Sample records for ac electro-osmotic pumps

  1. Ultrafast High-pressure AC Electro-osmotic Pumps for Portable Biomedical Microfluidics

    Huang, Chien-Chih; Thorsen, Todd


    This paper details the development of an integrated AC electro-osmotic (ACEO) microfluidic pump for dilute electrolytes consisting of a long serpentine microchannel lined with three dimensional (3D) stepped electrode arrays. Using low AC voltage (1 Volt rms, 1 kHz), power (5 mW) and current (3.5 mA) in water, the pump is capable of generating a 1.4 kPa head pressure, a 100-fold increase over prior ACEO pumps, and a 1.37 mm/sec effective slip velocity over the electrodes without flow reversal. The integrated ACEO pump can utilize low ionic strength solutions such as distilled water as the working solution to pump physiological strength (100 mM) biological solutions in separate microfluidic devices, with potential applications in portable or implantable biomedical microfluidic devices. As a proof-of-concept experiment, the use of the ACEO pumps for DNA hybridization in a microfluidic microarray is demonstrated.

  2. Simulation of an ac electro-osmotic pump with step microelectrodes

    Kim, Byoung Jae; Lee, Seung-Hyun; Rezazadeh, Soghra; Sung, Hyung Jin


    Pumps with step microelectrodes subjected to an ac voltage are known to have faster pumping rates than those with planar asymmetric microelectrodes. The driving force for pumping in these systems is ac electro-osmosis. This paper aims to understand the flow behaviors of pumps with step microelectrodes by using a realistic model applicable to high external voltages. This model takes the steric effect due to the finite sizes of ions into account and copes with the exponential sensitivity of the counterion concentration to voltage. The effects on the pumping flow rate of varying the pump parameters were investigated. The geometrical parameters were optimized, and the effects of varying the ac frequency and amplitude were examined. The electrical potential of the fluid and the electrical charge at the electrode surface were solved simultaneously, and the Stokes equation was used to describe the fluid flow.

  3. Maximum efficiency of the electro-osmotic pump

    Xu, Zuli; Miao, Jianying; Wang, Ning; Wen, Weijia; Sheng, Ping


    Electro-osmotic effect in a porous medium arises from the electrically charged double layer at the fluid-solid interface, whereby an externally applied electric field can give rise to fluid flow. The electro-osmotic pump (EOP) is potentially useful for a variety of engineering and biorelated applications, but its generally low efficiency is a negative factor in this regard. A study to determine the optimal efficiency of the EOP and the condition(s) under which it can be realized is therefore of scientific interest and practical importance. We present the results of a theoretical and experimental study on the maximum efficiency optimization of the electrokinetic effect in artificially fabricated porous media with controlled pore diameters. It is shown that whereas the EOP efficiency increases with decreasing channel diameter, from 4.5 to 2.5 μm for samples fabricated on oxidized silicon wafers as expected for the interfacial nature of the electro-osmotic effect, the opposite trend was observed for samples with much smaller channel diameters fabricated on anodized aluminum oxide films, with the pore surface coated with silica. These results are in agreement with the theoretical prediction, based on the competition between interfacial area and the no-slip flow boundary condition, that an optimal efficiency of ˜1% is attained at a microchannel diameter that is five times the Debye length, with a zeta potential of ˜100 mV.

  4. Fabrication and study of AC electro-osmotic micropumps

    Guo, Xin

    In this thesis, microelectrode arrays of micropumps have been designed, fabricated and characterized for transporting microfluid by AC electro-osmosis (ACEO). In particular, the 3D stepped electrode design which shows superior performance to others in literature is adopted for making micropumps, and the performance of such devices has been studied and explored. A novel fabrication process has also been developed in the work, realizing 3D stepped electrodes on a flexible substrate, which is suitable for biomedical use, for example glaucoma implant. There are three major contributions to ACEO pumping in the work. First, a novel design of 3D "T-shaped" discrete electrode arrays was made using PolyMUMPsRTM process. The breakthrough of this work was discretizing the continuous 3D stepped electrodes which were commonly seen in the past research. The "T-shaped" electrodes did not only create ACEO flows on the top surfaces of electrodes but also along the side walls between separated electrodes. Secondly, four 3D stepped electrode arrays were designed, fabricated and tested. It was found from the experiment that PolyMUMPsRTM ACEO electrodes usually required a higher driving voltage than gold electrodes for operation. It was also noticed that a simulation based on the modified model taking into account the surface oxide of electrodes showed a better agreement with the experimental results. It thus demonstrated the possibility that the surface oxide of electrodes had impact on fluidic pumping. This methodology could also be applied to metal electrodes with a native oxide layer such as titanium and aluminum. Thirdly, a prototype of the ACEO pump with 3D stepped electrode arrays was first time realized on a flexible substrate using Kapton polyimide sheets and packaged with PDMS encapsulants. Comprehensive experimental testing was also conducted to evaluate the mechanical properties as well as the pumping performance. The experimental findings indicated that this fabrication

  5. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores

    Yeh, Hung-Chun; Chang, Chih-Chang; Yang, Ruey-Jen


    A numerical investigation is performed into the characteristics of an electro-osmotic pump consisting of a negatively charged conical nanopore. It is shown that the dependence of the flow rectification effect on the bias direction is the reverse of that of the ion current rectification effect. Moreover, the nozzle mode (i.e., the bias is applied from the base side of the nanopore to the tip side) has a higher flow rate compared to the diffuser mode (i.e., the bias is applied from the tip side of the nanopore to the base side). The results showed that the ion-concentration polarization effect occurred inside the conical nanopore, resulting in surface conduction dominating in the ionic current. The ions inside the nanopore are depleted and enriched under the nozzle mode and the diffuser mode, respectively. As a result, the electro-osmotic pump yields a greater pumping pressure, flow rate, and energy conversion efficiency when operating in the nozzle mode. In addition, we also investigated the flow rate rectification behavior for the conical nanopore. The best flow rate rectification factor in this work is 2.06 for an electrolyte concentration of 10-3M .

  6. Heat-transfer enhancement in AC electro-osmotic micro-flows

    Liu, Z. P.; Speetjens, M. F. M.; Frijns, A. J. H.; van Steenhoven, A. A.


    Heat transfer in micro-flows is essential to emerging technologies as advanced microelectronics cooling systems and chemical processes in lab-on-a-chip applications. The present study explores the potential of AC electro-osmotic (ACEO) flow forcing, a promising technique for the actuation and manipulation of micro-flows, for heat-transfer enhancement. Subjects of investigation include the 3D flow structure due to ACEO forcing via an array of electrodes in a micro-channel by way of 3D velocity measurements. Presence and properties of vortical structures of the 3D flow are quantified in laboratory experiments. Typical outcomes of the experimental study result from a number of 3D particle trajectories obtained by using 3D micro-Particle-Tracking Velocimetry (3D μ-PTV). The steady nature of the flow enables combination of results from a series of measurements into one dense data set. This facilitates accurate evaluation of quantities relevant for heat transfer by data-processing methods. The primary circulation is given above one half of an electrode in terms of the spanwise component of vorticity. The outline of the vortex boundary is determined via the eigenvalues of the strain-rate tensor. To estimate convective heat transfer, wall shear rate above one half of an electrode is quantitatively analyzed as function of voltage amplitude and frequency. These results yield first insights into the characteristics of 3D ACEO flows and ways to exploit and manipulate them for heat-transfer enhancement.

  7. Particle and droplet dynamics and separation in AC electro-osmotic micropumps

    Typical tasks in life--sciences are the transport of small amounts of liquids as well as the segregation of suspended biological cells or particles in the microfluidic environment. In the last decade alternating-current electro-osmotic (ACEO) pumping has been found to be an effective means for transporting conductive fluids in microfluidic channels. The ACEO pumping channel is characterized by its configuration of periodic interdigitated electrode fingers on the channel bottom. If a harmonic voltage is applied, an electric double layer develops adjacent to the electrodes that electrically screens the applied potential. The motion of the charged surface layer due to the remaining electric field results in a net flow in the channel. This work proposes to use the ACEO pump not only for the transport of liquids but also for the systematic manipulation and separation of immersed particles. In order to achieve this an extensive study of the relevant forces and dynamics of particles and droplets in the resulting electro-kinetic channel flow is done. This work therefore analyzes the electric and the flow field by means of the finite element method and investigates the size and density dependent particle motion as a function of magnitude and frequency of the applied voltage. Furthermore, the deformation of droplets in the electrokinetic flow is investigated. Their motion is therefore analyzed by means of three-dimensional finite element computations of the respective two-phase flow, where surface tension forces and electrical stresses on the interface between droplet and carrier fluid are regarded. In the course of this work it is shown, that suspended particles and droplets are influenced by the interplay of viscous fluid drag, gravitation, surface tension and dielectrophoretic forces. Therein, the significant dependance of these forces on the particle properties allows for the separation with respect to mass--density and size. Based on this knowledge, channel designs are

  8. Ion fluxes and electro-osmotic fluid flow in electrolytes around a metallic nanowire tip under large applied ac voltage.

    Poetschke, M; Bobeth, M; Cuniberti, G


    Motivated by the analysis of electrochemical growth of metallic nanowires from solution, we studied ion fluxes near nanoelectrodes in a binary symmetric electrolyte on the basis of the modified Poisson-Nernst-Planck equations in the strongly nonlinear region at large applied ac voltage. For an approximate calculation of the electric field near the nanowire tip, concentric spherical blocking electrodes were considered with radius of the inner electrode being of typically a few ten nanometers. The spatiotemporal evolution of the ion concentrations within this spherical model was calculated numerically by using the finite element method. The potential drop at the electric double layer, the electric field enhancement at the electrode surface, and the field screening in the bulk solution were determined for different bulk concentrations, ac voltages, and frequencies. The appearance of ac electro-osmotic fluid flow at the tip of a growing metallic nanowire is discussed, based on an estimation of the body force in the liquid near the nanowire tip, which was modeled by a cylinder with hemispherical cap. Electric field components tangential to the electrode surface exist near the contact between cylinder and hemisphere. Our analysis suggests that ac electro-osmotic flow causes an additional convective transport of metal complexes to the tip of the growing metal nanowire and thus affects the nanowire growth velocity. PMID:23927385

  9. Electro-osmotic pumping and ionic conductance measurements in porous membranes

    Vajandar, Saumitra K.

    Electro-osmotic (EO) pumps directly convert electrical energy into fluids' kinetic energy, which have many advantages such as a simple and compact structure, no mechanical moving parts, and easy integration. In general, it is easy for EO pumps to generate enough pressure but it has been a challenge for EO pumps to produce a high flowrate. EO pumps have found applications in various micro-/nano-electro-mechanical systems (MEMS/NEMS) and have the potential to impact a variety of engineering fields including microelectronics cooling and bio-analytical systems. This dissertation focuses on the design, fabrication and characterization of EO pumps based on two novel porous membrane materials: SiO2-coated anodic porous alumina and SiNx-coated porous silicon. High quality porous alumina membranes of controllable pore diameters in the range of 30-100 nm and pore lengths of 60-100 mum were fabricated by electrochemical anodization. The pores are straight, uniform and hexagonally close-packed with a high porosity of up to 50%. The inner surface of the pore was coated with a thin layer (˜5 nm) of SiO2 conformally to achieve a high zeta potential. The EO pumping flowrate of the fabricated anodic alumina membranes, coated and uncoated, was experimentally measured. Results indicate that the high zeta potential of the SiO2 coating increases the pumping flowrate even though the coating reduces the porosity of the membrane. The nanostructured SiO2-coated porous anodic alumina membranes can provide a normalized flowrate of 0.125 ml/min/V/cm2 under a low effective applied voltage of 3 V, which sets a record high normalized flowrate under low applied voltage. To realize field effect control of EO pumping, we designed and fabricated SiNx-coated porous silicon membranes with the silicon core as the electrode to apply a transverse gate potential. The gate potential will modulate the zeta potential of the pore wall and thereby provide control over the EO flowrate. The membranes were

  10. Electro-osmotic flow of a second-grade fluid in a porous microchannel subject to an AC electric field



    Studies on electro-osmotic flows of various types of fluids in microcharmel are of great importance owing to their multifold applications in the transport of liquids,particularly when the ionized liquid flows with respect to a charged surface in the presence of an external electric field.In the case of viscoelastic fluids,the volumetric flow rate differs significantly from that of Newtonian fluids,even when the flow takes place under the same pressure gradient and the same electric field.With this end in view,this paper is devoted to a study concerning the flow pattern of an electro-osmotic flow in a porous microchannel,which is under the action of an alternating electric field.The influence of various rheologieal and electro-osmotic parameters,e.g.,the Reynolds number,Debye-Huckel parameter,shape factor and fluid viscoelasticity on the kinematics of the fluid,has been investigated for a second-grade viscoelastic fluid.The problem is first treated by using analytical methods,but the quantitative estimates are obtained numerically with the help of the software MATHEMATICA.The results presented here are applicable to the cases where the channel height is much greater than the thickness of the electrical double layer comprising the Stern and diffuse layers.The study reveals that a larger value of the Debye-Huckel parameter creates sharper profile near the wall and also that the velocity of electro-osmotic flow increases as the permeability of the porous microchannel is enhanced.The study further shows that the electro-osmotic flow dominates at lower values of Reynolds number.The results presented here will be quite useful to validate the observations of experimental investigations on the characteristics of electro-osmotic flows and also the results of complex numerical models that are necessary to deal with more realistic situations,where electro-osmotic flows come into the picture,as in blood flow in the micro-circulatory system subject to an electric field.

  11. Multi-functional Lagrangian flow structures in three-dimensional ac electro-osmotic micro-flows

    Flow forcing by ac electro-osmosis (ACEO) is a promising technique for the actuation and manipulation of micro-flows. Utilization to date mainly concerns pumping and mixing. However, emerging micro-fluidic applications demand further functionalities. The present study explores the first ways to systematically realize this in three-dimensional (3D) micro-flows using ACEO. This exploits the fact that continuity 'organizes' Lagrangian fluid trajectories into coherent structures that geometrically determine the transport properties. Lagrangian flow structures typically comprise families of concentric tubular structures, acting both as transport barriers and as transport conduits, embedded in chaotic regions. Numerical simulations of representative case studies demonstrate that ACEO, possibly in combination with other forcing mechanisms, has the potential to tailor these features into multi-functional Lagrangian flow structures that can fulfill various transport purposes. This may greatly enhance the functionality and versatility of labs-on-a-chip.

  12. Equilibrium Electro-osmotic Instability

    Rubinstein, Isaak


    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium electro-osmosis can. First theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge-selectivity for the sake of simplicity and so did the subsequent numerical studies of various time-dependent and nonlinear features of electro-osmotic instability. In this letter, we show that relaxing the assumption of perfect charge-selectivity (tantamount to fixing the electrochemical potential in the solid) allows for equilibrium electro-osmotic instability. Moreover, we s...

  13. Ionic Origin of Electro-osmotic Flow Hysteresis

    Lim, Chun Yee; Lim, An Eng; Lam, Yee Cheong


    Electro-osmotic flow, the driving of fluid at nano- or micro- scales with electric field, has found numerous applications, ranging from pumping to chemical and biomedical analyses in micro-devices. Electro-osmotic flow exhibits a puzzling hysteretic behavior when two fluids with different concentrations displace one another. The flow rate is faster when a higher concentration solution displaces a lower concentration one as compared to the flow in the reverse direction. Although electro-osmotic flow is a surface phenomenon, rather counter intuitively we demonstrate that electro-osmotic flow hysteresis originates from the accumulation or depletion of pH-governing minority ions in the bulk of the fluid, due to the imbalance of electric-field-induced ion flux. The pH and flow velocity are changed, depending on the flow direction. The understanding of electro-osmotic flow hysteresis is critical for accurate fluid flow control in microfluidic devices, and maintaining of constant pH in chemical and biological systems under an electric field.

  14. Equilibrium Electro-osmotic Instability

    Rubinstein, Isaak; Zaltzman, Boris


    Since its prediction fifteen years ago, electro-osmotic instability has been attributed to non-equilibrium electro-osmosis related to the extended space charge which develops at the limiting current in the course of concentration polarization at a charge-selective interface. This attribution had a double basis. Firstly, it has been recognized that equilibrium electro-osmosis cannot yield instability for a perfectly charge-selective solid. Secondly, it has been shown that non-equilibrium elect...

  15. An analysis of electro-osmotic and magnetohydrodynamic heat pipes

    Mechanically simple methods of improving heat transport in heat pipes are investigated. These methods are electro-osmotic and magnetohydrodynamic augmentation. For the electro-osmotic case, a detailed electrokinetic model is used. The electrokinetic model used includes the effects of pore surface curvature and multiple ion diffusivities. The electrokinetic model is extended to approximate the effects of elevated temperature. When the electro-osmotic model is combined with a suitable heat-pipe model, it is found that the electro-osmotic pump should be a thin membrane. Arguments are provided that support the use of a volatile electrolyte. For the magnetohydrodynamic case, a brief investigation is provided. A quasi-one-dimensional hydromagnetic duct flow model is used. This hydromagnetic model is extended to approximate flow effects unique to heat pipes. When combined with a suitable heat pipe model, it is found that there is no performance gain for the case considered. In fact, there are serious pressure-distribution problems that have not been previously recognized. Potential solutions to these pressure-distribution problems are suggested

  16. Electro-osmotic flow enhancement in carbon nanotube membranes.

    Mattia, Davide; Leese, Hannah; Calabrò, Francesco


    In this work, experimental evidence of the presence of electro-osmotic flow (EOF) in carbon nanotube membranes with diameters close to or in the region of electrical double layer overlap is presented for two different electrolytes for the first time. No EOF in this region should be present according to the simplified theoretical framework commonly used for EOF in micrometre-sized channels. The simplifying assumptions concern primarily the electrolyte charge density structure, based on the Poisson-Boltzmann (P-B) equation. Here, a numerical analysis of the solutions for the simplified case and for the nonlinear and the linearized P-B equations is compared with experimental data. Results show that the simplified solution produces a significant deviation from experimental data, whereas the linearized solution of the P-B equation can be adopted with little error compared with the full P-B case. This work opens the way to using electro-osmotic pumping in a wide range of applications, from membrane-based ultrafiltration and nanofiltration (as a more efficient alternative to mechanical pumping at the nanoscale) to further miniaturization of lab-on-a-chip devices at the nanoscale for in vivo implantation. PMID:26712647

  17. Electro-osmotic flows inside triangular microchannels

    This work presents a numerical investigation of both pure electro-osmotic and combined electro-osmotic/pressure-driven flows inside triangular microchannels. A finite element analysis has been adopted to solve the governing equations for the electric potential and the velocity field, accounting for a finite thickness of the electric double layer. The influence of non-dimensional parameters such as the aspect ratio of the cross-section, the electrokinetic diameter and the ratio of the pressure force to the electric force on the flow behavior has been investigated. Numerical results point out that the velocity field is significantly influenced by the aspect ratio of the cross section and the electrokinetic diameter. More specifically, the aspect ratio plays an important role in determining the maximum volumetric flow rate, while the electrokinetic diameter is crucial to establishing the range of pressures that may be sustained by the electro-osmotic flow. Numerical results are also compared with two correlations available in the literature which enable to assess the volumetric flow rate and the pressure head for microchannels featuring a rectangular, a trapezoidal or an elliptical cross-section.

