WorldWideScience

Sample records for abundance element

  1. Solar System Abundances of the Elements

    Lodders, Katharina

    2010-01-01

    Representative abundances of the chemical elements for use as a solar abundance standard in astronomical and planetary studies are summarized. Updated abundance tables for solar system abundances based on meteorites and photospheric measurements are presented.

  2. Heavy element abundances and massive star formation

    Wang, Boqi; Silk, Joseph

    1993-01-01

    The determination of the stellar initial mass function (IMF) remains a great challenge in astronomy. In the solar neighborhood, the IMF is reasonable well determined for stellar masses from about 0.1 to 60 solar mass. However, outside the solar neighborhood, the IMF is poorly known. Among those frequently discussed arguments favoring a different IMF outside the solar neighborhood are the estimated time to consume the remaining gas in spiral galaxies, and the high rate of forming massive stars in starburst galaxies. An interesting question then is whether there may be an independent way of testing possible variations in the IMF. Indeed, the heavy elements in the interstellar medium are mostly synthesized in massive stars, so increasing, or decreasing, the fraction of massive stars naturally leads to a variation in the heavy element yield, and thus, the metallicity. The observed abundance should severely constrain any deviations of the IMF from the locally determined IMF. We focus on element oxygen, which is the most abundant heavy element in the interstellar medium. Oxygen is ejected only by massive stars that can become Type 1 supernovae, and the oxygen abundance is, therefore, a sensitive function of the fraction of massive stars in the IMF. Adopting oxygen enables us to avoid uncertainties in Type 1 supernovae. We use the nucleosynthesis results to calculate the oxygen yield for given IMF. We then calculate the oxygen abundance in the interstellar medium assuming instantaneous recycling of oxygen.

  3. Elemental Abundances in PG1159 Stars

    Werner, K; Reiff, E; Kruk, J W

    2007-01-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric elemental abundances of these stars allow to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted elemental abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. PG1159 stars appear to be the direct progeny of [WC] stars.

  4. Abundances of refractory elements in quasars

    New observations of iron, silicon, aluminum, magnesium, and carbon lines in quasars are presented. From comparison of these and previous observations with theoretical models, it is found that the gas-phase abundances of these refractory elements cannot be much less than solar, and in particular that they do not show the order of magnitude depletions that are found in planetary nebulae and the interstellar medium. Because of this lack of depletion of refractory elements it is argued that the broad emission-line clouds are probably deviod of dust

  5. Element Abundances through the Cosmic Ages

    Pettini, M

    2003-01-01

    The horizon for studies of element abundances has expanded dramatically in the last ten years. Once the domain of astronomers concerned chiefly with stars and nearby galaxies, this field has now become a key component of observational cosmology, as technological advances have made it possible to measure the abundances of several chemical elements in a variety of environments at redshifts up to z = 4, when the universe was in its infancy. In this series of lectures I summarise current knowledge on the chemical make-up of distant galaxies observed directly in their starlight, and of interstellar and intergalactic gas seen in absorption against the spectra of bright background sources. The picture which is emerging is one where the universe at z = 3 already included many of the constituents of today's galaxies-even at these early times we see evidence for Population I and II stars, while the `smoking gun' for Population III objects may be hidden in the chemical composition of the lowest density regions of the in...

  6. Quasar Elemental Abundances at High Redshifts

    Dietrich, M.; Hamann, F.; Shields, J. C.; Constantin, A.; Heidt, J.; Jaeger, K.; Vestergaard, Marianne; Wagner, S. J.

    2003-01-01

    framework of the most recent photoionization models to estimate the metallicity of the gas associated with the high-z quasars. Standard photoionization parameters and the assumption of secondary nitrogen enrichment indicate an average abundance of Z/Z_sol = 4 to 5 in the line emitting gas. Assuming a time...

  7. Elemental abundances of the B6 IV star Xi Octantis

    Adelman, Saul J.; Robinson, Richard D.; Wahlgren, Glenn M.

    1993-01-01

    An elemental abundance study used AAT echelle spectrograms of the ultrasharp-lined, superficially normal B6 IV star Xi Octantis. The derived abundances fall within the trends of values derived for normal B main-sequence band stars. On average, they are 0.28 dex less than solar.

  8. A Comparison of Stellar Elemental Abundance Techniques and Measurements

    Hinkel, Natalie R; Pagano, Michael D; Desch, Steven J; Anbar, Ariel D; Adibekyan, Vardan; Blanco-Cuaresma, Sergi; Carlberg, Joleen K; Mena, Elisa Delgado; Liu, Fan; Nordlander, Thomas; Sousa, Sergio G; Korn, Andreas; Gruyters, Pieter; Heiter, Ulrike; Jofre, Paula; Santos, Nuno C; Soubiran, Caroline

    2016-01-01

    Stellar elemental abundances are important for understanding the fundamental properties of a star or stellar group, such as age and evolutionary history, as well as the composition of an orbiting planet. However, as abundance measurement techniques have progressed, there has been little standardization between individual methods and their comparisons. As a result, different stellar abundance procedures determine measurements that vary beyond quoted error for the same elements within the same stars (Hinkel et al. 2014). The purpose of this paper is to better understand the systematic variations between methods and offer recommendations for producing more accurate results in the future. We have invited a number of participants from around the world (Australia, Portugal, Sweden, Switzerland, and USA) to calculate ten element abundances (C, O, Na, Mg, Al, Si, Fe, Ni, Ba, and Eu) using the same stellar spectra for four stars (HD361, HD10700, HD121504, HD202206). Each group produced measurements for each of the sta...

  9. HD 209621: Abundances of neutron-capture elements

    Goswami, Aruna; Aoki, Wako

    2010-01-01

    High resolution spectra obtained from the Subaru Telescope High Dispersion Spectrograph have been used to update the stellar atmospheric parameters and metallicity of the star HD 209621. We have derived a metallicity of [Fe/H] = -1.93 for this star, and have found a large enhancement of carbon and of heavy elements, with respect to iron. Updates on the elemental abundances of four s-process elements (Y, Ce, Pr, Nd) along with the first estimates of abundances for a number of other heavy eleme...

  10. Elemental abundances of intermediate age open cluster NGC 3680

    Mitschang, A W; Zucker, D B

    2012-01-01

    We present a new abundance analysis of the intermediate age Galactic open cluster NGC 3680, based on high resolution, high signal-to-noise VLT/UVES spectroscopic data. Several element abundances are presented for this cluster for the first time, but most notably we derive abundances for the light and heavy s-process elements Y, Ba, La, and Nd. The serendipitous measurement of the rare-earth r-process element Gd is also reported. This cluster exhibits a significant enhancement of Na in giants as compared to dwarfs, which may be a proxy for an O to Na anti-correlation as observed in Galactic globular clusters but not open clusters. We also observe a step-like enhancement of heavy s-process elements towards higher atomic number, contrary to expectations from AGB nucleosynthesis models, suggesting that the r-process played a significant role in the generation of both La and Nd in this cluster

  11. The Origin of Element Abundance Variations in Solar Energetic Particles

    Reames, Donald V.

    2016-07-01

    Abundance enhancements, during acceleration and transport in both gradual and impulsive solar energetic particle (SEP) events, vary approximately as power laws in the mass-to-charge ratio [ A/Q] of the ions. Since the Q-values depend upon the electron temperature of the source plasma, this has allowed a determination of this temperature from the pattern of element-abundance enhancements and a verification of the expected inverse-time dependence of the power of A/Q for diffusive transport of ions from the SEP events, with scattering mean free paths found to be between 0.2 and 1 AU. SEP events derived from plasma of different temperatures map into different regions in typical cross-plots of abundances, spreading the distributions. In comparisons of SEP events with temperatures above 2 MK, impulsive events show much broader non-thermal variation of abundances than do gradual events. The extensive shock waves accelerating ions in gradual events may average over much of an active region where numerous but smaller magnetic reconnections, "nanojets", produce suprathermal seed ions, thus averaging over varying abundances, while an impulsive SEP event only samples one local region of abundance variations. Evidence for a reference He/O-abundance ratio of 91, rather than 57, is also found for the hotter plasma. However, while this is similar to the solar-wind abundance of He/O, the solar-wind abundances otherwise provide an unacceptably poor reference for the SEP-abundance enhancements, generating extremely large errors.

  12. On the origin of elemental abundances in the terrestrial planets

    Elser, Sebastian; Moore, Ben

    2012-01-01

    The abundances of elements in the Earth and the terrestrial planets provide the initial conditions for life and clues as to the history and formation of the Solar System. We follow the pioneering work of Bond et al. (2010) and combine circumstellar disk models, chemical equilibrium calculations and dynamical simulations of planet formation to study the bulk composition of rocky planets. We use condensation sequence calculations to estimate the initial abundance of solids in the circumstellar disk with properties determined from time dependent theoretical models. We combine this with dynamical simulations of planetesimal growth that trace the solids during the planet formation process. We calculate the elemental abundances in the resulting planets and explore how these vary with the choice of disk model and the initial conditions within the Solar Nebula. Although certain characteristics of the terrestrial planets in the Solar System could be reproduced, none of our models could reproduce the abundance properti...

  13. Abundances of the elements in the intergalactic medium

    We present a summary of the X-ray and optical spectroscopic data on emission lines from Z>6 elements in clusters of galaxies. The best data exists for Fe. For the ∼30 well observed clusters the mean Fe abundance is ∼1.4x10-5 (∼0.4 solar) but there appears to be a real variation of at least a factor of 2. X-ray emission lines from O, Mg, Si and S have been detected and their abundances are within a factor of a few of solar. Analysis of optical emission lines from cooling gas due to O, N and S also indicates abundances not too far from solar values. We discuss the implications of the presence of heavy elements in the intergalactic medium of clusters for the evolution of the chemical abundances of galaxies

  14. Peculiarities of {\\alpha}-element abundances in Galactic open clusters

    Marsakov, V A; Koval', V V; Shpigel', L V

    2016-01-01

    A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity, metal-poor clouds and the interstellar medium of the Galactic thin disk. On average, clusterswith high, elongated orbits and metallicities ${\\rm [Fe/H]} - 0.1$ formed as a result of interact...

