-26
A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.
Pulse wave detection method based on the bio-impedance of the wrist
He, Jianman; Wang, Mengjun; Li, Xiaoxia; Li, Gang; Lin, Ling
2016-05-01
The real-time monitoring of pulse rate can evaluate the heart health to some extent, and the measurement of bio-impedance has the potential in wearable health monitoring system. In this paper, an effective method, which contains self-balancing bridge, flexible electrode, and high-speed digital lock-in algorithm (DLIA) with over-sampling, was designed to detect the impedance pulse wave at the wrist. By applying the self-balancing bridge, the basic impedance can be compensated as much as possible, and the low amplitude of impedance variation related to heart pulse can be obtained more easily. And the flexible conductive rubber electrode used in our experiment is human-friendly. Besides, the over-sampling method and high-speed DLIA are used to enhance the effective resolution of the existing data sampled by analog to digital converter. With the high-speed data process and simple circuit above, this proposed method has the potential in wrist-band wearable systems and it can satisfy quests of small volume and low power consumption.
Miles, Robin R.; Belgrader, Phillip; Fuller, Christopher D.
2007-01-02
Impedance measurements are used to detect the end-point for PCR DNA amplification. A pair of spaced electrodes are located on a surface of a microfluidic channel and an AC or DC voltage is applied across the electrodes to produce an electric field. An ionically labeled probe will attach to a complementary DNA segment, and a polymerase enzyme will release the ionic label. This causes the conductivity of the solution in the area of the electrode to change. This change in conductivity is measured as a change in the impedance been the two electrodes.
Impedance measurement of irradiated potatoes: a method to identify radiation processing
The potato is firmly established in many parts of the world as a major staple food. Then, radiation processing of potato is approved in many countries for sprouting inhibition and extension of shelf life in a dose range from about 0.01 to 0.15 kGy of 60 Co. The use of electrical conductance methods for the detection of Salmonella, some virus or the action of herbicides on plant has been reported and differences have been observed between instruments in respect of the magnitude of conductance change or rates of change in conductance response. A reliable technique to identify potatoes or other food products has not been established so far, though several methods have been reported. Electrical impedance might thus serve for characterization of unirradiated and irradiated tissues and cells. In this work, potato tubers from an European variety, named Bintje, grown in Sao Paulo State were employed. Potatoes were punctured with steel electrodes and impedance measured at different frequencies (1 k Hz-100 k Hz) by passing 3-5 m A alternating current through it. The impedance ratio of 50 k Hz/5 k Hz calculated from ten replicate samples decreases with the increment of the dose when doses of O 0.75 and 0.15 kGy from a Gamma Cell 220 were utilized. The impedance measurement were slightly affected by the place of puncture. (author)
The electrochemical impedance of metal hydride electrodes
Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf; Tunold, Reidar
2002-01-01
The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... observed. The impedance analysis was found to be an efficient method for characterizing metal hydride electrodes in situ....
New Modified Band Limited Impedance (BLIMP) Inversion Method Using Envelope Attribute
Maulana, Z. L.; Saputro, O. D.; Latief, F. D. E.
2016-01-01
Earth attenuates high frequencies from seismic wavelet. Low frequency seismics cannot be obtained by low quality geophone. The low frequencies (0-10 Hz) that are not present in seismic data are important to obtain a good result in acoustic impedance (AI) inversion. AI is important to determine reservoir quality by converting AI to reservoir properties like porosity, permeability and water saturation. The low frequencies can be supplied from impedance log (AI logs), velocity analysis, and from the combination of both data. In this study, we propose that the low frequencies could be obtained from the envelope seismic attribute. This new proposed method is essentially a modified BLIMP (Band Limited Impedance) inversion method, in which the AI logs for BLIMP substituted with the envelope attribute. In low frequency domain (0-10 Hz), the envelope attribute produces high amplitude. This low frequency from the envelope attribute is utilized to replace low frequency from AI logs in BLIMP. Linear trend in this method is acquired from the AI logs. In this study, the method is applied on synthetic seismograms created from impedance log from well ‘X’. The mean squared error from the modified BLIMP inversion is 2-4% for each trace (variation in error is caused by different normalization constant), lower than the conventional BLIMP inversion which produces error of 8%. The new method is also applied on Marmousi2 dataset and show promising result. The modified BLIMP inversion result from Marmousi2 by using one log AI is better than the one produced from the conventional method.
RF impedance method for nondestructive moisture content determination for in-shell peanuts
Kandala, C. V. K.; Nelson, S. O.
2007-04-01
A method was developed earlier for estimating the moisture content (mc) in samples of wheat, corn and peanut kernels, nondestructively, by measuring their complex impedance values. In this method, capacitance (C), phase angle (θ) and dissipation factor (D) were measured with an impedance analyser at 1 and 5 MHz on a parallel-plate capacitor holding a few kernels of a particular commodity between the plates. These values were then used in an empirical equation based on the parameters C, θ and D, and the moisture content was calculated. The calculated mc values were within 1% of the air-oven values for about 85% of the kernel samples tested in the moisture range from 6% to 20% for wheat, corn and peanuts. However, it would be useful during drying and processing of peanuts, if the mc could be determined without shelling them. In this work, the feasibility of determining the moisture content of in-shell peanuts (pods) by similar impedance measurements was investigated. Values of capacitance, phase angle and dissipation factor measured at 24 °C and at three frequencies were used in a modified prediction equation and the moisture content was estimated within 1% of the air-oven values for over 90% of the pod samples tested in the moisture range from 6% to 25%. The method is rapid and nondestructive and may be used in the development of a commercial instrument.
S Rodrigues; N Munichandraiah; A K Shukla
2001-10-01
Metal-hydride electrodes made of an AB2 alloy of the composition Zr0.5Ti0.5V0.6Cr0.2Ni1.2 are studied for AC impedance behaviour at several of their state-of-charge values. Impedance data at any state-of-charge comprise two RC-time constants and accordingly are analysed by using a nonlinear-least-square-fitting procedure. Resistance of the electrode and frequency maximum (*) of the lowfrequency semicircle are found useful for predicting state-of-charge of the metalhydride electrodes.
Siroma, Zyun; Sato, Tomohiro; Takeuchi, Tomonari; Nagai, Ryo; Ota, Akira; Ioroi, Tsutomu
2016-06-01
The ionic and electronic effective conductivities of an electrode mixture layers for all-solid-state lithium-ion batteries containing Li2Ssbnd P2S5 as a solid electrolyte were investigated by AC impedance measurements and analysis using a transmission-line model (TLM). Samples containing graphite (graphite electrodes) or LiNi0.5Co0.2Mn0.3O2 (NCM electrodes) as the active material were measured under a "substrate | sample | bulk electrolyte | sample | substrate" configuration (ion-electron connection) and a "substrate | sample | substrate" configuration (electron-electron connection). Theoretically, if the electronic resistance is negligibly small, which is the case with our graphite electrodes, measurement with the ion-electron connection should be effective for evaluating ionic conductivity. However, if the electronic resistance is comparable to the ionic resistance, which is the case with our NCM electrodes, the results with the ion-electron connection may contain some inherent inaccuracy. In this report, we theoretically and practically demonstrate the advantage of analyzing the results with the electron-electron connection, which gives both the ionic and electronic conductivities. The similarity of the behavior of ionic conductivity with the graphite and NCM electrodes confirms the reliability of this analysis.
Jayant Kolte
2015-09-01
Full Text Available In this paper, major reduction in sintering time,temperautre and significant improvement over final density of sitnered sample is reported for the microwave sintered nanocrystalline BiFeO3 (BFO ceramic. Also, different sintering time and temperatures have been used to tailor the grain size and the final density of the resulting BFO ceramics synthesized from phase pure BFO nanoparticles ( d ̄ ≈ 10 n m . Microwave sintering resulted in reducing the sintering time substantially (by 1h, and has resulted in submicron sized grains and high resistivity ∼1.8 GΩ-cm. The AC conductivity is seen to follow the Jonscher’s power law behavior, suggesting correlated barrier hopping (CBH mechanism in the sample. The role of oxygen vacancies at high temperature, due to volatility of bismuth, in dielectric and conductivity behavior is also discussed. Further, the sample displayed dielectric anomaly near magnetic transition temperature (∼180 °C indicating bearing of magnetic moments on the dielectric properties. Using Impedance Spectroscopy (IS we have established, the electrical heterogeneity of the ceramic BFO reavealing semiconducting nature of grains and insulating nature of grain boundary. This, formation of network of insulating grain boundaries and semiconducting grains could lead to formation of internal barrier layer capacitance (IBLC leading to high dielectric constant in microwave sintered BFO.
Subcutaneous fat layer thickness in the abdomen is a risk indicator of several diseases and disorders like diabetes and heart problems and could be used as a measure of fitness. Skinfold measurement using mechanical calipers is simple but prone to error. Ultrasound scanning techniques are yet to be established as accurate methods for this purpose. magnetic resonance imaging (MRI) and computed tomography (CT) scans can provide the answer but are expensive and not available widely. Some initiatives were made earlier to use electrical impedance to this end, but had inadequacies. In the first part of this paper, a 4-electrode focused impedance method (FIM) with different electrode separations has been studied for its possible use in the determination of abdominal fat thickness in a localized region. For this, a saline phantom was designed to provide different electrode separations and different layers of resistive materials adjacent to the electrodes. The background saline simulated the internal organs having low impedance while the resistive layers simulated the subcutaneous fat. The plot of the measured impedance with electrode separation had different ‘slopes’ for different thicknesses of resistive layers, which offered a method to obtain an unknown thickness of subcutaneous fat layer. In the second part, measurements were performed on seven human subjects using two electrode separations. Fat layer thickness was measured using mechanical calipers. A plot of the above ‘slope’ against fat thickness could be fitted using a straight line with an R2 of 0.93. Then this could be used as a calibration curve for the determination of unknown fat thickness. Further work using more accurate CT and MRI measurements would give a better calibration curve for practical use of this non-invasive and low-cost technique in abdominal fat thickness measurement. (paper)
Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.
2015-01-01
The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.
Focused Impedance Method (FIM) gives enhanced localized sensitivity at the centre of a zone defined by a simple system of electrodes, of which a 4-electrode version with electrodes at the corners of a square region has been studied in detail in the present work. The present work studies the effect of a large sphere whose diameter almost equals the dimensions of the central focused zone, or, the Focused Impedance. The sphere is placed at different positions with respect to the centre of the system at the electrode plane. The study has been made using a phantom in which the electrodes are fixed on a side wall while an insulating ball is hung at various positions inside the saline and moved with respect to the electrodes in their vicinity. The same was then simulated by providing appropriate parameters in COMSOL multiphysics, a software package utilizing Finite Element Method, by providing appropriately matching parameters. The measured impedance decreases as the ball is moved away from the centre in the electrode plane or along the depth. The sensitivity also decreases with an increase in electrode spacing. Although the behaviours were similar in both the studies, simulated values by COMSOL deviated from the measured values significantly. It suggests that COMSOL may not give accurate simulations for large objects.
Estimation of harmonic emission levels with harmonic current vector method with reference impedances
Pfajfar, T.; Blazic, B.; Papic, I. [Ljubljana Univ., Ljubljana (Slovenia). Faculty of Electrical Engineering
2007-07-01
The influence that customer have on power systems at connection points must be assessed in order to ensure high power quality. Harmonics present an important factor in power quality because of the widespread use of power electronic loads. Harmonics problems arise particularly in cases when capacitance in the system results in resonance at a critical harmonics frequency. Therefore, an estimation of harmonic emission levels and determination of responsibility for harmonic distortion is necessary. This paper proposed a method for estimating customer harmonic emission levels at the point of common coupling. The proposed method was based on the harmonic current vector method where reference impedances are introduced. The results of the proposed method were compared with the results of a method where customer harmonic estimation levels are determined with switching manoeuvres of the customer distorting load. The paper described the harmonic current vector method with reference impedances as well as description of the simulation study. It was concluded that although the method has the right approach, practical implementation of the method remains to be realized. 7 refs., 9 tabs., 3 figs.
AC conductivity, dielectric and impedance studies of Cd0.8−xPbxZn0.2S mixed semiconductor compounds
Graphical abstract: A plot of 1−s versus T (K) for Cd0.8−xPbxZn0.2S (x = 0, 0.1–0.8), inset: plot of s versus T (K) for x = 0. - Highlights: • Activation energy of relaxation process of Cd0.8−xPbxZn0.2S (x = 0, 0.1–0.8) compounds has been determined. • Grain resistances and grain capacitances of the compounds were estimated at different temperatures. • Relaxation time for all the compounds has been determined at different temperatures. - Abstract: The samples of Cd0.8−xPbxZn0.2S (x = 0, 0.1–0.8) are prepared by Controlled Co-Precipitation Method. X-ray diffraction studies have confirmed the polycrystalline nature of the samples with Hexagonal and Cubic phases of Wurtzite structure. AC conductivity (σac) measurements of Cd0.8−xPbxZn0.2S samples at different temperatures (between 40 and 300 °C), in the frequency range 5 kHz–20 MHz were made. The results showed that σac obeys the relation σac(ω) = Aωs. The exponent “s” was found to decrease with increase in temperature. Further analysis revealed that, the AC conductivity of the samples follow correlated barrier hopping (CBH) model. The dielectric constant (∊′) and dielectric loss (Tan δ) were observed to (i) increase with the increase in temperature and the increase is higher at lower frequencies and (ii) decrease rapidly at low frequencies and remains almost constant at higher frequencies. The cole–cole plot showed a single semicircle, indicating an equivalent circuit with a single parallel resistor Rg and capacitance Cg network with a series resistance Rs. The plots also show the grain contribution toward AC conductivity. The relaxation frequencies, determined from these plots are used to calculate the activation energies Ea of relaxation process using Log τ versus 103/T plots. The values of Ea for all the studied compounds range from 0.05 to 0.28 eV and the results are explained based on the defects formed due to the addition of Pb into the Cd0.8Zn0.2S compound
D-bar method for electrical impedance tomography with discontinuous conductivities
Knudsen, Kim; Lassas, Matti; Mueller, Jennifer L.;
The effects of truncating the (approximate) scattering transform in the D-bar reconstruction method for 2-D electrical impedance tomography are studied. The method is based on Nachman s uniqueness proof [Ann. of Math. 143 (1996)] that applies to twice differentiable conductivities. However, the...... reconstruction algorithm has been successfully applied to experimental data, which can be characterized as piecewise smooth conductivities. The truncation is shown to stabilize the method against measurement noise and to have a smoothing effect on the reconstructed conductivity. Thus the truncation can be...... interpreted as regularization of the D-bar method. Numerical reconstructions are presented demonstrating that features of discontinuous high contrast conductivities can be recovered using the D-bar method. Further, a new connection between Calder´on s linearization method and the D-bar method is established...
Soil-structure interaction. A general method to calculate soil impedance
A correct analysis of the seismic response of nuclear power plant buildings needs to take into account the soil structure interaction. The most classical and simple method consists in characterizing the soil by a stiffness and a damping function for each component of the translation and rotation of the foundation. In a more exact way an impedance function of the frequency may be introduced. Literature provides data to estimate these coefficients for simple soil and foundation configurations and using linear hypothesis. This paper presents a general method to calculate soil impedances which is based on the computation of the impulsive response of the soil using an axisymmetric 2D finite element code (INCA). The Fourier transform of this response is made in the time interval before the return of the reflected waves on the boundaries of the F.E. domain. This procedure which limits the perturbing effects of the reflections is improved by introducing absorbing boundary elements. A parametric study for homogeneous and layered soils has been carried out using this method
The new 2,5-disubstituted 1,3,4-thiadiazoles were investigated as corrosion inhibitors of mild steel in 1 M HCl using AC impedance technique. Four of these compounds exhibit good inhibition properties, while two of them, 2,5-bis(4-nitrophenyl)-1,3,4-thiadiazole and 2,5-bis(4-chlorophenyl)-1,3,4-thiadiazole, stimulate the corrosion process especially at low concentrations. The experimental data obtained from this method show a frequency distribution and therefore a modelling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. Possible correlations between experimental inhibition efficiencies and quantum chemical parameters such as dipole moment (μ), highest occupied (E HOMO) and lowest unoccupied (E LUMO) molecular orbitals were investigated. The models of the inhibitors were optimised with the Density Functional Theory formalism (DFT) using hybrid B3LYP/6-31G (2d,2p) as a higher level of theory. The Quantitative Structure Activity Relationship (QSAR) approach has been used and composite index of some quantum chemical parameters were constructed in order to characterize the inhibition performance of the tested molecules
İhsan Çetin
2015-12-01
Full Text Available Objective: In this study, it was aimed to evaluate segmental body composition of children diagnosed with obesity using bioelectrical impedance analysis method in terms of different gender. Methods: 48 children, aged between 6-15 years, 21 of whom were boys while 27 were girls, diagnosed with obesity in Erciyes University Medical Faculty Department of Pediatric Endocrinology Outpatient Clinic were included in our study from April to June in 2011. Those over 95 percentile were defined as obese group. Tanita BC-418 device was used to analyze the body composition. Results: As a result of bioelectrical impedance analysis, lean body mass and body muscle mass were found to be statistically significantly higher in obese girls compared with obese boys. However, lean mass of the left arm, left leg muscle mass and basal metabolic rate were found to be statistically significantly lower in obese girls compared with obese boys. Conclusion: Consequently, it may be suggest that segmental analysis, where gender differences are taken into account, can provide proper exercise pattern and healthy way of weight loss in children for prevention of obesity and associated diseases including obesity and type 2 diabetics and cardiovascular diseases.
Decomposition method of an electrical bio-impedance signal into cardiac and respiratory components
The paper presents a method for adaptive decomposition of an electrical bio-impedance (BI) signal into two components: cardiac and respiratory. The decomposition of a BI signal is not a trivial process because of the non-stationarity of the signal components and overlapping of their harmonic spectra. An application specific orthonormal basis (ASOB) was designed to solve the decomposition task using the Jacobi weighting function in the standard Gram–Schmidt process. The key element of the bio-impedance signal decomposer (BISD) is a model of the cardiac BI signal, which is constructed from the components of the ASOB and is intended for use in the BISD for on-line tracking of the cardiac BI signal. It makes it possible to separate the cardiac and respiratory components of the total BI signal in non-stationary conditions. In combination with the signal-shape locked loop (SSLL), the BISD allows us to decompose the BI signals with partially overlapping spectra. The proposed BISD based method is accomplished as a PC software digital system, but it is oriented towards applications in portable and stationary cardiac devices and in clinical settings
Decomposition method of an electrical bio-impedance signal into cardiac and respiratory components.
Krivoshei, A; Kukk, V; Min, M
2008-06-01
The paper presents a method for adaptive decomposition of an electrical bio-impedance (BI) signal into two components: cardiac and respiratory. The decomposition of a BI signal is not a trivial process because of the non-stationarity of the signal components and overlapping of their harmonic spectra. An application specific orthonormal basis (ASOB) was designed to solve the decomposition task using the Jacobi weighting function in the standard Gram-Schmidt process. The key element of the bio-impedance signal decomposer (BISD) is a model of the cardiac BI signal, which is constructed from the components of the ASOB and is intended for use in the BISD for on-line tracking of the cardiac BI signal. It makes it possible to separate the cardiac and respiratory components of the total BI signal in non-stationary conditions. In combination with the signal-shape locked loop (SSLL), the BISD allows us to decompose the BI signals with partially overlapping spectra. The proposed BISD based method is accomplished as a PC software digital system, but it is oriented towards applications in portable and stationary cardiac devices and in clinical settings. PMID:18544800
Otsuru, Toru; Tomiku, Reiji; Din, Nazli Bin Che; Okamoto, Noriko; Murakami, Masahiko
2009-06-01
An in-situ measurement technique of a material surface normal impedance is proposed. It includes a concept of "ensemble averaged" surface normal impedance that extends the usage of obtained values to various applications such as architectural acoustics and computational simulations, especially those based on the wave theory. The measurement technique itself is a refinement of a method using a two-microphone technique and environmental anonymous noise, or diffused ambient noise, as proposed by Takahashi et al. [Appl. Acoust. 66, 845-865 (2005)]. Measured impedance can be regarded as time-space averaged normal impedance at the material surface. As a preliminary study using numerical simulations based on the boundary element method, normal incidence and random incidence measurements are compared numerically: results clarify that ensemble averaging is an effective mode of measuring sound absorption characteristics of materials with practical sizes in the lower frequency range of 100-1000 Hz, as confirmed by practical measurements. PMID:19507960
Amako, Eri; Enjoji, Takaharu; Uchida, Satoshi; Tochikubo, Fumiyoshi
Constant monitoring and immediate control of fermentation processes have been required for advanced quality preservation in food industry. In the present work, simple estimation of metabolic states for heat-injured Escherichia coli (E. coli) in a micro-cell was investigated using dielectrophoretic impedance measurement (DEPIM) method. Temporal change in the conductance between micro-gap (ΔG) was measured for various heat treatment temperatures. In addition, the dependence of enzyme activity, growth capacity and membrane situation for E. coli on heat treatment temperature was also analyzed with conventional biological methods. Consequently, a correlation between ΔG and those biological properties was obtained quantitatively. This result suggests that DEPIM method will be available for an effective monitoring technique for complex change in various biological states of microorganisms.
Use of stochastic methods for robust parameter extraction from impedance spectra
Bueschel, Paul, E-mail: paul.bueschel@etit.tu-chemnitz.de; Troeltzsch, Uwe; Kanoun, Olfa
2011-09-30
The fitting of impedance models to measured data is an essential step in impedance spectroscopy (IS). Due to often complicated, nonlinear models, big number of parameters, large search spaces and presence of noise, an automated determination of the unknown parameters is a challenging task. The stronger the nonlinear behavior of a model, the weaker is the convergence of the corresponding regression and the probability to trap into local minima increases during parameter extraction. For fast measurements or automatic measurement systems these problems became the limiting factors of use. We compared the usability of stochastic algorithms, evolution, simulated annealing and particle filter with the widely used tool LEVM for parameter extraction for IS. The comparison is based on one reference model by J.R. Macdonald and a battery model used with noisy measurement data. The results show different performances of the algorithms for these two problems depending on the search space and the model used for optimization. The obtained results by particle filter were the best for both models. This method delivers the most reliable result for both cases even for the ill posed battery model.
Focused Impedance Method (FIM) and Pigeon Hole Imaging (PHI) for localized measurements - a review
Siddique-e Rabbani, K.
2010-04-01
This paper summarises up to date development in Focused Impedance Method (FIM) initiated by us. It basically involves taking the sum of two orthogonal tetra-polar impedance measurements around a common central region, giving a localized enhanced sensitivity. Although the basic idea requires 8 electrodes, versions with 6- and 4-electrodes were subsequently conceived and developed. The focusing effect has been verified in 2D and 3D phantoms and through numerical analysis. Dynamic stomach emptying, and ventilation of localized lung regions have been studied successfully suggesting further applications in monitoring of gastric acid secretion, artificial respiration, bladder emptying, etc. Multi-frequency FIM may help identify some diseases and disorders including certain cancers. FIM, being much simpler and having less number of electrodes, appears to have the potential to replace EIT for applications involving large and shallow organs. An enhancement of 6-electrode FIM led to Pigeon Hole Imaging (PHI) in a square matrix through backprojection in two orthogonal directions, good for localising of one or two well separated objects.
Jensen, Kåre Jean; Munk, Steen M.; Sørensen, John Aasted
1998-01-01
A new approach to the localization of high impedance ground faults in compensated radial power distribution networks is presented. The total size of such networks is often very large and a major part of the monitoring of these is carried out manually. The increasing complexity of industrial...... processes and communication systems lead to demands for improved monitoring of power distribution networks so that the quality of power delivery can be kept at a controlled level. The ground fault localization method for each feeder in a network is based on the centralized frequency broadband measurement of...... three phase voltages and currents. The method consists of a feature extractor, based on a grid description of the feeder by impulse responses, and a neural network for ground fault localization. The emphasis of this paper is the feature extractor, and the detection of the time instance of a ground fault...
Analysis and Imaging in Magnetic Induction Tomography using the Impedance Method
This article discusses the utilization of the impedance method in computation of the forward problem in magnetic induction tomography (MIT). The algorithms for the inverse problem were also developed. The new approach for solving the resulting ill-conditioned linear system of the inverse problem is proposed and the quality of images obtained is discussed based on a quality index proposed in the literature. The results show the prevalence of TAS in relation to linear correlation between the real image and obtained image. With respect to contrast TRT prevalece in relation TAS. The indices of average luminance presents similarity for the both methods. TAS prevails for smaller objects and TRT for larger objects, showing the greater robustness of TAS.
Evaluation of different methods for measuring the impedance of Lithium-ion batteries during ageing
Stroe, Daniel Loan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina;
2015-01-01
The impedance represents one of the most important performance parameters of the Lithium-ion batteries since it used for power capability calculations, battery pack and system design, cooling system design and also for state-of-health estimation. In the literature, different approaches are...... presented for measuring the impedance of Lithium-ion batteries and electrochemical impedance spectroscopy and dc current pulses are the most used ones; each of these approaches has its own advantages and drawbacks. The goal of this paper is to investigate which of the most encountered impedance measurement...
Hoche, S; Hussein, M A; Becker, T
2015-03-01
The accuracy of density, reflection coefficient, and acoustic impedance determination via multiple reflection method was validated experimentally. The ternary system water-maltose-ethanol was used to execute a systematic, temperature dependent study over a wide range of densities and viscosities aiming an application as inline sensor in beverage industries. The validation results of the presented method and setup show root mean square errors of: 1.201E-3 g cm(-3) (±0.12%) density, 0.515E-3 (0.15%) reflection coefficient and 1.851E+3 kg s(-1) m(-2) (0.12%) specific acoustic impedance. The results of the diffraction corrected absorption showed an average standard deviation of only 0.12%. It was found that the absorption change shows a good correlation to concentration variations and may be useful for laboratory analysis of sufficiently pure liquids. The main part of the observed errors can be explained by the observed noise, temperature variation and the low signal resolution of 50 MHz. In particular, the poor signal-to-noise ratio of the second reflector echo was found to be a main accuracy limitation. Concerning the investigation of liquids the unstable properties of the reference material PMMA, due to hygroscopicity, were identified to be an additional, unpredictable source of uncertainty. While dimensional changes can be considered by adequate methodology, the impact of the time and temperature dependent water absorption on relevant reference properties like the buffer's sound velocity and density could not be considered and may explain part of the observed deviations. PMID:25465962
Multi-phase flow monitoring with electrical impedance tomography using level set based method
Liu, Dong [Department of Applied Physics, University of Eastern Finland, Kuopio FIN-70211 (Finland); Khambampati, Anil Kumar [Institute for Nuclear Science and Technology, Jeju National University, Jeju 690-756 (Korea, Republic of); Kim, Sin [School of Energy Systems Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Kim, Kyung Youn, E-mail: kyungyk@jejunu.ac.kr [Department of Electronic Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of)
2015-08-15
Highlights: • LSM has been used for shape reconstruction to monitor multi-phase flow using EIT. • Multi-phase level set model for conductivity is represented by two level set functions. • LSM handles topological merging and breaking naturally during evolution process. • To reduce the computational time, a narrowband technique was applied. • Use of narrowband and optimization approach results in efficient and fast method. - Abstract: In this paper, a level set-based reconstruction scheme is applied to multi-phase flow monitoring using electrical impedance tomography (EIT). The proposed scheme involves applying a narrowband level set method to solve the inverse problem of finding the interface between the regions having different conductivity values. The multi-phase level set model for the conductivity distribution inside the domain is represented by two level set functions. The key principle of the level set-based method is to implicitly represent the shape of interface as the zero level set of higher dimensional function and then solve a set of partial differential equations. The level set-based scheme handles topological merging and breaking naturally during the evolution process. It also offers several advantages compared to traditional pixel-based approach. Level set-based method for multi-phase flow is tested with numerical and experimental data. It is found that level set-based method has better reconstruction performance when compared to pixel-based method.
Ac superconducting articles and a method for their manufacture
A novel ac superconducting article is described comprising a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface. (auth)
Gastric motility measurement and evaluation of functional dyspepsia by a bio-impedance method
method of impedance can be a potential tool for the noninvasive assessment of gastric motility under gastrointestinal physiology and pathology conditions
One of the problems with regard to the electromechanical impedance (EMI) method in the field of structural health monitoring is the relatively high cost requirement of the system. Since the EMI method utilizes a piezoelectric material in small sizes, numerous pieces of equipment are usually required to cover a large area. Thus, in order to compete for the increasing demand for structural health monitoring of components and structures, the technique must be cost effective and large areas need to be rapidly scanned with minimal disruption to the structure’s operation. In this study, a technique is proposed for the EMI method to allow sensing of multiple areas with a single frequency sweep, minimizing both the time and the cost of the method. The principle of the proposed technique is the utilization of different resonance frequencies with the piezoelectric material, allowing one to find the location of the damage. Experiments show exceptional results, bringing the EMI method a step closer for real field application. (paper)
A new method for calculation of low-frequency coupling impedance
In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained
A new method for calculation of low-frequency coupling impedance
Kurennoy, S.S.; Stupakov, G.V.
1993-05-01
In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained.
Segmented superconducting tape having reduced AC losses and method of making
Foltyn, Stephen R. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM); Holesinger, Terry G. (Los Alamos, NM); Wang, Haiyan (Los Alamos, NM)
2009-09-22
A superconducting tape having reduced AC losses. The tape has a high temperature superconductor layer that is segmented. Disruptive strips, formed in one of the tape substrate, a buffer layer, and the superconducting layer create parallel discontinuities in the superconducting layer that separate the current-carrying elements of the superconducting layer into strips or filament-like structures. Segmentation of the current-carrying elements has the effect of reducing AC current losses. Methods of making such a superconducting tape and reducing AC losses in such tapes are also disclosed.
Progress in electrical impedance imaging of binary media: 1: Analytical and numerical methods
This is the first of two papers summarizing the use of electrical impedance excitation/measurement for producing cross sectional images of the distribution of insulating media imbedded in conducting media. This computed tomographic approach finds the distribution of electrical properties of an electric field which minimizes in the least squares sense the difference between measured and computed boundary response to excitation. In this paper we briefly review the basic analytical methods developed for this system. We then extend these methods to three dimensions, add a method for preconditioning voltages for error correction, describe methods for optimizing the resolution of a target by providing optimal excitation patterns and then describe the overall numerical sensitivity. The second paper then demonstrates the ability of this system to image multiple, separate, differently-sized two-dimensional or three-dimensional targets with demonstrated linear sensitivity of over 30:1 with maximum possible linear sensitivity of one part in 1300 based on our ability to distinguish variations from a homogeneous background. (author)
Sanju Gupta
2016-07-01
Full Text Available Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO nanobelts (VNBs and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO are formed in the presence of graphene oxide (GO, a mild oxidant, which transforms into reduced GO (rGOHT, assisting in enhancing the electronic conductivity coupled with the mechanical robustness of VNBs. From electron microscopy, surface sensitive spectroscopy and other complementary structural characterization, hydrothermally-produced rGO nanosheets/nanoribbons are decorated with and inserted within the VNBs’ layered crystal structure, which further confirmed the enhanced electronic conductivity of VNBs. Following the electrochemical properties of GVNBs being investigated, the specific capacitance Csp is determined from cyclic voltammetry (CV with a varying scan rate and galvanostatic charging-discharging (V–t profiles with varying current density. The rGO-rich composite V1G3 (i.e., VO/GO = 1:3 showed superior specific capacitance followed by VO-rich composite V3G1 (VO/GO = 3:1, as compared to V1G1 (VO/GO = 1:1 composite, besides the constituents, i.e., rGO, rGOHT and VNBs. Composites V1G3 and V3G1 also showed excellent cyclic stability and a capacitance retention of >80% after 500 cycles at the highest specific current density. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters, including charge transfer and solution resistance, double layer and low frequency capacitance, Warburg impedance and the constant phase element. The detailed analyses provided greater insights into physical-chemical processes occurring at the electrode-electrolyte interface and highlighted the comparative performance of
Lippert, M.; Berdyshev, S.; Czygan, G.; Bocchiardo, M.; Hensel, B.
2010-04-01
A method for monitoring left ventricular (LV) volume changes of the human heart by intracardiac impedance measurement was developed. In order to model this method, we simulated the ventricular contraction using a finite-element model (FEM). The myocardium comprised three layers with anatomical fiber orientation. During excitation propagation contraction forces were applied, taking into account the myocardial elastic properties and the blood pressure time course. For a set of 21 contraction stages we calculated the intracardiac impedance Z between the right ventricular (RV) and LV leads for a set of common LV lead positions. The FEM results were compared to clinical data. Impedance and stroke volume were determined during overdrive pacing and end diastolic volume (EDV) at rest in 14 patients. All clinical EDV values were in the range of 147-394ml. Both the clinical data and the FEM in this volume range showed a linear correlation between admittance Y=1/Z and ventricular volume. For a quantitative comparison end diastolic impedance EDZ and the slope dY/dV were calculated. The model results across all LV lead positions were EDZ=0.16-1.2Ω, and dY/dV=3.3-21mS/ml, corresponding to clinical values of EDZ=0.14-1.46Ω and dY/dV=1-64mS/ml. In conclusion, the FEM resembled the clinical measurement data and serves as theoretical basis for ventricular volume monitoring via intracardiac impedance.
Marwa Shahin; Ebtisam Saied; M.A. Moustafa Hassan; Fahmy Bendary
2014-01-01
The main subject of these paper deals with enhancing the steady-state and dynamics performance of the power grids by using new idea namely Advanced Flexible AC Transmission Systems based on Evolutionary Computing Methods. Control of the electric power system can be achieved by using the new trends as Particle Swarm Optimization applied to this subject to enhance the characteristics of controller performance. This paper studies and analyzes Advanced Flexible AC Transmission System to mitigate ...
Ye. S. Sherina
2014-01-01
Full Text Available This research has been aimed to carry out a study of peculiarities that arise in a numerical simulation of the electrical impedance tomography (EIT problem. Static EIT image reconstruction is sensitive to a measurement noise and approximation error. A special consideration has been given to reducing of the approximation error, which originates from numerical implementation drawbacks. This paper presents in detail two numerical approaches for solving EIT forward problem. The finite volume method (FVM on unstructured triangular mesh is introduced. In order to compare this approach, the finite element (FEM based forward solver was implemented, which has gained the most popularity among researchers. The calculated potential distribution with the assumed initial conductivity distribution has been compared to the analytical solution of a test Neumann boundary problem and to the results of problem simulation by means of ANSYS FLUENT commercial software. Two approaches to linearized EIT image reconstruction are discussed. Reconstruction of the conductivity distribution is an ill-posed problem, typically requiring a large amount of computation and resolved by minimization techniques. The objective function to be minimized is constructed of measured voltage and calculated boundary voltage on the electrodes. A classical modified Newton type iterative method and the stochastic differential evolution method are employed. A software package has been developed for the problem under investigation. Numerical tests were conducted on simulated data. The obtained results could be helpful to researches tackling the hardware and software issues for medical applications of EIT.
A decomposition method for network-constrained unit commitment with AC power flow constraints
To meet the increasingly high requirement of smart grid operations, considering AC power flow constraints in the NCUC (network-constrained unit commitment) is of great significance in terms of both security and economy. This paper proposes a decomposition method to solve NCUC with AC power flow constraints. With conic approximations of the AC power flow equations, the master problem is formulated as a MISOCP (mixed integer second-order cone programming) model. The key advantage of this model is that the active power and reactive power are co-optimised, and the transmission losses are considered. With the AC optimal power flow model, the AC feasibility of the UC result of the master problem is checked in subproblems. If infeasibility is detected, feedback constraints are generated based on the sensitivity of bus voltages to a change in the unit reactive power generation. They are then introduced into the master problem in the next iteration until all AC violations are eliminated. A 6-bus system, a modified IEEE 30-bus system and the IEEE 118-bus system are used to validate the performance of the proposed method, which provides a satisfactory solution with approximately 44-fold greater computational efficiency. - Highlights: • A decomposition method is proposed to solve the NCUC with AC power flow constraints • The master problem considers active power, reactive power and transmission losses. • OPF-based subproblems check the AC feasibility using parallel computing techniques. • An effective feedback constraint interacts between the master problem and subproblem. • Computational efficiency is significantly improved with satisfactory accuracy
Assessment of dental implant stability by means of the electromechanical impedance method
Implant stability is a prerequisite for functional recovery in load-bearing prostheses. Robust, reliable and noninvasive methods to assess the bone interface of dental and orthopedic implants are increasingly demanded for clinical diagnosis and direct prognosis. In this paper, a study of the feasibility of a noninvasive method based on electromechanical impedance (EMI) to assess dental prostheses stability is presented. Two different dental screws were entrenched in polyurethane foams (Sawbones®) and immersed in a solution of nitric acid to allow material degradation, inversely simulating a bone healing process. This process was monitored by bonding a piezoceramic transducer (PZT) to the implant and measuring the admittance of the PZT over time. It was found that the PZT's conductance and the statistical features associated with its analysis were sensitive to the degradation of the foams and can be correlated to the Sawbones mechanical properties. The present study shows promising results and may pave the road towards an innovative approach for the noninvasive monitoring of implanted prostheses
M Bayat KASHKOLİ
2011-12-01
Full Text Available The goal of present research is estimating and validity of body density with methods of Body Mass Index, Skin Fold, Bio-Electrical Impedance and Criterion Method of Hydrostatic in men athletes of swimming. The present research has been conducted with semi-experimental and functional method. For doing so 25 men swimming athletes were randomly selected (N= 120. Statistical analysis was conducted with Pearson coefficient, correlated T-test, TE & SEE. The results of statistical analysis show that the method of Skin Fold Stat with hydrostatic criterion method has meaningful difference in society of swimmers. Also there is meaningful difference between body mass index and criterion method. There was not any meaningful difference between bio-electrical impedance and criterion method in swimmers. (TE=3.01, SEE=2.91, R=0.924, P=0.064. The findings show that that bio-electrical impedance in swimmer athletes is more suitable method.
A Emami Naini
2012-01-01
Conclusion: The study showed that there is significant difference between the two methods. However, there was 98% direct correlation between them. It is concluded that bioelectrical impedance analysis could be a better alternative for accurate evaluation of dry weight in PD patients because it is a fast and cheap method and does not depend on examiner′s capability. Further studies based on the results of this method are recommended to consider this method as the gold standard.
M.S. Ould Brahim
2011-04-01
Full Text Available Our objective in this study is to determine the effective thermal insulating layer of a composite towplaster. The characterization of thermal insulating material is proposed from the study of the thermal impedance in dynamic two-dimensional frequency. Thermo physical properties of the material tow-plaster are determined from the study of the thermal impedance. Nyquist representations have introduced an interpretation of certain phenomena of heat transfer from the series and shunt resistors. The overall coefficient of heat exchange is determined from the Bode plots. A method for determining the thermal conductivity is proposed.
Calorimetric method of ac loss measurement in a rotating magnetic field
A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.
Calorimetric method of ac loss measurement in a rotating magnetic field
Ghoshal, P. K. [Oxford Instruments NanoScience, Abingdon, Oxfordshire OX13 5QX (United Kingdom); Coombs, T. A.; Campbell, A. M. [Department of Engineering, Electrical Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom)
2010-07-15
A method is described for calorimetric ac-loss measurements of high-T{sub c} superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.
Calorimetric method of ac loss measurement in a rotating magnetic field
Ghoshal, P. K.; Coombs, T. A.; Campbell, A. M.
