WorldWideScience

Sample records for abundance

  1. Precision Chemical Abundance Measurements

    Yong, David; Grundahl, Frank; Meléndez, Jorge;

    2012-01-01

    This talk covers preliminary work in which we apply a strictly differential line-by-line chemical abundance analysis to high quality UVES spectra of the globular cluster NGC 6752. We achieve extremely high precision in the measurement of relative abundance ratios. Our results indicate that the ob...

  2. Maximum abundant isotopes correlation

    The neutron excess of the most abundant isotopes of the element shows an overall linear dependence upon the neutron number for nuclei between neutron closed shells. This maximum abundant isotopes correlation supports the arguments for a common history of the elements during nucleosynthesis. (Auth.)

  3. Orion A helium abundance

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  4. A pedagogy of abundance

    Weller, Martin

    2011-01-01

    The digitisation of content combined with a global network for delivery and an open system for sharing has seen radical changes in many industries. The economic model which has underpinned many content based industries has been based on an assumption of scarcity. With a digital, open, networked approach we are witnessing a shift to abundance of content, and subsequently new economic models are being developed which have this as an assumption. In this article the role of scarcity in developing...

  5. Abundances in galaxies

    Standard (or mildly inhomogeneous) Big Bang nucleosynthesis theory is well confirmed by abundance measurements of light elements up to 7Li and the resulting upper limit to the number of neutrino families confirmed in accelerator experiments. Extreme inhomogeneous models with a closure density in form of baryons seem to be ruled out and there is no evidence for a cosmic 'floor' to 9Be or heavier elements predicted in some versions of those models. Galaxies show a correlation between luminous mass and abundance of carbon and heavier elements, usually attributed to escape of hot gas from shallow potential wells. Uncertainties include the role of dark matter and biparametric behaviour of ellipticals. Spirals have radial gradients which may arise from a variety of causes. In our own Galaxy one can distinguish three stellar populations - disk, halo and bulge - characterised by differing metallicity distribution functions. Differential abundance effects are found among different elements in stars as a function of metallicity and presumably age, notably in the ratio of oxygen and α-particle elements to iron. These may eventually be exploitable to set a time scale for the formation of the halo, bulge and disk. (orig.)

  6. Interstellar Atomic Abundances

    Jenkins, E B

    2003-01-01

    A broad array of interstellar absorption features that appear in the ultraviolet spectra of bright sources allows us to measure the abundances and ionization states of many important heavy elements that exist as free atoms in the interstellar medium. By comparing these abundances with reference values in the Sun, we find that some elements have abundances relative to hydrogen that are approximately consistent with their respective solar values, while others are depleted by factors that range from a few up to around 1000. These depletions are caused by the atoms condensing into solid form onto dust grains. Their strengths are governed by the volatility of compounds that are produced, together with the densities and velocities of the gas clouds. We may characterize the depletion trends in terms of a limited set of parameters; ones derived here are based on measurements of 15 elements toward 144 stars with known values of N(H I) and N(H2). In turn, these parameters may be applied to studies of the production, de...

  7. Abundance, Excess, Waste

    Rox De Luca

    2016-02-01

    Her recent work focuses on the concepts of abundance, excess and waste. These concerns translate directly into vibrant and colourful garlands that she constructs from discarded plastics collected on Bondi Beach where she lives. The process of collecting is fastidious, as is the process of sorting and grading the plastics by colour and size. This initial gathering and sorting process is followed by threading the components onto strings of wire. When completed, these assemblages stand in stark contrast to the ease of disposability associated with the materials that arrive on the shoreline as evidence of our collective human neglect and destruction of the environment around us. The contrast is heightened by the fact that the constructed garlands embody the paradoxical beauty of our plastic waste byproducts, while also evoking the ways by which those byproducts similarly accumulate in randomly assorted patterns across the oceans and beaches of the planet.

  8. Primordial Deuterium Abundance Measurements

    Levshakov, S A; Takahara, F; Levshakov, Sergei A.; Kegel, Wilhelm H.; Takahara, Fumio

    1997-01-01

    Deuterium abundances measured recently from QSO absorption-line systems lie in the range from 3 10^{-5} to 3 10^{-4}, which shed some questions on standard big bang theory. We show that this discordance may simply be an artifact caused by inadequate analysis ignoring spatial correlations in the velocity field in turbulent media. The generalized procedure (accounting for such correlations) is suggested to reconcile the D/H measurements. An example is presented based on two high-resolution observations of Q1009+2956 (low D/H) [1,2] and Q1718+4807 (high D/H) [8,9]. We show that both observations are compatible with D/H = 4.1 - 4.6 10^{-5}, and thus support SBBN. The estimated mean value = 4.4 10^{-5} corresponds to the baryon-to-photon ratio during SBBN eta = 4.4 10^{-10} which yields the present-day baryon density Omega_b h^2 = 0.015.

  9. Solar System Abundances of the Elements

    Lodders, Katharina

    2010-01-01

    Representative abundances of the chemical elements for use as a solar abundance standard in astronomical and planetary studies are summarized. Updated abundance tables for solar system abundances based on meteorites and photospheric measurements are presented.

  10. Estimating Animal Abundance: Review III

    Schwarz, Carl J; Seber, George A. F.

    1999-01-01

    The literature describing methods for estimating animal abundance and related parameters continues to grow. This paper reviews recent developments in the subject over the past seven years and updates two previous reviews.

  11. Chlorine Abundances in Cool Stars

    Maas, Z G; Hinkle, K

    2016-01-01

    Chlorine abundances are reported in 15 evolved giants and one M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H$^{35}$Cl at 3.69851 $\\mu$m. The high resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4m telescope. The average [$^{35}$Cl/Fe] abundance in stars with --0.72$<$[Fe/H]$<$0.20 is [$^{35}$Cl/Fe]=(--0.10$\\pm$0.15) dex. The mean difference between the [$^{35}$Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16$\\pm$0.15) dex. The [$^{35}$Cl/Ca] ratio has an offset of $\\sim$0.35 dex above model predictions suggesting chemical evolution models are under producing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and \\ion{H}{2} regions. In one star where both H$^{35}$Cl a...

  12. Solar and stellar photospheric abundances

    Allende Prieto, Carlos

    2016-07-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  13. Solar and Stellar Photospheric Abundances

    Prieto, Carlos Allende

    2016-01-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  14. Steelhead Abundance - Point Features [ds184

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  15. Coho Abundance - Point Features [ds182

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  16. Coho Abundance - Linear Features [ds183

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  17. Chinook Abundance - Point Features [ds180

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  18. Steelhead Abundance - Linear Features [ds185

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  19. Hf Transition Probabilities and Abundances

    Lawler, J E; Labby, Z E; Sneden, C; Cowan, J J; Ivans, I I

    2006-01-01

    Radiative lifetimes from laser-induced fluorescence measurements, accurate to about +/- 5 percent, are reported for 41 odd-parity levels of Hf II. The lifetimes are combined with branching fractions measured using Fourier transform spectrometry to determine transition probabilities for 150 lines of Hf II. Approximately half of these new transition probabilities overlap with recent independent measurements using a similar approach. The two sets of measurements are found to be in good agreement for measurements in common. Our new laboratory data are applied to refine the hafnium photospheric solar abundance and to determine hafnium abundances in 10 metal-poor giant stars with enhanced r-process abundances. For the Sun we derive log epsilon (Hf) = 0.88 +/- 0.08 from four lines; the uncertainty is dominated by the weakness of the lines and their blending by other spectral features. Within the uncertainties of our analysis, the r-process-rich stars possess constant Hf/La and Hf/Eu abundance ratios, log epsilon (Hf...

  20. Gd Transition Probabilities and Abundances

    Den Hartog, E A; Sneden, C; Cowan, J J

    2006-01-01

    Radiative lifetimes, accurate to +/- 5%, have been measured for 49 even-parity and 14 odd-parity levels of Gd II using laser-induced fluorescence. The lifetimes are combined with branching fractions measured using Fourier transform spectrometry to determine transition probabilities for 611 lines of Gd II. This work is the largest-scale laboratory study to date of Gd II transition probabilities and the first using a high performance Fourier transform spectrometer. This improved data set has been used to determine a new solar photospheric Gd abundance, log epsilon = 1.11 +/- 0.03. Revised Gd abundances have also been derived for the r-process-rich metal-poor giant stars CS 22892-052, BD+17 3248, and HD 115444. The resulting Gd/Eu abundance ratios are in very good agreement with the solar-system r-process ratio. We have employed the increasingly accurate stellar abundance determinations, resulting in large part from the more precise laboratory atomic data, to predict directly the Solar System r-process elemental...

  1. Abundance estimation and Conservation Biology

    Nichols, J. D.

    2004-06-01

    Full Text Available Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001. The initial capture–recapture models developed for partially (Darroch, 1959 and completely (Jolly, 1965; Seber, 1965 open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992, and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993. However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001. The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004 is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004 emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004 also suggest that

  2. Sm Transition Probabilities and Abundances

    Lawler, J E; Sneden, C; Cowan, J J

    2005-01-01

    Radiative lifetimes, accurate to +/- 5%, have been measured for 212 odd-parity levels of Sm II using laser-induced fluorescence. The lifetimes are combined with branching fractions measured using Fourier-transform spectrometry to determine transition probabilities for more than 900 lines of Sm II. This work is the largest-scale laboratory study to date of Sm II transition probabilities using modern methods. This improved data set has been used to determine a new solar photospheric Sm abundance, log epsilon = 1.00 +/- 0.03, from 26 lines. The spectra of three very metal-poor, neutron-capture-rich stars also have been analyzed, employing between 55 and 72 Sm II lines per star. The abundance ratios of Sm relative to other rare earth elements in these stars are in agreement, and are consistent with ratios expected from rapid neutron-capture nucleosynthesis (the r-process).

  3. Abundances in stars with exoplanets

    Israelian, Garik

    2003-01-01

    Extensive spectroscopic studies of stars with and without planets have concluded that stars hosting planets are significantly more metal-rich than those without planets. More subtle trends of different chemical elements begin to appear as the number of detected extrasolar planetary systems continues to grow. I review our current knowledge concerning the observed abundance trends of various chemical elements in stars with exoplanets and their possible implications.

  4. Oxygen Gas Phase Abundance Revisited

    André, M K; Howk, J C; Ferlet, R; Désert, J M; Hébrard, G; Lacour, S; Lecavelier-des-Etangs, A; Vidal-Madjar, A; Moos, H W

    2003-01-01

    We present new measurements of the interstellar gas-phase oxygen abundance along the sight lines towards 19 early-type galactic stars at an average distance of 2.6 kpc. We derive O {\\small I} column densities from {\\it HST}/STIS observations of the weak 1355 \\AA intersystem transition. We derive total hydrogen column densities [N(H {\\small I})+2N(H$_2$)] using {\\it HST}/STIS observations of \\lya and {\\it FUSE} observations of molecular hydrogen. The molecular hydrogen content of these sight lines ranges from f(H$_2$) = 2N(H$_2$)/[N(H {\\small I})+2N(H$_2$)] = 0.03 to 0.47. The average $$ of 6.3$\\times10^{21}$ cm$^{-2}$ mag$^{-1}$ with a standard deviation of 15% is consistent with previous surveys. The mean oxygen abundance along these sight lines, which probe a wide range of galactic environments in the distant ISM, is 10$^6$ \\oh = $408 \\pm 13$ (1 $\\sigma$ in the mean). %$({\\rm O/H})_{gas} = 408 \\pm 14$(1 $\\sigma$). We see no evidence for decreasing gas-phase oxygen abundance with increasing molecular hydroge...

  5. Planetary nebulae abundances and stellar evolution

    Pottasch, S. R.; Bernard-Salas, J.

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradients. The abundance of these elements predicted from these gradients at the distance of the Sun from the center are exactly the solar abundance. Sulfur is the exception to this; the reason for this...

  6. Lead abundance in the uranium star CS 31082-001

    Plez, B.; Hill, V.; Cayrel, R.; Spite, M.; Barbuy, B.; Beers, T.C.; Bonifacio, P.; Primas, F.; Nordström, B.

    2004-01-01

    stars:abundances- physical data and processes: nuclear reactions, nucleosynthesis, abundances- atomic data......stars:abundances- physical data and processes: nuclear reactions, nucleosynthesis, abundances- atomic data...

  7. A note on the abundance conjecture

    Dorsch, Tobias; Lazić, Vladimir

    2014-01-01

    We prove that the abundance conjecture for non-uniruled klt pairs in dimension $n$ implies the abundance conjecture for uniruled klt pairs in dimension $n$, assuming the Minimal Model Program in lower dimensions.

  8. Solar System chemical abundances corrected for systematics

    Gonzalez, Guillermo

    2014-01-01

    The relative chemical abundances between CI meteorites and the solar photosphere exhibit a significant trend with condensation temperature. A trend with condensation temperature is also seen when the solar photospheric abundances are compared to those of nearby solar twins. We use both these trends to determine the alteration of the elemental abundances of the meteorties and the photosphere by fractionation and calculate a new set of primordial Solar System abundances.

  9. Surface abundances of ON stars

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  10. Origin of Cosmic Chemical Abundances

    Maio, Umberto

    2015-01-01

    Cosmological N-body hydrodynamic computations following atomic and molecular chemistry (e$^-$, H, H$^+$, H$^-$, He, He$^+$, He$^{++}$, D, D$^+$, H$_2$, H$_2^+$, HD, HeH$^+$), gas cooling, star formation and production of heavy elements (C, N, O, Ne, Mg, Si, S, Ca, Fe, etc.) from stars covering a range of mass and metallicity are used to explore the origin of several chemical abundance patterns and to study both the metal and molecular content during simulated galaxy assembly. The resulting trends show a remarkable similarity to up-to-date observations of the most metal-poor damped Lyman-$\\alpha$ absorbers at redshift $z\\gtrsim 2$. These exhibit a transient nature and represent collapsing gaseous structures captured while cooling is becoming effective in lowering the temperature below $\\sim 10^4\\,\\rm K$, before they are disrupted by episodes of star formation or tidal effects. Our theoretical results agree with the available data for typical elemental ratios, such as [C/O], [Si/Fe], [O/Fe], [Si/O], [Fe/H], [O/...

  11. Significant biases affecting abundance determinations

    Wesson, Roger

    2015-08-01

    I have developed two highly efficient codes to automate analyses of emission line nebulae. The tools place particular emphasis on the propagation of uncertainties. The first tool, ALFA, uses a genetic algorithm to rapidly optimise the parameters of gaussian fits to line profiles. It can fit emission line spectra of arbitrary resolution, wavelength range and depth, with no user input at all. It is well suited to highly multiplexed spectroscopy such as that now being carried out with instruments such as MUSE at the VLT. The second tool, NEAT, carries out a full analysis of emission line fluxes, robustly propagating uncertainties using a Monte Carlo technique.Using these tools, I have found that considerable biases can be introduced into abundance determinations if the uncertainty distribution of emission lines is not well characterised. For weak lines, normally distributed uncertainties are generally assumed, though it is incorrect to do so, and significant biases can result. I discuss observational evidence of these biases. The two new codes contain routines to correctly characterise the probability distributions, giving more reliable results in analyses of emission line nebulae.

  12. Hydrocarbon Reserves: Abundance or Scarcity

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may

  13. Hydrocarbon Reserves: Abundance or Scarcity

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  14. Stellar abundances of beryllium and CUBES

    Smiljanic, R

    2014-01-01

    Stellar abundances of beryllium are useful in different areas of astrophysics, including studies of the Galactic chemical evolution, of stellar evolution, and of the formation of globular clusters. Determining Be abundances in stars is, however, a challenging endeavor. The two Be II resonance lines useful for abundance analyses are in the near UV, a region strongly affected by atmospheric extinction. CUBES is a new spectrograph planned for the VLT that will be more sensitive than current instruments in the near UV spectral region. It will allow the observation of fainter stars, expanding the number of targets where Be abundances can be determined. Here, a brief review of stellar abundances of Be is presented together with a discussion of science cases for CUBES. In particular, preliminary simulations of CUBES spectra are presented, highlighting its possible impact in investigations of Be abundances of extremely metal-poor stars and of stars in globular clusters.

  15. The Sulfur Abundance Anomaly in Planetary Nebulae

    Henry, R B C; Kwitter, K B; Milingo, M B

    2006-01-01

    The failure of S and O abundances in most planetary nebulae to display the same strong direct correlation that is observed in extragalactic H II regions represents one of the most perplexing problems in the area of PN abundances today. Galactic chemical evolution models as well as large amounts of observational evidence from H II region studies support the contention that cosmic abundances of alpha elements such as O, Ne, S, Cl, and Ar increase together in lockstep. Yet abundance results from the Henry, Kwitter, & Balick (2004) database show a strong tendency for most PNe to have S abundances that are significantly less than expected from the observed level of O. One reasonable hypothesis for the sulfur anomaly is the past failure to properly measure the abundances of unseen ionization stages above S^+2. Future observations with Spitzer will allow us to test this hypothesis.

  16. Oxygen abundances in nearby dwarf irregular galaxies

    Oxygen abundances are obtained by optical spectrophotometry of H II regions in seven nearby dwarf irregular galaxies. All of these yield oxygen abundances of less than 1/10 of the solar value, and most are in the range of 3-5 percent of the solar value. This suggests that observations of nearby dwarf galaxies may provide an effective means for studying the chemical evolution of low-mass galaxies and, possibly, the primordial helium abundance. A strong correlation is found between the oxygen abundances and absolute magnitudes for nearby irregular galaxies. This correlation will be useful for estimating abundances of irregular galaxies without observable H II regions, and possibly as a distance indicator for irregular galaxies with known abundances. It is inferred from this relationship that infall is no more important in irregular galaxies with extremely large H I halos than in typical irregular galaxies. 72 refs

  17. Climate and local abundance in freshwater fishes

    Knouft, Jason H; Anthony, Melissa M.

    2016-01-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide va...

  18. Monitoring Butterfly Abundance: Beyond Pollard Walks

    Pellet, Jérôme; Bried, Jason T.; Parietti, David; Gander, Antoine; Heer, Patrick O.; Cherix, Daniel; Arlettaz, Raphaël

    2012-01-01

    Most butterfly monitoring protocols rely on counts along transects (Pollard walks) to generate species abundance indices and track population trends. It is still too often ignored that a population count results from two processes: the biological process (true abundance) and the statistical process (our ability to properly quantify abundance). Because individual detectability tends to vary in space (e.g., among sites) and time (e.g., among years), it remains unclear whether index counts truly...

  19. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  20. Taking species abundance distributions beyond individuals

    Morlon, Helene; White, Ethan P.; Etienne, Rampal S.; Green, Jessica L.; Ostling, Annette; Alonso, David; Enquist, Brian J.; He, Fangliang; Hurlbert, Allen; Magurran, Anne E.; Maurer, Brian A.; McGill, Brian J.; Olff, Han; Storch, David; Zillio, Tommaso; Chave, Jérôme

    2009-01-01

    The species abundance distribution (SAD) is one of the few universal patterns in ecology. Research on this fundamental distribution has primarily focused on the study of numerical counts, irrespective of the traits of individuals. Here we show that considering a set of Generalized Species Abundance

  1. Climate and local abundance in freshwater fishes.

    Knouft, Jason H; Anthony, Melissa M

    2016-06-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide variation in population abundance associated with environmental conditions has been investigated in terrestrial species, the relationship between climate and local abundance in freshwater taxa across species' distributions is not well understood. We used GIS-based temperature and precipitation data to determine the relationships between climatic conditions and range-wide variation in local abundance for 19 species of North American freshwater fishes. Climate predicted a portion of the variation in local abundance among populations for 18 species. In addition, the relationship between climatic conditions and local abundance varied among species, which is expected as lineages partition the environment across geographical space. The influence of local habitat quality on species persistence is well documented; however, our results also indicate the importance of climate in regulating population sizes across a species geographical range, even in aquatic taxa. PMID:27429769

  2. Methanol abundance in low mass protostars

    Maret, S

    2004-01-01

    Methanol lines observations of a sample of low mass Class 0 protostars are presented. Using a 1D radiative transfer model, I show that several protostars have large abundance jumps in the inner hot and dense region of envelopes, probably because of thermal grain mantle evaporation. These abundances are compared with a grain surface chemistry model.

  3. Solar Energetic Particles: Sampling Coronal Abundances

    Reames, Donald V.