  15. Peculiarities of α-element abundances in Galactic open clusters

    Marsakov, V. A.; Gozha, M. L.; Koval', V. V.; Shpigel', L. V.

    2016-01-01

    A catalog compiling the parameters of 346 open clusters, including their metallicities, positions, ages, and velocities has been composed. The elements of the Galactic orbits for 272 of the clusters have been calculated. Spectroscopic determinations of the relative abundances, [el/Fe], for 14 elements synthesized in various nuclear processes averaged over data from 109 publications are presented for 90 clusters. The compiled data indicate that the relative abundances of primary α elements (oxygen and magnesium) exhibit different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits in clusters with high, elongated orbits satisfying the criterion ( Z max 2 + 4 e 2)1/2 > 0.40 and in field stars of the Galactic thin disk ( Z max is the maximum distance of the orbit from the Galactic plane in kiloparsec and e is the eccentricity of the Galactic orbit). Since no systematic effects distorting the relative abundances of the studied elements in these clusters have been found, these difference suggest real differences between clusters with high, elongated orbits and field stars. In particular, this supports the earlier conclusion, based on an analysis of the elements of the Galactic orbits, that some clusters formed as a result of interactions between high-velocity,metal-poor clouds and the interstellar mediumof theGalactic thin disk. On average, clusters with high, elongated orbits and metallicities [Fe/H] rate and/or the masses of Type II supernovae were lower than near the Galactic plane. It is also shown that, on average, the relative abundances of the primary a elements are higher in relatively metal-rich clusters with high, elongated orbits than in field stars. This can be understood if clusters with [Fe/H] > -0.1 formed as a result of interactions between metal-rich clouds with intermediate velocities and the interstellar medium of the Galactic disk; such clouds could form from returning gas in a so-called "Galactic

  16. Lunar Elemental Abundances from Gamma-Ray and Neutron Measurements

    Reedy, R. C.; Vaniman, D. T.

    1999-01-01

    The determination of elemental abundances is one of the highest science objectives of most lunar missions. Such multi-element abundances, ratios, or maps should include results for elements that are diagnostic or important in lunar processes, including heat-producing elements (such as K and Th), important incompatible elements (Th and rare earth elements), H (for polar deposits and regolith maturity), and key variable elements in major lunar provinces (such as Fe and Ti in the maria). Both neutron and gamma-ray spectroscopy can be used to infer elemental abundances; the two complement each other. These elemental abundances need to be determined with high accuracy and precision from measurements such as those made by the gamma-ray spectrometer (GRS) and neutron spectrometers (NS) on Lunar Prospector. As presented here, a series of steps, computer codes, and nuclear databases are needed to properly convert the raw gamma-ray and neutron measurements into good elemental abundances, ratios, and/or maps. Lunar Prospector (LP) is the first planetary mission that has measured neutrons escaping from a planet other than the Earth. The neutron spectrometers on Lunar Prospector measured a wide range of neutron energies. The ability to measure neutrons with thermal (E return, being especially sensitive to both H (using epithermal neutrons) and thermal-neutron-absorbing elements. Neutrons are made in the lunar surface by the interaction of galactic-cosmic-ray (GCR) particles with the atomic nuclei in the surface. Most neutrons are produced with energies above about 0.1 MeV. The flux of fast neutrons in and escaping from the Moon depends on es the intensity of the cosmic rays (which vary with solar activity) and the elemental composition of the surface. Variations in the elemental composition of the lunar surface can affect the flux of fast neutrons by about 25% , with Ti and Fe emitting more fast neutrons than light elements like O and Si. Most elements moderate neutrons to

  17. Revised element abundances for WC-type central stars

    Todt, H; Hamann, W -R

    2007-01-01

    According to previous spectral analyses of Wolf-Rayet type central stars, late [WC] subtypes show systematically higher carbon-to-helium abundance ratios than early [WC] subtypes. If this were true, it would rule out that these stars form an evolutionary sequence. However, due to the different parameter domains and diagnostic lines, one might suspect systematic errors being the source of this discrepancy. In an ongoing project we are therefore checking the [WC] analyses by means of the last generation of non-LTE models for expanding stellar atmospheres which account for line-blanketing and wind clumping. So far, the abundance discrepancy is not resolved. Further element abundances (H, N, Fe) are determined and compared with evolutionary predictions.

  18. Element abundances in X-ray emitting plasmas in stars

    Testa, Paola

    2010-01-01

    Studies of element abundances in stars are of fundamental interest for their impact in a wide astrophysical context, from our understanding of galactic chemistry and its evolution, to their effect on models of stellar interiors, to the influence of the composition of material in young stellar environments on the planet formation process. We review recent results of studies of abundance properties of X-ray emitting plasmas in stars, ranging from the corona of the Sun and other solar-like stars, to pre-main sequence low-mass stars, and to early-type stars. We discuss the status of our understanding of abundance patterns in stellar X-ray plasmas, and recent advances made possible by accurate diagnostics now accessible thanks to the high resolution X-ray spectroscopy with Chandra and XMM-Newton.

  19. Abundances of 30 elements in 23 metal-poor stars

    Johnson, J A

    2002-01-01

    We report the abundances of 30 elements in 23 metal-poor ([Fe/H] 0.10 dex, the relative abundances, especially between closely allied atoms such as the rare earth group, often show only small (<0.03 dex) changes. We found that some strong lines of FeI, MnI and CrI consistently gave lower abundances by ~0.2 dex, a number larger than the quoted errors in the gf values. After considering a model with depth-dependent microturbulent velocity and a model with hotter temperatures in the upper layers, we conclude that the latter did a better job of resolving the problem and agreeing with observational evidence for the structure of stars. The error analysis includes the effects of correlation of Teff, log g, and microturbulent velocity errors, which is crucial for certain element ratios, such as [Mg/Fe]. The abundances presented here are being analyzed and discussed in a separate series of papers.

  20. Coronae of Stars with Super Solar Elemental Abundances

    Peretz, Uria; Drake, Stephen A

    2015-01-01

    Coronal elemental abundances are known to deviate from the photospheric values of their parent star, with the degree of deviation depending on the First Ionization Potential (FIP). This study focuses on the coronal composition of stars with super-solar photospheric abundances. We present the coronal abundances of six such stars: 11 LMi, $\\iota$ Hor, HR 7291, $\\tau$ Boo, and $\\alpha$ Cen A and B. These stars all have high-statistics X-ray spectra, three of which are presented for the first time. The abundances measured in this paper are obtained using the line-resolved spectra of the Reflection Grating Spectrometer (RGS) in conjunction with the higher throughput EPIC-pn camera spectra on board the XMM-Newton observatory. A collisionally ionized plasma model with two or three temperature components is found to represent the spectra well. All elements are found to be consistently depleted in the coronae compared to their respective photospheres. For 11 LMi and $\\tau$ Boo no FIP effect is present, while $\\iota$ H...

  1. Elemental Abundance Survey of The Galactic Thick Disk

    Reddy, B E; Allende-Prieto, C; Reddy, Bacham E.; Lambert, David L.; Prieto, Carlos Allende

    2006-01-01

    [Abridged abstract] We have performed an abundance analysis for 176 F- and G- dwarfs of the Galactic thick disk component. Using accurate radial velocities combined with $Hipparcos$ astrometry, kinematics (U, V, and W) and Galactic orbital parameters were computed. We estimate the probability for a star to belong to the thin disk, the thick disk or the halo. Abundances of C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, Ce, Nd, and Eu have been obtained. The abundances for thick disk stars are compared with those for thin disk members from Reddy et al. (2003). The ratios of $\\alpha$-elements (O, Mg, Si, Ca and Ti) to iron for thick disk disk stars show a clear enhancement compared to thin disk members in the range $-0.3 <$ [Fe/H] $ < -1.2$. There are also other elements -- Al, Sc, V, Co, and possibly Zn -- which show enhanced ratios to iron in the thick disk relative to the thin disk. The abundances of Na, Cr, Mn, Ni, and Cu (relative to Fe) are very similar for thin and thick dis...

  2. The Origin of Element Abundance Variations in Solar Energetic Particles

    Reames, Donald V

    2016-01-01

    Abundance enhancements, during acceleration and transport in both gradual and impulsive solar energetic particle (SEP) events, vary approximately as power laws in the mass-to-charge ratio A/Q of the ions. Since the Q values depend upon the electron temperature of the source plasma, this has allowed a determination of this temperature from the pattern of element abundance enhancements and a verification of the expected inverse-time dependence of the power of A/Q for diffusive transport of ions from the SEP events, with scattering mean free paths found to be between 0.2 and 1 AU. SEP events derived from plasma of different temperatures map into different regions in typical cross-plots of abundances, spreading the distributions. In comparisons of SEP events with temperatures above 2 MK, impulsive events show much broader non-thermal variation of abundances than do gradual events. The extensive shock waves accelerating ions in gradual events may average over much of an active region where numerous but smaller mag...