2010-07-01
A method is described for calorimetric ac-loss measurements of high-Tc superconductors (HTS) at 80 K. It is based on a technique used at 4.2 K for conventional superconducting wires that allows an easy loss measurement in parallel or perpendicular external field orientation. This paper focuses on ac loss measurement setup and calibration in a rotating magnetic field. This experimental setup is to demonstrate measuring loss using a temperature rise method under the influence of a rotating magnetic field. The slight temperature increase of the sample in an ac-field is used as a measure of losses. The aim is to simulate the loss in rotating machines using HTS. This is a unique technique to measure total ac loss in HTS at power frequencies. The sample is mounted on to a cold finger extended from a liquid nitrogen heat exchanger (HEX). The thermal insulation between the HEX and sample is provided by a material of low thermal conductivity, and low eddy current heating sample holder in vacuum vessel. A temperature sensor and noninductive heater have been incorporated in the sample holder allowing a rapid sample change. The main part of the data is obtained in the calorimetric measurement is used for calibration. The focus is on the accuracy and calibrations required to predict the actual ac losses in HTS. This setup has the advantage of being able to measure the total ac loss under the influence of a continuous moving field as experienced by any rotating machines.
Karamehmedovic, Mirza; Breinbjerg, Olav
2002-01-01
The Method of Auxiliary Sources (MAS) is applied to 3D scattering problems involving spherical impedance scatterers. The MAS results are compared with the reference spherical wave expansion (SWE) solution. It is demonstrated that good agreement is achieved between the MAS and SWE results....
A novel bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method improved from the conventional analogue auto-balancing method is presented for bioelectrical impedance measurements. The hardware of the proposed system consists of a reference source, a null detector, a variable source, a field programmable gate array, a clock generator, a flash and a USB controller. Software implemented in the field programmable gate array includes three major blocks: clock management, peripheral control and digital signal processing. The principle and realization of the least-mean-squares-based digital auto-balancing algorithm is introduced in detail. The performances of our system were examined by comparing with a commercial impedance analyzer. The results reveal that the proposed system has high speed (less than 3.5 ms per measurement) and high accuracy in the frequency range of 1 kHz–10 MHz. Compared with the commercial instrument based on the traditional analogue auto-balancing method, our system shows advantages in measurement speed, compactness and flexibility, making it suitable for various bioelectrical impedance measurement applications. (paper)
Li, Nan; Xu, Hui; Wang, Wei; Zhou, Zhou; Qiao, Guofeng; D-U Li, David
2013-06-01
A novel bioelectrical impedance spectroscopy system based on the digital auto-balancing bridge method improved from the conventional analogue auto-balancing method is presented for bioelectrical impedance measurements. The hardware of the proposed system consists of a reference source, a null detector, a variable source, a field programmable gate array, a clock generator, a flash and a USB controller. Software implemented in the field programmable gate array includes three major blocks: clock management, peripheral control and digital signal processing. The principle and realization of the least-mean-squares-based digital auto-balancing algorithm is introduced in detail. The performances of our system were examined by comparing with a commercial impedance analyzer. The results reveal that the proposed system has high speed (less than 3.5 ms per measurement) and high accuracy in the frequency range of 1 kHz-10 MHz. Compared with the commercial instrument based on the traditional analogue auto-balancing method, our system shows advantages in measurement speed, compactness and flexibility, making it suitable for various bioelectrical impedance measurement applications.
Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves
2012-01-01
The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline. PMID:23202013
Şahin, M; Ogut, M F; Vardar, R; Kirazli, T; Engin, E Z; Bor, S
2016-01-01
The loss of the best communication port after total laryngectomy surgery makes speech rehabilitation an important goal. Our aim was to improve the quality of esophageal speech (ES) using online esophageal multichannel intra-luminal impedance (MII) as a new biofeedback method. Twenty-six total laryngectomized patients were included. Before ES therapy, an esophageal motility test was carried out. MII catheters were placed in all subjects who were then randomized into two groups. Group 1 included 13 cases, who were retrained according to the classical method. Group 2 included 13 cases, who were retrained according to the simplified animation of air movements within the esophagus and upper stomach resulting from the modifications of intra-esophageal air kinetics gained by MII. The level of speech proficiency was evaluated relative to pretraining levels using perceptual scales in the third and sixth months. Acoustic voice was analyzed. The number of syllables read per minute and the intelligibility of monosyllabic and dissyllabic words were calculated. In this study, MII was used for the first time in alaryngeal speech rehabilitation as a biofeedback method; an overall sufficient speech level was achieved by 68.4% at the end of therapy, whereas attendance was 90%. A statistically significant improvement was found in both groups in terms of ES level compared with the pretraining period although there was no significant difference between groups. Although we did not observe the expected difference between groups suggested by our hypothesis, MII may be used as an objective tool to show patients how to swallow and regurgitate air during training, and may thus expedite ES theraphy both for the speech therapist and the patient in the future. PMID:25515163
Applicability of impedance measuring method to the detection of irradiation treatment of potatoes
The incubation condition of potato tubers prior to impedance measurement greatly influenced the reliability of detection of irradiated potatoes; the impedance ratio at 5 kHz to 50 kHz (Z5k/Z50k) determined at 22degC at an apical region of tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radiation treatment of potatoes. The impedance ratio was dependent upon dose applied to potato tubers. Potatoes irradiated at 100 Gy could be distinguished from unirradiated potatoes for 10 cultivars of potatoes. The impedance ratio of potatoes irradiated at the same dose was little influenced by the planting locality if the cultivar was the same, although the ratio varied with potato cultivars. These results indicate that irradiated potatoes can be detected if the potato cultivar is known. Potatoes 'Danshaku' commercially irradiated at the Shihiro Potato Irradiation Center could be differentiated from unirradiated 'Danshaku' at different planting localities; the impedance ratio was lower than 2.75 for the unirradiated potatoes and higher than 2.75 for the irradiated ones. (author)
Reid, Margaret A.
1989-01-01
Impedances of fifteen electrodes form each of the four U.S. manufactures were measured at 0.200 V vs. the Hg/HgO reference electrode. This corresponds to a voltage of 1.145 for a Ni/H2 cell. Measurements were also made of a representative sample of these at 0.44 V. At the higher voltage, the impedances were small and very similar, but at the lower voltage there were major differences between manufacturers. Electrodes from the same manufacturers showed only small differences. The impedances of electrodes from two manufacturers were considerably different in 26 percent KOH from those in 31 percent KOH. These preliminary results seen to correlate with the limited data from earlier life testing of cells from these manufacturers. The impedances of cells being tested for Space Station Freedom are being followed, and more impendance measurements of electrodes are being performed as functions of manufacturer, voltage, electrolyte concentration, and cycle history in hopes of finding better correlations of impedance with life.
C.M.M. Resende
2011-11-01
Full Text Available The objectives of the present study were to describe and compare the body composition variables determined by bioelectrical impedance (BIA and the deuterium dilution method (DDM, to identify possible correlations and agreement between the two methods, and to construct a linear regression model including anthropometric measures. Obese adolescents were evaluated by anthropometric measures, and body composition was assessed by BIA and DDM. Forty obese adolescents were included in the study. Comparison of the mean values for the following variables: fat body mass (FM; kg, fat-free mass (FFM; kg, and total body water (TBW; % determined by DDM and by BIA revealed significant differences. BIA overestimated FFM and TBW and underestimated FM. When compared with data provided by DDM, the BIA data presented a significant correlation with FFM (r = 0.89; P < 0.001, FM (r = 0.93; P < 0.001 and TBW (r = 0.62; P < 0.001. The Bland-Altman plot showed no agreement for FFM, FM or TBW between data provided by BIA and DDM. The linear regression models proposed in our study with respect to FFM, FM, and TBW were well adjusted. FFM obtained by DDM = 0.842 x FFM obtained by BIA. FM obtained by DDM = 0.855 x FM obtained by BIA + 0.152 x weight (kg. TBW obtained by DDM = 0.813 x TBW obtained by BIA. The body composition results of obese adolescents determined by DDM can be predicted by using the measures provided by BIA through a regression equation.
Bureau of Naval Personnel, Washington, DC.
The module covers series circuits which contain both resistive and reactive components and methods of solving these circuits for current, voltage, impedance, and phase angle. The module is divided into six lessons: voltage and impedance in AC (alternating current) series circuits, vector computations, rectangular and polar notation, variational…
The faradaic impedance method on corrosion studies. Part 2. Some practical applications
Several models are shown which simulate real situations, these are far from the ideal behaviour shown in the first part of this paper. The situation is analysed when a nonuniform distribution of alternating current density on an electrode is produced, the impedance diagram appears somewhat flattened, with the centre of the semi-circle below the real part, the faradaic resistance at the rest potential and the effect of adsorption of corrosion products on the electrode surface. Finally, some fields which will have bearing on the future of the impedance technique are discussed. (author)
Hong, Z; Jiang, Q; Pei, R; Campbell, A M; Coombs, T A [Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)
2007-04-15
A finite element method code based on the critical state model is proposed to solve the AC loss problem in YBCO coated conductors. This numerical method is based on a set of partial differential equations (PDEs) in which the magnetic field is used as the state variable. The AC loss problems have been investigated both in self-field condition and external field condition. Two numerical approaches have been introduced: the first model is configured on the cross-section plane of the YBCO tape to simulate an infinitely long superconducting tape. The second model represents the plane of the critical current flowing and is able to simulate the YBCO tape with finite length where the end effect is accounted. An AC loss measurement has been done to verify the numerical results and shows a good agreement with the numerical solution.
Kory, Carol L.
1999-01-01
The phenomenal growth of commercial communications has created a great demand for traveling-wave tube (TWT) amplifiers. Although the helix slow-wave circuit remains the mainstay of the TWT industry because of its exceptionally wide bandwidth, until recently it has been impossible to accurately analyze a helical TWT using its exact dimensions because of the complexity of its geometrical structure. For the first time, an accurate three-dimensional helical model was developed that allows accurate prediction of TWT cold-test characteristics including operating frequency, interaction impedance, and attenuation. This computational model, which was developed at the NASA Lewis Research Center, allows TWT designers to obtain a more accurate value of interaction impedance than is possible using experimental methods. Obtaining helical slow-wave circuit interaction impedance is an important part of the design process for a TWT because it is related to the gain and efficiency of the tube. This impedance cannot be measured directly; thus, conventional methods involve perturbing a helical circuit with a cylindrical dielectric rod placed on the central axis of the circuit and obtaining the difference in resonant frequency between the perturbed and unperturbed circuits. A mathematical relationship has been derived between this frequency difference and the interaction impedance (ref. 1). However, because of the complex configuration of the helical circuit, deriving this relationship involves several approximations. In addition, this experimental procedure is time-consuming and expensive, but until recently it was widely accepted as the most accurate means of determining interaction impedance. The advent of an accurate three-dimensional helical circuit model (ref. 2) made it possible for Lewis researchers to fully investigate standard approximations made in deriving the relationship between measured perturbation data and interaction impedance. The most prominent approximations made
Evaluation of different methods for measuring the impedance of Lithium-ion batteries during ageing
Stroe, Daniel Loan; Swierczynski, Maciej Jozef; Stroe, Ana-Irina; Knap, Václav; Teodorescu, Remus; Andreasen, Søren Juhl
The impedance represents one of the most important performance parameters of the Lithium-ion batteries since it used for power capability calculations, battery pack and system design, cooling system design and also for state-of-health estimation. In the literature, different approaches are...
Method for Flow Measurement in Microfluidic Channels Based on Electrical Impedance Spectroscopy
Arjmandi, Nima; Van Roy, Willem; Lagae, Liesbet; Borghs, Gustaaf; 10.1007/s10404-011-0843-0
2012-01-01
We have developed and characterized two novel micro flow sensors based on measuring the electrical impedance of the interface between the flowing liquid and metallic electrodes embedded on the channel walls. These flow sensors are very simple to fabricate and use, are extremely compact and can easily be integrated into most microfluidic systems. One of these devices is a micropore with two tantalum/platinum electrodes on its edges; the other is a micro channel with two tantalum /platinum electrodes placed perpendicular to the channel on its walls. In both sensors the flow rate is measured via the electrical impedance between the two metallic electrodes, which is the impedance of two metal-liquid junctions in series. The dependency of the metal-liquid junction impedance on the flow rate of the liquid has been studied. The effects of different parameters on the sensor's outputs and its noise behavior are investigated. Design guidelines are extracted and applied to achieve highly sensitive micro flow sensors wit...
Syed Mahboob; G Prasad; G S Kumar
2006-08-01
Electrical conduction studies on Ba(Nd0.2Ti0.6Nb0.2)O3 ceramic samples prepared through conventional and microwave sintering route are presented in this paper. D.C. and a.c. conductivities of these samples as a function of temperature from 300–900 K have been studied. Two types of conduction processes are evident from the frequency dependant conductivity plots, i.e. low-frequency conduction due to short-range hopping and high-frequency conduction due to the localized relaxation (reorientational) hopping mechanism. Grain and grain boundary contributions to the conductivity in these samples are obtained from impedance/admittance measurements via equivalent circuit modelling.
Comparison and optimization of the method for Cry1Ac protoxin preparation in HD73 strain
ZHOU Zi-shan; YANG Su-juan; SHU Chang-long; SONG Fu-ping; ZHOU Xue-ping; ZHANG Jie
2015-01-01
Bacil us thuringiensis is one of the most widely used bioinsecticides, and cry gene is the major insecticidal gene. Because Cry1Ac protein shows strong toxicity against many lepidopteran species, it has been applied widely in spraying products and transgenic Bt-crops. The preparation of Cry protoxin is the ifrst step in the very important processes of understanding the insecticidal mechanism, resistance screening, and biosafety assessments. The media for crystal production and the method for Cry protoxin preparation were varied, however, it was not clear which was better for preparing a larger amount of Cry protoxin. In this paper, three media for crystal production and the method for Cry1Ac protoxin preparation from HD73 strain were compared to ifnd an efifcacious way to prepare a large number of Cry1Ac protoxin. The results showed that the 1/2 LB (Luria-Bertani) medium was the ideal medium for crystal production, because the total yield of Cry1Ac protoxin in 300 mL 1/2 LB medium was (112.38±5.64) mg, the highest one among three media;the repeated crystal solubilization method was better for the preparation of the Cry protoxin comparing with the continuous crystal solubilization method. It wil be a reference for other Cry protoxin preparation, especial y for larger number.
This work reports improvements made in the modelling of mechanical impedance matchers with mushroom shape using the finite elements method when shell elements type were used instead of tetrahedron elements type. Also, it is presented here an original methodology which makes use of the symmetry of the system and its influence on the mechanical vibrational modes to validate the modelling that was the base for the simulations performed.
Čermák, J.; Cudlín, Pavel; Gebauer, R.; Borja, I.; Martinková, M.; Staněk, Z.; Koller, J.; Neruda, J.; Nadezhdina, N.
2013-01-01
Roč. 372, 1-2 (2013), s. 401-415. ISSN 0032-079X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073; GA MŠk OC10023 Institutional support: RVO:67179843 Keywords : Active absorptive fine root area index * Fine root surface * Modified earth impedance * Picea abies * Root research methods Subject RIV: EH - Ecology, Behaviour Impact factor: 3.235, year: 2013
Lawrence, Felix J; Dossou, Kokou B; McPhedran, R C; de Sterke, C Martijn
2011-01-01
We present a flexible method that can calculate Bloch modes, complex band structures, and impedances of two-dimensional photonic crystals from scattering data produced by widely available numerical tools. The method generalizes previous work which relied on specialized multipole and FEM techniques underpinning transfer matrix methods. We describe the numerical technique for mode extraction, and apply it to calculate a complex band structure and to design two photonic crystal antireflection coatings. We do this for frequencies at which other methods fail, but which nevertheless are of significant practical interest.
MA Zhi; CAO Chen-Tao; LIU Qing-Fang; WANG Jian-Bo
2012-01-01
A delta-function method is proposed to quantitatively evaluate the electromagnetic impedance matching degree.Measured electromagnetic parameters of α-Fe/Fe3B/V2O3 nanocomposites are applied to calculate the matching degree by the method.Compared with reflection loss and quarter-wave principle theory,the method accurately reveals the intrinsic mechanism of microwave transmission and reflection properties.A possible honeycomb structure with promising high-performance microwave absorption,devised according to the method,is also proposed.
In the field of occupational health, health guidance concerning obesity is often conducted in order to prevent lifestyle-related diseases. With recent awareness of the concept of metabolic syndrome, measurement of the visceral fat area (VFA) by CT has been useful for health guidance, but it is difficult in workplace health screening. Presently, the BMI (Body Mass Index), body fat percentage measured by the bioelectrical impedance method, and waist girth at the umbilical level (abdominal girth) are practical indices of obesity used in such health screening. In this study, VAF was measured in 590 clerical or sales workers in the manufacturing industry using a body fat meter capable of a visceral fat measurement by the bioelectrical impedance method. The relationship of this value to the results of biochemical tests and lifestyle was then evaluated using analysis of covariance structures. Analysis indicated that the risk of lifestyle-related disease was closely related to the degree of obesity. Among indices of the degree of obesity, VFA was more closely related than BMI or body fat percentage, and only slightly less closely related than abdominal girth to the risk of lifestyle-related diseases. Since VFA is effective in screening for latent obesity, health guidance based on digital data, and the subjects' body imaging, its measurement by the bioelectrical impedance method is considered useful for workplace health management. (author)
Micro pumping methods based on AC electrokinetics and Electrorheologically actuated PDMS valves
Soni, Gaurav; Squires, Todd; Meinhart, Carl
2006-11-01
We have developed 2 different micropumping methods for transporting ionic fluids through microchannels. The first method is based on Induced Charge Electroosmosis (ICEO) and AC flow field-effect. We used an AC electric field to produce a symmetric ICEO flow on a planar electrode, called `gate'. In order to break the symmetry of ICEO, we applied an additional AC voltage to the gate electrode. Such modulation of the gate potential is called field effect and produces a unidirectional pumping over the gate surface. We used micro PIV to measure pumping velocities for a range of ionic concentration, AC frequency and gate voltage. We have also conducted numerical simulations to understand the deteriorating effect of lateral conduction of surface charge on the pumping velocities. The second method is based on vibration of a flexible PDMS diaphragm actuated by an electrorheological (ER) fluid. ER fluid is a colloidal suspension exhibiting a reversible liquid-to-solid transition under an electric field. This liquid-to-solid transition can yield very high shear stress and can be used to open and close a PDMS valve. Three such valves were fabricated and actuated in a peristaltic fashion in order to achieve positive displacement pumping of fluids.
Erhard, Klaus; Potthast, Roland
2003-10-01
We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.
Novel ac Heating-dc Detection Method for Active Thermoelectric Scanning Thermal Microscopy
Miao, Tingting; Ma, Weigang; Zhang, Xing
2015-11-01
A novel and reliable ac heating-dc detection method is developed for active thermoelectric scanning thermal microscopy, which can map out local thermal property imaging by point-heating and point-sensing with nanoscale spatial resolution. The thermoelectric probe is electrically heated by an ac current, and the corresponding dc thermoelectric voltage is detected. Using the measured dc voltage, the temperature information can be extracted with the known Seebeck coefficient of the thermoelectric probe. The validity and accuracy of this method have been verified by a 25.4 \\upmu m thick K-type thermocouple by both experiment and numerical simulation in high vacuum and in air. The experimental results show that the proposed method is reliable and convenient to monitor the temperature of the junction.
A New Method for Measuring the Wall Charge Waveforms of AC PDP
梁志虎; 刘祖军; 刘纯亮
2004-01-01
A new method is developed to measure the wall charge waveforms in coplanar alternating current plasma display panel (AC PDP). In the method, two groups of display electrodes are selected from a coplanar AC PDP and two capacitors are respectively connected with these two groups of display electrodes in series, and a measuring circuit and a reference circuit are thus constructed. With the help of special processing, discharge takes place in the cells included in the measuring circuit under a normal drive voltage but no discharge takes place in the cells included in the reference circuit under a normal drive voltage. The wall charge waveforms are obtained from the voltage difference between the two capacitors. Using the method, the wall charge waveforms are measured during resetting period, addressing period and sustaining period for the 304.8 mm (12-inch) test PDP panel. The result shows that the wall voltage is about 96 V during the sustaining period.
Couroussé, Damien
2007-01-01
Mechanical impedance is a transposition to mechanics of the term impedance that is used and defined in circuit theory. The theory of circuit (theory of Kirchhoff networks) is basically applicable to electric networks but can be considered more generally as a unifying simplified theory of physics available in several domains like mechanics, electromagnetism, aero-acoustics and fluids mechanics.
Purpose: To determine the diagnostic accuracy of targeted electrical impedance imaging in characterizing breast lesions, and to evaluate whether lesion size, depth and histopathology affect the diagnosis. Material and Methods: A total of 137 women with 145 lesions (79 malignant and 66 benign) found by palpation or mammography were prospectively enrolled in this study. The patients were examined by means of clinical breast examination, mammography, ultrasonography, and electrical impedance imaging with TransScan TS2000. A level of suspicion (LOS) post-processing algorithm (v2.67) was used for TS2000 lesion assessment. Imaging findings were correlated with cytologic ( n=54) and histologic diagnoses ( n=91). Patients with benign lesions were followed up for a mean of 36 months. Results: TS2000 showed a high sensitivity (86%) which did not differ significantly from that of mammography (87%) and ultrasonography (US) (75%). The specificity of TS2000 (49%) was significantly lower compared to mammography (97%, Pz=0.68), as measured by the area under the ROC curve, was significantly lower than for mammography (Az=0.93, P <0.0001) and for US (Az=0.91, P <0.0001). When using TS2000 in addition to mammography and US (Az=0.86), a significant impairment was found (P=0.0003). Conclusion: The role of targeted electrical impedance imaging as an adjunct to mammography and ultrasonography in the diagnosis of breast lesions is not justified by the result of this study
Investigating the superhydrophobic behavior for underwater surfaces using impedance-based methods.
Tuberquia, Juan C; Song, Won S; Jennings, G Kane
2011-08-15
We have investigated the impedance behavior of immersed superhydrophobic (SH) polymethylene surfaces by tailoring the surface tension of the contacting liquid phase to gradually transition the surface from the Cassie to the Wenzel state. Control over the surface tension is accomplished by varying the ethanol content of the aqueous phase. To establish the mechanism of the transition, we imaged the interface of the film and identified three distinct events of this process: a nucleation event at low concentrations of ethanol in which small areas beneath the liquid phase transition into the Wenzel state, a propagation event characterized by the enlargement of the Wenzel domains and the lateral displacement of air, and a final event at higher concentrations of ethanol in which the thin air layer at the interface morphs into isolated pockets of air. Using this visualization of the transition, we characterized the Cassie and the Wenzel states by measuring the impedance at a frequency of 1 kHz for an initially SH film that changes its wetting behavior upon addition of ethanol. Establishment of the Cassie and Wenzel state conditions was based on concepts of electrochemical impedance spectroscopy (EIS) and quantitatively validated using both the Helmholtz theory and the analytical description of the electrochemical system in terms of the circuit model of a metal surface covered by a polymer film. Finally, we apply this strategy to determine the possibility for SH polymethylene (PM) films to reversibly transition between the Cassie and the Wenzel states. Results show that after rinsing and drying at ambient conditions for 24 h, the film recovers the SH state, suggesting the applicability of these SH films in outdoor environments with occasional periodic submersion in water. PMID:21696148
Electrical impedance tomography has the potential to provide a portable non-invasive method for imaging brain function. Clinical data collection has largely been undertaken with time difference data and linear image reconstruction methods. The purpose of this work was to determine the best method for selecting the regularization parameter of the inverse procedure, using the specific application of evoked brain activity in neonatal babies as an exemplar. The solution error norm and image SNR for the L-curve (LC), discrepancy principle (DP), generalized cross validation (GCV) and unbiased predictive risk estimator (UPRE) selection methods were evaluated in simulated data using an anatomically accurate finite element method (FEM) of the neonatal head and impedance changes due to blood flow in the visual cortex recorded in vivo. For simulated data, LC, GCV and UPRE were equally best. In human data in four neonatal infants, no significant differences were found among selection methods. We recommend that GCV or LC be employed for reconstruction of human neonatal images, as UPRE requires an empirical estimate of the noise variance
Gideon Charach
Full Text Available Measurement of internal thoracic impedance (ITI is sensitive and accurate in detecting acute pulmonary edema even at its preclinical stage. We evaluated the suitability of the highly sensitive and noninvasive RS-207 monitor for detecting pleural effusion and for demonstrating increased ITI during its resolution. This prospective controlled study was performed in a single department of internal medicine of a university-affiliated hospital between 2012-2013. One-hundred patients aged 25–96 years were included, of whom 50 had bilateral or right pleural effusion of any etiology (study group and 50 had no pleural effusion (controls. ITI, the main component of which is lung impedance, was continuously measured by the RS-207 monitor. The predictive value of ITI monitoring was determined by 8 measurements taken every 8 hours. Pleural effusion was diagnosed according to well-accepted clinical and roentgenological criteria. During treatment, the ITI of the study group increased from 32.9±4.2 ohm to 42.8±3.8 ohm (p<0.0001 compared to non-significant changes in the control group (59.6±6.6 ohm, p = 0.24. Prominent changes were observed in the respiratory rate of the study group: there was a decrease from 31.2±4.0 to 19.5±2.4 ohm (35.2% compared to no change for the controls, and a mean increase from 83.6± 5.3%-92.5±1.6% (13.2% in O2 saturation compared to 94.2±1.7% for the controls. Determination of ITI for the detection and monitoring of treatment of patients with pleural effusion enables earlier diagnosis and more effective therapy, and can prevent hospitalization and serious complications, such as respiratory distress, and the need for mechanical ventilation.The study is registered at ClinicalTrials.gov NCT01601444.
Kuwabara, Takayuki; Iwata, Chiaki; Yamaguchi, Takahiro; Takahashi, Kohshin
2010-08-01
An inverted organic bulk-heterojunction solar cell containing amorphous titanium oxide (TiOx) as an electron collection electrode with the structure ITO/TiO(x)/[6,6]-phenyl C(61) butyric acid methyl ester (PCBM): regioregular poly(3-hexylthiophene) (P3HT)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au (TiO(x) cell) was fabricated. Its complicated photovoltaic properties were investigated by photocurrent-voltage and alternating current impedance spectroscopy measurements. The TiO(x) cell required a significant amount of time (approximately 60 min) to reach its maximum power conversion efficiency (PCE) of 2.6%. To investigate the reason for this slow photoresponse, we investigated the influences of UV light and water molecules adsorbed on the TiO(x) layer. Surface treatment of the TiO(x) cell with water induced a rapid photoresponse and enhanced the performance, giving a PCE of 2.97%. However, the durability of the treated cell was considerably inferior that of the untreated cell because of UV-induced photodegradation. The cause of the rapid photoresponse of the treated cell was attributed to the formation of hydrogen bonds between adsorbed water molecules and carbonyl oxygen atoms in PCBM close to the TiO(x) surface. When the TiO(x) surface was positively charged by UV-induced holes, the carbonyl oxygen in PCBM close to the TiO(x) surface can quickly join to the TiO(x) surface, rapidly transporting photogenerated electrons from PCBM to TiO(x) in competition with the photocatalyzed degradation. The experimental results suggested that the slow photoresponse of the untreated TiO(x) cell was because the morphology of the photoactive organic layer changed gradually upon irradiation to improve the transport of photocarriers at the TiO(x)/PCBM:P3HT interface. PMID:20735096
Electrical impedance tomography (EIT) is a portable, non-invasive medical imaging method, which could be employed to image the seizure onset in subjects undergoing assessment prior to epilepsy surgery. Each image is obtained from impedance measurements conducted with imperceptible current at tens of kHz. For concurrent imaging with video electroencephalogram (EEG), the EIT introduces a substantial artefact into the EEG due to current switching at frequencies in the EEG band. We present here a method for its removal, so that EIT and the EEG could be acquired simultaneously. A low-pass analogue filter for EEG channels (−6 dB at 48 Hz) and a high-pass filter (−3 dB at 72 Hz) for EIT channels reduced the artefact from 2–3 mV to 50–300 µV, but still left a periodic artefact at about 3 Hz. This was reduced to less than 10 µV with a software filter, which subtracted an artefact template from the EEG raw traces. The EEG was made clinically acceptable at four times its acquisition speed. This method could enable EIT to become a technique for imaging on telemetry units alongside EEG, without interfering with routine EEG reporting
Complex Impedance as a Diagnostic Tool for Characterizing Thermal Detectors
Vaillancourt, J E
2004-01-01
The complex a.c. impedance of a bolometer or microcalorimeter detector is easily measured and can be used to determine thermal time constants, thermal resistances, heat capacities, and sensitivities. Accurately extracting this information requires an understanding of the electrical and thermal properties of both the detector and the measurement system. We show that this is a practical method for measuring parameters in detectors with moderately complex thermal systems.
Giovinazzo, G.; Ribas, N.; Cinca, J.; Rosell-Ferrer, J.
2010-04-01
Previous studies have shown that it is possible to evaluate heart graft rejection level using a bioimpedance technique by means of an intracavitary catheter. However, this technique does not present relevant advantages compared to the gold standard for the detection of a heart rejection, which is the biopsy of the endomyocardial tissue. We propose to use a less invasive technique that consists in the use of a transoesophageal catheter and two standard ECG electrodes on the thorax. The aim of this work is to evaluate different parameters affecting the impedance measurement, including: sensitivity to electrical conductivity and permittivity of different organs in the thorax, lung edema and pleural water. From these results, we deduce the best estimator for cardiac rejection detection, and we obtain the tools to identify possible cases of false positive of heart rejection due to other factors. To achieve these objectives we have created a thoracic model and we have simulated, with a FEM program, different situations at the frequencies of 13, 30, 100, 300 and 1000 kHz. Our simulation demonstrates that the phase, at 100 and 300 kHz, has the higher sensitivity to changes in the electrical parameters of the heart muscle.
Larsen, Niels Vesterdal; Breinbjerg, Olav
2004-01-01
To facilitate the validation of the numerical Method of Auxiliary Sources an analytical Method of Auxiliary Sources solution is derived in this paper. The Analytical solution is valid for transverse magnetic, and electric, plane wave scattering by circular impedance Cylinders, and it is derived by...... singularities at different positions away from the origin. The transformation necessitates a truncation of the wave transformation but the inaccuracy introduced hereby is shown to be negligible. The analytical Method of Auxiliary Sources solution is employed as a reference to investigate the accuracy of the...... numerical Method of Auxiliary Sources for a range of scattering configurations....
Development of the Adaptive Collision Source (ACS) method for discrete ordinates
We have developed a new collision source method to solve the Linear Boltzmann Equation (LBE) more efficiently by adaptation of the angular quadrature order. The angular adaptation method is unique in that the flux from each scattering source iteration is obtained, with potentially a different quadrature order. Traditionally, the flux from every iteration is combined, with the same quadrature applied to the combined flux. Since the scattering process tends to distribute the radiation more evenly over angles (i.e., make it more isotropic), the quadrature requirements generally decrease with each iteration. This allows for an optimal use of processing power, by using a high order quadrature for the first few iterations that need it, before shifting to lower order quadratures for the remaining iterations. This is essentially an extension of the first collision source method, and we call it the adaptive collision source method (ACS). The ACS methodology has been implemented in the TITAN discrete ordinates code, and has shown a relative speedup of 1.5-2.5 on a test problem, for the same desired level of accuracy. (authors)
Compensation methods applied in current control schemes for large AC drive systems
Rus, D. C.; Preda, N. S.; Teodorescu, Remus; Imecs, M.
The paper deals with modified PI current control structures for large AC drive systems which use surface mounted permanent magnet synchronous machines or squirrel-cage induction motors supplied with voltage source inverters. In order to reduce the power losses caused by high frequency switching of...... the semiconductor devices, various compensation methods are used and a modified structure for a PI current controller is proposed, to reduce the switching frequency of the inverter for the same operating frequency of the drive. Simulation, experimental development and test results are presented in...
Acoustic impedances of ear canals measured by impedance tube
Ciric, Dejan; Hammershøi, Dorte
2007-01-01
During hearing sensitivity tests, the sound field is commonly generated by an earphone placed on a subject ear. One of the factors that can affect the sound transmission in the ear is the acoustic impedance of the ear canal. Its importance is related to the contribution of other elements involved...... in the transmission such as the earphone impedance. In order to determine the acoustic impedances of human ear canals, the standardized method for measurement of complex impedances used for the measurement of the audiometric earphone impedances is applied. It is based on the transfer function between...... two microphone locations in an impedance tube. The end of the tube representing the measurement plane is placed at the ear canal entrance. Thus, the impedance seen from the entrance inward is measured on 25 subjects. Most subjects participated in the previous measurement of the ratio between the...
It is important to estimate the influence of the layered soil in soil-structure interaction analysis. Although great numbers of investigation were presented on this subject, practical methods without complex calculation are very few. In this paper, a simple and practical method to estimate the horizontal impedance of the rigid foundation on the surface of multi-layered soil is proposed. By this method, the time domain impedance function is calculated directly and easily with good accuracy. The efficiency of the time history response analysis of this method is also confirmed. (author)
Development of an AC power source for CSEM method using full-bridge switching configuration
Indrasari, Widyaningrum; Srigutomo, Wahyu; Djamal, Mitra; S, Rahmondia N.
2015-04-01
The electromagnetic (EM) method has been widely used in geophysical surveys. It is a non-destructive method that utilizes electromagnetic waves in characterizing subsurface profiles. Generally, EM method can be divided into passive EM and active EM. The passive EM uses the natural electromagnetic field sources, while the active EM or Controlled Source EM (CSEM) uses artificial source to generate electromagnetic wave. In this paper, we present the development of AC power source for CSEM transmitter. As the power source we used AC source with sine wave signal. To satisfy a high power and high voltage in the equipment, we used the full-bridge configuration switching. It works on 990 Hz maximum frequency, and can deliver maximum current of 1.9 A at 620 V. The switching is controlled by microcontroller using Pulse Width Modulation (PWM) and the driver of inverter is built using IGBT. The output frequency can be varied from 1 Hz to 990 Hz. For varied frequencies the harmonic distortion is different due to switching speed. As frequency increase the harmonic distortion also increase. We found that the total harmonic distortion can be reduced to 1 % at the output with 330 Hz.
Canali, Chiara; Mazzoni, Chiara; Larsen, Layla Bashir;
2015-01-01
We present the characterisation and validation of multiplexed 4-terminal (4T) impedance measurements as a method for sensing the spatial location of cell aggregates within large three-dimensional (3D) gelatin scaffolds. The measurements were performed using an array of four rectangular chambers......, each having eight platinum needle electrodes for parallel analysis. The electrode positions for current injection and voltage measurements were optimised by means of finite element simulations to maximise the sensitivity field distribution and spatial resolution. Eight different 4T combinations were...... experimentally tested in terms of the spatial sensitivity. The simulated sensitivity fields were validated using objects (phantoms) with different conductivity and size placed in different positions inside the chamber. This provided the detection limit (volume sensitivity) of 16.5%, i.e. the smallest detectable...
In order to utilize HTS conductors in AC electrical devices, it is very important to be able to understand the characteristics of HTS materials in the AC electromagnetic conditions and give an accurate estimate of the AC loss. A numerical method is proposed in this paper to estimate the AC loss in superconducting conductors including MgB2 wires and YBCO coated conductors. This method is based on solving a set of partial differential equations in which the magnetic field is used as the state variable to get the current and electric field distributions in the cross sections of the conductors and hence the AC loss can be calculated. This method is used to model a single-element and a multi-element MgB2 wires. The results demonstrate that the multi-element MgB2 wire has a lower AC loss than a single-element one when carrying the same current. The model is also used to simulate YBCO coated conductors by simplifying the superconducting thin tape into a one-dimensional region where the thickness of the coated conductor can be ignored. The results show a good agreement with the measurement
Hong, Z; Jiang, Y; Pei, R; Coombs, T A [Electronic, Power and Energy Conversion Group, Engineering Department, University of Cambridge, CB2 1PZ (United Kingdom); Ye, L [Department of Electrical Power Engineering, CAU, P. O. Box 210, Beijing 100083 (China); Campbell, A M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, CB3 0HE (United Kingdom)], E-mail: Zh223@cam.ac.uk
2008-02-15
In order to utilize HTS conductors in AC electrical devices, it is very important to be able to understand the characteristics of HTS materials in the AC electromagnetic conditions and give an accurate estimate of the AC loss. A numerical method is proposed in this paper to estimate the AC loss in superconducting conductors including MgB{sub 2} wires and YBCO coated conductors. This method is based on solving a set of partial differential equations in which the magnetic field is used as the state variable to get the current and electric field distributions in the cross sections of the conductors and hence the AC loss can be calculated. This method is used to model a single-element and a multi-element MgB{sub 2} wires. The results demonstrate that the multi-element MgB{sub 2} wire has a lower AC loss than a single-element one when carrying the same current. The model is also used to simulate YBCO coated conductors by simplifying the superconducting thin tape into a one-dimensional region where the thickness of the coated conductor can be ignored. The results show a good agreement with the measurement.
Microwave Impedance Measurement for Nanoelectronics
M. Randus
2011-04-01
Full Text Available The rapid progress in nanoelectronics showed an urgent need for microwave measurement of impedances extremely different from the 50Ω reference impedance of measurement instruments. In commonly used methods input impedance or admittance of a device under test (DUT is derived from measured value of its reflection coefficient causing serious accuracy problems for very high and very low impedances due to insufficient sensitivity of the reflection coefficient to impedance of the DUT. This paper brings theoretical description and experimental verification of a method developed especially for measurement of extreme impedances. The method can significantly improve measurement sensitivity and reduce errors caused by the VNA. It is based on subtraction (or addition of a reference reflection coefficient and the reflection coefficient of the DUT by a passive network, amplifying the resulting signal by an amplifier and measuring the amplified signal as a transmission coefficient by a common vector network analyzer (VNA. A suitable calibration technique is also presented.
Evaluation of Chang's attenuation correction method in the ACS software
Massicano, Felipe; Cintra, Felipe B.; Coelho, Talita S.; Massicano, Adriana V.F.; Viana, Rodrigo S.S.; Yoriyaz, Helio [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2011-07-01
In patient-specific treatment planning systems the internal dosimetry procedures calculates the spatial dose distribution (3D) within the patient. These procedures were performed using Monte Carlo codes with photon and electron transport simulation. Such systems use patient specific data giving a more realistic anatomical model than the simple geometrical models used habitually. CT images can be used to provide this anatomical information. It is also essential a prior knowledge of activity distributions within the patient which can be obtained from SPECT images. At the moment, this methodology is under development in the Nuclear Engineering Center at IPEN. In order to obtain the functional information the ACS (Attenuation Correction SPECT) software has been developed. It performs the attenuation correction in SPECT images through Chang's method first order. Finally, the software creates the activity distribution within the patient that will be used for the Monte Carlo simulation for dose assessment. The present paper describes the development of the ACS software and its validation. (author)
In vivo assessment of the impedance ratio method used in electronic foramen locators
Rambo Marcos VH; Gamba Humberto R; Borba Gustavo B; Maia Joaquim M; Ramos Carlos AS
2010-01-01
Abstract Background The results of an in vivo study on the "ratio method" used in electronic foramen locators (EFL) are presented. EFLs are becoming widely used in the determination of the working length (WL) during the root canal treatment. The WL is the distance from a coronal reference point to the point at which canal preparation and filling should terminate. The "ratio method" was assessed by many clinicians with the aim of determining its ability to locate the apical foramen (AF). Never...