  18. Anisotropic electro-osmotic flow over super-hydrophobic surfaces

    Bahga, Supreet S.; Vinogradova, Olga I.; Bazant, Martin Z.


    Patterned surfaces with large effective slip lengths, such as super-hydrophobic surfaces containing trapped gas bubbles, have the potential to greatly enhance electrokinetic phenomena. Existing theories assume either homogeneous flat surfaces or patterned surfaces with thin double layers (compared to the texture correlation length) and thus predict simple surface-averaged, isotropic flows (independent of orientation). By analyzing electro-osmotic flows over striped slip-stick surfaces with ar...

  19. Augmentation of peristaltic microflows through electro-osmotic mechanisms

    The present work aims to theoretically establish that the employment of an axial electric field can substantially augment the rate of microfluidic transport occurring in peristaltic microtubes. For theoretical analysis, shape evolution of the tube is taken to be arbitrary, except for the fact that the characteristic wavelength is assumed to be significantly greater than the average radius of cross section. First, expressions for the velocity profile within the tube are derived and are subsequently utilized to obtain variations in the net flow rate across the same, as a function of the pertinent system parameters. Subsequently, the modes of interaction between the electro-osmotic and peristaltic mechanisms are established through the variations in the time-averaged flow rates for zero pressure rise and the pressure rise for zero time-averaged flow rates, as expressed in terms of the occlusion number, characteristic electro-osmotic velocity and the peristaltic wave speed. From the simulation predictions, it is suggested that a judicious combination of peristalsis and an axial electrokinetic body force can drastically enhance the time-averaged flow rate, provided that the occlusion number is relatively small

  20. Applications of Electro-Osmotic Transport in the Processing of Textiles

    Cooper, J.F.; Krueger, R.; Hopper, R.; Cherepy, N.


    We report development of a pilot process for the industrial rinsing of fabrics. This process combines hydraulic (pressure-driven) transport with electro-osmotic transport. It reduces the total amount of water required in certain rinsing operations by a factor of about five. Cotton exhibits an electro-osmotic transport coefficient of about 6 x 10{sup -9} m{sup 2}/s-V resulting from a partial ionization of hydroxyl groups on the cellulose polymer substrate. This process applies a field transverse to the fabric to effect the movement of water in the spaces between the 10 {micro}m cotton fibers which constitute the yam. The field strength is adjusted so that the induced electro-osmotic flux is comparable to a pressure-driven flux, which moves preferentially in the more open channels between the yams. For a fixed current density, solution conductivity and electro-osmotic transport vary inversely. The process is most practical for removal of liquids of relatively low conductivity (<500 {micro}S/cm). For removal of solutions of conductivity greater than 1200 {micro}S/cm, the rate of electro-osmotic flow may be too low to benefit the rinsing process if current densities are restricted to practical levels of about 30 mA/cm{sup 2}. Electra-osmotic transport may have important applications in wet processing of extremely fine textiles, such as micro fiber fabrics. In addition to rinsing, electro-osmotic transport may also be used to speed the penetration of chemicals and dyestuffs that are applied to the surface of wet textiles.

  1. Low-frequency oscillations of the impedance of electrolyte moving in an electro-osmotic regime

    Kompan, M. E.; Malyshkin, V. G.; Goffman, V. G.


    The impedance of a liquid electrolyte has been studied under the conditions of electro-osmotic flow. It is found that the impedance exhibits oscillations in the region of subhertz frequencies, which are related to resonant mechanical oscillations arising in the flow. Assumptions concerning the type of these resonant oscillations are formulated based on the observed spectrum of impedance oscillations.

  2. Experimental Verification of Overlimiting Current by Surface Conduction and Electro-osmotic Flow in Microchannels

    Nam, Sungmin; Heo, Joonseong; Lim, Geunbae; Bazant, Martin Z; Sung, Gunyong; Kim, Sung Jae


    Possible mechanisms of overlimiting current in unsupported electrolytes, exceeding diffusion limitation, have been intensely studied for their fundamental significance and applications to desalination, separations, sensing, and energy storage. In bulk membrane systems, the primary physical mechanism is electro-convection, driven by electro-osmotic instability on the membrane surface. It has recently been predicted that confinement by charged surfaces in microchannels or porous media favors two new mechanisms, electro-osmotic flow (EOF) and surface conduction (SC), driven by large electric fields in the depleted region acting on the electric double layers on the sidewalls. Here, we provide the first direct evidence for the transition from SC to EOF above a critical channel height, using in situ particle tracking and current-voltage measurements in a micro/nanofluidic device. The dependence of the over-limiting conductance on channel depth (d) is consistent with theoretical predictions, scaling as d^-1 for SC a...

  3. Effect of Electro-Osmotic Flow on Energy Conversion on Superhydrophobic Surfaces

    Seshadri, Gowrishankar


    It has been suggested that superhydrophobic surfaces, due to the presence of a no-shear zone, can greatly enhance transport of surface charges, leading to a considerable increase in the streaming potential. This could find potential use in micro-energy harvesting devices. In this paper, we show using analytical and numerical methods, that when a streaming potential is generated in such superhydrophobic geometries, the reverse electro-osmotic flow and hence current generated by this, is significant. A decrease in streaming potential compared to what was earlier predicted is expected. We also show that, due to the electro-osmotic streaming-current, a saturation in both the power extracted and efficiency of energy conversion is achieved in such systems for large values of the free surface charge densities. Nevertheless, under realistic conditions, such microstructured devices with superhydrophobic surfaces have the potential to even reach energy conversion efficiencies only achieved in nanostructured devices so ...

  4. Effects of Micromachining Processes on Electro-Osmotic Flow Mobility of Glass Surfaces

    Norihisa Miki; Koichi Hishida; Reiko Kuriyama; Yohei Sato; Yosuke Koga


    Silica glass is frequently used as a device material for micro/nano fluidic devices due to its excellent properties, such as transparency and chemical resistance. Wet etching by hydrofluoric acid and dry etching by neutral loop discharge (NLD) plasma etching are currently used to micromachine glass to form micro/nano fluidic channels. Electro-osmotic flow (EOF) is one of the most effective methods to drive liquids into the channels. EOF mobility is affected by a property of the micromachined ...

  5. Analysis of electro-osmotic flow in a microchannel with undulated surfaces

    Yoshida, Hiroaki; Washizu, Hitoshi


    The electro-osmotic flow through a channel between two undulated surfaces induced by an external electric field is investigated. The gap of the channel is very small and comparable to the thickness of the electrical double layers. A lattice Boltzmann simulation is carried out on the model consisting of the Poisson equation for electrical potential, the Nernst--Planck equation for ion concentration, and the Navier--Stokes {\\color{black}equations} for flows of the electrolyte solution. An analytical model that predicts the flow rate is also derived under the assumption that the channel width is very small compared with the characteristic length of the variation along the channel. The analytical results are compared with the numerical results obtained by using the lattice Boltzmann method. In the case of a constant surface charge density along the channel, the variation of the channel width reduces the electro-osmotic flow, and the flow rate is smaller than that of a straight channel. In the case of a surface ch...

  6. Electro-osmotic fluxes in multi-well electro-remediation processes.

    López-Vizcaíno, Rubén; Sáez, Cristina; Mena, Esperanza; Villaseñor, Jose; Cañizares, Pablo; Rodrigo, Manuel A


    In recent years, electrokinetic techniques on a laboratory scale have been studied but few applications have been assessed at full-scale. In this work, a mock-up plant with two rows of three electrodes positioned in semipermeable electrolyte wells has been used to study the electro-osmotic flux distribution. Water accumulated in the cathodic wells when an electric voltage gradient was applied between the two electrode-well rows. Likewise, slight differences in the water flux were observed depending on the position and number of electrodes used and on the voltage gradient applied. Results show that the electro-osmotic flow did not increase proportionally with the number of electrodes used. During the start-up of the study, there was an abrupt change in the current density, pH and conductivity of the soil portions closest to electrodic wells due to electrokinetic processes. These differences can be explained in terms of the complex current distributions from anode and cathode rows. PMID:22029697

  7. Suppression of nano-channel ion conductance by electro-osmotic flow

    Liu, Yang; Zhu, Xin; Ran, Qiushi; Dutton, Robert


    This theoretical study concerns a basic understanding of ion transport in nano-channels that have weakly overlapping electric double layers. Numerical simulations reveal that the electro-osmotic flow (EOF) interplays with the concentration-polarization process and drives the ion depletion zone into the channels, thus significantly suppressing the channel conductance. The conductance may be restored at high electrical biases in the presence of recirculating vortices within the channels. Further analysis are conducted based on a 1-D, long channel model, and analytic expressions derived to quantitatively account for the EOF-driven ion depletion process. A limiting-conductance behavior is revealed as intrinsically different from the classical limiting-current behavior.

  8. Topology and shape optimization of induced-charge electro-osmotic micropumps

    Gregersen, Misha Marie; Okkels, Fridolin; Bazant, M. Z.; Bruus, Henrik


    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing...... conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the...... design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance....

  9. Non-steady electro-osmotic flow of a micropolar fluid in a microchannel

    We formulated the initial-boundary-value problem of non-steady electro-osmotic flow of a micropolar fluid in a rectangular microchannel of height much larger than the Debye length and length much larger the height. Solving the governing differential equations numerically when a spatially uniform electric field is applied as an impulse of finite magnitude, we found that the effect is instantaneous on the flow, just as for simple Newtonian fluids. The decay times of the fluid velocity and the microrotation, however, are smaller in micropolar fluids than in simple Newtonian fluids. The maximum magnitude of microrotation decreases as the micropolarity increases. The effect of microrotation on the stress tensor is more dominant than that of the fluid speed, and a threshold effect with respect to the magnitude of the zeta potential is evident in the spatial profile of the couple stress tensor. We expect similar trends even when the applied electric field varies over some finite interval of time.

  10. A novel microfluidic valve controlledby induced charge electro-osmotic flow

    Wang, Chengfa; Song, Yongxin; Pan, Xinxiang; Li, Dongqing


    In this paper, a novel microfluidic valve by utilizing induced charge electro-osmotic flow (ICEOF) is proposed and analyzed. The key part of the microfluidic valve is a Y-shaped microchannel. A small metal plate is placed at each corner of the junction of the Y-shaped microchannel. When a DC electrical field is applied through the channels, electro-osmotic flows occur in the channels, and two vortices will be formed near each of the metal plates due to the ICEOF. The two vortices behave like virtual ‘blocking columns’ to restrain and direct the flow in the Y-channel. In this paper, effects of the length of the metal plates, the applied voltages, the width of the microchannel, the zeta potential of the non-metal microchannel wall, and the orientation of the branch channels on the flow switching between two outlet channels are numerically investigated. The results show that the flow switching between the two outlet channels can be flexibly achieved by adjusting the applied DC voltages. The critical switching voltage (CSV), under which one outlet channel is closed, decreases with the increase in the metal plate length and the orientation angle of the outlet channels. The CSV, however, increases with the increase in the inlet voltage, the width of the microchannel, and the absolute value of the zeta potential of the non-metal microchannel wall. Compared with other types of micro-valves, the proposed micro-valve is simple in structure without any moving parts. Only a DC power source is needed for its actuation, thus it can operate automatically by controlling the applied voltages.

  11. Experimental and theoretical investigations of non-Newtonian electro-osmotic driven flow in rectangular microchannels.

    Huang, Yi; Chen, Juzheng; Wong, TeckNeng; Liow, Jong-Leng


    With the development of microfluidics, electro-osmotic (EO) driven flow has gained intense research interest as a result of its unique flow profile and the corresponding benefits in its application in the transportation of sensitive samples. Sensitive samples, such as DNA, are incapable of enduring strong flow shear induced by conventional hydrodynamic driven methods. EO driven flow is thus a niche area. However, even though there are a few research studies focusing on bio-fluidic samples related to EO driven flow, the majority of them are merely theoretical modeling without solid evidence from experiments due to the inherent complex rheological behavior of the bio-fluids. Challenges occur when the EO driven mechanism meets with complex rheology; vital questions such as can the zeta potential still be assumed to be constant when dealing with fluids with complex rheology? and "Does the shear thinning effect enhance electro-osmotic driven flow?" need to be answered. We conducted experiments using current monitoring and microscopy fluorescence methods, and developed a theoretical model by coupling a generalized Smoluchowski approach with the power-law constitutive model. We calculated the zeta potential and compared the experimental results with modeling to answer the questions. The results show a reduction of zeta potential in the presence of PEO aqueous solutions. A constant zeta potential is also indicated by varying the PEO concentration and the electric field strength.The shear thinning effect is also addressed via experimental data and theoretical calculations. The results show a promising enhancement of the EO driven velocity due to the shear thinning effect. PMID:27381295

  12. Oscillatory electro-osmotic flow through a slit channel with slipping stripes on walls

    A theoretical model is presented in this paper for time-oscillating electro-osmotic flow through a plane channel bounded by two parallel plates, which are patterned with periodic stripes of distinct hydrodynamic slippage and wall potential. The flow is driven by oscillatory pressure gradient and electric field of the same frequency in the axial direction. Flows that are longitudinal or transverse to the stripes are investigated. Based on the Debye–Hückel approximation, and assuming Stokes flow, the electric potential and the velocity fields are found by the methods of eigenfunction expansion and point collocation. The phenomenological coefficients of the Onsager relations for the fluid and current fluxes are deduced as functions of the channel height, the area fraction of wall with slippage, the intrinsic slip length, the Debye parameter, the zeta potentials and the oscillation parameter. Considering several kinds of wall patterns, we extend the theoretical limits in the steady-flow regime to the oscillatory-flow regime. For a uniformly charged wall, the effective slip length obtained from the hydrodynamic problem can still be used directly in the electro-osmotic flow as if the wall were uniformly slipping. When the slipping stripes are perfectly slipping but uncharged, the presence of such stripes will always have a decreasing effect on the streaming conductance, unlike the steady case in which it gives no net effect on the flow in the limit of a very thin double layer. Furthermore, we confirm the presence of a threshold frequency, beyond which the flow will diminish significantly. The slipping fraction of the wall will always introduce a phase lag to the response and lower the threshold frequency. Increasing the wall potential in the presence of slippage can appreciably increase the streaming conductance and the phase lag. (paper)

  13. Effects of Micromachining Processes on Electro-Osmotic Flow Mobility of Glass Surfaces

    Norihisa Miki


    Full Text Available Silica glass is frequently used as a device material for micro/nano fluidic devices due to its excellent properties, such as transparency and chemical resistance. Wet etching by hydrofluoric acid and dry etching by neutral loop discharge (NLD plasma etching are currently used to micromachine glass to form micro/nano fluidic channels. Electro-osmotic flow (EOF is one of the most effective methods to drive liquids into the channels. EOF mobility is affected by a property of the micromachined glass surfaces, which includes surface roughness that is determined by the manufacturing processes. In this paper, we investigate the effect of micromaching processes on the glass surface topography and the EOF mobility. We prepared glass surfaces by either wet etching or by NLD plasma etching, investigated the surface topography using atomic force microscopy, and attempted to correlate it with EOF generated in the micro-channels of the machined glass. Experiments revealed that the EOF mobility strongly depends on the surface roughness, and therefore upon the fabrication process used. A particularly strong dependency was observed when the surface roughness was on the order of the electric double layer thickness or below. We believe that the correlation described in this paper can be of great help in the design of micro/nano fluidic devices.

  14. Non-isothermal electro-osmotic flow in a microchannel with charge-modulated surfaces

    Bautista, Oscar; Sanchez, Salvador; Mendez, Federico


    In this work, we present an theoretical analysis of a nonisothermal electro-osmotic flow of a Newtonian fluid over charge-modulated surfaces in a microchannel. Here, the heating in the microchannel is due to the Joule effect caused by the imposition of an external electric field. The study is conducted through the use of perturbation techniques and is validated by means of numerical simulations. We consider that both, viscosity and electrical conductivity of the fluid are temperature-dependent; therefore, in order to determine the heat transfer process and the corresponding effects on the flow field, the governing equations of continuity, momentum, energy and electric potential have to be solved in a coupled manner. The principal obtained results evidence that the flow patterns are perturbed in a noticeable manner in comparison with the isothernal case. Our results may be used for increasing microfluidics mixing by conjugating thermal effects with the use of charge-modulated surfaces. This work has been supported by the research grants no. 220900 of Consejo Nacional de Ciencia y Tecnología (CONACYT) and 20150919 of SIP-IPN at Mexico. F. Méndez acknowledges also the economical support of PAPIIT-UNAM under contract number IN112215.