  3. CD -24°17504: A New Comprehensive Element Abundance Analysis

    Jacobson, Heather R.; Frebel, Anna

    2015-07-01

    With [Fe/H] ˜ -3.3, CD -24°17504 is a canonical metal-poor main-sequence turn-off star. Though it has appeared in numerous literature studies, the most comprehensive abundance analysis for the star based on high-resolution, high signal-to-noise ratio (S/N) spectra is nearly 15 years old. We present a new detailed abundance analysis for 21 elements based on combined archival Keck-HIRES and Very Large Telescope-UVES spectra of the star that is higher in both spectral resolution and S/N than previous data. Our results are very similar to those of an earlier comprehensive study of the star, but we present for the first time a carbon abundance from the CH G-band feature as well as improved upper limits for neutron-capture species such as Y, Ba, and Eu. In particular, we find that CD -24°17504 has [Fe/H] = -3.41, [C/Fe] = +1.10, [Sr/H] = -4.68, and [Ba/H] ≤ -4.46, making it a carbon-enhanced metal-poor star with neutron-capture element abundances among the lowest measured in Milky Way halo stars. This work is based on data obtained from the ESO Science Archive Facility and associated with Programs 68.D-0094(A) and 073.D-0024(A). This work is also based on data obtained from the Keck Observatory Archive (KOA), which is operated by the W.M. Keck Obsevatory and the NASA Exoplanet Science Institute (NExScI), under contract with the National Aeronautics and Space Administration. These data are associated with Program C01H (P.I. Mélendez).

  4. Cosmic rays interactions and the abundances of the chemical elements

    Our Galaxy is the largest nuclear interaction experiment which we know, because of the interaction between cosmic ray particles and the interstellar material. Cosmic rays are particles, which have been accelerated in the Galaxy or in extragalactic space. Cosmic rays come as protons, electrons, heavier nuclei, and their antiparticles. Up to energies up to some tens of TeV of particle energy it is possible to derive chemical abundances of cosmic rays. It has been proposed that cosmic ray particles can be attributed to three main sites of origin and acceleration, a) supernova shocks in the interstellar medium, b) supernova shocks in a stellar wind of the predecessor star, and c) powerful radio galaxies. This proposal leads to quantitative tests, which are encouraging so far. Quantitative models for transport and interaction appear to be consistent with the data. Li, Be, B are secondary in cosmic rays, as are many of the odd-Z elements, as well as the sub-Fe elements. At very low energies, cosmic ray particles are subject to ionization losses, which produce a steep low energy cutoff; all particles below the cutoff are moved into the thermal material population, and the particles above it remain as cosmic rays. This then changes the chemical abundances in the interstellar medium, and is a dominant process for many isotopes of Li, Be, B. With a quantitative theory for the origin of cosmic rays proposed, it appears worthwhile to search for yet better spallation cross sections, especially near threshold. With such an improved set of cross sections, the theory of the interstellar medium and its chemical abundances, both in thermal and in energetic particles, could be taken a large step forward. (author)

  5. Instrumental Neutron Activation Analysis in archaeology interpretation beyond elemental abundance

    Application of instrumental neutron activation analysis to the study of archaeological ceramics involves the determination of the source or sources used to produce pottery. Groups of relatively homogeneous elemental abundances are shown to be statically distinct from one another often leading to the assesment of what was locally produced and what was imported to a site. These assesment, however are among the most preliminary interpretations. Archaeology is concerned with the reasons for artificial distributions and how and why the distribution varied through time 3 reasons that include the social and political basis of ancient economics and how these responded to other factors, such as ideology. These objectives are addressed through the increasing refinement of compositional groups leading toward greater specificity of attribution. In so doing the role of analytical precision among other considerations groves in importance. This paper illustration some of these considerations with examples from the U.S. southwest, the Maya region of southern mexico, and lower central America

  6. Abundances of heavy elements in ultra-metal-poor star CS 22892-052

    张波; 张彩霞; 李冀; 梁艳春; 彭秋和

    1999-01-01

    Based on the heavy element nucleosynthesis theory, with the solar heavy-nuclide abundances and the observed abundances of three elements which are the representatives of the individul neutron-capture processes, a method to determine the relative contributions from the individul neutron-capture processes to the abundances of heavy elements in metal-poor stars is applied. With this method, the abundances of heavy elements in ultra-metal-poor star CS 22892-052 are calculated. It is found that the observed abundances of heavy elements in this star are well matched by our calculations in error limits, except for thorium.

  7. The Law of Element Abundance Relationships in Igneous Rocks Petrogenetically Associated with Fractional Crystallization

    汪云亮; 王旺章

    1991-01-01

    Reported in this paper are:1)the law of element abundance relationships:element abun-dances are of power function with each other in an igneous rock petrogenetically associated with fractional crystallization,2)deduction of the law and relevant parameters:abundance relationship constant(a°) and phase constant? from Henry's law and the law of mass conservation,3)the data basis and evidence of the law of element abundance relationships,4)establishment of the equa-bions for element abundance relationships in igneous rocks formed from the same parental magma during the same fractional crystallization stage ,and all measurable parameters involved in the equations.

  8. Abundance gradients in the Milky Way for alpha elements, Iron peak elements, Barium, Lanthanum and Europium

    Cescutti, G; François, P; Chiappini, C

    2006-01-01

    We model the abundance gradients in the disk of the Milky Way for several chemical elements (O, Mg, Si, S, Ca, Sc, Ti, Co, V, Fe, Ni, Zn, Cu, Mn, Cr, Ba, La and Eu), and compare our results with the most recent and homogeneous observational data. We adopt a chemical evolution model able to well reproduce the main properties of the solar vicinity. We compute, for the first time, the abundance gradients for all the above mentioned elements in the galactocentric distance range 4 - 22 kpc. The comparison with the observed data on Cepheids in the galactocentric distance range 5-17 kpc gives a very good agreement for many of the studied elements. In addition, we fit very well the data for the evolution of Lanthanum in the solar vicinity for which we present results here for the first time. We explore, also for the first time, the behaviour of the abundance gradients at large galactocentric distances by comparing our results with data relative to distant open clusters and red giants and select the best chemical evol...

  9. Abundances of neutron-capture elements in G 24-25

    Liu, S.; Nissen, Poul Erik; Schuster, W. J.;

    2012-01-01

    Aims. The differences between the neutron-capture element abundances of halo stars are important to our understanding of the nucleosynthesis of elements heavier than the iron group. We present a detailed abundance analysis of carbon and twelve neutron-capture elements from Sr up to Pb for a...... overabundances of carbon and heavy s-process elements and mild overabundances of Eu and light s-process elements. This abundance distribution is consistent with that of a typical CH giant. The abundance pattern can be explained by mass transfer from a former asymptotic giant branch component, which is now a...

  10. Abundances of the heavy elements in the Magellanic Clouds. I. Metal abundances of F-type supergiants

    Metal abundances of eight F-type supergiants in each of the Magellanic Clouds were determined using the results of high-resolution spectroscopy analysis of these stars, together with new Stromgren uvby and Cousins (1980) BVRI photometry. It was found that the mean Fe abundance (Fe/H) for the SMC is -0.65 + or - 0.2 dex, and the mean Fe abundance for the LMC is -0.30 + or - 0.2 dex. The abundances of stars in both the SMC and LMC appear relatively uniform, and the abundances of the elements relative to Fe are very similar in both Magellanic Clouds and in Canopus (the carbon-to-iron abundances are the same for all three). It was also found that Nd and Sm are overabundant in both clouds, supporting the trends found by Spite et al. (1988) for the three SMC stars they studied. 140 refs

  11. Composite Stellar Populations and Element by Element Abundances in the Milky Way Bulge and Elliptical Galaxies

    Tang, Baitian; Davis, A Bianca

    2014-01-01

    This paper explores the integrated-light characteristics of the Milky Way (MW) bulge and to what extent they match those of elliptical galaxies in the local universe. We model composite stellar populations with realistic abundance distribution functions (ADFs), tracking the trends of individual elements as a function of overall heavy element abundance as actually observed in MW bulge stars. The resultant predictions for absorption feature strengths from the MW bulge mimic elliptical galaxies better than solar neighborhood stars do, but the MW bulge does not match elliptical galaxies, either. Comparing bulge versus elliptical galaxies, Fe, Ti, and Mg trend about the same for both but C, Na, and Ca seem irreconcilably different. Exploring the behavior of abundance compositeness leads to the concepts of "red lean" where a narrower ADF appears more metal rich than a wide one, and "red spread" where the spectral difference between wide and narrow ADFs increases as the ADF peak is moved to more metal-rich values. T...

  12. Light element abundances, galactic evolution, and the universal baryon density

    The present mean universal mean baryon density, rho/sub b/, is of particular interest because, in Friedmann cosmologies with no cosmological constant, it is this quantity together with the Hubble constant, H/sub o/, which determines the spatial curvature of the universe, i.e., whether it is open or closed. The most stringent upper limit to rho/sub b/ so far established comes from the present deuterium abundance. This paper proposes an alternative method to evaluate the range of permissible values of rho/sub b/. The method considers the abundance of both D and 7Li. By utilizing the abundance ratio of 7Li to D, the difficulty associated with the astration process can be essentially canceled from the problem. Further, this method is slightly more sensitive to rho/sub b/ than the method which uses the D abundance alone. The ratio of 7Li to D mass fractions is plotted as a function of the present baryon density for a background temperature of 2.80K. Results are tabulated; they indicate that rho/sub b/ is too small to close the universe by a factor of the order of 5. 1 figure, 1 table

  13. Big Bang Nucleosynthesis and the Observed Abundances of Light Elements

    Hogan, Craig J.

    1996-01-01

    The predictions of Standard Big Bang Nucleosynthesis are summarized and compared with observations of abundances of helium in HII regions, deuterium in quasar absorbers, deuterium and helium-3 in the Galaxy, and lithium in metal-poor stars. It is concluded that the prospects are good for a precise test of the theory.