Effect of HIPing on conductivity and impedance measurements of DyBi5Fe2Ti3O18 ceramics
N V Prasad; G Prasad; Mahendra Kumar; S V Suryanarayana; T Bhimasankaram; G S Kumar
2000-12-01
X-ray diffraction, a.c. impedance and conductivity (a.c. and d.c.) have been used to characterize DyBi5Fe2Ti3O18. Samples were prepared by solid state double sintering method. A few samples were also subjected to hot isostatic pressing (HIP) at 800°C for 2 h at 100 MPa pressure. The data on XRD, impedance and conductivity of two sets of samples are compared to understand study of effect of HIPing on the properties of DyBi5Fe2Ti3O18.
Na, Wongi S.
2016-05-01
Damage accumulation in structures may result in a structural failure which is a serious problem when ensuring public safety. Although various non-destructive techniques are available to seek for the existence of damage at an early stage, most of these techniques rely on the experience of the experts. To date, automated structural health monitoring systems have been extensively researched and one of the methods, known as the electromechanical impedance (EMI) method, has shown promising results. However, the EMI method is a local method requiring a large number of sensors for covering large areas such as in bridges and buildings. In addition, attaching these sensors onto a surface can be time consuming since adhesives are used for attaching the sensors where its curing time increases the setting up time even further. In this study, the performance of the reusable piezoelectric (PZT) device for metal structures is examined against two different types of progressive damage scenarios. Overall, the reusable PZT device shown in this study has successfully identified damage with a possibility of weight loss detection.
Ciovati, Gianluigi [JLAB
2015-02-01
This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.
Ciovati, G.
2015-01-01
This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.
Complex Impedance of Manganese Ferrite Powders Obtained by Two Different Methods
Mălăescu I.
2015-12-01
Full Text Available Two samples of manganese ferrite powder were obtained by the calcination method (sample A and hydrothermal method (sample B. The crystal structure of the samples has been determined using X-ray diffraction analysis (XRD. The results shown that the sample A has three phases (FeMnO3, Mn2O3 and Fe2O3 and the prevailing phase is FeMnO3 with perovskite structure and the sample B has only a single phase (MnFe2O4.
Kim, Moo Whan; Kang, Hie Chan; Kwon, Jung Tae; Huh, Deok; Yang, Hoon Cheul [Pohang University of Science and Technology, Pohang (Korea)
2000-04-01
Impedance method was carried out to design the electrode that can measure the void fraction of the bubbly flow in pool reservoir. To find out the optimum electrode shape, Styrofoam-Simulator tests were performed in a specially designed acrylic reservoir. Three kinds of electrodes were designed to compare the measuring characteristics of water-air flow. The resistance increased with the increase of the void fraction and the capacitance decreased with the increase of the void fraction. The resistance is a main parameter to express the nature of the water-air flow in impedance method. Almost of impedance values come out from the resistance. The degree of deviation from the mean-resistance values showed reasonable results. Electrode type-I expressed excellent results among the three electrode shapes. The sensor developed can simultaneously measure the void fraction and the water level. 7 refs., 51 figs., 4 tabs. (Author)
Frequency Synchronization Analysis in Digital lock-in Methods for Bio-impedance Determination
Brajkovič Robert
2014-12-01
Full Text Available The lock-in method is one of the most frequently used methods for reconstruction of measured signals and as such frequently applied in the (bioimpedance method to determine the modulus and phase of the (bioimpedance. In implementation of the method in a (bioimpedance measurement device one has to consider possible non synchronized frequencies of the reference and the analyzed signals as well as potential sources of noise. In this work we analyzed these errors theoretically and experimentally. We show that both amplitude and phase errors depend on the relative difference of the frequencies of the reference and investigated signal as well as the number of integration periods. Theoretically, these errors vanish during the determination of the (bioimpedance modulus and phase. In practical implementation the inaccuracies appear at points of very low determined signal amplitudes due to the limited accuracy of analog to digital converters and are distributed around these points due to other sources of noise inherent in implementation of the measurement device.
Finite element (FE) methods are widely used in electrical impedance tomography (EIT) to enable rapid image reconstruction of different tissues based on their electrical conductivity. For EIT of brain function, anatomically-accurate (head-shaped) FE meshes have been shown to improve the quality of the reconstructed images. Unfortunately, given the lack of a computational protocol to generate patient-specific meshes suitable for EIT, production of such meshes is currently ad hoc and therefore very time consuming. Here we describe a robust protocol for rapid generation of patient-specific FE meshes from MRI or CT scan data. Most of the mesh generation process is automated and uses freely available user-friendly software. Other necessary custom scripts are provided as supplementary online data and are fully documented. The patient scan data is segmented into four surfaces: brain, cerebrospinal fluid, skull and scalp. The segmented surfaces are then triangulated and used to generate a global mesh of tetrahedral elements. The resulting meshes exhibit high quality when tested with different criteria and were validated in computational simulations. The proposed protocol provides a rapid and practicable method for generation of patient-specific FE meshes of the human head that are suitable for EIT. This method could eventually be extended to other body regions and might confer benefits with other imaging techniques such as optical tomography or EEG inverse source imaging. (paper)
Impedance-Source Networks for Electric Power Conversion Part I
Siwakoti, Yam P.; Peng, Fang Zheng; Blaabjerg, Frede;
2015-01-01
Impedance networks cover the entire of electric power conversion from dc (converter, rectifier), ac (inverter), to phase and frequency conversion (ac-ac) in a wide range of applications. Various converter topologies have been reported in the literature to overcome the limitations and problems of ...
In Kang, Suk; Khambampati, Anil Kumar; Jeon, Min Ho; Kim, Bong Seok; Kim, Kyung Youn
2016-02-01
Electrical impedance tomography (EIT) is a non-invasive imaging technique that can be used as a bed-side monitoring tool for human thorax imaging. EIT has high temporal resolution characteristics but at the same time it suffers from poor spatial resolution due to ill-posedness of the inverse problem. Often regularization methods are used as a penalty term in the cost function to stabilize the sudden changes in resistivity. In human thorax monitoring, with conventional regularization methods employing Tikhonov type regularization, the reconstructed image is smoothed between the heart and the lungs, that is, it makes it difficult to distinguish the exact boundaries of the lungs and the heart. Sometimes, obtaining structural information of the object prior to this can be incorporated into the regularization method to improve the spatial resolution along with helping create clear and distinct boundaries between the objects. However, the boundary of the heart is changed rapidly due to the cardiac cycle hence there is no information concerning the exact boundary of the heart. Therefore, to improve the spatial resolution for human thorax monitoring during the cardiac cycle, in this paper, a sub-domain based regularization method is proposed assuming the lungs and part of background region is known. In the proposed method, the regularization matrix is modified anisotropically to include sub-domains as prior information, and the regularization parameter is assigned with different weights to each sub-domain. Numerical simulations and phantom experiments for 2D human thorax monitoring are performed to evaluate the performance of the proposed regularization method. The results show a better reconstruction performance with the proposed regularization method.
Electrical impedance tomography (EIT) is a non-invasive imaging technique that can be used as a bed-side monitoring tool for human thorax imaging. EIT has high temporal resolution characteristics but at the same time it suffers from poor spatial resolution due to ill-posedness of the inverse problem. Often regularization methods are used as a penalty term in the cost function to stabilize the sudden changes in resistivity. In human thorax monitoring, with conventional regularization methods employing Tikhonov type regularization, the reconstructed image is smoothed between the heart and the lungs, that is, it makes it difficult to distinguish the exact boundaries of the lungs and the heart. Sometimes, obtaining structural information of the object prior to this can be incorporated into the regularization method to improve the spatial resolution along with helping create clear and distinct boundaries between the objects. However, the boundary of the heart is changed rapidly due to the cardiac cycle hence there is no information concerning the exact boundary of the heart. Therefore, to improve the spatial resolution for human thorax monitoring during the cardiac cycle, in this paper, a sub-domain based regularization method is proposed assuming the lungs and part of background region is known. In the proposed method, the regularization matrix is modified anisotropically to include sub-domains as prior information, and the regularization parameter is assigned with different weights to each sub-domain. Numerical simulations and phantom experiments for 2D human thorax monitoring are performed to evaluate the performance of the proposed regularization method. The results show a better reconstruction performance with the proposed regularization method. (paper)
Modeling and Analysis of Harmonic Stability in an AC Power-Electronics-Based Power System
Wang, Xiongfei; Blaabjerg, Frede; Wu, Weimin
2014-01-01
This paper addresses the harmonic stability caused by the interactions among the wideband control of power converters and passive components in an AC power-electronicsbased power system. The impedance-based analytical approach is employed and expanded to a meshed and balanced threephase network which is dominated by multiple current- and voltage- controlled inverters with LCL- and LC-filters. A method of deriving the impedance ratios for different inverters is proposed by means of the nodal a...
Hybrid topological derivative and gradient-based methods for electrical impedance tomography
We present a technique to reconstruct the electromagnetic properties of a medium or a set of objects buried inside it from boundary measurements when applying electric currents through a set of electrodes. The electromagnetic parameters may be recovered by means of a gradient method without a priori information on the background. The shape, location and size of objects, when present, are determined by a topological derivative-based iterative procedure. The combination of both strategies allows improved reconstructions of the objects and their properties, assuming a known background. (paper)
AC hot wire measurement of thermophysical properties of nanofluids with 3ω method
Turgut, A.; Sauter, C.; Chirtoc, M.; Henry, J. F.; Tavman, S.; Tavman, I.; Pelzl, J.
2008-01-01
We present a new application of a hot wire sensor for simultaneous and independent measurement of thermal conductivity k and diffusivity α of (nano)fluids, based on a hot wire thermal probe with ac excitation and 3 ω lock-in detection. The theoretical modeling of imaginary part of the signal yields the k value while the phase yields the α value. Due to modulated heat flow in cylindrical geometry with a radius comparable to the thermal diffusion length, the necessary sample quantity is kept very low, typically 25 μl. In the case of relative measurements, the resolution is 0.1% in k and 0.3% in α. Measurements of water-based Aerosil 200V nanofluids indicate that ultrasound treatment is more efficient than high pressure dispersion method in enhancing their thermal parameters.
A non-iterative method for the electrical impedance tomography based on joint sparse recovery
Lee, Ok Kyun; Kang, Hyeonbae; Ye, Jong Chul; Lim, Mikyoung
2015-07-01
The purpose of this paper is to propose a non-iterative method for the inverse conductivity problem of recovering multiple small anomalies from the boundary measurements. When small anomalies are buried in a conducting object, the electric potential values inside the object can be expressed by integrals of densities with a common sparse support on the location of anomalies. Based on this integral expression, we formulate the reconstruction problem of small anomalies as a joint sparse recovery and present an efficient non-iterative recovery algorithm of small anomalies. Furthermore, we also provide a slightly modified algorithm to reconstruct an extended anomaly. We validate the effectiveness of the proposed algorithm over the linearized method and the multiple signal classification algorithm by numerical simulations. This work is supported by the Korean Ministry of Education, Sciences and Technology through NRF grant No. NRF-2010-0017532 (to H K), the Korean Ministry of Science, ICT & Future Planning; through NRF grant No. NRF-2013R1A1A3012931 (to M L), the R&D Convergence Program of NST (National Research Council of Science & Technology) of Republic of Korea (Grant CAP-13-3-KERI) (to O K L and J C Y).
The accuracy of BIA measurements is limited by different sources of error such as physical model, cross sectional area, ethnicity, body hydration, age and level of body fat among other variables. Equation for each population is required as they can produce overestimation when manufacturer's equations are used. The classical measurements hand to foot has shown better correlation against hydrodensitometry than foot to foot or hand to hand. However there is a lack for an accepted standard of BIA procedures. This is compounded when there is not a good report of the BIA study's methodology; hence the comparability between the results is poor and reduces the reliability of the method. Perhaps, standardization of methods would be the first step for BIA studies to move forward and subsequently improve its accuracy. Standardized procedures could also minimize the impact of these variables on studies results. The aim of this study was to propose a protocol as a checklist to standardize BIA procedures and produce comparable results from future studies performed with the classic hand-foot configuration in adults.
The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm2 and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics.
A.c. conductivity and dielectric study of LiNiPO4 synthesized by solid-state method
M Ben Bechir; A Ben Rhaiem; K Guidara
2014-05-01
LiNiPO4 compound was prepared by the conventional solid-state reaction. The sample was characterized by X-ray powder diffraction, infrared, Raman analysis spectroscopy and electrical impedance spectroscopy. The compound crystallizes in the orthorhombic system, space group with = 10.0252(7) Å, = 5.8569(5) Å and = 4.6758(4) Å. Vibrational analysis was used to identify the presence of PO$^{3-}_{4}$ group in this compound. The complex impedance has been measured in the temperature and frequency ranges 654–716 K and 242 Hz–5 MHz, respectively. The ' and '' vs frequency plots are well-fitted to an equivalent circuit consisting of series of combination of grains and grain boundary elements. Dielectric data were analysed using complex electrical modulus * for the sample at various temperatures. The modulus plots are characterized by the presence of two peaks thermally activated. The frequency dependence of the conductivity is interpreted in terms of equation: _a.c.() = [g/(1 + 22) + (∞22/1 + 22) + An]. The near values of activation energies obtained from the analysis of ", conductivity data and equivalent circuit confirms that the transport is through ion hopping mechanism dominated by the motion of Li+ in the structure of the investigated material.
M.S. Ould Brahim; I. Diagne, S. Tamba, F. Niang and G. Sissoko
2011-01-01
Our objective in this study is to determine the effective thermal insulating layer of a composite towplaster. The characterization of thermal insulating material is proposed from the study of the thermal impedance in dynamic two-dimensional frequency. Thermo physical properties of the material tow-plaster are determined from the study of the thermal impedance. Nyquist representations have introduced an interpretation of certain phenomena of heat transfer from the series and shunt resistors. T...
Optically stimulated differential impedance spectroscopy
Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P
2014-02-18
Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.
Milivoj Dopsaj
2012-12-01
Full Text Available Because of the specificity of given sport and weight categories wrestlers are characterized by specific morphologic characteristics. With the development of new measurement technologies there are some new opportunities for the development of new ways of obtaining information relevant to the sports system. One of the new technologies, which are used in area of measurement of body composition structure, is a method of bioimpedace, and the latest generations use a variant of the multichannel bioelectrical bioimpedance. The goal of this study is to define morphological model of top senior wrestlers by using the latest technological methods that will revalidate the existing knowledge about the given area. The sample of respondents is made of 22 male wrestlers, Greco-Roman style, top senior level athletes from four different countries: Serbia (n = 10, Croatia (n = 9, Montenegro (n = 2 and Greece (n = 1. Measurement of body composition is made with method of multichannel bioelectric impedance with professional apparatus of latest generation - InBody 720 Tetrapolar 8-Point Tactile Electrode System (Biospace, Co., Ltd. The most important result of this research is definition of generic (general four-dimensional model (4D model of body composition with quality international level wrestlers with following characteristics: in regards to average body mass of sample wrestlers – 81.95 kg, the amount of water is 55.08 L or 67.24 %, the amount of proteins is 15.00 kg or 18.33%, minerals 4.98 kg or 5.97% and fat mass 6.99 kg or 8.49 %.
Martin Winter
2013-07-01
Full Text Available A new approach to study the chemical stability of electrodeposited lithium on a copper metal substrate via measurements with a fast impedance scanning electrochemical quartz crystal microbalance is presented. The corrosion of electrochemically deposited lithium was compared in two different electrolytes, based on lithium difluoro(oxalato borate (LiDFOB and lithium hexafluorophosphate, both salts being dissolved in solvent blends of ethylene carbonate and diethyl carbonate. For a better understanding of the corrosion mechanisms, scanning electron microscopy images of electrodeposited lithium were also consulted. The results of the EQCM experiments were supported by AC impedance measurements and clearly showed two different corrosion mechanisms caused by the different salts and the formed SEIs. The observed mass decrease of the quartz sensor of the LiDFOB-based electrolyte is not smooth, but rather composed of a series of abrupt mass fluctuations in contrast to that of the lithium hexafluorophosphate-based electrolyte. After each slow decrease of mass a rather fast increase of mass is observed several times. The slow mass decrease can be attributed to a consolidation process of the SEI or to the partial dissolution of the SEI leaving finally lithium metal unprotected so that a fast film formation sets in entailing the observed fast mass increases.
Piervirgili, G; Petracca, F; Merletti, R
2014-10-01
A model-based new procedure for measuring the single electrode-gel-skin impedance (ZEGS) is presented. The method is suitable for monitoring the contact impedance of the electrodes of a large array with limited modifications of the hardware and without removing or disconnecting the array from the amplifier. The procedure is based on multiple measurements between electrode pairs and is particularly suitable for electrode arrays. It has been applied to study the effectiveness of three skin treatments, with respect to no treatment, for reducing the electrode-gel-skin impedance (ZEGS) and noise: (i) rubbing with alcohol; (ii) rubbing with abrasive conductive paste; (iii) stripping with adhesive tape. The complex impedances ZEGS of the individual electrodes were measured by applying this procedure to disposable commercial Ag-AgCl gelled electrode arrays (4 × 1) with a 5 mm(2) contact area. The impedance unbalance ΔZ = ZEGS1 - ZEGS2 and the RMS noise (VRMS) were measured between pairs of electrodes. The tissue impedance ZT was also obtained, as a collateral result. Measurements were repeated at t0 = 0 min and at t30 = 30 min from the electrode application. Mixed linear models and linear regression analysis applied to ZEGS, ΔZ and noise VRMS for the skin treatment factor demonstrated (a) that skin rubbing with abrasive conductive paste is more effective in lowering ZEGS, ΔZ and VRMS (p Rubbing with abrasive conductive paste significantly decreased the noise VRMS with respect to other treatments or no treatment. PMID:25243492
A model-based new procedure for measuring the single electrode–gel–skin impedance (ZEGS) is presented. The method is suitable for monitoring the contact impedance of the electrodes of a large array with limited modifications of the hardware and without removing or disconnecting the array from the amplifier. The procedure is based on multiple measurements between electrode pairs and is particularly suitable for electrode arrays. It has been applied to study the effectiveness of three skin treatments, with respect to no treatment, for reducing the electrode–gel–skin impedance (ZEGS) and noise: (i) rubbing with alcohol; (ii) rubbing with abrasive conductive paste; (iii) stripping with adhesive tape. The complex impedances ZEGS of the individual electrodes were measured by applying this procedure to disposable commercial Ag–AgCl gelled electrode arrays (4 × 1) with a 5 mm2 contact area. The impedance unbalance ΔZ = ZEGS1 − ZEGS2 and the RMS noise (VRMS) were measured between pairs of electrodes. The tissue impedance ZT was also obtained, as a collateral result. Measurements were repeated at t0 = 0 min and at t30 = 30 min from the electrode application. Mixed linear models and linear regression analysis applied to ZEGS, ΔZ and noise VRMS for the skin treatment factor demonstrated (a) that skin rubbing with abrasive conductive paste is more effective in lowering ZEGS, ΔZ and VRMS (p < 0.01) than the other treatments or no treatment, and (b) a statistically significant decrement (p < 0.01), between t0 and t30, of magnitude and phase of ZEGS. Rubbing with abrasive conductive paste significantly decreased the noise VRMS with respect to other treatments or no treatment. (paper)
基于ACS-GA算法的车辆路径问题研究%An ACS-GA Hybrid Optimization Method to Solve Vehicle Routing Problem
赵婉忻; 曲仕茹
2011-01-01
Vehicle routing problem is an important research area in intelligent transportation and business logistics. Planning the vehicle routes reasonably, reducing the delivery mileage and minimizing the cost of logistic distribution are great significance to increase economic efficiency. The paper focuses on vehicle routing problem with time windows in logistic distribution and establishes an improved mathematical model in which the delivery time and delivery distance is shortest. A novel hybrid optimization method integrating ant colony system with genetic algorithm ( ACS - GA) is presented. The initial solution is obtained by ant colony system. A genetic algorithm is used to improve the performance of ACS by reproduction, crossover and mutation operations. The ACS - GA hybrid optimization method can overcome the premature phenomenon and enhance the global search ability. Based on the benchmark datasets of vehicle routing problem with time windows, the experimental results demonstrate that the proposed method has a better ability to search the global optimal solution than other optimization methods.%物流配送车辆路径问题是智能交通和商业物流领域中一个重要研究方面.合理规划车辆的行驶路线,减少配送里程,降低物流成本,对提高经济效益具有重要意义.重点分析了带时间窗的物流配送车辆路径问题,建立了兼顾配送时间与配送距离最短的改进数学模型.提出了基于蚁群系统算法和遗传算法相融合的混合算法.该算法利用蚁群系统算法得到初始解,运用遗传算法中复制、交叉、变异操作对解的种群多样性进行扩充,克服了蚁群系统算法的早熟现象,增强了算法的全局搜索能力.基于标准数据集的实验结果表明,该算法与其他优化方法相比较,具有较好的搜索车辆路径最优解的能力.
Xu, Fengda; Guo, Qinglai; Sun, Hongbin;
2015-01-01
For an AC/DC coupled transmission system, the change of transmission power on the DC lines will significantly influence the AC systems’ voltage. This paper describes a method to coordinated control the reactive power of power plants and shunt capacitors at DC converter stations nearby, in order to...... keep the voltage of the pilot bus tracking its set point considering the DC system’s transmission schedule change. The approach is inspired by model predictive control (MPC) to compensate for predictable voltage change affected by DC side transmission power flow and the potential capacitor switching at...
Wouters, E F
1990-01-01
The forced oscillation technique is a noninvasive and effort-independent test to characterize the mechanical impedance of the respiratory system. By applying a complex signal, the frequency-dependent behavior of the respiratory system can be measured over an extended spectrum. For clinical practice, the input impedance is used most frequently; pressure and flow are measured at the same place. The impedance can be partitioned into a real part or resistance and an imaginary part or reactance. At low frequencies, reactance is determined by the capacitance of the system and at high frequencies by the inertial properties of the system. Equipment and impedance data in normal subjects and patients with chronic obstructive pulmonary disease are discussed. The frequency-dependent behavior of the respiratory system is described with the use of an electrical model characterized by partitioning of airway resistance and the presence of shunt compliance represented by the compliance of the intrathoracic airway walls. Influences of peripheral resistance, airway compliance, lung volumes, chest wall and pulmonary resistance, and resistance of the cheeks and upper airways are analyzed. Input impedance can be applied to the detection of bronchoconstriction and bronchodilation, but this technique is suitable for detecting early airway abnormalities caused by smoking or occupational hazards. PMID:2307147
Schindler, Stefan; Bauer, Marius; Petzl, Mathias; Danzer, Michael A.
2016-02-01
In this study, voltage relaxation and impedance spectroscopy are introduced as in-operando methods for detecting lithium plating in commercial lithium-ion cells with graphitic anodes. Voltage relaxation is monitored subsequent to defined charge steps of variable amplitudes, charge throughputs, termination criteria and at different ambient temperatures yielding dependencies over a wide experimental parameter range. An adapted differential voltage analysis is presented to resolve the characteristic mixed potential evolving in case of plating. Impedance spectroscopy is applied in parallel to the relaxation phase to trace a possible alteration of the cell's impedance due to the concurrent depletion of reversibly deposited lithium. The introduced voltage differentials are shown to resolve the mixed potential with restrictions only for little charge throughputs. The comparison of voltage relaxation and already established stripping discharge reveals similarities of the underlying physicochemical processes and allows an estimate of the amount of deposited lithium in case of relaxation. In the evolution of the cell's impedance, a reversible shrinkage of the high frequency intersection resistance and the arc representing the anodic charge transfer process are identified as indicators towards plating. The presented methods solely rely on non-destructive measurement quantities and thus are fully suitable for the application in battery management systems.
A simple technique for measuring the thermal impedance and the thermal resistance of HBTs.
Lonac, J. A.; Santarelli, A.; Melczarsky, I.; Filicori, F.
2005-01-01
This paper presents a new and simple method for characterizing the thermal behavior ofHeterojunction Bipolar Transistors, based on DC, AC andlow frequency small signal measures of H (hybrid)parameters. Static characterization of the thermal behavioris achieved through the calculation of a thermal resistance, while a thermal impedance is used to describe thermaldynamic behavior. Validation results for the method obtained from both simulations and experimental data areincluded in the paper for ...
An improvement to the data processing course of electrochemical impedance technique
Yinglv Jiang; Yinshun Wu; Hong Chu
2003-01-01
For some electrochemical systems the traditional data processing methods can not be met, so it is necessary to develop a new method to deal with these problems. When processing the electrochemical AC impedance data of titanium alloy TA12 in 3% NaC1 solution (at free corrosion potential, room temperature) a new method is developed which can detach the information of the interface resistance demonstrably from the interface capacitance. The results show that the interface resistance and capacitance are all functions of frequency. And the AC impedance of the resistance and capacitance obey the following relations: C(f) = 104.01982 f-0.9292,R(f) =104.80011 (f+0.008)-0.90897, which is completely different from the traditional conception that the interface resistance and capacitance are constants. And this phenomenon is ubiquitous in titanium alloys according to the study. So perhaps it is an innate characteristic of interface.
Electrochemical impedance studies of methanol oxidation on GC/Ni and GC/NiCu electrode
Danaee, I.; Jafarian, M.; Forouzandeh, F.; Mahjani, M.G. [Department of Chemistry, K.N. Toosi University of Technology, PO Box 15875-4416, Tehran (Iran); Gobal, F. [Department of Chemistry, Sharif University of Technology, PO Box 11365-9516, Tehran (Iran)
2009-01-15
The electro-oxidation of methanol on nickel and nickel-copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu) in a 1 M NaOH solution at different concentrations of methanol was studied by the method of ac-impedance spectroscopy. Two semicircles in the first quadrant of a Nyquist diagram were observed for electro-oxidation of methanol on GC/Ni corresponding to charge transfer resistance and adsorption of intermediates. Electro-oxidation of methanol on GC/NiCu shows negative resistance in impedance plots as signified by semi-circles terminating in the second quadrant. The impedance behavior shows different patterns at different applied anodic potential. The influence of the electrode potential on impedance pattern is studied and a mathematical model was put forward to quantitatively account for the impedance behavior of methanol oxidation. At potentials higher than 0.49 V vs. Ag/AgCl, a pseudoinductive behavior is observed but at higher than 0.58 V, impedance patterns terminate in the second quadrant. The conditions required for this behavior are delineated with the use of the impedance model. (author)
Eddy Current Rail Inspection Using AC Bridge Techniques
Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng
2013-01-01
AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a di...
Impedance spectroscopy and electrical modeling of electrowetting on dielectric devices
Using impedance spectroscopy, we have determined models for the elements which determine the ac electrical behavior in electrowetting on dielectric (EWOD) systems. Three commonly used EWOD electrode configurations were analyzed. In each case, the impedance can be modeled by a combination of elements, including the solution resistance, the capacitance of the dielectric layer, and the constant phase impedance of the electrode double layers. The sensitivity of the system’s impedance to variations in the electrowetted area is also analyzed for these common configurations. We also demonstrate that the impedance per unit area of typical EWOD systems is invariant to bias voltage. (paper)
Ionic conductivity measurements of zirconia under pressure using impedance spectroscopy
Takebe, H; Ohtaka, O; Fukui, H; Yoshiasa, A; Yamanaka, T; Ota, K; Kikegawa, T
2002-01-01
We have set up an electrical conductivity measurement system under high-pressure and high-temperature conditions with a multi-anvil high-pressure apparatus using an AC complex impedance method. With this system, we have successfully measured the electrical conductivity of stabilized ZrO sub 2 (Y sub 2 O sub 3 -ZrO sub 2 solid solution) under pressures up to 5 GPa in the temperature range from 300 to 1200 K. The electrical conductivities obtained under pressure are compatible with those of previous results measured at ambient pressure.
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel; Nagashima, James M.; Perisic, Milun; Hiti, Silva
2012-06-05
A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.
Generator method of 225Ac production without a carrier for nuclear medicine
The two-steps isotope generator scheme of 225Ac production from 229Th has been developed. The first step is used for separation of thorium, actinium, radium and daughter decay products (DDP), and removals of parent radionuclide. The second step provides additional separation of actinium from traces of radium and DDP, and conversion of actinium in the nitrate form. The chosen solutions provide optimal conditions for carry out of process. The yield of the 225Ac was 99.9% at minimal losses of parent 229Th (less than 0.1%)
We have measured the complex film impedance 1/σd (σ conductivity, d film thickness) of three YBaCuO thin films with d=44, 115, and 168 nm on MgO substrates at 10.2 GHz in the temperature range between 300 and 4 K. Below Tc, the experimental results are discussed in terms of the two-fluid model and the BCS theory. The residual resistance decreases with the film thickness. The thinnest film has a residual surface resistance of 3.10-4 Ω. For this film, the complex microwave conductivity is calculated and compared with the models. Apart from the residual resistance, the measured conductivity is in agreement with the peak caused by the energy gap of the BCS theory. All measurements were performed with a cavity perturbation method which we have to our knowledge applied for the first time to superconducting thin films. The method allows to determine the complex impedance of films with arbitrary thickness. In particular, films with thicknesses small compared to the skin depth δ or the London penetration depth λ can be measured. Therefore, we are able to measure the impedance both in the normal and superconducting state. (orig.)
Bentiss, F., E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique (LCCA), Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Mernari, B. [Laboratoire de Chimie de Coordination et d' Analytique (LCCA), Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Traisnel, M. [Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, H. [Laboratoire de Spectrochimie Infrarouge et Raman (LASIR), UMR-CNRS 8516, Universite des Sciences et Technologies de Lille, Batiment C5, F-59655 Villeneuve d' Ascq Cedex (France); Lagrenee, M., E-mail: michel.lagrenee@ensc-lille.f [Unite de Catalyse et de Chimie du Solide (UCCS), UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France)
2011-01-15
Research highlights: {yields}2,5-Bis(n-pyridyl)-1,3,4-thiadiazoles (n-PTH) act as good inhibitors for the mild steel in acidic media. {yields}The inhibiting protection depends on the position of the nitrogen on the pyridinium substituent according to order 3-PTH > 2-PTH > 4-PTH. {yields}The adsorption of n-PTH is found to follow the Langmuir's adsorption isotherm. {yields}Data obtained from quantum chemical calculations using DFT method were correlated to the experimentally obtained inhibition efficiencies. - Abstract: The inhibition properties of 2,5-bis(n-pyridyl)-1,3,4-thiadiazoles (n-PTH) on corrosion of mild steel in different acidic media (1 M HCl, 0.5 M H{sub 2}SO{sub 4} and 1 M HClO{sub 4}) were analyzed by electrochemical impedance spectroscopy (EIS). The n-PTH derivatives exhibit good inhibition properties in different acidic solutions and the calculated values of {Delta}G{sub ads}{sup 0} revealed that the adsorption mechanism of n-PTH on steel surface is mainly due to chemisorption. While in 1 M HClO{sub 4}, both 2-PTH and 4-PTH isomers stimulate the corrosion process especially at low concentrations. Quantum chemical calculations using the density functional theory (DFT) were performed on n-PTH derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that the inhibition effects of n-PTH may be explained in terms of electronic properties.
Savenije, B; Lambooij, E; Gerritzen, M A; Korf, J
2002-04-01
Poultry are electrically stunned before slaughter to induce unconsciousness and to immobilize the chickens for easier killing. From a welfare point of view, electrical stunning should induce immediate and lasting unconsciousness in the chicken. As an alternative to electroencephalography, which measures brain electrical activity, this study used brain impedance recordings, which measure brain metabolic activity, to determine the onset and development of brain damage. Fifty-six chickens were surgically equipped with brain electrodes and a canula in the wing artery and were subjected to one of seven stunning and killing methods: whole body electrical stunning; head-only electrical stunning at 50, 100 or 150 V; or an i.v. injection with MgCl2. After 30 s, the chickens were exsanguinated. Brain impedance and blood pressure were measured. Extracellular volume was determined from the brain impedance data and heart rate from the blood pressure data. An immediate and progressive reduction in extracellular volume in all chickens was found only with whole body stunning at 150 V. This treatment also caused cardiac fibrillation or arrest in all chickens. With all other electrical stunning treatments, extracellular volume was immediately reduced in some but not all birds, and cardiac fibrillation or arrest was not often found. Ischemic conditions, caused by cessation of the circulation, stimulated this epileptic effect. A stunner setting of 150 V is therefore recommended to ensure immediate and lasting unconsciousness, which is a requirement for humane slaughter. PMID:11989758
Fractal AC circuits and propagating waves on fractals
Akkermans, Eric; Dunne, Gerald; Rogers, Luke G; Teplyaev, Alexander
2015-01-01
We extend Feynman's analysis of the infinite ladder AC circuit to fractal AC circuits. We show that the characteristic impedances can have positive real part even though all the individual impedances inside the circuit are purely imaginary. This provides a physical setting for analyzing wave propagation of signals on fractals, by analogy with the Telegrapher's Equation, and generalizes the real resistance metric on a fractal, which provides a measure of distance on a fractal, to complex impedances.
RF impedance measurement calibration
The intent of this note is not to explain all of the available calibration methods in detail. Instead, we will focus on the calibration methods of interest for RF impedance coupling measurements and attempt to explain: (1). The standards and measurements necessary for the various calibration techniques. (2). The advantages and disadvantages of each technique. (3). The mathematical manipulations that need to be applied to the measured standards and devices. (4). An outline of the steps needed for writing a calibration routine that operated from a remote computer. For further details of the various techniques presented in this note, the reader should consult the references
Rovina, Kobun; Siddiquee, Shafiquzzaman; Shaarani, Sharifudin M.
2016-01-01
Allura Red AC (E129) is an azo dye that widely used in drinks, juices, bakery, meat, and sweets products. High consumption of Allura Red has claimed an adverse effects of human health including allergies, food intolerance, cancer, multiple sclerosis, attention deficit hyperactivity disorder, brain damage, nausea, cardiac disease and asthma due to the reaction of aromatic azo compounds (R = R′ = aromatic). Several countries have banned and strictly controlled the uses of Allura Red in food and beverage products. This review paper is critically summarized on the available analytical and advanced methods for determination of Allura Red and also concisely discussed on the acceptable daily intake, toxicology and extraction methods. PMID:27303385
Yang Cao
2011-07-01
Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the
Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
Beverly, Leon H.; Hance, Richard D.; Kristalinski, Alexandr L.; Visser, Age T.
1996-01-01
An improved apparatus and method reduce the harmonic content of AC line and neutral line currents in polyphase AC source distribution networks. The apparatus and method employ a polyphase Zig-Zag transformer connected between the AC source distribution network and a load. The apparatus and method also employs a mechanism for increasing the source neutral impedance of the AC source distribution network. This mechanism can consist of a choke installed in the neutral line between the AC source and the Zig-Zag transformer.
Jlassi, I., E-mail: ifa.jlassi@fst.rnu.tn [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université de Tunis ElManar, Campus Universitaire Farhat Hachad, ElManar 2092 (Tunisia); Sdiri, N. [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Elhouichet, H. [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Département de Physique, Faculté des Sciences de Tunis, Université de Tunis ElManar, Campus Universitaire Farhat Hachad, ElManar 2092 (Tunisia); Ferid, M. [Laboratoire Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National de Recherches en Sciences des Matériaux, B.P. 95, Hammam-Lif 2050 (Tunisia)
2015-10-05
Highlights: • We have prepared a new lithium diphosphate glasses doped MgO. • Investigate structural and electrical properties at room temperature. • Investigate relation between structure and electrical conductivity of the glass. - Abstract: Lithium diphosphate glasses doped MgO was prepared via a melt quenching technique. The samples were characterized by X-ray diffraction (XRD), Raman and impedance spectroscopy. XRD spectra reflected the amorphous nature of the glasses Raman spectra show structural network modifications with the composition variations of the studied glasses. Raman spectra of the studied glasses contain also typical phosphate glasses bands. Thus the band at ∼698 cm{sup −1} assigned to symmetric stretching vibrations of P−O−P groups and that from ∼1168 cm{sup −1} is attributed to symmetric stretching motions of the non-bridging oxygen (NBO) atoms bonded to phosphorous atoms (PO{sub 2}) in phosphate tetrahedron. Electric properties were investigated using complex impedance spectroscopy in a frequency range from 40 Hz to 6 MHz at room temperature. The impedance spectra were analyzed in terms of equivalent circuits involving resistors, capacitors and constant phase elements (CPE). Constant-phase elements (CPE) are used in equivalent electrical circuits for the fitting of experimental impedance data. The AC conductivity exhibited a Jonscher’s universal power law according with the relation σ(ω) = σ(0) + Aω{sup s} and it is observed that as the MgO content increases, frequency exponent (s) decreases.
A high-speed electrical impedance measurement circuit based on information-filtering demodulation
In the paper, an information-filtering demodulation method is proposed and a high-speed ac-based electrical impedance measurement circuit with a simple configuration is presented. As a crucial part of the ac-based impedance measurement circuit, the information-filtering demodulator can output a preliminary demodulation result by processing only a small number of sampling data within a signal period and the signal-to-noise ratio (SNR) can be further improved by involving more sampling data. Compared with other digital demodulators requiring integer multiples of the signal's period, the information-filtering demodulator is more advantageous in flexibility. Moreover, compared with the recursive least-squares-based demodulator, the proposed demodulator is of relatively low computation complexity and suitable to be implemented on a field programmable gate array. Using this demodulator, the ac impedance measurement circuit based on the ac self-balancing bridge can achieve a high measurement speed. Experimental results showed that one measurement can be accomplished in 17 µs, corresponding to one-third of the signal period, at an excitation frequency of 20 kHz, and the demodulation SNR can reach up to 65 dB. If the data of a complete signal period are used for demodulation like other widely used digital demodulators, the SNR of amplitude demodulation will be higher than 75 dB and the standard deviation of the demodulated phase is below 0.012°, which validates the good performance of both the new demodulator and the impedance measurement circuit. (paper)
A high-speed electrical impedance measurement circuit based on information-filtering demodulation
Sun, Shijie; Xu, Lijun; Cao, Zhang; Zhou, Haili; Yang, Wuqiang
2014-07-01
In the paper, an information-filtering demodulation method is proposed and a high-speed ac-based electrical impedance measurement circuit with a simple configuration is presented. As a crucial part of the ac-based impedance measurement circuit, the information-filtering demodulator can output a preliminary demodulation result by processing only a small number of sampling data within a signal period and the signal-to-noise ratio (SNR) can be further improved by involving more sampling data. Compared with other digital demodulators requiring integer multiples of the signal's period, the information-filtering demodulator is more advantageous in flexibility. Moreover, compared with the recursive least-squares-based demodulator, the proposed demodulator is of relatively low computation complexity and suitable to be implemented on a field programmable gate array. Using this demodulator, the ac impedance measurement circuit based on the ac self-balancing bridge can achieve a high measurement speed. Experimental results showed that one measurement can be accomplished in 17 µs, corresponding to one-third of the signal period, at an excitation frequency of 20 kHz, and the demodulation SNR can reach up to 65 dB. If the data of a complete signal period are used for demodulation like other widely used digital demodulators, the SNR of amplitude demodulation will be higher than 75 dB and the standard deviation of the demodulated phase is below 0.012°, which validates the good performance of both the new demodulator and the impedance measurement circuit.
Durrett, Timothy; Ohlrogge, John; Pollard, Michael
2016-05-03
The present invention relates to novel diacylglycerol acyltransferase genes and proteins, and methods of their use. In particular, the invention describes genes encoding proteins having diacylglycerol acetyltransferase activity, specifically for transferring an acetyl group to a diacylglycerol substrate to form acetyl-Triacylglycerols (ac-TAGS), for example, a 3-acetyl-1,2-diacyl-sn-glycerol. The present invention encompasses both native and recombinant wild-type forms of the transferase, as well as mutants and variant forms. The present invention also relates to methods of using novel diacylglycerol acyltransferase genes and proteins, including their expression in transgenic organisms at commercially viable levels, for increasing production of 3-acetyl-1,2-diacyl-sn-glycerols in plant oils and altering the composition of oils produced by microorganisms, such as yeast, by increasing ac-TAG production. Additionally, oils produced by methods of the present inventions comprising genes and proteins are contemplated for use as biodiesel fuel, in polymer production and as naturally produced food oils with reduced calories.