  15. Modified Bernoulli Equation for Use with Combined Electro-Osmotic and Pressure-Driven Microflows

    Adams, Thomas M


    In this paper we present electro-osmotic (EO) flow within a more traditional fluid mechanics framework. Specifically, the modified Bernoulli equation (viz. the energy equation, the mechanical energy equation, the pipe flow equation, etc.) is shown to be applicable to EO flows if an electrical potential energy term is also included. The form of the loss term in the modified Bernoulli equation is unaffected by the presence of an electric field; i.e., the loss term still represents the effect of wall shear stress, which can be represented via a friction factor. We show that that the friction factor for pure EO flow (no applied pressure gradient) varies inversely with the Reynolds number based on the Debeye length of the electric double layer. Expressions for friction factor for combined laminar pressure-driven and EO flow are also given. These are shown to be functions of Reynolds number and geometry, as well as the relative strength of the applied electric field to the applied pressure gradient.

  16. Flow patterning in Hele-Shaw configurations using non-uniform electro-osmotic slip

    Boyko, Evgeniy; Rubin, Shimon; Gat, Amir D.; Bercovici, Moran


    We present an analytical study of electro-osmotic flow in a Hele-Shaw configuration with non-uniform zeta potential distribution. Applying the lubrication approximation and assuming thin electric double layer, we obtain a pair of uncoupled Poisson equations for the pressure and depth-averaged stream function, and show that the inhomogeneous parts in these equations are governed by gradients in zeta potential parallel and perpendicular to the applied electric field, respectively. We obtain a solution for the case of a disk-shaped region with uniform zeta potential and show that the flow field created is an exact dipole, even in the immediate vicinity of the disk. In addition, we study the inverse problem where the desired flow field is known and solve for the zeta potential distribution required in order to establish it. Finally, we demonstrate that such inverse problem solutions can be used to create directional flows confined within narrow regions, without physical walls. Such solutions are equivalent to flow within channels and we show that these can be assembled to create complex microfluidic networks, composed of intersecting channels and turns, which are basic building blocks in microfluidic devices.

  17. Electro-osmotically driven MHD flow and heat transfer in micro-channel

    Shit, G. C.; Mondal, A.; Sinha, A.; Kundu, P. K.


    A theoretical analysis is presented for electro-osmotic flow (EOF) of blood in a hydrophobic micro-channel with externally applied magnetic field. The lumen of micro-channels is assumed to be porous medium in addition to the consideration of permeability of the channel walls. The effects of slip velocity and thermal-slip are taken into consideration. The governing equations in the electrical double layer (EDL) together with the Poisson-Boltzmann equation and the body force exerted by the applied potential are furthermore considered. The flow is governed by the non-Newtonian viscoelastic fluid model. These equations along with the thermal energy equation are approximated by assuming that the channel height is much greater than the thickness of electrical double layer consisting the stern and diffusive layers. The problem is solved analytically and the computed results have presented graphically for various values of the dimensionless parameters. The results presented here have significant impact on the therapeutic treatment in hyperthermia as well as in controlling blood flow and heat transfer in micro-channels.

  18. Numerical characterization of silicon DC electro-osmotic pumps: the role of the micro channel geometry

    Geri, M; Lorenzini, M.; Morini, GL; 3rd Micro and Nano Flows Conference (MNF2011)


    This paper was presented at the 3rd Micro and Nano Flows Conference (MNF2011), which was held at the Makedonia Palace Hotel, Thessaloniki in Greece. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, Aristotle University of Thessaloniki, University of Thessaly, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute. ...

  19. Field-Effect Modulated Electro-Osmotic Pumps for High Precision Colloid Thrusters Project

    National Aeronautics and Space Administration — The ability to precisely control the position of satellites is a critical enabling technology for space missions involving interferometric arrays. One proposed...


    The influence of aqueous phase properties (pH, ionic strength and divalent metal ion concentration) on clay particle zeta potential and packed-bed electro-osmotic permeability was quantified. Although pH strongly altered the zeta potential of a Georgia kaolinite, it did not signi...

  1. Theory and design method for electro-osmotic consolidation%电渗排水固结的设计理论和方法



    探讨了电渗法处理大面积深厚软土地基的若干问题,包括:电极材料、能耗、电源功率、设计理论和方法。EKG材料的出现解决了电极腐蚀和电渗能耗过高的问题,现在电渗法在大面积应用中面临的是电源功率要求过高的问题,该问题可以通过轮询通电的方法解决。依据电渗能级梯度理论提出了电渗排水固结的设计方法。时间因子和流量系数是电渗设计方法中的两个关键参数,其中流量系数具有较明显的模型尺寸效应,设计时需要进行修正。%The problems of electro-osmotic consolidation for large scale deep soft ground, including electrode, energy consumption, electric power, theory and design method, are discussed. Innovation of EKG materials has solved the problems of electrode corrosion and high energy consumption in electro-osmotic consolidation. High electric power demand is currently a new challenge for large scale application of electro-osmotic consolidation, and the solution will be the roll polling program embedded in novel designed electric power source. The design method based on the energy level gradient theory of electro-osmotic consolidation is proposed. The time factor and flow coefficient are the key parameters of the design method. The flow coefficient has distinct scale effect, and it needs to be corrected before applied in the design.

  2. Dispersion in oscillatory electro-osmotic flow through a parallel-plate channel with kinetic sorptive exchange at walls



    Dispersion in time-oscillatory electro-osmotic flows in a slit micro-channel under the effect of kinetic sorptive exchange at walls is theoretically investigated using the homogenization method. The two walls of the channel are considered to be made up of different materials, and therefore have different zeta potentials and sorption coefficients. A general expression for the Taylor disper-sion coefficient under different zeta potentials as well as various sorption conditions at the walls is derived analytically. The disper-sion coefficient is found to be dependent on the oscillation frequency, the Debye parameter, the species partition coefficient, the rea-ction kinetics and the ratio of the wall potentials. The results demonstrate that the presence of wall sorption tends to enhance the dispersion when the oscillation frequency is low, but the effect is negligible in high-frequency oscillatory flows. Moreover, it is found that the dispersion coefficient could be significantly changed by adjusting the relative wall potentials for low-frequency flows.

  3. Electrical Potential, Mass Transport and Velocity Distribution of Electro-osmotic Flow in a Nanochannel by Incorporating the Variation of Dielectric Constant of Aqueous Electrolyte Solution

    Padidhapu, Rajendra; Brahmajirao, V


    We consider a coupled system of Navier Stokes, Maxwell Stefan and Poisson Boltzmann equations by incorporating the variation of dielectric constant, which governs the electro osmotic flow in nano channel, describing the evolution of the velocity, concentration and potential fields of dissolved constituents in an aqueous electrolyte solution. We apply the finite difference technique to solve one and two dimensional systems of these equations. The solutions give an extremely accurate prediction of the dielectric constant for a variety of salts and a wide range of concentrations.

  4. A CMOS AC/DC charge pump for a wireless sensor network

    An AC/DC charge pump implemented with MOS FETs has been presented for wireless sensor network applications. The proposed AC/DC charge pump can generate a stable output with low power dissipation and high pumping efficiency, which has been implemented in 0.13 μm CMOS technology. The proposed charge pump employs MOSFET diodes with low thresholds, and improves the conversion efficiency. The analytical model of the voltage multiplier, the simulation results, and the chip testing results are presented.

  5. Contactless microfluidic pumping using microchannel-integrated carbon black composite membranes.

    Fu, Xiaotong; Gagnon, Zachary


    The ability to pump and manipulate fluid at the micron-scale is a basic requirement for microfluidic platforms. Many current manipulation methods, however, require expensive and bulky external supporting equipment, which are not typically compatible for portable applications. We have developed a contactless metal electro-osmotic micropump capable of pumping conductive buffers. The pump operates using two pairs of gallium metal electrodes, which are activated using an external voltage source and separated from a main flow channel by a thin micron-scale polydimethylsiloxane (PDMS) membrane. The thin contactless membrane allows for field penetration and electro-osmotic flow within the microchannel, but eliminates electrode damage and sample contamination commonly associated with traditional DC electro-osmotic pumps that utilize electrodes in direct contact with the working fluid. Our previous work has demonstrated the effectiveness of this method in pumping deionized water. However, due to the high resistivity of PDMS, this method proved difficult to apply towards manipulating conductive buffers. To overcome this limitation, we fabricated conductive carbon black (CB) powder directly into the contactless PDMS membranes. The increased electrical conductivity of the contactless PDMS membrane significantly increased micropump performance. Using a microfluidic T-channel device and an electro-osmotic flow model, we determined the influence that CB has on pump pressure for CB weight percents varying between 0 and 20. The results demonstrate that the CB increases pump pressure by two orders of magnitude and enables effective operations with conductive buffers. PMID:26543514

  6. A new working principle for ac electro-hydrodynamic on-chip micro-pumps

    Our new type of on-chip micro-pump exploits the ac electro-kinetic forces acting in the volume of a fluid in the presence of a temperature gradient. No mechanically movable parts are used. The velocity of the pump flow observed depends on the frequency and strength of the driving ac field and on the temperature gradient across the pump channel. An integrated heating element allows the temperature gradient to be adjusted. Both ac field electrodes and heating element are platinum structures processed on a glass chip. The pump-channel walls and cover are made from polymer and thin-glass, respectively. In this paper, we present measurements of the fluid velocity as functions of the medium conductivity (0.1-1.3 S m-1) and field frequency (300 kHz-52 MHz), voltage across the field-electrode voltage (0-35 Vrms) and the heating element (1.1-3.6 V). Velocities of up to 120 μm s-1 were observed in the pump channel. The advantage of our new design is an evenly shaped cross-section of the pump channel, which reduces the risk of the channel becoming clogged by debris. Ac-electro-osmosis is not a predominant effect in our structures. Pumping could only be observed when the heating current and ac-pump field were applied simultaneously. The effects observed were simulated with the COMSOL Multiphysics program

  7. Hybrid pressure control concept for a speed variable AC motor pump in aerospace application

    Engelhardt, Joerg; Greissner, Carsten


    This paper describes a new pressure control strategy for AC motor driven pumps in aircraft application. Both, swash plate position and pump speed are used for controlling system pressure in a hybrid approach. The requirements for the pressure control loop and the design methods for the hybrid control circuits with a load observer are introduced. The new control concept has been implemented into an experimental set-up. The validation and evaluation of simulation results on the test rig are d...

  8. A scattering matrix approach to quantum pumping: beyond the small-AC-driving-amplitude limit

    In the adiabatic and weak-modulation quantum pump, net electron flow is driven from one reservoir to another by absorbing or emitting an energy quantum ħω from or to the reservoirs. This paper considers high-order dependence of the scattering matrix on the time. Non-sinusoidal behaviour of strong pumping is revealed. The relation between the pumped current and the ac driving amplitude varies from power of 2, 1 to 1/2 when stronger modulation is exerted. Open experimental observation can be interpreted by multi-energy-quantum-related processes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Flow reversal at low voltage and low frequency in a microfabricated ac electrokinetic pump

    Gregersen, Misha Marie; Olesen, Laurits Højgaard; Brask, Anders;


    Microfluidic chips have been fabricated in Pyrex glass to study electrokinetic pumping generated by a low-voltage ac bias applied to an in-channel asymmetric metallic electrode array. A measurement procedure has been established and followed carefully resulting in a high degree of reproducibility...... of the measurements over several days. A large coverage fraction of the electrode array in the microfluidic channels has led to an increased sensitivity allowing for pumping measurements at low bias voltages. Depending on the ionic concentration a hitherto unobserved reversal of the pumping direction...

  10. Micro pumping methods based on AC electrokinetics and Electrorheologically actuated PDMS valves

    Soni, Gaurav; Squires, Todd; Meinhart, Carl


    We have developed 2 different micropumping methods for transporting ionic fluids through microchannels. The first method is based on Induced Charge Electroosmosis (ICEO) and AC flow field-effect. We used an AC electric field to produce a symmetric ICEO flow on a planar electrode, called `gate'. In order to break the symmetry of ICEO, we applied an additional AC voltage to the gate electrode. Such modulation of the gate potential is called field effect and produces a unidirectional pumping over the gate surface. We used micro PIV to measure pumping velocities for a range of ionic concentration, AC frequency and gate voltage. We have also conducted numerical simulations to understand the deteriorating effect of lateral conduction of surface charge on the pumping velocities. The second method is based on vibration of a flexible PDMS diaphragm actuated by an electrorheological (ER) fluid. ER fluid is a colloidal suspension exhibiting a reversible liquid-to-solid transition under an electric field. This liquid-to-solid transition can yield very high shear stress and can be used to open and close a PDMS valve. Three such valves were fabricated and actuated in a peristaltic fashion in order to achieve positive displacement pumping of fluids.

  11. Analysis of metal ions migration to determine electro-osmotic flow for the in-situ cleanup of a tar-contaminated site

    Lima, Ana T.


    An electro-osmosis experiment was set up on a former asphalt factory site, which is currently contaminated by tar, in Olst, the Netherlands. The main goal of this experiment was to remove polycyclic aromatic hydrocarbons (PAHs) from a contaminated clay layer by applying an electric gradient. But before calculating PAH removal, the direction and intensity of electro-osmosis have to be estimated. In field situations, tracers are used to get information about the water flow. In the present study, the inorganic elements concentration oscillations during electro-osmosis application are used as tracers. The experiment was set up in a clay layer, with the configuration 1m×1m×0.3m, at a depth of 4m below soil surface. Al, Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S, Si, Ti and Zn concentrations were determined in 28 measurements and were performed during the experimental period of 159days. Then they were used in a first evaluation where auto and cross-correlations were analyzed to aid in the geochemical interpretation and select the most conservative elements. The second part of this study is devoted to estimate the migration of water based on the concentrations development of Cl - at the anode and Na + at the cathode. Electro-osmotic flow was estimated to be intense (2.9 -10 -9-2.18 -10 -8m -s -1) during the first 10 to 50days of experiment and to cease after this period. © 2012.

  12. 电极间距和排水方式对电渗固结效果试验%Influence of electrode spacing and drainage mode on electro-osmotic consolidation



    为了探讨淤泥电渗固结的最佳方式,开展了不同电极间距和排水方式的电渗对比试验,试验中对渗水量、土体沉降、电能消耗、含水率等指标进行了监测,得出了适合工程应用的电极间距为1.2 m,排水孔钻孔深度7.5 m,排水方式采用塑料排水板套砂袋组合体排水.工程应用实例表明:采用该电极间距和排水方式取得了良好的电渗固结效果.%In order to study the best mode of mud electro-osmotic consolidation,electro-osmotic tests were con-ducted with different electrode spacing and drainage modes. The observed indexes during tests include seepage wa-ter volume,soil mass settlement,electric energy consumption,water-content coefficient etc. According to the re-sults of tests,some indexes applicable for engineering were concluded,including a electrode spacing of 1.2m, drainage bore depth of 7.5m,composite drainage mode of plastic drainage plate in sand bag. Application of above conclusions in completed project has demonstrated good electro-osmotic consolidation effects.

  13. Spin backflow and ac voltage generation by spin pumping and the inverse spin Hall effect.

    Jiao, HuJun; Bauer, Gerrit E W


    The spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant polarization component parallel to the precession axis and a rotating one normal to the magnetization. The former is now routinely detected as a dc voltage induced by the inverse spin Hall effect (ISHE). Here we compute ac ISHE voltages much larger than the dc signals for various material combinations and discuss optimal conditions to observe the effect. The backflow of spin is shown to be essential to distill parameters from measured ISHE voltages for both dc and ac configurations. PMID:23745937

  14. Direct Detection of Pure ac Spin Current by X-Ray Pump-Probe Measurements

    Li, J.; Shelford, L. R.; Shafer, P.; Tan, A.; Deng, J. X.; Keatley, P. S.; Hwang, C.; Arenholz, E.; van der Laan, G.; Hicken, R. J.; Qiu, Z. Q.


    Despite recent progress in spin-current research, the detection of spin current has mostly remained indirect. By synchronizing a microwave waveform with synchrotron x-ray pulses, we use the ferromagnetic resonance of the Py (Ni81Fe19 ) layer in a Py /Cu /Cu75Mn25/Cu /Co multilayer to pump a pure ac spin current into the Cu75Mn25 and Co layers, and then directly probe the spin current within the Cu75Mn25 layer and the spin dynamics of the Co layer by x-ray magnetic circular dichroism. This element-resolved pump-probe measurement unambiguously identifies the ac spin current in the Cu75Mn25 layer.

  15. Microfluidic pumping, routing and metering by contactless metal-based electro-osmosis.

    Fu, Xiaotong; Mavrogiannis, Nicholas; Doria, Steven; Gagnon, Zachary


    Over the past decade, many microfluidic platforms for fluid processing have been developed in order to perform on-chip fluidic manipulations. Many of these methods, however, require expensive and bulky external supporting equipment, which are not typically applicable for microsystems requiring portability. We have developed a new type of portable contactless metal electro-osmotic micropump capable of on-chip fluid pumping, routing and metering. The pump operates using two pairs of gallium metal electrodes, which are activated using an external voltage source, and separated from a main flow channel by a thin micron-scale PDMS membrane. The thin contactless membrane allows for field penetration and electro-osmotic (EO) flow within the microchannel, but eliminates electrode damage and sample contamination commonly associated with traditional DC electro-osmotic pumps that utilize electrodes in direct contact with the working fluid. The maximum flow rates and pressures generated by the pump using DI water as a working buffer are 10 nL min(-1) and 30 Pa, respectively. With our current design, the maximum operational conductivity where fluid flow is observed is 0.1 mS cm(-1). Due to the small size and simple fabrication procedure, multiple micropump units can be integrated into a single microfluidic device for automated on-chip routing and sample metering applications. We experimentally demonstrated the ability to quantify micropump electro-osmotic flowrate and pressure as a function of applied voltage, and developed a mathematical model capable of predicting the performance of a contactless micropump for a given external load and internal hydrodynamic microchannel resistance. Finally, we showed that by activating specific pumps within a microchannel network, our micropumps are capable of routing microchannel fluid flow and generating plugs of solute. PMID:26053965

  16. Pumping and mixing in a microchannel using AC asymmetric electrode arrays

    A numerical study of electroosmotic microchannel flow driven by arrays of AC (alternating current) asymmetric electrodes was carried out. By installing asymmetric electrode arrays on the top and bottom walls of the microchannel, pumping and mixing flow modes can be generated. The 'pumping mode' (P) is generated when the sequences of asymmetric electrode pairs (narrow to wide) on the top and bottom walls are in phase, whereas the 'mixing mode' (M) is generated by switching the sequence of electrode pairs of the top wall (e.g., wide to narrow). By combining mixing and pumping modes, enhanced mixing performance can be achieved without significantly reducing the flow rate. Among various combinations of P and M modes, the alternating PM mode showed the best mixing performance due to the iterative convergent and divergent flow motions. The effects of Peclet number and channel height on the mixing efficiency were analyzed in detail

  17. Reversed flow at low frequencies in a microfabricated AC electrokinetic pump

    Gregersen, Misha Marie; Brask, Anders; Hansen, Mikkel Fougt; Bruus, Henrik


    Microfluidic chips have been fabricated to study electrokinetic pumping generated by a low voltage AC signal applied to an asymmetric electrode array. A measurement procedure has been established and followed carefully resulting in a high degree of reproducibility of the measurements. Depending on the ionic concentration as well as the amplitude of the applied voltage, the observed direction of the DC flow component is either forward or reverse. The impedance spectrum has been thoroughly measured and analyzed in terms of an equivalent circuit diagram. Our observations agree qualitatively, but not quantitatively, with theoretical models published in the literature.