  14. Indigenous abundances of siderophile elements in the lunar highlands: implications for the origin of the Moon

    Substantial indigeneous abundances of siderophile elements have been found to be present in the lunar highlands. The abundances of 13 siderophile elements in the parental magma were estimated by using a simple model. It is shown that metal/silicate fractionation within the Moon cannot have been the cause of the siderophile element abundances in the parental highlands magma and primitive, low-Ti mare basalts. The relative abundances of the indigenous siderophile elements in highlands and mare samples seem, instead, to be the result of complex processes which operated prior to the Moon's accretion. The abundances of the relatively involatile, siderophile elements in the parental highlands magma are strikingly similar to the abundances observed in terrestrial oceanic tholeiites. Furthermore, the abundances of the relatively volatile, siderophile elements in the parental highlands magma are also systematically related to the corresponding abundances in terrestrial oceanic tholeiites. In fact, the parental magma of the lunar highlands can be essentially regarded as having been a volatile-depleted terrestrial oceanic tholeite. The origin of the moon is discussed in the context of the results. The probability that depletion of siderophile elements occurred in an earlier generation of differentiated planetesimals similar to those which formed the basaltic achondrites, stony-irons, and irons is examined but can be dismissed on several grounds. It seems that the uniquely terrestrial 'siderophile signature' within the Moon can be explained only if the Moon was derived from the Earth's mantle subsequent to core-formation. (Auth.)

  15. The Carina Project. VIII. On the {\\alpha}-element abundances

    Fabrizio, M; Bono, G; Primas, F; Thévenin, F; Stetson, P B; Cassisi, S; Buonanno, R; Coppola, G; da Silva, R O; Dall'Ora, M; Ferraro, I; Genovali, K; Gilmozzi, R; Iannicola, G; Marconi, M; Monelli, M; Romaniello, M; Walker, A R

    2015-01-01

    We have performed a new abundance analysis of Carina Red Giant (RG) stars from spectroscopic data collected with UVES (high resolution) and FLAMES/GIRAFFE (high and medium resolution) at ESO/VLT. The former sample includes 44 RGs, while the latter consists of 65 (high) and ~800 (medium resolution) RGs, covering a significant fraction of the galaxy's RG branch (RGB), and red clump stars. To improve the abundance analysis at the faint magnitude limit, the FLAMES/GIRAFFE data were divided into ten surface gravity and effective temperature bins. The spectra of the stars belonging to the same gravity/temperature bin were stacked. This approach allowed us to increase by at least a factor of five the signal-to-noise ratio in the faint limit (V>20.5mag). We took advantage of the new photometry index cU,B,I introduced by Monelli et al. (2014), as an age and probably a metallicity indicator, to split stars along the RGB. These two stellar populations display distinct [Fe/H] and [Mg/H] distributions: their mean Fe abund...

  16. Abundance Distribution of Slow-Process Main Heavy Elements in AGB Stars

    张妙静; 张波; 厉光烈

    2003-01-01

    By re-analysing the results of the theoretical abundance of asymptotic giant branch (AGB) stellar models and the observed abundances of 51 AGB samples, we find that the abundance distribution of s-process main heavy (SMH) elements of any AGB star is similar to the scaled s-process main component of the solar system. This means that superposition of the SMH element abundance distributions of AGB stars should be similar to the scaled solar s-process main component. As a conclusion, the abundance pattern of the solar SMH elements is not only an average result of a complex chemical evolution of galaxy, but also a typical one that can be used as a standard in abundance investigation.

  17. Light-element Abundance Variations in the Milky Way Halo

    Martell, Sarah L.; Grebel, Eva K.

    2010-01-01

    We present evidence for the contribution of high-mass globular clusters to the stellar halo of the Galaxy. Using SDSS-II/SEGUE spectra of over 1900 G- and K-type halo giants, we identify for the first time a subset of stars with CN bandstrengths significantly larger, and CH bandstrengths lower, than the majority of halo field stars, at fixed temperature and metallicity. Since CN bandstrength inhomogeneity and the usual attendant abundance variations are presently understood as a result of sta...

  18. Anomalous globular clusters: insights from neutron capture elements abundances

    Marino, A F

    2013-01-01

    Thanks to the large amount of spectroscopic and photometric data assembled in the last couple of decades, the assumption that all globular clusters (GCs) contain a simple mono-metallic stellar population has been modified. Besides the common variations in the elements created/destroyed in the H-burning processes, spreads and/or multi-modalities in heavier elements have been detected in a few objects. Among the most remarkable chemical inhomogeneity in these anomalous objects is the internal variation in the neutron-capture (n-capture) elements, that can provide some information about the material from which stars were born. I report a summary of the chemical pattern observed in GCs where variations in n-capture have been detected, and the connection between these chemical features and the distribution of stars along the color-magnitude diagrams in the context of the lively debate on multiple stellar populations.

  19. Light-element Abundance Variations in the Milky Way Halo

    Martell, Sarah L

    2010-01-01

    We present evidence for the contribution of high-mass globular clusters to the stellar halo of the Galaxy. Using SDSS-II/SEGUE spectra of over 1900 G- and K-type halo giants, we identify for the first time a subset of stars with CN bandstrengths significantly larger, and CH bandstrengths lower, than the majority of halo field stars, at fixed temperature and metallicity. Since CN bandstrength inhomogeneity and the usual attendant abundance variations are presently understood as a result of star formation in globular clusters, we interpret this subset of halo giants as a result of globular cluster dissolution into the Galactic halo. We find that 2.5% of our sample is CN-strong, and can infer based on recent models of globular cluster evolution that the fraction of halo field stars initially formed within globular clusters may be as large as 50%.

  20. Light-element abundance variations in the Milky Way halo

    Martell, S. L.; Grebel, E. K.

    2010-09-01

    We present evidence for the contribution of high-mass globular clusters to the stellar halo of the Galaxy. Using SDSS-II/SEGUE spectra of over 1900 G- and K-type halo giants, we identify for the first time a subset of stars with CN bandstrengths significantly larger, and CH bandstrengths lower, than the majority of halo field stars, at fixed temperature and metallicity. Since CN bandstrength inhomogeneity and the usual attendant abundance variations are presently understood as a result of star formation in globular clusters, we interpret this subset of halo giants as a result of globular cluster dissolution into the Galactic halo. We find that 2.5% of our sample is CN-strong, and can infer based on recent models of globular cluster evolution that the fraction of halo field stars initially formed within globular clusters may be as large as 50%.

  1. The Alpha Centauri binary system. Atmospheric parameters and element abundances

    Porto de Mello, G. F.; Lyra, W.; Keller, G. R.

    2008-09-01

    Context: The α Centauri binary system, owing to its duplicity, proximity and brightness, and its components' likeness to the Sun, is a fundamental calibrating object for the theory of stellar structure and evolution and the determination of stellar atmospheric parameters. This role, however, is hindered by a considerable disagreement in the published analyses of its atmospheric parameters and abundances. Aims: We report a new spectroscopic analysis of both components of the α Centauri system, compare published analyses of the system, and attempt to quantify the discrepancies still extant in the determinations of the atmospheric parameters and abundances of these stars. Methods: The analysis is differential with respect to the Sun, based on spectra with R = 35 000 and signal-to-noise ratio ≥1000, and employed spectroscopic and photometric methods to obtain as many independent T_eff determinations as possible. We also check the atmospheric parameters for consistency against the results of the dynamical analysis and the positions of the components in a theoretical HR diagram. Results: The spectroscopic atmospheric parameters of the system are found to be T_eff = (5847 ± 27) K, [Fe/H] = +0.24 ± 0.03, log g = 4.34 ± 0.12, and ξt = 1.46 ± 0.03 km s-1, for α Cen A, and T_eff = (5316 ± 28) K, [Fe/H] = +0.25 ± 0.04, log g = 4.44 ± 0.15, and ξt = 1.28 ± 0.15 km s^-1 for α Cen B. The parameters were derived from the simultaneous excitation & ionization equilibria of Fe I and Fe II lines. T_effs were also obtained by fitting theoretical profiles to the Hα line and from photometric calibrations. Conclusions: We reached good agreement between the three criteria for α Cen A. For α Cen B the spectroscopic T_eff is ~140 K higher than the other two determinations. We discuss possible origins of this inconsistency, concluding that the presence of non-local thermodynamic equilibrium effects is a probable candidate, but we note that there is as yet no consensus on

  2. Parent Stars of Extrasolar Planets. VIII. Chemical Abundances for 18 Elements in 31 Stars

    Gonzalez, Guillermo; Laws, Chris

    2007-01-01

    We present the results of detailed spectroscopic abundance analyses for 18 elements in 31 nearby stars with planets. The resulting abundances are combined with other similar studies of nearby stars with planets and compared to a sample of nearby stars without detected planets. We find some evidence for abundance differences between these two samples for Al, Si and Ti. Some of our results are in conflict with a recent study of stars with planets in the SPOCS database. We encourage continued st...

  3. The Abundances of Some Heavy Elements in the Atmosphere of γ Tauri

    Yushchenko, A. V.; Gopka, V. F.

    Comparison of synthetic spectrum of the γ Tauri photosphere and high quality spectral atlases of this star permit us to identify absorption lines of rubidium, indium, disprosium, erbium, osmium in the observed spectra. The abundances of these elements in the atmosphere of γ Tauri with respect to their abundances in the solar atmosphere were determined by the method of spectrum synthesis.

  4. The Alpha Centauri Binary System: Atmospheric Parameters and Element Abundances

    de Mello, G F Porto; Keller, G R

    2008-01-01

    The Alpha Centauri binary system, owing to its binarity, proximity and brightness, is a fundamental calibrating object for the theory of stellar structure and evolution. This role, however, is hindered by a considerable disagreement in the published analyses of its atmospheric parameters and abundances. We report a detailed spectroscopic analysis of both components of the Alpha Centauri binary system, differentially with respect to the Sun, based on high quality spectra (R = 35 000, S/N > 1000). The atmospheric parameters of the system are found to be Teff = 5820 K, [Fe/H] = +0.24, log g = 4.34 and xi = 1.46 km/s, for Alpha Cen A, and Teff = 5240 K, [Fe/H] = +0.25, log g = 4.44 and xi = 1.28 km/s for Alpha Cen B. The parameters were derived from the simultaneous excitation & ionization equilibria of the equivalent widths of Fe I and Fe II lines, by fitting theoretical profiles to the Halpha line and from photometric calibrations, good agreement being reached between the criteria for both stars. We derived...