Experiment research and calculation method of natural circulation flow for AC600/1000
Passive safety concept is extensively used in the design for next generation advanced PWR nuclear power plant. The decay heat of reactor core can be removed through natural circulation flow of coolant following an accident. This not only increases reliability of engineered safety systems and reduces core melt frequency, but also simplifies systems and increases plant economy. Nuclear Power Institute of China (NPIC) has performed preliminary experiment research and relative theoretical analysis for passive characteristics of advanced PWR nuclear power plant AC600/1000. Three tests about natural circulation flow have finished as the following: residual heat removal through SG secondary side, core makeup tank behavior and wind flow of containment. The above mentioned three mechanism tests have verified natural circulation flow concept of AC600/1000. By the end of this year NPIC will finish other two single tests in order to research the following key technology of the passive safety systems: The natural circulation characteristics of tandem system of SG secondary side loop and air flow loop for emergency residual heat removal system (ERHRS) after station blackout accident; The water flow behavior in primary coolant system contained by core makeup tank, pressurizer, accumulator and reactor pressure vessel after small break accident; Computer code development and verification. Meanwhile, NPIC will cooperate with Karlsruhe Technology Center of Germany to research natural circulation characteristics of air in the annular channel between the steel shell and the concrete shell of containment. NPIC plans to build two large integral test facilities. One of which is used to research natural circulation flow and residual heat removal through primary loop, secondary loop and air flow loop from reactor core to ultimate sink - atmosphere after station blackout accident. It is also used to research the passive safety injection features for emergency core cooling system. The second
Ropars, Pierre; Bonnet, Guy; Jean, Philippe
2014-03-01
The paper is devoted to stochastic foundation impedance modeling for buildings submitted to vibrations. The hidden-variables method used in seismic engineering is revisited, due to a larger frequency range used in vibration prediction. Indeed, in this new context, instability of the solution and non-physical nature of mass and stiffness random matrices have been observed. The hidden variable method has been therefore implemented by enforcing explicitly the stability of the solution and the positiveness of mass and stiffness matrices. The effects of numerical parameters used throughout the process are shown and the improved hidden-variables method has been used for predicting the level of vibrations inside a building induced by railway sources. We present here steps of stabilization process, and then discuss on an example of application.
Volkmann, J.; Klitzsch, N.
2015-03-01
Impedance Spectroscopy (IS) measurements allow to study a wide range of polarization mechanisms associated with different frequency ranges. Experimental devices usually cover limited frequency ranges with sufficient accuracy. We propose (a) a combination of four-electrode and two-electrode devices and (b) a data combination and mutual verification procedure using the actual sample under test. Hereby, we cover a frequency range from 1 mHz to 10 MHz. The data combination relies on the precondition that any dispersive disturbance decayed at some mutual point within an overlapping frequency range between 1 Hz and 45 kHz. We validate our data combination procedure by IS measurements on simple reference systems and comparison with widely accepted model functions, e.g. the complex refractive index model (CRIM) for high frequency behavior and Kramers-Kronig relations in terms of data consistency. In this respect, our suggested processing approach is superior to two selected alternative approaches. We successfully adapt typical empirical model functions, e.g. multi-Cole-Cole, to the resulting wideband data to show that they are fully applicable for further data analysis.
The paper studies the photoelectrode thin film of dye-sensitized solar cell (DSSC) fabricated by anodizing method, explores the structure and properties of the fabricated photoelectrode thin film, measures the photoelectric conversion efficiency of DSSC, and finds the electrochemical impedance properties of DSSCs assembled by photoelectrode thin films in different thicknesses. Besides, in order to increase the specific surface area of nanotubes, this paper deposits TiO2 nanoparticles (TNP) on the surface of titanium oxide nanotube (TNT). As shown in experimental results, the photoelectric conversion efficiency of the DSSC fabricated by the study rises to 6.5% from the original 5.43% without TnB treatment, with an increase of photoelectric conversion efficiency by 19.7%. In addition, when the photoelectrode thin film is fabricated with mixture of TNTs and TNP in an optimal proportion of 2:8 and the photoelectrode thin film thickness is 15.5 μm, the photoelectric conversion efficiency can reach 7.4%, with an increase of 36.7% from the original photoelectric conversion efficiency at 5.43%. Besides, as found in the results of electrochemical impedance analysis, the DSSC with photoelectrode thin film thickness at 15.5 μm has the lowest charge-conduction resistance (Rk) value 9.276 Ω of recombined electron and conduction resistance (Rw) value 3.25 Ω of electrons in TiO2.
Dielectric and impedance spectroscopic studies of neodymium gallate
Sakhya, Anup Pradhan; Dutta, Alo; Sinha, T. P.
2016-05-01
The AC electrical properties of a polycrystalline neodymium gallate, NdGaO3 (NGO), synthesized by the sol-gel method have been investigated by employing impedance spectroscopy in the frequency range from 42 Hz to 5 MHz and in the temperature range from 323 K to 593 K. The X-ray diffraction analysis shows that the compound crystallizes in the orthorhombic phase with Pbnm space group at room temperature. Two relaxation processes with different relaxation times are observed from the impedance as well as modulus spectroscopic measurements, which have been attributed to the grain and the grain boundary effects at different temperatures in NGO. The complex impedance data are analyzed by an electrical equivalent circuit consisting of a resistance and a constant phase element in parallel. It has been observed that the value of the capacitance and the resistance associated with the grain boundary is higher than those associated with the grain. The temperature dependent electrical conductivity shows the negative temperature coefficient of resistance. The frequency dependent conductivity spectra are found to follow the power law.
High frequency impedances in European XFEL
Dohlus, Martin; Zagorodnov, Igor; Zagorodnova, Olga
2010-06-15
The method of the optical approximation is used to estimate the high frequency impedances of different vacuum chamber transitions of the European XFEL beam line. The approximations of the longitudinal impedances are obtained in terms of simple one-dimensional integrals. The transverse impedances are written in analytical closed form. The analytical results are compared with the results obtained by numerical solution of Maxwell's equations. (orig.)
The methods and device for estimation of cardiac output and measurement of pulse wave velocity simultaneously is presented here. The beat-to-beat cardiac output as well as pulse wave velocity measurement is based on application of electrical impedance method on the thorax and calf. The results are demonstrated in a study of 24 subjects. The dependence of pulse wave velocity and cardiac output on heart rate during rest in patients with an implanted pacemaker was evaluated. The heart rate was changed by pacemaker programming while neither exercise nor drugs were applied. The most important result is that the pulse wave velocity, cardiac output and blood pressure do not depend significantly on heart rate, while the stroke volume is reciprocal proportionally to the heart rate.
Guang Han LU; Chuan Yin LIU; Hong Yan ZHAO; Wei LIU; Li Ping JIANG; Ling Yan JIANG
2004-01-01
Interfacial proton transfer reactions of pure mercaptoacetic acid (MA) and 2-mercaptobenzothiazole (Mbz) mixed self-assembled monolayers (SAMs) have been studied using a.c. impedance titration method. The charge-transfer resistance (Rct) is measured with the monolayer composition and the ionic strength of pH solution. The surface pKa can be obtained by the plots of Rct and pH, the reasons of shifts of surface pKa are also explained.
The corrosion inhibition properties of a new class of oxadiazole derivatives, namely 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles (n-DPOX) for C38 carbon steel corrosion in 1 M HCl medium were analysed by electrochemical impedance spectroscopy (EIS). An adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The experimental results showed that these compounds are excellent inhibitors for the C38 steel corrosion in acid solution and that the protection efficiency increased with increasing the inhibitors concentration. Electrochemical impedance data demonstrate that the addition of the n-DPOX derivatives in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Adsorption of these inhibitors on the steel surface obeys to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal hydrochloric solution by n-DPOX is due to the formation of a chemisorbed film on the steel surface. Quantum chemical calculations using the Density Functional Theory (DFT) and the Quantitative Structure Activity Relationship (QSAR) approach were performed on n-DPOX derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that their inhibition effect is closely related to EHOMO, ELUMO, and dipole moment (μ).
Outirite, Moha; Lagrenee, Michel; Lebrini, Mounim [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, Michel; Jama, Charafeddine [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad, E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)
2010-02-01
The corrosion inhibition properties of a new class of oxadiazole derivatives, namely 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles (n-DPOX) for C38 carbon steel corrosion in 1 M HCl medium were analysed by electrochemical impedance spectroscopy (EIS). An adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The experimental results showed that these compounds are excellent inhibitors for the C38 steel corrosion in acid solution and that the protection efficiency increased with increasing the inhibitors concentration. Electrochemical impedance data demonstrate that the addition of the n-DPOX derivatives in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Adsorption of these inhibitors on the steel surface obeys to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal hydrochloric solution by n-DPOX is due to the formation of a chemisorbed film on the steel surface. Quantum chemical calculations using the Density Functional Theory (DFT) and the Quantitative Structure Activity Relationship (QSAR) approach were performed on n-DPOX derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that their inhibition effect is closely related to E{sub HOMO}, E{sub LUMO}, and dipole moment (mu).
[Monitoring cervical dilatation by impedance].
Salvat, J; Lassen, M; Sauze, C; Baud, S; Salvat, F
1992-01-01
Several different physics procedures have been tried to mechanize the recording of partograms. Can a measure of impedance of tissue Z using potential difference V, according to Ohm's law V = Z1, and 1 is a constant, be correlated with a measure of cervical dilatation using vaginal examination? This was our hypothesis. The tissue impedance meter was made to our design and applied according to a bipolar procedure. Our work was carried out on 28 patients. 10 patients were registered before labour started in order to test the apparatus and to record the impedance variations without labour taking place, and 18 patients were registered in labour to see whether there was any correlation. The level of impedance in the cervix without labour was 302.7 Ohms with a deviation of 8.2. Using student's t tests it was found that there was a significant correlation (p less than 0.001) in four measurements between the impedance measure and measures obtained by extrapolating the degrees of dilatation calculated from vaginal examination. This is a preliminary study in which we have defined the conditions that are necessary to confirm these first results and to further develop the method. PMID:1401774
Noncontact scanning electrical impedance imaging.
Liu, Hongze; Hawkins, Aaron; Schultz, Stephen; Oliphant, Travis E
2004-01-01
We are interested in applying electrical impedance imaging to a single cell because it has potential to reveal both cell anatomy and cell function. Unfortunately, classic impedance imaging techniques are not applicable to this small scale measurement due to their low resolution. In this paper, a different method of impedance imaging is developed based on a noncontact scanning system. In this system, the imaging sample is immersed in an aqueous solution allowing for the use of various probe designs. Among those designs, we discuss a novel shield-probe design that has the advantage of better signal-to-noise ratio with higher resolution compared to other probes. Images showing the magnitude of current for each scanned point were obtained using this configuration. A low-frequency linear physical model helps to relate the current to the conductivity at each point. Line-scan data of high impedance contrast structures can be shown to be a good fit to this model. The first two-dimensional impedance image of biological tissues generated by this technique is shown with resolution on the order of 100 mum. The image reveals details not present in the optical image. PMID:17271930
Short-circuit impedance measurement
Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad
2003-01-01
Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...... kinds of problems at different locations in the grid. This means that the best measurement methodology changes depending on the location in the grid. Three typical examples with different measurement problems at 400 kV, 132 kV and 400 V voltage level are discussed....
Impedance model for nanostructures
R. S. Akhmedov
2007-06-01
Full Text Available The application of the impedance model for nanoelectronic quantum-mechanical structures modelling is described. Characteristics illustrating the efficiency of the model are presented.
SoC-Based Dynamic Power Sharing Method with AC-Bus Voltage Restoration for Microgrid Applications
Lu, Xiaonan; Sun, Kai; Guerrero, Josep M.; Huang, Lipei
shared in the energy storage system. The relationship between the droop coefficient and SoC are studied deeply and the small signal model is developed to verify the stability of the control system. It is found that the active power sharing speed becomes faster with higher exponent of SoC. At the same...... time, in order to restore the AC-bus voltage, secondary control is employed to eliminate the deviations of the voltage frequency and amplitude caused by the droop control, with the droop coefficients adjusting according to the SoCs. The model of the secondary control scheme for SoC-based droop method...... is developed and its stability is discussed. The theoretical analysis is demonstrated by both simulation and experimental results....
Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)], E-mail: fbentiss@enscl.fr; Lebrini, M. [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, BP. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, H. [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Chai, F. [Groupe de Recherche sur les biomateriaux, Laboratoire de Biophysique, UPRES EA 1049, Faculte de Medecine, F-59045 Lille Cedex (France); Traisnel, M.; Lagrene, M. [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France)
2009-09-15
We report here the use of macrocyclic polyether compounds containing a 1,3,4-thiadiazole moiety (n-MCTH) in the corrosion inhibition of C38 carbon steel in 0.5 M H{sub 2}SO{sub 4} acid medium. The aim of this work is devoted to study the inhibition characteristics of these compounds for acid corrosion of C38 steel using electrochemical impedance spectroscopy (EIS). Data obtained from EIS show a frequency distribution and therefore a modeling element with frequency dispersion behaviour, a constant phase element (CPE) has been used. The experimental results obtained revealed that these compounds inhibited the steel corrosion in acid solution and the protection efficiency increased with increasing inhibitors concentration. The difference in their inhibitive action can be explained on the basis of the number of oxygen atoms present in the polyether ring which contribute to the chemisorption strength through the donor acceptor bond between the non bonding electron pair and the vacant orbital of metal surface. Adsorption of n-MCTH was found to follow the Langmuir's adsorption isotherm. The thermodynamic functions of adsorption process were calculated and the interpretation of the results is given. These results are complemented with quantum chemical study in order to provide an explanation of the differences between the probed inhibitors. Correlation between the inhibition efficiency and the structure of these compounds are presented.
Tliha, M.; Khaldi, C.; Lamloumi, J.
2016-04-01
The decrease of Cobalt content in alloy is very beneficial to reduce the production cost of the alloy, whereas the effect of Co on cycle life of the AB5-type hydrogen-storage alloys is extremely important. Therefore, it is interesting to investigate low-Co and/or Co-free AB5-type alloys in which Co was substituted by other elements. Iron is a key element in the development of low-Co AB5-type alloys. The aim of this work is to systematically investigate the effect of the real surface area on the all kinetic properties of a low-Co LaNi3.55Mn0.4Al0.3Co0.6Fe0.15 alloy under cycling using electrochemical impedance spectroscopy (EIS) technique. All kinetic properties of the electrode, such as exchange density, limiting current density, high-rate charge/discharge ability, cycle life time, electrocatalytic activity, and diffusion rate are related to the real surface area. During the EIS analysis, interestingly, we found that with increasing number of charge/discharge cycles, the metal hydride alloy powders undergo micro-cracking into smaller particles, and thus the real surface area of the alloy increases, which then influences the kinetic properties of the electrode reactions.
Tracking of electrochemical impedance of batteries
Piret, H.; Granjon, P.; Guillet, N.; Cattin, V.
2016-04-01
This paper presents an evolutionary battery impedance estimation method, which can be easily embedded in vehicles or nomad devices. The proposed method not only allows an accurate frequency impedance estimation, but also a tracking of its temporal evolution contrary to classical electrochemical impedance spectroscopy methods. Taking into account constraints of cost and complexity, we propose to use the existing electronics of current control to perform a frequency evolutionary estimation of the electrochemical impedance. The developed method uses a simple wideband input signal, and relies on a recursive local average of Fourier transforms. The averaging is controlled by a single parameter, managing a trade-off between tracking and estimation performance. This normalized parameter allows to correctly adapt the behavior of the proposed estimator to the variations of the impedance. The advantage of the proposed method is twofold: the method is easy to embed into a simple electronic circuit, and the battery impedance estimator is evolutionary. The ability of the method to monitor the impedance over time is demonstrated on a simulator, and on a real Lithium ion battery, on which a repeatability study is carried out. The experiments reveal good tracking results, and estimation performance as accurate as the usual laboratory approaches.
Fractional Order Element Based Impedance Matching
Radwan, Ahmed Gomaa
2014-06-24
Disclosed are various embodiments of methods and systems related to fractional order element based impedance matching. In one embodiment, a method includes aligning a traditional Smith chart (|.alpha.|=1) with a fractional order Smith chart (|.alpha.|.noteq.1). A load impedance is located on the traditional Smith chart and projected onto the fractional order Smith chart. A fractional order matching element is determined by transitioning along a matching circle of the fractional order Smith chart based at least in part upon characteristic line impedance. In another embodiment, a system includes a fractional order impedance matching application executed in a computing device. The fractional order impedance matching application includes logic that obtains a first set of Smith chart coordinates at a first order, determines a second set of Smith chart coordinates at a second order, and determines a fractional order matching element from the second set of Smith chart coordinates.
Rotor damage detection by using piezoelectric impedance
Qin, Y.; Tao, Y.; Mao, Y. F.
2016-04-01
Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.
Jendrysek Marek
2015-11-01
Full Text Available Purpose: Body composition evaluation of youth aged 17-18 of a different physical activity with the help of bioelectric impedance method. Material and Methods: 18 boys practicing swimming and 19 boys not practicing it took part in the study, making up a control group. Height, weight, BMI, lean body mass, the content of fat and water, Rohr factor were evaluated. Non-parametric Mann-Whitney test has been used to evaluate the differences in the range of the tissue components between the two groups. Results: Statistically significant differences were found on the p<0,05 level in % fat content. Mean body weight in experimental group was 71.5 kg, while in control group it was 69.4 kg. Minimum and maximum weight in group of swimming-practicing persons was: 56.6-92.2 kg. Increased body weight in the group of swimmers can result from greater amount of active tissue in this group compared with persons of low physical activity. Proportionally, it amounted to 64.3 kg and 61.3 kg. In the tested groups, minimal and maximal values of amount of active tissue proportionately amounted to: 54.1-78 and 49.5-72,3 kg. Conclusions: Physical activity modifies body composition. Active lifestyle is one of the methods for prevention of overweight and obesity.
Verney, Julien; Metz, Lore; Chaplais, Elodie; Cardenoux, Charlotte; Pereira, Bruno; Thivel, David
2016-07-01
The aim of this study was to compare total and segmental body composition results between bioimpedance analysis (BIA) and dual x-ray absorptiometry (DXA) scan and to test the reproducibility of BIA in obese adolescents. We hypothesized that BIA offers an accurate and reproducible method to assess body composition in adolescents with obesity. Whole-body and segmental body compositions were assessed by BIA (Tanita MC-780) and DXA (Hologic) among 138 (110 girls and 28 boys) obese adolescents (Tanner stage 3-5) aged 14±1.5years. The BIA analysis was replicated on 3 identical occasions in 32 participants to test the reproducibility of the methods. Whole-body fat mass percentage was significantly higher using the BIA method compared with DXA (40.6±7.8 vs 38.8±4.9%, PBioimpedance analysis offers an acceptable and reproducible alternative to assess body composition in obese adolescents, with however a loss of correlation between BIA and DXA with increasing body fat; its validity remains uncertain for segmental analysis among obese youth. PMID:27333957
Inter-Changeability of Impedance Devices for Lymphedema Assessment.
van Zanten, Malou; Piller, Neil; Ward, Leigh C
2016-06-01
Impedance technology is a popular technique for the early detection of lymphedema. The preferred approach is to use bioimpedance spectroscopy (BIS), with measurements being made with the subject lying supine, although attempts have been made to use single or multiple frequency impedance measurements obtained while the subject is standing. The aim of the present study was to determine the equivalence of these different approaches. Impedance measurements of the individual limbs of 37 healthy individuals were determined using both a stand-on, multi-frequency impedance device and a supine impedance spectroscopy instrument. Significant differences were found between the instruments in both absolute impedance values and, importantly, inter-limb impedance ratios. Since impedance ratios in healthy individuals provide the reference standard for detection of lymphedema, these data indicate that the methods are not interchangeable. Consideration of the errors associated with each method indicates that the BIS remains the preferred method for lymphedema detection. PMID:26574711
AC characterization of bulk organic solar cell in the dark and under illumination
Highlights: • A study of organic bulk photovoltaic (PV) solar cell. • Current–voltage characteristics in the dark and under illumination. • AC measurements, both under illumination and in the dark conditions. • Equivalent AC circuit. • Effective lifetime assigned with electron–hole recombination and diffusion time of the electron was estimated. - Abstract: Impedance spectroscopy has been used widely to evaluate the transport processes in photovoltaic, mainly based on inorganic semiconductors, structures – solar cells. The aim of this research was to characterize improved organic bulk photovoltaic (PV) solar cells exploiting this method. Progress in technology of investigated organic solar cell involves the use of an active layer based on low band gap type of polymer. The organic PV cell with front transparent electrode and rear metal electrode and active layer produced by Konarka Technologies was analyzed by electrical DC and AC measurements. Current–voltage (I–V) characteristics in the dark and under illumination were measured and basic PV parameters were calculated. AC measurements, both under illumination and in the dark conditions, were processed in order to identify electronic behavior using equivalent AC circuit which was suggested by fitting of measured impedance data. Circuit with the best correlation to measured data is analyzed in details. Voltage and frequency dependences of fitted equivalent circuit components and calculated parameters are explained and presented in the paper
XUE BU HU; ZI JI LIN; LI LIU; YONG JIAN HUAI; ZHENG HUA DENG
2010-01-01
Two composite cathode materials containing LiFePO4 and activated carbon (AC) were synthesized by an in-situ method and a direct mixing technique, which are abbreviated as LAC and DMLAC, respectively. Hybrid battery–capacitors LAC/Li4Ti5O12 and DMLAC/Li4Ti5O12 were then assembled. The effects of the content of LiFePO4 and the preparation method on the cyclic voltammograms, the rate of charge–discharge and the cycle performance of the hybrid battery–capacitors were investigated. The results sho...
Park, Chang-In; Jeon, Su-Jin; Hong, Nam-Pyo; Choi, Young-Wan
2016-03-01
Lock-in amplifier (LIA) has been proposed as a detection technique for optical sensors because it can measure low signal in high noise level. LIA uses synchronous method, so the input signal frequency is locked to a reference frequency that is used to carry out the measurements. Generally, input signal frequency of LIA used in optical sensors is determined by modulation frequency of optical signal. It is important to understand the noise characteristics of the trans-impedance amplifier (TIA) to determine the modulation frequency. The TIA has a frequency range in which noise is minimized by the capacitance of photo diode (PD) and the passive component of TIA feedback network. When the modulation frequency is determined in this range, it is possible to design a robust system to noise. In this paper, we propose a method for the determination of optical signal modulation frequency selection by using the noise characteristics of TIA. Frequency response of noise in TIA is measured by spectrum analyzer and minimum noise region is confirmed. The LIA and TIA circuit have been designed as a hybrid circuit. The optical sensor is modeled by the laser diode (LD) and photo diode (PD) and the modulation frequency was used as the input to the signal generator. The experiments were performed to compare the signal to noise ratio (SNR) of the minimum noise region and the others. The results clearly show that the SNR is enhanced in the minimum noise region of TIA.
Impedance and Collective Effects
Metral, E; Rumolo, R; Herr, W
2013-01-01
This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Chapter '4 Impedance and Collective Effects' with the content: 4 Impedance and Collective Effects Introduction 4.1 Space Charge 4.2 Wake Fields and Impedances 4.3 Coherent Instabilities 4.4 Landau Damping 4.5 Two-Stream Effects (Electron Cloud and Ions) 4.6 Beam-Beam Effects 4.7 Numerical Modelling
SASSMANNOVÁ, Anna
2007-01-01
Echocardiography is an investigation of heart via scan. This enables to intend the moving and the locality of heart structures via scan pulse waves which are repulsed with acoustic interfaces. Impedance measuring of the thorax hemodynamics is based on changes of electrical impedance. These changes happen mainly because of the heart function. By its rhytmical function the heart periodically changes the conditions of blood flow through all vessels. By this we can explain periodical changes of i...
Modeling of long High Voltage AC Underground
Gudmundsdottir, Unnur Stella; Bak, Claus Leth; Wiechowski, W. T.
2010-01-01
This paper presents the work and findings of a PhD project focused on accurate high frequency modelling of long High Voltage AC Underground cables. The project is cooperation between Aalborg University and Energinet.dk. The objective of the project is to investigate the accuracy of most up to date...... cable models, perform highly accurate field measurements for validating the model and identifying possible disadvantages of the cable model. Furthermore the project suggests and implements improvements and validates them against several field measurements. It is shown in this paper how a new method for...... calculating the frequency dependent cables impedance greatly improves the modeling procedure and gives a highly accurate result for high frequency simulations....
Analysis of formulas used in coupling impedance coaxial-wire measurements for distributed impedances
In this paper the authors study the validity of coupling impedance bench measurements for distributed impedances, comparing the commonly used log formula to the result obtained applying a modified version of Bethe's theory of diffraction to a long slot in a coaxial beam pipe. The equations found provide a quantitative expression for the influence of the wire thickness used in the measurement of the real and imaginary part of the longitudinal impedance. The precision achievable in an actual measurement is therefore discussed. The method presented has also been applied in the presence of lumped impedances
Measurements of electrical impedance of biomedical objects.
Frączek, Marcin; Kręcicki, Tomasz; Moron, Zbigniew; Krzywaźnia, Adam; Ociepka, Janusz; Rucki, Zbigniew; Szczepanik, Zdzisław
2016-01-01
Some basic problems related to measurements of electrical impedance of biological objects (bioimpedance) have been presented in this paper. Particularly problems arising from impedance occurring at the sensor-tissue interface (interfacial impedances) in contact measuring methods have been discussed. The influence of finite values of impedances of the current source and voltage measuring device has also been taken into consideration. A model of the impedance sensor for the four-electrode measurement method containing the interfacial, source and measuring device impedances has been given and its frequency characteristics obtained by the computer simulation have been presented. The influence of these impedances on the shape of frequency characteristic of the sensor model has been discussed. Measurements of bioimpedance of healthy and anomalous soft tissues have been described. Some experimental results, particularly the frequency characteristics of bioimpedance, have been shown. The presented results of measurement show that bioimpedance can be a valuable source of information about the tissues, so measurement of bioimpedance can be a useful supplement to other medical diagnostic methods. PMID:27151250
Segmental and whole body electrical impedance measurements in dialysis patients
Nescolarde Selva, Lexa
2006-01-01
The main objective of this thesis is to contribute to the prevention and control of the cardiovascular risk, hydration state and nutritional state in dialysis patients using non-invasive electrical impedance measurements. The thesis is structured in three parts with the following objectives: 1) to establish electrical impedance reference data for healthy Cuban population, 2)to improve the diagnostic based on impedance methods in Cuban hemodialysis (HD)patients and 3) to develop the impedance ...
Impedance and component heating
Métral, E; Mounet, N; Pieloni, T; Salvant, B
2015-01-01
The impedance is a complex function of frequency, which represents, for the plane under consideration (longitudinal, horizontal or vertical), the force integrated over the length of an element, from a “source” to a “test” wave, normalized by their charges. In general, the impedance in a given plane is a nonlinear function of the test and source transverse coordinates, but it is most of the time sufficient to consider only the first few linear terms. Impedances can influence the motion of trailing particles, in the longitudinal and in one or both transverse directions, leading to energy loss, beam instabilities, or producing undesirable secondary effects such as excessive heating of sensitive components at or near the chamber wall, called beam-induced RF heating. The LHC performance limitations linked to impedances encountered during the 2010-2012 run are reviewed and the currently expected situation during the HL-LHC era is discussed.
Priyanka; A K Jha
2013-02-01
This paper reports complex impedance analysis of polycrystalline complex perovskite structured BaZr0.025Ti0.975O3 prepared by solid state reaction method. XRD analysis reveals the formation of single phase perovskite structure. SEM has been used to investigate grain morphology of the material. Impedance plots have been used as a tool to analyse electrical properties of the sample as a function of frequency and temperature. Bulk resistance is observed to decrease with an increase in temperature showing a typical negative temperature coefficient of resistance (NTCR) type behaviour. Nyquist (Cole–Cole) plots show both inter and intra grain boundary effects. Relaxation time is found to decrease with increasing temperature and it obeys the Arrhenius relationship. The variation of d.c. and a.c. conductivity as a function of temperature is also reported.
Impedance spectroscopy studies in cobalt ferrite-reduced graphene oxide nanocomposite
Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan
2016-05-01
(1-x)Cobalt ferrite-(x)reduced graphene oxidenanocomposites with x=0, 0.1, 0.2 and 0.3 were prepared by the ultrasonic method. The crystal symmetry modification due to reduced graphene oxide and cobalt ferrite interaction has been studied by employing the X-ray diffraction technique. Morphology of the samples was studied by the Field emission scanning electron microscopy (FE-SEM). Study on electrical properties of the cobalt ferrite-reduced graphene oxide nanocomposites explores the possible application of these composites as anode material. Impedance decreases with an increase in frequency as well as temperature, which supports an increase in ac electrical conductivity. The modified Debye relaxation model can explain the behavior of impedance in cobalt ferrite-reduced graphene oxide nanocomposites.
Zotter, B. [European Organization for Nuclear Research, Geneva (Switzerland)
1996-08-01
This report describes a number of measurements and computations of the impedance of the Large Electron Positron collider LEP at CERN. The work has been performed over several years, together with D. Brandt, K. Cornelis, A. Hofmann, G. Sabbi and many others. The agreement between measurements of single bunch instabilities on the machine and computer simulations is in general excellent and gives confidence in the impedance model used. (author)
Glowacki, B A; Majoros, M
2009-06-24
Magnetic materials can help to improve the performance of practical superconductors on the macroscale/microscale as magnetic diverters and also on the nanoscale as effective pinning centres. It has been established by numerical modelling that magnetic shielding of the filaments reduces AC losses in self-field conditions due to decoupling of the filaments and, at the same time, it increases the critical current of the composite. This effect is especially beneficial for coated conductors, in which the anisotropic properties of the superconductor are amplified by the conductor architecture. However, ferromagnetic coatings are often chemically incompatible with YBa(2)Cu(3)O(7) and (Pb,Bi)(2)Sr(2)Ca(2)Cu(3)O(9) conductors, and buffer layers have to be used. In contrast, in MgB(2) conductors an iron matrix may remain in direct contact with the superconducting core. The application of superconducting-magnetic heterostructures requires consideration of the thermal and electromagnetic stability of the superconducting materials used. On one hand, magnetic materials reduce the critical current gradient across the individual filaments but, on the other hand, they often reduce the thermal conductivity between the superconducting core and the cryogen, which may cause destruction of the conductor in the event of thermal instability. A possible nanoscale method of improving the critical current density of superconducting conductors is the introduction of sub-micron magnetic pinning centres. However, the volumetric density and chemical compatibility of magnetic inclusions has to be controlled to avoid suppression of the superconducting properties. PMID:21828430
The proton Storage Ring (PSR), now in operation at Los Alamos, is a fast-cycling high-current accumulator designed to produce intense 800 MeV proton pulses for driving a spallation neutron source. This paper presents graphs of calculated longitudinal and transverse coupling impedances vs frequency for various components in the PSR beamline. The impedances are estimated using simplified formulas for the effects of steps, cavities, monitor plates, and other discontinuities in the beam pipe for the ring. An examination of stability limits indicates that the longitudinal impedance per harmonic should be less than something in the hundreds of ohms range and the transverse impedance should be less than something of the order of a megohm/meter at low frequencies. For the PSR, the impedances due to the harmonic buncher and due to possible high-Q resonances in the bump magnet chambers might be significant. Simplified growth rate estimates using the real part of the transverse impedance indicate that the bumper magnet coils for the fast kicker plates might be contributing to an observed instability with onset at about 1013 protons per bunch
Impedance Biosensing to detect food allergens, endocrine disrupting chemicals, and food pathogens
Radhakrishnan, Rajeswaran
Electrochemical impedance biosensors can be viewed as an AC electroanalytical method for the analyte detection in the fields of biomedicine, environmental monitoring, and food and agriculture, amongst others. The most common format for AC impedance biosensing involves surface immobilization of an antibody, receptor protein, DNA strand, or other species capable of bio-recognition, and AC impedance detection of the binding event. Technological application of AC impedance biosensors has been hindered by several obstacles, including the more complex circuitry required for AC relative to DC electrochemistry, chemical and physical interference arising from non-specific adsorption, and the stability and reproducibility of protein immobilization. One focus of these PhD studies is on methods to reduce or compensate for non-specific adsorption, including sample dilution, site blocking with BSA, and the use of control electrodes onto which reference antibodies are immobilized. Examples that will be presented include impedance detection of food pathogens, such as Listeria monocytogenes, using a mouse monoclonal antibody immobilized onto an Au electrode. This yields detection limits of 5 CFU/ml and 4 CFU/ml for ideal solutions and filtered tomato extract, respectively. Control experiments with an Au electrode onto which a mouse monoclonal antibody to GAPDH is immobilized demonstrate that non-specific adsorption is insignificant for the system and methodology studied here. Control experiments with Salmonella enterica demonstrate no cross-reactivity to this food pathogen. In addition, Detection of two endocrine-disrupting chemicals (EDC), norfluoxetine and BDE-47, is reported here by impedance biosensing, with a detection limit of 8.5 and 1.3 ng/ml for norfluoxetine and BDE-47, respectively. Additional research has focused on alternative substrates and linker chemistries for protein immobilization, including the use of degenerate (highly doped) Si and bidendate thiol monolayer
The electrochemical impedance of metal hydride electrodes
Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf;
2002-01-01
The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...
邵长静
2015-01-01
主要阐述了实验目的、实验方法和实验结果等具体内容，提出了提高贝氏体耐候钢耐蚀性作用的方法和具体实验判定过程。%This paper mainly described the experiment purpose, experiment method and experiment results of the specific content, put forward methods to improve bainite weathering steel corrosion resistance effect and the specific experimental process of judgment.
A review of impedance measurements of whole cells.
Xu, Youchun; Xie, Xinwu; Duan, Yong; Wang, Lei; Cheng, Zhen; Cheng, Jing
2016-03-15
Impedance measurement of live biological cells is widely accepted as a label free, non-invasive and quantitative analytical method to assess cell status. This method is easy-to-use and flexible for device design and fabrication. In this review, three typical techniques for impedance measurement, i.e., electric cell-substrate impedance sensing, Impedance flow cytometry and electric impedance spectroscopy, are reviewed from the aspects of theory, to electrode design and fabrication, and applications. Benefiting from the integration of microelectronic and microfluidic techniques, impedance sensing methods have expanded their applications to nearly all aspects of biology, including living cell counting and analysis, cell biology research, cancer research, drug screening, and food and environmental safety monitoring. The integration with other techniques, the fabrication of devices for certain biological assays, and the development of point-of-need diagnosis devices is predicted to be future trend for impedance sensing techniques. PMID:26513290
Randhawa, Gurinder Jit; Singh, Monika
2012-01-01
Qualitative and quantitative analytical methods based on PCR for Bacillus thuringiensis (Bt) rice hybrid, namely, MRP 5401 Bt expressing a modified version of the Bt cry1Ac gene, are reported here. Multiplex PCR assays were developed to target the cry1Ac transgene, Cauliflower mosaic virus (CaMV) 35S promoter, Agrobacterium tumefaciens nopaline synthase (nos) terminator, the neomycin phosphotransferase II (nptLL) marker gene, and an endogenous a-tubulin (TubA) gene in Bt rice. The 3.178 kb region of inserted gene construct comprising the region of the CaMV 35S promoter and cry1Ac gene was amplified, and the construct integrity was confirmed by the nested PCR. The LOD for cry1Ac gene-specific simplex PCR was 0.01%, as established using Bt rice DNA dilutions with 100, 10, 1.0, 0.1, 0.05, 0.01, and 0.001% genetically modified trait. A real-time PCR assay was also developed to quantify the cry1Ac gene. The method performance of the reported real-time PCR assay was in line with the acceptance criteria of Codex Alimentarius Commission ALINORM 10/33/23, with LOD and LOQ values of 0.05%. The reliable PCR assays prior to commercial release of Bt rice would facilitate efficient regulatory compliance for identification of genetic trait, labeling requirements, and effective risk assessment and management. They could also address consumers' concerns and legal disputes that may arise. PMID:22468358
Gučević Jelena
2012-01-01
Full Text Available The existing topographic and cadastral maps of the former Yugoslav republics are in Gauss-Krüger projection on Bessel ellipsoid. For the collected GPS data to comply with the existing cartographic material, it is necessary to provide the transformation parameters from WGS84 to Bessel ellipsoid and according to the principles of cartographic mapping, to make mappings in the plane of the State Coordinate System (SCS. The aim of this research is to present the surveying activities necessary for the establishment and maintenance of digital cartographic basis, which is shown in the test area of “VRŠAC MOUNTAINS”, a Serbian region with outstanding characteristics. In order to establish a connection between the collected data, it is necessary to primarily calculate the parameters of transformation from WGS84 into the SCS. After the vectorisation of projected boundaries from bases made in the SCS, the transformation of vectorised boundary lines from SCS into the WGS84 is carried out, followed by staking the boundaries. To understand the fundamental differences in the methodology of using GPS receivers, it is important to emphasise that the concept of GPS determination of the coordinates is generally divided into absolute and relative positioning. If the correct procedure of GPS positioning, applied to certain environmental conditions, is not followed, the error up to 200 m could be expected. Conclusions are drawn about the selection of staking methods, related to the applied instruments and specific field conditions. The stakeout procedures are given in accordance with the principles of geodetic positioning. [Projekat Ministarstva nauke Republike Srbije, br. 043007: Istraživanje klimatskih promena i njihovog uticaja na životnu sredinu: praćenje uticaja, adaptacija i ublažavanje
Kopp, Joachim; Slatyer, Tracy R; Wang, Xiao-Ping; Xue, Wei
2016-01-01
We consider a new class of thermal dark matter models, dubbed "Impeded Dark Matter", in which the mass splitting between the dark matter particles and their annihilation products is tiny. Compared to the previously proposed Forbidden Dark Matter scenario, the mass splittings we consider are much smaller, and are allowed to be either positive or negative. We demonstrate that either case can be easily realized without requiring tuning of model parameters. For negative mass splitting, we demonstrate that the annihilation cross-section for Impeded Dark Matter depends linearly on the dark matter velocity or may even be kinematically forbidden, making this scenario almost insensitive to constraints from the cosmic microwave background and from observations of dwarf galaxies. Accordingly, it may be possible for Impeded Dark Matter to yield observable signals in clusters or the Galactic center, with no corresponding signal in dwarfs. For positive mass splitting, we show that the annihilation cross-section is suppress...
Degtiarenko, Pavel V.; Popov, Vladimir E.
2011-03-22
A first stage electronic system for receiving charge or current from voltage-controlled sensors or detectors that includes a low input impedance current receiver/converter device (for example, a transimpedance amplifier), which is directly coupled to the sensor output, a source of bias voltage, and the device's power supply (or supplies), which use the biased voltage point as a baseline.
Meanley, E.; Guderjahn, C.; Litvak, M. [BP Exploration, Houston, TX (United States)] [and others
1995-08-01
Rapid and accurate subsurface descriptions and flow predictions contribute to profitable field development, particularly for deep water fields of modest size. This paper shows how 3-D seismic acoustic impedance played an essential roll in that process. This Tertiary field example exhibits a classic Gulf of Mexico {open_quotes}bright{close_quotes} seismic response. The slope channel deposits yielded reflections from stacked pay zones that were often interfering vertically and laterally variable. Seismic acoustic impedance inversion for volume estimation, well placement and flow model construction. Flow model construction was facilitated using Stratamodel, where reservoir boundaries, porosity and permeability were estimated from seismic acoustic impedance. This provided a {open_quotes}deterministic{close_quotes} flow model with which well choices and development economics were explored. Alternate flow models were developed in which the effect of fine scale (sub-seismic) heterogeneities were investigated. A 3-D {open_quotes}stochastic{close_quotes} model was developed that honored geostatistical parameters as well as seismic acoustic impedance. This gave insight to permeability distributions and confirmed that connectivity between scattered sand bodies would not significantly degrade the field performance predicted by deterministic models.