  18. A short tutorial contribution to impedance and AC-electrokinetic characterization and manipulation of cells and media: Are electric methods more versatile than acoustic and laser methods?

    Jan Gimsa


    Full Text Available Lab-on-chip systems (LOCs can be used as in vitro systems for cell culture or manipulation in order to analyze or monitor physiological cell parameters. LOCs may combine microfluidic structures with integrated elements such as piezo-transducers, optical tweezers or electrodes for AC-electrokinetic cell and media manipulations. The wide frequency band (<1 kHz to >1 GHz usable for AC-electrokinetic manipulation and characterization permits avoiding electrochemical electrode processes, undesired cell damage, and provides a choice between different polarization effects that permit a high electric contrast between the cells and the external medium as well as the differentiation between cellular subpopulations according to a variety of parameters. It has been shown that structural polarization effects do not only determine the impedance of cell suspensions and the force effects in AC-electrokinetics but can also be used for the manipulation of media with inhomogeneous temperature distributions. This manuscript considers the interrelations of the impedance of suspensions of cells and AC-electrokinetic single cell effects, such as electroorientation, electrodeformation, dielectrophoresis, electrorotation, and travelling wave (TW dielectrophoresis. Unified models have allowed us to derive new characteristic equations for the impedance of a suspension of spherical cells, TW dielectrophoresis, and TW pumping. A critical review of the working principles of electro-osmotic, TW and electrothermal micropumps shows the superiority of the electrothermal pumps. Finally, examples are shown for LOC elements that can be produced as metallic structures on glass chips, which may form the bottom plate for self-sealing microfluidic systems. The structures can be used for cell characterization and manipulation but also to realize micropumps or sensors for pH, metabolites, cell-adhesion, etc.

  19. 异性纳米通道中NaCl水溶液电渗输运特性%MD Simulation of Electro-Osmotic Characteristics of NaC1 Solution in Different Nano-Tubes

    蒋洁; 陈永平; 郝英立


    The flow characteristics of NaCl solution in different nanotubes were investigated. The tubes differ in charge. One has no charge and the other has negative charge. The distribution of velocity, density, viscosity and thermal conductivity were got. It is found the Na+ is absorbed by charged wall, Cl- is expelled to the center of the tube. Na+ and water travel towards the cathode and Cl-travels towards the anode. Ions travel as electro-osmotic flow and water travels as a mixture of electro-osmotic flow and dragged flow. The order of particles in NaCl solution and diffusion are strengthened by charged wall. The thermal conductivity near the wall is larger than in the center area.%采用分子动力学方法模拟了电场驱动下纳米通道中NaCl水溶液的电渗输运特性,壁面为无电荷和带有负电荷两种情况,统计了速度、密度、黏度和热传导系数的分布规律.在壁面电荷作用下,Na+被壁面吸附,Cl-聚集在通道中央;Na+与水分子朝电场负方向、Cl-朝电场正方向运动;Na+、Cl-呈电渗流动,水分子则较为复杂,呈电渗流和被离子拖拽混杂流动;在壁面作用下,水分子和Na+/Cl-的有序度、系统的自扩散系数增大;热传导系数分布呈靠近壁面处大,主流区小的特点.

  20. Nonlinear Dynamics of Magnons observed by AC Spin Pumping in Magnetic Hybrid Structures

    Vilela-Leao, L. H.; Cunha, R. O.; Azevedo, A.; Rodriguez-Suarez, R. L.; Rezende, S. M.


    The electron spin degree of freedom constitutes the basic means to carry and store information in the field of spintronics. In the spin pumping process, the microwave driven magnetization dynamics in a ferromagnetic film generates a spin current in an attached metallic layer that can be converted into a charge current by means of the inverse spin Hall effect and detected by a voltage signal. While the time independent component (DC) of the spin current has been widely investigated in a variety of material structures, recently it has been recognized that the alternating current (AC) component is much larger, though more difficult to detect, and has many attractive features. We report experiments with microwave driven DC and AC spin pumping in bilayers made of the insulating ferrimagnet yttrium iron garnet (YIG) and platinum that reveal the nonlinear dynamics involving the driven mode and a pair of magnon modes with half frequency. This process occurs when the frequency is lowered below a critical value so that a three-magnon splitting process with energy conservation is made possible. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  1. Strongly nonlinear dynamics of electrolytes in large ac voltages

    Olesen, Laurits Højgaard; Bazant, Martin Z.; Bruus, Henrik


    , ignoring any transverse instability or fluid flow. We analyze the resulting one-dimensional problem by matched asymptotic expansions in the limit of thin double layers and extend previous work into the strongly nonlinear regime, which is characterized by two features—significant salt depletion in the...... suppress the strongly nonlinear regime in the limit of concentrated electrolytes, ionic liquids, and molten salts. Beyond the model problem, our reduced equations for thin double layers, based on uniformly valid matched asymptotic expansions, provide a useful mathematical framework to describe additional...... nonlinear responses to large ac voltages, such as Faradaic reactions, electro-osmotic instabilities, and induced-charge electrokinetic phenomena....

  2. AC Stark shift and temperature shift in laser pumped rubidium frequency standards

    Full text: We report our study on the light-shift (AC-Stark effect) and buffer-gas induced effects (e.g. temperature effect) on the ground-state ('clock') transition of rubidium atoms contained in cm-scale glass cells. Rb atoms are optically pumped by radiation from a DFB laser diode (at 780 nm). Microwave radiation resonant with the clock transition frequency is applied via a resonator cavity, and the clock transition is detected in the light transmission. Narrow double resonance linewidths are obtained by adding buffer gases (Dicke narrowing). Control of the buffer-gas mixture allows reducing the temperature coefficient. By adjusting the total buffer-gas pressure, we are able to adjust the pump optical frequency to the point of the zero lightshift. We have successfully produced cells that simultaneously show a low intensity light-shift (δf/f ∼ 1 x 10-12 cm /uW) as well as a small temperature coefficient (δf/f -12 /K), and pave the way for improved Rb atomic frequency standards. (author)

  3. Experimental research on effect of electrode spacing on electro-osmotic dewatering under same voltage gradient%等电势梯度下电极间距对电渗影响的试验研究

    李瑛; 龚晓南


    通过室内1:5的模型试验进行了等电势梯度下2m×1 m和1 m×0.5 m两种工程常见矩形布置电极间距下的软黏土电渗性状的研究.利用监测排水量、排水速率、电流、电势、含水率和pH值等指标,对不同电极间距试样的电渗处理效果、能量效率和电极腐蚀等方面进行了分析.结果表明:保持电势梯度不变而减半电极间距能够加快电渗排水,降低土体含水率,减小能量消耗和电极界面电阻,但也会导致土体pH值变化和阳极腐蚀量的增大.此外,采用较小的电极间距可使损失在电极和土接触面上的电势降减小,但损失的电势降占电源电压的比例增大.%A 1:5 scaled model test is conducted in order to find a simple and feasible technical means to improve electro-osmotic efficiency in soft clay foundation. The test program involves two different electrode spacings which are 2m×1m and lm×0.5m. By monitoring drainage, current intensity, voltage, water content and soil pH values, two tests are compared in terms of treatment effect, energy efficiency and electrodes corrosion. The results show that: halving the electrode spacing and keeping the voltage gradient could improve electro-osmotic treatment efficiency effectively including faster drainage rate, more reduction in water content, less energy consumption and less interface resistivity while it would also lead more changes in pH values of soil and more anodes corrosion; moreover, in the condition of halved spacing, smaller voltage drop took place at the soil-electrode interface; but the proportion of the voltage drop to supply voltage is higher.

  4. Spin Backflow and ac Voltage Generation by Spin Pumping and the Inverse Spin Hall Effect

    Jiao, H.; Bauer, G.E.W.


    The spin current pumped by a precessing ferromagnet into an adjacent normal metal has a constant polarization component parallel to the precession axis and a rotating one normal to the magnetization. The former is now routinely detected as a dc voltage induced by the inverse spin Hall effect (ISHE).

  5. Combined loss of primary and secondary coolant AC pump power design-basis event for the K-reactor safety analysis report

    The combined loss of alternating-current (ac) power to the primary coolant and secondary coolant system pumps has been included as a design-basis event in Chap. 15 of the safety analysis report for the K reactor at the U.S. Department of Energy's Savannah River site (SRS) nuclear materials production complex near Aiken, South Carolina. This event can arise from a disruption of the entire 115-kV SRS power grid or a lesser disturbance affecting the K-reactor area, combined with a failure of the standby emergency power sources. The first scenario is referred to as a open-quotes station blackout,close quotes and the second scenario is designated as a open-quotes mini-blackout.close quotes This is a condition-11 event (incident of moderate frequency) per the criterion (frequency of occurrence ≥ 1 x 10-6 per year) for credible eventualities in the design-basis envelope. The event causes the primary coolant flow to drop and stabilize at ∼27% of its full level (5.83 + 05 ell/min). Likewise, the secondary coolant flow drops and settles also at ∼27% of its full level (6.36 x 105 ell/min). The final primary coolant flow is maintained by the reduced pumping provided by diesel powered direct-current motors. The final secondary coolant flow is driven by gravity from the height differential between the supply and discharge basins. Both flows coast down gradually due to the action of flywheels in all of the six primary coolant pumps and in two of the ten secondary coolant pumps

  6. Electro-Osmotic Flow of Semidilute Polyelectrolyte Solutions

    Uematsu, Yuki; Araki, Takeaki


    We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis ...

  7. Silicon-Based Chemical Motors: An Efficient Pump for Triggering and Guiding Fluid Motion Using Visible Light.

    Esplandiu, Maria J; Farniya, Ali Afshar; Bachtold, Adrian


    We report a simple yet highly efficient chemical motor that can be controlled with visible light. The motor made from a noble metal and doped silicon acts as a pump, which is driven through a light-activated catalytic reaction process. We show that the actuation is based on electro-osmosis with the electric field generated by chemical reactions at the metal and silicon surfaces, whereas the contribution of diffusio-osmosis to the actuation is negligible. Surprisingly, the pump can be operated using water as fuel. This is possible because of the large ζ-potential of silicon, which makes the electro-osmotic fluid motion sizable even though the electric field generated by the reaction is weak. The electro-hydrodynamic process is greatly amplified with the addition of reactive species, such as hydrogen peroxide, which generates higher electric fields. Another remarkable finding is the tunability of silicon-based pumps. That is, it is possible to control the speed of the fluid with light. We take advantage of this property to manipulate the spatial distribution of colloidal microparticles in the liquid and to pattern colloidal microparticle structures at specific locations on a wafer surface. Silicon-based pumps hold great promise for controlled mass transport in fluids. PMID:26349036

  8. Detección de cavitación en una bomba centrífuga usando emisiones acústicas Cavitation detection in a centrifugal pump using acoustic emissions

    Jabid Quiroga M.


    Full Text Available En el presente artículo se propone el uso de las emisiones acústicas para el monitoreo de la cavitación en una bomba centrífuga. Este monitoreo se ejecuta a través del seguimiento a unos indicadores de falla obtenidos a partir del valor RMS de la señal de emisiones acústicas en dominio tiempo y el valor RMS de los coeficientes de la Transformada Discreta Wavelet (TDW usando la onda madre db6 de la misma señal acústica. La experimentación se realiza en un banco dedicado que permite cavitar a una bomba de ½ hp en distintos niveles de severidad y bajo diferentes condiciones de bombeo. Resultados experimentales mostraron que los indicadores propuestos permiten detectar y evaluar cualitativamente los niveles de severidad de la cavitación en una bomba centrífuga.In this paper an acoustic emission based cavitation fault detection system is proposed for a centrifugal pump. The monitoring is performed tracking a fault indicator obtained using the RMS value of the acoustic emission signal in time domain and the RMS value of the coefficients obtained by applying discrete wavelet transform on the acoustic signal using db6 mother wavelet. Experiments in different cavitation levels and under different operation conditions are carried out in a ½ hp centrifugal pump dedicated test bed. Results showed that the proposed fault indicators are suitable for detecting and evaluating cavitation severities in a centrifugal pump.

  9. AC power supply systems

    An ac power supply system includes a rectifier fed by a normal ac supply, and an inverter connected to the rectifier by a dc link, the inverter being effective to invert the dc output of the receiver at a required frequency to provide an ac output. A dc backup power supply of lower voltage than the normal dc output of the rectifier is connected across the dc link such that the ac output of the rectifier is derived from the backup supply if the voltage of the output of the inverter falls below that of the backup supply. The dc backup power may be derived from a backup ac supply. Use in pumping coolant in nuclear reactor is envisaged. (author)

  10. Topological spin and valley pumping in silicene.

    Luo, Wei; Sheng, L; Wang, B G; Xing, D Y


    We propose to realize adiabatic topological spin and valley pumping by using silicene, subject to the modulation of an in-plane ac electric field with amplitude Ey and a vertical electric field consisting of an electrostatic component and an ac component with amplitudes and . By tuning and , topological valley pumping or spin-valley pumping can be achieved. The low-noise valley and spin currents generated can be useful in valleytronic and spintronic applications. Our work also demonstrates that bulk topological spin or valley pumping is a general characteristic effect of two-dimensional topological insulators, irrelevant to the edge state physics. PMID:27507592

  11. Power source device for reactor recycling pump

    The device of the present invention prevents occurrence of an accident of a reactor forecast upon spontaneous power stoppage, loss of power source or trip of the reactor. Namely, a AC/DC converter and a DC/AC connector having an AC voltage frequency controller are connected in series between an AC (bus) in the plant and reactor recycling pumps. A DC voltage controller, a superconductive energy storing device and an excitation power source are connected to the input of the DC/AC converter. The control device receives signals of the spontaneous power stoppage, loss of power source or trip of the reactor to maintain the output voltage of the superconductive energy storing device to a predetermined value. Further, the ratio of AC power voltage and the frequency of AC voltage to be supplied to the reactor recycling pumps is constantly varied to control the flow rate of the pump to a predetermined value. With such procedures, a power source device for the reactor recycling pumps compact in size, easy for maintenance and having high reliability can be realized by adopting a static-type superconductive energy storing device as an auxiliary power source for the reactor recycling pumps. (I.S.)

  12. Centrifugal pumps

    Anderson, HH


    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  13. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn


    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  14. Surface micromachined electrostatically actuated micro peristaltic pump

    Xie, Jun; Shih, Jason; Lin, Qiao; Yang, Bozhi; Tai, Yu-Chong


    An electrostatically actuated micro peristaltic pump is reported. The micro pump is entirely surface micromachined using a multilayer parylene technology. Taking advantage of the multilayer technology, the micro pump design enables the pumped fluid to be isolated from the electric field. Electrostatic actuation of the parylene membrane using both DC and AC voltages was demonstrated and applied to fluid pumping based on a 3-phase peristaltic sequence. A maximum flow rate of 1.7 nL min^–1 and a...

  15. In situ electro-osmotic cleanup of tar contaminated soil—Removal of polycyclic aromatic hydrocarbons

    Lima, Ana T.


    An in situ electro-osmosis experiment was set up in a tar contaminated clay soil in Olst, the Netherlands, at the site of a former asphalt factory. The main goal of this experiment was to remove polycyclic aromatic hydrocarbons (PAHs) from the contaminated clay layer by applying an electric gradient of 12 V m-1 across the soil over an electrode distance of 1 m. With the movement of water by electro-osmosis and the addition of a non-ionic surfactant (Tween 80), the non-polar PAHs were dragged along by convection and removed from the fine soil fraction. Soil samples were taken at the start and after 159 days at the end of the experiment. Water at the electrode wells was sampled regularly during the course of the experiment. The results reflect the heterogeneity of the soil characteristics and show the PAH concentrations within the experimental set up. After first having been released into the anolyte solution due to extraction by Tween 80 and subsequent diffusion, PAH concentrations increased significantly in the electrode reservoirs at the cathode side after 90 days of experiment. Although more detailed statistical analysis is necessary to quantify the efficiency of the remediation, it can be concluded that the use of electro-osmosis together with a non-ionic surfactant is a feasible technique to mobilize non-polar organic contaminants in clayey soils. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.

  16. 21 CFR 878.4780 - Powered suction pump.


    ...) MEDICAL DEVICES GENERAL AND PLASTIC SURGERY DEVICES Surgical Devices § 878.4780 Powered suction pump. (a) Identification. A powered suction pump is a portable, AC-powered or compressed air-powered device intended to be... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered suction pump. 878.4780 Section...