    1998-05-01

    In the large solar energetic particle (SEP) events, coronal mass ejections (CMEs) drive shock waves out through the corona that accelerate elements of the ambient material to MeV energies in a fairly democratic, temperature-independent manner. These events provide the most complete source of information on element abundances in the corona. Relative abundances of 22 elements from H through Zn display the well-known dependence on the first ionization potential (FIP) that distinguishes coronal and photospheric material. For most elements, the main abundance variations depend upon the gyrofrequency, and hence on the charge-to-mass ratio, Q/A, of the ion. Abundance variations in the dominant species, H and He, are not Q/A dependent, presumably because of non-linear wave-particle interactions of H and He during acceleration. Impulsive flares provide a different sample of material that confirms the Ne:Mg:Si and He/C abundances in the corona.

  4. Silicon abundances in population I giants

    Boehm-Vitense, Erika

    1992-01-01

    Silicon to carbon abundance ratios for population I giants were determined from emission lines originating in the transition layers between stellar chromospheres and coronae. For effective temperatures larger than 6200 K we find a group of stars with increased silicon to carbon but normal nitrogen to carbon abundance ratios. These stars are presumably descendents from Ap stars with increased surface silicon to carbon abundance ratios. For G stars this anomaly disappears as is to be expected due to the increased depth of the convection zone and therefore deeper mixing which dilutes the surface overabundances. The disappearance of the abundance anomalies proves that the anomalous abundances observed for the F giants are indeed only a surface phenomenon. It also proves that the same holds for their progenitors, the Ap and Am stars, as has been generally believed. Unexplained is the increased silicon to carbon abundance ratio observed for several stars cooler than 5100 L. RS CVn and related stars do not show this increased abundance ratio. There are also some giants which appear to be enriched in carbon, perhaps due to a helium flash with some mixing if the star is a clump star.

  5. Predicting the dynamics of protein abundance.

    Mehdi, Ahmed M; Patrick, Ralph; Bailey, Timothy L; Bodén, Mikael

    2014-05-01

    Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA-protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency

  6. CUMULATIVE OXYGEN ABUNDANCES OF SPIRAL GALAXIES

    Studying the global evolution of spiral galaxies requires determining their overall chemical compositions. However, since spirals tend to possess gradients in their chemical compositions, determining their overall chemical abundances poses a challenge. In this study, the framework for a newly proposed method for determining the overall oxygen abundance of a disk is established. By separately integrating the absolute amounts of hydrogen and oxygen out to large radii, the cumulative oxygen abundance is shown to approach an asymptotic value. In this manner, a reliable account of the overall chemical state of a disk is revealed.

  7. Abundance analysis of HD 22920 spectra

    Khalack, Viktor

    2015-01-01

    The new spectropolarimetric observations of HD 22920 with ESPaDOnS at CFHT reveal a strong variability of its spectral line profiles with the phase of stellar rotation. We have obtained Teff = 13640 K, logg=3.72 for this star from the best fit of its nine Balmer line profiles. The respective model of stellar atmosphere was calculated to perform abundance analysis of HD 22920 using the spectra obtained for three different phases of stellar rotation. We have found that silicon and chromium abundances appear to be vertically stratified in the atmosphere of HD 22920. Meanwhile, silicon shows hints for a possible variability of vertical abundance stratification with rotational phase.

  8. Lithium Abundance of Metal-poor Stars

    Hua-Wei Zhang; Gang Zhao

    2003-01-01

    High-resolution, high signal-to-noise ratio spectra have been obtained for 32 metal-poor stars. The equivalent widths of Li λ6708A were measured and the lithium abundances were derived. The average lithium abundance of 21 stars on the lithium plateau is 2.33±0.02 dex. The Lithium plateau exhibits a marginal trend along metallicity, dA(Li)/d[Fe/H] = 0.12±0.06, and no clear trend with the effective temperature. The trend indicates that the abundance of lithium plateau may not be primordial and that a part of the lithium was produced in Galactic Chemical Evolution (GCE).

  9. Study of the primordial lithium abundance

    2011-01-01

    Lithium isotopes have attracted an intense interest because the abundance of both 6Li and 6Li from big bang nucleosynthesis (BBN) is one of the puzzles in nuclear astrophysics. Many investigations of both astrophysical observation and nucleosynthesis calculation have been carried out to solve the puzzle, but it is not solved yet. Several nuclear reactions involving lithium have been indirectly measured at China Institute of Atomic Energy, Beijing. The Standard BBN (SBBN) network calculations are then performed to investigate the primordial Lithium abundance. The result shows that these nuclear reactions have minimal effect on the SBBN abundances of 6Li and 7Li.

  10. Iron abundance in the atmosphere of Arcturus

    Sheminova, V A

    2015-01-01

    Abundance of iron in the atmosphere of Arcturus has been determined from the profiles or regions of the profiles of the weak lines sensitive to iron abundance. The selected lines of Fe I and Fe II were synthesized with the MARCS theoretical models of the atmosphere. From the observed profiles of lines available with a high spectral resolution in the atlas by Hinkle and Wallace (2005), the values of the iron abundance $A = 6.95 \\pm 0.03$ and the radial-tangential macroturbulent velocity $5.6 \\pm 0.2$ km/s were obtained for Arcturus. The same physical quantities were found for the Sun as a star; they are $7.42 \\pm 0.02$ and $3.4 \\pm 0.3$ km/s, respectively. For Arcturus, the iron abundance relative to the solar one was determined with the differential method as [Fe/H] $=-0.48 \\pm 0.02$.

  11. Chemical abundance analysis of 19 barium stars

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  12. SWFSC/MMTD: Vaquita Abundance Survey 1997

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1997, the Southwest Fisheries Science Center (SWFSC) conducted a survey designed to estimate the abundance of vaquita, the Gulf of California harbor porpoise...

  13. Chinook Abundance - Linear Features [ds181

    California Department of Resources — The dataset 'ds181_Chinook_ln' is a product of the CalFish Adult Salmonid Abundance Database. Data in this shapefile are collected from stream sections or reaches...

  14. Testing Relationships between Energy and Vertebrate Abundance

    Understanding what drives variation in the abundance of organisms is fundamental to evolutionary ecology and wildlife management. Yet despite its importance, there is still great uncertainty about the main factors influencing variation in vertebrate abundance across taxa. We believe valuable knowledge and increased predictive power could be gained by taking into account both the intrinsic factors of species and the extrinsic factors related to environmental surroundings in the commonly cited RQ model, which provides a simple conceptual framework valid at both the interspecific and the intraspecific scales. Approaches comparing studies undertaken at different spatial and taxonomic scales could be key to our ability to better predict abundance, and thanks to the increased availability of population size data, global geographic datasets, and improved comparative methods, there might be unprecedented opportunities to (1) gain a greater understanding of vertebrate abundance patterns and (2) test existing theories on free-ranging animals.

  15. Unprecedented accurate abundances: signatures of other Earths?

    Melendez, J.; Asplund, M.; Gustafsson, B.; Yong, D.; Ramirez, I.

    2009-01-01

    For more than 140 years the chemical composition of our Sun has been considered typical of solar-type stars. Our highly differential elemental abundance analysis of unprecedented accuracy (~0.01 dex) of the Sun relative to solar twins, shows that the Sun has a peculiar chemical composition with a ~20% depletion of refractory elements relative to the volatile elements in comparison with solar twins. The abundance differences correlate strongly with the condensation temperatures of the elements...

  16. Estimating whale abundance using sparse hydrophone arrays

    Harris, Danielle Veronica

    2012-01-01

    Passive acoustic monitoring has been used to investigate many aspects of marine mammal ecology, although methods to estimate absolute abundance and density using acoustic data have only been developed in recent years. The instrument configuration in an acoustic survey determines which abundance estimation methods can be used. Sparsely distributed arrays of instruments are useful because wide geographic areas can be covered. However, instrument spacing in sparse arrays is such that the same...

  17. Primordial Deuterium Abundance and Cosmic Baryon Density

    Hogan, Craig J.

    1994-01-01

    The comparison of cosmic abundances of the light elements with the density of baryonic stars and gas in the universe today provides a critical test of big bang theory and a powerful probe of the nature of dark matter. A new technique allows determination of cosmic deuterium abundances in quasar absorption clouds at large redshift, allowing a new test of big bang homogeneity in diverse, very distant systems. The first results of these studies are summarized, along with their implications. The ...

  18. Spatial scaling of species abundance distributions

    Borda-de-Água, Luís; Borges, Paulo A. V.; Hubbell, Stephen P.; Pereira, Henrique M

    2012-01-01

    Copyright © 2012 The Authors. Ecography © 2012 Nordic Society Oikos. Species abundance distributions are an essential tool in describing the biodiversity of ecological communities. We now know that their shape changes as a function of the size of area sampled. Here we analyze the scaling properties of species abundance distributions by using the moments of the logarithmically transformed number of individuals. We find that the moments as a function of area size are well fitted by power law...

  19. How selection structures species abundance distributions

    Magurran, A.E; Henderson, P. A.

    2012-01-01

    How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in l...

  20. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  1. Modelling Void Abundance in Modified Gravity

    Voivodic, Rodrigo; Llinares, Claudio; Mota, David F

    2016-01-01

    We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f(R) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surv...

  2. Solar Models with New Low Metal Abundances

    Yang, Wuming

    2016-04-01

    In the past decade, the photospheric abundances of the Sun had been revised several times by many observers. The standard solar models constructed with the new low-metal abundances disagree with helioseismic results and detected neutrino fluxes. The solar model problem has puzzled some stellar physicists for more than 10 years. Rotation, enhanced diffusion, convection overshoot, and magnetic fields are used to reconcile the new abundances with helioseismology. The too low helium subsurface abundance in enhanced diffusion models can be improved by the mixing caused by rotation and magnetic fields. The problem of the depth of the convective zone in rotating models can be resolved by convection overshoot. Consequently, the Asplund–Grevesse–Sauval rotation model including overshooting (AGSR) reproduces the seismically inferred sound-speed and density profiles and the convection zone depth as well as the Grevesse & Sauval model computed before. But this model fails to reproduce the surface helium abundance, which is 0.2393 (2.6σ away from the seismic value), and neutrino fluxes. The magnetic model called AGSM keeps the agreement of the AGSR and improves the prediction of the surface helium abundance. The observed separation ratios r02 and r13 are reasonably reproduced by AGSM. Moreover, neutrino fluxes calculated by this model are not far from the detected neutrino fluxes and the predictions of previous works.

  3. Report on carbon and nitrogen abundance studies

    Boehm-Vitense, Erika

    1991-01-01

    The aim of the proposal was to determine the nitrogen to carbon abundance ratios from transition layer lines in stars with different T(sub eff) and luminosities. The equations which give the surface emission line fluxes and the measured ratio of the NV to CIV emission line fluxes are presented and explained. The abundance results are compared with those of photospheric abundance studies for stars in common with the photospheric investigations. The results show that the analyses are at least as accurate as the photospheric determinations. These studies can be extended to F and early G stars for which photospheric abundance determinations for giants are hard to do because molecular bands become too weak. The abundance determination in the context of stellar evolution is addressed. The N/C abundance ratio increases steeply at the point of evolution for which the convection zone reaches deepest. Looking at the evolution of the rotation velocities v sin i, a steep decrease in v sin i is related to the increasing depth of the convection zone. It is concluded that the decrease in v sin i for T(sub eff) less than or approximately = 5800 K is most probably due to the rearrangement of the angular momentum in the stars due to deep convective mixing. It appears that the convection zone is rotating with nearly depth independent angular momentum. Other research results and ongoing projects are discussed.

  4. Clonal growth and plant species abundance

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  5. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure

    Henderson, Peter A.; Magurran, Anne E

    2010-01-01

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximat...

  6. Good abundances from bad spectra; 1, techniques

    Bryn, J; Wyse, R F G; Gilmore, Gerard; Wyse, Rosemary F G

    1995-01-01

    We have developed techniques to extract true iron abundances and surface gravities from spectra of the type provided by the multiple-object fibre-fed spectroscopic radial-velocity surveys underway with 2dF, HYDRA, NESSIE, and the forthcoming Sloan survey. Our method is optimised for low S/N, intermediate resolution blue spectra of G stars. Spectroscopic indices sensitive to iron abundance and gravity are defined from a set of narrow (few Angstrom) wavelength intervals, and calibrated using synthetic spectra. We have also defined a single abundance indicator which is able to provide useful iron abundance information from spectra having S/N ratios as low as 10 per Angstrom. The theoretical basis and calibration using synthetic spectra are described in this paper. The empirical calibration of these techniques by application to observational data is described in Jones, Wyse and Gilmore (PASP July 1995). The technique provides precise iron abundances, with zero-point correct to \\sim 0.1 dex, and is reliable, with ...

  7. Abundances of Molecular Species in Barnard 68

    Francesco, J D; Welch, W J; Bergin, E A; Francesco, James Di; Hogerheijde, Michiel R.; Welch, William J.; Bergin, Edwin A.

    2002-01-01

    Abundances for 5 molecules (C18O, CS, NH3, H2CO, and C3H2) and 1 molecular ion (N2H+) and upper limits for the abundances of 1 molecule (13CO) and 1 molecular ion (HCO+) are derived for gas within the Bok globule Barnard 68 (B68). The abundances were determined using our own BIMA millimeter interferometer data and single-dish data gathered from the literature, in conjunction with a Monte Carlo radiative transfer model. Since B68 is the only starless core to have its density structure strongly constrained via extinction mapping, a major uncertainty has been removed from these determinations. All abundances for B68 are lower than those derived for translucent and cold dense clouds, but perhaps only significantly for N2H+, NH3, and C3H2. Depletion of CS toward the extinction peak of B68 is hinted at by the large offset between the extinction peak and the position of maximum CS line brightness. Abundances derived here for C18O and N2H+ are consistent with other, recently determined values at positions observed in...

  8. Oxygen abundance maps of CALIFA galaxies

    Zinchenko, I A; Grebel, E K; Sanchez, S F; Vilchez, J M

    2016-01-01

    We construct maps of the oxygen abundance distribution across the disks of 88 galaxies using CALIFA data release 2 (DR2) spectra. The position of the center of a galaxy (coordinates on the plate) were also taken from the CALIFA DR2. The galaxy inclination, the position angle of the major axis, and the optical radius were determined from the analysis of the surface brightnesses in the SDSS $g$ and $r$ bands of the photometric maps of SDSS data release 9. We explore the global azimuthal abundance asymmetry in the disks of the CALIFA galaxies and the presence of a break in the radial oxygen abundance distribution. We found that there is no significant global azimuthal asymmetry for our sample of galaxies, i.e., the asymmetry is small, usually lower than 0.05 dex. The scatter in oxygen abundances around the abundance gradient has a comparable value, $\\lesssim 0.05$ dex. A significant (possibly dominant) fraction of the asymmetry can be attributed to the uncertainties in the geometrical parameters of these galaxie...

  9. Age-abundance relationships for neutral communities

    Danino, Matan; Shnerb, Nadav M.

    2015-10-01

    Neutral models for the dynamics of a system of competing species are often used to describe a wide variety of empirical communities. These models are used in many situations, ranging from population genetics and ecological biodiversity to macroevolution and cancer tumors. One of the main issues discussed within this framework is the relationships between the abundance of a species and its age. Here we provide a comprehensive analysis of the age-abundance relationships for fixed-size and growing communities. Explicit formulas for the average and the most likely age of a species with abundance n are given, together with the full probability distribution function. We further discuss the universality of these results and their applicability to the tropical forest community.

  10. Estimating the relationship between abundance and distribution

    Rindorf, Anna; Lewy, Peter

    2012-01-01

    Numerous studies investigate the relationship between abundance and distribution using indices reflecting one of the three aspects of distribution: proportion of area occupied, aggregation, and geographical range. Using simulations and analytical derivations, we examine whether these indices...... based on Euclidean distance to the centre of gravity of the spatial distribution. Only the proportion of structurally empty areas, Lloyds index, and indices of the distance to the centre of gravity of the spatial distribution are unbiased at all levels of abundance. The remaining indices generate...... relationships between abundance and distribution even in cases where no underlying relationships exists, although the problem decreases for measures derived from Lorenz curves when samples contain more than four individuals on average. To illustrate the problem, the indices are applied to juvenile North Sea cod...

  11. Unprecedented accurate abundances: signatures of other Earths?

    Melendez, J; Gustafsson, B; Yong, D; Ramírez, I

    2009-01-01

    For more than 140 years the chemical composition of our Sun has been considered typical of solar-type stars. Our highly differential elemental abundance analysis of unprecedented accuracy (~0.01 dex) of the Sun relative to solar twins, shows that the Sun has a peculiar chemical composition with a ~20% depletion of refractory elements relative to the volatile elements in comparison with solar twins. The abundance differences correlate strongly with the condensation temperatures of the elements. A similar study of solar analogs from planet surveys shows that this peculiarity also holds in comparisons with solar analogs known to have close-in giant planets while the majority of solar analogs without detected giant planets show the solar abundance pattern. The peculiarities in the solar chemical composition can be explained as signatures of the formation of terrestrial planets like our own Earth.

  12. Beryllium Abundances in Solar Mass Stars

    Krugler, J. A.; Boesgaard, A. M.

    2008-08-01

    Light element abundance analysis allows for a deeper understanding of the chemical composition of a star beneath its surface. Beryllium provides a probe down to 3.5×106 K, where it fuses with protons. In this study, Be abundances were determined for 52 F and G dwarfs selected from a sample of local thin disc stars. These stars were selected by mass to range from 0.9 to 1.1 M⊙. They have effective temperatures from 5600 to 6400 K, and their metallicities [Fe/H]=-0.65 to +0.11. The data were taken with the Keck HIRES instrument and the Gecko spectrograph on the Canada France Hawaii Telescope. The abundances were calculated via spectral synthesis and were analyzed to investigate the Be abundance as a function of age, temperature, metallicity, and its relation to the lithium abundance for this narrow mass range. Be is found to decrease linearly with metallicity down to [Fe/H]˜-4.0 with slope 0.86 ± 0.02. The relation of the Be abundance to effective temperature is dependent upon metallicity, but when metallicity effects are taken into account, there is a spread ˜1.2 dex. We find a 1.5 dex spread in A(Be) when plotted against age, with the largest spread occurring from 6-8 Gyr. The relation with Li is found to be linear with slope 0.36 ± 0.06 for the temperature regime of 5900-6300 K.

  13. Metal Abundances in Hot DO White Dwarfs

    Werner, K; Ringat, E; Kruk, J W

    2012-01-01

    The relatively high abundance of carbon in the hot DO white dwarf RE0503-289 indicates that it is a descendant of a PG1159 star. This is corroborated by the recent detection of the extremely high abundances of trans-Fe elements which stem from s-process nucleosynthesis in the precursor AGB star, dredged up by a late He-shell flash and possibly amplified by radiative levitation. On the other hand, the hottest known DO white dwarf, KPD0005+5106, cannot have evolved from a PG1159 star but represents a distinct He-rich evolutionary sequence that possibly originates from a binary white dwarf merger.

  14. Non-Salmonid Abundance - Line Features [ds186

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. The "Other Fish" category contains data collected...

  15. North Sea Elasmobranchs: distribution, abundance and biodiversity

    Daan, N.; Heessen, H.J.L.; Hofstede, ter R.

    2005-01-01

    Based on data from various international and national surveys, an overview is given of the fine-scale distribution (resolution of 20¿longitude * 10¿ latitude; ¿ 10*10 nm) and trends in abundance of elasmobranch species reported from the North Sea. Presence-absence maps are produced based on 4 survey

  16. Heavy element abundances and massive star formation

    Wang, Boqi; Silk, Joseph

    1993-01-01

    The determination of the stellar initial mass function (IMF) remains a great challenge in astronomy. In the solar neighborhood, the IMF is reasonable well determined for stellar masses from about 0.1 to 60 solar mass. However, outside the solar neighborhood, the IMF is poorly known. Among those frequently discussed arguments favoring a different IMF outside the solar neighborhood are the estimated time to consume the remaining gas in spiral galaxies, and the high rate of forming massive stars in starburst galaxies. An interesting question then is whether there may be an independent way of testing possible variations in the IMF. Indeed, the heavy elements in the interstellar medium are mostly synthesized in massive stars, so increasing, or decreasing, the fraction of massive stars naturally leads to a variation in the heavy element yield, and thus, the metallicity. The observed abundance should severely constrain any deviations of the IMF from the locally determined IMF. We focus on element oxygen, which is the most abundant heavy element in the interstellar medium. Oxygen is ejected only by massive stars that can become Type 1 supernovae, and the oxygen abundance is, therefore, a sensitive function of the fraction of massive stars in the IMF. Adopting oxygen enables us to avoid uncertainties in Type 1 supernovae. We use the nucleosynthesis results to calculate the oxygen yield for given IMF. We then calculate the oxygen abundance in the interstellar medium assuming instantaneous recycling of oxygen.