Impedance spectroscopy of food mycotoxins
Bilyy, Oleksandr I.; Yaremyk, Roman Ya.; Kotsyumbas, Ihor Ya.; Kotsyumbas, Halyna I.
2012-01-01
A new analytical method of high-selective detection of mycotoxins in food and feed are considered. A method is based on optical registration the changes of conduct of the electric polarized bacterial agents in solution at the action of the external gradient electric fields. Measuring are conducted in integrated electrode-optical cuvette of the special construction, which provides the photometric analysis of forward motion of the objects registration in liquid solution under act of the enclosed electric field and simultaneous registration of kinetics of change of electrical impedance parameters solution and electrode system.
Estimating the short-circuit impedance
Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad
1997-01-01
current are derived each period, and the short-circuit impedance is estimated from variations in these components created by load changes in the grid. Due to the noisy and dynamic grid with high harmonic distortion it is necessary to threat the calculated values statistical. This is done recursively......A method for establishing a complex value of the short-circuit impedance from naturally occurring variations in voltage and current is discussed. It is the symmetrical three phase impedance at the fundamental grid frequency there is looked for. The positive sequence components in voltage and...... through a RLS-algorithm. The algorithms have been tested and implemented on a PC at a 132 kV substation supplying a rolling mill. Knowing the short-circuit impedance gives the rolling mill an opportunity to adjust the arc furnace operation to keep flicker below a certain level. Therefore, the PC performs...
Interpretation of faradaic impedance for Corrosion monitoring
Itagaki, M.; Taya, A.; Imamura, M.; Saruwatari, R.; Watanabe, K. [Science University of Tokyo, Chiba (Japan)
2004-02-15
A polarization resistance is generally used to estimate the corrosion rate in the corrosion monitoring by an electrochemical impedance method. When the Faradaic impedance has a time constant due to the reaction intermediate, the electrochemical impedance describes more than one loop on the complex plane. For example, the electrochemical impedance of iron in acidic solution shows capacitive and inductive loops on the complex plane. In this case, the charge transfer resistance and the polarization resistance are determined at middle and low frequency ranges, respectively. Which should be selected for corrosion resistance in corrosion monitoring, the charge transfer resistance or the polarization resistance? In the present paper, the above-mentioned question is examined theoretically and experimentally
Interpretation of faradaic impedance for Corrosion monitoring
A polarization resistance is generally used to estimate the corrosion rate in the corrosion monitoring by an electrochemical impedance method. When the Faradaic impedance has a time constant due to the reaction intermediate, the electrochemical impedance describes more than one loop on the complex plane. For example, the electrochemical impedance of iron in acidic solution shows capacitive and inductive loops on the complex plane. In this case, the charge transfer resistance and the polarization resistance are determined at middle and low frequency ranges, respectively. Which should be selected for corrosion resistance in corrosion monitoring, the charge transfer resistance or the polarization resistance? In the present paper, the above-mentioned question is examined theoretically and experimentally
Effective impedance modeling of metamaterial structures.
Dossou, Kokou B; Poulton, Christopher G; Botten, Lindsay C
2016-03-01
We present methods for retrieving the effective impedance of metamaterials from the Fresnel reflection coefficients at the interface between two semi-infinite media. The derivation involves the projection of rigorous modal expansions onto the dominant modes of the two semi-infinite media. It is shown that the effective impedance can also be written as a ratio of averaged field quantities. Thus, a number of effective impedance formulas, previously obtained by field averaging techniques, can also be derived from the scattering-based formalism by an appropriate choice of projection. Within the effective medium limit, it is observed that a simple semianalytic modeling technique based on the effective impedance can be used to reliably compute the reflection coefficients of metamaterials over a wide range of incidence angles. We use this technique to model planar metamaterial waveguides or surface modes. PMID:26974905
Longitudinal impedance of RHIC
The longitudinal impedance of the two RHIC rings has been measured using the effect of potential well distortion on longitudinal Schottky measurements. For the blue RHIC ring Im(Z/n) = 1.5±0.2?. For the yellow ring Im(Z/n) = 5.4±1?.
Surface impedance and the Casimir force
The impedance boundary condition is used to calculate the Casimir force in configurations of two parallel plates and a sphere (spherical lens) above a plate at both zero and nonzero temperature. The impedance approach allows one to find the Casimir force between the realistic test bodies regardless of the electromagnetic fluctuations inside the media. Although this approach is an approximate one, it has wider areas of application than the Lifshitz theory of the Casimir force. The general formulas of the impedance approach to the theory of the Casimir force are given and the formal substitution is found for connecting it with the Lifshitz formula. The range of micrometer separations between the test bodies, which is interesting from the experimental point of view, is investigated in detail. It is shown that at zero temperature the results obtained on the basis of the surface impedance method are in agreement with those obtained in framework of the Lifshitz theory within a fraction of a percent. The temperature correction to the Casimir force from the impedance method coincides with that from the Lifshitz theory up to four significant figures. The case of millimeter separations that corresponds to the normal skin effect is also considered. At zero temperature the obtained results have good agreement with the Lifshitz theory. At nonzero temperature the impedance approach is not subject to the interpretation problems peculiar to the zero-frequency term of the Lifshitz formula in dissipative media
Acoustic impedances of audiometric earphones coupled to different loads
Ciric, Dejan; Hammershøi, Dorte
The acoustic impedance of an audiometric earphone is one of the factors that can affect sound transmission through the ear during tests of hearing sensitivity. Similar situation exists during calibration of the earphone where its impedance can affect sound transmission through a coupler. The...... importance of this impedance is related to the contribution of other elements involved in transmission such as ear canal impedance or impedance of the coupler seen from outside. In order to determine the acoustic impedances of five audiometric earphones, the standardized method for measurement of complex......, audiometric earphones are coupled to different loads. Thus, they are placed on different terminations of the tube including metal plate, artificial rubber pinna and upper part of the standardized coupler. The results show that the impedances of earphones are different, but they also differ from radiation...
Impedance spectroscopy for the detection and identification of unknown toxins
Riggs, B. C.; Plopper, G. E.; Paluh, J. L.; Phamduy, T. B.; Corr, D. T.; Chrisey, D. B.
2012-06-01
Advancements in biological and chemical warfare has allowed for the creation of novel toxins necessitating a universal, real-time sensor. We have used a function-based biosensor employing impedance spectroscopy using a low current density AC signal over a range of frequencies (62.5 Hz-64 kHz) to measure the electrical impedance of a confluent epithelial cell monolayer at 120 sec intervals. Madin Darby canine kidney (MDCK) epithelial cells were grown to confluence on thin film interdigitated gold electrodes. A stable impedance measurement of 2200 Ω was found after 24 hrs of growth. After exposure to cytotoxins anthrax lethal toxin and etoposide, the impedance decreased in a linear fashion resulting in a 50% drop in impedance over 50hrs showing significant difference from the control sample (~20% decrease). Immunofluorescent imaging showed that apoptosis was induced through the addition of toxins. Similarities of the impedance signal shows that the mechanism of cellular death was the same between ALT and etoposide. A revised equivalent circuit model was employed in order to quantify morphological changes in the cell monolayer such as tight junction integrity and cell surface area coverage. This model showed a faster response to cytotoxin (2 hrs) compared to raw measurements (20 hrs). We demonstrate that herein that impedance spectroscopy of epithelial monolayers serves as a real-time non-destructive sensor for unknown pathogens.
Electrical impedance measurement of irradiated potatoes
Several chemical, biochemical and histological methods have been suggested for the identification of irradiated potatoes but these methods are either time consuming or lack the reliability and precision to be of much practical use. Measurement of electrical conductivity or impedance appears to be a simple and reliable technique. We have examined the suitability of electrical impedance method for potatoes grown in our country after exposing to a sprout inhibiting dose of 0.1 kGy. The results of this study are described. 10 refs., 3 figs., 2 tabs
Gynecologic electrical impedance tomograph
Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.
2010-04-01
Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.
Real-time measurement of glucose using chrono-impedance technique on a second generation biosensor.
Mayorga Martinez, Carmen C; Treo, Ernesto F; Madrid, Rossana E; Felice, Carmelo C
2011-11-15
Chrono-impedance technique (CIT) was implemented as a new transduction method for real time measurement of glucose in a biosensor system based in carbon paste (CP)/Ferrocene (FC)/glucose oxidase (GOx). The system presents high selectivity because the optimal stimulation signal composed by a 165mV DC potential and 50mV(RMS) AC signal at 0.4Hz was used. The low DC potential used decreased the interfering species effect and the biosensor showed a linear impedance response toward glucose detection at concentrations from 0mM to 20mM,with 0.9853 and 0.9945 correlation coefficient for impedance module (|Z|) and phase (Φ), respectively. The results of quadruplicate sets reveal the high repeatability and reproducibility of the measurements with a relative standard deviation (RSD) less than 10%. CIT presented good accuracy (within 10% of the actual value) and precision did not exceed 15% of RSD for high concentration values and 20% for the low concentration ones. In addition, a high correlation coefficient (R(2)=0.9954) between chrono-impedance and colorimetric methods was obtained. On the other hand, when two samples prepared at the same conditions were measured in parallel with both methods (the measurement was repeated four times), it should be noticed that student's t-test produced no difference between the two mentioned methods (p=1). The biosensor system hereby presented is highly specific to glucose detection and shows a better linear range than the one reported on the previous article. PMID:21907557
XUE BU HU
2010-09-01
Full Text Available Two composite cathode materials containing LiFePO4 and activated carbon (AC were synthesized by an in-situ method and a direct mixing technique, which are abbreviated as LAC and DMLAC, respectively. Hybrid battery–capacitors LAC/Li4Ti5O12 and DMLAC/Li4Ti5O12 were then assembled. The effects of the content of LiFePO4 and the preparation method on the cyclic voltammograms, the rate of charge–discharge and the cycle performance of the hybrid battery–capacitors were investigated. The results showed the overall electrochemical performance of the hybrid battery–capacitors was the best when the content of LiFePO4 in the composite cathode materials was in the range from 11.8 to 28.5 wt. %, while the preparation method had almost no impact on the electrochemical performance of the composite cathodes and hybrid battery–capacitors. Moreover, the hybrid battery–capacitor devices had a good cycle life performance at high rates. After 1000 cycles, the capacity loss of the DMLAC/Li4Ti5O12 hybrid battery–capacitor device at 4C was no more than 4.8 %. Moreover, the capacity loss would be no more than 9.6 % after 2000 cycles at 8C.
Esophageal impedance baseline according to different time intervals
Ummarino Dario
2012-06-01
Full Text Available Abstract Background The impedance baseline has been shown to reflect esophageal integrity, and to be decreased in patients with esophagitis. However, different methods for the determination of the impedance baseline have not been compared. Methods The median impedance baseline was calculated in 10 consecutive multichannel intraluminal impedance recordings in children with non-erosive reflux disease. All children underwent an endoscopy with a biopsy as part of the clinical work-up to exclude esophagitis. The impedance baseline was obtained both by including and excluding all impedance episodes (IE; reflux, swallows and gas episodes during the full recording, and during the first 1-minute period without an IE every hour (method 1, every 2 hours (method 2 or every 4 hours (method 3. The impedance baseline obtained during the full recording was set at 100%, and the variation (difference in impedance baseline for the different methods and variability (difference in impedance baseline during one analysis period were assessed. Results None of the participants had esophagitis. The mean difference over the six channels between the impedance baseline over the total recording with and without IE was approximately 2.5%, and comparable for each channel (range 0.47% to 5.55%. A mean of 1,028 IEs were excluded in each tracing, and it took between 4 and 24 hours to delete all events in one tracing. The difference in the impedance baseline obtained with and without IEs was mainly caused by the gas episodes in the upper channels and swallows in the lower channels. The median impedance baseline according to the three one-minute analysis methods was comparable to the median impedance baseline according to the 24 hour analysis. Conclusions The automatic determination of the median impedance baseline over the total tracing including IEs is an adequate method. In isolated tracings with numerous IEs, the calculation of the median impedance baseline over one minute
Back projection reconstruction has been implemented to get the dynamical image in electrical impedance tomography. However the implementation is still limited in method of adjacent data collection and circular object element model. The study aims to develop the methods of back projection as reconstruction method that has the high speed, accuracy, and flexibility, which can be used for various methods of data collection and model of the object element. The proposed method uses the forward problem solution as the operator of filtered and back projection matrix. This is done through a simulation study on several methods of data collection and various models of the object element. The results indicate that the developed method is capable of producing images, fastly and accurately for reconstruction of the various methods of data collection and models of the object element
Observations involving broadband impedance modelling
Berg, J.S. [Stanford Linear Accelerator Center, Menlo Park, CA (United States)
1996-08-01
Results for single- and multi-bunch instabilities can be significantly affected by the precise model that is used for the broadband impedance. This paper discusses three aspects of broadband impedance modelling. The first is an observation of the effect that a seemingly minor change in an impedance model has on the single-bunch mode coupling threshold. The second is a successful attempt to construct a model for the high-frequency tails of an r.f. cavity. The last is a discussion of requirements for the mathematical form of an impedance which follow from the general properties of impedances. (author)
Aortic Impedance in Little Mice
Reddy, Anilkumar K.; Taffet, George E.; Hartley, Craig J.
2008-01-01
The Little dwarf mouse lives 30% longer than its age-matched wild-type (WT) mouse. We determined aortic input impedance in 21 (8 Little, 13 WT) 4 month-old mice. Modulus of impedance was calculated from the Fourier transformed aortic pressure (P) and average luminal flow velocity (Vavg) as ∣Zi∣ = ∣P∣/∣Vavg∣. Characteristic impedance was estimated by averaging the 2nd-10th harmonic of the impedance moduli. We found the impedance modulus ∣Zi∣ to be similar in the 2 groups (WT vs. Little; mean±S...
A compact wideband precision impedance measurement system based on digital auto-balancing bridge
The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz–2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor. (paper)
A compact wideband precision impedance measurement system based on digital auto-balancing bridge
Hu, Binxin; Wang, Jinyu; Song, Guangdong; Zhang, Faxiang
2016-05-01
The ac impedance spectroscopy measurements are predominantly taken by using impedance analyzers based on analog auto-balancing bridge. However, those bench-top analyzers are generally complicated, bulky and expensive, thus limiting their usage in industrial field applications. This paper presents the development of a compact wideband precision measurement system based on digital auto-balancing bridge. The methods of digital auto-balancing bridge and digital lock-in amplifier are analyzed theoretically. The overall design and several key sections including null detector, direct digital synthesizer-based sampling clock, and digital control unit are introduced in detail. The results show that the system achieves a basic measurement accuracy of 0.05% with a frequency range of 20 Hz–2 MHz. The advantages of versatile measurement capacity, fast measurement speed, small size and low cost make it quite suitable for industrial field applications. It is demonstrated that this system is practical and effective by applying in determining the impedance-temperature characteristic of a motor starter PTC thermistor.
Line Impedance Estimation Using Active and Reactive Power Variations
Timbus, Adrian Vasile; Rodriguez, Pedro; Teodorescu, Remus;
2007-01-01
This paper proposes an estimation method of power system impedance based on power variations caused by a distributed power generation system (DPGS) at the point of common coupling (PCC). The proposed algorithm is computationally simple and uses the voltage variations at the point of common coupling...... (PCC) caused by the variations of the power delivered to utility network to derive the value of grid impedance. Accurate estimation of both resistive and inductive part of the impedance is obtained, as the results presented show....
Wavelet analysis of the impedance cardiogram waveforms
Podtaev, S.; Stepanov, R.; Dumler, A.; Chugainov, S.; Tziberkin, K.
2012-12-01
Impedance cardiography has been used for diagnosing atrial and ventricular dysfunctions, valve disorders, aortic stenosis, and vascular diseases. Almost all the applications of impedance cardiography require determination of some of the characteristic points of the ICG waveform. The ICG waveform has a set of characteristic points known as A, B, E ((dZ/dt)max) X, Y, O and Z. These points are related to distinct physiological events in the cardiac cycle. Objective of this work is an approbation of a new method of processing and interpretation of the impedance cardiogram waveforms using wavelet analysis. A method of computer thoracic tetrapolar polyrheocardiography is used for hemodynamic registrations. Use of original wavelet differentiation algorithm allows combining filtration and calculation of the derivatives of rheocardiogram. The proposed approach can be used in clinical practice for early diagnostics of cardiovascular system remodelling in the course of different pathologies.
ZHANG Yan; WANG Yuan-sheng; SONG Yusu
2009-01-01
Ag/AgCl electrode has been prepared using pressed powder techniques. In order to verify the feasibility of this type of electrode used as detecting electric field generated by vessels in seawater, its characteristics of DC resistance, low frequency AC impedance, and receiving impedance in artificial seawater have been studied by polarization measurements, low frequency electrochemical impedance spectra, the open and short circuit cell conditions. The results show that the electrode can keep a low resistance when it responses the weak electrostatic field in seawater. The AC impedance of the electrode decreases as the frequency of the signal increasing. The receiving impedance decreases when the frequency of external field increases too. The valid detection bandwidth is determined by the properties of the impedance and the reactions occurring on the surface of the electrode.
Simultaneous distribution of AC and DC power
Polese, Luigi Gentile
2015-09-15
A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.
Characterization of electro-acoustics impedance and its application to active noise control
HOU Hong; YANG Jianhua
2004-01-01
Characteristics of radiation impedance and its inducing variation of electrical impedance for a controllable source have been investigated. An impedance-based error criterion has been proposed and its application to Active Noise Control is demonstrated through a coil driven loudspeaker. A general formula of radiation impedance is derived for two control strategies, according to the criterion of total acoustic power output. The radiation impedances of some commonly used sound sources are calculated. We discuss in detail the relation between variation of the input electrical impedance and radiation impedance for the two control strategies. The measured data of the input electrical impedance from a loudspeaker agree fairly well with theoretical analysis. An AC- bridge circuit is designed in order to measure the weak variation of electrical impedance resulted from radiation impedance. The bridge relative output is unique for a certain control strategy, from which an impedance-based error criterion is then proposed and the implementation of its application to an active control system is analyzed.Numerical results of such criterion are presented. An analogue control system is set up and experiments are carried out in a semi-anechoic chamber to verify the new control approach.
肖贵遐; 刘国庆; 彭玉平; 朱代谟
2001-01-01
The changes of intracranial components and corr esponding brain impedan ce were analyzed while intracranial pressure was increasing, and the relation of intr acranial pressure pulse wave and brain impedance pulse wave were discussed. A theory of noninvasive intracranial pressure monitoring by bioelectric impedance was put forward. The result of primary experiment suggested that the theory be feasible.%分析了在颅内压增高的过程中，颅内容 物的变化及相应的脑阻抗的变化情况 ，同时讨论了在颅内压升高以后颅内压脉冲波和脑阻抗脉冲波的关系，提出了一个用生物电 阻抗法无创监护颅内压的理论。初步的动物实验表明该理论是可行的。
Lorentz Force Electrical Impedance Tomography
Grasland-Mongrain, Pol; Chapelon, Jean-Yves; Lafon, Cyril
2014-01-01
This article describes a method called Lorentz Force Electrical Impedance Tomography. The electrical conductivity of biological tissues can be measured through their sonication in a magnetic field: the vibration of the tissues inside the field induces an electrical current by Lorentz force. This current, detected by electrodes placed around the sample, is proportional to the ultrasonic pressure, to the strength of the magnetic field and to the electrical conductivity gradient along the acoustic axis. By focusing at different places inside the sample, a map of the electrical conductivity gradient can be established. In this study experiments were conducted on a gelatin phantom and on a beef sample, successively placed in a 300 mT magnetic field and sonicated with an ultrasonic transducer focused at 21 cm emitting 500 kHz bursts. Although all interfaces are not visible, in this exploratory study a good correlation is observed between the electrical conductivity image and the ultrasonic image. This method offers...
Harmonic analysis for identification of nonlinearities in impedance spectroscopy
Kiel, M.; Bohlen, O.; Sauer, D.U. [Electrochemical Energy Conversion and Storage Systems Group, Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University (Germany)
2008-10-30
Though impedance is only defined for linear systems, impedance spectroscopy is also successfully applied to nonlinear systems such as fuel cells and batteries. The influence of nonlinearities on measurement results in impedance spectroscopy is therefore discussed on a theoretical and simulative basis. The basis is a simplified Randles model of an electrochemical cell, on which a simulated impedance spectroscopy in galvanostatic mode is performed. For the investigation the focus is on the Butler-Vollmer equation in order to describe the nonlinearity. Furthermore, a linear model for comparison is used, in which the Butler-Volmer nonlinearity is replaced by a linear resistor to show the differences in impedance measurement. In order to find a correlation, also the occurring harmonics are observed. The results are discussed and several methods are suggested for maintaining a quasi-linear impedance measurement by controlling the amplitude of the excitation signal. (author)
Radicke, Marcus
2009-12-18
The method presented in this thesis combines ultrasound techniques with the magnetic-resonance tomography (MRT). An ultrasonic wave generates in absorbing media a static force in sound-propagation direction. The force leads at sound intensities of some W/cm{sup 2} and a sound frequency in the lower MHz range to a tissue shift in the micrometer range. This tissue shift depends on the sound power, the sound frequency, the sound absorption, and the elastic properties of the tissue. A MRT sequence of the Siemens Healthcare AG was modified so that it measures (indirectly) the tissue shift, codes as grey values, and presents as 2D picture. By means of the grey values the sound-beam slope in the tissue can be visualized, and so additionally sound obstacles (changes of the sound impedance) can be detected. By the MRT images token up spatial changes of the tissue parameters sound absorption and elasticity can be detected. In this thesis measurements are presented, which show the feasibility and future chances of this method especially for the mammary-cancer diagnostics. [German] Die in dieser Arbeit praesentierte Methode kombiniert Ultraschalltechniken mit der Magnetresonanztomographie (MRT). Eine Ultraschallwelle ruft in absorbierenden Medien eine statische Kraft in Schallausbreitungsrichtung hervor. Die Kraft fuehrt bei Schallintensitaeten von einigen W/cm{sup 2} und einer Schallfrequenz im niederen MHz-Bereich zu einer Gewebeverschiebung im Mikrometerbereich. Diese Gewebeverschiebung haengt ab von der Schallleistung, der Schallfrequenz, der Schallabsorption und den elastischen Eigenschaften des Gewebes. Es wurde eine MRT-Sequenz der Siemens Healthcare AG modifiziert, so dass sie (indirekt) die Gewebeverschiebung misst, als Grauwerte kodiert und als 2D-Bild darstellt. Anhand der Grauwerte kann der Schallstrahlverlauf in dem Gewebe visualisiert werden, und so koennen zusaetzlich Schallhindernisse (Aenderungen der Schallkennimpedanz) aufgespuert werden. Mit den
Non-contact scanning electrical impedance imaging.
Liu, Hongze; Hawkins, Aaron; Schultz, Stephen; Oliphant, Travis
2004-01-01
We are interested in applying electrical impedance imaging to a single cell because it has potential to reveal both cell anatomy and cell function. Unfortunately, classic impedance imaging techniques are not applicable to this small scale measurement due to their low resolution. In this paper, a different method of impedance imaging is developed based on a non-contact scanning system. In this system, the imaging sample is immersed in an aqueous solution allowing for the use of various probe designs. Among those designs, we discuss a novel shield-probe design that has the advantage of better signal-to-noise ratio with higher resolution compared to other probes. Images showing the magnitude of current for each scanned point were obtained using this configuration. A low-frequency linear physical model helps to relate the current to the conductivity at each point. Line-scan data of high impedance contrast structures can be shown to be a good fit to this model. The first two-dimensional impedance image of biological tissues generated by this technique is shown with resolution on the order of 100 mum. The image reveals details not present in the optical image. PMID:17271931
Lower leg electrical impedance after distal bypass surgery
Belanger, G K; Bolbjerg, M L; Heegaard, N H; Wiik, A; Schroeder, T V; Secher, N H
1998-01-01
Electrical impedance was determined in 13 patients following distal bypass surgery to evaluate lower leg oedema as reflected by its circumference. Tissue injury was assessed by the plasma concentration of muscle enzymes. After surgery, the volume of the control lower leg increased from 1250 (816...... concentration of troponin I (n = 8). In conclusion, tissue injury was reflected by increases in muscle enzymes in plasma. We found an inverse correlation between lower leg electrical impedance and volume, but the deviation in electrical impedance was approximately twice that of the leg volume. Electrical...... impedance appears to be a useful method for the evaluation of lower leg oedema after distal bypass surgery....
Electrode contact impedance sensitivity to variations in geometry
Electrode contact impedance is a crucial factor in physiological measurements and can be an accuracy-limiting factor when performing electroencephalography and electrical impedance tomography. In this work, standard flat electrodes and micromachined multipoint spiked electrodes are characterized with a finite-element method electromagnetic solver and the dependence of the contact impedance on geometrical factors is explored. It is found that flat electrodes are sensitive to changes in the outer skin layer properties related to hydration and thickness, while spike electrodes are not. The impedance as a function of the effective contact area, number of spikes and penetration depth has also been studied and characterized. (paper)
Yao, Limei; Cui, Yan; Cong, Haining; Zheng, Jinju; Shang, Minghui; Yang, Zuobao; Yang, Weiyou; Wei, Guodong; Gao, Fengmei
2016-04-01
In this study, the dielectrophoretic processes of SiC nanowires suspended in three typical solvents, (highly purified water, ethanol and isopropanol) were systematically investigated. Optical microscope and SEM characterizations were used to observe the order of SiC nanowires on the surface of gold microchannels. The gold microchannels were induced by Ac dielectrophoresis of the corresponding dispersion solutions of SiC nanowires, with a concentration of 0.1 mg/mL. The study shows that the dielectrophoresis process is an effective way of synthesizing highly oriented SiC nanoarrays using isopropanol solution. The results also show that the arrangement of SiC nanowires on the interdigital electrode configuration not only depend on the kind of solvent used, but also on the applied frequency (1000 Hz~1 MHz) and voltage (1 V~20 V). PMID:27451739
Electrical transport properties of CoMn0.2−xGaxFe1.8O4 ferrites using complex impedance spectroscopy
Chien-Yie Tsay
2016-05-01
Full Text Available In this study, we report the influence of Ga content on the microstructural, magnetic, and AC impedance properties of Co-based ferrites with compositions of CoMn0.2−xGaxFe1.8O4 (x=0, 0.1, and 0.2 prepared by the solid-state reaction method. Experimental results showed that the as-prepared Co-based ferrites had a single-phase spinel structure; the Curie temperature of Co-based ferrites decreased with increasing Ga content. All ferrite samples exhibited a typical hysteresis behavior with good values of saturation magnetization at room temperature. The electrical properties of Co-based ferrites were investigated using complex impedance spectroscopy analysis in the frequency range of 100 kHz-50 MHz at temperatures of 150 to 250 oC. The impedance analysis revealed that the magnitudes of the real part (Z’ and the imaginary part (Z” of complex impedance decreased with increasing temperature. Only one semicircle was observed in each complex impedance plane plot, which revealed that the contribution to conductivity was from the grain boundaries. It was found that the relaxation time for the grain boundary (τgb also decreased with increasing temperature. The values of resistance for the grain boundary (Rgb significantly increased with increasing Ga content, which indicated that the incorporation of Ga into Co-based ferrites enhanced the electrical resistivity.
Impedance plethysmographic observations in thoracic outlet syndrome.
Nerurkar S
1990-07-01
Full Text Available Forty patients with symptoms of neuro-vascular compression in the upper extremities were subjected to impedance plethysmographic study using Parulkar′s method. Two patients recorded decreased blood flow (BFI in supine position and were diagnosed as having partial occlusion at subclavian level. Sixteen of the patients recorded decreased BFI on 90 degrees abduction and hyper-abduction. Twelve of these patients had radiological evidence of anomalous cervicle ribs. In remaining four patients extrinsic impression on the subclavian artery due to fibrous deposits was confirmed by arteriography. Remaining 22 patients recorded normal impedance plethysmograms. Impedance plethysmography thus provided a non-invasive modality for confirmation of vascular compression in thoracic outlet syndrome.
Impedance spectroscopy study of polycrystalline Bi6Fe2Ti3O18
K Srinivas; P Sarah; S V Suryanarayana
2003-02-01
The electrical properties of polycrystalline Bi6Fe2Ti3O18 are investigated by impedance spectroscopy in the temperature range 30–550°C. The imaginary part of impedance as a function of frequency shows Debye like relaxation. Impedance data are presented in the Nyquist plot which is used to identify an equivalent circuit and the fundamental circuit parameters are determined at different temperatures. The grain and grain-boundary contributions are estimated. The results of bulk a.c. conductivity as a function of temperature and frequency are presented. The activation energies for the a.c. conductivity are calculated. The polaron hopping frequencies are estimated from the a.c. conductivity data.
Detection of irradiated potatoes by impedance measurement
Potato is one of the major food items to be treated with ionising radiation and potatoes are irradiated on a large scale in several countries. Every year around 15,000 t of potatoes are irradiated at doses of 60 to 150 Gy (average dose is about 100 Gy) in Japan. Although various methods to detect irradiated potatoes have been investigated, no established method has been reported. Measuring electrical conductivity or impedance of potatoes has been reported as a promising method for the detection of irradiated potatoes. In previous studies it has been found that the ratio of impedance magnitude at 50 kHz to that at 5 kHz, measured immediately after puncturing a potato tuber, is dependent upon the dose applied to the tuber, independent of storage temperature and stable during storage after irradiation. The aim of this study was to establish the optimum conditions for impedance measurement and to examine the applicability of the impedance measuring method to various cultivars (cv.) of potatoes. (author)
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields
Younis Yacoob Aldosky, Haval; Barwari, Waleed Jameel Omar; Salih Al-mlaly, Janan M.
2012-12-01
Rapid detection of viability and growth of pathogenic microorganisms is very important in many applications such as food and drug production, health care, and national defense. Measurements on the electrical characteristics of cells have been used successfully in the past to detect many different physiological events. The effect of electromagnetic fields on the growth of bacteria (Staphylococcus aureus) was studied with the bio-impedance technique. The growth situations of bacteria in the absence and presence of different intensities of static and alternative magnetic fields were examined and analyzed. The results show that the impedance of bacteria fell in the presence of DC magnetic fields. In contrast the impedance increased when the bacteria were exposed to AC magnetic fields. Based on these results the bacterial growth indicated by the change in the impedance is inhibited under DC magnetic fields and enhanced under AC fields.
Bio-impedance detector for Staphylococcus aureus exposed to magnetic fields
Rapid detection of viability and growth of pathogenic microorganisms is very important in many applications such as food and drug production, health care, and national defense. Measurements on the electrical characteristics of cells have been used successfully in the past to detect many different physiological events. The effect of electromagnetic fields on the growth of bacteria (Staphylococcus aureus) was studied with the bio-impedance technique. The growth situations of bacteria in the absence and presence of different intensities of static and alternative magnetic fields were examined and analyzed. The results show that the impedance of bacteria fell in the presence of DC magnetic fields. In contrast the impedance increased when the bacteria were exposed to AC magnetic fields. Based on these results the bacterial growth indicated by the change in the impedance is inhibited under DC magnetic fields and enhanced under AC fields.
The device performances of organic thin film transistors are often limited by the metal–organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology
Kimura, Tomoharu; Kobayashi, Kei; Yamada, Hirofumi
2015-08-01
The device performances of organic thin film transistors are often limited by the metal-organic interface because of the disordered molecular layers at the interface and the energy barriers against the carrier injection. It is important to study the local impedance at the interface without being affected by the interface morphology. We combined frequency modulation atomic force microscopy with scanning impedance microscopy (SIM) to sensitively measure the ac responses of the interface to an ac voltage applied across the interface and the dc potential drop at the interface. By using the frequency-modulation SIM (FM-SIM) technique, we characterized the interface impedance of a Pt electrode and a single pentacene grain as a parallel circuit of a contact resistance and a capacitance. We found that the reduction of the contact resistance was caused by the reduction of the energy level mismatch at the interface by the FM-SIM measurements, demonstrating the usefulness of the FM-SIM technique for investigation of the local interface impedance without being affected by its morphology.
Goh, Ailian; Gao, Feng; Loh, Pon Chiang;
2007-01-01
control, and push up the overall system costs. Therefore, alternative topological solutions are of interest, and should preferably be implemented using only passive LC elements and diodes, connected as unique impedance networks. A number of possible network configurations are now investigated...... in this paper, and are respectively named as Z-source, H-source, EZ-source and their respective "inverted" variants. The presented impedance networks can either be used with a traditional voltage-source or current-source inverter, and can either be powered by a voltage or current source. All impedance networks...... the practicalities and performances of the described impedance networks....
Reconstruction of a potential from the impedance boundary map
Isaev, Mikhail
2012-01-01
We give formulas and equations for finding generalized scattering data for the Schr\\"odinger equation in open bounded domain at fixed energy from the impedance boundary map (or Robin-to-Robin map). Combining these results with results of the inverse scattering theory we obtain efficient methods for reconstructing potential from the impedance boundary map.
Transverse Impedance of Ferrite Elements
Burov, A
2004-01-01
A specific feature of ferrites is that these materials behave either as metals or magneto-dielectrics, depending on the frequency range. Their magnetic permeability is a function of frequency as well. In this paper, the transverse impedance of a ferrite kicker is calculated. The method suggested in Ref. [1] is generalized here for ferrites. Namely, in [1] it is assumed that the electric field of the beam charge dipole is always perfectly shielded. In fact, this assumption requires the conductivity being high compared with the frequency. This is not necessarily true for the high frequencies of a proton single-bunch spectrum. That is why the dynamics of the electric shielding has to be taken into account for ferrite kickers. The generalized analytic result is applied for the ferrite MKE kickers at the CERN SPS, and a fairly good agreement with observations [2] is found.
[Cardiac output monitoring by impedance cardiography in cardiac surgery].
Shimizu, H; Seki, S; Mizuguchi, A; Tsuchida, H; Watanabe, H; Namiki, A
1990-04-01
The cardiac output monitoring by impedance cardiography, NCCOM3, was evaluated in adult patients (n = 12) who were subjected to coronary artery bypass grafting. Values of cardiac output measured by impedance cardiography were compared to those by the thermodilution method. Changes of base impedance level used as an index of thoracic fluid volume were also investigated before and after cardiopulmonary bypass (CPB). Correlation coefficient (r) of the values obtained by thermodilution with impedance cardiography was 0.79 and the mean difference was 1.29 +/- 16.9 (SD)% during induction of anesthesia. During the operation, r was 0.83 and the mean difference was -14.6 +/- 18.7%. The measurement by impedance cardiography could be carried out through the operation except when electro-cautery was used. Base impedance level before CPB was significantly lower as compared with that after CPB. There was a negative correlation between the base impedance level and central venous pressure (CVP). No patients showed any signs suggesting lung edema and all the values of CVP, pulmonary artery pressure and blood gas analysis were within normal ranges. From the result of this study, it was concluded that cardiac output monitoring by impedance cardiography was useful in cardiac surgery, but further detailed examinations will be necessary on the relationship between the numerical values of base impedance and the clinical state of the patients. PMID:2362347
Bernstein, Donald P.
2010-01-01
Impedance cardiography (ICG) is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV). As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC). By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (&Omega...
Regmi, Amit; Shintaku, Hiroki; Sasaki, Tsutomu; Koshizuka, Seiichi
2015-09-01
Semi-solid forging (SSF) is a powerful manufacturing technology to fabricate near-net shaped products in automotive industries. During SSF process, the filling behavior and solidification process of AC4CH aluminum alloy is presented in this paper. The explicit MPS method program solving Navier-Stokes equation is coupled with heat transfer and solidification has been used to predict the filling pattern and temperature distribution of semi-solid material (SSM). The non-Newtonian rheological model was used as the constitutive equation of SSM. In this study, numerical analysis of SSF was carried out in box cavity with various flange thickness (4, 8, 12 and 16 mm) and corresponding experiments were undertaken for AC4CH aluminum alloy with solid fraction less than 0.5. The numerical results of SSM filling pattern and solidification phenomena in flange were validated with the experimental results. During solidification process, flow calculation was stopped and only thermal calculation was carried out. The shrinkage defect was well predicted near the lower mid area of the box cavity with flange thickness 16 mm.
李刚
2015-01-01
We presented a dual mode circular waveguide filter design method based on impedance inverter. The coupling between the cavity and the same cavity degenerate mode were equivalent to the impedance inverter. By using full wave simulation to determine the coupling structure size step by step ,the time consuming optimization was avoided. Finally,the effectiveness and accuracy of the proposed method were verified by a design example of a dual mode circular waveguide filter.%提出一种基于阻抗变换器的双模圆波导滤波器设计方法,将腔体之间的耦合机构和同一腔体简并模式之间的耦合机构用阻抗变换器模型等效,采用全波仿真软件逐级确定耦合结构和调谐结构尺寸的仿真策略,避免耗时的全波仿真优化,并通过一个双模圆波导滤波器的设计实例验证该方法的有效性和准确性.
Development on electromagnetic impedance function modeling and its estimation
Sutarno, D.
2015-09-01
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition
Development on electromagnetic impedance function modeling and its estimation
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition
Development on electromagnetic impedance function modeling and its estimation
Sutarno, D., E-mail: Sutarno@fi.itb.ac.id [Earth Physics and Complex System Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (Indonesia)
2015-09-30
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition
Impedance Coordinative Control for Cascaded Converter in Bidirectional Application
Tian, Yanjun; Deng, Fujin; Chen, Zhe;
2015-01-01
Two stage cascaded converters are widely used in bidirectional applications, but the negative impedance may cause system instability. Actually the impedance interaction is much different between forward power flow and reversed power flow, which will introduce more uncertainty to the system...... difference between forward and reversed power flow. This paper addresses the analysis with the topology of cascaded dual-active-bridge converter (DAB) with inverter, and the proposed control method can also be implemented in unidirectional applications and other general cascaded converter system. The...... stability. This paper proposes a control method for the constant power controlled converter in cascaded system, and consequently it can change the negative impedance of constant power converter into resistive impedance, which will improve the cascaded system stability, as well as merge the impedance...