  17. Heat pumps

    Macmichael, DBA


    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  18. Heat pumps

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski


    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  19. Nonadiabatic pure spin pumping in zigzag graphene nanoribbons with proximity induced ferromagnetism

    Cheraghchi, Hosein


    By combining Floquet theory with Green's function formalism, we present non-adiabatic quantum spin and charge pumping through a zigzag ferromagnetic graphene nanoribbon including a double-barriers structure driven weakly by two local $ac$ gate voltages operating with a phase-lag. Over a wide range of Fermi energies, interesting quantum pumping such as i) pure spin pumping with zero net charge pumping, ii) pure charge pumping and iii) fully spin polarized pumping can be achieved by tuning and ...

  20. Centrifugal pumps

    Gülich, Johann Friedrich


    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  1. Pumping life

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel


    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family of...... membrane proteins: P-type ATPase pumps. This article takes the reader on a tour from Aarhus to Copenhagen, from bacteria to plants and humans, and from ions over protein structures to diseases caused by malfunctioning pump proteins. The magazine Nature once titled work published from PUMPKIN ‘Pumping ions......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  2. Jet Pump

    Wærp, Nils Petter


    The aim of this project is to investigate how an artificial lift method in the oil industry works,and to compare its performance with other pump systems. Jet pumps are initially used in the oil industry for artificial lift and thus in order to do so one needs a good understanding of themechanics to predict the jet pumps’ performance. The project will begin with a review of how the jet pump operates, aiming to give the reader an insight and overview into the field of an artificial lift method....

  3. Electromagnetic pump

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  4. Pump impeller

    A mixed-flow pump impeller, which may be used, for example, as a primary pump for circulating sodium as the primary coolant in a fast nuclear reactor, is described which comprises an impeller with evenly-spaced blades. Some of the blades, which are symmetrically disposed around the axis of rotation of the impeller, extend beyond the ends of the other blades towards the suction side of the pump to form an inducer. The channels defined between the extensions of the extended blades follow helical paths parallel to the axis of rotation. The leading edges of the unextended blades are interposed between the extended blades in the region of divergence of flow from the axis of rotation. The provision of the inducer reduces the risk of cavitation in the pump, which could cause rapid wear of the impeller. A shroud may be provided for the unextended blades. (author)

  5. Electrokinetic pump

    Patel, Kamlesh D. (Dublin, CA)


    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  6. Single electron pump fabricated with ultrasmall normal tunnel junctions

    We have designed and operated a device through which single electrons can be 'pumped' reversibly. It consists of a linear array of three tunnel junctions voltage biased below the Coulomb gap. Phase shifted ac voltages applied to two gates pump one electron per cycle. (orig.)

  7. Experiment of brushless fully superconducting generator with magnetic flux pump

    Since the first success in the development of magnetic flux-pumped brushless excitation system for superconducting AC generators in 1983, the authors have been building a testing machine to generate actual electric power. The paper presents experimental machine system, and test results about performances of the flux pump and output characteristics when operated as fully superconducting brushless generator

  8. 76 FR 34192 - Commercial and Industrial Pumps


    ..., oil and gas extraction, water and wastewater, or mineral mining. Standard Industrial Codes (SICs) from... Part 431 RIN 1904-AC54 Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and... certain commercial and industrial equipment, and requires the Department of Energy (DOE) to administer...

  9. Developing a Magnetocaloric Domestic Heat Pump

    Bahl, Christian R.H.


    beverage coolers, A/Cs for cars and electronics cooling. Devices for heating have not been extensively demonstrated. Here we consider a promising application of magnetocaloric heat pumps for domestic heating. The task of designing and building such a device is a multidisciplinary one encompassing materials...

  10. Insulin pumps.

    Pickup, J


    The last year has seen a continued uptake of insulin pump therapy in most countries. The USA is still a leader in pump use, with probably some 40% of type 1 diabetic patients on continuous subcutaneous insulin infusion (CSII), but the large variation in usage within Europe remains, with relatively high use (> 15%) in, for example, Norway, Austria, Germany and Sweden and low use (companies or funding from national health services, the availability of sufficient diabetes nurse educators and dietitians trained in pump procedures, and clear referral pathways for the pump candidate from general practitioner or general hospital to specialist pump centre. There are now several comprehensive national guidelines on CSII use (see ATTD Yearbook 2009) but more work needs to be done in unifying uptake and ensuring all those who can benefit do so. Technology developments recently include increasing use of pumps with continuous glucose monitoring (CGM) connectivity (see elsewhere in this volume) and the emergence of numerous manufacturers developing so-called 'patch pumps', often for the type 2 diabetes market. Interestingly, the evidence base for CSII in this group is not well established, and for this reason the selected papers on CSII in this section include several in this area. The use of CSII in diabetic pregnancy is a long-established practice, in spite of the lack of evidence that it is superior to multiple daily injections (MDI), and few randomised controlled trials have been done in recent years. Several papers in this field this year continue the debate about the usefulness of CSII in diabetic pregnancy and are reviewed here. It is pleasing to see more research on the psychosocial aspects of CSII during the year, both from the point of view of how psychological beliefs influence outcomes on CSII (is there a type of patient who does particularly well or poorly on CSII?) and how CSII affects psychological factors like mood, behaviour and quality of life. Quality of


    Levenson, L.


    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  12. ACAC Converters for UPS

    Rusalin Lucian R. Păun


    Full Text Available This paper propose a new control technique forsingle – phase ACAC converters used for a on-line UPSwith a good dynamic response, a reduced-partscomponents, a good output characteristic, a good powerfactorcorrection(PFC. This converter no needs anisolation transformer. A power factor correction rectifierand an inverter with the proposed control scheme has beendesigned and simulated using Caspoc2007, validating theconcept.

  13. Whole blood pumping with a microthrottle pump

    Davies, M J; Johnston, I. D.; Tan, C. K. L.; Tracey, M. C.


    We have previously reported that microthrottle pumps (MTPs) display the capacity to pump solid phase suspensions such as polystyrene beads which prove challenging to most microfluidic pumps. In this paper we report employing a linear microthrottle pump (LMTP) to pump whole, undiluted, anticoagulated, human venous blood at 200 μl min−1 with minimal erythrocyte lysis and no observed pump blockage. LMTPs are particularly well suited to particle suspension transport by virtue of their relatively ...

  14. Using a Breast Pump

    ... you can relax and not be disturbed while pumping. If you have an electric pump, find an ... otherwise irritating your nipple or breast tissue. Begin Pumping If your pump is electric or battery-powered, ...

  15. Ion pumping in nanochannels using an asymmetric electrode array

    Sparreboom, W.; Cucu, C.F.; Eijkel, J.C.T.; Berg, van den, T.J.T.P.; Locascio, L.E.; Gaitan, M.; Paegel, B.M.; Ross, D J; Vreeland, W. N.


    We demonstrate an ion pump, consisting of a nanochannel with an AC driven asymmetric electrode array. Our system enables us to actively pump ions using a low driving voltage. In all experiments the electrical double layers are overlapping. Via viscous coupling ion pumping is accompanied by liquid pumping. Actuation below 500 mV at 10 Hz results in a liquid velocity of ~10 μm/s, corresponding to an electrical ion current of ~400 fA. Finite element simulations support the experimental data.

  16. Pump characteristics and applications

    Volk, Michael


    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  17. AcEST: DK950971 [AcEST

    Full Text Available optera acutorost... 37 0.66 tr|B1ACS6|B1ACS6_BALBN DMP1 (Fragment) OS=Balaenoptera ...bonaerens... 37 0.66 tr|B1ACS5|B1ACS5_BALED DMP1 (Fragment) OS=Balaenoptera edeni... GN=... 37 0.66 tr|B1ACS4|B1ACS4_BALBO DMP1 (Fragment) OS=Balaenoptera borealis ... 37 0.66 tr|B1ACS3|B1ACS3..._BALMU DMP1 (Fragment) OS=Balaenoptera musculus ... 37 0.86 tr|B1ACS1|B1ACS1_MEGNO DMP1 (Fragment) OS=Megapt...1ACS2_BALPH DMP1 (Fragment) OS=Balaenoptera physalus ... 37 1.1 tr|B1ACT6|B1ACT6_MESPE DMP1 (Fragment) OS=Me

  18. Spin exchange collision mixing of the K and Rb ac Stark shifts

    Chen, Yao; Fang, Jiancheng


    In a hybrid pumping alkali vapor cell that both K and Rb are filled, K atom spins are optically pumped by laser and Rb atom spins are polarized by the K spins through spin exchange. We find that the AC Stark shift of the Rb atoms is composed of not only the AC Stark shift of the Rb atoms caused by the far off resonant pumping laser which is tuned to the K absorption lines, but also the AC Stark shift of the K atom spins. The mixing of the light shifts through fast spin exchange between K and Rb atoms are studied in this paper and we demonstrate a K-Rb-21Ne co-magnetometer in which the AC Stark shift of the Rb atoms are reduced by the collision mixing.

  19. Heat pump technology

    Von Cube, Hans Ludwig; Goodall, E G A


    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  20. AC1 Wing

    Adrian DOBRE


    Full Text Available The AC1 wing replaces the old wing of the wind tunnel model AEROTAXI, which has been made at scale 1:9. The new wing is part of CESAR program and improves the aerodynamic characteristics of the old one. The geometry of the whole wing was given by FOI Sweden and position of AC1 wing must coincide with the structure of the AEROTAXI model.

  1. AC1 Wing

    Adrian DOBRE


    The AC1 wing replaces the old wing of the wind tunnel model AEROTAXI, which has been made at scale 1:9. The new wing is part of CESAR program and improves the aerodynamic characteristics of the old one. The geometry of the whole wing was given by FOI Sweden and position of AC1 wing must coincide with the structure of the AEROTAXI model.

  2. Types of Breast Pumps

    ... breast-shield. Some experts discourage the use of bicycle horn pumps because they may be difficult to clean and dry. Battery-Powered and Electric Pumps A powered breast pump uses batteries or a cord plugged into an electrical outlet to power a small motorized pump that ...

  3. Multiple pump housing

    Donoho, II, Michael R.; Elliott; Christopher M.


    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  4. AC Test Chambers

    Federal Laboratory Consortium — The Psychrometric Test Chamber’s primary purpose is to evaluate the performance of split type central air conditioners and heat pumps in the cooling capacity range...

  5. Theory and simulations of water flow through carbon nanotubes: prospects and pitfalls

    We study water flow through carbon nanotubes using continuum theory and molecular dynamics simulations. The large slip length in carbon nanotubes greatly enhances the pumping and electrokinetic energy conversion efficiency. In the absence of mobile charges, however, the electro-osmotic flow vanishes. Uncharged nanotubes filled with pure water can therefore not be used as electric field-driven pumps, contrary to some recently ventured ideas. This is in agreement with results from a generalized hydrodynamic theory that includes the angular momentum of rotating dipolar molecules. The electro-osmotic flow observed in simulations of such carbon nanotubes is caused by an imprudent implementation of the Lennard-Jones cutoff. We also discuss the influence of other simulation parameters on the spurious electro-osmotic flow.

  6. ac bidirectional motor controller

    Schreiner, K.


    Test data are presented and the design of a high-efficiency motor/generator controller at NASA-Lewis for use with the Space Station power system testbed is described. The bidirectional motor driver is a 20 kHz to variable frequency three-phase ac converter that operates from the high-frequency ac bus being designed for the Space Station. A zero-voltage-switching pulse-density-modulation technique is used in the converter to shape the low-frequency output waveform.

  7. 78 FR 11996 - Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps


    ... efficiency of commercial and industrial pumps. (76 FR 34192, June 13, 2011). DOE subsequently published a...; ] DEPARTMENT OF ENERGY 10 CFR Part 431 RIN 1904-AC54 Energy Efficiency Program for Commercial and Industrial Equipment: Commercial and Industrial Pumps AGENCY: Office of Energy Efficiency and Renewable...

  8. Pump element for a tube pump


    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...... pump as mentioned above, thereby acting to generate a fluid flow through the tube upon repeated deformation of the tube between the two valve members. The pump element may comprise a connecting part for coupling to another tube and may comprise a sealing part establishing a fluid tight connection to a...

  9. Gastrostomy feeding tube - pump - child

    Feeding - gastrostomy tube - pump; G-tube - pump; Gastrostomy button - pump; Bard Button - pump; MIC-KEY - pump ... Gather supplies: Feeding pump (electronic or battery powered) Feeding set that matches the feeding pump (includes a feeding bag, drip chamber, roller clamp, ...

  10. AC/RF Superconductivity

    Ciovati, G.


    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  11. AC/RF Superconductivity

    Ciovati, Gianluigi [JLAB


    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  12. Tritium gas transfer pump development

    Non-lubricated, hermetically sealed pumps for tritium service have been selected to replace Sprengel pumps in the existing Tritium Facility. These pumps will be the primary gas-transfer pumps in the planned Replacement Tritium Facility. The selected pumps are Metal Bellows Corporation's bellows pumps and Normetex scroll pumps. Pumping range for a Normetex/Metal Bellows system is from 0.01 torr suction to 2300 torr discharge. Performance characteristics of both pumps are presented. 10 figs

  13. Large electromagnetic pumps. [LMFBR

    Kilman, G.B.


    The development of large electromagnetic pumps for the liquid metal heat transfer systems of fission reactors has progressed for a number of years. Such pumps are now planned for fusion reactors and solar plants as well. The Einstein-Szilard (annular) pump has been selected as the preferred configuration. Some of the reasons that electromagnetic pumps may be preferred over mechanical pumps and why the annular configuration was selected are discussed. A detailed electromagnetic analysis of the annular pump, based on slug flow, is presented. The analysis is then used to explore the implications of large size and power on considerations of electromagnetic skin effect, geometric skin effect and the cylindrical geometry.

  14. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    Mortensen, Niels Asger


    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical...... air-clad structures may thus suppress the pump-absorption efficiency η below the ergodic scaling law η∞ Ac/Acl, where Ac and Acl are the areas of the rare-earth doped core and the cladding, respectively....

  15. An Alternating Current Electroosmotic Pump Based on Conical Nanopore Membranes.

    Wu, Xiaojian; Ramiah Rajasekaran, Pradeep; Martin, Charles R


    Electroosmotic flow (EOF) is used to pump solutions through microfluidic devices and capillary electrophoresis columns. We describe here an EOF pump based on membrane EOF rectification, an electrokinetic phenomenon we recently described. EOF rectification requires membranes with asymmetrically shaped pores, and conical pores in a polymeric membrane were used here. We show here that solution flow through the membrane can be achieved by applying a symmetrical sinusoidal voltage waveform across the membrane. This is possible because the alternating current (AC) carried by ions through the pore is rectified, and we previously showed that rectified currents yield EOF rectification. We have investigated the effect of both the magnitude and frequency of the voltage waveform on flow rate through the membrane, and we have measured the maximum operating pressure. Finally, we show that operating in AC mode offers potential advantages relative to conventional DC-mode EOF pumps. PMID:27046145

  16. Neural network based PWM AC chopper fed induction motor drive

    Venkatesan Jamuna


    Full Text Available In this paper, a new Simulink model for a neural network controlled PWM AC chopper fed single phase induction motor is proposed. Closed loop speed control is achieved using a neural network controller. To maintain a constant fluid flow with a variation in pressure head, drives like fan and pump are operated with closed loop speed control. The need to improve the quality and reliability of the drive circuit has increased because of the growing demand for improving the performance of motor drives. With the increased availability of MOSFET's and IGBT's, PWM converters can be used efficiently in low and medium power applications. From the simulation studies, it is seen that the PWM AC chopper has a better harmonic spectrum and lesser copper loss than the Phase controlled AC chopper. It is observed that the drive system with the proposed model produces better dynamic performance, reduced overshoot and fast transient response. .

  17. Insulin pump (image)

    The catheter at the end of the insulin pump is inserted through a needle into the abdominal ... with diabetes. Dosage instructions are entered into the pump's small computer and the appropriate amount of insulin ...

  18. Proton pump inhibitors

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  19. Proton pump inhibitors

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  20. Photovoltaic pump systems

    Klockgether, J.; Kiessling, K. P.


    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  1. Increased Ac excision (iae): Arabidopsis thaliana mutations affecting Ac transposition

    The maize transposable element Ac is highly active in the heterologous hosts tobacco and tomato, but shows very much reduced levels of activity in Arabidopsis. A mutagenesis experiment was undertaken with the aim of identifying Arabidopsis host factors responsible for the observed low levels of Ac activity. Seed from a line carrying a single copy of the Ac element inserted into the streptomycin phosphotransferase (SPT) reporter fusion, and which displayed typically low levels of Ac activity, were mutagenized using gamma rays. Nineteen mutants displaying high levels of somatic Ac activity, as judged by their highly variegated phenotypes, were isolated after screening the M2 generation on streptomycin-containing medium. The mutations fall into two complementation groups, iae1 and iae2, are unlinked to the SPT::Ac locus and segregate in a Mendelian fashion. The iae1 mutation is recessive and the iae2 mutation is semi-dominant. The iae1 and iae2 mutants show 550- and 70-fold increases, respectively, in the average number of Ac excision sectors per cotyledon. The IAE1 locus maps to chromosome 2, whereas the SPT::Ac reporter maps to chromosome 3. A molecular study of Ac activity in the iae1 mutant confirmed the very high levels of Ac excision predicted using the phenotypic assay, but revealed only low levels of Ac re-insertion. Analyses of germinal transposition in the iae1 mutant demonstrated an average germinal excision frequency of 3% and a frequency of independent Ac re-insertions following germinal excision of 22%. The iae mutants represents a possible means of improving the efficiency of Ac/Ds transposon tagging systems in Arabidopsis, and will enable the dissection of host involvement in Ac transposition and the mechanisms employed for controlling transposable element activity

  2. Hermetisk AC-Krets

    Hirsch, Carl; Smirnoff, Alexander


    Under sex månader våren 2007 har ett samarbete mellan Volvo Lastvagnar och två studenter från KTH, inriktning Integrerad produktutveckling vid institutionen för maskinkonstruktion, pågått i form av ett examensarbete på 20 poäng. Dagens AC-system i Volvos lastbilar avger 20-40 g/år av köldmediet R134a som är en kraftfull växthusgas. Detta sker främst genom diffusion via slangar och tätningsmaterial. Syftet med detta examensarbete är att ta fram förslag på tekniska lösningar på ett nytt AC-syst...