  17. The Galactic Thick Disk Stellar Abundances

    Prochaska, J X; Carney, B W; McWilliam, A; Wolfe, A M; Prochaska, Jason X.; Naumov, Sergei O.; Carney, Bruce W.; William, Andrew Mc; Wolfe, Arthur M.

    2000-01-01

    We present first results from a program to measure the chemical abundances of a large (N>30) sample of thick disk stars with the principal goal of investigating the formation history of the Galactic thick disk. Our analysis confirms previous studies of O and Mg in the thick disk stars which reported enhancements in excess of the thin disk population. Furthermore, the observations of Si, Ca, Ti, Mn, Co, V, Zn, Al, and Eu all argue that the thick disk population has a distinct chemical history from the thin disk. With the exception of V and Co, the thick disk abundance patterns match or tend towards the values observed for halo stars with [Fe/H]~-1. This suggests that the thick disk stars had a chemical enrichment history similar to the metal-rich halo stars. With the possible exception of Si, the thick disk abundance patterns are in excellent agreement with the chemical abundances observed in the metal-poor bulge stars suggesting the two populations formed from the same gas reservoir at a common epoch. We disc...

  18. Quasar Elemental Abundances at High Redshifts

    Dietrich, M.; Hamann, F.; Shields, J. C.; Constantin, A.; Heidt, J.; Jaeger, K.; Vestergaard, Marianne; Wagner, S. J.

    2003-01-01

    framework of the most recent photoionization models to estimate the metallicity of the gas associated with the high-z quasars. Standard photoionization parameters and the assumption of secondary nitrogen enrichment indicate an average abundance of Z/Z_sol = 4 to 5 in the line emitting gas. Assuming a time...

  19. Will Abundant Natural Gas Solve Climate Change?

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  20. Abundance of Terrestrial Planets by Microlensing

    Yock, Philip

    2000-01-01

    Terrestrial planets may be detected using the gravitational microlensing technique. This was demonstrated in the high magnification event MACHO-98-BLG-35. Observing strategies aimed at measuring the abundance of terrestrial planets are discussed, using both existing telescopes and planned telescopes.

  1. The Abundance of Large Arcs From CLASH

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  2. Chemical abundances and kinematics of barium stars

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Silva, J. V. Sales

    2016-04-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, alpha-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of alpha-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our kinematical analysis showed that 90% of the barium stars belong to the thin disk population. Based on their luminosities, none of the barium stars are luminous enough to be an AGB star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  3. Chemical abundances and kinematics of barium stars

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  4. Relative abundance determinations in extremely metal poor giants. II. Transition probabilities and the abundance determinations

    The abundances of Fe and other elements are determined for a star of intermediate metallicity and for nine extremely metal poor stars, including two members of the globular cluster M92 and CD -38 deg 245. The accuracy of the transition probabilities for Fe I and other elements is evaluated. The distribution of the abundances of other elements with respect to Fe is the same for most of the cases studied. Manganese is the only element that shows a different relative abundance in an extremely metal poor star. 120 refs

  5. Chemical abundance analysis of 19 barium stars

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  6. Deuterium Abundance in Consciousness and Current Cosmology

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in

  7. Elemental Abundances in PG1159 Stars

    Werner, K; Reiff, E; Kruk, J W

    2007-01-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric elemental abundances of these stars allow to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted elemental abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. PG1159 stars appear to be the direct progeny of [WC] stars.

  8. Nitrous Oxide Production by Abundant Benthic Macrofauna

    Stief, Peter; Schramm, Andreas

    screened more than 20 macrofauna species for nitrous oxide production and identified filter-feeders and deposit-feeders that occur ubiquitously and at high abundance (e.g., chironomids, ephemeropterans, snails, and mussels) as the most important emitters of nitrous oxide. In contrast, predatory species......Detritivorous macrofauna species co-ingest large quantities of microorganisms some of which survive the gut passage. Denitrifying bacteria, in particular, become metabolically induced by anoxic conditions, nitrate, and labile organic compounds in the gut of invertebrates. A striking consequence...... that do not ingest large quantities of microorganisms produced insignificant amounts of nitrous oxide. Ephemera danica, a very abundant mayfly larva, was monitored monthly in a nitrate-polluted stream. Nitrous oxide production by this filter-feeder was highly dependent on nitrate availability...

  9. Attenuation of species abundance distributions by sampling.

    Shimadzu, Hideyasu; Darnell, Ross

    2015-04-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  10. The primordial deuterium abundance problems and prospects

    Levshakov, S A; Kegel, W H; Levshakov, Sergei A.; Takahara, Fumio; Kegel, Wilhelm H.

    1997-01-01

    The current status of extragalactic deuterium abundance is discussed using two examples of `low' and `high' D/H measurements. We show that the discordance of these two types of D abundances may be a consequence of the spatial correlations in the stochastic velocity field. Within the framework of the generalized procedure (accounting for such effects) one finds good agreement between different observations and the theoretical predictions for standard big bang nucleosynthesis (SBBN). In particular, we show that the deuterium absorption seen at z = 2.504 toward Q1009+2956 and the H+D Ly-alpha profile observed at z = 0.701 toward Q1718+4807 are compatible with D/H $\\sim 4.1 - 4.6\\times10^{-5}$. This result supports SBBN and, thus, no inhomogeneity is needed. The problem of precise D/H measurements is discussed.

  11. The evolution of abundances in the galaxy

    This very brief review of the evolution of the abundances in our Galaxy first recalls the main observational facts regarding such abundances which have to be taken into account by any model of chemical evolution of our Galaxy. After having defined what are the crucial parameters which define such models, the emphasis is made on two approaches: the first analyzed by Vangioni--Flam and Audouze, 1988, and Andreani et al., 1988, in which the rate of star formation is bimodal i.e., is allowed to vary with time, and the second favoured by Matteucci and Francois, 1989, who invoke a multizone galactic model with infall (inflow) of external gas into the galactic disk. A list of problems to be considered in future work is finally proposed

  12. Helium abundance in the Orion A source

    The H, He 66α (22.4 GHz) and H, He 56α (36.5 GHz) recombination line observations were made at several positions of the central region of Orion A (R ∼ 3'). The observed relative helium abundance y' is found to increase with the angular distance from the nebular centre and to amount the mean value of 11.6% at the peripherycal positions. The comparison with the results of low frequency observations (H, He 109α, ν ∼ 5.0 GHz) shows that measurements towards the centre (y'=8-9%) is in agreement with the low frequency measurements of y', however y' at the peripherycal positions are higher than that at low frequency. The nebula model of a ''blister'' type is constructed to explain such behaviour. The conclusions are made that the actual helium abundance y in Orion A is ∼ 12%, the Orion Nebula expands and its radial velocity is ∼ 5 km/s

  13. The primordial helium abundance from updated emissivities

    Aver, Erik; Porter, R L; Skillman, Evan D

    2013-01-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y_p. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, & Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, & Stasinska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y_p. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increase...

  14. Abundances in the diffuse interstellar medium

    The wealth of interstellar absorption line data obtained with the Copernicus and IUE satellites has opened up a new era in studies of the interstellar gas. It is now well established that certain elements, generally those with high condensation temperatures, are substantially under-abundant in the gas-phase relative to total solar or cosmic abundances. This depletion of elements is due to the existence of solid material in the form of dust grains in the interstellar medium. Surprisingly, however, recent surveys indicate that even volatile elements such as Zn and S are significantly depleted in many sight lines. Developments in this field which have been made possible by the large base of UV interstellar absorption line data built up over recent years are reviewed and the implications of the results for our understanding of the physical processes governing depletion are discussed. (author)

  15. Chemical Abundance Inhomogeneities in Globular Cluster Stars

    Cohen, Judith G.

    2004-01-01

    It is now clear that abundance variations from star-to-star among the light elements, particularly C, N, O, Na and Al, are ubiquitous within galactic globular clusters; they appear seen whenever data of high quality is obtained for a sufficiently large sample of stars within such a cluster. The correlations and anti-correlations among these elements and the range of variation of each element appear to be independent of stellar evolutionary state, with the exception that enhanced depletion of ...

  16. Chemical Abundances and Milky Way Formation

    Gilmore, Gerry; Wyse, Rosemary F. G.

    2004-01-01

    Stellar chemical element ratios have well-defined systematic trends as a function of abundance, with an excellent correlation of these trends with stellar populations defined kinematically. This is remarkable, and has significant implications for Galactic evolution. The source function, the stellar Initial Mass Function, must be nearly invariant with time, place and metallicity. Each forming star must see a well-mixed mass-averaged IMF yield, implying low star formation rates, with most star ...

  17. Abundances in Damped Ly-alpha Galaxies

    Molaro, Paolo

    2005-01-01

    Damped Ly_alpha galaxies provide a sample of young galaxies where chemical abundances can be derived throughout the whole universe with an accuracy comparable to that for the local universe. Despite a large spread in redshift, HI column density and metallicity, DLA galaxies show a remarkable uniformity in the elemental ratios rather suggestive of similar chemical evolution if not of an unique population. These galaxies are characterized by a moderate, if any, enhancement of alpha-elements ove...

  18. Natural Resource Abundance and Human Capital Accumulation

    Jean-Philippe C. Stijns

    2001-01-01

    This study examines indicators of human capital accumulation together with data for natural resource abundance and rents in a panel of 102 countries running from 1970 to 1999. Mineral wealth makes a positive and marked difference on human capital accumulation. Matching on observables reveals that cross-country results are not driven by a third factor such as overall economic development. Political stability does seem to affect both human capital accumulation and subsoil wealth, but not enough...

  19. Abundances in Stars with Debris Disks

    Ritchey, Adam M; Stone, Myra; Wallerstein, George

    2013-01-01

    We present preliminary results of a detailed chemical abundance analysis for a sample of solar-type stars known to exhibit excess infrared emission associated with dusty debris disks. Our sample of 28 stars was selected based on results from the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy Program, for the purpose of investigating whether the stellar atmospheres have been polluted with planetary material, which could indicate that the metallicity enhancement in stars with planets is due to metal-rich infall in the later stages of star and planet formation. The preliminary results presented here consist of precise abundances for 15 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Co, and Ni) for half of the stars in our sample. We find that none of the stars investigated so far exhibit the expected trend of increasing elemental abundance with increasing condensation temperature, which would result from the stars having accreted planetary debris. Rather, the slopes of linear least...

  20. CH abundance gradient in TMC-1

    Suutarinen, Aleksi; Harju, Jorma; Heikkilä, Arto; Hotzel, Stephan; Juvela, Mika; Millar, Tom J; Walsh, Catherina; Wouterloot, Jan Gerard Amos

    2011-01-01

    We observed the 9-cm Lambda-doubling lines of CH along the dense filament of TMC-1. The CH column densities were compared with the total H2 column densities derived using the 2MASS NIR data and previously published SCUBA maps and with OH column densities derived using previous observations with Effelsberg. We also modelled the chemical evolution of TMC-1 adopting physical conditions typical of dark clouds using the UMIST Database for Astrochemistry gas-phase reaction network to aid the interpretation of the observed OH/CH abundance ratios. The CH column density has a clear peak in the vicinity of the cyanopolyyne maximum of TMC-1. The fractional CH abundance relative to H2 increases steadily from the northwestern end of the filament where it lies around 1.0e-8, to the southeast where it reaches a value of 2.0e-8. The OH and CH column densities are well correlated, and we obtained OH/CH abundance ratios of ~ 16 - 20. These values are clearly larger than what has been measured recently in diffuse interstellar g...

  1. Absolute Quantification of Endogenous Ras Isoform Abundance.

    Craig J Mageean

    Full Text Available Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data.

  2. How selection structures species abundance distributions

    Magurran, Anne E.; Henderson, Peter A.

    2012-01-01

    How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in large bodied species in guilds where habitat structure provides protection from predators, but not in those guilds associated with open habitats and where safety in numbers is a mechanism for reducing predation risk. We further demonstrate that while there is temporal turnover in the abundances and identities of species that comprise these guilds, guild rank order is conserved across our 30-year time series. These results demonstrate that ecological communities are not randomly assembled but can be decomposed into guilds where capacity is predictably allocated among species. PMID:22787020

  3. Chemical abundances and kinematics of barium stars

    de Castro, D B; Roig, F; Jilinski, E; Drake, N A; Chavero, C; Silva, J V Sales

    2016-01-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, $alpha$-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of $alpha$-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heav...

  4. Water Abundance in Molecular Cloud Cores

    Snell, R L; Ashby, M L N; Bergin, E A; Chin, G; Erickson, N R; Goldsmith, P F; Harwit, M; Kleiner, S C; Koch, D G; Neufeld, D A; Patten, B M; Plume, R; Schieder, R; Stauffer, J R; Tolls, V; Wang, Z; Winnewisser, G; Zhang, Y F; Melnick, G J

    2000-01-01

    We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the 1_{10}-1_{01} transition of ortho-water at 557 GHz toward 12 molecular cloud cores. The water emission was detected in NGC 7538, Rho Oph A, NGC 2024, CRL 2591, W3, W3(OH), Mon R2, and W33, and was not detected in TMC-1, L134N, and B335. We also present a small map of the water emission in S140. Observations of the H_2^{18}O line were obtained toward S140 and NGC 7538, but no emission was detected. The abundance of ortho-water relative to H_2 in the giant molecular cloud cores was found to vary between 6x10^{-10} and 1x10^{-8}. Five of the cloud cores in our sample have previous water detections; however, in all cases the emission is thought to arise from hot cores with small angular extents. The water abundance estimated for the hot core gas is at least 100 times larger than in the gas probed by SWAS. The most stringent upper limit on the ortho-water abundance in dark clouds is provided in TMC-1, where the 3-sigma upper limit on the ...

  5. Abundances In Very Metal Poor Dwarf Stars

    Cohen, J G; McWilliam, A; Shectman, S; Thompson, I; Wasserburg, G J; Ivans, I I; Dehn, M; Karlsson, T; Melendez, J; Cohen, Judith G.; Christlieb, Norbert; William, Andrew Mc; Shectman, Steve; Thompson, Ian; Ivans, Inese; Dehn, Matthias; Karlsson, Torgny

    2004-01-01

    We discuss the detailed composition of 28 extremely metal-poor dwarfs, 22 of which are from the Hamburg/ESO Survey, based on Keck Echelle spectra. Our sample has a median [Fe/H] of -2.7 dex, extends to -3.5 dex, and is somewhat less metal-poor than was expected from [Fe/H](HK,HES) determined from low resolution spectra. Our analysis supports the existence of a sharp decline in the distribution of halo stars with metallicity below [Fe/H] = -3.0 dex. So far no additional turnoff stars with [Fe/H]}<-3.5 have been identified in our follow up efforts. For the best observed elements between Mg and Ni, we find that the abundance ratios appear to have reached a plateau, i.e. [X/Fe] is approximately constant as a function of [Fe/H], except for Cr, Mn and Co, which show trends of abundance ratios varying with [Fe/H]. These abundance ratios at low metallicity correspond approximately to the yield expected from Type II SN with a narrow range in mass and explosion parameters; high mass Type II SN progenitors are requir...

  6. The primordial helium abundance from updated emissivities

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Yp. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Yp. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Yp = 0.2465 ± 0.0097, in good agreement with the BBN result, Yp = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination

  7. The shape of terrestrial abundance distributions.

    Alroy, John

    2015-09-01

    Ecologists widely accept that the distribution of abundances in most communities is fairly flat but heavily dominated by a few species. The reason for this is that species abundances are thought to follow certain theoretical distributions that predict such a pattern. However, previous studies have focused on either a few theoretical distributions or a few empirical distributions. I illustrate abundance patterns in 1055 samples of trees, bats, small terrestrial mammals, birds, lizards, frogs, ants, dung beetles, butterflies, and odonates. Five existing theoretical distributions make inaccurate predictions about the frequencies of the most common species and of the average species, and most of them fit the overall patterns poorly, according to the maximum likelihood-related Kullback-Leibler divergence statistic. Instead, the data support a low-dominance distribution here called the "double geometric." Depending on the value of its two governing parameters, it may resemble either the geometric series distribution or the lognormal series distribution. However, unlike any other model, it assumes both that richness is finite and that species compete unequally for resources in a two-dimensional niche landscape, which implies that niche breadths are variable and that trait distributions are neither arrayed along a single dimension nor randomly associated. The hypothesis that niche space is multidimensional helps to explain how numerous species can coexist despite interacting strongly. PMID:26601249

  8. Distribution and Abundance of Mars' Atmospheric Argon

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Nelli, Steven; Murphy, Jim; Reedy, R. C.; Metzger, A. E.; Hunten, D. M.; Janes, K. D.; Crombie, M. K.

    2005-01-01

    One and one half Mars years (MY 26 and 27) of atmospheric Argon measurements are described and studied in the context of understanding how Argon, a minor constituent of Mars atmosphere that does not condense at Mars temperatures, can be used to study martian circulation and dynamics. Argon data are from the 2001 Mars Odyssey Gamma Subsystem (GS) of the suite of three instruments comprising the Gamma Ray Spectrometer (GRS). A comprehensive data analysis including gamma-ray production and attenuation by the atmosphere is included. Of particular interest is the enhanced abundance of Ar over the observed Ar abundance at lower latitudes at south (up to a factor of 10) and north (up to a factor of 4) polar regions during winter. Calibration of the measurements to actual Ar abundance is possible because GS measurements cover the same latitude and season as measurements made by the gas chromatograph mass spectrometer (GCMS) on Viking Landers 1 and 2 (VL1 and VL2). [2].

  9. Relative Abundance Measurements in Plumes and Interplumes

    Guennou, Chloé; Savin, Daniel Wolf

    2015-01-01

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) 10 eV). We have used EIS spectroscopic observations made on 2007 March 13 and 14 over an ~24 hour period to characterize abundance variations in plumes and interplumes. To assess their elemental composition, we have used a differential emission measure (DEM) analysis, which accounts for the thermal structure of the observed plasma. We have used lines from ions of iron, silicon, and sulfur. From these we have estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These res...

  10. Aerial survey estimates of fallow deer abundance

    Gogan, Peter J.; Gates, Natalie B.; Lubow, Bruce C.; Pettit, Suzanne

    2012-01-01

    Reliable estimates of the distribution and abundance of an ungulate species is essential prior to establishing and implementing a management program. We used ground surveys to determine distribution and ground and aerial surveys and individually marked deer to estimate the abundance of fallow deer (Dama dama) in north-coastal California. Fallow deer had limited distribution and heterogeneous densities. Estimated post-rut densities across 4 annual surveys ranged from a low of 1.4 (SE=0.2) deer/km2 to a high of 3.3 (se=0.5) deer/km2 in a low density stratum and from 49.0 (SE=8.3) deer/km2 to 111.6 deer/km2 in a high density stratum. Sightability was positively influenced by the presence of white color-phase deer in a group and group size, and varied between airial and ground-based observers and by density strata. Our findings underscore the utility of double-observer surveys and aerial surveys with individually marked deer, both incorporating covariates to model sightability, to estimate deer abundance.

  11. Environmental factors shaping ungulate abundances in Poland.

    Borowik, Tomasz; Cornulier, Thomas; Jędrzejewska, Bogumiła

    2013-01-01

    Population densities of large herbivores are determined by the diverse effects of density-dependent and independent environmental factors. In this study, we used the official 1998-2003 inventory data on ungulate numbers from 462 forest districts and 23 national parks across Poland to determine the roles of various environmental factors in shaping country-wide spatial patterns of ungulate abundances. Spatially explicit generalized additive mixed models showed that different sets of environmental variables explained 39 to 50 % of the variation in red deer Cervus elaphus, wild boar Sus scrofa, and roe deer Capreolus capreolus abundances. For all of the studied species, low forest cover and the mean January temperature were the most important factors limiting their numbers. Woodland cover above 40-50 % held the highest densities for these species. Wild boar and roe deer were more numerous in deciduous or mixed woodlands within a matrix of arable land. Furthermore, we found significant positive effects of marshes and water bodies on wild boar abundances. A juxtaposition of obtained results with ongoing environmental changes (global warming, increase in forest cover) may indicate future growth in ungulate distributions and numbers. PMID:24244044

  12. Principal Component Analysis on Chemical Abundances Spaces

    Ting, Y S; Kobayashi, C; De Silva, G M; Bland-Hawthorn, J

    2011-01-01

    [Shortened] In preparation for the HERMES chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. [...] We explore abundances in several environments, including solar neighbourhood thin/thick disk stars, halo metal-poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. [...] We find that, especially at low metallicity, the production of r-process elements is likely to be associated with the production of alpha-elements. This may support the core-collapse supernovae as the r-process site. We also verify the over-abundances of light s-process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. [...] Our analysis reveals two types of core-collapse supernovae: one produces mainly alpha-e...