  5. Anatomy of a cluster IDP. Part 2: Noble gas abundances, trace element geochemistry, isotopic abundances, and trace organic chemistry of several fragments from L2008#5

    Thomas, K. L.; Clemett, S. J.; Flynn, G. J.; Keller, L. P.; Mckay, David S.; Messenger, S.; Nier, A. O.; Schlutter, D. J.; Sutton, S. R.; Walker, R. M.

    1994-01-01

    The topics discussed include the following: noble gas content and release temperatures; trace element abundances; heating summary of cluster fragments; isotopic measurements; and trace organic chemistry.

  6. Peculiarities of the abundances of neutron-capture elements in Galactic open clusters

    Marsakov, V A; Koval', V V; Shpigel', L V

    2016-01-01

    The properties of the relative abundances of rapid and slow neutron-capture elements are studied using a catalog containing spectroscopic abundance determinations for 14~elements produced in various nuclear-synthesis processes for 90~open clusters. The catalog also contains the positions, ages, velocities, and elements of the Galactic orbits of the clusters. The relative abundances of both $r$-elements (Eu) and $s$-elements (Y, Ba, La, and Ce) in clusters with high, elongated orbits and in field stars of the Galactic thin disk display different dependences on metallicity, age, Galactocentric distance, and the elements of the Galactic orbits, supporting the view that these objects have different natures. In young clusters, not only barium, but also the three other studied $s$-elements display significantly higher relative abundances than field stars of the same metallicity. The relative abundances of Eu are lower in high-metallicity clusters (${\\rm [Fe/H]} > -0.1$) with high, elongated orbits than in field gia...

  7. Observational nuclear astrophysics: neutron-capture element abundances in old, metal-poor stars

    The chemical abundances of metal-poor stars provide a great deal of information regarding the individual nucleosynthetic processes that created the observed elements and the overall process of chemical enrichment of the galaxy since the formation of the first stars. Here we review the abundance patterns of the neutron-capture elements (Z ⩾ 38) in those metal-poor stars and our current understanding of the conditions and sites of their production at early times. We also review the relative contributions of these different processes to the build-up of these elements within the galaxy over time, and outline outstanding questions and uncertainties that complicate the interpretation of the abundance patterns observed in metal-poor stars. It is anticipated that future observations of large samples of metal-poor stars will help discriminate between different proposed neutron-capture element production sites and better trace the chemical evolution of the galaxy. (paper)

  8. Diversity, abundance, and evolutionary dynamics of Pong-like transposable elements in Triticeae.

    Markova, Dragomira N; Mason-Gamer, Roberta J

    2015-12-01

    Pong-like elements are members of the PIF/Harbinger superfamily of DNA transposons that has been described in many plants, animals, and fungi. Most Pong elements contain two open reading frames (ORFs). One encodes a transposase (ORF2) that catalyzes transposition of Pong and related non-autonomous elements, while the function of the second is unknown. Little is known about the evolutionary history of Pong elements in flowering plants. In this work, we present the first comprehensive analysis of the diversity, abundance, and evolution of the Pong-like transposase gene in the genomes of 21 diploid species from the wheat tribe, Triticeae, and we present the first convincing evidence of horizontal transfer of nuclear-encoded Pong elements in any organism. A phylogenetic analysis of nearly 300 Pong sequences based on a conserved region of the transposase domain revealed a complex evolutionary history of Pong elements that can be best explained by ancestral polymorphism, followed by differential evolutionary success of some transposase lineages, and by occasional horizontal transfer between phylogenetically distant genera. In addition, we used transposon display to estimate the abundance of the transposase gene within Triticeae genomes, and our results revealed varying levels of Pong proliferation, with numbers of transposase copies ranging from 22 to 92. Comparisons of Pong transposase abundance to flow cytometry estimates of genome size revealed that larger Triticeae genome size was not correlated with transposase abundance. PMID:26206730

  9. Elemental abundances in AGB stars and the formation of the Galactic bulge

    Wood P.R.; Ryde N.; Lebzelter T.; Blommaert J.A.D.L.; Uttenthaler S.; Schultheis M.; Aringer B.

    2012-01-01

    We obtained high-resolution near-IR spectra of 45 AGB stars located in the Galactic bulge. The aim of the project is to determine key elemental abundances in these stars to help constrain the formation history of the bulge. A further aim is to link the photospheric abundances to the dust species found in the winds of the stars. Here we present a progress report of the analysis of the spectra.

  10. Population Signatures in Planetary Nebulae from Abundances of Fe-group and Neutron-Capture Elements

    Dinerstein, Harriet L.; Geballe, Thomas R.; Sterling, N. C.

    2015-08-01

    There are two categories of elements for which abundances are measured in planetary nebulae (PNe). The first are species whose abundances may be modified by nuclear reactions in the star prior to PN formation, such as He, C, N, and nuclei made by slow neutron captures (Karakas & Lattanzio 2014, PASA, 31, 30). In contrast, elements unaffected by evolution should indicate the star’s initial composition. These include S, Ar, Cl, and (with certain exceptions) O and Ne, most of which are alpha species. A long-missing piece of the puzzle has been the abundances of the Fe-group elements. We cannot determine a meaningful elemental abundance from the gas-phase Fe lines seen in PNe, since Fe is heavily depleted into dust. Another approach is to use a different element as a proxy for Fe. Dinerstein & Geballe (2001, ApJ, 562, 515) identified a line at 3.625 μm as due to Zn, the least refractory Fe-group element. Observations of this line in Milky Way PNe yield -1 ≤ [Zn/H] ≤ 0 (Smith, Zijlstra, & Dinerstein 2014, MNRAS, 441, 3161; Dinerstein et al. 2015, in preparation). Substituting Zn for Fe, PNe can be placed in the [alpha/Fe] vs. [Fe/H] diagram used to characterize stellar populations. Dividing our sample into probable thin and thick disk members using the kinematic criterion of Peimbert’s Type II and III classes (1978, IAU Symp. 76, 215), we find that they occupy similar regions in [alpha/Fe] vs. [Fe/H] phase space as the stars of those populations. Elevated [alpha/Fe] values at subsolar [Fe/H], which tend to be higher for thick than thin disk PNe, cause degeneracies that make alpha species ambiguous metallicity indicators. This is important for self-enrichment studies, since if the initial abundance of an element is lower than projected from an alpha species, internal synthesis may be required to produce even a solar final abundance. Low observed abundances of the n-capture element Se suggest that many Type III PNe may have subsolar initial abundances of n

  11. The Abundance of Iron-Peak Elements and the Dust Composition in eta Carinae: Manganese

    Bautista, M. A.; Melendez, M.; Hartman, H.; Gull, T. R.; Lodders, K.

    2010-01-01

    We study the chemical abundances of the Strontium Filament found in the ejecta of (eta) Carinae. In particular, we derive the abundances of iron-peak elements front spectra of their singly ionized ions present in the optical/IR spectra. In this paper we analyze the spectrum of Mn II using a new non-LTE model for this system. In constructing this models we carried out theoretical calculations of radiative transition rates and electron impact excitation rate coefficients. We find that relative to Ni the gas phase abundance ratio of Mn is roughly solar, similar to the Cr abundance but in contrast to the large enhancements in the abundances of Sc and Ti. NVe interpret this result as an indication of non-equilibrium condensation in the ejecta of (eta) Carinae.

  12. A new comprehensive set of elemental abundances in DLAs - II. Data analysis and chemical variation studies

    Dessauges-Zavadsky, M; D'Odorico, S; Calura, F; Matteucci, F

    2005-01-01

    We present new elemental abundance studies of seven damped Lyman-alpha systems (DLAs). Together with the four DLAs analyzed in Dessauges-Zavadsky et al. (2004), we have a sample of eleven DLA galaxies with uniquely comprehensive and homogeneous abundance measurements. These observations allow one to study the abundance patterns of 22 elements and the chemical variations in the interstellar medium of galaxies outside the Local Group. Comparing the gas-phase abundance ratios of these high redshift galaxies, we found that they show low RMS dispersions, reaching only up 2-3 times the statistical errors for the majority of elements. This uniformity is remarkable given that the quasar sightlines cross gaseous regions with HI column densities spanning over one order of magnitude and metallicities ranging from 1/55 to 1/5 solar. The gas-phase abundance patterns of interstellar medium clouds within the DLA galaxies detected along the velocity profiles show, on the other hand, a high dispersion in several abundance rat...

  13. Complete element abundances of nine stars in the r-process galaxy Reticulum II

    Ji, Alexander P; Simon, Joshua D; Chiti, Anirudh

    2016-01-01

    We present chemical abundances derived from high-resolution Magellan/MIKE spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II. These stars span the full metallicity range of Ret II (-3.5 < [Fe/H] < -2). Seven of the nine stars have extremely high levels of r-process material ([Eu/Fe]~1.7), in contrast to the extremely low neutron-capture element abundances found in every other ultra-faint dwarf galaxy studied to date. The other two stars are the most metal-poor stars in the system ([Fe/H] < -3), and they have neutron-capture element abundance limits similar to those in other ultra-faint dwarf galaxies. We confirm that the relative abundances of Sr, Y, and Zr in these stars are similar to those found in r-process halo stars but ~0.5 dex lower than the solar r-process pattern. If the universal r-process pattern extends to those elements, the stars in Ret II display the least contaminated known r-process pattern. The abundances of lighter elements up to the...