  3. Breast milk - pumping and storing

    ... a comfortable chair, sink, and electric pump. If pumping at work is going to be hard, build ... up your milk supply. Wash your hands before pumping. Collect breast milk when pumping. You can use: ...

  4. The considerations to use soft start AC controllers in nuclear application

    Motors larger than 200 HP shall be fed from 4.16 kV or 2.4 kV fused starters. In CANDU reactors all large pumps motors are supplied directly from the 13.8 kV, 6.3 kV or 4.16 kV AC system. In the MAPLE reactors, the Primary Coolant System pumps are supplied directly from the 2.4 kV AC system. Starting and stopping a pump may be easy, but the consequences may not always be ones we wanted. It can result in high start current that require large cables and fuses, or hydraulic shocks known as 'water hammer' can cause stress and damage to pipes, valves, gaskets and seals. If the nuclear plant installs soft starters, the result will be pump protection, which provides start and stop control, preventing both water hammer and expensive high start currents. (author)

  5. Internal pump monitoring device

    In the present invention, a thermometer is disposed at the upper end of an internal pump casing of a coolant recycling system in a BWR type reactor to detect leakage of reactor water thereby ensuring the improvement of reliability of the internal pump. Namely, a thermometer is disposed, which can detect temperature elevation occurred when water in the internal pump leaked from a reactor pressure vessel passes through the gap between a stretch tube and an upper end of the pump casing. Signals from the thermometer are transmitted to a signal processing device by an instrumentation cable. The signal processing device generates an alarm when the temperature signal exceeds a predetermined value and announces that leakage of reactor water occurs in the internal pump. Since the present invention can detect the leakage of the reactor water in the pump casing in an early stage, it can contribute to the improvement of the safety and reliability of the internal pump. (I.S.)

  6. Superconducting ac cable

    The components of a superconducting 110 kV ac cable for power ratings >= 2000 MVA have been developed. The cable design especially considered was of the semiflexible type, with a rigid cryogenic envelope and flexible hollow coaxial cable cores pulled into the former. The cable core consists of spirally wound Nb-Al composite wires and a HDPE-tape wrapped electrical insulation. A 35 m long single phase test cable with full load terminations for 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of our cable design. (orig.)

  7. High performance AC drives

    Ahmad, Mukhtar


    This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN

  8. Behaviour analysis of AC-600 passive safety systems

    Southwest Center of Reactor Engineering Research and Design has finished the first step conceptual design of 600 mwe advanced PWR (AC-600). The main research emphases of AC-600 conceptual design include the advanced reactor core, the passive safety systems and the simplification. The passive safety systems of AC-600 consist of two reactor make up water tanks, two accumulators, two emergency feedwater tanks, two emergency natural draft air condensers, a containment water jacket and an enhanced primary cycle natural circulation flow system. 25% of the rated reactor power can be removed by the natural circulation cooling. The full pressure reactor make up water tanks are able to provide enough borated water which would be injected into the reactor coolant system during small LOCA. The coolant natural circulations can be established in the primary system and the passive secondary emergency feedwater system, removing residual heat from the reactor core to the atmosphere when station blackout occurs. It is indicated from analysis that the containment diameter of AC-600 is about 35 m. The large tanks and the large vertical distances between the tanks and reactor core are the main reason of using the big containment. It is also indicated from analysis that the low head safety injection pumps are required in AC-600 design to assure the recirculation system operation when large LOCA occurs. The reliability of AC-600 engineered safety systems is increased because the function of the passive safety systems is conducted through the immutable natural laws. The paper discusses the natural circulation ability and safety behavior of the passive safety systems during LOCA or station blackout for AC-600. The passive limits to excess reactivity and thermal hydraulic transients are also preliminarily discussed. Figs and tabs

  9. Heat Pumps With Direct Expansion Solar Collectors

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  10. Geothermal energy. Ground source heat pumps

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)


    A. I. Kolosov


    Full Text Available Problem statement. The paper discusses the problem of estimation of prospects of heat accumulation in the combined systems of heat supply with the use of low potential energy of renewable sources (sun and ground and heat pumps for increase of their potential.Results and conclusions. The use of heat accumulators in combined heating systems that utilize low-potential solar and ground energy as primary energy sources and heat pumps to boost the po-tential of the latter was discussed. A method of calculating ground heat exchangers that use the heat pump cycle to increase a thermal potential of renewable energy sources was set forth. An at-tempt was made at addressing the problem of heat and mass transfer in ground when ground ac-cumulators like “a Field’s tube” are used: a geothermal circulation system comprises two wells (pumping and operational.

  12. Research on the noise induced by cavitation under the asymmetric cavitation condition in a centrifugal pump

    Lu, J. X.; Yuan, S. Q.; Yuan, J. P.; Ren, X. D.; Pei, J.; Si, Q. R.


    An experimental investigation has been carried out to research the noise induced by cavitation under the asymmetric cavitation (AC) condition in a centrifugal pump. The acoustic pressure signals at the pump inlet and outlet were measured respectively during the development of cavitation in a closed hydraulic test rig. It could be found that both the pump inlet and outlet acoustic pressures changed obviously with the development of cavitation. The time domain and the power spectrum density of the pump inlet and outlet acoustic pressure pulsations were analyzed. The broadband pulses of the acoustic pressure pulsations were found and the reasons for the phenomenon were given.

  13. Electrokinetic pumps and actuators

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps

  14. Pump application and maintenance

    Nuclear maintenance programs are typically organized by overall application, function, cost impact, and failure histories. Each maintenance program is uniquely tailored for each plant's specific goals and objectives. Most maintenance programs include pump maintenance within an application and/or a function. NMAC provides guidance on maintenance, troubleshooting, and applications of Deep Draft Vertical Centrifugal Pumps, Main Coolant Pump Seals, Feedwater Pumps, and Charging Pumps. Each maintenance guide includes a technical discussion of the design and operating issues which influence pump and component performance, reliability, and availability. The guides also discuss comprehensive inspection and corresponding repair Advisory groups consisting of utility, manufacturer, and regulatory representatives oversee the development of the NMAC guides, and review by utility personnel further augments the development process

  15. Detection of pump degradation

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others


    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  16. Fakir fuel pump


    In designing the Fakir fuel pump, the fundamental idea was to obtain a simple and reliable method of conveying the fuel from a low tank to the carburetor, with the avoidance of the faults of all former methods and the simultaneous warming of the fuel by means of the heat of compression generated. The principle of the Fakir fuel pump rests on the well-known principle of the diaphragm pump, which must be suitably adapted to the present purpose.

  17. Detection of pump degradation

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  18. The Insulin Pump

    Toews, C. J.


    Subcutaneous continuous insulin infusion systems deliver insulin at a basal rate designed to keep blood glucose levels normal in the non-fed state. Additional insulin is delivered at meal time. Pumps can provide near optimal control of blood glucose concentrations in selected, highly motivated patients. The pump provides better diabetic control than once daily insulin injections, although several daily injections can provide comparable control. Optimal control with the pump causes some short-...

  19. Photonic crystal resonator integrated in a microfluidic system

    Rodrigues de Sousa Nunes, Pedro André; Mortensen, Niels Asger; Kutter, Jörg Peter;


    -free refractive index detection. The resonator was fabricated in a silicon oxynitride platform, to support electro-osmotic flow, and operated at =1.55 m. Different aqueous solutions of ethanol with refractive indices ranging from n1.3330 to 1.3616 were pumped into the column/resonator, and the transmission...

  20. ac electrokinetic micropumps: The effect of geometrical confinement, Faradaic current injection, and nonlinear surface capacitance

    Olesen, Laurits Højgaard; Bruus, Henrik; Ajdari, A.


    Recent experiments have demonstrated that ac electrokinetic micropumps permit integrable, local, and fast pumping (velocities similar to mm/s) with low driving voltage of a few volts only. However, they also displayed many quantitative and qualitative discrepancies with existing theories. We...... therefore extend the latter theories to account for three experimentally relevant effects: (i) vertical confinement of the pumping channel, (ii) Faradaic currents from electrochemical reactions at the electrodes, and (iii) nonlinear surface capacitance of the Debye layer. We report here that these effects...... indeed affect the pump performance in a way that we can rationalize by physical arguments....

  1. Optically pumped atoms

    Happer, William; Walker, Thad


    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  2. Detection of pump degradation

    Casada, D. [Oak Ridge National Lab., TN (United States)


    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed.

  3. Ground Source Heat Pumps

    Lale Valizade


    A heat pump is a device that is able to transfer heat from one fluid at a lower temperature to another at a higher temperature. Ground source heat pumps are generally classified by the type of ground loop. The coefficient of performance (COP) is used to define the heating performance of heat pumps. Both the COP and EER values are valid only at the specific test conditions used in the rating. A ground source pump could reach 450%, compared with an efficient gas boiler of 90% obviously this is ...

  4. Characterization of flowreversal in anodically bonded glass-based AC electrokinetic micropumps

    Gregersen, Misha Marie; Olesen, Laurits Højgaard; Brask, Anders;


    Microfluidic chips have been fabricated to study electrokinetic pumping generated by a low voltage AC signal applied to an asymmetric electrode array. A measurement procedure has been established and followed carefully resulting in a high degree of reproducibility of the measurements. Depending on...

  5. Liquid pump for astronaut cooling

    Carson, M. A.


    The Apollo portable life support system water-recirculation pump used for astronaut cooling is described. The problems associated with an early centrifugal pump and how these problems were overcome by the use of a new diaphragm pump are discussed. Performance comparisons of the two pump designs are given. Developmental problems and flight results with the diaphragm pump are discussed.

  6. Ac Hybrid Charge Controller

    Shalini S. Durgam


    Full Text Available One of the primary needs for socio-economic development in any nation in the world is the provision of reliable electricity supply systems with lower carbon footprint levels. The purpose of this work is the development of a hybrid Power system that harnesses the renewable energy in sun and electricity to generate electricity. The working model can able to run on dual mode- solar and electricity. It can also be driven independently either by solar or electricity. The battery can be charge from solar panel (40W or by power supply. The household single phase A.C. power supply of 230V is converted into 12V D.C. using step down transformer and rectifying circuit. The working model can achieve energy saving, low carbon emission, environmental protection for the upcoming future of human life.

  7. Detection of pump degradation

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  8. Water Treatment Technology - Pumps.

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on pumps provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pumps in plant and distribution systems, pump…

  9. Normetex Pump Alternatives Study

    Clark, Elliot A.


    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying


    PENG Yan; ZHAO Ling-zhi; SONG Shu-jun; SHA Ci-wen; LI Ran; XU Yu-yu


    An experimental apparatus to investigate AC MHD pump was established, which mainly consists of a rotary permanent magnet with 4 poles an annular channel, a motor, a shaft and a platform. The magnet generates a field similar to sinusoid with the maximum of 0.9 T in the channel when it is rotated up by the motor to simulate an AC magnetic field. This moving magnetic field acts on the conductive fluid in the channel, and produces an electromagnetic force to move the fluid in the same direction as that of the magnet rotating. Experiments were carried out to investigate the performance of the pump. Flow velocity in the annular channel was measured for different conductivities and rotating speeds of the magnet. The results show that the flow rate and pressure increase as the magnetic field strength, fluid conductivity and frequency of the magnetic field increase.

  11. AcEST: BP920072 [AcEST


  12. Apparatus for Pumping a Fluid

    Boeyen, Robert Van; Reeh, Jonathan


    A fluid pump has been developed for mechanically pumped fluid loops for spacecraft thermal control. Lynntech's technology utilizes a proprietary electrochemically driven pumping mechanism. Conventional rotodynamic and displacement pumps typically do not meet the stringent power and operational reliability requirements of space applications. Lynntech's developmental pump is a highly efficient solid-state pump with essentially no rotating or moving components (apart from metal bellows).

  13. Pump effect of a capillary discharge in electrically conductive liquids

    De Baerdemaeker, F.; Šimek, Milan; Leys, C.; Verstraete, W.


    Roč. 27, č. 4 (2007), s. 473-485. ISSN 0272-4324 R&D Projects: GA AV ČR IAA1043403 Institutional research plan: CEZ:AV0Z20430508 Keywords : water * conductive * capillary * AC discharge * pump Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.747, year: 2007

  14. Pumping machinery theory and practice

    Badr, Hassan M


    Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumpsConsiders pumping machinery performance and operational-type problemsCovers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systemsCovers different methods of flow rate control and relevance to machine efficiency and energy consumptionCovers different methods of flow rate control and relevance to machine effi

  15. AcEST: BP918490 [AcEST

    Full Text Available 1|SRPC_PSEPU Solvent efflux pump outer membrane protein ... 69 1e-11 sp|Q93PU3|TTGI_PSEPU Toluene efflux pump outer membrane ... 66 1e-10 sp|Q9ZHD2|SILC_SALTY Probable outer membrane lipoprotein silC OS... 63... 9e-10 sp|Q51397|OPRJ_PSEAE Outer membrane protein oprJ OS=Pseudomonas ... 61 3e-09 sp|Q9WWZ8|TTGC_PSEPU Toluene efflux pump outer... membrane protein ... 55 2e-07 sp|Q88N32|TTGC_PSEPK Probable efflux pump outer... membrane protein... 55 2e-07 sp|P0C071|MEPC_PSEPU Multidrug/solvent efflux pump outer me

  16. Microfluidic reflow pumps.

    Haslam, Bryan; Tsai, Long-Fang; Anderson, Ryan R; Kim, Seunghyun; Hu, Weisheng; Nordin, Gregory P


    A new microfluidic pump, termed a reflow pump, is designed to operate with a sub-μl sample volume and transport it back and forth between two pneumatically actuated reservoirs through a flow channel typically containing one or more sensor surfaces. The ultimate motivation is to efficiently use the small sample volume in conjunction with convection to maximize analyte flux to the sensor surface(s) in order to minimize sensor response time. In this paper, we focus on the operational properties of the pumps themselves (rather than the sensor surfaces), and demonstrate both two-layer and three-layer polydimethylsiloxane reflow pumps. For the three-layer pump, we examine the effects of reservoir actuation pressure and actuation period, and demonstrate average volumetric flow rates as high as 500 μl/min. We also show that the two-layer design can pump up to 93% of the sample volume during each half period and demonstrate integration of a reflow pump with a single-chip microcantilever array to measure maximum flow rate. PMID:26221199

  17. Pressure charged airlift pump

    Campbell, Gene K.


    A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.

  18. AcEST: DK950147 [AcEST

    Full Text Available TST38A01NGRL0007_O05 706 Adiantum capillus-veneris mRNA. clone: TST38A01NGRL0007_O05. 5' end seq ... _MEDTR Peptidase, trypsin-like serine and cysteine proteases ... OS=Medicago truncatula GN=MtrDRAFT_AC149576g3v2 PE ... _MEDTR Peptidase, trypsin-like serine and cysteine proteases ... (Fragment) OS=Medicago truncatula GN=MtrDRAFT_AC14 ...

  19. AcEST: DK959344 [AcEST

    Full Text Available TST39A01NGRL0004_G23 714 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0004_G23. 5' end seq ... _MEDTR Peptidase, trypsin-like serine and cysteine proteases ... OS=Medicago truncatula GN=MtrDRAFT_AC149576g3v2 PE ... _MEDTR Peptidase, trypsin-like serine and cysteine proteases ... (Fragment) OS=Medicago truncatula GN=MtrDRAFT_AC14 ...

  20. AcEST: DK949716 [AcEST

    Full Text Available TST38A01NGRL0006_L20 613 Adiantum capillus-veneris mRNA. clone: TST38A01NGRL0006_L20. 5' end seq ... _MEDTR Peptidase, trypsin-like serine and cysteine proteases ... OS=Medicago truncatula GN=MtrDRAFT_AC149576g3v2 PE ... _MEDTR Peptidase, trypsin-like serine and cysteine proteases ... (Fragment) OS=Medicago truncatula GN=MtrDRAFT_AC14 ...

  1. AcEST: BP920905 [AcEST


  2. Induction Motor Control through AC/DC/AC Converters

    Elfadili, Abderrahim; Giri, Fouad; Ouadi, Hamid; El Magri, Abdelmounime; Dugard, Luc; Abouloifa, Abdelmajid


    We consider the problem of controlling inductions motors driven through AC/DC rectifiers and DC/AC inverters. The control objectives are threefold: (i) forcing the motor speed to track a reference signal, (ii) regulating the DC Link voltage, (iii) assuring a satisfactory power factor correction (PFC) with respect to the power supply net. First, a nonlinear model of the whole controlled system is developed in the Park-coordinates. Then, a nonlinear multi-loop controller is synthesized using th...

  3. AC drives for industrial plants. Plant kudoyo AC drive sochi

    Miyazaki, M.; Shibata, M.; Yamada, S. (Toshiba Corp., Tokyo (Japan))


    Features and product series of AC drives for industrial plants were outlined. Configurations and features of various types of AC drives were briefly discussed which are put into market to meet various requirements for industrial plants and wide ranges of output voltage and capacity. The following product series were outlined; the power bipolar transistor inverter for 3.5-600 kVA in output capacity, IGBT inverter for AC 400 V in output voltage and 1,000 kVA or less, GTO inverter for AC 600 V and 700-2,000 kVA, and cycloconverter for AC 1,000-3,000 V and 1,000 kW-20 MW. The following subjects were outlined as current technical trends of AC drives for industrial plants; increasing in capacity of voltage-source PWM inverters, downsizing of converters through highly efficient cooling and highly dense mounting, spreading of sensorless vector controls, and development of high-voltage large-capacity PWM inverters. 6 figs., 2 tabs.

  4. Electromagnetically-Actuated Reciprocating Pump for High-Flow-Rate Microfluidic Applications

    Chia-Yen Lee; Jian-Hao Zhong; Ming-Tsun Ke


    This study presents an electromagnetically-actuated reciprocating pump for high-flow-rate microfluidic applications. The pump comprises four major components, namely a lower glass plate containing a copper microcoil, a middle PMMA plate incorporating a PDMS diaphragm with a surface-mounted magnet, upper PMMA channel plates, and a ball-type check valve located at the channel inlet. When an AC current is passed through the microcoil, an alternating electromagnetic force is established between t...