  13. Galactic abundance gradients from Cepheids : On the iron abundance gradient around 10-12 kpc

    Lemasle, B.; Francois, P.; Piersimoni, A.; Pedicelli, S.; Bono, G.; Laney, C. D.; Primas, F.; Romaniello, M.

    2008-01-01

    Context: Classical Cepheids can be adopted to trace the chemical evolution of the Galactic disk since their distances can be estimated with very high accuracy. Aims: Homogeneous iron abundance measurements for 33 Galactic Cepheids located in the outer disk together with accurate distance determinations based on near-infrared photometry are adopted to constrain the Galactic iron gradient beyond 10 kpc. Methods: Iron abundances were determined using high resolution Cepheid spectra collected wit...

  14. Abundant Solar Nebula Solids in Comets

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  15. Abundance anomalies in tidal disruption events

    Kochanek, C. S.

    2016-05-01

    The ˜10 per cent of tidal disruption events (TDEs) due to stars more massive than M* ≳ M⊙ should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ˜25 per cent on average because it becomes inaccessible once it is sequestered in the high-density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main-sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle - stars with M* ≳ M⊙ quickly show an increase in their average N/C ratio by factors of 3-10. Because low-mass stars evolve slowly and high-mass stars are rare, TDEs showing high N/C will almost all be due to ˜1-2 M⊙ stars disrupted on the main sequence. Like helium, portions of the debris will show still larger changes in C and N, and the anomalies decline as the star leaves the main sequence. The enhanced [N/C] abundance ratio of these TDEs provides the first natural explanation for the rare, nitrogen-rich quasars and may also explain the strong nitrogen emission seen in ultraviolet spectra of ASASSN-14li.

  16. The primordial helium abundance from updated emissivities

    Aver, Erik [Department of Physics, Gonzaga University, 502 E Boone Ave, Spokane, WA, 99258 (United States); Olive, Keith A.; Skillman, Evan D. [School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN, 55455 (United States); Porter, R.L., E-mail: aver@gonzaga.edu, E-mail: olive@umn.edu, E-mail: ryanlporter@gmail.com, E-mail: skillman@astro.umn.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602 (United States)

    2013-11-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y{sub p}. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y{sub p}. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y{sub p} = 0.2465 ± 0.0097, in good agreement with the BBN result, Y{sub p} = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination.

  17. Abundance Anomalies In Tidal Disruption Events

    Kochanek, C. S.

    2015-01-01

    The ~10% of tidal disruption events (TDEs) due to stars more massive than the Sun should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ~25% on average because it becomes inaccessible once it is sequestered in the high density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main sequence star can be enhanced in helium by factors of ...

  18. Abundances of refractory elements in quasars

    New observations of iron, silicon, aluminum, magnesium, and carbon lines in quasars are presented. From comparison of these and previous observations with theoretical models, it is found that the gas-phase abundances of these refractory elements cannot be much less than solar, and in particular that they do not show the order of magnitude depletions that are found in planetary nebulae and the interstellar medium. Because of this lack of depletion of refractory elements it is argued that the broad emission-line clouds are probably deviod of dust

  19. North Sea Elasmobranchs: distribution, abundance and biodiversity

    Daan, N.; Heessen, H.J.L.; Hofstede, ter, AHM Arthur

    2005-01-01

    Based on data from various international and national surveys, an overview is given of the fine-scale distribution (resolution of 20¿longitude * 10¿ latitude; ¿ 10*10 nm) and trends in abundance of elasmobranch species reported from the North Sea. Presence-absence maps are produced based on 4 surveys, which help to delineate distribution limits of the less common species, while maps in terms of catch rates (International Bottom Trawl Survey data only) are given for the seven most common shark...

  20. Abundance and diversity of marine microbial eukaryotes

    Pernice, Massimo Ciro

    2014-01-01

    [EN]Microeukaryotes are important ecological players in any kind of ecosystem, most notably in the ocean, and it is therefore essential to collect information about their abundance and diversity. To achieve this general goal this thesis was structured in two parts. The first part represents an effort to define our “diversity unit” from studies based on the well-known cloning and Sanger sequencing approach. Basically, we wanted to establish a solid baseline for the second part of the thesis. W...

  1. Detecting significant changes in protein abundance

    Kai Kammers

    2015-06-01

    Full Text Available We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary t-tests. Using examples from isobaric mass labelled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.

  2. Non-additive effects of genotypic diversity increase floral abundance and abundance of floral visitors.

    Mark A Genung

    Full Text Available BACKGROUND: In the emerging field of community and ecosystem genetics, genetic variation and diversity in dominant plant species have been shown to play fundamental roles in maintaining biodiversity and ecosystem function. However, the importance of intraspecific genetic variation and diversity to floral abundance and pollinator visitation has received little attention. METHODOLOGY/PRINCIPAL FINDINGS: Using an experimental common garden that manipulated genotypic diversity (the number of distinct genotypes per plot of Solidago altissima, we document that genotypic diversity of a dominant plant can indirectly influence flower visitor abundance. Across two years, we found that 1 plant genotype explained 45% and 92% of the variation in flower visitor abundance in 2007 and 2008, respectively; and 2 plant genotypic diversity had a positive and non-additive effect on floral abundance and the abundance of flower visitors, as plots established with multiple genotypes produced 25% more flowers and received 45% more flower visits than would be expected under an additive model. CONCLUSIONS/SIGNIFICANCE: These results provide evidence that declines in genotypic diversity may be an important but little considered factor for understanding plant-pollinator dynamics, with implications for the global decline in pollinators due to reduced plant diversity in both agricultural and natural ecosystems.

  3. Metal Abundances of KISS Galaxies. V. Nebular Abundances of Fifteen Intermediate Luminosity Star-Forming Galaxies

    Hirschauer, Alec S; Bresolin, Fabio; Saviane, Ivo; Yegorova, Irina

    2015-01-01

    We present high S/N spectroscopy of 15 emission-line galaxies (ELGs) cataloged in the KPNO International Spectroscopic Survey (KISS), selected for their possession of high equivalent width [O III] lines. The primary goal of this study was to attempt to derive direct-method ($T_e$) abundances for use in constraining the upper-metallicity branch of the $R_{23}$ relation. The spectra cover the full optical region from [O II]{\\lambda}{\\lambda}3726,3729 to [S III]{\\lambda}{\\lambda}9069,9531 and include the measurement of [O III]{\\lambda}4363 in 13 objects. From these spectra, we determine abundance ratios of helium, nitrogen, oxygen, neon, sulfur, and argon. We find these galaxies to predominantly possess oxygen abundances in the range of 8.0 $\\lesssim$ 12+log(O/H) $\\lesssim$ 8.3. We present a comparison of direct-method abundances with empirical SEL techniques, revealing several discrepancies. We also present a comparison of direct-method oxygen abundance calculations using electron temperatures determined from e...

  4. Oxygen Abundance Measurements of SHIELD Galaxies

    Haurberg, Nathalie C; Cannon, John M; Marshall, Melissa V

    2015-01-01

    We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{\\rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{\\odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$\\alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $\\lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used ins...

  5. Abundance Anomalies In Tidal Disruption Events

    Kochanek, C S

    2015-01-01

    The ~10% of tidal disruption events (TDEs) due to stars more massive than the Sun should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ~25% on average because it becomes inaccessible once it is sequestered in the high density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle -- stars more massive than the Sun quickly show an increase in their average N/C ratio by factors of 3-10. Because low mass stars evolve slowly and high mass stars are rare, TDEs showing high N/C will almost all be due to 1-2Msun stars disr...

  6. Element Abundances through the Cosmic Ages

    Pettini, M

    2003-01-01

    The horizon for studies of element abundances has expanded dramatically in the last ten years. Once the domain of astronomers concerned chiefly with stars and nearby galaxies, this field has now become a key component of observational cosmology, as technological advances have made it possible to measure the abundances of several chemical elements in a variety of environments at redshifts up to z = 4, when the universe was in its infancy. In this series of lectures I summarise current knowledge on the chemical make-up of distant galaxies observed directly in their starlight, and of interstellar and intergalactic gas seen in absorption against the spectra of bright background sources. The picture which is emerging is one where the universe at z = 3 already included many of the constituents of today's galaxies-even at these early times we see evidence for Population I and II stars, while the `smoking gun' for Population III objects may be hidden in the chemical composition of the lowest density regions of the in...

  7. Beryllium Abundances of Solar-Analog Stars

    Takeda, Yoichi; Honda, Satoshi; Kawanomoto, Satoshi; Ando, Hiroyasu; Sakurai, Takashi

    2011-01-01

    An extensive beryllium abundance analysis was conducted for 118 solar analogs (along with 87 FGK standard stars) by applying the spectrum synthesis technique to the near-UV region comprising the Be II line at 3131.066 A, in an attempt to investigate whether Be suffers any depletion such as the case of Li showing a large diversity. We found that, while most of these Sun-like stars are superficially similar in terms of their A(Be) (Be abundances) around the solar value within ~ +/- 0.2dex, 4 out of 118 samples turned out strikingly Be-deficient (by more than ~2 dex) and these 4 stars belong to the group of lowest v_e sin i (projected rotation velocity). Moreover, even for the other majority showing an apparent similarity in Be, we can recognize a tendency that A(Be) gradually increases with an increase in v_e sin i. These observational facts suggest that any solar analog star (including the Sun) generally suffers some kind of Be depletion during their lives, where the rotational velocity (or the angular momentu...

  8. Fluorine Abundances in the Milky Way Bulge

    Cunha, K; Gibson, B K

    2008-01-01

    Fluorine (19F) abundances are derived in a sample of 6 bulge red giants in Baade's Window. These giants span a factor of 10 in metallicity and this is the first study to define the behavior of 19F with metallicity in the bulge. The bulge results show an increase in F/O with increasing oxygen. This trend overlaps what is found in the disk at comparable metallicities, with the most oxygen-rich bulge target extending the disk trend. The increase in F/O in the disk arises from 19F synthesis in both asymptotic giant branch (AGB) stars and metal-rich Wolf-Rayet (WR) stars through stellar winds. The lack of an s-process enhancement in the most fluorine-rich bulge giant in this study, suggests that WR stars represented a larger contribution than AGB stars to 19F production in the bulge when compared to the disk. If this result for fluorine is combined with the previously published overall decline in the O/Mg abundance ratios in metal-rich bulge stars, it suggests that WR winds played a role in shaping chemical evolut...

  9. Manganese abundances in Galactic bulge red giants

    Barbuy, B; Zoccali, M; Minniti, D; Renzini, A; Ortolani, S; Gomez, A; Trevisan, M; Dutra, N

    2013-01-01

    Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut beween the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Gala...

  10. Beryllium abundances in stars hosting giant planets

    Santos, N C; Israelian, G; Mayor, M; Rebolo, R; García-Gíl, A; Pérez de Taoro, M R; Randich, S

    2002-01-01

    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be deple...

  11. Automatic abundance analysis of high resolution spectra

    Bonifacio, P; Bonifacio, Piercarlo; Caffau, Elisabetta

    2003-01-01

    We describe an automatic procedure for determining abundances from high resolution spectra. Such procedures are becoming increasingly important as large amounts of data are delivered from 8m telescopes and their high-multiplexing fiber facilities, such as FLAMES on ESO-VLT. The present procedure is specifically targeted for the analysis of spectra of giants in the Sgr dSph; however, the procedure may be, in principle, tailored to analyse stars of any type. Emphasis is placed on the algorithms and on the stability of the method; the external accuracy rests, ultimately, on the reliability of the theoretical models (model-atmospheres, synthetic spectra) used to interpret the data. Comparison of the results of the procedure with the results of a traditional analysis for 12 Sgr giants shows that abundances accurate at the level of 0.2 dex, comparable with that of traditional analysis of the same spectra, may be derived in a fast and efficient way. Such automatic procedures are not meant to replace the traditional ...

  12. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method o...

  13. Forms and genesis of species abundance distributions

    Evans O. Ochiaga

    2015-12-01

    Full Text Available Species abundance distribution (SAD is one of the most important metrics in community ecology. SAD curves take a hollow or hyperbolic shape in a histogram plot with many rare species and only a few common species. In general, the shape of SAD is largely log-normally distributed, although the mechanism behind this particular SAD shape still remains elusive. Here, we aim to review four major parametric forms of SAD and three contending mechanisms that could potentially explain this highly skewed form of SAD. The parametric forms reviewed here include log series, negative binomial, lognormal and geometric distributions. The mechanisms reviewed here include the maximum entropy theory of ecology, neutral theory and the theory of proportionate effect.

  14. $^{7}$Li abundances in halo stars testing stellar evolution models and the primordial $^{7}$Li abundance

    Chaboyer, B; Brian Chaboyer

    1994-01-01

    A large number of stellar evolution models with [Fe/H] = -2.3 and -3.3 have been calculated in order to determine the primordial .sup(7)Li abundance and to test current stellar evolution models by a comparison to the extensive database of Li abundances in extremely metal poor halo stars observed by Thorburn (1994). Standard models do a good job of fitting the observed Li abundances in stars hotter than 5600 K. They predict a primordial ^7Li abundance of log N(Li) = 2.24\\pm 0.03. Models which include microscopic diffusion predict a downward curvature in the .sup(7)Li destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of .sup(7)Li from the surface of the star. The [Fe/H] = -2.3 stellar models which include both diffusion and rotational mixing provide an excellent match to the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rot...

  15. Dynamical implications of Jupiter's tropospheric ammonia abundance

    Showman, Adam P.; de Pater, Imke

    2005-03-01

    Groundbased radio observations indicate that Jupiter's ammonia is globally depleted from 0.6 bars to at least 4-6 bars relative to the deep abundance of ˜3 times solar, a fact that has so far defied explanation. The observations also indicate that (i) the depletion is greater in belts than zones, and (ii) the greatest depletion occurs within Jupiter's local 5-μm hot spots, which have recently been detected at radio wavelengths. Here, we first show that both the global depletion and its belt-zone variation can be explained by a simple model for the interaction of moist convection with Jupiter's cloud-layer circulation. If the global depletion is dynamical in origin, then important endmember models for the belt-zone circulation can be ruled out. Next, we show that the radio observations of Jupiter's 5-μm hot spots imply that the equatorial wave inferred to cause hot spots induces vertical parcel oscillation of a factor of ˜2 in pressure near the 2-bar level, which places important constraints on hot-spot dynamics. Finally, using spatially resolved radio maps, we demonstrate that low-latitude features exceeding ˜4000 km diameter, such as the equatorial plumes and large vortices, are also depleted in ammonia from 0.6 bars to at least 2 bars relative to the deep abundance of 3 times solar. If any low-latitude features exist that contain 3-times-solar ammonia up to the 0.6-bar ammonia condensation level, they must have diameters less than ˜4000 km.

  16. Abundant thorium as an alternative nuclear fuel

    It has long been known that thorium-232 is a fertile radioactive material that can produce energy in nuclear reactors for conversion to electricity. Thorium-232 is well suited to a variety of reactor types including molten fluoride salt designs, heavy water CANDU configurations, and helium-cooled TRISO-fueled systems. Among contentious commercial nuclear power issues are the questions of what to do with long-lived radioactive waste and how to minimize weapon proliferation dangers. The substitution of thorium for uranium as fuel in nuclear reactors has significant potential for minimizing both problems. Thorium is three times more abundant in nature than uranium. Whereas uranium has to be imported, there is enough thorium in the United States alone to provide adequate grid power for many centuries. A well-designed thorium reactor could produce electricity less expensively than a next-generation coal-fired plant or a current-generation uranium-fueled nuclear reactor. Importantly, thorium reactors produce substantially less long-lived radioactive waste than uranium reactors. Thorium-fueled reactors with molten salt configurations and very high temperature thorium-based TRISO-fueled reactors are both recommended for priority Generation IV funding in the 2030 time frame. - Highlights: • Thorium is an abundant nuclear fuel that is well suited to three advanced reactor configurations. • Important thorium reactor configurations include molten salt, CANDU, and TRISO systems. • Thorium has important nuclear waste disposal advantages relative to pressurized water reactors. • Thorium as a nuclear fuel has important advantages relative to weapon non-proliferation

  17. Protein abundance profiling of the Escherichia coli cytosol

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.;

    2008-01-01

    sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed em...... between protein and mRNA abundance in E. coli cells. Conclusion: Abundance measurements for more than 1000 E. coli proteins presented in this work represent the most complete study of protein abundance in a bacterial cell so far. We show significant associations between the abundance of a protein and its...

  18. Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    Cowan, J J; Sneden, C; Den Hartog, E A; Collier, J L; Cowan, John J.; Lawler, James E.; Sneden, Christopher; Collier, Jason

    2006-01-01

    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingl...

  19. Abundance of sardine fish species in Bangladesh

    Roy Bikram Jit

    2012-06-01

    Full Text Available The study was conducted during January, 2012 to December 2012 in the sardine fisheries which is occurred both in artisanal and industrial fishing sector in the marine water of the Bay of Bengal of Bangladesh region. During this study period the total landing amounts by weight of sardines were 7352.99 MT, among these 23.76% (1747.22 MT was exploited by the artisanal mechanized boats and 76.24% (5605.77 MT captured through different industrial fishing trawlers and contributed 17.51% of the total marine fish production by commercial fish trawlers during the study period. 4 sardine species have been recorded from our marine territory. Among them, 2 sardine species are highly abundant, Sardinella fimbriata total production volumes was 5495.79 MT (74.74% contributed 1747.22MT (31.79% from the artisanal and 3748.57MT (68.21% from the industrial sector and Dussumieria acuta production amounts was 1857.20MT (25.26% contributed only from the industrial fishing sector.Species wise contribution shows that S. fimbriata contributed 100% in the artisanal sector and in the industrial fishing S. fimbriata contributed 66.87% and D. acuta contributed the rest 33.13%. The distribution of the S. fimbriata is within 10-20 meters depth and abundance was observed in the southern part of the South patches and South of south patches (N: 210.09// -22, E: 920.04/-07 to N: 200.45/-25, E: 920.18/-56 and 10-50m depth in onshore and off shore areas in the north-west to north-east of Middle ground (Kohinoor point -N: 210.36/.23, E: 900.06/.43 to N: 210.18/.18, E 910.17/.57. The distribution of the D. acuta is within 40-60 m. depth and abundance was observed in the north-west to north-east of Middle ground areas (Kohinoor point - N: 210.36/.23, E: 900.06/.43 to N: 210.18/.18, E 910.17/.57 and south-west to south-east of Middle ground (Kohinoor point- N: 200-17/.29, E: 900.15/.21 to N: 200.29/.56, E: 910.24/.22 in the Bay of Bengal of Bangladesh region. The peak capture season of

  20. Radiogenic lead-208 abundance 88.34 %

    Brazil has a long tradition in thorium technology, from the monazite ores mining until the production of the nuclear grade thorium compounds. Early in 1969 the Institute of Energy and Nuclear Research (IPEN) designed a project for a pilot plant installation to purify the thorium compounds, based on the solvent extraction technique. Thorium compounds used came from monazite's industrialization. During the course of the operation of this plant, a crude sludge were formed containing thorium not extracted and the whole rare earths, plus minor impurities like sodium, titanium, zirconium, hafnium, iron, silicon, phosphate and the thorium daughters were accumulated. Included is the radiogenic lead-208. This sludge, hereafter named 'RETOTER', was treated with hydrochloric acid and the lead was separated and recovered by anion exchange technology. The lead-208 was analyzed by mass spectrometry (HR-ICPMS) technique. The lead-208 abundance measure was 88.34%, this allowed the calculation of the thermal neutron capture cross section of σ0γ = 14,6 +/- 0.7 mb, considerably lower than the σ0γ = 174.2 +/- 0.7 mb value of the natural lead. (author)

  1. Comparing halo bias from abundance and clustering

    Hoffmann, Kai; Gaztanaga, Enrique

    2015-01-01

    We model the abundance of haloes in the $\\sim(3 \\ \\text{Gpc}/h)^3$ volume of the MICE Grand Challenge simulation by fitting the universal mass function with an improved Jack-Knife error covariance estimator that matches theory predictions. We present unifying relations between different fitting models and new predictions for linear ($b_1$) and non-linear ($c_2$ and $c_3$) halo clustering bias. Different mass function fits show strong variations in their overall poor performance when including the low mass range ($M_h \\lesssim 3 \\ 10^{12} \\ M_{\\odot}/h$) in the analysis, which indicates noisy friends-of-friends halo detection given the MICE resolution ($m_p \\simeq 3 \\ 10^{10} \\ M_{\\odot}$/h). Together with fits from the literature we find an overall variance in the amplitudes of around $10%$ in the low mass and up to $50%$ in the high mass (galaxy cluster) range ($M_h > 10^{14} \\ M_{\\odot}/h$). These variations propagate into a $10%$ change in $b_1$ predictions and a $50%$ change in $c_2$ or $c_3$. Despite the...