  14. Trace Element Abundance Relationships in the Multi—stage Comagmatic Fractional Crystallization and Their Applications

    汪云亮; 李巨初

    1993-01-01

    In this study a mathematical expression of trace element abundance relationship for the mul-ti-stage comagmatic fractional crystallization has been established ,based on geochemical studies of the Emeishan basalt-trachyte series and adjacent mafic-ultramafic layered intrusions, as well as on the avail-able data for basalt, andesite, dacite and rhyolite series in southern Andes,Chile ,which have been well documented.It is demonstrated that the abundance constant (R) for a given trace element at dif-ferent stages of fractional crystallization of a parental magma is highly variable,which can be used as a criterion to divide fractional crystallization stages.

  15. New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    Sneden, Christopher; Cowan, John J; Ivans, Inese I; Hartog, Elizabeth A Den

    2009-01-01

    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rare-earth, and Hf (56<= Z <= 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.

  16. Gaia FGK benchmark stars: abundances of α and iron-peak elements

    Jofré, P.; Heiter, U.; Soubiran, C.; Blanco-Cuaresma, S.; Masseron, T.; Nordlander, T.; Chemin, L.; Worley, C. C.; Van Eck, S.; Hourihane, A.; Gilmore, G.; Adibekyan, V.; Bergemann, M.; Cantat-Gaudin, T.; Delgado-Mena, E.; González Hernández, J. I.; Guiglion, G.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Mikolaitis, S.; Montes, D.; Pancino, E.; Recio-Blanco, A.; Sordo, R.; Sousa, S.; Tabernero, H. M.; Vallenari, A.

    2015-10-01

    Context. In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. Aims: We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni for our predefined set of Gaia FGK benchmark stars. Methods: By analysing high-resolution spectra with a high signal-to-noise ratio taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We performed a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis. We also assessed errors that are due to non-local thermal equilibrium and the stellar parameters in our final abundances. Results: Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. Conclusions: The atmospheric parameters of the Gaia FGK benchmark stars are already being widely used for calibration of several pipelines that are applied to different surveys. With the added reference abundances of ten elements, this set is very suitable for calibrating the chemical abundances obtained by these pipelines. Based on NARVAL and HARPS data obtained within the Gaia DPAC (Data Processing and Analysis Consortium) and coordinated by the GBOG (Ground-Based Observations for Gaia) working group and on data retrieved from the ESO-ADP database.Tables C.1-C.35 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A81

  17. Abundance ratios of volatile vs. refractory elements in planet-harbouring stars: hints of pollution?

    Ecuvillon, A.; Israelian, G.; Santos, N. C.; Mayor, M.; Gilli, G.

    2005-01-01

    We present the [X/H] trends as function of the elemental condensation temperature Tc in 88 planet host stars and in a volume-limited comparison sample of 33 dwarfs without detected planetary companions. We gathered homogeneous abundance results for many volatile and refractory elements spanning a wide range of Tc, from a few dozens to several hundreds kelvin. We investigate possible anomalous trends of planet hosts with respect to comparison sample stars in order to detect evidence of possibl...

  18. Galactic abundance gradients from Cepheids: alpha and heavy elements in the outer disk

    Lemasle, B; Genovali, K; Kovtyukh, V V; Bono, G; Inno, L; Laney, C D; Kaper, L; Bergemann, M; Fabrizio, M; Matsunaga, N; Pedicelli, S; Primas, F; Romaniello, M

    2013-01-01

    Context: Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the PL relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients. Aims: We want to measure the Galactic abundance gradient of several chemical elements. While the slope of the Cepheid iron gradient did not vary much from the very first studies, the gradients of the other elements are not that well constrained. In this paper we focus on the inner and outer regions of the Galactic thin disk. Methods: We use HR spectra (FEROS, ESPADONS, NARVAL) to measure the abundances of several light (Na, Al), alpha (Mg, Si, S, Ca), and heavy elements (Y, Zr, La, Ce, Nd, Eu) in a sample of 65 Milky Way Cepheids. Combining these results with accurate distances from period-Wesenheit relations in the NIR enables us to determine the abundance gradients in the Milky Way. Results: Our results are in good agreement wit...

  19. Elemental Abundance Analyses with DAO Spectrograms. XXXIX. The Am Stars 2 UMa and 15 Vul

    Çay, İpek H.; Teker Yelkenci, Aysegul; Adelman, Saul J.

    2016-05-01

    We derived the elemental abundances of the metallic-line stars 2 UMa (=HR 3354; spectral type A2m) and 15 Vul (=HR 7653; spectral type A4 III), using high-dispersion, high signal-to-noise ratio (≥200) optical region spectrograms obtained with CCD detectors at the long Coudé camera of the 1.22 m telescope of the Dominion Astrophysical Observatory (DAO) and Kurucz's ATLAS9 and WIDTH9 programs. The star 2 UMa has not been the subject of a modern detailed elemental abundances analysis. It is relatively sharp-lined and sufficiently hot (T eff = 8050 K) that the continuum placement is not a major problem in the optical region. Comparison of the results of this new study of 15 Vul with the last complete study shows a 0.15 dex mean increase in the derived abundances and a reduction in the standard deviations of the mean values. The abundance anomalies of 2 UMa are usually larger than those of 15 Vul. The greater spectral coverage of 15 Vul compared with 2 UMa results in a larger number of abundances being derived. The abundances of 2 UMa are typical for those of classical Am stars that have similar effective temperatures and surface gravities. 15 Vul, characterized by a similar effective temperature and smaller surface gravity, is a more evolved star.

  20. Fe-Group Elements in the Metal-Poor Star HD 84937: Abundances and their Implications

    Sneden, Chris; Cowan, John J.; Kobayashi, Chiaki; Pignatari, Marco; Lawler, James E.; Den Hartog, Elizabeth; Wood, Michael P.

    2016-01-01

    We have derived accurate relative abundances of the Fe-group elements Sc through Zn in the very metal-poor main-sequence turnoff star HD 84937. For this study we analyzed high resolution, high signal-to-noise HST/STIS and VLT/UVES spectra over a total wavelength range 2300-7000 Å. We employed only recent or newly-applied reliable laboratory transition data for all species. Abundances from more than 600 lines of non-Fe species were combined with about 550 Fe lines in HD 84937 to yield abundance ratios of high precision. From parallel analyses of solar photospheric spectra we also derived new solar abundances of these elements. This in turn yielded internally-consistent relative HD 84937 abundances with respect to the Sun. For seven of the ten Fe-group elements the HD 84937 abundances were from both neutral and ionized transitions. In all of these cases the neutral and ionized species yield the same abundances within the measurement uncertainties. Therefore standard Saha ionization balance appears to hold in the HD 84937 atmosphere. We derived metallicity [Fe/H] = -2.32 with sample standard deviation of 0.06. Solid evidence is seen for departures from the solar abundance mix in HD 84937, for example [Co/Fe] = +0.14, [Cu/Fe] = -0.83, and = +0.31. Combining our Sc, Ti, and V abundances for this star with those from large-sample spectroscopic surveys suggests that these elements are positively correlated in stars with [Fe/H] analysis strongly suggests that different types of supernovae with a large scatter of explosion energies and asymmetries contributed to the creation of the Fe-group elements early in the Galaxy's history.This work has been supported in part by NASA grant NNX10AN93G (J.E.L.), by NSF grants AST-1211055 (J.E.L.), AST-1211585 (C.S.), PHY-1430152 (through JINA, J.J.C. and M.P.), EU MIRGCT-2006-046520 (M.P.), and by the ``Lendlet-2014'' Programme of the Hungarian Academy of Sciences (M.P.) and from SNF (Switzerland, M.P.).

  1. Search for white dwarf companions of cool stars with peculiar element abundances

    Boehm-Vitense, E.

    1984-01-01

    A search for a white dwarf companions of cool stars with peculiar element abundances was undertaken. One additional star the xi Cet, was found with a white dwarf companion. It was found that HR 1016, 56Uma, 16 Ser, have high excitation emission lines which indicate a high temperature object in the system. It is suggested that since these indications for high temperature companions were seen for all nearby Ba stars, it is highly probable that all Ba stars have white dwarf companions, and that the peculiar element abundances seen in the Ba stars are due to mass transfer. Observations, arguments and conclusions are presented. White dwarf companions were not found. Together with the Li and Be abundances and the chromospheric emission line spectra in these stars were studied. No white dwarf companions were seen for subgiant CH stars.

  2. Elemental abundances at early times: the nature of Damped Lyman-alpha systems

    Molla, Mercedes; Diaz, Angeles,; Ferrini, Federico

    1999-01-01

    The distribution of element abundances with redshift in Damped Ly-alpha (DLA) systems can be adequately reproduced by the same model reproducing the halo and disk components of the Milky Way Galaxy at different galactocentric distances: DLA systems are well represented by normal spiral galaxies in their early evolutionary stages.

  3. The physical structure of Magellanic Cloud HII regions - II. Elemental abundances

    Vermeij, R; van der Hulst, JM

    2002-01-01

    Based on a new data set of optical and infrared spectra described in Vermeij et al. (2001), we analyse the gas-phase elemental abundances of a sample of H II regions in the Large and Small Magellanic Cloud. The combined optical and infrared data set gives us access to all the ionization stages of as

  4. Gaia FGK benchmark stars: abundances of alpha and iron-peak elements

    Jofré, P; Soubiran, C; Blanco-Cuaresma, S; Masseron, T; Nordlander, T; Chemin, L; Worley, C C; Van Eck, S; Hourihane, A; Gilmore, G; Adibekyan, V; Bergemann, M; Cantat-Gaudin, T; Delgado-Mena, E; Hernández, J I González; Guiglion, G; Lardo, C; de Laverny, P; Lind, K; Magrini, L; Mikolaitis, S; Montes, D; Pancino, E; Recio-Blanco, A; Sordo, R; Sousa, S; Tabernero, H M; Vallenari, A

    2015-01-01

    In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co and Ni for our predefined set of Gaia FGK benchmark stars. By analysing high-resolution and high-signal to noise spectra taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We perform a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis, as well as we assess errors due to NLTE and the stellar parameters in our final abundances. Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. The Gaia FGK benchmark stars atmospheric parameters are already being widely used for calibration of several pipelines applied to different su...