Impedance Spectroscopy applied to the study of high dilutions of Lycopodium clavatum
Claudia Takano
2011-09-01
Full Text Available Introduction: The Impedance spectroscopy [1] is a technique mainly used to characterize the electrical behavior of solids or liquids samples. This particular technique involves placing the sample of material under investigation between two electrodes (capacitor plates, applying an AC voltage and observing the resulting response across the spectrum of impedance by plotting the real part (ZÃ¢â‚¬â„¢ as a function of the imaginary part (ZÃ¢â‚¬Â of the impedance. Alternatively, graphs of either the real or the imaginary parts of the impedance can be constructed as a function of the applied voltage frequency. Comparative measurements previously carried out by Miranda et al [2]. have demonstrated clear differences between the impedance values of high dilutions of lithium chloride (LiCl and the corresponding reference water samples (water which has undergone the same dinamization procedures but without the salt. In this paper the results obtained by applying the spectroscopy of impedance technique in high dilutions of Lycopodium clavatum - Lyc (from 15cH to 30 cH, in comparison to the reference waters, will be presented and discussed. Aims: The objective of this work is to measure the impedance components of both high dilutions of Lycopodium clavatum and reference water samples in the frequency range of 100Hz to 13Mhz, using a successful protocol of sample preparation which has already been used before2. Details of the experimental set-up can be found elsewhere[3]. Methodology: Thirty samples of Lyc solutions and thirty reference water samples were produced using the same preparation and measuring protocol. Both groups of liquid samples were measured for dynamizations ranging from 1cH to 30cH, in accordance to the Hahnemanian dynamization method and following the practice suggested by the Brazilian Homeopathic Pharmacopeia. The Lyc solutions were specifically compared to the reference water samples in the potencies of 15cH, 18c
Three-Level AC-DC-AC Z-Source Converter Using Reduced Passive Component Count
Loh, Poh Chiang; Gao, Feng; Tan, Pee-Chin;
2007-01-01
This paper presents a three-level ac-dc-ac Z-source converter with output voltage buck-boost capability. The converter is implemented by connecting a low cost front-end diode rectifier to a neutral-point-clamped inverter through a single X-shaped LC impedance network. The inverter is controlled to...... low cost alternative to sensitive applications that need to ride-through frequent input voltage sags. For confirming the converter performance, experimental testing using a constructed laboratory prototype is performed with its captured results presented in a later section of the paper....
Three-Level AC-DC-AC Z-Source Converter Using Reduced Passive Component Count
Loh, Poh Chiang; Gao, Feng; Tan, Pee-Chin;
2009-01-01
This paper presents a three-level ac-dc-ac Z-source converter with output voltage buck-boost capability. The converter is implemented by connecting a low-cost front-end diode rectifier to a neutral-point-clamped inverter through a single X-shaped LC impedance network. The inverter is controlled to...... semiconductor commutations, and hence, no increase in switching losses. The proposed converter therefore offers a low-cost alternative to applications that need to ride through frequent input voltage sags. For confirming the converter performance, experimental testing using a constructed laboratory prototype is...
Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences
Frederick D. Coffman
2012-01-01
Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.
Bioelectrical Impedance Assessment of Wound Healing
Lukaski, Henry C.; Moore, Micheal
2012-01-01
Objective assessment of wound healing is fundamental to evaluate therapeutic and nutritional interventions and to identify complications. Despite availability of many techniques to monitor wounds, there is a need for a safe, practical, accurate, and effective method. A new method is localized bioelectrical impedance analysis (BIA) that noninvasively provides information describing cellular changes that occur during healing and signal complications to wound healing. This article describes the ...
We have applied the mutual inductive method to study higher-order harmonics of complex ac susceptibility χn=χn'-iχn'' for YBa2Cu3O7-δ thin films as function of the temperature and the applied magnetic field. The experimental results were compared with analytical and numerical results obtained from the Ishida-Mazaki model and the solution of the integral equation for the current density, respectively. Both models allow us to reproduce the main experimental features, however, as n increases the numerical model shows notable discrepancies. This failure can be attributed to the current-voltage characteristics. Also this investigation yields the activation energy Uc and the critical current density Jc both at T = 0 for two samples.
Characterizing aging effects of lithium ion batteries by impedance spectroscopy
Impedance spectroscopy is one of the most promising methods for characterizing aging effects of portable secondary batteries online because it provides information about different aging mechanisms. However, application of impedance spectroscopy 'in the field' has some higher requirements than for laboratory experiments. It requires a fast impedance measurement process, an accurate model applicable with several batteries and a robust method for model parameter estimation. In this paper, we present a method measuring impedance at different frequencies simultaneously. We propose to use a composite electrode model, capable to describe porous composite electrode materials. A hybrid method for parameter estimation based on a combination of evolution strategy and Levenberg-Marquardt method allowed a robust and fast parameter calculation. Based on this approach, an experimental investigation of aging effects of a lithium ion battery was carried out. After 230 discharge/charge cycles, the battery showed a 14% decreased capacity. Modeling results show that series resistance, charge transfer resistance and Warburg coefficient changed thereby their values by approximately 60%. A single frequency impedance measurement, usually carried out at 1 kHz, delivers only information about series resistance. Impedance spectroscopy allows additionally the estimation of charge transfer resistance and Warburg coefficient. This fact and the high sensitivity of model parameters to capacity change prove that impedance spectroscopy together with an accurate modeling deliver information that significantly improve characterization of aging effects
Electrical impedance spectroscopy and diagnosis of tendinitis
There have been a number of studies that investigate the usefulness of bioelectric signals in diagnoses and treatment in the medical field. Tendinitis is a musculoskeletal disorder with a very high rate of occurrence. This study attempts to examine whether electrical impedance spectroscopy (EIS) can detect pathological changes in a tendon and find the exact location of the lesion. Experimental tendinitis was induced by injecting collagenase into one side of the patellar tendons in rabbits, while the other side was used as the control. After measuring the impedance in the tendinitis and intact tendon tissue, the dissipation factor was computed. The real component of impedance and the dissipation factor turned out to be lower in tendinitis than in intact tissues. Moreover, the tendinitis dissipation factor spectrum showed a clear difference from that of the intact tendon, indicating its usefulness as a tool for detecting the location of the lesion. Pathologic findings from the tissues that were obtained after measuring the impedance confirmed the presence of characteristics of tendinitis. In conclusion, EIS is a useful method for diagnosing tendinitis and detecting the lesion location in invasive treatment
A simple technique for a.c. conductivity measurements
R Padma Suvarna; K Raghavendra Rao; K Subbarangaiah
2002-12-01
An inexpensive, indigenous and a simple electronic instrument based on voltage follower, current–to–voltage converter, zero crossing detector and a phase detector has been developed for measurement of a.c. conductivity. Real and imaginary parts of complex impedance are determined for a given sample as a function of frequency and the given sample is represented by a pure electronic model.
Sangeeth, C S Suchand; Wan, Albert; Nijhuis, Christian A
2014-08-01
The electrical characteristics of molecular tunnel junctions are normally determined by DC methods. Using these methods it is difficult to discriminate the contribution of each component of the junctions, e.g., the molecule-electrode contacts, protective layer (if present), or the SAM, to the electrical characteristics of the junctions. Here we show that frequency-dependent AC measurements, impedance spectroscopy, make it possible to separate the contribution of each component from each other. We studied junctions that consist of self-assembled monolayers (SAMs) of n-alkanethiolates (S(CH2)(n-1)CH3 ≡ SC(n) with n = 8, 10, 12, or 14) of the form Ag(TS)-SC(n)//GaO(x)/EGaIn (a protective thin (~0.7 nm) layer of GaO(x) forms spontaneously on the surface of EGaIn). The impedance data were fitted to an equivalent circuit consisting of a series resistor (R(S), which includes the SAM-electrode contact resistance), the capacitance of the SAM (C(SAM)), and the resistance of the SAM (R(SAM)). A plot of R(SAM) vs n(C) yielded a tunneling decay constant β of 1.03 ± 0.04 n(C)(-1), which is similar to values determined by DC methods. The value of C(SAM) is similar to previously reported values, and R(S) (2.9-3.6 × 10(-2) Ω·cm(2)) is dominated by the SAM-top contact resistance (and not by the conductive layer of GaO(x)) and independent of n(C). Using the values of R(SAM), we estimated the resistance per molecule r as a function of n(C), which are similar to values obtained by single molecule experiments. Thus, impedance measurements give detailed information regarding the electrical characteristics of the individual components of SAM-based junctions. PMID:25036915
Modifying the acoustic impedance of polyurea-based composites
Nantasetphong, Wiroj; Amirkhizi, Alireza V.; Jia, Zhanzhan; Nemat-Nasser, Sia
2013-04-01
Acoustic impedance is a material property that depends on mass density and acoustic wave speed. An impedance mismatch between two media leads to the partial reflection of an acoustic wave sent from one medium to another. Active sonar is one example of a useful application of this phenomenon, where reflected and scattered acoustic waves enable the detection of objects. If the impedance of an object is matched to that of the surrounding medium, however, the object may be hidden from observation (at least directly) by sonar. In this study, polyurea composites are developed to facilitate such impedance matching. Polyurea is used due to its excellent blast-mitigating properties, easy casting, corrosion protection, abrasion resistance, and various uses in current military technology. Since pure polyurea has impedance higher than that of water (the current medium of interest), low mass density phenolic microballoon particles are added to create composite materials with reduced effective impedances. The volume fraction of particles is varied to study the effect of filler quantity on the acoustic impedance of the resulting composite. The composites are experimentally characterized via ultrasonic measurements. Computational models based on the method of dilute-randomly-distributed inclusions are developed and compared with the experimental results. These experiments and models will facilitate the design of new elastomeric composites with desirable acoustic impedances.
Development of impedance matching technologies for ICRF antenna arrays
All high power ICRF heating systems include devices for matching the input impedance of the antenna array to the generator output impedance. For most types of antennas used, the input impedance is strongly time-dependent on timescales as rapid as 10-4 s, while the rf generators used are capable of producing full power only into a stationary load impedance. Hence, the dynamic response of the matching method is of great practical importance. In this paper, world-wide developments in this field over the past decade are reviewed. These techniques may be divided into several classes. The edge plasma parameters that determine the antenna array's input impedance may be controlled to maintain a fixed load impedance. The frequency of the rf source can be feedback controlled to compensate for changes in the edge plasma conditions, or fast variable tuning elements in the transmission line between the generator output and the antenna input connections can provide the necessary time-varying impedance transformation. In lossy passive schemes, reflected power due to the time-varying impedance of the antenna array is diverted to a dummy load. Each of these techniques can be applied to a pre-existing antenna system. If a new antenna is to be designed, recent advances allow the antenna array to have the intrinsic property of presenting a constant load to the feeding transmission lines despite the varying load seen by each antenna in the array
Mechanical Impedance of Cerebral Material
Hédi Ben Ghozlen
2012-03-01
Full Text Available The tentative variation of the mechanical impedance, of a cylindrical sample of cerebral material, has been achieved by Vibrometer Laser according to the frequency. The studied matter is supposed homogeneous, isotropic and stationary. A multilayered mechanical model has been associated to the studied sample to simulate its vibration. The theoretical expression of mechanical impedance has been determined while taking the mechanical/electric analogy as a basis. A good adjustment of theoretical model parameters permitted us to have a good agreement theory/experience of the mechanical impedance variation according to the sample vibration frequency.
Combined impedance and dielectrophoresis portable device for point-of-care analysis
del Moral Zamora, B.; Colomer-Farrarons, J.; Mir-Llorente, M.; Homs-Corbera, A.; Miribel-Català, P.; Samitier-Martí, J.
2011-05-01
In the 90s, efforts arise in the scientific world to automate and integrate one or several laboratory applications in tinny devices by using microfluidic principles and fabrication technologies used mainly in the microelectronics field. It showed to be a valid method to obtain better reactions efficiency, shorter analysis times, and lower reagents consumption over existing analytical techniques. Traditionally, these fluidic microsystems able to realize laboratory essays are known as Lab-On-a-Chip (LOC) devices. The capability to transport cells, bacteria or biomolecules in an aqueous medium has significant potential for these microdevices, also known as micro-Total-Analysis Systems (uTAS) when their application is of analytical nature. In particular, the technique of dielectrophoresis (DEP) opened the possibility to manipulate, actuate or transport such biological particles being of great potential in medical diagnostics, environmental control or food processing. This technique consists on applying amplitude and frequency controlled AC signal to a given microsystem in order to manipulate or sort cells. Furthermore, the combination of this technique with electrical impedance measurements, at a single or multiple frequencies, is of great importance to achieve novel reliable diagnostic devices. This is because the sorting and manipulating mechanism can be easily combined with a fully characterizing method able to discriminate cells. The paper is focused in the electronics design of the quadrature DEP generator and the four-electrode impedance measurement modules. These together with the lab-on-a-chip device define a full conception of an envisaged Point-of-Care (POC) device.
Wibowo, Denni Ari
While recent research in electron-transport mechanism on a double strands DNA seems to converge into a consensus, experiments in direct electrical measurements on a long DNA molecules still lead to a conflicting result. This research investigates experimentally the attachment of DNA molecular wire to high aspect ratio three-dimensional (3D) metal electrode and the effect of temperature to its AC electrical conductivity. The 3-D microelectrode was built on a silicone oxide substrate using patterned thick layers of negative tone photoresist covered by sputtered gold on the top surface. Attachment of lambda-DNA to the microelectrode was demonstrated using oligonucleotide-DNA phosphate backbone ligation and thiol-gold covalent bonding. Electrical characterizations based on I-V and AC impedance analysis of several repeatable data points of attachment with varying lambda-DNA concentration (500 ng/microL to 0.0625 ng/microL) showed measurable and significant conductivity of lambda-DNA molecular wires. Further study was carried out by measuring I-V and impedance while ramping up the temperature to reach complete denaturation (~1100C) resulting in no current transduction. Subsequent re-annealing of the DNA through incubation in TM buffer at annealing temperature (~900C) resulted in recovery of electrical conduction, providing a strong proof that DNA molecular wire is the one generate the electrical conductivity. lambda-DNA molecular wires reported to have differing impedance response at two temperature regions: impedance increases (conductivity decrease) between 40C -- 400C, and then decreases from 400C until DNA completely denatured (~1100C). The increase conductivity after 400C is an experimental support the long distance electron transport mechanism referred as "thermal hopping" mechanism. We believe that this research represents a significant departure from previous studies and makes unique contributions through (i) modification of DNA attachment methods has increase
Deurenberg, P.R.M.; Deurenberg-Yap, M.; Schouten, F.J.M.
2002-01-01
Methods: Anthropometric parameters were measured in addition to impedance (100 kHz) of the total body, arms and legs. Impedance indexes were calculated as height2/impedance. Arm length (span) and leg length (sitting height), wrist and knee width were measured from which body build indices were calcu
Electrical Impedance of Acupuncture Meridians: The Relevance of Subcutaneous Collagenous Bands
Ahn, Andrew C.; Min Park; Shaw, Jessica R; McManus, Claire A.; Kaptchuk, Ted J.; Langevin, Helene M.
2010-01-01
Background: The scientific basis for acupuncture meridians is unknown. Past studies have suggested that acupuncture meridians are physiologically characterized by low electrical impedance and anatomically associated with connective tissue planes. We are interested in seeing whether acupuncture meridians are associated with lower electrical impedance and whether ultrasound-derived measures – specifically echogenic collagenous bands - can account for these impedance differences. Methods/Results...
IMPEDANCE CHARACTERISTICS OF POLYFURAN FILMS
Liang Li; Xiao-bo Wan; Gi Xue
2002-01-01
Electrochemical impedance spectroscopy (EIS) was first used for the characterization of polyfuran (PFu) films that had been formed electrochemically on an Au electrode. The polyfuran was measured in high oxidation state, intermediate oxidation state and reduction state, respectively. As the oxidation level is increased, the ionic conductivity of PFu/BF4-increases. And impedance studies on PFu show that the anion BF4- appears to be mobile with a high diffusion coefficient of approximately 10-8 cm2 @ s-1.
Applications of Nonlinear Electrochemical Impedance Spectroscopy (NLEIS)
Adler, S. B.
2013-08-31
This paper reviews the use of nonlinear electrochemical impedance spectroscopy (NLEIS) in the analysis of SOFC electrode reactions. By combining EIS and NLEIS, as well as other independent information about an electrode material, it becomes possible to establish quantitative links between electrochemical kinetics and materials properties, even when systems are unstable with time. After a brief review of the method, this paper summarizes recent results analyzing the effects of Sr segregation in thin-film LSC electrodes. © The Electrochemical Society.
Detection of irradiated potatoes by impedance measurements
The impedance ratio at 5kHz to 50kHz (Z6K/Z50K) determined at 22degC at an apical region of potato tuber which was pre-incubated at 22degC for 3 days or longer resulted in the best detection of radian treatment. Irradiated potatoes of 10 cultivars could be detected with this method, and potatoes 'Danshaku' commercially irradiated at Shihoro could be distinguished from unirradiated 'Danshaku'. (author)
Pulmonary vascular input impedance better characterizes right ventricular (RV) afterload and disease outcomes in pulmonary hypertension compared to the standard clinical diagnostic, pulmonary vascular resistance (PVR). Early efforts to measure impedance were not routine, involving open-chest measurement. Recently, the use of pulsed-wave (PW) Doppler-measured velocity to non-invasively estimate instantaneous flow has made impedance measurement more practical. One critical concern remains with clinical use: the measurement uncertainty, especially since previous studies only incorporated random error. This study utilized data from a large pediatric patient population to comprehensively examine the systematic and random error contributions to the total impedance uncertainty and determined the least error prone methodology to compute impedance from among four different methods. We found that the systematic error contributes greatly to the total uncertainty and that one of the four methods had significantly smaller propagated uncertainty; however, even when this best method is used, the uncertainty can be large for input impedance at high harmonics and for the characteristic impedance modulus. Finally, we found that uncertainty in impedance between normotensive and hypertensive patient groups displays no significant difference. It is concluded that clinical impedance measurement would be most improved by advancements in instrumentation, and the best computation method is proposed for future clinical use of the input impedance
Measurement of Electrical Activation Energy in Black CVD Diamond Using Impedance Spectroscopy
Ye, Haitao; Williams, Oliver A.; Jackman, Richard B.
Dc current-voltage (I-V) measurement, Hall measurement, Deep-level transient-spectroscopy (DLTS), and flatband capacitance measurement have been used to investigate electrical activation energies in diamond. However, the deviations still exist in the published activation energies obtained by these methods. In this paper, we report the first measurement of impedance on free-standing diamond films from 0.1Hz to 10MHz up to 300°C. A wide range of CVD materials have been investigated, but here we concentrate on `black' diamond grown by MWPECVD. The Cole-Cole (Z' via Z'') plots are well fitted to a RC parallel circuit model and the equivalent Resistance and Capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 62 MΩ at room temperature to 4 KΩ at 300°C, with an activation energy around 0.15eV. The equivalent capacitance is maintained at the level of 102 pF up to 300°C suggesting that the diamond grain boundaries are dominating the conduction. At 400°C, the impedance at low frequencies shows a linear tail, which can be explained that the AC polarization of diamond/Au interface occurs.
Impedance spectroscopy and investigation of conduction mechanism in BaMnO{sub 3} nanorods
Hayat, Khizar [Nanostructured Materials and Devices Group, Department of Chemicals and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan); Rafiq, M.A., E-mail: fac221@pieas.edu.p [Nanostructured Materials and Devices Group, Department of Chemicals and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan); Durrani, S.K. [Material Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad 45650 (Pakistan); Hasan, M.M. [Nanostructured Materials and Devices Group, Department of Chemicals and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad 45650 (Pakistan)
2011-02-01
BaMnO{sub 3} nanorods were synthesized at 200 {sup o}C and atmospheric pressure using the composite-hydroxide mediated method. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to investigate the structure, size, morphology, phase purity and elemental composition of BaMnO{sub 3} nanorods. Electrical characterization of BaMnO{sub 3} pellet was performed at 300-400 K and in the frequency range 200 Hz-2 MHz. Temperature dependence of AC conductivity suggests that the BaMnO{sub 3} pellet behaves as a semiconducting material and conduction across the pellet can be explained by the correlated barrier hopping model. Impedance analysis was performed using the equivalent circuit model (R{sub 1}Q{sub 1}C{sub 1})(R{sub 2}C{sub 2}) and it suggests a single relaxation process in the BaMnO{sub 3} pellet at a particular temperature. The analysis reveals that the BaMnO{sub 3} pellet behaves like an n-type semiconductor material due to the presence of oxygen vacancies and some disorder. Modulus spectroscopy also supports the impedance results.
Microstructural and impedance study of nanocrystalline lanthana-doped scandia-stabilized zirconia
Lanthana-doped (0–4 mol%) scandia-stabilized zirconia was synthesized by chemical co-precipitation from an aqueous solution of appropriate salts. Microstructural characterization, phase identification, and conductivities were determined by X-ray diffraction (XRD), scanning (SEM), transmission electron microscopy (TEM), and complex impedance analysis. The crystallite size of the as-precipitated compound, determined from XRD peak broadening and verified by TEM, varied between 20 and 30 nm. SEM studies revealed that the sintered microstructure was dense and uniform. Complex impedance analysis allowed determination of frequency and temperature dependence of both alternating (AC) and direct current (DC) conductivities of the material. The results indicated a gradual decrease in impedance of both grain and grain boundary with increase in lanthana doping. Temperature dependence studies of both AC and DC conductivities shows that the maximum conductivity is obtained in 3 mol% lanthana-doped compound, which incidentally records the highest density, too.
柴林燕; 赵舒; 沙洪
2011-01-01
Objective The Hilbert- Huang transformation (HHT) method was introduced to process the bio-impedance gastric motility signals from subjects.Methods Nonlinear and non-stationary original gastric motility series were decomposed into a number of intrinsic mode function (1MF) components by the empirical mode decomposition method (EMD).Hilbert transformation was carried out then and instantaneous frequency was extracted effectively.Gastric motility signal among 0.03-0.06 Hz was reconstructed from the IMF.Results The results suggested that HHT was a new and applicable time series analysis method based on mode decomposition and could extract impedance signal and remove the disturbances such as blood flow and breathing.Conclusion The new adaptive mode decomposition-based signal processing method provides a new method to investigate clinical gastric motility information.%目的 采用HHT时间序列分析方法处理从人体采集到的胃动力信号.方法 通过经验模态分解(EMD)技术将一非线性、非稳态过程的原始胃动力序列分解为一组内在模态函数(IMFs),对每一个IMF进行Hilbert 变换,得到信号的瞬时频率,然后选择与胃动力相关的频率成分,即0.03-0.06 Hz之间的IMF进行重构提取胃动力信号.结果 使用该方法可以有效去除叠加在阻抗胃动力信号中的呼吸和血流等干扰信号,保留胃动力信号的有效频率成分.结论 此方法是一种更具有自适应的、新型的、基于模态分解的时间序列数据处理方法,可以有效地为临床胃动力信息研究提供一种新途径.
MEASURED TRANSVERSE COUPLING IMPEDANCE OF RHIC INJECTION AND ABORT KICKERS
Concerns regarding possible transverse instabilities in RHIC and the SNS pointed to the need for measurements of the transverse coupling impedance of ring components. The impedance of the RHIC injection and abort kicker was measured using the conventional method based on the S21 forward transmission coefficient. A commercial 450 Ω twin-wire Lecher line were used and the data was interpreted via the log-formula. All measurements, were performed in test stands fully representing operational conditions including pulsed power supplies and connecting cables. The measured values for the transverse coupling impedance in kick direction and perpendicular to it are comparable in magnitude, but differ from Handbook predictions
Are patents impeding medical care and innovation?
E Richard Gold
2010-01-01
Full Text Available BACKGROUND TO THE DEBATE: Pharmaceutical and medical device manufacturers argue that the current patent system is crucial for stimulating research and development (R&D, leading to new products that improve medical care. The financial return on their investments that is afforded by patent protection, they claim, is an incentive toward innovation and reinvestment into further R&D. But this view has been challenged in recent years. Many commentators argue that patents are stifling biomedical research, for example by preventing researchers from accessing patented materials or methods they need for their studies. Patents have also been blamed for impeding medical care by raising prices of essential medicines, such as antiretroviral drugs, in poor countries. This debate examines whether and how patents are impeding health care and innovation.
Nuclear structure of $^{231}$Ac
Boutami, R; Mach, H; Kurcewicz, W; Fraile, L M; Gulda, K; Aas, A J; García-Raffi, L M; Løvhøiden, G; Martínez, T; Rubio, B; Taín, J L; Tengblad, O
2008-01-01
The low-energy structure of 231Ac has been investigated by means of gamma ray spectroscopy following the beta-decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a mini-orange electron spectrometer. The decay scheme of 231Ra --> 231Ac has been constructed for the first time. The Advanced Time Delayed beta-gamma-gamma(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus.
2016-01-01
This book aims to cover different aspects of Bias Temperature Instability (BTI). BTI remains as an important reliability concern for CMOS transistors and circuits. Development of BTI resilient technology relies on utilizing artefact-free stress and measurement methods and suitable physics-based models for accurate determination of degradation at end-of-life, and understanding the gate insulator process impact on BTI. This book discusses different ultra-fast characterization techniques for recovery artefact free BTI measurements. It also covers different direct measurements techniques to access pre-existing and newly generated gate insulator traps responsible for BTI. The book provides a consistent physical framework for NBTI and PBTI respectively for p- and n- channel MOSFETs, consisting of trap generation and trapping. A physics-based compact model is presented to estimate measured BTI degradation in planar Si MOSFETs having differently processed SiON and HKMG gate insulators, in planar SiGe MOSFETs and also...
Motion discrimination of throwing a baseball using forearm electrical impedance
The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.
Motion discrimination of throwing a baseball using forearm electrical impedance
Nakamura, Takao; Kusuhara, Toshimasa; Yamamoto, Yoshitake
2013-04-01
The extroversion or hyperextension of elbow joint cause disorders of elbow joint in throwing a baseball. A method, which is easy handling and to measure motion objectively, can be useful for evaluation of throwing motion. We investigated a possibility of motion discrimination of throwing a baseball using electrical impedance method. The parameters of frequency characteristics (Cole-Cole arc) of forearm electrical impedance were measured during four types of throwing a baseball. Multiple discriminant analysis was used and the independent variables were change ratios of 11 parameters of forearm electrical impedance. As results of 120 data with four types of throwing motion in three subjects, hitting ratio was very high and 95.8%. We can expect to discriminate throwing a baseball using multiple discriminant analysis of impedance parameters.
Optimization design of power efficiency of exponential impedance transformer
The paper investigates the optimization design of power efficiency of exponential impedance transformer with analytic method and numerical method. In numerical calculation, a sine wave Jantage with hypothesis of rising edge equivalence is regarded as the forward-going Jantage at input of transformer, and its dominant angular frequency is determined by typical rise-time of actual Jantage waveforms. At the same time, dissipative loss in water dielectric is neglected. The numerical results of three typical modes of impedance transformation, viz. linear mode, saturation mode and steep mode,are compared. Pivotal factors which affect the power efficiency of exponential impedance transformer are discussed, and a certain extent quantitative range of intermediate variables and accordance coefficients are obtained. Finally, the paper discusses some important issues in actual design, such as insulation safety factor in structure design, effects of coupling capacitance on impedance calculation, and dissipative loss in water dielectric. (authors)
Line impedance estimation using model based identification technique
Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus
into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance....... The quasi-passive behaviour of the proposed method comes from the combination of the non intrusive behaviour of the passive methods with a better accuracy of the active methods. The simulation results reveal the good accuracy of the proposed method....
Rusalin Lucian R. Păun
2008-05-01
Full Text Available This paper propose a new control technique forsingle – phase AC – AC converters used for a on-line UPSwith a good dynamic response, a reduced-partscomponents, a good output characteristic, a good powerfactorcorrection(PFC. This converter no needs anisolation transformer. A power factor correction rectifierand an inverter with the proposed control scheme has beendesigned and simulated using Caspoc2007, validating theconcept.
A valveless micro impedance pump driven by electromagnetic actuation
Rinderknecht, Derek; Hickerson, Anna Iwaniec; Gharib, Morteza
2005-01-01
Over the past two decades, a variety of micropumps have been explored for various applications in microfluidics such as control of pico- and nanoliter flows for drug delivery as well as chemical mixing and analysis. We present the fabrication and preliminary experimental studies of flow performance on the micro impedance pump, a previously unexplored method of pumping fluid on the microscale. The micro impedance pump was constructed of a simple thin-walled tube coupled at either end to glass ...
Pore Characteristics of Chitosan Scaffolds Studied by Electrochemical Impedance Spectroscopy
Tully-Dartez, Stephanie; Cardenas, Henry E.; Sit, Ping-Fai Sidney
2009-01-01
In this study, a novel approach, electrochemical impedance spectroscopy (EIS), was used to examine the pore characteristics of chitosan scaffolds under aqueous conditions. The EIS was run with a constant current of 0.1 mA with the frequency sweep of 106 to 10−4 Hz. The resulting complex impedance measurement was then used to calculate porosity, which was determined to be 71%. Scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP), two commonly used methods for scaffold cha...
U. S. NRC Regulation Guide 1.52 regulating ESF ACS in nuclear power plants has been revised to revision 3. To apply reduction of operability test time, allowance of alternative challenge agents for in-place leak test of HEPA filters, and upgrade of Methyl Iodide penetration acceptance criterion in activated carbon performance test suggested in Reg. Guide 1.52(Rev.3) on Yonggwang units 5 and 6 ESF ACSes, technical feasibility study was carried out with on-site experiments as well as experiments with a lab-scale model. It was confirmed that the moisture in the system returned to the level before the test in 1 or 4 days even though the moisture was removed during the operability test lasting more than 10 hours. Therefore, it is appropriate to perform monthly operability test in 15 minutes just long enough to check the operability of equipment. To change challenge material for in-place HEPA filter leak test, size of aerosol, production rate, and leak detection capability were compared for DOP and PAO. It was concluded that PAO can be substituted for DOP in nuclear power plants. The upgrade of Methyl Iodide penetration acceptance criterion from 0.175 % to 0.5 % in active carbon filter bed deeper than 4 inches was to conform to the change of activated carbon performance test method to ASTM D3803(1989). It was confirmed that Methyl Iodide penetration acceptance criterion of 0.5 % under 30 .deg. C
Siwakoti, Yam Prasad; Blaabjerg, Frede; Galigekere, Veda Prakash;
2016-01-01
A novel A-source impedance network is proposed in this letter. The A-source impedance network uses an autotransformer for realizing converters for any application that demand a very high dc voltage gain. The network utilizes a minimal turns ratio compared to other Magnetically Coupled Impedance...... Source (MCIS) networks to attain a high voltage gain. In addition, the proposed converter draws a continuous current from the source, and hence it is suitable for many types of renewable energy sources. The derived network expressions and theoretical analysis are finally validated experimentally...... with an example single-switch 400 W dc-dc converter. For the closed-loop control design and stability assessment, a small signal model and its analysis of the proposed network are also presented in brief....
Impedances of Laminated Vacuum Chambers
Burov, A.; Lebedev, V.; /Fermilab
2011-06-22
First publications on impedance of laminated vacuum chambers are related to early 70s: those are of S. C. Snowdon [1] and of A. G. Ruggiero [2]; fifteen years later, a revision paper of R. Gluckstern appeared [3]. All the publications were presented as Fermilab preprints, and there is no surprise in that: the Fermilab Booster has its laminated magnets open to the beam. Being in a reasonable mutual agreement, these publications were all devoted to the longitudinal impedance of round vacuum chambers. The transverse impedance and the flat geometry case were addressed in more recent paper of K. Y. Ng [4]. The latest calculations of A. Macridin et al. [5] revealed some disagreement with Ref. [4]; this fact stimulated us to get our own results on that matter. Longitudinal and transverse impendances are derived for round and flat laminated vacuum chambers. Results of this paper agree with Ref. [5].
Hybrid-Source Impedance Networks
Li, Ding; Gao, Feng; Loh, Poh Chiang;
2010-01-01
Hybrid-source impedance networks have attracted attention among researchers because of their flexibility in performing buck-boost energy conversion. To date, three distinct types of impedance networks can be summarized for implementing voltage-type inverters with another three types summarized...... for current-type inverters. These impedance networks can in principle be combined into two generic network entities, before multiple of them can further be connected together by applying any of the two proposed generalized cascading concepts. The resulting two-level and three-level inverters implemented using...... the cascaded networks would have a higher output voltage gain and other unique advantages that currently have not been investigated yet. It is anticipated that these advantages would help the formed inverters find applications in photovoltaic and other renewable systems, where a high voltage gain is usually...
AcsA-AcsB: The core of the cellulose synthase complex from Gluconacetobacter hansenii ATCC23769.
McManus, John B; Deng, Ying; Nagachar, Nivedita; Kao, Teh-hui; Tien, Ming
2016-01-01
The gram-negative bacterium, Gluconacetobacter hansenii, produces cellulose of exceptionally high crystallinity in comparison to the cellulose of higher plants. This bacterial cellulose is synthesized and extruded into the extracellular medium by the cellulose synthase complex (CSC). The catalytic component of this complex is encoded by the gene AcsAB. However, several other genes are known to encode proteins critical to cellulose synthesis and are likely components of the bacterial CSC. We have purified an active heterodimer AcsA-AcsB from G. hansenii ATCC23769 to homogeneity by two different methods. With the purified protein, we have determined how it is post-translationally processed, forming the active heterodimer AcsA-AcsB. Additionally, we have performed steady-state kinetic studies on the AcsA-AcsB complex. Finally through mutagenesis studies, we have explored the roles of the postulated CSC proteins AcsC, AcsD, and CcpAx. PMID:26672449
Kraft, R. E.
1999-01-01
Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.
Grant, Caroline A; Pham, Trang; Hough, Judith; Riedel, Thomas; Stocker, Christian; Schibler, Andreas
2011-01-01
Introduction Electrical impedance tomography (EIT) has been shown to be able to distinguish both ventilation and perfusion. With adequate filtering the regional distributions of both ventilation and perfusion and their relationships could be analysed. Several methods of separation have been suggested previously, including breath holding, electrocardiograph (ECG) gating and frequency filtering. Many of these methods require interventions inappropriate in a clinical setting. This study ther...
Impedance of a beam tube with antechamber
A beam vacuum chamber was proposed to allow synchrotron light to radiate from a circulating electron beam into an antechamber containing photon targets, pumps, etc. To determine the impedance, electromagnetic measurements were carried out on a section of chamber using for low frequencies a current-carrying wire and for up to 16 GHz, a resonance perturbation method. Because the response of such a chamber would depend on upstream and downstream restrictions of aperture yet to be determined, the resonance studies were analyzed in some generality. The favorable conclusion of these studies is that the antechamber makes practically no contribution to either the longitudinal or the transverse impedances. The small beam tube with slot-isolated antechamber responds as a small cylinder up to the frequency (∼ 15 GHz) where energy can propagate transversely in the narrow slot. The important function of the slot is to prevent the beam from coupling to the many lower-frequency modes of the antechamber. If cut off frequency were higher than the slot-coupling at 15 GHz, only an increased density of modes is expected, with little change in average beam impedances
Morris, Graham P.
2013-12-17
Fully automated and computer assisted heuristic data analysis approaches have been applied to a series of AC voltammetric experiments undertaken on the [Fe(CN)6]3-/4- process at a glassy carbon electrode in 3 M KCl aqueous electrolyte. The recovered parameters in all forms of data analysis encompass E0 (reversible potential), k0 (heterogeneous charge transfer rate constant at E0), α (charge transfer coefficient), Ru (uncompensated resistance), and Cdl (double layer capacitance). The automated method of analysis employed time domain optimization and Bayesian statistics. This and all other methods assumed the Butler-Volmer model applies for electron transfer kinetics, planar diffusion for mass transport, Ohm\\'s Law for Ru, and a potential-independent Cdl model. Heuristic approaches utilize combinations of Fourier Transform filtering, sensitivity analysis, and simplex-based forms of optimization applied to resolved AC harmonics and rely on experimenter experience to assist in experiment-theory comparisons. Remarkable consistency of parameter evaluation was achieved, although the fully automated time domain method provided consistently higher α values than those based on frequency domain data analysis. The origin of this difference is that the implemented fully automated method requires a perfect model for the double layer capacitance. In contrast, the importance of imperfections in the double layer model is minimized when analysis is performed in the frequency domain. Substantial variation in k0 values was found by analysis of the 10 data sets for this highly surface-sensitive pathologically variable [Fe(CN) 6]3-/4- process, but remarkably, all fit the quasi-reversible model satisfactorily. © 2013 American Chemical Society.
Input impedance characteristics of microstrip structures
A. I. Nazarko
2015-06-01
Full Text Available Introduction. Electromagnetic crystals (EC and EC-inhomogeneities are one of the main directions of microstrip devices development. In the article the input impedance characteristics of EC- and traditional microstrip inhomogeneities and filter based on EC-inhomogeneities are investigated. Transmission coefficient characteristics. Transmission coefficient characteristics of low impedance EC- and traditional inhomogeneities are considered. Characteristics are calculated in the software package Microwave Studio. It is shown that the efficiency of EC-inhomogeneity is much higher. Input impedance characteristics of low impedance inhomogeneities. Dependences of input impedance active and reactive parts of EC- and traditional inhomogeneities are given. Dependences of the active part illustrate significant low impedance transformation of nominal impedance. The conditions of impedance matching of structure and input medium are set. Input impedance characteristics of high impedance inhomogeneities. Input impedance characteristics of high impedance EC- and traditional inhomogeneities are considered. It was shown that the band of transformation by high impedance inhomogeneities is much narrower than one by low impedance inhomogeneities. Characteristics of the reflection coefficient of inhomogeneities are presented. Input impedance characteristics of narrowband filter. The structure of narrowband filter based on the scheme of Fabry-Perot resonator is presented. The structure of the filter is fulfilled by high impedance EC-inhomogeneities as a reflectors. Experimental and theoretical amplitude-frequency characteristics of the filter are presented. Input impedance characteristics of the filter are shown. Conclusions. Input impedance characteristics of the structure allow to analyse its wave properties, especially resonant. EC-inhomogeneity compared with traditional microstrip provide substantially more significant transformation of the the input impedance.
一种对机器人阻抗控制中不确定性进行补偿的方法%Method to Compensate Uncertainties in Robot Impedance Control
王宇驰; 陈友东; 游玮
2016-01-01
The uncertainties existing in robot models present difficulties to controlling robots precisely. This is especially obvious in robot force control, and limits the usage of robot force control in industry field. Intelligent control, such as fuzzy control and neural network, is an effective method to solve this problem faced by classical control methods. Unsupervised learning network was adopted to compensate the uncertainties existing in robot impedance control online and to improve the performance of force tracking. The effective-ness of the proposed neural algorithm is verified by a simulation.%机器人建模中存在的不确定性,给机器人精确控制带来了困难,在机器人力控制中尤为明显,制约了力控制在实际生产中的应用.采用模糊控制、 神经网络等智能控制方法是解决这些经典控制理论所面临问题的有效手段.文中使用无监督学习的神经网络对不确定性进行在线补偿,提高阻抗控制的力跟踪性能,通过仿真验证了算法的有效性.
Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes
Ruffo, Riccardo
2009-07-02
The impedance behavior of silicon nanowire electrodes has been investigated to understand the electrochemical process kinetics that influences the performance when used as a high-capacity anode in a lithium ion battery. The ac response was measured by using impedance spectroscopy in equilibrium conditions at different lithium compositions and during several cycles of charge and discharge in a half cell vs. metallic lithium. The impedance analysis shows the contribution of both surface resistance and solid state diffusion through the bulk of the nanowires. The surface process is dominated by a solid electrolyte layer (SEI) consisting of an inner, inorganic insoluble part and several organic compounds at the outer interface, as seen by XPS analysis. The surface resistivity, which seems to be correlated with the Coulombic efficiency of the electrode, grows at very high lithium contents due to an increase in the inorganic SEI thickness. We estimate the diffusion coefficient of about 2 × 10 -10 cm 2/s for lithium diffusion in silicon. A large increase in the electrode impedance was observed at very low lithium compositions, probably due to a different mechanism for lithium diffusion inside the wires. Restricting the discharge voltage to 0.7 V prevents this large impedance and improves the electrode lifetime. Cells cycled between 0.07 and 0.70 V vs. metallic lithium at a current density of 0.84 A/g (C/5) showed good Coulombic efficiency (about 99%) and maintained a capacity of about 2000 mAh/g after 80 cycles. © 2009 American Chemical Society.