  2. Late Embryogenesis Abundant (LEA proteins in legumes

    Marina eBattaglia

    2013-06-01

    Full Text Available Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirms the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions.

  3. Abundances in the Planetary Nebula IC 5217

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Woo-Baik; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    High resolution optical wavelength spectroscopic data were secured in the optical wavelengths, 3700A - 10,050A, for the planetary nebula IC 5217 with the Hamilton Echelle Spectrograph at Lick Observatory. These optical spectra have been analyzed along with the near-UV and UV archive data. Diagnostic analyses indicate a nebular physical condition with electron temperature of about 10,700 K (from the [O III] lines) and the density of N(sub epsilon) = 5000/cm. Ionic concentrations have been derived with the representative diagnostics, and with the aid of a photoionization model construction, we derived the elemental abundances. Contrary to the previous studies found in the literature, He and C appear to be depleted compared to the average planetary nebula and to the Sun (and S marginally so), while the remaining elements appear to be close to the average value. IC 5217 may have evolved from an O-rich progenitor and the central star temperature of IC 5217 is likely to be 92,000 K.

  4. Non-Additive Effects of Genotypic Diversity Increase Floral Abundance and Abundance of Floral Visitors

    Mark A Genung; Jean-Philippe Lessard; Claire B Brown; Bunn, Windy A.; Cregger, Melissa A.; W M Nicholas Reynolds; Emmi Felker-Quinn; Stevenson, Mary L.; Hartley, Amanda S.; Gregory M. Crutsinger; Schweitzer, Jennifer A.; Bailey, Joseph K.

    2010-01-01

    BACKGROUND: In the emerging field of community and ecosystem genetics, genetic variation and diversity in dominant plant species have been shown to play fundamental roles in maintaining biodiversity and ecosystem function. However, the importance of intraspecific genetic variation and diversity to floral abundance and pollinator visitation has received little attention. METHODOLOGY/PRINCIPAL FINDINGS: Using an experimental common garden that manipulated genotypic diversity (the number of dist...

  5. The Origin of Element Abundance Variations in Solar Energetic Particles

    Reames, Donald V.

    2016-07-01

    Abundance enhancements, during acceleration and transport in both gradual and impulsive solar energetic particle (SEP) events, vary approximately as power laws in the mass-to-charge ratio [ A/Q] of the ions. Since the Q-values depend upon the electron temperature of the source plasma, this has allowed a determination of this temperature from the pattern of element-abundance enhancements and a verification of the expected inverse-time dependence of the power of A/Q for diffusive transport of ions from the SEP events, with scattering mean free paths found to be between 0.2 and 1 AU. SEP events derived from plasma of different temperatures map into different regions in typical cross-plots of abundances, spreading the distributions. In comparisons of SEP events with temperatures above 2 MK, impulsive events show much broader non-thermal variation of abundances than do gradual events. The extensive shock waves accelerating ions in gradual events may average over much of an active region where numerous but smaller magnetic reconnections, "nanojets", produce suprathermal seed ions, thus averaging over varying abundances, while an impulsive SEP event only samples one local region of abundance variations. Evidence for a reference He/O-abundance ratio of 91, rather than 57, is also found for the hotter plasma. However, while this is similar to the solar-wind abundance of He/O, the solar-wind abundances otherwise provide an unacceptably poor reference for the SEP-abundance enhancements, generating extremely large errors.

  6. Abundance models improve spatial and temporal prioritization of conservation resources.

    Johnston, Alison; Fink, Daniel; Reynolds, Mark D; Hochachka, Wesley M; Sullivan, Brian L; Bruns, Nicholas E; Hallstein, Eric; Merrifield, Matt S; Matsumoto, Sandi; Kelling, Steve

    2015-10-01

    Conservation prioritization requires knowledge about organism distribution and density. This information is often inferred from models that estimate the probability of species occurrence rather than from models that estimate species abundance, because abundance data are harder to obtain and model. However, occurrence and abundance may not display similar patterns and therefore development of robust, scalable, abundance models is critical to ensuring that scarce conservation resources are applied where they can have the greatest benefits. Motivated by a dynamic land conservation program, we develop and assess a general method for modeling relative abundance using citizen science monitoring data. Weekly estimates of relative abundance and occurrence were compared for prioritizing times and locations of conservation actions for migratory waterbird species in California, USA. We found that abundance estimates consistently provided better rankings of observed counts than occurrence estimates. Additionally, the relationship between abundance and occurrence was nonlinear and varied by species and season. Across species, locations prioritized by occurrence models had only 10-58% overlap with locations prioritized by abundance models, highlighting that occurrence models will not typically identify the locations of highest abundance that are vital for conservation of populations. PMID:26591443

  7. Reanalysis of the interstellar CH abundance

    A detailed investigation of the term structure of the X2II, A2Δ, B2Σ-, and C2Σ+ systems of CH is presented, as well as a discussion of a number of errors that have been found with respect to the historical analysis of the interstellar CH abundance. The primary cause for these errors is the neglect of the Λ doubling of the ground state. The effects of including this splitting are the following: (1) the oscillator strength doubles for each line arising from the ground state of the B-X and C-X electronic systems; (2) the 4300, 3886, and 3143 A lines each consist of a blend of two lines separated by 1.43, 1.28, and 2.17 km s-1, respectively; (3) the line at 3886 A arises solely from the upper half of the Λ doublet, and the lines at 3890 and 3878 A arise from the lower half of the Λ doublet; (4) the line at 3143 A arises solely from the lower half of the Λ doublet, and the lines at 3146 and 3137 A arise from the upper half of the Λ doublet; (5) the excitation temperature (a measure of the relative level population) of the ground-state Λ doublet has been calculated for the interstellar CH along the line of sight toward four stars (zeta Per, zeta Oph, X Per, and chi Oph) using published equivalent withs. The excitation temperature appears to be less than zero toward X Per and zeta Per, indicating that the population of the ground-state Λ doublet is inverted. The level populations along other lines of sight are known to be inverted from observations of the radio CH lines; this is the first detection of a radio maser by optical methods

  8. Cosmological implications of two conflicting deuterium abundances

    Constraints on big bang nucleosynthesis (BBN) and on cosmological parameters from conflicting deuterium observations in different high redshift QSO systems are discussed. The high deuterium observations by Carswell et al., Songaila et al., and Rugers and Hogan are consistent with 4He and 7Li observations and standard BBN (Nν =3) and allows Nν≤3.6 at 95% C.L., but are inconsistent with local observations of D and 3He in the context of conventional theories of stellar and galactic evolution. In contrast, the low deuterium observations by Tytler, Fan, and Burles and Burles and Tytler are consistent with the constraints from local galactic observations, but require Nν=1.9±0.3 at 68% C.L., excluding standard BBN at 99.9% C.L., unless the systematic uncertainties in the 4He observations have been underestimated by a large amount. The high and low primordial deuterium abundances imply, respectively, ΩBh2=0.005 endash 0.01 and ΩBh2=0.02 endash 0.03 at 95% C.L. When combined with the high baryon fraction inferred from x-ray observations of rich clusters, the corresponding total mass densities (for 50≤H0≤90) are ΩM=0.05 endash 0.20 and ΩM=0.2 endash 0.7, respectively (95% C.L.). The range of ΩM corresponding to high D is in conflict with dynamical constraints (Ωm≥0.2 endash 0.3) and with the shape parameter constraint (Γ=ΩMh=0.25±0.05) from large scale structure formation in CDM and ΛCDM models. copyright 1997 The American Physical Society

  9. Testing spherical evolution for modelling void abundances

    Achitouv, Ixandra; Neyrinck, Mark; Paranjape, Aseem

    2015-08-01

    We compare analytical predictions of void volume functions to those measured from N-body simulations, detecting voids with the ZOBOV void finder. We push to very small, non-linear voids, below few Mpc radius, by considering the unsampled dark matter density field. We also study the case where voids are identified using haloes. We develop analytical formula for the void abundance of both the excursion set approach and the peaks formalism. These formulas are valid for random walks smoothed with a top-hat filter in real space, with a large class of realistic barrier models. We test the extent to which the spherical evolution approximation, which forms the basis of the analytical predictions, models the highly aspherical voids that occur in the cosmic web, and are found by a watershed-based algorithm such as ZOBOV. We show that the volume function returned by ZOBOV is quite sensitive to the choice of treatment of subvoids, a fact that has not been appreciated previously. For reasonable choices of subvoid exclusion, we find that the Lagrangian density δv of the ZOBOV voids - which is predicted to be a constant δv ≈ -2.7 in the spherical evolution model - is different from the predicted value, showing substantial scatter and scale dependence. This result applies to voids identified at z = 0 with effective radius between 1 and 10 h-1 Mpc. Our analytical approximations are flexible enough to give a good description of the resulting volume function; however, this happens for choices of parameter values that are different from those suggested by the spherical evolution assumption. We conclude that analytical models for voids must move away from the spherical approximation in order to be applied successfully to observations, and we discuss some possible ways forward.

  10. Nitrogen abundances in damped Lyalpha absorbers

    Zafar, T.; Centurión, M.; Molaro, P.; Péroux, C.; D'Odorico, V.; Vladilo, G.

    Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. Damped Lyalpha (DLA) and sub-DLA systems with typical metallicities of -3.0≲ Z/Z⊙ ≲ -0.5 are excellent tools to study nitrogen production. We made a search for nitrogen in the European Southern Observatory (ESO) Ultraviolet Visual Echelle Spectrograph (UVES) advanced data products (EUADP) database. In the EUADP database, we find 10 new measurements and 9 upper limits of nitrogen. We further compiled DLA/sub-DLA data from the literature with estimates available of nitrogen and alpha -elements. This yields a total of 98 systems, i.e. the largest nitrogen abundance sample investigated so far. In agreement with previous studies, we indeed find a bimodal [N/alpha ] behaviour: three-quarter systems show a mean value of [N/alpha ] =-0.87 with a scatter of 0.21 dex and one-quarter shows ratios clustered at [N/alpha ] = -1.43 with a lower dispersion of 0.13 dex. The high [N/alpha ] group is consistent with the blue compact dwarves and dwarf irregular galaxies, suggesting primary nitrogen production. The low [N/alpha ] group is the lowest ever observed in any astrophysical site and probably provides an evidence of the primary production by fast rotating massive stars in young sites. Moreover, we find a transition between the two [N/alpha ] groups around [N/H] ≃-2.5. The transition is not abrupt and there are a few systems lying in the transition region. Additional observations of DLAs/sub-DLAs below [N/H] <-2.5 would provide more clues.

  11. Shallow extra mixing in solar twins inferred from Be abundances

    Maia, M Tucci; Castro, M; Asplund, M; Ramírez, I; Monroe, T R; Nascimento, J D do; Yong, D

    2015-01-01

    Lithium and beryllium are destroyed at different temperatures in stellar interiors. As such, their relative abundances offer excellent probes of the nature and extent of mixing processes within and below the convection zone. We determine Be abundances for a sample of eight solar twins for which Li abundances have previously been determined. The analyzed solar twins span a very wide range of age, 0.5-8.2 Gyr, which enables us to study secular evolution of Li and Be depletion. We gathered high-quality UVES/VLT spectra and obtained Be abundances by spectral synthesis of the Be II 313 nm doublet. The derived beryllium abundances exhibit no significant variation with age. The more fragile Li, however, exhibits a monotonically decreasing abundance with increasing age. Therefore, relatively shallow extra mixing below the convection zone is necessary to simultaneously account for the observed Li and Be behavior in the Sun and solar twins.

  12. Radial molecular abundances and gas cooling in starless cores

    Sipilä, O

    2012-01-01

    Aims: We aim to simulate radial profiles of molecular abundances and the gas temperature in cold and heavily shielded starless cores by combining chemical and radiative transfer models. Methods: A determination of the dust temperature in a modified Bonnor-Ebert sphere is used to calculate initial radial molecular abundance profiles. The abundances of selected cooling molecules corresponding to two different core ages are then extracted to determine the gas temperature at two time steps. The calculation is repeated in an iterative process yielding molecular abundances consistent with the gas temperature. Line emission profiles for selected substances are calculated using simulated abundance profiles. Results: The gas temperature is a function of time; the gas heats up as the core gets older because the cooling molecules are depleted onto grain surfaces. The contributions of the various cooling molecules to the total cooling power change with time. Radial chemical abundance profiles are non-trivial: different s...

  13. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    Blecic, Jasmina; Bowman, M Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...

  14. Cross-Scale Interactions and the Distribution-Abundance Relationship

    Werner, Earl E.; Davis, Christopher J.; Skelly, David K.; Relyea, Rick A.; Benard, Michael F.; McCauley, Shannon J.

    2014-01-01

    Positive interspecific relationships between local abundance and extent of regional distribution are among the most ubiquitous patterns in ecology. Although multiple hypotheses have been proposed, the mechanisms underlying distribution-abundance (d-a) relationships remain poorly understood. We examined the intra- and interspecific distribution-abundance relationships for a metacommunity of 13 amphibian species sampled for 15 consecutive years. Mean density of larvae in occupied ponds was posi...

  15. Abundance and Diversity of Viruses in Six Delaware Soils

    Williamson, Kurt E.; Radosevich, Mark; Wommack, K. Eric

    2005-01-01

    The importance of viruses in marine microbial ecology has been established over the past decade. Specifically, viruses influence bacterial abundance and community composition through lysis and alter bacterial genetic diversity through transduction and lysogenic conversion. By contrast, the abundance and distribution of viruses in soils are almost completely unknown. This study describes the abundance and diversity of autochthonous viruses in six Delaware soils: two agricultural soils, two coa...

  16. Radial molecular abundances and gas cooling in starless cores

    Sipilä, O.

    2012-01-01

    Aims: We aim to simulate radial profiles of molecular abundances and the gas temperature in cold and heavily shielded starless cores by combining chemical and radiative transfer models. Methods: A determination of the dust temperature in a modified Bonnor-Ebert sphere is used to calculate initial radial molecular abundance profiles. The abundances of selected cooling molecules corresponding to two different core ages are then extracted to determine the gas temperature at two time steps. The c...

  17. Hydrostatic gas distributions: global estimates of temperature and abundance

    Ciotti, L.; Pellegrini, S

    2008-01-01

    Estimating the temperature and metal abundance of the intracluster and the intragroup media is crucial to determine their global metal content and to determine fundamental cosmological parameters. When a spatially resolved temperature or abundance profile cannot be recovered from observations (e.g., for distant objects), or deprojection is difficult (e.g., due to a significant non-spherical shape), only global average temperature and abundance are derived. After introducing a general techniqu...

  18. A Data-intensive Assessment of the Species Abundance Distribution

    Baldridge, Elita

    2013-01-01

    The hollow curve species abundance distribution describes the pattern of large numbers of rare species and a small number of common species in a community. The species abundance distribution is one of the most ubiquitous patterns in nature and many models have been proposed to explain the mechanisms that generate this pattern. While there have been numerous comparisons of species abundance distribution models, most of these comparisons only use a small subset of available models, focus on a s...

  19. Occupancy, spatial variance, and the abundance of species

    He, F.; Gaston, K J

    2003-01-01

    A notable and consistent ecological observation known for a long time is that spatial variance in the abundance of a species increases with its mean abundance and that this relationship typically conforms well to a simple power law (Taylor 1961). Indeed, such models can be used at a spectrum of spatial scales to describe spatial variance in the abundance of a single species at different times or in different regions and of different species across the same set of areas (Tayl...

  20. Ecological niche structure and rangewide abundance patterns of species

    Martínez-Meyer, Enrique; Díaz-Porras, Daniel; Peterson, A. Townsend; Yáñez-Arenas, Carlos

    2013-01-01

    Spatial abundance patterns across species' ranges have attracted intense attention in macroecology and biogeography. One key hypothesis has been that abundance declines with geographical distance from the range centre, but tests of this idea have shown that the effect may occur indeed only in a minority of cases. We explore an alternative hypothesis: that species' abundances decline with distance from the centroid of the species' habitable conditions in environmental space (the ecological nic...

  1. Positive Interspecific Relationship between Temporal Occurrence and Abundance in Insects

    Scrosati, Ricardo A; Ruth D Patten; Lauff, Randolph F.

    2011-01-01

    One of the most studied macroecological patterns is the interspecific abundance-occupancy relationship, which relates species distribution and abundance across space. Interspecific relationships between temporal distribution and abundance, however, remain largely unexplored. Using data for a natural assemblage of tabanid flies measured daily during spring and summer in Nova Scotia, we found that temporal occurrence (proportion of sampling dates in which a species occurred in an experimental t...

  2. Parent Stars of Extrasolar Planets. IX. Lithium Abundances

    Gonzalez, Guillermo

    2008-01-01

    We compare the Li abundances of a sample of stars with planets discovered with the Doppler method to a sample of stars without detected planets. We prepared the samples by combining the Li abundances reported in several recent studies in a consistent way. Our results confirm recent claims that the Li abundances of stars with planets are smaller than those of stars without planets near the solar temperature. We also find that the vsini and $R^{'}_{\\rm HK}$ anomalies correlate with the Li abund...

  3. Modelling occurrence and abundance of species when detection is imperfect

    Royle, J. Andrew; Nichols, J.D.; Kery, M.

    2005-01-01

    Relationships between species abundance and occupancy are of considerable interest in metapopulation biology and in macroecology. Such relationships may be described concisely using probability models that characterize variation in abundance of a species. However, estimation of the parameters of these models in most ecological problems is impaired by imperfect detection. When organisms are detected imperfectly, observed counts are biased estimates of true abundance, and this induces bias in stated occupancy or occurrence probability. In this paper we consider a class of models that enable estimation of abundance/occupancy relationships from counts of organisms that result from surveys in which detection is imperfect. Under such models, parameter estimation and inference are based on conventional likelihood methods. We provide an application of these models to geographically extensive breeding bird survey data in which alternative models of abundance are considered that include factors that influence variation in abundance and detectability. Using these models, we produce estimates of abundance and occupancy maps that honor important sources of spatial variation in avian abundance and provide clearly interpretable characterizations of abundance and occupancy adjusted for imperfect detection.

  4. Abundances of the heavy elements in the Magellanic Clouds. I. Metal abundances of F-type supergiants

    Metal abundances of eight F-type supergiants in each of the Magellanic Clouds were determined using the results of high-resolution spectroscopy analysis of these stars, together with new Stromgren uvby and Cousins (1980) BVRI photometry. It was found that the mean Fe abundance (Fe/H) for the SMC is -0.65 + or - 0.2 dex, and the mean Fe abundance for the LMC is -0.30 + or - 0.2 dex. The abundances of stars in both the SMC and LMC appear relatively uniform, and the abundances of the elements relative to Fe are very similar in both Magellanic Clouds and in Canopus (the carbon-to-iron abundances are the same for all three). It was also found that Nd and Sm are overabundant in both clouds, supporting the trends found by Spite et al. (1988) for the three SMC stars they studied. 140 refs

  5. Variation in rank abundance replicate samples and impact of clustering

    Neuteboom, J.H.; Struik, P.C.

    2005-01-01

    Calculating a single-sample rank abundance curve by using the negative-binomial distribution provides a way to investigate the variability within rank abundance replicate samples and yields a measure of the degree of heterogeneity of the sampled community. The calculation of the single-sample rank a

  6. A protocol for sampling vascular epiphyte richness and abundance

    J.H.D. Wolf; S.R. Gradstein; N.M. Nadkarni

    2009-01-01

    The sampling of epiphytes is fraught with methodological difficulties. We present a protocol to sample and analyse vascular epiphyte richness and abundance in forests of different structure (SVERA). Epiphyte abundance is estimated as biomass by recording the number of plant components in a range of

  7. The implicit assumption of symmetry and the species abundance distribution

    Alonso, David; Ostling, Annette; Etienne, Rampal S.