  5. Limits on heavy element abundances in QSO Ly α absorption systems

    Intermediate-resolution spectra of the QSOs MCS402, Q0347 -383, Q0420 - 388, and Q2204 - 408 have been combined to yield average spectra of Lyα absorption systems with improved signal-to-noise ratios. Searches for absorption lines of a number of heavy elements were carried out with no positive detections. Limits on the heavy element ions' column densities have been determined which are in broad agreement with previous studies. The further usefulness of intermediate-resolution spectra for setting heavy element abundance limits in Lyα systems is considered. (author)

  6. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from 10Ne to 40Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m3 balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 106 cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  7. THE SuperTIGER Instrument: Measurement of Elemental Abundances of Ultra-Heavy Galactic Cosmic Rays

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Brandt, T. J.; Daniels, W. M.; DowKonnt, P. F.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Israel, M. H.; Klemic, J.; Labrador, A. W.; Link, J. T.; Mewaldt, R. A.; Mitchell, J. W.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F.; Sakai, K.; San Sebastian, F.; Sasaki, M.; Simburger, G. E.; Stone, E. C.; Waddington, C. J.; Ward, J. E.; Wiedenbeck, M. E.

    2014-01-01

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from Ne-10 to Zr-40 with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 measures the energy spectra of the more abundant elements for Z instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million cu m balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 x 10(exp 6) cosmic-ray nuclei with Z > or = 10, including approx.1300 with Z > 29 and approx.60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  8. Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis

    In an effort to obtain information about mineral/melt trace element partitioning during the high pressure petrogenesis of basic rocks, we determined rare earth and other trace element abundances in megacrysts of clinopyroxene, orthopyroxene, amphibole, mica, anorthoclase, apatite and zircon, and in their host basalts. In general, the ranges of mineral/melt partition coefficients established from experimental partitioning studies and phenocryst/matrix measurements overlap with the ranges of megacryst/host abundance ratios. Our data for Hf, Sc, Ta and Th partitioning represent some of the only estimates available. Consideration of phase equilibria, major element partitioning and isotopic ratios indicate that most of the pyroxene and amphibole megacrysts may have been in equilibrium with their host magmas at high pressures. In contrast, it is unlikely that mica, anorthoclase, apatite and zircon megacrysts formed in equilibrium with their host basalts; instead, we conclude that they were precipitated from more evolved magmas and have been mixed into their present host magmas. Consequently, the trace element abundance ratios for megacryst/host should not be interpreted as partition coefficients, but only as guides for understanding trace element partitioning during high pressure petrogenesis. (author)

  9. The superTIGER instrument: Measurement of elemental abundances of ultra-heavy galactic cosmic rays

    Binns, W. R.; Bose, R. G.; Braun, D. L.; Dowkontt, P. F.; Israel, M. H.; Moore, P.; Murphy, R. P.; Olevitch, M. A.; Rauch, B. F. [Washington University, St. Louis, MO 63130 (United States); Brandt, T. J.; Daniels, W. M.; Fitzsimmons, S. P.; Hahne, D. J.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Klemic, J.; Labrador, A. W.; Mewaldt, R. A., E-mail: wrb@wustl.edu [California Institute of Technology, Pasadena, CA 91125 (United States); and others

    2014-06-10

    The SuperTIGER (Super Trans-Iron Galactic Element Recorder) instrument was developed to measure the abundances of galactic cosmic-ray elements from {sub 10}Ne to {sub 40}Zr with individual element resolution and the high statistics needed to test models of cosmic-ray origins. SuperTIGER also makes exploratory measurements of the abundances of elements with 40 < Z ≤ 60 and measures the energy spectra of the more abundant elements for Z ≤ 30 from about 0.8 to 10 GeV/nucleon. This instrument is an enlarged and higher resolution version of the earlier TIGER instrument. It was designed to provide the largest geometric acceptance possible and to reach as high an altitude as possible, flying on a standard long-duration 1.11 million m{sup 3} balloon. SuperTIGER was launched from Williams Field, McMurdo Station, Antarctica, on 2012 December 8, and made about 2.7 revolutions around the South Pole in 55 days of flight, returning data on over 50 × 10{sup 6} cosmic-ray nuclei with Z ≥ 10, including ∼1300 with Z > 29 and ∼60 with Z > 49. Here, we describe the instrument, the methods of charge identification employed, the SuperTIGER balloon flight, and the instrument performance.

  10. Heavy element abundances in giant stars of the globular clusters M4 and M5

    Yong, David; Lambert, David L; Chieffi, Alessandro; Limongi, Marco

    2008-01-01

    We present a comprehensive abundance analysis of 27 heavy elements in bright giant stars of the globular clusters M4 and M5 based on high resolution, high signal-to-noise ratio spectra obtained with the Magellan Clay Telescope. We confirm and expand upon previous results for these clusters by showing that (1) all elements heavier than, and including, Si have constant abundances within each cluster, (2) the elements from Ca to Ni have indistinguishable compositions in M4 and M5, (3) Si, Cu, Zn, and all s-process elements are approximately 0.3 dex overabundant in M4 relative to M5, and (4) the r-process elements Sm, Eu, Gd, and Th are slightly overabundant in M5 relative to M4. The cluster-to-cluster abundance differences for Cu and Zn are intriguing, especially in light of their uncertain nucleosynthetic origins. We confirm that stars other than Type Ia supernovae must produce significant amounts of Cu and Zn at or below the clusters' metallicities. If intermediate-mass AGB stars or massive stars are responsib...

  11. Solar Abundances of Rock Forming Elements, Extreme Oxygen and Hydrogen in a Young Polluted White Dwarf

    Farihi, J; Zuckerman, B; Vican, L; Gänsicke, B T; Smith, N; Walth, G; Breedt, E

    2016-01-01

    The Teff = 20,800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log(O/He) = -3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log(H/He) = -1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion timescales for a helium atmosphere white dwarf, of no more than a few hundred yr, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2e9 g/s, and at least 4 t...

  12. CD -24_17504 revisited: a new comprehensive element abundance analysis

    Jacobson, Heather R

    2015-01-01

    With [Fe/H] ~ -3.3, CD -24_17504 is a canonical metal-poor main sequence turn-off star. Though it has appeared in numerous literature studies, the most comprehensive abundance analysis for the star based on high resolution, high signal-to-noise spectra is nearly 15 years old. We present a new detailed abundance analysis for 21 elements based on combined archival Keck-HIRES and VLT-UVES spectra of the star that is higher in both spectral resolution and signal-to-noise than previous data. Our results for many elements are very similar to those of an earlier comprehensive study of the star, but we present for the first time a carbon abundance from the CH G-band feature as well as improved upper limits for neutron-capture species such as Y, Ba and Eu. In particular, we find that CD -24_17504 has [Fe/H] = -3.41, [C/Fe] = +1.10, [Sr/H] = -4.68 and [Ba/H] <= -4.46, making it a carbon enhanced metal-poor star with neutron-capture element abundances among the lowest measured in Milky Way halo stars.

  13. Chemical Elements Abundance in the Universe and the Origin of Life

    Valkovic, Vlado

    2016-01-01

    Element synthesis which started with p-p chain has resulted in several specific characteristics including lack of any stable isotope having atomic masses 5 or 8. The carbon to oxygen ratio is fixed early by the chain of coincidences. These, remarkably fine-tuned, conditions are responsible for our own existence and indeed the existence of any carbon based life in the Universe. Chemical evolution of galaxies reflects in the changes of chemical composition of stars, interstellar gas and dust. The evolution of chemical element abundances in a galaxy provides a clock for galactic aging. On the other hand, the living matter on the planet Earth needs only some elements for its existence. Compared with element requirements of living matter a hypothesis is put forward, by accepting the Anthropic Principle, which says: life as we know, (H-C-N-O) based, relying on the number of bulk and trace elements originated when two element abundance curves, living matter and galactic, coincided. This coincidence occurring at part...

  14. Detailed Chemical Abundances in NGC 5824: Another Metal-Poor Globular Cluster with Internal Heavy Element Abundance Variations

    Roederer, Ian U; Bailey, John I; Spencer, Meghin; Crane, Jeffrey D; Shectman, Stephen A

    2015-01-01

    We present radial velocities, stellar parameters, and detailed abundances of 39 elements derived from high-resolution spectroscopic observations of red giant stars in the luminous, metal-poor globular cluster NGC 5824. We observe 26 stars in NGC 5824 using the Michigan/Magellan Fiber System (M2FS) and two stars using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We derive a mean metallicity of [Fe/H]=-1.94+/-0.02 (statistical) +/-0.10 (systematic). The metallicity dispersion of this sample of stars, 0.08 dex, is in agreement with previous work and does not exceed the expected observational errors. Previous work suggested an internal metallicity spread only when fainter samples of stars were considered, so we cannot exclude the possibility of an intrinsic metallicity dispersion in NGC 5824. The M2FS spectra reveal a large internal dispersion in [Mg/Fe], 0.28 dex, which is found in a few other luminous, metal-poor clusters. [Mg/Fe] is correlated with [O/Fe] and anti-correlated with [Na/Fe] and [Al/F...