EXPERIMENTAL RESEARCH ON EVALUATING STRUCTURE DAMAGE WITH PIEZOELECTRIC DYNAMIC IMPEDANCE
无
2002-01-01
A dynamic impedance-based structural health monitoring technique is introduced. According to the direct and the converse piezoelectric property of piezoelectric materials, the piezoceramic ( PZT ) can be used as an actuator and a sensor synchronously. If damages like cracks, holes, debonding or loose connections are presented in the structure, the physical variations of the structure will cause the mechanical impedance modified. On the basis of introducing the principle and the theory, the experiment and the analysis on some damages of the structure are studied by means of the dynamic impedance technique. On the view of experiment, kinds of structural damages are evaluated by the information of dynamic impedance in order to validate the feasibility of the method.
The Aberdeen Impedance Imaging System.
Kulkarni, V; Hutchison, J M; Mallard, J R
1989-01-01
The Aberdeen Impedance Imaging System is designed to reconstruct 2 dimensional images of the average distribution of the amplitude and phase of the complex impedance within a 3 dimensional region. The system uses the four electrode technique in a 16 electrode split-array. The system hardware consists of task-orientated electronic modules for: driving a constant current, multiplexing the current drive, demultiplexing peripheral voltages, differential amplification, phase sensitive detection and low-pass filtration, digitisation with a 14 bit analog to digital converter (ADC), and -control logic for the ADC and multiplexors. A BBC microprocessor (Master series), initiates a controlled sequence for the collection of a number of data sets which are averaged and stored on disk. Image reconstruction is by a process of convolution-backprojection similar to the fan-beam reconstruction of computerised tomography and is also known as Equipotential Backprojection. In imaging impedance changes associated with fracture healing the changes may be large enough to allow retrieval of both the amplitude and phase of the complex impedance. Sequential imaging of these changes would necessitate monitoring electronic and electrode drift by imaging an equivalent region of the contralateral limb. Differential images could be retrieved when the image of the normal limb is the image template. Better characterisation of tissues would necessitate a cleaner retrieval of the quadrature signal. PMID:2742979
Siwakoti, Yam Prasad; Loh, Poh Chiang; Blaabjerg, Frede;
2014-01-01
This letter introduces a new versatile Y-shaped impedance network for realizing converters that demand a very high-voltage gain, while using a small duty ratio. To achieve that, the proposed network uses a tightly coupled transformer with three windings, whose obtained gain is presently not match...
Small Signal Loudspeaker Impedance Emulator
Iversen, Niels Elkjær; Knott, Arnold
2014-01-01
from driver to driver. Therefore, a loudspeaker emulator capable of adjusting its impedance to that of a given driver is desired for measurement purposes. This paper proposes a loudspeaker emulator circuit for small signals. Simulations and experimental results are compared and show that it is possible...
Alka Dohare
2014-02-01
Full Text Available Along with the increase market of the transgenic crops, the demand for testing GMOs and for certifying non-GMO foodstuffs has increased dramatically. Within the arena of expanding techniques for identification and quantification of transgenic crops, two major approaches for detecting GMOs are still applicable on large scale, namely ELISA based protein detection and PCR based gene identification. In present study, ELISA techniques was adopted to identify the specific Cry1Ac and Cry2Ab proteins in some transgenic cotton plants seed samples viz., Gujarat cotton hybrid – 6 (BG II, Gujarat cotton hybrid – 8 (BG II and Gujarat cotton hybrid – 10 (BG II from the Gujarat state of India. The study reveals the presence of both Cry1Ac and Cry2Ab proteins in the transgenic seed samples and also demonstrated that the technique of ELISA for identification of Cry1Ac and Cry2Ab proteins is quite handy and easily adoptable.
Donald P Bernstein
2010-01-01
Full Text Available Impedance cardiography (ICG is a branch of bioimpedance pimarily concerned with the determination of left ventricular stroke volume (SV. As implemented, using the transthoracic approach, the technique involves applying a current field longitudinally across a segment of thorax by means of a constant magnitude, high frequency, low amplitude alternating current (AC. By Ohm's Law, the voltage difference measured within the current field is proportional to the electrical impedance Z (Ω. Without ventilatory or cardiac activity, Z is known as the transthoracic, static base impedance Z0. Upon ventricular ejection, a characteristic time dependent cardiac-synchronous pulsatile impedance change is obtained, ΔZ(t, which, when placed electrically in parallel with Z0, constitutes the time-variable total transthoracic impedance Z(t. ΔZ(t represents a dual-element composite waveform, which comprises both the radially-oriented volumetric expansion of and axially-directed forward blood flow within both great thoracic arteries. In its majority, however, ΔZ(t is known to primarily emanate from the ascending aorta. Conceptually, commonly implemented methods assume a volumetric origin for the peak systolic upslope of ΔZ(t, (i.e. dZ/dtmax, with the presumed units of Ω·s-1. A recently introduced method assumes the rapid ejection of forward flowing blood in earliest systole causes significant changes in the velocity-induced blood resistivity variation (Δρb(t, Ωcm·s-1, and it is the peak rate of change of the blood resistivity variation dρb(t/dtmax (Ωcm·s-2 that is the origin of dZ/dtmax. As a consequence of dZ/dtmax peaking in the time domain of peak aortic blood acceleration, dv/dtmax (cm·s-2, it is suggested that dZ/dtmax is an ohmic mean acceleration analog (Ω·s-2 and not a mean flow or velocity surrogate as generally assumed. As conceptualized, the normalized value, dZ/dtmax/Z0, is a dimensionless ohmic mean acceleration equivalent (s-2
Fleischer, Christian; Waag, Wladislaw; Heyn, Hans-Martin; Sauer, Dirk Uwe
2014-08-01
Lithium-ion battery systems employed in high power demanding systems such as electric vehicles require a sophisticated monitoring system to ensure safe and reliable operation. Three major states of the battery are of special interest and need to be constantly monitored, these include: battery state of charge (SoC), battery state of health (capcity fade determination, SoH), and state of function (power fade determination, SoF). In a series of two papers, we propose a system of algorithms based on a weighted recursive least quadratic squares parameter estimator, that is able to determine the battery impedance and diffusion parameters for accurate state estimation. The functionality was proven on different battery chemistries with different aging conditions. The first paper investigates the general requirements on BMS for HEV/EV applications. In parallel, the commonly used methods for battery monitoring are reviewed to elaborate their strength and weaknesses in terms of the identified requirements for on-line applications. Special emphasis will be placed on real-time capability and memory optimized code for cost-sensitive industrial or automotive applications in which low-cost microcontrollers must be used. Therefore, a battery model is presented which includes the influence of the Butler-Volmer kinetics on the charge-transfer process. Lastly, the mass transport process inside the battery is modeled in a novel state-space representation.
Investigation of nanocrystalline CdS/Si diode using complex impedance spectroscopy
Highlights: ► CdS/n-Si device was fabricated as a heterostructure. ► AFM was used to examine the structure of CdS/n-Si. ► Complex impedance Z′and Z″were calculated. ► AC conductivity was explained by the power law relation. ► CBH model was used to describe the AC conduction mechanism. -- Abstract: CdS/n-Si device was fabricated via depositing CdS thin film onto pre-cleaned n-silicon substrates. The atomic force microscope was used to examine the crystal size of the deposited films and its roughness. The AC conductivity and the real part of complex impedance Z′as a function of frequency at different temperatures were studied. The AC conductivity dependence of the applied frequency was explained on the basis of the power law relation. The bulk resistance has been calculated at different temperatures from the complex impedance Z″. The temperature dependence of capacitance for CdS/n-Si device at different frequencies was also investigated.
Transferring human impedance regulation skills to robots
Ajoudani, Arash
2016-01-01
This book introduces novel thinking and techniques to the control of robotic manipulation. In particular, the concept of teleimpedance control as an alternative method to bilateral force-reflecting teleoperation control for robotic manipulation is introduced. In teleimpedance control, a compound reference command is sent to the slave robot including both the desired motion trajectory and impedance profile, which are then realized by the remote controller. This concept forms a basis for the development of the controllers for a robotic arm, a dual-arm setup, a synergy-driven robotic hand, and a compliant exoskeleton for improved interaction performance.
Development of the impedance void meter
Chung, Moon Ki; Song, Chul Hwa; Won, Soon Yeon; Kim, Bok Deuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
1994-06-01
An impedance void meter is developed to measure the area-averaged void fraction. Its basic principle is based on the difference in the electrical conductivity between phases. Several methods of measuring void fraction are briefly reviewed and the reason why this type of void meter is chosen to develop is discussed. Basic principle of the measurement is thoroughly described and several design parameters to affect the overall function are discussed in detail. As example of applications is given for vertical air-water flow. It is shown that the current design has good dynamic response as well as very fine spatial resolution. (Author) 47 refs., 37 figs.
Adaptive techniques in electrical impedance tomography reconstruction
We present an adaptive algorithm for solving the inverse problem in electrical impedance tomography. To strike a balance between the accuracy of the reconstructed images and the computational efficiency of the forward and inverse solvers, we propose to combine an adaptive mesh refinement technique with the adaptive Kaczmarz method. The iterative algorithm adaptively generates the optimal current patterns and a locally-refined mesh given the conductivity estimate and solves for the unknown conductivity distribution with the block Kaczmarz update step. Simulation and experimental results with numerical analysis demonstrate the accuracy and the efficiency of the proposed algorithm. (paper)
The coupling impedance of the RHIC injection kicker system
In this paper, results from impedance measurements on the RHIC injection kickers are reported. The kicker is configured as a ''C'' cross section magnet with interleaved ferrite and high-permittivity dielectric sections to achieve a travelling wave structure. The impedance was measured using the wire method in which a resistive match provides a smooth transition from the network analyzer to the reference line in the set-up. Accurate results are obtained by interpreting the forward scattering coefficient via the log-formula. The four kickers with their ceramic beam tubes contribute a Z/n=0.22 Ω/ring in the interesting frequency range from 0.1 to 1 GHz, and less above. At frequencies above ∼ 100 MHz, the impedance is ferrite dominated and not affected by the kicker terminations. Below 100 MHz, the Blumlein pulser with the ∼75 m feeding cables is visible in the impedance but makes no significant contribution to the results. The measurements show that the kicker coupling impedance is tolerable without the need for impedance reducing measures
The coupling impedance of the RHIC injection kicker system
In this paper, results from impedance measurements on the RHIC injection kickers are reported. The kicker is configured as a open-quotes Cclose quotes cross section magnet with interleaved ferrite and high-permittivity dielectric sections to achieve a travelling wave structure. The impedance was measured using the wire method in which a resistive match provides a smooth transition from the network analyzer to the reference line in the set-up. Accurate results are obtained by interpreting the forward scattering coefficient via the log-formula. The four kickers with their ceramic beam tubes contribute a Z/n = 0.22 Ω/ring in the interesting frequency range from 0.1 to 1 GHz, and less above. At frequencies above ∼100 MHZ, the impedance is ferrite dominated and not affected by the kicker terminations. Below 100 MHz, the Blumlein pulser with the ∼75 m feeding cables is visible in the impedance but makes no significant contribution to the results. The measurements show that the kicker coupling impedance is tolerable without the need for impedance reducing measures
Optical approximation in the theory of geometric impedance
In this paper we introduce an optical approximation into the theory of impedance calculation, one valid in the limit of high frequencies. This approximation neglects diffraction effects in the radiation process, and is conceptually equivalent to the approximation of geometric optics in electromagnetic theory. Using this approximation, we derive equations for the longitudinal impedance for arbitrary offsets, with respect to a reference orbit, of source and test particles. With the help of the Panofsky-Wenzel theorem we also obtain expressions for the transverse impedance (also for arbitrary offsets). We further simplify these expressions for the case of the small offsets that are typical for practical applications. Our final expressions for the impedance, in the general case, involve two dimensional integrals over various cross-sections of the transition. We further demonstrate, for several known axisymmetric examples, how our method is applied to the calculation of impedances. Finally, we discuss the accuracy of the optical approximation and its relation to the diffraction regime in the theory of impedance. (orig.)
AC electric sensing of slug-flow properties with exposed gold microelectrodes
A new method for slug-flow (segmented flow) characterization by means of ac electric sensing is proposed. Water segments regularly dispersed in kerosene are used as an experimental system. The sensing procedure is carried out in a plexiglass microchip with embedded gold microelectrodes. The presence of passing slugs over a measurement spot is determined from impedance variations. A square-shaped signal resulting from the slug flow is acquired and flow properties such as the mean velocity and length of the slugs are calculated. Complex behaviour of the corresponding electrochemical system is studied. Dependence of the impedance signal on the flow rate, ion concentration in the dispersed water slug and electric field strength are discussed and explained in detail. Advantages and disadvantages of the suggested method, in comparison with existing capacitive noncontact methods, are also clarified. Unlike the noncontact methods of electric sensing, with the insulation dielectric layer over the electrodes, our electrodes are in a direct contact with the carrier phase. The results show that the method is promising for process applications and will be further improved. (paper)
We demonstrate the first practical alternative to the use of phosphoric and sulphuric acid mixtures for the electropolishing of stainless steel. In this paper, efficient electropolishing of type 316 stainless steel is demonstrated in an ionic liquid composed of ethylene glycol (HOCH2CH2OH) and choline chloride (HOC2H4N(CH3)3+Cl-). Linear sweep voltammetry, chronoamperometry, scanning electron microscopy, atomic force microscopy and AC impedance methods were used to investigate the steel dissolution mechanism and the results are compared to polishing done in aqueous acidic solutions. It is shown that the quality of the polish is related to the breakdown of the oxide film and preliminary data suggest that the polishing process may be controlled by the diffusion of chloride ions. The dissolution is different from that found in aqueous acid solutions, and oxide breakdown is shown to be slower, which can lead to pitting at low current densities
Impedance technique for measuring dielectrophoretic collection of microbiological particles
Allsopp, D W E; Brown, A P; Betts, W B
1999-01-01
Measurement of the impedance change resulting from the collection of microbiological particles at coplanar electrodes is shown to be an effective and potentially quantitative method of detecting dielectrophoresis. Strong correlations between the frequency-dependent dielectrophoretic collection characteristics measured by impedance change and those observed using an established counting method based on image analysis have been obtained for Escherichia coli. In addition it is shown that the new electrical method can be used to sense dielectrophoretic collection of 19 nm diameter latex beads, particles too small to be resolved by conventional optical detection systems. (author)
An ac power supply system includes a rectifier fed by a normal ac supply, and an inverter connected to the rectifier by a dc link, the inverter being effective to invert the dc output of the receiver at a required frequency to provide an ac output. A dc backup power supply of lower voltage than the normal dc output of the rectifier is connected across the dc link such that the ac output of the rectifier is derived from the backup supply if the voltage of the output of the inverter falls below that of the backup supply. The dc backup power may be derived from a backup ac supply. Use in pumping coolant in nuclear reactor is envisaged. (author)
Reducing the SPS Machine Impedance
Collier, Paul; Guinand, R; Jiménez, J M; Rizzo, A; Spinks, Alan; Weiss, K
2002-01-01
The SPS as LHC Injector project has been working for some time to prepare the SPS for its role as final injector for the LHC. This included major work related to injection, acceleration, extraction and beam instrumentation for the LHC beams [1]. Measurements carried out with the high brightness LHC beam showed that a major improvement of the machine impedance would also be necessary [2]. In addition to removing all lepton related components (once LEP operation ended in 2000), the decision was made to shield the vacuum system pumping port cavities. These accidental cavities had been identified as having characteristic frequencies in the 1-1.5GHz range. Since the SPS vacuum system contains roughly 1000 of these cavities, they constitute a major fraction of the machine impedance. As removal of the ports and associated bellows is not possible, transition shields (PPS) had to be designed to insert within the pumping port cavities.
Impedance based automatic electrode positioning.
Miklody, Daniel; Hohne, Johannes
2015-08-01
The position of electrodes in electrical imaging and stimulation of the human brain is an important variable with vast influences on the precision in modeling approaches. Nevertheless, the exact position is obscured by many factors. 3-D Digitization devices can measure the distribution over the scalp surface but remain uncomfortable in application and often imprecise. We demonstrate a new approach that uses solely the impedance information between the electrodes to determine the geometric position. The algorithm involves multidimensional scaling to create a 3 dimensional space based on these impedances. The success is demonstrated in a simulation study. An average electrode position error of 1.67cm over all 6 subjects could be achieved. PMID:26736345
Tapping mode microwave impedance microscopy
Lai, K.
2009-01-01
We report tapping mode microwave impedance imaging based on atomic force microscope platforms. The shielded cantilever probe is critical to localize the tip-sample interaction near the tip apex. The modulated tip-sample impedance can be accurately simulated by the finite-element analysis and the result agrees quantitatively to the experimental data on a series of thin-film dielectric samples. The tapping mode microwave imaging is also superior to the contact mode in that the thermal drift in a long time scale is totally eliminated and an absolute measurement on the dielectric properties is possible. We demonstrated tapping images on working nanodevices, and the data are consistent with the transport results. © 2009 American Institute of Physics.
A compact broadband nonsynchronous noncommensurate impedance transformer
Zhurbenko, Vitaliy; Kim, Kseniya; Narenda, Kumar
2012-01-01
Nonsynchronous noncommensurate impedance transformers consist of a combination of high‐ and low‐impedance transmission lines. High‐impedance lines have narrow tracks in strip and microstrip technology, which allows for high flexibility and miniaturization of the layout in comparison to the...... this article online at wileyonlinelibrary.com. DOI 10.1002/mop.26975...
Impedance analysis of acupuncture points and pathways
Investigation of impedance characteristics of acupuncture points from acoustic to radio frequency range is addressed. Discernment and localization of acupuncture points in initial single subject study was unsuccessfully attempted by impedance map technique. Vector impedance analyses determined possible resonant zones in MHz region.
Pyun, Su Il; Moon, S. M.; Orr, S. J.; Kim, D. J.; Lee, W. J.; Jeong, I. J.; Shin, H. C.; Han, J. N.; Lee, M. H.; Lee, S. B. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)
1998-01-01
Pitting corrosion of sensitized 316L stainless steel has been investigated as a function of the degree of sensitization in aqueous NaCl solution with various Cl{sup -} ion concentrations ([Cl{sup -}] = 0.005 (177.25 ppm); 0.01 (354.50 ppm); 0.05 (1772.5 ppm); 0.1 (3545 ppm); 0.5 M (17725 ppm)) at room temperature. The squared rod specimens of 316L stainless steel were thermally annealed at 700 C for various durations (0 h : non-sensitized specimen A; 8 h : moderately sensitized specimen B; 96 h : severely sensitized specimen C). The pitting corrosion resistance of the three kinds of specimens was evaluated by the potentio dynamic anodic polarization method, abrading electrode technique and ac{sup -}impedance spectroscopy. The measured potentiostatic decay current transient obtained just after interrupting the abrading action showed that the repassivation rate of the oxide film on the fresh bare surface of the specimen decreased in the order of specimens A, B and C in the early stage of the film formation. From the results of ac{sup -}impedance spectroscopy, the oxide film resistance R{sub ox} and oxide film capacitance C{sub ox} of specimens B and C in value were evaluated to be lower and higher, respectively, than those of specimen A and the repassivation rate and resistance value of the oxide film on the three kinds could be quantitatively calculated. 10 refs., 8 tabs., 31 figs.(author)
Kang Jin-Gu
2008-01-01
Full Text Available Abstract Transition metal oxides have been suggested as innovative, high-energy electrode materials for lithium-ion batteries because their electrochemical conversion reactions can transfer two to six electrons. However, nano-sized transition metal oxides, especially Co3O4, exhibit drastic capacity decay during discharge/charge cycling, which hinders their practical use in lithium-ion batteries. Herein, we prepared nano-sized Co3O4with high crystallinity using a simple citrate-gel method and used electrochemical impedance spectroscopy method to examine the origin for the drastic capacity fading observed in the nano-sized Co3O4anode system. During cycling, AC impedance responses were collected at the first discharged state and at every subsequent tenth discharged state until the 100th cycle. By examining the separable relaxation time of each electrochemical reaction and the goodness-of-fit results, a direct relation between the charge transfer process and cycling performance was clearly observed.
Different radiation impedance models for finite porous materials
Nolan, Melanie; Jeong, Cheol-Ho; Brunskog, Jonas;
2015-01-01
The Sabine absorption coefficients of finite absorbers are measured in a reverberation chamber according to the international standard ISO 354. They vary with the specimen size essentially due to diffraction at the specimen edges, which can be seen as the radiation impedance differing from the...... infinite case. Thus, in order to predict the Sabine absorption coefficients of finite porous samples, one can incorporate models of the radiation impedance. In this study, different radiation impedance models are compared with two experimental examples. Thomasson’s model is compared to Rhazi’s method when...... coupled to the transfer matrix method (TMM). These methods are found to yield comparable results when predicting the Sabine absorption coefficients of finite porous materials. Discrepancies with measurement results can essentially be explained by the unbalance between grazing and non-grazing sound field...
Full Text Available optera acutorost... 37 0.66 tr|B1ACS6|B1ACS6_BALBN DMP1 (Fragment) OS=Balaenoptera ...bonaerens... 37 0.66 tr|B1ACS5|B1ACS5_BALED DMP1 (Fragment) OS=Balaenoptera edeni... GN=... 37 0.66 tr|B1ACS4|B1ACS4_BALBO DMP1 (Fragment) OS=Balaenoptera borealis ... 37 0.66 tr|B1ACS3|B1ACS3..._BALMU DMP1 (Fragment) OS=Balaenoptera musculus ... 37 0.86 tr|B1ACS1|B1ACS1_MEGNO DMP1 (Fragment) OS=Megapt...1ACS2_BALPH DMP1 (Fragment) OS=Balaenoptera physalus ... 37 1.1 tr|B1ACT6|B1ACT6_MESPE DMP1 (Fragment) OS=Me
Anderson, Karl F. (Inventor)
1994-01-01
A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment.
A new three-dimensional electromechanical impedance model for an embedded dual-PZT transducer
Wang, Dansheng; Li, Zhi; Zhu, Hongping
2016-07-01
In the past twenty years, the electromechanical (EM) impedance technique has been investigated extensively in the mechanical, aviation and civil engineering fields. Many different EM impedance models have been proposed to characterize the interaction between the surface-bonded PZT transducer and the host structure. This paper formulates a new three-dimensional EM impedance model characterizing the interaction between an embedded circle dual-PZT transducer and the host structure based on the effective impedance concept. The proposed model is validated by experimental results from a group of smart cement cubes, in which three circle dual-PZT transducers are embedded respectively. In addition, a new EM impedance measuring method for the dual-PZT transducer is also introduced. In the measuring method, only a common signal generator and an oscilloscope are needed, by which the exciting and receiving voltage signals are obtained respectively. Combined with fast Fourier transform the EM impedance signatures of the dual-PZT transducers are obtained.
Impedance microflow cytometry for viability studies of microorganisms
Di Berardino, Marco; Hebeisen, Monika; Hessler, Thomas; Ziswiler, Adrian; Largiadèr, Stephanie; Schade, Grit
2011-02-01
Impedance-based Coulter counters and its derivatives are widely used cell analysis tools in many laboratories and use normally DC or low frequency AC to perform these electrical analyses. The emergence of micro-fabrication technologies in the last decade, however, provides a new means of measuring electrical properties of cells. Microfluidic approaches combined with impedance spectroscopy measurements in the radio frequency (RF) range increase sensitivity and information content and thus push single cell analyses beyond simple cell counting and sizing applications towards multiparametric cell characterization. Promising results have been shown already in the fields of cell differentiation and blood analysis. Here we emphasize the potential of this technology by presenting new data obtained from viability studies on microorganisms. Impedance measurements of several yeast and bacteria strains performed at frequencies around 10 MHz enable an easy discrimination between dead and viable cells. Moreover, cytotoxic effects of antibiotics and other reagents, as well as cell starvation can also be monitored easily. Control analyses performed with conventional flow cytometers using various fluorescent dyes (propidium iodide, oxonol) indicate a good correlation and further highlight the capability of this device. The label-free approach makes on the one hand the use of usually expensive fluorochromes obsolete, on the other hand practically eliminates laborious sample preparation procedures. Until now, online cell monitoring was limited to the determination of viable biomass, which provides rather poor information of a cell culture. Impedance microflow cytometry, besides other aspects, proposes a simple solution to these limitations and might become an important tool for bioprocess monitoring applications in the biotech industry.
Application of plant impedance for diagnosing plant disease
Xu, Huirong; Jiang, Xuesong; Zhu, Shengpan; Ying, Yibin
2006-10-01
Biological cells have components acting as electrical elements that maintain the health of the cell by regulation of the electrical charge content. Plant impedance is decided by the state of plant physiology and pathology. Plant physiology and pathology can be studies by measuring plant impedance. The effect of Cucumber Mosaic Virus red bean isolate (CMV-RB) on electrical resistance of tomato leaves was studied by the method of impedance measurement. It was found that the value of resistance of tomato leaves infected with CMV-RB was smaller than that in sound plant leaves. This decrease of impedances in leaf tissue was occurred with increased severity of disease. The decrease of resistance of tomato leaves infected with CMV-RB could be detected by electrical resistance detecting within 4 days after inoculation even though significant visible differences between the control and the infected plants were not noted, so that the technique for measurement of tomato leaf tissue impedance is a rapid, clever, simple method on diagnosis of plant disease.
Daralammouri, Yunis; Ayoub, Khubaib; Badrieh, Najwan; Lauer, Bernward
2016-01-01
Background Impedance cardiography (IC) is a noninvasive modality that utilizes changes in impedance across the thorax to assess hemodynamic parameters, including stroke volume (SV). This study compared aortic valve area (AVA) as assessed by a hybrid approach of transthoracic echocardiography (TTE) and impedance cardiography (IC) to AVA determined at cardiac catheterization using the Gorlin equation. Methods A total of 30 patients with moderate to severe aortic stenosis underwent AVA measureme...
Pekik Argo Dahono
2012-01-01
A new concept of virtual inductor to reduce the low-frequency dc output current ripple of ac-dc converters is introduced in this paper. Virtual inductor is defined as an additional control algorithm that changes the system behavior into the one that has an additional inductor connected on it. The virtual nature of the inductor makes the inductance can be designed without weight and volume restrictions. How to use the virtual inductor to improve the performance of converter current controller ...
Eddy Current Rail Inspection Using AC Bridge Techniques.
Liu, Ze; Koffman, Andrew D; Waltrip, Bryan C; Wang, Yicheng
2013-01-01
AC bridge techniques commonly used for precision impedance measurements have been adapted to develop an eddy current sensor for rail defect detection. By using two detection coils instead of just one as in a conventional sensor, we can balance out the large baseline signals corresponding to a normal rail. We have significantly enhanced the detection sensitivity of the eddy current method by detecting and demodulating the differential signal of the two coils induced by rail defects, using a digital lock-in amplifier algorithm. We have also explored compensating for the lift-off effect of the eddy current sensor due to vibrations by using the summing signal of the detection coils to measure the lift-off distance. The dominant component of the summing signal is a constant resulting from direct coupling from the excitation coil, which can be experimentally determined. The remainder of the summing signal, which decreases as the lift-off distance increases, is induced by the secondary eddy current. This dependence on the lift-off distance is used to calibrate the differential signal, allowing for a more accurate characterization of the defects. Simulated experiments on a sample rail have been performed using a computer controlled X-Y moving table with the X-axis mimicking the train's motion and the Y-axis mimicking the train's vibrational bumping. Experimental results demonstrate the effectiveness of the new detection method. PMID:26401427
Fuzzy modeling of electrical impedance tomography images of the lungs
Harki Tanaka
2008-01-01
Full Text Available OBJECTIVES: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. INTRODUCTION: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. METHODS: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. RESULTS: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. DISCUSSION: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. CONCLUSIONS: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images.
Fuzzy modeling of electrical impedance tomography images of the lungs
Tanaka, Harki; Ortega, Neli Regina Siqueira; Galizia, Mauricio Stanzione [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Medical Informatics; Borges, Joao Batista; Amato, Marcelo Britto Passos [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Medicina. Dept. of Experimental Pneumology]. E-mail: harki_t@yahoo.com
2008-07-01
Objectives: Aiming to improve the anatomical resolution of electrical impedance tomography images, we developed a fuzzy model based on electrical impedance tomography's high temporal resolution and on the functional pulmonary signals of perfusion and ventilation. Introduction: Electrical impedance tomography images carry information about both ventilation and perfusion. However, these images are difficult to interpret because of insufficient anatomical resolution, such that it becomes almost impossible to distinguish the heart from the lungs. Methods: Electrical impedance tomography data from an experimental animal model were collected during normal ventilation and apnoea while an injection of hypertonic saline was administered. The fuzzy model was elaborated in three parts: a modeling of the heart, the pulmonary ventilation map and the pulmonary perfusion map. Image segmentation was performed using a threshold method, and a ventilation/perfusion map was generated. Results: Electrical impedance tomography images treated by the fuzzy model were compared with the hypertonic saline injection method and computed tomography scan images, presenting good results. The average accuracy index was 0.80 when comparing the fuzzy modeled lung maps and the computed tomography scan lung mask. The average ROC curve area comparing a saline injection image and a fuzzy modeled pulmonary perfusion image was 0.77. Discussion: The innovative aspects of our work are the use of temporal information for the delineation of the heart structure and the use of two pulmonary functions for lung structure delineation. However, robustness of the method should be tested for the imaging of abnormal lung conditions. Conclusions: These results showed the adequacy of the fuzzy approach in treating the anatomical resolution uncertainties in electrical impedance tomography images. (author)
Adrian DOBRE
2010-03-01
Full Text Available The AC1 wing replaces the old wing of the wind tunnel model AEROTAXI, which has been made at scale 1:9. The new wing is part of CESAR program and improves the aerodynamic characteristics of the old one. The geometry of the whole wing was given by FOI Sweden and position of AC1 wing must coincide with the structure of the AEROTAXI model.
Adrian DOBRE
2010-01-01
The AC1 wing replaces the old wing of the wind tunnel model AEROTAXI, which has been made at scale 1:9. The new wing is part of CESAR program and improves the aerodynamic characteristics of the old one. The geometry of the whole wing was given by FOI Sweden and position of AC1 wing must coincide with the structure of the AEROTAXI model.
Synthesis, impedance and dielectric properties of LaBi5Fe2Ti3O18
N V Prasad; G Prasad; T Bhimasankaram; S V Suryanarayana; G S Kumar
2001-10-01
The compound, LaBi5Fe2Ti3O18, is a five-layered material belonging to the family of bismuth layered structure ferroelectromagnetics. D.c. and a.c. conductivity measurements were performed on the samples. Dielectric measurements were also performed on these samples. Combined impedance and modulus plots were used as tools to analyse the sample behaviour as a function of frequency. Cole–Cole plots showed non-Debye relaxation.
Guerrero, Josep M.; Vásquez, Juan V.; Teodorescu, Remus
DC and AC Microgrids are key elements to integrate renewable and distributed energy resources as well as distributed energy storage systems. In the last years, efforts toward the standardization of these Microgrids have been made. In this sense, this paper present the hierarchical control derived...... from ISA-95 and electrical dispatching standards to endow smartness and flexibility to microgrids. The hierarchical control proposed consist of three levels: i) the primary control is based on the droop method, including an output impedance virtual loop; ii) the secondary control allows restoring the...... deviations produced by the primary control; and iii) the tertiary control manage the power flow between the microgrid and the external electrical distribution system. Results from a hierarchicalcontrolled microgrid are provided to show the feasibility of the proposed approach....
Voltage drop of the SACLA AC power supply
We installed the AC power supply of SACLA by construction. The AC power supply is connected to an inverter power supply. Because of charge and discharge to a modulator, it is necessary to supply pulsatile electricity. The total consumption electricity of approximately 70 modulators extends to 5,000kVA. A severe electric current flows, and repeats relaxing. The influence of the voltage change by the impedance of the distribution system grows big, too. In SACLA, we designed the voltage regulation at less than 10%. SACLA succeeded in laser oscillation in this June. Because we was able to put it in the predetermined voltage regulation in the machine AC power supply, I report the details. (author)
Analysis of ac Surface Photovoltages in Accumulation Region
Munakata, Chusuke
1988-05-01
Equations for ac surface photovoltages (SPVs) excited with a chopped photon beam (PB) in the accumulation region are proposed for such semiconductors as silicon and germanium. Following the previously reported half-sided junction model for the depleted or inverted region, equations for photocurrent density and surface impedance per unit area have been newly deduced. When the surface potential is highly negative in p-type semiconductors, the maximum ac SPV in the accumulation region is limited by the conductance due to majority carrier diffusion flow. This is compared with the strong inversion region, where the mathematically maximum SPV depends upon the minority carrier diffusion flow. The voltage ratio between the two maximum ac SPVs is the same as that previously reported using the different models for dc SPVs excited with a continuous PB.
Determination of soil ionic concentration using impedance spectroscopy
Pandey, Gunjan; Kumar, Ratnesh; Weber, Robert J.
2013-05-01
This paper presents a novel approach to estimate the soil ionic concentration by way of multi-frequency impedance measurements and using the quasi-static dielectric mixing models to infer the various ionic concentrations. In our approach, the permittivity of the soil dielectric mixture is measured using impedance spectroscopy and the results are used as input parameters to dielectric mixing models, combined with the debye-type dielectric relaxation models. We observe that the dielectric mixing models work well for low RF (radio-frequency) range and help in determining the individual ionic concentration in a multi-component soil mixture. Using the fact that the permittivity of a dielectric mixture is proportional to its impedance, we validated our approach by making multi-frequency impedance measurements of a soil mixture at different concentrations of various components. The method provides a good estimate of individual components such as air, water and ions like nitrates. While the paper is written with the perspective of soil constituent concentration determination, the underlying principle of determining individual component concentration using multi-frequency impedance measurement is applicable more generally in areas such as characterizing biological systems like pathogens, quality control of pharmaceuticals etc.
Wideband impedance spectrum analyzer for process automation applications
Doerner, Steffen; Schneider, Thomas; Hauptmann, Peter R.
2007-10-01
For decades impedance spectroscopy is used in technical laboratories and research departments to investigate effects or material characteristics that affect the impedance spectrum of the sensor. Establishing this analytical approach for process automation and stand-alone applications will deliver additional and valuable information beside traditional measurement techniques such as the measurement of temperature, flow rate, and conductivity, among others. As yet, most of the current impedance analysis methods are suited for laboratory applications only since they involve stand-alone network analyzers that are slow, expensive, large, or immobile. Furthermore, those systems offer a large range of functionality that is not being used in process control and other fields of application. We developed a sensor interface based on high speed direct digital signal processing offering wideband impedance spectrum analysis with high resolution for frequency adjustment, excellent noise rejection, very high measurement rate, and convenient data exchange to common interfaces. The electronics has been implemented on two small circuit boards and it is well suited for process control applications such as monitoring phase transitions, characterization of fluidal systems, and control of biological processes. The impedance spectrum analyzer can be customized easily for different measurement applications by adapting the appropriate sensor module. It has been tested for industrial applications, e.g., dielectric spectroscopy and high temperature gas analysis.
Impedance-Tunable Transformation Optics: A New Strategy for Refctionless Design of Optical Elements
Cao, Jun; Yan, Shenglin; Sun, Xiaohan
2013-01-01
We propose a new strategy to remove the reections resulted from the finite embedded transformation-optical design by putting forward an impedance-tunable coordinate transformation,on which the functions of impedance coefficients can be derived in the original space without changing the refractive index. Based on the method, two-dimensional (2D) reectionless beam compressors, bends and splitters are designed through tuning the impedance coefficients. The numerical simulations show that the reection can be removed without inserting an antireflective coating. The impedance-tunable coordinate transformation can also be applied to other transformation-optical designs, such as cloaking, lens, antennas, etc.
Virtual Impedance Based Stability Improvement for DC Microgrids with Constant Power Loads
Lu, Xiaonan; Sun, Kai; Huang, Lipei;
2014-01-01
DC microgrid provides an efficient way to integrate different kinds of renewable energy sources with DC couplings. In this paper, in order to improve the stability of DC microgrids with constant power loads (CPLs), a virtual impedance based method is proposed. The CPLs have inherent instability...... issues induced by negative incremental impedances. This negative impedance makes the system poorly damped and the stability is thereby degraded. To enhance the system stability, virtual impedance based stabilizer comprised of series-connected inductance and resistance is employed. In particular, two...
Bioelectrical impedance analysis as a laboratory activity: At the interface of physics and the body
Mylott, Elliot; Kutschera, Ellynne; Widenhorn, Ralf
2014-05-01
We present a novel laboratory activity on RC circuits aimed at introductory physics students in life-science majors. The activity teaches principles of RC circuits by connecting ac-circuit concepts to bioelectrical impedance analysis (BIA) using a custom-designed educational BIA device. The activity shows how a BIA device works and how current, voltage, and impedance measurements relate to bioelectrical characteristics of the human body. From this, useful observations can be made including body water, fat-free mass, and body fat percentage. The laboratory is engaging to pre-health and life-science students, as well as engineering students who are given the opportunity to observe electrical components and construction of a commonly used biomedical device. Electrical concepts investigated include alternating current, electrical potential, resistance, capacitance, impedance, frequency, phase shift, device design, and the use of such topics in biomedical analysis.
Investigation of body's impedance under different conditions for electro-acupuncture
A computer controlled automated setup has been designed to investigate the body acupuncture points (bio-active points) by using a probes matrix which exerts a uniform pressure on the body. 16 probes matrix was placed in a 15 : 15 mm/sup 2/ dielectric substrate with 5 mm inter probe distance, compatible with the average diameter of the points. These probes have been designed to facilitate a semiconductor injection laser for probing of the points along with optical and/or electric signal. The bioactive points were identified by evaluating the impedance between each probe and a hand held electrode through a micro-controlled scan. This also allowed the selection of an appropriate signal - DC, AC or tidal waveform, for the electric treatment of bioactive points. It has been found that body impedance decreases with the increase of measuring voltage. Moreover, for current-voltage characteristics a nonlinearity coefficient in the range 2-3 was also observed. The study revealed that at low applied voltages 0.l V, the impedance depends on the polarity of the applied signal. Furthermore, body impedance decreases nonlinearly by increasing the probe's pressure on the skin, which may be attributed to piezo resistive effect. By using the AC and Dc measurements an appropriate body equivalent circuit is proposed in this investigation. (author)
THE COUPLING IMPEDANCE OF THE RHIC INJECTION KICKER SYSTEM
IN THIS PAPER, RESULTS FROM IMPEDANCE MEASUREMENTS ON THE RHIC INJECTION KICKERS ARE REPORTED. THE KICKER IS CONFIGURED AS A ''C'' CROSS SECTION MAGNET WITH INTERLEAVED FERRITE AND HIGH-PERMITTIVITY DIELECTRIC SECTIONS TO ACHIEVE A TRAVELLING WAVE STRUCTURE. THE IMPEDANCE WAS MEASURED USING THE WIRE METHOD, AND ACCURATE RESULTS ARE OBTAINED BY INTERPRETING THE FORWARD SCATTERING COEFFICIENT VIA THE LONG-FORMULA. THE FOUR KICKERS WITH THEIR CERAMIC BEAM TUBES CONTRIBUE AT Z/N-0.22 OMEGA/RING IN THE INTERESTING FREQUENCY RANGE FROM 0.1 TO 1 BHZ, AND LESS ABOVE
Knechtle, B; A. Wirth; Knechtle, P; Rosemann, T; Rüst, C A; R. Bescós
2011-01-01
Two hundred and fifty seven male Caucasian ultraendurance athletes were recruited, pre-race, before different swimming, cycling, running and triathlon races. Fat mass and skeletal muscle mass were estimated using bioelectrical impedance analysis (BIA) and anthropometric methods in order to investigate whether the use of BIA or anthropometry would be useful under field conditions. Total body fat estimated using BIA was significantly high (P < 0.001) compared with anthropometry. When the result...