    2008-01-01

    Species abundance distributions (SADs) have played a historical role in the development of community ecology. They summarize information about the number and the relative abundance of the species encountered in a sample from a given community. For years ecologists have developed theory to characteri

  8. The end of abundance. Economic solutions to water scarcity

    Zetland, D.J.

    2011-01-01

    In a past of abundance, we had clean water to meet our demands for showers, pools, farms and rivers. Our laws and customs did not need to regulate or ration demand. Over time, our demand has grown, and scarcity has replaced abundance. We don't have as much clean water as we want. We can respond to t

  9. Elemental abundances of the B6 IV star Xi Octantis

    Adelman, Saul J.; Robinson, Richard D.; Wahlgren, Glenn M.

    1993-01-01

    An elemental abundance study used AAT echelle spectrograms of the ultrasharp-lined, superficially normal B6 IV star Xi Octantis. The derived abundances fall within the trends of values derived for normal B main-sequence band stars. On average, they are 0.28 dex less than solar.

  10. Europium Isotopic Abundances in Very Metal-poor Stars

    Sneden, C; Lawler, J E; Burles, S M; Beers, T C; Fuller, G M; Sneden, Christopher; Cowan, John J.; Lawler, James E.; Burles, Scott; Beers, Timothy C.; Fuller, George M.

    2002-01-01

    Europium isotopic abundance fractions are reported for the very metal-poor, neutron-capture-rich giant stars CS 22892-052, HD 115444, and BD +17 3248. The abundance fractions, derived from analysis of several strong Eu II lines appearing in high-resolution spectra of these stars, are in excellent agreement with each other and with their values in the Solar System: fraction(\\iso{Eu}{151}) ~= fraction(\\iso{Eu}{153}) ~= 0.5. Detailed abundance studies of very metal-poor stars have previously shown that the total elemental abundances of stable atoms with atomic numbers z >= 56 typically match very closely those of a scaled solar-system r-process abundance distribution. The present results for the first time extend this agreement to the isotopic level.

  11. Abundance Survey of M and K Dwarf Stars

    Woolf, Vincent M. [Astronomy Department, University of Washington, Seattle, WA 98133 (United States); Wallerstein, George [Astronomy Department, University of Washington, Seattle, WA 98133 (United States)

    2005-07-25

    We report the measurement of chemical abundances in 35 low-mass main sequence (M and K dwarf) stars. We have measured the abundance of 12 elements in Kapteyn's Star, a nearby halo M subdwarf. The abundances indicate an iron abundance of [Fe/H] = -0.98, which is about 0.5 dex smaller than that measured in the only previous published measurement using atomic absorption lines. We have measured Fe and Ti abundances in 35 M and K dwarfs with -2.39 [Fe/H] +0.21 using atomic absorption lines, mostly in the 8000A <{lambda} < 8850A range. These will be used to calibrate photometric and low-resolution spectrum metallicity indices for low mass dwarfs, which will make metallicity estimates for these stars more certain. We also describe some difficulties encountered which are not normally necessary to consider when studying warmer stars.

  12. Carbon and nitrogen abundances determined from transition layer lines

    Boehm-Vitense, Erika; Mena-Werth, Jose

    1992-01-01

    The possibility of determining relative carbon, nitrogen, and silicon abundances from the emission-line fluxes in the lower transition layers between stellar chromospheres and coronae is explored. Observations for main-sequence and luminosity class IV stars with presumably solar element abundances show that for the lower transition layers Em = BT sup -gamma. For a given carbon abundance the constants gamma and B in this relation can be determined from the C II and C IV emission-line fluxes. From the N V and S IV lines, the abundances of these elements relative to carbon can be determined from their surface emission-line fluxes. Ratios of N/C abundances determined in this way for some giants and supergiants agree within the limits of errors with those determined from molecular bands. For giants, an increase in the ratio of N/C at B-V of about 0.8 is found, as expected theoretically.

  13. The lithium abundances of a large sample of red giants

    The lithium abundances for 378 G/K giants are derived with non-local thermodynamic equilibrium correction considered. Among these are 23 stars that host planetary systems. The lithium abundance is investigated, as a function of metallicity, effective temperature, and rotational velocity, as well as the impact of a giant planet on G/K giants. The results show that the lithium abundance is a function of metallicity and effective temperature. The lithium abundance has no correlation with rotational velocity at v sin i < 10 km s–1. Giants with planets present lower lithium abundance and slow rotational velocity (v sin i < 4 km s–1). Our sample includes three Li-rich G/K giants, 36 Li-normal stars, and 339 Li-depleted stars. The fraction of Li-rich stars in this sample agrees with the general rate of less than 1% in the literature, and the stars that show normal amounts of Li are supposed to possess the same abundance at the current interstellar medium. For the Li-depleted giants, Li-deficiency may have already taken place at the main sequence stage for many intermediate mass (1.5-5 M ☉) G/K giants. Finally, we present the lithium abundance and kinematic parameters for an enlarged sample of 565 giants using a compilation of the literature, and confirm that the lithium abundance is a function of metallicity and effective temperature. With the enlarged sample, we investigate the differences between the lithium abundance in thin-/thick-disk giants, which indicate that the lithium abundance in thick-disk giants is more depleted than that in thin-disk giants.

  14. Carbon and nitrogen abundance variations in globular cluster red giants

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  15. Beryllium Abundances in Stars of One-Solar-Mass

    Boesgaard, Ann Merchant

    2008-01-01

    We have determined Be abundances in 50 F and G dwarfs in the mass range of 0.9 $\\leq$ M$_\\odot$ $\\leq$ 1.1 as determined by Lambert & Reddy. The effective temperatures are 5600 to 6400 K and metallicities from $-$0.65 to +0.11. The spectra were taken primarily with Keck I + HIRES. The Be abundances were found via spectral synthesis of Be II lines near 3130 \\AA. The Be abundances were investigated as a function of age, temperature, metallicity and Li abundance in this narrow mass range. Even though our stars are similar in mass, they show a range in Be abundances of a factor of $>$40. We find that [Be/Fe] has no dependence on temperature, but does show a spread of a factor of 6 at a given temperature. The reality of the spread is shown by two identical stars which differ from each other by a factor of two only in their abundances of Li and Be. Our thin-disk-star sample fits the trend between Be abundance and [Fe/H] found for halo and thick disk stars, extending it to about 4 orders of magnitude in the two ...

  16. Seasonal Abundance of Aphids and Aphidophagous Insects in Pecan

    Ghulam Abbas

    2012-12-01

    Full Text Available Seasonal occurrence of aphids and aphidophagous insects was monitored for six years (2006–2011 from full leaf expansion in May to leaf fall in October in “Desirable” variety pecan trees that were not treated with insecticides. Aphid outbreaks occurred two times per season, once in the spring and again in the late summer. Yellow pecan and blackmargined aphids exceeded the recommended treatment thresholds one time and black pecan aphids exceeded the recommended treatment levels three times over the six seasons. Increases in aphidophagous insect abundance coincided with aphid outbreaks in five of the six seasons. Among aphidophagous insects Harmonia axyridis and Olla v-nigrum were frequently collected in both the tree canopy and at the ground level, whereas, Coccinella septempunctata, Hippodamia convergens were rarely found in the tree canopy and commonly found at the ground level. Green lacewing abundance was higher in the ground level than in the tree canopy. Brown lacewings were more abundant in the tree canopy than at the ground level. Dolichopodid and syrphid fly abundance, at the ground level increased during peak aphid abundance in the tree canopy. Application of an aqueous solution of fermenting molasses to the pecan foliage during an aphid outbreak significantly increased the abundance of ladybeetles and lacewings and significantly reduced the abundance of yellow pecan, blackmargined and black pecan aphids.

  17. Metal abundance range in the Draco dwarf galaxy

    The multichannel scanner of the Hale telescope was used to measure the spectral flux distributions of 23 red giants in the Draco system over the range lambda lambda 3240 to 7620. The memberships of these stars in Draco were checked by use of the spectral scans, and for 17 of them the observations are of sufficient quality that estimates of metal abundance can be made. The scans of the Draco stars resemble in every way the scans of red giants in globular clusters. Large differences are seen among the scans of the Draco stars, which are due to a range in Fe/H. The distribution over metal abundance was found from the abundance estimates; its half-width corresponds to an abundance range of a factor of 2.7. The mean metal abundance [Fe/H] = -1.86 +- 0.09, which is larger than the abundance of M92. This result does not support the previous claims that Draco is more metal poor than the most metal-deficient globular clusters. The implications of these results for the interpetations of Draco's color--magnitude diagram and variable star population are discussed. The chemical evolution of Draco was modeled with simple models that assume mass loss and prompt initial enrichment. These models provide adequate fits to the observed abundance distribution, and suggest that the proto-Draco was initially approx. 100 times more massive than Draco is today. 10 figures, 2 tables

  18. Geographical Range and Local Abundance of Tree Species in China

    Ren, Haibao; Condit, Richard; Chen, Bin; Mi, Xiangcheng; Cao, Min; Ye, Wanhui; Hao, Zhanqing; Ma, Keping

    2013-01-01

    Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1) whether locally abundant species tend to be geographically widespread; 2) whether species are more abundant towards their range-centers; and 3) how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20–25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km2, and >90% of 651 species had ranges >105 km2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species’ abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges. PMID:24130772

  19. Geographical range and local abundance of tree species in China.

    Haibao Ren

    Full Text Available Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1 whether locally abundant species tend to be geographically widespread; 2 whether species are more abundant towards their range-centers; and 3 how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20-25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km(2, and >90% of 651 species had ranges >10(5 km(2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species' abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges.

  20. Model reduction for stochastic chemical systems with abundant species

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  1. Abundance Inequality in Freshwater Communities Has an Ecological Origin.

    Passy, Sophia I

    2016-04-01

    The hollow-shaped species abundance distribution (SAD) and its allied rank abundance distribution (RAD)-showing that abundance is unevenly distributed among species-are some of the most studied patterns in ecology. To explain the nature of abundance inequality, I developed a novel framework identifying environmental favorability, which controls the balance between reproduction and immigration, as the ultimate source and species stress tolerance as a proximate factor. Thus, under harsh conditions, only a few tolerant species can reproduce, while some sensitive species can be present in low numbers due to chance immigration. This would lead to high abundance inequality between the two groups of species. Under benign conditions, both groups can reproduce and give rise to higher abundance equality. To test these ideas, I examined the variability in the parameters of a Poisson lognormal fit of the SAD and a square root fit of the RAD in diatom and fish communities across US streams. Indeed, as environmental favorability increased, more sensitive forms were able to establish large populations, diminishing the abundance disparity between locally common and rare species. Finally, it was demonstrated that in diatoms, the RAD belonged to the same family of relationships as those of population density with body size and regional distribution. PMID:27028078

  2. Abundance analysis of the outer halo globular cluster Palomar 14

    Caliskan, S; Grebel, K E

    2011-01-01

    We determine the elemental abundances of nine red giant stars belonging to Palomar 14 (Pal 14). Pal 14 is an outer halo globular cluster (GC) at a distance of \\sim 70 kpc. Our abundance analysis is based on high-resolution spectra and one-dimensional stellar model atmospheres.We derived the abundances for the iron peak elements Sc, V, Cr, Mn, Co, Ni, the {\\alpha}-elements O, Mg, Si, Ca, Ti, the light odd element Na, and the neutron-capture elements Y, Zr, Ba, La, Ce, Nd, Eu, Dy, and Cu. Our data do not permit us to investigate light element (i.e., O to Mg) abundance variations. The neutron-capture elements show an r-process signature. We compare our measurements with the abundance ratios of inner and other outer halo GCs, halo field stars, GCs of recognized extragalactic origin, and stars in dwarf spheroidal galaxies (dSphs). The abundance pattern of Pal 14 is almost identical to those of Pal 3 and Pal 4, the next distant members of the outer halo GC population after Pal 14. The abundance pattern of Pal 14 is...

  3. Model reduction for stochastic chemical systems with abundant species

    Smith, Stephen; Cianci, Claudia; Grima, Ramon [School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH93JR, Scotland (United Kingdom)

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  4. A Photometric Method for estimating CNO Abundances in Globular Clusters

    Peat, David; Peat, David; Butler, Raymond

    2002-01-01

    Stromgren indices v and b are combined with broad-band index I, and a new index p, the short wavelength half of the v band, to estimate CN 4215A molecular absorption in a sample of stars in M22. The results have been used to estimate carbon and nitrogen abundances and suggest groups of stars within this cluster, each with a characteristic nitrogen abundance, but with a range of carbon abundances. The results suggest the possibility of stars consisting of material which has undergone CNO recycling two or three times. The method can be subsequently used for other globular clusters.

  5. Constraints on chemical evolution models from QSOALS abundances

    Lauroesch, J. T.

    1993-01-01

    Models of the formation and early chemical evolution of our Galaxy are guided and constrained by our knowledge of abundances in globular cluster stars and halo field stars. The abundance patterns identified in halo and disk stars should be discernible in absorption lines of gas clouds in forming galaxies which are accidentally lying in front of background QSO's. Conversely, the ensemble of QSO absorption line systems (QSOALS) at each redshift may suggest a detailed model for the formation of our Galaxy that is testable using abundance patterns in halo stars.

  6. Nitrogen and oxygen abundances in the Local Universe

    Vincenzo, Fiorenzo; Belfiore, Francesco; MAIOLINO, Roberto; Matteucci, Francesca; Ventura, Paolo

    2016-01-01

    We present chemical evolution models aimed at reproducing the observed (N/O) vs. (O/H) abundance pattern of star forming galaxies in the Local Universe. We derive gas-phase abundances from SDSS spectroscopy and a complementary sample of low-metallicity dwarf galaxies, making use of a consistent set of abundance calibrations. This collection of data clearly confirms the existence of a plateau in the (N/O) ratio at very low metallicity, followed by an increase of this ratio up to high values as...

  7. Ecological niche structure and rangewide abundance patterns of species

    Martínez-Meyer, Enrique; Díaz-Porras, Daniel; Peterson, A. Townsend; Yáñez-Arenas, Carlos

    2013-01-01

    Spatial abundance patterns across species' ranges have attracted intense attention in macroecology and biogeography. One key hypothesis has been that abundance declines with geographical distance from the range centre, but tests of this idea have shown that the effect may occur indeed only in a minority of cases. We explore an alternative hypothesis: that species' abundances decline with distance from the centroid of the species' habitable conditions in environmental space (the ecological niche). We demonstrate consistent negative abundance–ecological distance relationships across all 11 species analysed (turtles to wolves), and that relationships in environmental space are consistently stronger than relationships in geographical space. PMID:23134784

  8. Carbon abundances and isotope ratios in 70 bright M giants

    Approximate carbon abundances and 12C/13C isotope ratios are obtained for 70 M giant stars from intermediate-resolution spectrophotometry of the CO bands near 2.3 μm. A low mean carbon abundance ([C/H]=-0.64±0.29) is obtained, suggesting that standard mixing is insufficient to explain atmospheric abundances in M giants. HR 8795 appears to be exceptionally carbon deficient, and is worthy of further study as a possible weak G-band star descendant. (author)

  9. Carbon abundances and isotope ratios in 70 bright M giants

    Lazaro, C. (Inst. de Astrofisica de Canarias, Tenerife (Spain)); Lynas-Gray, A.E. (University Coll., London (UK). Dept. of Physics and Astronomy); Clegg, R.E.S. (Royal Greenwich Observatory, Cambridge (UK)); Mountain, C.M.; Zadrozny, A. (Imperial Coll. of Science and Technology, London (UK))

    1991-03-01

    Approximate carbon abundances and {sup 12}C/{sup 13}C isotope ratios are obtained for 70 M giant stars from intermediate-resolution spectrophotometry of the CO bands near 2.3 {mu}m. A low mean carbon abundance ((C/H)=-0.64+-0.29) is obtained, suggesting that standard mixing is insufficient to explain atmospheric abundances in M giants. HR 8795 appears to be exceptionally carbon deficient, and is worthy of further study as a possible weak G-band star descendant. (author).

  10. Abundances in southern Local Group dwarf irregular galaxies

    We have obtained optical spectrophotometry of H II regions in the southern Local Group dwarf irregular galaxies NGC 6822, WLM and SagDIG. Oxygen abundances are deduced via direct electron temperatures for NGC 6822 and WLM and via an empirical method for all three galaxies. These galaxies conform to the luminosity-abundance relationship for irregular galaxies. Although WLM shows a relatively low abundance, we find it unlikely that this is the cause of the lack of long-period Cepheid variables. (author)

  11. The determination of electron abundances in interstellar clouds

    Wootten, A.; Snell, R.; Glassgold, A. E.

    1979-01-01

    An independent method is proposed for the determination of electron abundances in dense clouds based upon the abundance ratio of HCO(+) and CO. The method is derived from a simple application of gas phase ion molecule interstellar chemistry. It is noted that unlike the fractionation of deuterated molecules, it applies to warm as well as to cool clouds. The method is illustrated with the results of the recent abundance survey of Wooten et al. (1978). Finally, it is shown that in cases where deuterium enhancement is measured, an upper limit can be obtained for the cosmic ray ionization rate.

  12. Dust formation in a galaxy with primitive abundances.

    Sloan, G C; Matsuura, M; Zijlstra, A A; Lagadec, E; Groenewegen, M A T; Wood, P R; Szyszka, C; Bernard-Salas, J; van Loon, J Th

    2009-01-16

    Interstellar dust plays a crucial role in the evolution of galaxies. It governs the chemistry and physics of the interstellar medium. In the local universe, dust forms primarily in the ejecta from stars, but its composition and origin in galaxies at very early times remain controversial. We report observational evidence of dust forming around a carbon star in a nearby galaxy with a low abundance of heavy elements, 25 times lower than the solar abundance. The production of dust by a carbon star in a galaxy with such primitive abundances raises the possibility that carbon stars contributed carbonaceous dust in the early universe. PMID:19150838

  13. Solar models with new low-metal abundances

    Yang, Wuming

    2016-01-01

    In the last decade, the photospheric abundances of the Sun had been revised several times by many observers. The standard solar models (SSM) constructed with the new low-metal abundances disagree with helioseismic results and detected neutrino fluxes. The solar model problem has been puzzled some stellar physicists for more than ten years. Rotation, enhanced diffusion, convection overshoot, and magnetic fields are used to reconcile the new abundances with helioseismology. The \\textbf{too} low-helium \\textbf{subsurface abundance} in enhanced diffusion models can be improved by the mixing caused by rotation and magnetic fields. The problem of the depth of the convective zone in rotating models can be resolved by convection overshoot. Consequently the Asplund-Grevesse-Sauval rotation model including overshooting (AGSR) reproduces the seismically inferred sound-speed and density profiles, and the convection zone depth as well as the Grevesse and Sauval (GS98) model computed before. But this model fails to reprodu...

  14. On the origin of elemental abundances in the terrestrial planets

    Elser, Sebastian; Moore, Ben

    2012-01-01

    The abundances of elements in the Earth and the terrestrial planets provide the initial conditions for life and clues as to the history and formation of the Solar System. We follow the pioneering work of Bond et al. (2010) and combine circumstellar disk models, chemical equilibrium calculations and dynamical simulations of planet formation to study the bulk composition of rocky planets. We use condensation sequence calculations to estimate the initial abundance of solids in the circumstellar disk with properties determined from time dependent theoretical models. We combine this with dynamical simulations of planetesimal growth that trace the solids during the planet formation process. We calculate the elemental abundances in the resulting planets and explore how these vary with the choice of disk model and the initial conditions within the Solar Nebula. Although certain characteristics of the terrestrial planets in the Solar System could be reproduced, none of our models could reproduce the abundance properti...