  5. Time-reversal symmetry breaking by ac field: Effect of commensurability in the frequency domain

    V E Kravtsov


    It is shown that the variance of the linear dc conductance fluctuations in an open quantum dot under high-frequency ac pumping depends significantly on the spectral content of the ac field. For a sufficiently strong ac field the dc conductance fluctuations are much stronger for the periodic pumping than in the case of the noise ac field of the same intensity. The reduction factor in a static magnetic field takes the universal value of 2 only for the white-noise pumping. In general may deviate from 2 thus signalling on the time-reversal breaking by the ac field. For the bi-harmonic ac field of the form () = 0 [cos(1 ) + cos(2 )] we predict the enchancement of effects of -symmetry breaking at commensurate frequencies 2/1 = /. In the high-temperature limit there is also the parity effect: the enchancement is only present if either or is even.

  6. Nuclear-pumped lasers

    Prelas, Mark


    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  7. Pumping and Breastmilk Storage

    ... refrigerate or freeze your breastmilk also qualify as tax-deductible breastfeeding gear. After each pumping Label the ... cause some of the milk's valuable parts to break down. Refrigerate or chill milk right after it ...

  8. Keeping Hearts Pumping


    A collaboration between NASA, Dr. Michael DeBakey, Dr. George Noon, and MicroMed Technology, Inc., resulted in a life-saving heart pump for patients awaiting heart transplants. The MicroMed DeBakey VAD functions as a "bridge to heart transplant" by pumping blood throughout the body to keep critically ill patients alive until a donor heart is available. Weighing less than 4 ounces and measuring 1 inch by 3 inches, the pump is approximately one-tenth the size of other currently marketed pulsatile VADs. This makes it less invasive and ideal for smaller adults and children. Because of the pump's small size, less than 5 percent of the patients implanted developed device-related infections. It can operate up to 8 hours on batteries, giving patients the mobility to do normal, everyday activities.The MicroMed DeBakey VAD is a registered trademark of MicroMed Technology, Inc.

  9. Advanced heat pump

    Ashley, Joseph L.; Matthews, John D.


    This patent application discloses a heat pump which includes a first packed bed of liquid desiccant for removing moisture from outside air in the heating mode of operation, and a pump for transferring the moisture laden desiccant to a second packed bed which humidifies condenser heated inside air by adding water vapor to the air. The first packed bed, by removing moisture from the outside air before it passes through the heat pump's evaporator coils, prevents frost from forming on the coils. In the cooling mode of operation the second packed bed of liquid desiccant removes water vapor from the air inside of the building. The moisture laden desiccant is then transferred to the first packed bed by a second pump where condenser heat transfers the moisture from the desiccant to outside air.

  10. High Voltage Charge Pump

    Emira, Ahmed A.


    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  11. Lunar Base Heat Pump

    Walker, D.; Fischbach, D.; Tetreault, R.


    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  12. Tokamak pump limiters

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  13. Portable photovoltaic irrigation pumps

    Furber, J.D.


    Experiences in developing a solar-powered irrigation pump to meet the needs of poor farmers in developing nations are summarized. The design which evolved is small and portable, employing a high-efficiency electric pump, powered by photovoltaic panels. Particular emphasis is placed on how the system works, and on early field problems experienced with the first prototypes. The resolution of these problems and the performance of actual systems in various countries is presented and user responses are noted.

  14. Rotary blood pump

    Benkowski, Robert J. (Inventor); Kiris, Cetin (Inventor); Kwak, Dochan (Inventor); Rosenbaum, Bernard J. (Inventor); Bacak, James W. (Inventor); DeBakey, Michael E. (Inventor)


    A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade. Blood flow stagnation and clot formation within the pump are minimized by, among other things, providing the inducer hub with a diameter greater than the diameter of the flow straightener hub; by optimizing the axial spacing between the flow straightener hub and the inducer hub, and between the impeller hub and the diffuser hub; by optimizing the inlet angle of the diffuser blades; and by providing fillets or curved transitions between the upstream end of the inducer hub and the shaft mounted therein, and between the impeller hub and the shaft mounted therein.

  15. Pump trials for charged liquids

    The pumps intended for the circulation of charged and radioactive liquids have particular qualities. The choice of such a pump has called for endurance tests with various types of equipment: a Goodyear volumetric screw pumps, and RICHIER, Klein and SCHABAVER centrifugal pumps. The latter, fitted with a special oakum, gave the best results. (authors)




    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the biocompati

  17. A DC brushless PM motor driven photovoltaic water pumping system

    Yu, Shijie; Xie, Lei; He, Huiruo; Zhang, Hualin; Zhou, Longhua; Liu, Wen [Sun Yat-sen Univ., Zhuhai (China). Inst. of Power Electronics and Control Technology


    Along with the worldwide more attention to environment and rapid development of photovoltaic industry, the PV water pumping system has rapidly developed, the economic advantage of which brings it into prominence. It was estimated, up to now the operating PV water pumping systems in the world may exceed hundreds thousand sets and with a driving increasing tendency. In many cases the distributed stations gain the advantages over PV feed-in grid-connected pump. The majority of the PV pumping systems are driven by an ac asynchronous motor, which are generally of lower efficiency, especially for small-scale systems. A dc permanent magnetic, brushless, sensorless and casting resin motor are developed and used in PV water pumping systems, the experiments and operations of 19 demonstrative stations in Guangdong show that the results on economics and reliability are excited. It can save even 15% {proportional_to} 20% PV modules in comparison with an asynchronous motor driven under same sunshine, water head and flow. An example of comparison between systems with batteries and without batteries is also given in this paper. Finally the commercialization, marketing and subsidy policies of PV water pumping system in China are discussed. (orig.)

  18. Thermally Actuated Hydraulic Pumps

    Jones, Jack; Ross, Ronald; Chao, Yi


    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  19. Dynamic modelling of a PV pumping system with special consideration on water demand

    Highlights: ► Evaluation of water demand and solar energy is essential for PV pumping system. ► The design for a PV water pumping system has been optimized based on dynamic simulations. ► It is important to conduct dynamic simulations to check the matching between water demand and water supply. ► AC pump driven by the fixed PV array is the most cost-effective solution. - Abstract: The exploitation of solar energy in remote areas through photovoltaic (PV) systems is an attractive solution for water pumping for irrigation systems. The design of a photovoltaic water pumping system (PVWPS) strictly depends on the estimation of the crop water requirements and land use since the water demand varies during the watering season and the solar irradiation changes time by time. It is of significance to conduct dynamic simulations in order to achieve the successful and optimal design. The aim of this paper is to develop a dynamic modelling tool for the design of a of photovoltaic water pumping system by combining the models of the water demand, the solar PV power and the pumping system, which can be used to validate the design procedure in terms of matching between water demand and water supply. Both alternate current (AC) and direct current (DC) pumps and both fixed and two-axis tracking PV array were analyzed. The tool has been applied in a case study. Results show that it has the ability to do rapid design and optimization of PV water pumping system by reducing the power peak and selecting the proper devices from both technical and economic viewpoints. Among the different alternatives considered in this study, the AC fixed system represented the best cost effective solution

  20. AcEST: BP916855 [AcEST

    Full Text Available YMU001_000092_F07 488 Adiantum capillus-veneris mRNA. clone: YMU001_000092_F07. BP916855 CL436Co ... H Putative pyrophosphate-energized membrane proton pump ... 3 OS=Arabidopsis thaliana Align length 162 Score ( ... p|Q8RCX1|HPPA_THETN Pyrophosphate-energized proton pump ... OS=Ther... 178 1e-44 sp|Q8TJA8|HPPA2_METAC Pyropho ...

  1. AcEST: BP921672 [AcEST

    Full Text Available YMU001_000152_G09 441 Adiantum capillus-veneris mRNA. clone: YMU001_000152_G09. BP921672 CL436Co ... AVP2_ARATH Pyrophosphate-energized membrane proton pump ... 2 OS=Arabidopsis thaliana Align length 146 Score ( ... p|Q8RCX1|HPPA_THETN Pyrophosphate-energized proton pump ... OS=Ther... 120 2e-27 sp|Q8PYZ8|HPPA1_METMA Pyropho ...

  2. AcEST: DK957906 [AcEST

    Full Text Available TST39A01NGRL0029_J16 650 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0029_J16. 5' end seq ... H Pyrophosphate-energized vacuolar membrane proton pump ... 1 OS=Arabidopsis thaliana Align length 160 Score ( ... p|Q8F641|HPPA_LEPIN Pyrophosphate-energized proton pump ... OS=Lept... 45 4e-04 sp|Q72Q29|HPPA_LEPIC Pyrophosp ...

  3. AcEST: BP916377 [AcEST

    Full Text Available YMU001_000087_A08 472 Adiantum capillus-veneris mRNA. clone: YMU001_000087_A08. BP916377 CL436Co ... AVP2_ARATH Pyrophosphate-energized membrane proton pump ... 2 OS=Arabidopsis thaliana Align length 157 Score ( ... p|Q8RCX1|HPPA_THETN Pyrophosphate-energized proton pump ... OS=Ther... 132 1e-30 sp|Q8TJA8|HPPA2_METAC Pyropho ...

  4. AcEST: DK954135 [AcEST

    Full Text Available TST39A01NGRL0019_K04 622 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0019_K04. 5' end seq ... AVP2_ARATH Pyrophosphate-energized membrane proton pump ... 2 OS=Arabidopsis thaliana Align length 207 Score ( ... p|Q8RCX1|HPPA_THETN Pyrophosphate-energized proton pump ... OS=Ther... 151 2e-36 sp|Q89K83|HPPA_BRAJA Pyrophos ...

  5. AcEST: DK961553 [AcEST

    Full Text Available TST39A01NGRL0010_H02 670 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0010_H02. 5' end seq ... U Pyrophosphate-energized vacuolar membrane proton pump ... OS=Phaseolus aureus Align length 198 Score (bit) 2 ... p|Q8F641|HPPA_LEPIN Pyrophosphate-energized proton pump ... OS=Lept... 72 3e-12 sp|Q72Q29|HPPA_LEPIC Pyrophosp ...

  6. AcEST: DK943760 [AcEST

    Full Text Available YMU02A01NGRL0003_N16 480 Adiantum capillus-veneris mRNA. clone: YMU02A01NGRL0003_N16. 5' end seq ... H Pyrophosphate-energized vacuolar membrane proton pump ... 1 OS=Arabidopsis thaliana Align length 160 Score ( ... p|Q8F641|HPPA_LEPIN Pyrophosphate-energized proton pump ... OS=Lept... 149 5e-36 sp|Q72Q29|HPPA_LEPIC Pyrophos ...

  7. AcEST: BP912221 [AcEST

    Full Text Available YMU001_000016_E09 556 Adiantum capillus-veneris mRNA. clone: YMU001_000016_E09. BP912221 CL436Co ... AVP2_ARATH Pyrophosphate-energized membrane proton pump ... 2 OS=Arabidopsis thaliana Align length 183 Score ( ... p|Q8RCX1|HPPA_THETN Pyrophosphate-energized proton pump ... OS=Ther... 159 9e-39 sp|Q82TF3|HPPA_NITEU Pyrophos ...

  8. AcEST: DK954545 [AcEST

    Full Text Available TST39A01NGRL0020_L14 562 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0020_L14. 5' end seq ... H Putative pyrophosphate-energized membrane proton pump ... 3 OS=Arabidopsis thaliana Align length 167 Score ( ... p|Q8RCX1|HPPA_THETN Pyrophosphate-energized proton pump ... OS=Ther... 197 2e-50 sp|Q898Q9|HPPA_CLOTE Pyrophos ...

  9. AcEST: DK951275 [AcEST

    Full Text Available TST38A01NGRL0010_P14 650 Adiantum capillus-veneris mRNA. clone: TST38A01NGRL0010_P14. 5' end seq ... U Pyrophosphate-energized vacuolar membrane proton pump ... OS=Phaseolus aureus Align length 69 Score (bit) 13 ... p|Q8F641|HPPA_LEPIN Pyrophosphate-energized proton pump ... OS=Lept... 94 4e-19 sp|Q72Q29|HPPA_LEPIC Pyrophosp ...

  10. Electronic Unit Pump Test Bench Development and Pump Properties Research

    LIU Bo-lan; HUANG Ying; ZHANG Fu-jun; ZHAO Chang-lu


    A unit pump test bench is developed on an in-line pump test platform. The bench is composed of pump adapting assembly, fuel supply subsystem, lubricating subsystem and a control unit. A crank angle domain injection control method is given out and the control accuracy can be 0.1° crank degree. The bench can test bot h mechanical unit pump and electronic unit pump. A test model-PLD12 electronic unit pump is tested. Full pump delivery map and some influence factors test is d one. Experimental results show that the injection quantity is linear with the de livery angle. The quantity change rate is 15% when fuel temperature increases 30℃. The delivery quantity per cycle increases 30mg at 28V drive voltage. T he average delivery difference for two same type pumps is 5%. Test results show that the bench can be used for unit pump verification.

  11. Underground pumped hydroelectric storage

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.


    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  12. Pump tank divider plate for sump suction sodium pumps

    A circular plate extends across the diameter of a sump suction pump, with a close clearance between the edge of the plate and the wall of the pump tank. The plate is located above the pump impeller, inlet and outlet flow nozzles but below the sodium free surface and effectively divides the pump tank into two separate chambers. On change of pump speed, the close fitting flow restriction plate limits the rate of flow into or out of the upper chamber, thereby minimizing the rate of level change in the tank and permitting time for the pump cover gas pressure to be varied to maintain an essentially constant level. 4 claims, 3 figures

  13. AcEST: BP915640 [AcEST


  14. AcEST: DK955197 [AcEST


  15. Speed Control of DC Motor using AC/AC/DC Converter Based on Intelligent Techniques

    Rakan Kh Antar


    Full Text Available    This paper describes the application of ac/ac/dc and ac/dc converters to control the speed of a separately excited DC motor. Artificial neural network and PI controller are trained to select the desired values of firing angles for triggering thyristors of the ac/ac/dc and ac/dc bridge converters in order to control the speed of the dc motor at a desired value with constant and different load torques in order to obtain the best speed response. Simulation results show that the rising time for ac/dc and ac/ac/dc converters at 250rpm are reduced about 79% and 89% respectively, while delay time it reduced about 69% and 64% respectively. Therefore, speed response of the dc motor is more efficient for closed loop system compared with open loop also the response of ac/ac/dc converter is better than ac/dc converter.

  16. Fluid pumping apparatus

    West, Phillip B.


    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  17. Miniature Lightweight Ion Pump

    Sinha, Mahadeva P.


    This design offers a larger surface area for pumping of active gases and reduces the mass of the pump by eliminating the additional vacuum enclosure. There are three main components to this ion pump: the cathode and anode pumping elements assembly, the vacuum enclosure (made completely of titanium and used as the cathode and maintained at ground potential) containing the assembly, and the external magnet. These components are generally put in a noble diode (or differential) configuration of the ion pump technology. In the present state of the art, there are two cathodes, one made of titanium and the other of tantalum. The anodes are made up of an array of stainless steel cylinders positioned between the two cathodes. All the elements of the pump are in a vacuum enclosure. After the reduction of pressure in this enclosure to a few microns, a voltage is applied between the cathode and the anode elements. Electrons generated by the ionization are accelerated toward the anodes that are confined in the anode space by the axial magnetic field. For the generation of the axial field along the anode elements, the magnet is designed in a C-configuration and is fabricated from rare earth magnetic materials (Nd-B-Fe or Sm-Co) possessing high energy product values, and the yoke is fabricated from the high permeability material (Hiperco-50A composed of Fe-Co-V). The electrons in this region collide with the gas molecules and generate their positive ions. These ions are accelerated into the cathode and eject cathode material (Ti). The neutral atoms deposit on the anode surfaces. Because of the chemical activity of Ti, the atoms combine with chemically active gas molecules (e.g. N2, O2, etc.) and remove them. New layers of Ti are continually deposited, and the pumping of active gases is thus accomplished. Pumping of the inert gases is accomplished by their burial several atomic layers deep into the cathode. However, they tend to re-emit if the entrapping lattice atoms are

  18. Heat pump planning handbook

    Bonin, Jürgen


    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  19. Reactor coolant pump flywheel

    Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph


    A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

  20. Noise through Quantum Pumps

    Polianski, M. L.; Vavilov, M. G.; Brouwer, P.W.


    We study the current noise through an unbiased quantum electron pump and its mesoscopic fluctuations for arbitrary temperatures and beyond the bilinear response. In the bilinear regime, we find the full distributions of the noise power and the current-to-noise ratio for a chaotic quantum dots with single-channel and many-channel ballistic point contacts. For a dot with many-channel point contacts we also calculate the ensemble-averaged noise at arbitrary temperature and pumping strength. In t...

  1. Air-Operated Sump Pump

    Nolt, Gary D.


    Pump removes liquid seepage from small, restricted area and against large pressure head. Developed for moving small amounts of water and oil from sump pit 85 ft (25.91 m) deep. Fits in space only 6 1/2 in. (16.5 cm) in diameter and 18 in. (45.7 cm) long. In discharge part of pumping cycle, air forces liquid out of pump chamber through pipe. During filling part of pumping cycle, water enters pump chamber from sump pit. Float in chamber next to pump chamber controls pressurization through timer and solenoid valve.

  2. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report



    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  3. Nuclear structure of $^{231}$Ac

    Boutami, R; Mach, H; Kurcewicz, W; Fraile, L M; Gulda, K; Aas, A J; García-Raffi, L M; Løvhøiden, G; Martínez, T; Rubio, B; Taín, J L; Tengblad, O


    The low-energy structure of 231Ac has been investigated by means of gamma ray spectroscopy following the beta-decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a mini-orange electron spectrometer. The decay scheme of 231Ra --> 231Ac has been constructed for the first time. The Advanced Time Delayed beta-gamma-gamma(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus.