Electrical Modeling and Impedance Analysis of Biological Cells
Gowri Sree V.
2014-03-01
Full Text Available It was proved that the external electric field intensity has significant effects on the biological systems. The applied electric field intensity changes the electrical behavior of the cell systems. The impact of electric field intensity on the cell systems should be studied properly to optimize the electric field treatments of biological systems. Based on the cell dimensions and its dielectric properties, an electrical equivalent circuit for an endosperm cell in rice was developed and its total impedance and capacitance were verified with measurement results. The variations of impedance and conductance with respect to applied impulse voltage at different frequencies were plotted. This impedance analysis method can be used to determine the optimum voltage level for electric field treatment and also to determine the cell rupture due to electric field applications.
Using FOCUS to determine the radiation impedance for square transducers
Jennings, Matthew R.; McGough, Robert J.
2012-10-01
The power radiated by an ultrasound transducer is calculated with the radiation resistance, which is the real part of the radiation impedance. For circular transducers, an analytical solution for the radiation impedance is known, but an analytical expression for the radiation impedance is not available for rectangular or square transducers. To determine the radiation resistance in FOCUS, the pressure on the surface of a square transducer is computed with the fast nearfield method, and then the force on the transducer face is computed by integrating the pressure. Results using this approach are numerically evaluated for a range of ka values from 0.1 to 16. The pressure on the transducer face is also computed with the Rayleigh-Sommerfeld integral, and the results are compared. The numerical value of the radiation resistance computed with FOCUS and with the Rayleigh-Sommerfeld integral converge to the same value, although FOCUS calculates the same result in about one-quarter of the time.
Pumping slots: impedances and power losses
Kurennoy, S. [Maryland Univ., College Park, MD (United States). Dept. of Physics
1996-08-01
Contributions of pumping slots to the beam coupling impedances and power losses in a B-factory ring are considered. While their leading contribution is to the inductive impedance, for high-intensity machines with short bunches like e{sup +}e{sup -} B-factories the real part of the impedance and related loss factors are also important. Using an analytical approach we calculate the coupling impedances and loss factors due to slots in a ring with an arbitrary cross section of the vacuum chamber. Effects of the slot tilt on the beam impedance are also considered, and restrictions on the tilt angle are derived from limitations on the impedance increase. The power leakage through the slots is discussed briefly. The results are applied to the KEK B-factory. (author)
Impedances for electron linacs and storage rings
Some basic concepts and results are presented concerning the impedances of electron linacs and storage rings. The impedances of an accelerator or ring completely characterizes the interaction of the beam with its environment. Not only does the impedance (or its Fourier transform, the wake potential) determine the energy loss by a bunched beam to its environment, but it is also the chief ingredient required for any calculation of beam stability
Analysis of AC loss in superconducting power devices calculated from short sample data
Rabbers, J.J.; Haken, ten, Bennie; Kate, ten, F.J.W.
2003-01-01
A method to calculate the AC loss of superconducting power devices from the measured AC loss of a short sample is developed. In coils and cables the magnetic field varies spatially. The position dependent field vector is calculated assuming a homogeneous current distribution. From this field profile and the transport current, the local AC loss is calculated. Integration over the conductor length yields the AC loss of the device. The total AC loss of the device is split up in different compone...
Yangkyu Park
2016-01-01
Full Text Available Purpose. To distinguish between normal (SV-HUC-1 and cancerous (TCCSUP human urothelial cell lines using microelectrical impedance spectroscopy (μEIS. Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p<0.001, was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p<0.001. Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF.
Park, Yangkyu; Kim, Hyeon Woo; Yun, Joho; Seo, Seungwan; Park, Chang-Ju; Lee, Jeong Zoo; Lee, Jong-Hyun
2016-01-01
Purpose. To distinguish between normal (SV-HUC-1) and cancerous (TCCSUP) human urothelial cell lines using microelectrical impedance spectroscopy (μEIS). Materials and Methods. Two types of μEIS devices were designed and used in combination to measure the impedance of SV-HUC-1 and TCCSUP cells flowing through the channels of the devices. The first device (μEIS-OF) was designed to determine the optimal frequency at which the impedance of two cell lines is most distinguishable. The μEIS-OF trapped the flowing cells and measured their impedance at a frequency ranging from 5 kHz to 1 MHz. The second device (μEIS-RT) was designed for real-time impedance measurement of the cells at the optimal frequency. The impedance was measured instantaneously as the cells passed the sensing electrodes of μEIS-RT. Results. The optimal frequency, which maximized the average difference of the amplitude and phase angle between the two cell lines (p < 0.001), was determined to be 119 kHz. The real-time impedance of the cell lines was measured at 119 kHz; the two cell lines differed significantly in terms of amplitude and phase angle (p < 0.001). Conclusion. The μEIS-RT can discriminate SV-HUC-1 and TCCSUP cells by measuring the impedance at the optimal frequency determined by the μEIS-OF. PMID:26998490
大容量发电机出口断路器选择%Circuit Breakers Selection Method for Large-capacity AC High-voltage Generator
张爽
2011-01-01
针对大容量发电机出口断路器的选择问题,依据GB/T 14824-2008、IEEE Std C37.013-1997和IEC 60909-0-2001中的计算方法,并结合发电机出口断路器型式试验报告的有关数据,以某百万千瓦级发电机组为例进行了比较计算,分析计算结果,提出了对发电机出口短路器短路电流开断能力不能采用百分比而应采用绝对值进行校验.%For selecting large-capacity AC high-voltage generator circuit breakers in a large generator system, comparative calculations are conducted for a million kilowatts rated generator following the standards of GB/T 14824-2008, IEEE Std C37.013-1997 and IEC 60909-0-2001. The calculation results and the test reports of generator circuit breakers are analyzed, and a suggestion is hence offered that absolute value of short-circuit current should be used for examining the short-circuit current breaking capacity of an AC high-voltage generator circuit breaker instead of percentage value.
A suspended particle sensing technique called travelling wave dielectrophoresis impedance measurement (TWDIM) is presented which uses travelling wave dielectrophoresis to concentrate suspended particles in solution to a subset of electrodes through which impedance sensing is used to sense particle concentrations. A microfabricated TWDIM device and associated electronic systems are presented, as well as methods of operation and experimental results determining yeast cell concentrations
Optimal multisine excitation design for broadband electrical impedance spectroscopy
when exciting with the optimal and flat multisine signals and compared to a single frequency ac impedance analyzer when characterizing an RC circuit. In vivo healthy myocardium tissue electrical impedance measurements show that broadband EIS based on multisine excitations enable the characterization of dynamic biological systems
Optimal multisine excitation design for broadband electrical impedance spectroscopy
Sanchez, B.; Vandersteen, G.; Bragos, R.; Schoukens, J.
2011-11-01
exciting with the optimal and flat multisine signals and compared to a single frequency ac impedance analyzer when characterizing an RC circuit. In vivo healthy myocardium tissue electrical impedance measurements show that broadband EIS based on multisine excitations enable the characterization of dynamic biological systems.
Coupled Transmission Lines as Impedance Transformer
Jensen, Thomas; Zhurbenko, Vitaliy; Krozer, Viktor;
2007-01-01
A theoretical investigation of the use of a coupled line section as an impedance transformer is presented. We show how to properly select the terminations of the coupled line structures for effective matching of real and complex loads in both narrow and wide frequency ranges. The corresponding...... circuit configurations and the design procedures are proposed. Synthesis relations are derived and provided for efficient matching circuit construction. Design examples are given to demonstrate the flexibility and limitations of the design methods and to show their validity for practical applications....... Wideband matching performance with relative bandwidth beyond 100% and return loss > 20 dB is demonstrated both theoretically and experimentally. Good agreement is achieved between the measured and predicted performance of the coupled line transformer section....
The sensitivity in Electrical Impedance Tomography
A. I. Rybin
2013-12-01
Full Text Available Introduction. The concept of sensitivity in Electrical Impedance Tomography is introduced (first – fourth type. The experimental researches measuring the voltages on the phantom outline are conducted on the created layout (for uniform cylindrical vessel with brine and placed inhomogeneities in a vessel. The main part. The inverse problems are solved for simulated on PC phantom (the third type sensitivity and from measured results (the fourth type sensitivity by conductivity zones method using regularization by A. Tykhonov. The sensitivity to conductivity increasing of elements inside the phantom is significantly less than the sensitivity to resistance increasing. The results of measured voltages processing and the results of projection reconstruction (obtained from mathematical model and from measured results are described. Conclusions. The satisfactory agreements of reconstruction results between themselves and with mathematical and measured phantoms are shown.
Impedance-controlled ultrasound probe
Gilbertson, Matthew W.; Anthony, Brian W.
2011-03-01
An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.
Transport AC losses in YBCO coated conductors
Majoros, M [Ohio State University, Columbus, OH 43210 (United States); Ye, L [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Velichko, A V [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Coombs, T A [IRC in Superconductivity, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Sumption, M D [Ohio State University, Columbus, OH 43210 (United States); Collings, E W [Ohio State University, Columbus, OH 43210 (United States)
2007-09-15
Transport AC loss measurements have been made on YBCO-coated conductors prepared on two different substrate templates-RABiTS (rolling-assisted biaxially textured substrate) and IBAD (ion-beam-assisted deposition). RABiTS samples show higher losses compared with the theoretical values obtained from the critical state model, with constant critical current density, at currents lower than the critical current. An origin of this extra AC loss was demonstrated experimentally by comparison of the AC loss of two samples with different I-V curves. Despite a difference in I-V curves and in the critical currents, their measured losses, as well as the normalized losses, were practically the same. However, the functional dependence of the losses was affected by the ferromagnetic substrate. An influence of the presence of a ferromagnetic substrate on transport AC losses in YBCO film was calculated numerically by the finite element method. The presence of a ferromagnetic substrate increases transport AC losses in YBCO films depending on its relative magnetic permeability. The two loss contributions-transport AC loss in YBCO films and ferromagnetic loss in the substrate-cannot be considered as mutually independent.
Smart Multi-Frequency Bioelectrical Impedance Spectrometer for BIA and BIVA Applications.
Harder, Rene; Diedrich, Andre; Whitfield, Jonathan S; Buchowski, Macie S; Pietsch, John B; Baudenbacher, Franz J
2016-08-01
Bioelectrical impedance analysis (BIA) is a noninvasive and commonly used method for the assessment of body composition including body water. We designed a small, portable and wireless multi-frequency impedance spectrometer based on the 12 bit impedance network analyzer AD5933 and a precision wide-band constant current source for tetrapolar whole body impedance measurements. The impedance spectrometer communicates via Bluetooth with mobile devices (smart phone or tablet computer) that provide user interface for patient management and data visualization. The export of patient measurement results into a clinical research database facilitates the aggregation of bioelectrical impedance analysis and biolectrical impedance vector analysis (BIVA) data across multiple subjects and/or studies. The performance of the spectrometer was evaluated using a passive tissue equivalent circuit model as well as a comparison of body composition changes assessed with bioelectrical impedance and dual-energy X-ray absorptiometry (DXA) in healthy volunteers. Our results show an absolute error of 1% for resistance and 5% for reactance measurements in the frequency range of 3 kHz to 150 kHz. A linear regression of BIA and DXA fat mass estimations showed a strong correlation (r(2)=0.985) between measures with a maximum absolute error of 6.5%. The simplicity of BIA measurements, a cost effective design and the simple visual representation of impedance data enables patients to compare and determine body composition during the time course of a specific treatment plan in a clinical or home environment. PMID:26863670
Modeling and Analysis of Harmonic Stability in an AC Power-Electronics-Based Power System
Wang, Xiongfei; Blaabjerg, Frede; Wu, Weimin
2014-01-01
This paper addresses the harmonic stability caused by the interactions among the wideband control of power converters and passive components in an AC power-electronicsbased power system. The impedance-based analytical approach is employed and expanded to a meshed and balanced threephase network w...
ac bidirectional motor controller
Schreiner, K.
1988-01-01
Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.
Studies of deionization and impedance spectroscopy for blood analyzer
Kwong, Charlotte C.; Li, Nan; Ho, Chih-Ming
2005-11-01
Blood analysis provides vital information for health conditions. For instance, typical infection response is correlated to an elevated White Blood Cell (WBC) count, while low Red Blood Cell (RBC) count, hemoglobin and hematocrit are caused by anemia or internal bleeding. We are developing two essential modules, deionization (DI) chip and microfluidic cytometer with impedance spectroscopy flow, for enabling the realization of a single platform miniaturized blood analyzer. In the proposed analyzer, blood cells are preliminarily sorted by Dielectrophoretic (DEP) means into sub-groups, differentiated and counted by impedance spectroscopy in a flow cytometer. DEP techniques have been demonstrated to stretch DNA, align Carbon Nanotubes (CNT) and trap cells successfully. However, DEP manipulation does not function in biological media with high conductivity. The DI module is designed to account for this challenge. H Filter will serve as an ion extraction platform in a microchamber. Sample and buffer do not mix well in micro scale allowing the ions being extracted by diffusion without increasing the volume. This can keep the downstream processing time short. Micro scale hydrodynamic focusing is employed to place single cell passing along the central plane of the flow cytometer module. By applying an AC electrical field, suspended cells are polarized, membrane capacitance C m, cytoplasm conductivity σ c, and cytoplasm permittivity ɛ c will vary as functions of frequency. Tracing back the monitored current, the numbers of individual cell species can be evaluated.
Electrical conduction in polycrystalline CVD diamond: Temperature dependent impedance measurements
Ye, H.; Williams, O.A.; Jackman, R.B. [Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE (United Kingdom); Rudkin, R.; Atkinson, A. [Department of Materials, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom)
2002-10-16
In this paper, we report the first measurement of impedance on freestanding diamond films from 0.1 Hz to 10 MHz up to 300 C. A wide range of CVD materials have been investigated, but here we concentrate on 'black' diamond grown by MWPECVD. The Cole-Cole (Z' via Z{sup ''}) plots are well fitted to a RC parallel circuit model and the equivalent resistance and capacitance for the diamond films have been estimated using the Zview curve fitting. The results show only one single semicircle response at each temperature measured. It was found that the resistance decreases from 62 M{omega} at room temperature to 4 k{omega} at 300 C, with an activation energy around 0.51 eV. The equivalent capacitance is maintained at the level of 10{sup 2} pF up to 300 C, suggesting that the diamond grain boundaries are dominating the conduction. At 400 C, the impedance at low frequencies shows a linear tail, which can be explained that the ac polarization of diamond/Au interface occurs. (Abstract Copyright [2002], Wiley Periodicals, Inc.)
Correcting electrode impedance effects in broadband SIP measurements
Huisman, Johan Alexander; Zimmermann, Egon; Esser, Odilia; Haegel, Franz-Hubert; Vereecken, Harry
2016-04-01
Broadband spectral induced polarization (SIP) measurements of the complex electrical resistivity can be affected by the contact impedance of the potential electrodes above 100 Hz. In this study, we present a correction procedure to remove electrode impedance effects from SIP measurements. The first step in this correction procedure is to estimate the electrode impedance using a measurement with reversed current and potential electrodes. In a second step, this estimated electrode impedance is used to correct SIP measurements based on a simplified electrical model of the SIP measurement system. We evaluated this new correction procedure using SIP measurements on water because of the well-defined dielectric properties. It was found that the difference between the corrected and expected phase of the complex electrical resistivity of water was below 0.1 mrad at 1 kHz for a wide range of electrode impedances. In addition, SIP measurements on a saturated unconsolidated sediment sample with two types of potential electrodes showed that the measured phase of the electrical resistivity was very similar (difference SIP measurements on variably saturated unconsolidated sand were made. Here, the plausibility of the phase of the electrical resistivity was improved for frequencies up to 1 kHz, but errors remained for higher frequencies due to the approximate nature of the electrode impedance estimates and some remaining unknown parasitic capacitances that led to current leakage. It was concluded that the proposed correction procedure for SIP measurements improved the accuracy of the phase measurements by an order of magnitude in the kHz frequency range. Further improvement of this accuracy requires a method to accurately estimate parasitic capacitances in situ.
Design of optimized impedance transformer for ICRF antenna in LHD
Highlights: ► We developed optimization method of impedance transformer for ICRF antenna. ► Power loss will be one-third with the optimized impedance transformer. ► Possibility of damage on the transmission line will be drastically reduced. ► High performance will be kept in the wide antenna impedance region. -- Abstract: A pair of ion cyclotron range of frequencies (ICRF) antennas in the large helical device (LHD), HAS antennas showed high efficiency in minority ion heating. However the low loading resistance must be increased to prevent breakdown in transmission line. Moreover, the voltage and the current around the feed-through must be reduced to protect it. For these purpose, we developed a design procedure of the impedance transformer for HAS antennas. To optimize the transformer, the inner conductors were divided into several segments and the radii of them were given discretely and independently. The maximum effective loading resistance was obtained by using all combinations of radii within the limitations of the voltage and current at the feed-through and the electric field on the transformer. To get a precise solution, this procedure was repeated several times by narrowing the range of radii of inner conductors. Then the optimized impedance transformer was designed by smoothing the radii of inner conductors. For the typical discharge, the voltage and current at the feed-through were reduced to the half of the original values with the same power. The effective loading resistance was increased to more than four times. High performance is expected in wide impedance region
Ervin, Eric Nathan; White, Henry S; Baker, Lane A; Martin, Charles R
2006-09-15
Whether an individual pore in a porous membrane can be imaged using scanning electrochemical microscopy (SECM), operated in ac impedance mode, is determined by the magnitude of the change in the total impedance of the imaging system as the SECM tip is scanned over the pore. In instances when the SECM tip resistance is small relative to the internal pore resistance, the total impedance changes by a negligible amount, rendering the pore invisible during impedance imaging. A simple solution to this problem is to introduce a low-impedance electrical shunt (i.e., a salt bridge) across the membrane. This principle is demonstrated by imaging polycarbonate membranes (6-12-microm thickness) containing between 1 and 2000 conical-shaped pores (60-nm- and 2.5-microm-diameter openings) using an approximately 1-microm-radius Pt tip. Theory and experiments show that image contrast (the change in ac current measured as the probe is scanned over the pore) is inversely proportional to the total resistance of the membrane and can be increased by a factor of approximately 50x by introducing a low-resistance electrical shunt across the membrane. Remarkably, SECM images of membranes containing a single high-resistance (approximately 1 G Omega) pore can only be imaged by short-circuiting the membrane. Image contrast also becomes independent of membrane resistance when an electrical shunt is used, allowing for more quantitative comparisons of the features in ac impedance images of different membranes. PMID:16970331
Possibilities of electrical impedance tomography in gynecology
V, Trokhanova O.; A, Chijova Y.; B, Okhapkin M.; V, Korjenevsky A.; S, Tuykin T.
2013-04-01
The paper describes results of comprehensive EIT diagnostics of mammary glands and cervix. The data were obtained from examinations of 170 patients by EIT system MEM (multi-frequency electrical impedance mammograph) and EIT system GIT (gynecological impedance tomograph). Mutual dependence is discussed.
Esophageal Impedance Monitoring: Clinical Pearls and Pitfalls.
Ravi, Karthik; Katzka, David A
2016-09-01
The development of intraluminal esophageal impedance monitoring has improved our ability to detect and measure gastroesophageal reflux without dependence on acid content. This ability to detect previously unrecognized weak or nonacid reflux episodes has had important clinical implications in the diagnosis and management of gastroesophageal reflux disease (GERD). In addition, with the ability to assess bolus transit within the esophageal lumen, impedance monitoring has enhanced the recognition and characterization of esophageal motility disorders in patients with nonobstructive dysphagia. The assessment of the intraluminal movement of gas and liquid has also been proven to be of diagnostic value in conditions such as rumination syndrome and excessive belching. Further, alternative applications of impedance monitoring, such as the measurement of mucosal impedance, have provided novel insights into assessing esophageal mucosal integrity changes as a consequence of inflammatory change. Future applications for esophageal impedance monitoring also hold promise in esophageal conditions other than GERD. However, despite all of the clinical benefits afforded by esophageal impedance monitoring, important clinical and technical shortcomings limit its diagnostic value and must be considered when interpreting study results. Overinterpretation of studies or application of impedance monitoring in patients can have deleterious clinical implications. This review will highlight the clinical benefits and limitations of esophageal impedance monitoring and provide clinical pearls and pitfalls associated with this technology. PMID:27325223
Impedance of a slotted-pipe kicker
Feng Zhou [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics
1996-08-01
This paper introduces the principle of a new slotted kicker simply, which is made by using vacuum pipe itself with proper slits as current conductors, and then, presents a rough estimation of its longitudinal and transverse impedance, respectively. Calculation shows that its impedance is reduced significantly compared to our present air-coil kicker. (author)
Impedance of Surface Footings on Layered Ground
Andersen, Lars; Clausen, Johan Christian
2005-01-01
discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0 to 3 Hz. Analyses show that soil stratification may lead to a significant changes in the impedance related...
Impedance of Surface Footings on Layered Ground
Andersen, Lars; Clausen, Johan
2007-01-01
discussed. Based on the Green's function for a stratified half-space, the impedance of a surface footing with arbitrary shape is computed. A wind turbine foundation is analysed in the frequency range 0-3 Hz. Analyses show that soil stratification may lead to significant changes in the impedance related to...
New OTRA-Based Generalized Impedance Simulator
Ashish Gupta; Raj Senani; D. R. Bhaskar; SINGH, A.K.
2013-01-01
Operational transresistance amplifier (OTRA) has attracted considerable attention in the recent literature in several applications such as impedance simulation, universal biquad filter realization, realization of sinusoidal oscillators and multivibrators. However, to the best knowledge of the authors, any OTRA-based generalized impedance simulator circuits have not been reported so far. The purpose of this paper is to present such a circuit.
Estimating the short-circuit impedance
Nielsen, Arne Hejde; Pedersen, Knud Ole Helgesen; Poulsen, Niels Kjølstad
through a RLS-algorithm. The algorithms have been tested and implemented on a PC at a 132 kV substation supplying a rolling mill. Knowing the short-circuit impedance gives the rolling mill an opportunity to adjust the arc furnace operation to keep flicker below a certain level. Therefore, the PC performs...... a simultaneously measurement of impedance and flicker....
Far-infrared embedding impedance measurements
Neikirk, D. P.; Rutledge, D. B.
1984-01-01
A technique which allows the measurement of detector embedding impedance has been developed. By using a bismuth microbolometer as a variable resistance load the impedance of one element in a bow-tie antenna array operating at 94 GHz was inferred. The technique is frequency insensitive, and could be used throughout the far-infrared.
An Islanding Microgrid Power Sharing Approach Using Enhanced Virtual Impedance Control Scheme
He, Jinwei; Li, Yun Wei; Guerrero, Josep M.;
2013-01-01
In order to address the load sharing problem in islanding microgrids, this paper proposes an enhanced distributed generation (DG) unit virtual impedance control approach. The proposed method can realize accurate regulation of DG unit equivalent impedance at both fundamental and selected harmonic...... frequencies. In contrast to conventional virtual impedance control methods, where only a line current feed-forward term is added to the DG voltage reference, the proposed virtual impedance at fundamental and harmonic frequencies is regulated using DG line current and point of common coupling (PCC) voltage...... feed-forward terms, respectively. With this modification, the impacts of mismatched physical feeder impedances are compensated. Thus, better reactive and harmonic power sharing can be realized. Additionally, this paper also demonstrates that PCC harmonic voltages can be mitigated by reducing the...
Calculation of longitudinal CSR impedance in curved chamber
Coherent synchrotron radiation (CSR) fields are generated when a bunched beam moves along a curved trajectory. A new code, named CSRZ, was developed using finite difference method to calculate the longitudinal CSR impedance for a beam moving along a curved chamber. The method adopted in our code was originated by T. Agoh and K. Yokoya [1]. It solves the parabolic equation in the frequency domain in a curvilinear coordinate system. In our studies, the chamber has uniform rectangular crosssection along the beam trajectory, which is the same as that in [1]. But the curvature of the beam trajectory is freed, and then we can investigate the CSR impedance of a single or a series of bending magnets. The calculation results indicate that the shielding effect due to outer chamber wall can be well explained by a simple optical approximation model at high frequencies. With an approximation of a wiggling chamber inside a wiggler, the coherent wiggler radiation (CWR) impedance has also been studied. Due to chamber shielding, the CWR impedance exhibits narrow peaks at frequencies satisfying the resonant conditions. (author)
Bioelectric impedance phase angle in breast carcinoma
Ruchi Tyagi
2014-01-01
Full Text Available Context: Worldwide breast cancer is the most frequently diagnosed life threatening cancer and the leading cause of death in women. Bioelectric impedance analysis (BIA affords an emerging opportunity to assess prognosis because of its ability to non invasively assess cell and plasma membrane structure and function by means of phase angle. Aims: To compare the phase angle between patients of breast cancer and their matched control with the help of BIA. Settings and Design: After taking clearance from ethical committee, a total of 34 female cases of histologically proven infiltrating ductal breast carcinoma were included from the surgery IPD, department of surgery. Equal numbers of the matched controls were recruited from the friends and relatives of cases. Materials and Methods: Bio Electrical Impedance Analyzer (BIA BODY STAT QUAD SCAN 4000 was used to measure resistance (R and reactance (Xc by recording a voltage drop in applied current. Phase angle is the ratio of reactance to resistance and is a measure of cell vitality. Statistical analysis used: Unpaired "t" test was applied. Results: In control group, the phase angle showed a mean of 5.479 whereas in test group, it showed a mean value of 4.726. The P value showed a significant difference (P < 0.0001. The smaller the phase angle values were higher was the tumor, nodes, metastases (TNM staging. The phase angles differed significantly from the healthy age matched control values. Conclusions: This study demonstrated that phase angle is a strong predictor of severity of breast cancer and differed significantly between the two groups.
Identification of irradiated potatoes by impedance measurements
Measuring the impedance was found to be a highly reliable and practical technique for identifying irradiated potatoes. Impedance was measured by puncturing a potato tuber with a steel electrode and passing a 3 -- 5 mA alternating current through it. Three parameters were determined: Z0/Z180 (impedance ratio at 5 kHz, 0 to 180 seconds after puncturing), Z sub(50k)/Z sub(0.5k) (impedance ratio at 50 kHz to 0.5 kHz) and Z sub(50k)/Z sub(5k) (impedance ratio at 50 kHz to 5 kHz). Among these, parameter Z sub(50k)/Z sub(5k) was the most favourable index. The technique allowed not only differentiation between unirradiated and irradiated potatoes but an estimation of the irradiation dose for up to six months after irradiation, independent of the potato storage condition. (author)
AC Zeeman potentials for atom chip-based ultracold atoms
Fancher, Charles; Pyle, Andrew; Ziltz, Austin; Aubin, Seth
2015-05-01
We present experimental and theoretical progress on using the AC Zeeman force produced by microwave magnetic near-fields from an atom chip to manipulate and eventually trap ultracold atoms. These AC Zeeman potentials are inherently spin-dependent and can be used to apply qualitatively different potentials to different spin states simultaneously. Furthermore, AC Zeeman traps are compatible with the large DC magnetic fields necessary for accessing Feshbach resonances. Applications include spin-dependent trapped atom interferometry and experiments in 1D many-body physics. Initial experiments and results are geared towards observing the bipolar detuning-dependent nature of the AC Zeeman force at 6.8 GHz with ultracold 87Rb atoms trapped in the vicinity of an atom chip. Experimental work is also underway towards working with potassium isotopes at frequencies of 1 GHz and below. Theoretical work is focused on atom chip designs for AC Zeeman traps produced by magnetic near-fields, while also incorporating the effect of the related electric near-fields. Electromagnetic simulations of atom chip circuits are used for mapping microwave propagation in on-chip transmission line structures, accounting for the skin effect, and guiding impedance matching.
Skin-electrode impedance measurement during ECG acquisition: method’s validation
Casal, Leonardo; La Mura, Guillermo
2016-04-01
Skm-electrode impedance measurement can provide valuable information prior. dunng and post electrocardiographic (ECG) or electroencephalographs (EEG) acquisitions. In this work we validate a method for skm-electrode impedance measurement using test circuits with known resistance and capacitor values, at different frequencies for injected excitation current. Finally the method is successfully used for impedance measurement during ECG acquisition on a subject usmg 125 Hz and 6 nA square wave excitation signal at instrumentation amplifier mput. The method can be used for many electrodes configuration.
AC loss performance of CS insert coil
The ITER Central Solenoid (CS) model coil and the CS insert coil were fabricated, and the test was carried out. The AC loss measurement of the coil is one of the most important tests to determine coil performance. The AC loss of a short sample conductor for the CS insert coil was measured by using the calorimetric method, and the coupling time constants of the conductor were estimated to be 30 ms and 20 ms for pulse and discharge tests, respectively. The AC loss of the CS insert coil was measured by using the calorimetric method for pulse and discharge tests. The coupling time constant estimated from the result of the pulse tests was 34 ms and almost equal to that of the short sample. The coupling time constant for the discharge test was estimated to be 140 ms and about 4 times that of the pulse test. (author)
Xinyu Chen; Huwei Yuan; Xiange Hu; Jingxiang Meng; Xianqing Zhou; Xiao-Ru Wang; Yue Li
2015-01-01
Electrical impedance (EI) and phase angle (PHI) parameters in AC impedance spectroscopy are important electrical parameters in the study of medical pathology. However, little is known about their application in variation and genetic relationship studies of forest trees. In order to test whether impedance parameters could be used in genetic relationship analysis among conifer species, EI and PHI were measured in a seedling experiment test composed of Pinus tabuliformis, Pinus yunnanensis, and Pinus densata in a habitat of Pinus tabuliformis. The results showed that variations in both EI and PHI among species were sig-nificant in different electric frequencies, and the EI and PHI values measured in the two populations of P. densata were between the two parental species, P. yunnanensis and P. tabuliformis. These results show that these two impedance parameters could reflect the genetic relationship among pine species. This was the first time using the two AC impedance spectroscopy parameters to test the genetic relationship analysis between tree species, and would be a hopeful novel reference methodology for future studies in evolution and genetic variation of tree species.
AC electric motors control advanced design techniques and applications
Giri, Fouad
2013-01-01
The complexity of AC motor control lies in the multivariable and nonlinear nature of AC machine dynamics. Recent advancements in control theory now make it possible to deal with long-standing problems in AC motors control. This text expertly draws on these developments to apply a wide range of model-based control designmethods to a variety of AC motors. Contributions from over thirty top researchers explain how modern control design methods can be used to achieve tight speed regulation, optimal energetic efficiency, and operation reliability and safety, by considering online state var
Estimation of Elastic Parameters Using Two-Term Fatti Elastic Impedance Inversion
Jin Zhang; Huaishan Liu; Siyou Tong; Lei Xing; Xiangpeng Chen; Chaoguang Su
2015-01-01
Elastic impedance (EI) inversion has been widely used in industry to estimate kinds of elastic parameters to distinguish lithology or even fluid. However, it is found that conventional three-term elastic impedance formula is unstable even with slight random noise in seismic data, due to the ill-conditioned co-efficient matrix of elastic parameters. We presented two-term Fatti elastic impedance inversion method, which is more robust and accurate than conventional three-term elastic impedance inversion. In our method, density is ignored to increase the robustness of inversion matrix. Besides, P-impedance and S-impedance, which are less sensitive to random noise, are inverted instead of VP and VS in conventional three-term elastic impedance. To make the inversion more stable, we defined the range of K value as a con-straint. Synthetic tests claim that this method can obtain promising results with low SNR (signal noise ratio) seismic data. With the application of the method in a 2D line data, we achievedλρ,μρand VP/VS sections, which matched the drilled well perfectly, indicating the potential of the method in reservoir prediction.
Variable Impedance Control of a Rehabilitation Robot for Modelling Physiotherapist’s Motions
Yalcin, Baris Can; Akdogan, Erhan; Tufekci, Celal Sami
2014-01-01
This paper presents a variable impedance control method, which is used to teach a lower limb rehabilitation robot how to imitate exercise motions applied to a patient by a physiotherapist. To achieve this task, the characteristics of physiotherapist’s motion are investigated. The proposed control method is based on estimating stiffness parameter of a physiotherapist’s arm and generating impedance parameters of the robot to model the exercise motions. The effectiveness of proposed method is sh...
On-line grid impedance estimation based on harmonic injection for grid-connected PV inverter
Ciobotaru, Mihai; Teodorescu, Remus; Blaabjerg, Frede
2007-01-01
The paper presents an on-line software method for impedance estimation of the energized impedances such as power system grid. The proposed method is based on producing a perturbation on the output of the power converter that is in the form of periodical injection of one or two voltage harmonic...... for robust control of the distributed power generation systems (DPGS). Selected results are presented to confirm the performances of the proposed method....
Organic electrochemical transistors for cell-based impedance sensing
Rivnay, Jonathan, E-mail: rivnay@emse.fr, E-mail: owens@emse.fr; Ramuz, Marc; Hama, Adel; Huerta, Miriam; Owens, Roisin M., E-mail: rivnay@emse.fr, E-mail: owens@emse.fr [Department of Bioelectronics, Ecole des Mines de St. Etienne, 13541 Gardanne (France); Leleux, Pierre [Department of Bioelectronics, Ecole des Mines de St. Etienne, 13541 Gardanne (France); Microvitae Technologies, Pole d' Activite Y. Morandat, 13120 Gardanne (France)
2015-01-26
Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.
Organic electrochemical transistors for cell-based impedance sensing
Rivnay, Jonathan; Ramuz, Marc; Leleux, Pierre; Hama, Adel; Huerta, Miriam; Owens, Roisin M.
2015-01-01
Electrical impedance sensing of biological systems, especially cultured epithelial cell layers, is now a common technique to monitor cell motion, morphology, and cell layer/tissue integrity for high throughput toxicology screening. Existing methods to measure electrical impedance most often rely on a two electrode configuration, where low frequency signals are challenging to obtain for small devices and for tissues with high resistance, due to low current. Organic electrochemical transistors (OECTs) are conducting polymer-based devices, which have been shown to efficiently transduce and amplify low-level ionic fluxes in biological systems into electronic output signals. In this work, we combine OECT-based drain current measurements with simultaneous measurement of more traditional impedance sensing using the gate current to produce complex impedance traces, which show low error at both low and high frequencies. We apply this technique in vitro to a model epithelial tissue layer and show that the data can be fit to an equivalent circuit model yielding trans-epithelial resistance and cell layer capacitance values in agreement with literature. Importantly, the combined measurement allows for low biases across the cell layer, while still maintaining good broadband signal.
Determination of Complex Microcalorimeter Parameters with Impedance Measurements
Saab, T.; Bandler, S. R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lindeman, M. A.; Porter, F. S.; Sadleir, J.
2005-01-01
The proper understanding and modeling of a microcalorimeter s response requires the accurate knowledge of a handful of parameters, such as C, G, alpha, . . . . While a few of these, such 8s the normal state resistance and the total thermal conductance to the heat bath (G) are directly determined from the DC IV characteristics, some others, notoriously the heat capacity (C) and alpha, appear in degenerate combinations in most measurable quantities. The case of a complex microcalorimeter, i.e. one in which the absorber s heat capacity is connected by a finite thermal impedance to the sensor, and subsequently by another thermal impedance to the heat bath, results in an added ambiguity in the determination of the individual C's and G's. In general, the dependence of the microcalorimeter s complex impedance on these parameters varies with frequency. This variation allows us to determine the individual parameters by fitting the prediction of the microcalorimeter model to the impedance data. We describe in this paper our efforts at characterizing the Goddard X-ray microcalorimeters. Using the parameters determined with this method we them compare the pulse shape and noise spectra predicted by the microcalorimeter model to data taken with the same devices.
Traceable calibration of impedance heads and artificial mastoids
Scott, D. A.; Dickinson, L. P.; Bell, T. J.
2015-12-01
Artificial mastoids are devices which simulate the mechanical characteristics of the human head, and in particular of the bony structure behind the ear. They are an essential tool in the calibration of bone-conduction hearing aids and audiometers. With the emergence of different types of artificial mastoids in the market, and the realisation that the visco-elastic part of these instruments changes over time, the development of a method of traceable calibration of these devices without relying on commercial software has become important for national metrology institutes. This paper describes commercially available calibration methods, and the development of a traceable calibration method including the traceable calibration of the impedance head used to measure the mechanical impedance of the artificial mastoid.
Traceable calibration of impedance heads and artificial mastoids
Artificial mastoids are devices which simulate the mechanical characteristics of the human head, and in particular of the bony structure behind the ear. They are an essential tool in the calibration of bone-conduction hearing aids and audiometers. With the emergence of different types of artificial mastoids in the market, and the realisation that the visco-elastic part of these instruments changes over time, the development of a method of traceable calibration of these devices without relying on commercial software has become important for national metrology institutes. This paper describes commercially available calibration methods, and the development of a traceable calibration method including the traceable calibration of the impedance head used to measure the mechanical impedance of the artificial mastoid. (paper)
Liu, Po-I; Chung, Li-Ching; Ho, Chia-Hua; Shao, Hsin; Liang, Teh-Ming; Horng, Ren-Yang; Chang, Min-Chao; Ma, Chen-Chi M
2015-05-15
Titanium dioxide (TiO2)/ activated carbon (AC) composite materials, as capacitive deionization electrodes, were prepared by a two-step microwave-assisted ionothermal synthesis method. The electrosorption capacity of the composite electrodes was studied and the effects of AC characteristics were explored. These effects were investigated by multiple analytical techniques, including X-ray photoelectron spectroscopy, thermogravimetry analysis and electrochemical impedance spectroscopy, etc. The experimental results indicated that the electrosorption capacity of the TiO2/AC composite electrode is dependent on the characteristics of AC including the pore structure and the surface property. An enhancement in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher mesopore content and less hydrophilic surface. This enhancement is due to the deposition of anatase TiO2 with suitable amount of Ti-OH. On the other hand, a decline in electrosorption capacity was observed for the TiO2/AC composite electrode prepared from the AC with higher micropore content and highly hydrophilic surface. High content of hydrogen bond complex formed between the functional group on hydrophilic surface with H2O, which will slow down the TiO2 precursor-H2O reaction. In such situation, the effect of TiO2 becomes unfavorable as the loading amount of TiO2 is less and the micropore can also be blocked. PMID:25576198
Pliquett, Uwe
2013-04-01
Over recent years advanced measurement methods have facilitated outstanding achievements not only in medical instrumentation but also in biotechnology. Impedance measurement is a simple and innocuous way to characterize materials. For more than 40 years biological materials, most of them based on cells, have been characterized by means of electrical impedance for quality control of agricultural products, monitoring of biotechnological or food processes or in health care. Although the list of possible applications is long, very few applications successfully entered the market before the turn of the century. This was, on the one hand, due to the low specificity of electrical impedance with respect to other material properties because it is influenced by multiple factors. On the other hand, equipment and methods for many potential applications were not available. With the appearance of microcontrollers that could be easily integrated in applications at the beginning of the 1980s, impedance measurement advanced as a valuable tool in process optimization and lab automation. However, established methods and data processing were mostly used in a new environment. This has changed significantly during the last 10 years with a dramatic growth of the market for medical instrumentation and also for biotechnological applications. Today, advanced process monitoring and control require fast and highly parallel electrical characterization which in turn yields incredible data volumes that must be handled in real time. Many newer developments require miniaturized but precise sensing methods which is one of the main parts of Lab-on-Chip technology. Moreover, biosensors increasingly use impedometric transducers, which are not compatible with the large expensive measurement devices that are common in the laboratory environment. Following the achievements in the field of bioimpedance measurement, we will now witness a dramatic development of new electrode structures and electronics
Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition
The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity
Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.
1995-01-01
A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.