  15. Germanium and lead: significant differences between meteoritic and photospheric abundances

    Here we shall more closely look into the Ge and Pb reference abundance determinations in the photosphere and in C1 meteorites, and discuss their relevance to the problem of first ionization potential versus volatility in galactic cosmic ray's

  16. Relative abundance of desert tortoises on the Nevada Test Site

    Seven hundred fifty-nine transects having a total length of 1,191 km were walked during 1981--1986 to determine the distribution and relative abundance of desert tortoises (Gopherus agassizii) on the Nevada Test Site (NTS). The abundance of tortoises on NTS was low to very low relative to other populations in the Mojave Desert. Sign of tortoises was found from 880 to 1,570 m elevation and was more abundant above 1,200 m than has been reported previously for Nevada. Tortoises were more abundant on NTS on the upper alluvial fans and slopes of mountains than in valley bottoms. They also were more common on or near limestone and dolomite mountains than on mountains of volcanic origin

  17. Causality of the relationship between geographic distribution and species abundance

    Borregaard, Michael Krabbe; Rahbek, Carsten

    2010-01-01

    The positive relationship between a species' geographic distribution and its abundance is one of ecology's most well-documented patterns, yet the causes behind this relationship remain unclear. Although many hypotheses have been proposed to account for distribution-abundance relationships none have...... attained unequivocal support. Accordingly, the positive association in distribution-abundance relationships is generally considered to be due to a combination of these proposed mechanisms acting in concert. In this review, we suggest that much of the disparity between these hypotheses stems from...... differences in terminology and ecological point of view. Realizing and accounting for these differences facilitates integration, so that the relative contributions of each mechanism may be evaluated. Here, we review all the mechanisms that have been proposed to account for distribution-abundance relationships...

  18. Whooping Crane Winter Abundance Survey Protocol Aransas National Wildlife Refuge

    US Fish and Wildlife Service, Department of the Interior — This protocol is primarily designed to provide a mechanism for monitoring trends in whooping crane abundance on their wintering grounds along the Texas gulf coast....

  19. Detecting novel low-abundant transcripts in Drosophila

    Lee, Sanggyu; Bao, Jingyue; Zhou, Guolin; Shapiro, Joshua; Xu, Jinhua; Shi, Run Zhang; Lu, Xuemei; Clark, Terry; Johnson, Deborah; Kim, Yeong C; Wing, Claudia; Tseng, Charles; Sun, Min; Lin, Wei; Wang, Jun; Yang, Huanming; Wang, Jian; Du, Wei; Wu, Chung-I; Zhang, Xiuqing; Wang, San Ming

    2005-01-01

    Increasing evidence suggests that low-abundant transcripts may play fundamental roles in biological processes. In an attempt to estimate the prevalence of low-abundant transcripts in eukaryotic genomes, we performed a transcriptome analysis in Drosophila using the SAGE technique. We collected 244......,313 SAGE tags from transcripts expressed in Drosophila embryonic, larval, pupae, adult, and testicular tissue. From these SAGE tags, we identified 40,823 unique SAGE tags. Our analysis showed that 55% of the 40,823 unique SAGE tags are novel without matches in currently known Drosophila transcripts, and...... Drosophila genome. Our study reveals the presence of a significant number of novel low-abundant transcripts in Drosophila, and highlights the need to isolate these novel low-abundant transcripts for further biological studies. Udgivelsesdato: 2005-Jun...

  20. Fundamental constraints on the abundances of chemotaxis proteins

    Bitbol, Anne-Florence

    2015-01-01

    Flagellated bacteria, such as Escherichia coli, perform directed motion in gradients of concentration of attractants and repellents in a process called chemotaxis. The E. coli chemotaxis signaling pathway is a model for signal transduction, but it has unique features. We demonstrate that the need for fast signaling necessitates high abundances of the proteins involved in this pathway. We show that further constraints on the abundances of chemotaxis proteins arise from the requirements of self-assembly, both of flagellar motors and of chemoreceptor arrays. All these constraints are specific to chemotaxis, and published data confirm that chemotaxis proteins tend to be more highly expressed than their homologs in other pathways. Employing a chemotaxis pathway model, we show that the gain of the pathway at the level of the response regulator CheY increases with overall chemotaxis protein abundances. This may explain why, at least in one E. coli strain, the abundance of all chemotaxis proteins is higher in media w...

  1. A Comparison of Stellar Elemental Abundance Techniques and Measurements

    Hinkel, Natalie R; Pagano, Michael D; Desch, Steven J; Anbar, Ariel D; Adibekyan, Vardan; Blanco-Cuaresma, Sergi; Carlberg, Joleen K; Mena, Elisa Delgado; Liu, Fan; Nordlander, Thomas; Sousa, Sergio G; Korn, Andreas; Gruyters, Pieter; Heiter, Ulrike; Jofre, Paula; Santos, Nuno C; Soubiran, Caroline

    2016-01-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond quoted error for the same elements within the same stars (Hinkel et al. 2014). The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We have invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and USA) to calculate ten element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD361, HD10700, HD121504, HD202206). Each group produced measurements for each of the sta...

  2. Impact of stochastic gas motions on galaxy cluster abundance profiles

    Rebusco, P; Böhringer, H; Forman, W

    2005-01-01

    The impact of stochastic gas motions on the metal distribution in cluster core is evaluated. Peaked abundance profiles are a characteristic feature of clusters with cool cores and abundance peaks are likely associated with the brightest cluster galaxies (BCGs) which dwell in cluster cores. The width of the abundance peaks is however significantly broader than the BCG light distribution, suggesting that some gas motions are transporting metals originating from within the BCG. Assuming that this process can be treated as diffusive and using the brightest X-ray cluster A426 (Perseus) as an example, we estimate that a diffusion coefficient of the order of $2 10^{29} {\\rm cm^2 s^{-1}}$ is needed to explain the width of the observed abundance profiles. Much lower (higher) diffusion coefficients would result in too peaked (too shallow) profiles. Such diffusion could be produced by stochastic gas motions and our analysis provides constraints on the product of their characteristic velocity and their spatial coherence ...

  3. Trek and ECCO: Abundance measurements of ultraheavy galactic cosmic rays

    Using the Trek detector, we have measured the abundances of the heaviest elements (with Z>70) in the galactic cosmic rays with sufficient charge resolution to resolve the even-Z elements. We find that the abundance of Pb compared to Pt is ∼3 times lower than the value expected from the most widely-held class of models of the origin of galactic cosmic ray nuclei, that is, origination in a partially ionized medium with solar-like composition. The low abundance of Pb is, however, consistent with the interstellar gas and dust model of Meyer, Drury and Ellison, and with a source enriched in r-process material, proposed by Binns et al. A high-resolution, high-statistics measurement of the abundances of the individual actinides would distinguish between these models. This is the goal of ECCO, the Extremely Heavy Cosmic-ray Composition Observer, which we plan to deploy on the International Space Station

  4. Abundances of the elements in the intergalactic medium

    We present a summary of the X-ray and optical spectroscopic data on emission lines from Z>6 elements in clusters of galaxies. The best data exists for Fe. For the ∼30 well observed clusters the mean Fe abundance is ∼1.4x10-5 (∼0.4 solar) but there appears to be a real variation of at least a factor of 2. X-ray emission lines from O, Mg, Si and S have been detected and their abundances are within a factor of a few of solar. Analysis of optical emission lines from cooling gas due to O, N and S also indicates abundances not too far from solar values. We discuss the implications of the presence of heavy elements in the intergalactic medium of clusters for the evolution of the chemical abundances of galaxies

  5. Unit scale abundance and habitat data - Calawah River Riverscape Study

    National Oceanic and Atmospheric Administration, Department of Commerce — The objective of this study was to identify the patterns of juvenile salmonid distribution and relative abundance in relation to habitat correlates. It is the first...

  6. The Helium abundance problem and non-minimally coupled quintessence

    Chen, Xuelei

    2000-01-01

    There is a tension between observed Helium abundance and the prediction of the standard Big Bang Nucleosynthesis. We show that non-minimally quintessence model may help to reduce this tension between theory and observation.

  7. Relative Abundance of Breeding Birds in the Dismal Swamp 1982

    US Fish and Wildlife Service, Department of the Interior — To obtain an idea of the relative abundance of breeding birds in the predominant mixed swamp hardwoods forest of the Dismal Swamp in southeastern Virginia, a...

  8. Investigating Detailed Abundance Patterns in the Hyades Cluster

    Williams, Drake; Schuler, Simon C.

    2016-01-01

    We have derived the paramters and abundances of up to 17 elements for seven stars within the Hyades open star cluster, through an analysis of high-resolution, high signal-to-noise ratio spectra obtained via the Harlan J. Smith 2.7 m telescope and the 2dcoude cross-dispersed echelle spectrometer at the McDonald Observatory. Four of the stars are solar-type dwarves while three giants were also analyzed to better calculate an overall metallicity of the entire cluster. In addition, we investigated whether there are differences in various stellar abundance trends across the open cluster. Here we present the results of our abundance analysis and stellar parameter derivations of the seven stars and discuss the implications of stellar abundance patterns across star clusters. We acknowledge support provided by grant NNX12AD19G to S.C.S. from the National Aeronautics and Space Administration as part of the Kepler Participating Scientist Program.

  9. Method for measuring the heavy stripped ion abundances of plasma

    A description is given of a system which uses a velocity filter and an energy filter in tandem to analyze the abundances and energy spreads of highly stripped ions. The system can also serve as a plasma diagnostic. (Auth.)

  10. Seabird abundance and behavior on Cape Peirce, Alaska, 1985

    US Fish and Wildlife Service, Department of the Interior — This report covers the seabird abundance and behavior on Cape Peirce on Togiak National Wildlife Refuge. Methods and results are discussed. Species covered include...

  11. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  12. Protein abundance profiling of the Escherichia coli cytosol

    Mann Matthias

    2008-02-01

    Full Text Available Abstract Background Knowledge about the abundance of molecular components is an important prerequisite for building quantitative predictive models of cellular behavior. Proteins are central components of these models, since they carry out most of the fundamental processes in the cell. Thus far, protein concentrations have been difficult to measure on a large scale, but proteomic technologies have now advanced to a stage where this information becomes readily accessible. Results Here, we describe an experimental scheme to maximize the coverage of proteins identified by mass spectrometry of a complex biological sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed emPAI approach which takes into account the number of sequenced peptides per protein. The values of abundance are within a broad range and accurately reflect independently measured copy numbers per cell. As expected, the most abundant proteins were those involved in protein synthesis, most notably ribosomal proteins. Proteins involved in energy metabolism as well as those with binding function were also found in high copy number while proteins annotated with the terms metabolism, transcription, transport, and cellular organization were rare. The barrel-sandwich fold was found to be the structural fold with the highest abundance. Highly abundant proteins are predicted to be less prone to aggregation based on their length, pI values, and occurrence patterns of hydrophobic stretches. We also find that abundant proteins tend to be predominantly essential. Additionally we observe a significant correlation between protein and mRNA abundance in E. coli cells. Conclusion Abundance measurements for more than 1000 E. coli proteins presented in this work

  13. Influence of fish behaviour on fish stock abundance estimations

    Fréon, Pierre; Gerlotto, François

    1988-01-01

    A new methodolgy is proposed for studying fish school behaviour, allowing to quantify its influence on stock abundance estimations. Observations are collected in open sea or inside a large net set in shallow waters. Preliminary results concerning fish reactions show a modification of the school structure under a research vessel using acoustic devices for abundance measurements. The school structure, even when the fish is not disturbed, shows an irregular density distribution in opposition to ...

  14. Literature survey of isotopic abundance data for 1987-1989

    I have compiled all of the data on isotopic abundance measurements and their variation in nature for the time period since the last General Assembly. Most of the data deals with the variations in the abundances as given by per mil deviations from some standard. As such, they are not of major interest to the Atomic Weights Commission. However, there were some measurements which are of general interest in this list

  15. Clear cell mammary malignant myoepithelioma with abundant glycogens.

    Kuwabara, H.; Uda, H

    1997-01-01

    Malignant myoepithelioma (myoepithelial carcinoma) of the breast is extremely rare. A case is reported of a 46 year old female with clear cell mammary malignant myoepithelioma that, on histological examination, was glycogen abundant clear cell carcinoma. Immunohistochemically, the clear cells showed myoepithelial differentiation--that is, they were a smooth muscle actin and S100 protein positive. This case shows that glycogen abundant clear cell carcinoma is a variant of malignant myoepitheli...

  16. Silicon and Oxygen Abundances in Planet-Host Stars

    Brugamyer, Erik; Dodson-Robinson, Sarah E.; Cochran, William D.; Sneden, Christopher

    2011-01-01

    The positive correlation between planet detection rate and host star iron abundance lends strong support to the core accretion theory of planet formation. However, iron is not the most significant mass contributor to the cores of giant planets. Since giant planet cores are thought to grow from silicate grains with icy mantles, the likelihood of gas giant formation should depend heavily on the oxygen and silicon abundance of the planet formation environment. Here we compare the silicon and oxy...

  17. Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    Cowan, John J.; Lawler, James E.; Sneden, Christopher; Hartog, E.A. den; Collier, Jason

    2006-01-01

    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nu...

  18. Regularity underlies erratic population abundances in marine ecosystems

    Sun, Jie; Cornelius, Sean P.; Janssen, John; Gray, Kimberly A.; Motter, Adilson E.

    2015-01-01

    The abundance of a species' population in an ecosystem is rarely stationary, often exhibiting large fluctuations over time. Using historical data on marine species, we show that the year-to-year fluctuations of population growth rate obey a well-defined double-exponential (Laplace) distribution. This striking regularity allows us to devise a stochastic model despite seemingly irregular variations in population abundances. The model identifies the effect of reduced growth at low population den...

  19. Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A.

    2011-01-01

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and ve...

  20. Literature survey of isotopic abundance data for 1987-1989

    Holden, N.E. (Brookhaven National Lab., Upton, NY (USA))

    1989-08-09

    I have compiled all of the data on isotopic abundance measurements and their variation in nature for the time period since the last General Assembly. Most of the data deals with the variations in the abundances as given by per mil deviations from some standard. As such, they are not of major interest to the Atomic Weights Commission. However, there were some measurements which are of general interest in this list.

  1. Morphological change in Newfoundland caribou: Effects of abundance and climate

    Shane P. Mahoney; Jackie N. Weir; J. Glenn Luther; Schaefer, James A; Shawn F. Morrison

    2011-01-01

    The demographic and environmental influences on large mammal morphology are central questions in ecology. We investigated the effects of population abundance and climate on body size and number of male antler points for the La Poile and Middle Ridge caribou (Rangifer tarandus, L. 1758) herds, Newfoundland, Canada. Across 40 years and 20-fold changes in abundance, adult males and females exhibited diminished stature as indicated by jawbone size (diastema and total mandible length) and the numb...

  2. Herbivory: effects on plant abundance, distribution and population growth

    Maron, John L.; Crone, Elizabeth

    2006-01-01

    Plants are attacked by many different consumers. A critical question is how often, and under what conditions, common reductions in growth, fecundity or even survival that occur due to herbivory translate to meaningful impacts on abundance, distribution or dynamics of plant populations. Here, we review population-level studies of the effects of consumers on plant dynamics and evaluate: (i) whether particular consumers have predictably more or less influence on plant abundance, (ii) whether par...

  3. Zooplankton composition and abundance in Mida Creek, Kenya

    Osore, M.K.W.; Mwaluma, J.M.; FIERS, F; Daro, M.H.

    2004-01-01

    In order to determine the resident assemblages of zooplankton in Mida Creek, Kenya, a survey was conducted from May 1996 to Apr. 1997 for which we studied their seasonal composition, abundance, and distribution. Twenty-seven major zooplankton taxa were identified. The order Copepoda was the most abundant taxon dominated mainly by the genera Acartia, Paracalanus, Labidocera, Temora, Centropages, and Calanopia. Other common zooplankton taxa included the Medusae, Ctenophora, Brachyura larvae, an...

  4. An Extension of the Abundancy Index to Certain Quadratic Rings

    Defant, Colin

    2015-01-01

    We begin by introducing an extension of the traditional abundancy index to imaginary quadratic rings with unique factorization. After showing that many of the properties of the traditional abundancy index continue to hold in our extended form, we investigate what we call $n$-powerfully solitary numbers in these rings. This definition serves to extend the concept of solitary numbers, which have been defined and studied in the integers. We end with some open questions and a conjecture.

  5. Urban Warming Drives Insect Pest Abundance on Street Trees

    Meineke, Emily K.; Robert R Dunn; Sexton, Joseph O.; Frank, Steven D.

    2013-01-01

    Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within c...

  6. Investigating Host Star Abundances as Signatures of Terrestrial Planets

    Teske, J.; Schuler, S.; Cunha, K.; Smith, V.

    2014-03-01

    Kepler has fundamentally changed our view of exoplanets, revealing that Jupiter and Saturn-sized planets are not the most common. Of the current ~3600 Kepler planet candidates, ~65% are ≤2.5 REarth and nearly 300 orbit in/near their host stars' habitable zones (180Kanalog, host star abundances are indicative of the precursor materials available in the protoplanetary disk for incorporation into planets. Our own Sun is deficient by ~20% in refractory elements (Tc=900 K) relative to volatile elements when compared to most (~85%) solar-type stars [3,4,5,6]. This has been proposed as a signature of terrestrial planet formation, with the "missing" refractory elements incorporated into rocky planets [3,7,8]. The amount of missing material in our Sun amounts to that needed to form terrestrial planets [3,7,8], and the abundance patterns in meteorites mirror this solar abundance anomaly [9,10]. However, subsequent studies of stars with/without planets indicate that their abundance patterns may not be so different, or indistinguishable from Galactic chemical evolution [11,12,13]. Here we use traditional stellar abundance analysis (non-automated) to independently re-analyze the Keck/HIRES data presented in Melendez et al. (2012) [6] of one of the best solar twins known to date - though not yet known to host any planets - to investigate their finding of refractory elemental abundance depletion similar to the Sun. We compare our results to similar studies implementing the same type differential abundance analysis to search for a Sun-like abundance pattern using Keck/HIRES spectra of stars discovered by Kepler to host small (terrestrial) planets.

  7. Chromospheric Models and the Oxygen Abundance in Giant Stars

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L.

    2016-04-01

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771‑7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  8. The Solar Flare Sulphur Abundance from RESIK Observations

    Sylwester, J; Phillips, K J H; Kuznetsov, V D

    2012-01-01

    The RESIK instrument on {\\em CORONAS-F} spacecraft observed several sulphur X-ray lines in three of its four channels covering the wavelength range 3.8-6.1 \\AA\\ during solar flares. The fluxes are analyzed to give the sulphur abundance. Data are chosen for when the instrument parameters were optimized. The measured fluxes of the \\ion{S}{15} $1s^2-1s4p$ ($w4$) line at 4.089 \\AA\\ gives $A({\\rm S}) = 7.16 \\pm 0.17$ (abundances on a logarithmic scale with $A({\\rm H}) = 12$) which we consider to be the most reliable. Estimates from other lines range from 7.13 to 7.24. The preferred S abundance estimate is very close to recent photospheric abundance estimates and to quiet-Sun solar wind and meteoritic abundances. This implies no fractionation of sulphur by processes tending to enhance the coronal abundance from the photospheric that depend on the first ionization potential (FIP), or that sulphur, though its FIP has an intermediate value of 10.36 eV, acts like a "high-FIP" element.

  9. Ruthenium and hafnium abundances in giant and dwarf barium stars

    Allen, D M

    2007-01-01

    We present abundances for Ru and Hf, compare them to abundances of other heavy elements, and discuss the problems found in determining Ru and Hf abundances with laboratory gf-values in the spectra of barium stars. We determined Ru and Hf abundances in a sample of giant and dwarf barium stars, by the spectral synthesis of two RuI (4080.574A and 4757.856A) and two HfII (4080.437A and 4093.155A) transitions. The stellar spectra were observed with FEROS/ESO, and the stellar atmospheric parameters lie in the range 4300 < Teff/K < 6500, -1.2 < [Fe/H] <= 0 and 1.4 <= log g < 4.6. The HfII 4080A and the RuI 4758A observed transitions result in a unreasonably high solar abundance, given certain known uncertainties, when fitted with laboratory gf-values. For these two transitions we determined empirical gf-values by fitting the observed line profiles of the spectra of the Sun and Arcturus. For the sample stars, this procedure resulted in a good agreement of Ru and Hf abundances given by the two availa...

  10. New calibrations for abundance determinations in HII regions

    Pilyugin, L S

    2016-01-01

    Simple relations for deriving the oxygen abundance in HII regions with intensities of the three strong emission lines R_2, R_3, and N_2 (R calibration) or S_2, R_3, and N_2 (S calibration) in their spectra are suggested. A sample of 313 reference HII regions of the counterpart method is used as calibrating data points. Relations for the determination of nitrogen abundances, the R calibration, are also constructed. We find that the oxygen and nitrogen abundances in high-metallicity HII regions can be estimated using the intensities of the two strong lines R_2 and N_2 (or S_2 and N_2 for oxygen) only. The corresponding two-dimensional relations are provided. There are considerable advantages of the suggested calibration relations as compared to the existing ones. First, the oxygen and nitrogen abundances estimated through the suggested calibrations agree with the Te-based abundances within ~0.1 dex over the whole metallicity range, i.e., the relative accuracy of the calibration-based abundances is 0.1 dex. Alth...