  4. AcEST: BP920800 [AcEST


  5. AcEST: DK945549 [AcEST


  6. AcEST: BP917632 [AcEST

    Full Text Available YMU001_000103_D10 554 Adiantum capillus-veneris mRNA. clone: YMU001_000103_D10. BP917632 - Show ... YSKCKIHQKALELLVLML 154 Query: 466 KDSLEPDEVTYLNVLKACARE EDLKV 543 +D++ P+ TY +VL++C D+++ Sbjct: 155 RDNVRPN ... 185 Query: 415 GHSDSS--KEALKLLTQMRKDSLEPDEVTYLNVLKACARE EDLK 540 + EA KL +M+ ++ PDE+ N++ AC R +++ Sbjct: 18 ...

  7. AcEST: DK961189 [AcEST

    Full Text Available OS=A... 127 7e-29 sp|Q94B08|GCP1_ARATH Germination-specific cysteine protease 1 OS... 125 2e-28 sp|P00785|AC...IRNSWGLNWGDSGYVKLQRNIDDPFGKCGIAMMPSYP 347 >sp|Q94B08|GCP1_ARATH Germination-specific cysteine protease 1 OS=

  8. AcEST: DK946687 [AcEST

    Full Text Available YMU02A01NGRL0013_G11 544 Adiantum capillus-veneris mRNA. clone: YMU02A01NGRL0013_G11. 5' end seq ... + G P+ TY+ + AC+ E Sbjct: 97 YSFNYMIRGLTNTWN-------DHEA ---ALSLYRRMKFSGLKPDKFTYNFVFIACAKLE 146 Query: 214 A ... Sbjct: 71 LIPKAVELGDFNYSSFLFSVTEEPNHYSFNYMIRGLTNTWNDHEA ALSLYRRMKFSGLKP 130 Query: 469 DGATFSCVLRACGNVGALDV ...

  9. AcEST: DK949372 [AcEST


  10. Aquaflo pump vs FMS 4 pump for shoulder arthroscopic surgery.

    Ampat, G.; Bruguera, J.; Copeland, S A


    A prospective controlled trial was carried out to compare two different fluid delivery systems used for shoulder arthroscopy. One an advanced pump system that controls both pressure and flow of fluid delivered, the other an air-driven diaphragm pump that only controls fluid pressure. Blood loss, presence of bleeding vessels and visual clarity were parameters used to assess the pump systems. There was no difference between the pumps in straightforward shoulder procedures. However, complicated ...

  11. Fault Tolerant Three-Phase AC Motor Drive Topologies:A Comparison of Features, Cost, and Limitations


    THE RELIABILITY of adjustables peed ac motor drives is an area of great interest for all members of the drives community and marketplace. This is particularly the case for the military, aerospace and automotive industries that are increasingly adopting variable speed drives in order to improve overall system efficiency and performance. There are certain safety critical applications such as steering, fuel pumps,

  12. Piston for rod pumping

    Pastushenko, G.I.


    A piston, or plunger, for rod pumping, is made up of a cylindrical housing with labryinthal seals, a nose piece, and a scraper. In order to remove paraffin from the inside surface of the production pipe, the housing is made in telescopic form. The scraper consists of an arrangement of springs installed on the outer surface of the housing.

  13. Pump Flow Analysis


    Ingersoll-Rand Research, Inc.'s use of COSMIC's computer program MERIDL permits designers to evaluate performance and efficiency characteristics to be expected from the pump's impeller. It also provides information that enables a trained hydraulic engineer to make design improvements. Company was able to avoid the cost of developing new software and to improve some product design features.

  14. Electrothermal pumping with interdigitated electrodes and resistive heaters.

    Williams, Stuart J; Green, Nicolas G


    Interdigitated electrodes are used in electrokinetic lab-on-a-chip devices for dielectrophoretic trapping and characterization of suspended particles, as well as the production of field-induced fluid flow via AC electroosomosis and electrothermal mechanisms. However, the optimum design for dielectrophoresis, that if symmetrical electrodes, cannot induce bulk electrohydrodynamic pumping. In addition, the mechanism of intrinsic electrothermal pumping is affected by the properties of the fluid, with thermal fields being generated by Joule Heating. This work demonstrates the incorporation of an underlying thin film heater, electrically isolated from the interdigitated electrodes by an insulator layer, to enhance bulk electrothermal pumping. The use of integrated heaters allows the thermal field generation to be controlled independently of the electric field. Numerical simulations are performed to demonstrate the importance of geometrical arrangement of the heater with respect to the interdigitated electrodes, as well as electrode size, spacing, and arrangement. The optimization of such a system is a careful balance between electrokinetics, heat transfer, and fluid dynamics. The heater location and electrode spacing influence the rate of electrothermal pumping significantly more than electrode width and insulator layer thickness. This demonstration will aid in the development of microfluidic electrokinetic systems that want to utilize the advantages associated with electrothermal pumping while simultaneously applying other lab-on-a-chip electrokinetics like dielectrophoresis. PMID:26010255

  15. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    Mortensen, Niels Asger


    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical air-clad geometries. While air-clad structures supporting sup-wavelength convex air-glass interfaces (viewed from the high-index side) will promote chaotic dynamics we find guidance of regular whispering-gallery modes in air-clad structures resembling an overall cylindrical symmetry. Highly symmetric air-clad structures may thus suppress the pump-absorption efficiency eta below the ergodic scaling law eta proportional to Ac/Acl, where Ac and Acl are the areas of the rare-earth doped core and the cladding, respectively.

  16. AcEST: BP919906 [AcEST

    Full Text Available YMU001_000130_E09 448 Adiantum capillus-veneris mRNA. clone: YMU001_000130_E09. BP919906 - Show ... uperf... 35 2.4 tr|B8NNJ3|B8NNJ3_ASPFL Efflux pump antibiotic ... resistance protein... 35 2.4 tr|Q5WZ39|Q5WZ39_LEGP ... 1 WRVKTSLL 108 >tr|B8NNJ3|B8NNJ3_ASPFL Efflux pump antibiotic ... resistance protein, putative OS=Aspergillus flavus ...

  17. AcEST: BP920454 [AcEST

    Full Text Available YMU001_000137_C07 517 Adiantum capillus-veneris mRNA. clone: YMU001_000137_C07. BP920454 - Show ... idore... 33 7.4 tr|B8M583|B8M583_9EURO Efflux pump antibiotic ... resistance protein... 33 9.7 >tr|B6ENL6|B6ENL6_ALI ... SILAGFPFKE 530 >tr|B8M583|B8M583_9EURO Efflux pump antibiotic ... resistance protein, putative OS=Talaromyces stipit ...

  18. Fuel Pumping System And Method

    Shafer, Scott F.; Wang, Lifeng


    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  19. Optimization of compound gear pump



    This paper introduces the performances of compound gear pump. Based on the target of having the smallest mass per unit volume, the paper established a mathematical model of optimization, and obtained the results of optimization of the pump.

  20. Orbital Liquid Oxygen Pump Project

    National Aeronautics and Space Administration — This proposed work will develop a pump, which is based on two novel and unique design features. The first feature is a lobed pumping mechanism which operates with...

  1. Blood Pump Bearing System

    Aber, Gregory S. (Inventor)


    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  2. Absorption heat pumps

    Huhtinen, M.; Heikkilae, M.; Andersson, R.


    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  3. Apuntes de Acústica

    Martín Domingo, Agustín


    Esta publicacion contiene unos apuntes para la parte de Acústica de las asignaturas de la ETSAM, junto con cierta cantidad de material adicional que excede el ámbito del curso. Aunque está lejos de ser completa y de estar libre de errores, el autor espera sea útil.

  4. SSTI Clark ACS Technology Demonstrations

    Freesland, Douglas


    SSTI Clark, one of two spacecraft built under NASA's Small Satellite Technology Initiative, includes seven ACS technology demonstrations. The technologies redefine the performance cost envelope, providing improved sensor and actuator performance at reduced costs. Six sensing technologies are being flown consisting of both hardware and algorithmic demonstrations: autonomous star tracker, hemispherical resonating gyro, GPS attitude determination, miniature horizon sensors, low cost course sun s...

  5. Energy saving in ac generators

    Nola, F. J.


    Circuit cuts no-load losses, without sacrificing full-load power. Phase-contro circuit includes gate-controlled semiconductor switch that cuts off applied voltage for most of ac cycle if generator idling. Switch "on" time increases when generator is in operation.

  6. Sludge pumping in water treatment

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  7. Optimization of Pumping System in Solar Pumped Laser.

    Peng, Xu; Suhui, Yang; Changming, Zhao; Haiyang, Zhang; Yanlei, Qian; Jiayin, Hao; Tao, He; Wang, Huaxin


    The coupling between solar light radiation and laser rod medium in a solar pumped laser affects the efficiency of the laser. To optimize the pumping system, simulation of the two-stage pumping system with a Fresnel lens and conic pumping cavity is carried out with Tracepro software. According to the power density distribution along the axis at focal place of the Fresnel lens, the diameter and position of the pumping cavity window and the distance of the window from the Fresnel lens are optimi...



    Some concepts of virtual product are discussed. The key technologies of virtual fuel-pump development are in detail analysed, which include virtual fuel-pump product modeling, intelligent simulation, distributed design environment, and virtual assembly. The virtual fuel-pump development prototype system considers requirement analysis, concept design, injection preferment analysis, detailed design, and assembly analysis.

  9. Getting Pumped About Heart Failure

    Mann, Douglas L.


    Heart failure is a clinical syndrome caused by dysregulated calcium handling and abnormal cardiac pumping capacity. Whalquist et al. (2014) show that upregulation of micro-RNA25 impairs calcium handling leading to pump dysfunction, and that targeting micro-RNA25 using antisense oligonucleotides reverses pump dysfunction and improves survival in mice with heart failure.

  10. Small Scroll Pump for Cryogenic Liquids Project

    National Aeronautics and Space Administration — The innovation is a compact, reliable, light weight, electrically driven pump capable of pumping cryogenic liquids, based on scroll pump technology. This pump will...

  11. AcEST: DK951716 [AcEST

    Full Text Available TST38A01NGRL0012_C08 588 Adiantum capillus-veneris mRNA. clone: TST38A01NGRL0012_C08. 5' end seq ... Pseudomonas aerugin... 30 9.0 sp|Q9KJC2|ARPB_PSEPU Antibiotic ... efflux pump membrane transporter... 30 9.0 >sp|Q94 ...

  12. Pumping characteristics of roots blower pumps for light element gases

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H2, D2 and He) and for N2, in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m3/s), two EH250s (ibid. 250 m3/s) and a backing pump (ibid. 100 m3/s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D2 and N2 were 1200 and 1300 m3/h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  13. AcEST: DK950895 [AcEST

    Full Text Available |A7SFA3|A7SFA3_NEMVE Predicted protein OS=Nematostella vectens... 210 5e-53 tr|Q0CVA9|Q0CVA9_ASPTN ATP-citrate synthase subunit...stX Result : Swiss-Prot sp_hit_id Q54YA0 Definition sp|Q54YA0|ACLY_DICDI Probable ATP-citrate synthase OS=Dictyos...PIDYSWAQELGLIRKPAAFISTI 404 >sp|Q8X097|ACL1_NEUCR Probable ATP-citrate synthase subunit 1 OS=Neurospora cras...IRKPASFMTSI 844 >sp|Q9P7W3|ACL1_SCHPO Probable ATP-citrate synthase subunit 1 OS=Schizosaccharomyces pombe G....done Score E Sequences producing significant alignments: (bits) Value sp|Q54YA0|ACLY_DICDI Probable ATP-citrate synthase OS=Dictyos

  14. AcEST: BP914304 [AcEST


  15. AcEST: BP911793 [AcEST


  16. AcEST: BP921649 [AcEST


  17. AcEST: BP919669 [AcEST


  18. AcEST: DK957916 [AcEST


  19. AcEST: DK956923 [AcEST


  20. AcEST: BP921492 [AcEST


  1. SHINE Vacuum Pump Test Verification

    Morgan, Gregg A; Peters, Brent


    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards

  2. SHINE Vacuum Pump Test Verification

    Normetex pumps used world-wide for tritium service are no longer available. DOE and other researchers worldwide have spent significant funds characterizing this pump. Identification of alternate pumps is required for performance and compatibility with tritium gas. Many of the pumps that could be used to meet the functional performance requirements (e.g. pressure and flow conditions) of the Normetex pump have features that include the use of polymers or oils and greases that are not directly compatible with tritium service. This study assembles a test system to determine the flow characteristics for candidate alternate pumps. These tests are critical to the movement of tritium through the SHINE Tritium Purification System (TPS). The purpose of the pump testing is two-fold: (1) obtain baseline vacuum pump characteristics for an alternate (i.e. ''Normetex replacement'') pump intended for use in tritium service; and (2) verify that low pressure hydrogen gas can be transported over distances up to 300 feet by the candidate pumps. Flow rates and nominal system pressures have been identified for the SHINE Mo-99 production process Tritium Purification System (TPS). To minimize the line sizes for the transfer of low pressure tritium from the Neutron Driver Accelerator System (NDAS) to the primary processing systems in the TPS, a ''booster'' pump has been located near the accelerator in the design. A series of pump tests were performed at various configurations using hydrogen gas (no tritium) to ensure that this concept is practical and maintains adequate flow rates and required pressures. This report summarizes the results of the tests that have been performed using various pump configurations. The current design of the Tritium Purification System requires the ''booster'' pump to discharge to or to be backed by another vacuum pump. Since Normetex pumps are no longer manufactured, a commercially available Edwards scroll pump will be used to back the booster pump. In this


    Neelendra Pratap Singh*, Prateek Gupta, Siddharth Agnihotri


    In the present scenario, Energy demand is increasing day by day. To meet that demand, the production or extraction of crude oil, natural gas and other energy resources is done with the help of various pumps. Pumps are the second largest used machinery in world and plays a vital role. In this paper, we have done analysis on centrifugal pump categorised as overhung pump (OH2). It is commonly known that vibration problems on centrifugal pumps can result from multitude of possible parameters whic...

  4. Legal issues concerning heat pumps

    Gersemann, D.

    Heat pumps are considered suitable to contribute to an improvement of the total energy balance. As a rule, they are divided into the following categories of utilizable auxiliary energies: ground water, surface waters, soil, absorbers, air. They are also distinguished according to driving systems: electric, gas, or Diesel heat pumps. Considering forecasts concerning the utilization potential of heat pumps it seems easy to see that the legal assessment of heat pumps shall obtain considerable practical importance for the authorities as well as for private managers. The article gives a survey of the most important legal issues concerning heat pumps.

  5. 21 CFR 880.5725 - Infusion pump.


    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or...

  6. Solar-powered pump

    Kirsten, C. C. (Inventor)


    A solar powered pump particularly suited for intermittently delivering a stream of water is reported. The pump is characterized by a housing adapted to be seated in a source of water having a water discharge port disposed above the water line of the source, a sump including a valved inlet port through which water is introduced to the sump, disposed beneath the water line, a displacer supported for vertical reciprocation in said housing, an air passageway extended between the vertically spaced faces of the displacer, and a tipple disposed adjacent to the water discharge port adapted to be filled in response to a discharge of water from the housing. Air above a displacer is expanded in response to solar energy impinging on the housing and transferred into pressurizing relation with the sump for forcing water from the sump.

  7. Sucker rod pump

    Brewer, J.R.


    This patent describes a subsurface well pump, it comprises: a working barrel; a plunger which reciprocates along the vertical axis within the working barrel between an upper and lower position; a rod connected to the plunger and extending to a means for providing reciprocating force; a well string extending from the top of the working barrel to the surface; an outlet check valve which permits flow to exit the working barrel into the well string and does not permit flow to exit the well string into the working barrel; and an inlet check valve which permits flow into the working barrel from outside of the subsurface pump, the inlet check valve being above the top position of the plunger, the inlet check valve having a cross sectional flow area about equal to or greater than the horizontal cross sectional area of the working barrel, and the inlet check valve being a hinged flapper valve.

  8. Pocket pumped image analysis

    Kotov, I.V., E-mail: [Brookhaven National Laboratory, Upton, NY 11973 (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Murray, N. [Centre for Electronic Imaging, Open University, Milton Keynes, MK7 6AA (United Kingdom)


    The pocket pumping technique is used to detect small electron trap sites. These traps, if present, degrade CCD charge transfer efficiency. To reveal traps in the active area, a CCD is illuminated with a flat field and, before image is read out, accumulated charges are moved back and forth number of times in parallel direction. As charges are moved over a trap, an electron is removed from the original pocket and re-emitted in the following pocket. As process repeats one pocket gets depleted and the neighboring pocket gets excess of charges. As a result a “dipole” signal appears on the otherwise flat background level. The amplitude of the dipole signal depends on the trap pumping efficiency. This paper is focused on trap identification technique and particularly on new methods developed for this purpose. The sensor with bad segments was deliberately chosen for algorithms development and to demonstrate sensitivity and power of new methods in uncovering sensor defects.

  9. Small size ion pumps

    This paper describes some designs of the two versions ion pumps and their range operation for various magnetic fields. The first version is made with different cell size in the anode element and titanium cathode operating in magnetic field from 600 to 650 Gs and the second version with the same anode element but differential Ti/Ta cathode working in magnetic field above 1200 Gs

  10. Adiabatic pumping through quantum dots

    A finite charge can be pumped through a mesoscopic system in the absence of an applied bias voltage by changing periodically in time some parameters of the system. If these parameters change slowly with respect to all internal time scales of the system, pumping is adiabatic. The scope of this work is to investigate adiabatic pumping through a quantum dot, in particular the influence of Coulomb interaction between electrons in the dot on the pumped charge. On one hand we develop a formalism based on Green's functions, in order to calculate the pumped charge from the weak-tunnel-coupling regime down to the Kondo regime. We extend our calculations to a system with a superconducting contact. On the other hand we use a systematic perturbation expansion for the calculation of the pumped charge, giving us the possibility to analyze processes which contribute to charge pumping and to highlight the important role of interaction-induced level renormalization. (orig.)