  11. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 ± 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ∼4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 ± 0.012 dex kpc-1.

  12. Chemical abundances from planetary nebulae in local spiral galaxies

    Richer, M G

    2015-01-01

    While the chemical abudances observed in bright planetary nebulae in local spiral galaxies are less varied than their counterparts in dwarfs, they provide new insight. Their helium abundances are typically enriched by less than 50\\% compared to the primordial abundance. Nitrogen abundances always show some level of secondary enrichment, but the absolute enrichment is not extreme. In particular, type I PNe are rare among the bright PNe in local spirals. The oxygen and neon abundances are very well correlated and follow the relation between these abundances observed in star-forming galaxies, implying that either the progenitor stars of these PNe modify neither abundance substantially or that they modify both to maintain the ratio (not predicted by theory). According to theory, these results imply that the progenitor stars of bright PNe in local spirals have masses of about $2\\,\\mathrm M_{\\odot}$ or less. If so, the progenitors of these PNe have substantial lifetimes that allow us to use them to study the recent...

  13. A search for stars of very low metal abundance. VI. Detailed abundances of 313 metal-poor stars

    Roederer, Ian U.; Preston, George W.; Thompson, Ian B.; Shectman, Stephen A.; Burley, Gregory S.; Kelson, Daniel D. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Sneden, Christopher, E-mail: iur@umich.edu [Department of Astronomy, University of Texas at Austin, 1 University Station, C1400, Austin, TX 78712 (United States)

    2014-06-01

    We present radial velocities, equivalent widths, model atmosphere parameters, and abundances or upper limits for 53 species of 48 elements derived from high resolution optical spectroscopy of 313 metal-poor stars. A majority of these stars were selected from the metal-poor candidates of the HK Survey of Beers, Preston, and Shectman. We derive detailed abundances for 61% of these stars for the first time. Spectra were obtained during a 10 yr observing campaign using the Magellan Inamori Kyocera Echelle spectrograph on the Magellan Telescopes at Las Campanas Observatory, the Robert G. Tull Coudé Spectrograph on the Harlan J. Smith Telescope at McDonald Observatory, and the High Resolution Spectrograph on the Hobby-Eberly Telescope at McDonald Observatory. We perform a standard LTE abundance analysis using MARCS model atmospheres, and we apply line-by-line statistical corrections to minimize systematic abundance differences arising when different sets of lines are available for analysis. We identify several abundance correlations with effective temperature. A comparison with previous abundance analyses reveals significant differences in stellar parameters, which we investigate in detail. Our metallicities are, on average, lower by ≈0.25 dex for red giants and ≈0.04 dex for subgiants. Our sample contains 19 stars with [Fe/H] ≤–3.5, 84 stars with [Fe/H] ≤–3.0, and 210 stars with [Fe/H] ≤–2.5. Detailed abundances are presented here or elsewhere for 91% of the 209 stars with [Fe/H] ≤–2.5 as estimated from medium resolution spectroscopy by Beers, Preston, and Shectman. We will discuss the interpretation of these abundances in subsequent papers.

  14. Clustering requires modified methyl-accepting sites in low-abundance but not high-abundance chemoreceptors of Escherichia coli.

    Lybarger, Suzanne R; Nair, Usha; Lilly, Angela A; Hazelbauer, Gerald L; Maddock, Janine R

    2005-05-01

    Chemotaxis signalling complexes of Escherichia coli, composed of chemoreceptors, CheA and CheW, form clusters located predominantly at cell poles. As the only kind of receptor in a cell, high-abundance receptors are polar and clustered whereas low-abundance chemoreceptors are polar but largely unclustered. We found that clustering was a function of the cytoplasmic, carboxyl-terminal domain and that effective clustering was conferred on low-abundance receptors by addition of the approximately 20-residue sequence from the carboxyl terminus of either high-abundance receptor. These sequences are different but share a carboxyl-terminal pentapeptide that enhances adaptational covalent modification and allows a physiological balance between modified and unmodified methyl-accepting sites, implying that receptor modification might influence clustering. Thus we investigated directly effects of modification state on chemoreceptor clustering. As the sole receptor type in a cell, low-abundance receptors were clustered only if modified, but high-abundance receptors were clustered independent of extent of modification. This difference could mean that the two receptor types are fundamentally different or that they are poised at different positions in the same conformational equilibrium. Notably, no receptor perturbation we tested altered a predominant location at cell poles, emphasizing a distinction between determinants of clustering and polar localization. PMID:15853891

  15. Is abundance a species attribute? An example with haematophagous ectoparasites.

    Krasnov, Boris R; Shenbrot, Georgy I; Khokhlova, Irina S; Poulin, Robert

    2006-11-01

    Population density is a fundamental property of a species and yet it varies among populations of the same species. The variation comes from the interplay between intrinsic features of a species that tend to produce repeatable density values across all populations of the same species and extrinsic environmental factors that differ among localities and thus tend to produce spatial variation in density. Is inter-population variation in density too large for density to be considered a true species character? We addressed this question using data on abundance (number of parasites per individual host, i.e. equivalent to density) of fleas ectoparasitic on small mammals. The data included samples of 548 flea populations, representing 145 flea species and obtained from 48 different geographical regions. Abundances of the same flea species on the same host species, but in different regions, were more similar to each other than expected by chance, and varied significantly among flea species, with 46% of the variation among samples accounted by differences between flea species. Thus, estimates of abundance are repeatable within the same flea species. The same repeatability was also observed, but to a lesser extent, across flea genera, tribes and subfamilies. Independently of the identity of the flea species, abundance values recorded on the same host species, or in the same geographical region, also showed significant statistical repeatability, though not nearly as strong as that associated with abundance values from the same flea species. There were also no strong indications that regional differences in abiotic variables were an important determinant of variation in abundance of a given flea species on a given host species. Abundance thus appears to be a true species trait in fleas, although it varies somewhat within bounds set by species-specific life history traits. PMID:16896773

  16. Change in avian abundance predicted from regional forest inventory data

    Twedt, Daniel J.; Tirpak, John M.; Jones-Farrand, D. Todd; Thompson, Frank R., III; Uihlein, William B.; Fitzgerald, Jane A.

    2010-01-01

    An inability to predict population response to future habitat projections is a shortcoming in bird conservation planning. We sought to predict avian response to projections of future forest conditions that were developed from nationwide forest surveys within the Forest Inventory and Analysis (FIA) program. To accomplish this, we evaluated the historical relationship between silvicolous bird populations and FIA-derived forest conditions within 25 ecoregions that comprise the southeastern United States. We aggregated forest area by forest ownership, forest type, and tree size-class categories in county-based ecoregions for 5 time periods spanning 1963-2008. We assessed the relationship of forest data with contemporaneous indices of abundance for 24 silvicolous bird species that were obtained from Breeding Bird Surveys. Relationships between bird abundance and forest inventory data for 18 species were deemed sufficient as predictive models. We used these empirically derived relationships between regional forest conditions and bird populations to predict relative changes in abundance of these species within ecoregions that are anticipated to coincide with projected changes in forest variables through 2040. Predicted abundances of these 18 species are expected to remain relatively stable in over a quarter (27%) of the ecoregions. However, change in forest area and redistribution of forest types will likely result in changed abundance of some species within many ecosystems. For example, abundances of 11 species, including pine warbler (Dendroica pinus), brown-headed nuthatch (Sitta pusilla), and chuckwills- widow (Caprimulgus carolinensis), are projected to increase within more ecoregions than ecoregions where they will decrease. For 6 other species, such as blue-winged warbler (Vermivora pinus), Carolina wren (Thryothorus ludovicianus), and indigo bunting (Passerina cyanea), we projected abundances will decrease within more ecoregions than ecoregions where they will

  17. Urban warming drives insect pest abundance on street trees.

    Meineke, Emily K; Dunn, Robert R; Sexton, Joseph O; Frank, Steven D

    2013-01-01

    Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer. PMID:23544087

  18. Urban warming drives insect pest abundance on street trees.

    Emily K Meineke

    Full Text Available Cities profoundly alter biological communities, favoring some species over others, though the mechanisms that govern these changes are largely unknown. Herbivorous arthropod pests are often more abundant in urban than in rural areas, and urban outbreaks have been attributed to reduced control by predators and parasitoids and to increased susceptibility of stressed urban plants. These hypotheses, however, leave many outbreaks unexplained and fail to predict variation in pest abundance within cities. Here we show that the abundance of a common insect pest is positively related to temperature even when controlling for other habitat characteristics. The scale insect Parthenolecanium quercifex was 13 times more abundant on willow oak trees in the hottest parts of Raleigh, NC, in the southeastern United States, than in cooler areas, though parasitism rates were similar. We further separated the effects of heat from those of natural enemies and plant quality in a greenhouse reciprocal transplant experiment. P. quercifex collected from hot urban trees became more abundant in hot greenhouses than in cool greenhouses, whereas the abundance of P. quercifex collected from cooler urban trees remained low in hot and cool greenhouses. Parthenolecanium quercifex living in urban hot spots succeed with warming, and they do so because some demes have either acclimatized or adapted to high temperatures. Our results provide the first evidence that heat can be a key driver of insect pest outbreaks on urban trees. Since urban warming is similar in magnitude to global warming predicted in the next 50 years, pest abundance on city trees may foreshadow widespread outbreaks as natural forests also grow warmer.

  19. New Radial Abundance Gradients for NGC 628 and NGC 2403

    Berg, Danielle A; Garnett, Donald R; Croxall, Kevin V; Marble, Andrew R; Smith, J D; Gordon, Karl; Kennicutt, Robert C

    2013-01-01

    Motived by recent ISM studies, we present high quality MMT and Gemini spectroscopic observations of H II regions in the nearby spiral galaxies NGC 628 and NGC 2403 in order to measure their chemical abundance gradients. Using long-slit and multi-object mask optical spectroscopy, we obtained measurements of the temperature sensitive auroral lines [O III] {\\lambda}4363 and/or [N II] {\\lambda}5755 at a strength of 4{\\sigma} or greater in 11 H II regions in NGC 628 and 7 regions in NGC 2403. These observations allow us, for the first time, to derive an oxygen abundance gradient in NGC 628 based solely on "direct" oxygen abundances of H II regions: 12 + log(O/H) = (8.43+/-0.03) + (-0.017+/-0.002) x Rg (dex/kpc), with a dispersion in log(O/H) of {\\sigma} = 0.10 dex, from 14 regions with a radial coverage of ~2-19 kpc. This is a significantly shallower slope than found by previous "strong-line" abundance studies. In NGC 2403, we derive an oxygen abundance gradient of 12 + log(O/H) = (8.48+/-0.04) + (-0.032+/-0.007) ...

  20. Beryllium abundances in stars with planets:Extending the sample

    Gálvez-Ortiz, M C; Hernández, J I González; Israelian, G; Santos, N C; Rebolo, R; Ecuvillon, A

    2011-01-01

    Context: Chemical abundances of light elements as beryllium in planet-host stars allow us to study the planet formation scenarios and/or investigate possible surface pollution processes. Aims: We present here an extension of previous beryllium abundance studies. The complete sample consists of 70 stars hosting planets and 30 stars without known planetary companions. The aim of this paper is to further assess the trends found in previous studies with less number of objects. This will provide more information on the processes of depletion and mixing of light elements in the interior of late type stars, and will provide possible explanations for the abundance differences between stars that host planets and "single" stars. Methods: Using high resolution UVES spectra, we measure beryllium abundances of 26 stars that host planets and 1 "single" star mainly using the \\lambda 3131.065 A Be II line, by fitting synthetic spectra to the observational data. We also compile beryllium abundance measurements of 44 stars hos...

  1. Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster

    Robertson, Paul; Blanc, Guillermo A

    2011-01-01

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to ISM-ICM interaction, albeit to a lesser degree. Based on the abundances of 3 H I deficient spirals and 2 H I normal spirals, we observe a heavy element abundance offset of +0.13\\pm0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log(O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our resul...

  2. ENHANCED ABUNDANCES IN SPIRAL GALAXIES OF THE PEGASUS I CLUSTER

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A., E-mail: paul@astro.as.utexas.edu, E-mail: shields@astro.as.utexas.edu, E-mail: gblancm@astro.as.utexas.edu [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2012-03-20

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 {+-} 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  3. ENHANCED ABUNDANCES IN SPIRAL GALAXIES OF THE PEGASUS I CLUSTER

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 ± 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  4. Applications of abundance data and requirements for cosmochemical modeling

    Busemann, H.; Binns, W. R.; Chiappini, C.; Gloeckler, G.; Hoppe, P.; Kirilova, Donka; Leske, R. A.; Manuel, O. K.; Wiens, R. C. (Roger C.)

    2001-01-01

    Understanding the evolution of the universe from Big Bang to its present state requires an understanding of the evolution of the abundances of the elements and isotopes in galaxies, stars, the interstellar medium, the Sun and the heliosphere, planets and meteorites. Processes that change the state of the universe include Big Bang nucleosynthesis, star formation and stellar nucleosynthesis, galactic chemical evolution, propagation of cosmic rays, spallation, ionization and particle transport of interstellar material, formation of the solar system, solar wind emission and its fractionation (FIP/FIT effect), mixing processes in stellar interiors, condensation of material and subsequent geochemical fractionation. Here, we attempt to compile some major issues in cosmochemistry that can be addressed with a better knowledge of the respective element or isotope abundances. Present and future missions such as Genesis, Stardust, Interstellar Pathfinder, and Interstellar Probe, improvements of remote sensing instrumentation and experiments on extraterrestrial material such as meteorites, presolar grains, and lunar or returned planetary or cometary samples will result in an improved database of elemental and isotopic abundances. This includes the primordial abundances of D, 3He, 4He, and 7Li, abundances of the heavier elements in stars and galaxies, the composition of the interstellar medium, solar wind and comets as well as the (highly) volatile elements in the solar system such as helium, nitrogen, oxygen or xenon.

  5. Sulfur and zinc abundances of red giant stars

    Takeda, Yoichi; Harakawa, Hiroki; Sato, Bun'ei

    2016-01-01

    Sulfur and zinc are chemically volatile elements, which play significant roles as depletion-free tracers in studying galactic chemical evolution. However, regarding red giants having evolved off the main sequence, reliable abundance determinations of S and Zn seem to be difficult despite that a few studies have been reported so far. Given this situation, we tried to establish the abundances of these elements for an extensive sample of 239 field GK giants (-0.8 < [Fe/H] < +0.2), by applying the spectrum-fitting technique to S I 8694-5, S I 6757, and Zn I 6362 lines and by taking into account the non-LTE effect. Besides, similar abundance analysis was done for 160 FGK dwarfs to be used for comparison. The non-LTE corrections for the S and Zn abundances derived from these lines turned out < 0.1(-0.2) dex for most cases and not very significant. It revealed that the S I 6757 feature is more reliable as an abundance indicator than S I 8694-5 for the case of red giants, because the latter suffers blending ...

  6. Effect of disjunct size distributions on foraminiferal species abundance determinations

    Martin, R.E.; Liddell, W.D.

    1988-02-01

    Studies of foraminiferal distribution and abundance have typically employed a procedure (standard method) that entails counting approximately 300 specimens from a size range greater than some specified minimum (commonly 63 or 125 ..mu..m). This method fails to take into account that foraminifera may be found only within certain size fractions, either because of species specific size ranges or taphonomic processes (sorting, transport, abrasion). Use of a modified counting procedure (sieve method) takes into account foraminiferal size distributions. The sieve method uses counts of up to 300 specimens in each sand-size fraction (0.125-0.25, 0.25-0.5, 0.5-1, 1-2 mm) of each sample. Counts are then totaled for each sample (up to 1200 specimens per site) and used in determination of species abundances for each site. The sieve method has been of considerable utility in recognition of a foraminiferal bathymetric zonation preserved in sediment assemblages from fringing reef environments at Discovery Bay, north Jamaica. Well-documented reef zones (based on corals and physiography) are clearly defined in Q-mode cluster analysis (UPGMA) of species abundances determined using the sieve method. In contrast, individual fore reef zones are not recognized in cluster analysis of foraminiferal species abundances based on the standard method, nor by cluster analysis of species abundances within individual size fractions.

  7. Analysis and modeling of scale-invariance in plankton abundance

    Pelletier, J D

    1996-01-01

    The power spectrum, $S$, of horizontal transects of plankton abundance are often observed to have a power-law dependence on wavenumber, $k$, with exponent close to $-2$: $S(k)\\propto k^{-2}$ over a wide range of scales. I present power spectral analyses of aircraft lidar measurements of phytoplankton abundance from scales of 1 to 100 km. A power spectrum $S(k)\\propto k^{-2}$ is obtained. As a model for this observation, I consider a stochastic growth equation where the rate of change of plankton abundance is determined by turbulent mixing, modeled as a diffusion process in two dimensions, and exponential growth with a stochastically variable net growth rate representing a fluctuating environment. The model predicts a lognormal distribution of abundance and a power spectrum of horizontal transects $S(k)\\propto k^{-1.8}$, close to the observed spectrum. The model equation predicts that the power spectrum of variations in abundance in time at a point in space is $S(f)\\propto f^{-1.5}$ (where $f$ is the frequency...

  8. Influence of edge on predator prey distribution and abundance

    Ferguson, Steven H.

    2004-03-01

    I investigated the effect of spatial configuration on distribution and abundance of invertebrate trophic groups by counting soil arthropods under boxes (21 × 9.5 cm) arranged in six different patterns that varied in the amount of edge (137-305 cm). I predicted fewer individuals from the consumer trophic group (Collembola) in box groups with greater amount of edge. This prediction was based on the assumption that predators (mites, ants, spiders, centipedes) select edge during foraging and thereby reduce abundance of the less mobile consumer group under box patterns with greater edge. Consumer abundance (Collembola) was not correlated with amount of edge. Among the predator groups, mite, ant and centipede abundance related to the amount of edge of box groups. However, in contrast to predictions, abundance of these predators was negatively correlated with amount of edge in box patterns. All Collembola predators, with the exception of ants, were less clumped in distribution than Collembola. The results are inconsistent with the view that predators used box edges to predate the less mobile consumer trophic group. Alternative explanations for the spatial patterns other than predator-prey relations include (1) a negative relationship between edge and moisture, (2) a positive relationship between edge and detritus decomposition (i.e. mycelium as food for the consumer group), and (3) a negative relationship between edge and the interstices between adjacent boxes. Landscape patterns likely affect microclimate, food, and predator-prey relations and, therefore, future experimental designs need to control these factors individually to distinguish among alternative hypotheses.

  9. Correlation between lithium abundances and ages of solar twin stars

    Carlos, Marilia; Melendez, Jorge

    2016-01-01

    We want to determine the lithium abundances of solar twin stars as a function of stellar age to provide constraints for stellar evolutions models and to investigate whether there is a connection between low Li abundance and the occurrence of planets. For a sample of 21 solar twins observed with the HARPS spectrograph at high spectral resolution (R~115.000) and very high signal-to-noise ratio (600 < S/N < 2400), precise lithium abundances were obtained by spectral synthesis of the LiI 6707.8 A line and compared to stellar ages, masses, and metallicities determined from a spectroscopic analysis of the same set of HARPS spectra. We show that for the large majority of the solar twins there is a strong correlation between lithium abundance and stellar age. As the age increases from 1 to 9 Gyr, the Li abundance decreases by a factor of ~ 50. The relation agrees fairly well with predictions from non-standard stellar evolution models of Li destruction at the bottom of the upper convection zone. Two stars deviat...

  10. Ammonia abundance in the coma of Halley's Comet

    Consideration is given to recent work by Allen et al. (1987) which suggests that the value of the ratio of the abundance of the atomic masses 19 to 18 observed in situ in the inner coma of Comet Halley is incompatible with a pure H2O nucleus and requires an NH3 abundance of 1-2 percent. The present authors discuss possible ways of explaining the radial profile of r = 19/18, which deemphasizes the presence of NH3. It is shown that the observed value of the 19/18 mass ratio in the inner coma does not necessarily imply the existence of a significant abundance of NH3. An elevated UV flux, for which there is circumstantial evidence, could produce the same effect. 21 references