  15. Abundances of Refractory Elements for G-type Stars with Extrasolar Planets

    Kang, Wonseok; Kim, Kang-Min

    2011-01-01

    We confirm the difference of chemical abundance between stars with and without exoplanet, as well as present the relation between chemical abundances and the physical properties of exoplanets such as planetary mass and semi-major axis of planetary orbit. We have obtained the spectra of 52 G-type stars with BOES (BOAO Echelle Spectrograph) and carried out the abundance analysis for 12 elements of Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni. We first have found that the [Mn/Fe] ratios of planet-host stars are higher than those of comparisons in the whole metallicity range, and in metal-poor stars of [Fe/H] $<$ -0.4, the abundance difference have been larger than in metal-rich samples, especially for the elements of Mg, Al, Sc, Ti, V, and Co. When examined the relation between planet properties and metallicities of planet-host stars, we have observed that planet-host stars with low-metallicity tend to bear several low-mass planets ($< M_J$) instead of a massive gas-giant planet.

  16. Central Elemental Abundance Ratios in the Perseus Cluster Resonant Scattering or SN Ia Enrichment?

    Dupke, R A; Dupke, Renato A.; Arnaud, Keith A.

    2001-01-01

    We have determined elemental abundance ratios in the core of the Perseus cluster for several elements. These ratios indicate a central dominance of SN Ia ejecta similar to that found for A496, A2199 and A3571 (Dupke & White 2000). Simultaneous analysis of ASCA spectra from SIS1, GIS 2&3 shows that the ratio of Ni to Fe abundances is ~ (3.4 +- 1.1) times Solar within the central 4'. This ratio is consistent with (and more precise than) that observed in other clusters whose central regions are dominated by SN Ia ejecta. Such a large Ni over-abundance is predicted by "Convective Deflagration" explosion models for SN Ia such as "W7" but is inconsistent with delayed detonation models. We note that with current instrumentation the NiK(alpha) line is confused with FeK(beta) and that the Ni over-abundance we observe has been interpreted by others as an anomalously large ratio of FeK(beta) to FeK(alpha) caused by resonant scattering in the FeK(alpha) line. We argue that a central enhancement of SN Ia ejecta an...

  17. New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    Sneden, Christopher; Lawler, James E.; Cowan, John J.; Ivans, Inese I.; Hartog, Elizabeth A. Den

    2009-01-01

    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rar...

  18. Heavy Element Abundances in Planetary Nebulae from Deep Optical Echelle Spectroscopy

    Mashburn, Amanda; Sterling, Nicholas C.; Dinerstein, Harriet L.; Garofali, Kristen; Jensema, Rachael; Turbyfill, Amanda; Wieser, Hannah-Marie N.; Reed, Evan C.; Redfield, Seth

    2016-01-01

    We present the abundances of neutron(n)-capture elements (atomic number Z > 30) and iron determined from deep optical echelle spectroscopy of 14 Galactic planetary nebulae (PNe). The spectra were obtained with the 2D-coudé spectrograph on the 2.7-m Harlan J. Smith telescope at McDonald Observatory. The abundances of n-capture elements can be enhanced in PNe due to slow n-capture nucleosynthesis in the progenitor asymptotic giant branch (AGB) stars. The high spectral resolution of these data (R = 36,700) allow most n-capture element emission lines to be resolved from other nebular and telluric features. We detect Kr in all of the observed PNe (with multiple ions detected in several objects), while Br, Rb, and Xe were each detected in 4--5 objects. Using the new Kr ionization correction factors (ICFs) of Sterling et al. (2015, ApJS, 218, 25), we find [Kr/O] abundances ranging from 0.05 to 1.1 dex. We utilize approximate ICFs for the other n-capture elements, and find slightly lower enrichments for Br and Rb (-0.1 to 0.7 dex), while Xe is enhanced relative to solar by factors of two to 30. The [Xe/Kr] ratios range from -0.3 to 1.4 dex, indicating a significant range in neutron exposures in PN progenitor stars. Interestingly, the largest [Xe/Kr] ratio is found in the thick-disk PN NGC 6644, which has a lower metallicity than the other observed PNe. We detect iron emission lines in all but one target. Fe can be depleted into dust grains in ionized nebulae, and its abundance thus provides key information regarding dust-to-gas ratios and grain destruction processes. We find that [Fe/O] ranges from -1.3 to -0.7 dex in the observed PNe, a smaller spread of depletion factors than found in recent studies (Delgado-Inglada & Rodriguez 2014, ApJ, 784, 173) though this may be due in part to our smaller sample. These data are part of a larger study of heavy elements in PNe, which will provide more accurate determinations of n-capture element abundances than previous estimates in

  19. Study of isotopic fractions and abundances of the neutron-capture elements in HD 175305

    Zhang, Jiang; Zhang, Bo; 10.1111/j.1365-2966.2009.15947.x

    2010-01-01

    The chemical abundances of metal-poor stars are excellent sources of information for setting new constraints on models of Galactic chemical evolution at low metallicities. In this paper we present an attempt to fit the elemental abundances observed in the bright, metal-poor giant HD 175305, and derive isotopic fractions using a parametric model. The observed abundances can be wellmatched by the combined contributions froms- and r-processmaterial. The component coefficients of the r- and s-processes are C1 = 3.220 and C3 = 1.134, respectively. The Smisotopic fraction in this star where the observed neutron-capture elements are produced is predicted to be f 152+154 =0.582,which suggests that, even though the r-process is predominantly responsible for the synthesis of the neutron-capture elements in the early Galaxy, the onset of the s-process had already occurred at this metallicity of [Fe/H] = -1.6.

  20. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  1. Meteoritic Constraints on Models of the Solar Nebula: The Abundances of Moderately Volatile Elements

    Cassen, Patrick; Cuzzi, Jeff (Technical Monitor)

    1994-01-01

    The "moderately volatile" elements are those which condense (or evaporate) in the temperature range 650 - 1350 K, as a mix of material with solar abundances is cooled (or heated) tinder equilibrium conditions. Their relative abundances in chondritic meteorites are solar (or "cosmic", as defined by the composition of Cl meteorites) to within a factor of several, but vary within that range in a way that correlates remarkably well with condensation temperature, independent of chemical affinity. It has been argued that this correlation reflects a systematically selective process which favored the accretion of refractory material over volatile material from a cooling nebula. Wasson and Chou (Meteoritics 9, 69-94, 1974, and Wasson and co-authors in subsequent papers) suggested that condensation and settling of solids contemporaneously with the cooling and removal of nebular gas could produce the observed abundance patterns, but a quantitative model has been lacking. We show that the abundance patterns of the moderately volatile elements in chondritic meteorites can be produced, in some degree of quantitative detail, by models of the solar nebula that are designed to conform to observations of T Tauri stars and the global conservation laws. For example, even if the local surface density of the nebula is not decreasing, condensation and accretion of solids from radially inflowing gas in a cooling nebula can result in depletions of volatiles, relative to refractories, like those observed, The details of the calculated abundance patterns depend on (but are not especially sensitive to) model parameters, and can exhibit the variations that distinguish the meteorite classes. Thus it appears that nebula characteristics such as cooling rates, radial flow velocities, and particle accumulation rates can be quantitatively constrained by demanding that they conform to meteoritic data; and the models, in turn, can produce testable hypotheses regarding the time and location of the

  2. The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy

    Dwek, E

    1997-01-01

    We present models for the evolution of the elemental abundances in the gas and dust phases of the interstellar medium (ISM) of our Galaxy by generalizing standard models for its dynamical and chemical evolution. In these models, the stellar birthrate history is determined by the infall rate of primordial gas, and by its functional dependence on the mass surface density of the stars and gas. We adopt a two component model for the Galaxy, consisting of a central bulge and an exponential disk with different infall rates and stellar birthrate histories. Condensation in stellar winds, Type Ia and Type II supernovae, and the accretion of refractory elements onto preexisting grains in dense molecular clouds are the dominant contributors to the abundance of elements locked up in the dust. Grain destruction by sputtering and evaporative grain-grain collisions in supernova remnants are the most important mechanisms that return these elements back to the gas phase. We calculate the dust production rate by the various du...

  3. Chemical analysis of CH stars - I: atmospheric parameters and elemental abundances

    Karinkuzhi, Drisya

    2014-01-01

    Results from high-resolution spectral analyses of a selected sample of CH stars are presented. Detailed chemical composition studies of these objects, which could reveal abundance patterns that in turn provide information regarding nucleosynthesis and evolutionary status, are scarce in the literature. We conducted detailed chemical composition studies for these objects based on high resolution (R ~ 42000) spectra. The spectra were taken from the ELODIE archive and cover the wavelength range from 3900 to 6800 A, in the wavelength range. We estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from Local thermodynamic equilibrium analyses using model atmospheres. Estimated temperatures of these objects cover a wide range from 4550 K to 6030 K, the surface gravity from 1.8 to 3.8 and metallicity from -0.18 to -1.4. We report updates on elemental abundances for several heavy elements and present estimates of abundance ratios of Sr, Y, Zr, B...

  4. What are the Sources of Solar Energetic Particles? Element Abundances and Source Plasma Temperatures

    Reames, Donald V

    2015-01-01

    We have spent 50 years in heated discussion over which populations of solar energetic particles (SEPs) are accelerated at flares and which by shock waves driven out from the Sun by coronal mass ejections (CMEs). The association of the large "gradual" SEP events with shock acceleration is supported by the extensive spatial distribution of SEPs and by the delayed acceleration of the particles. The relative abundances of the elements in these gradual events are a measure of those in the ambient solar corona, differing from those in the photosphere by a widely-observed function of the first ionization potential (FIP) of the elements. SEP events we call "impulsive", the traditional "3He-rich" events with enhanced heavy-element abundances, are associated with type III radio bursts, flares, and narrow CMEs; they selectively populate flux tubes that thread a localized source, and they are fit to new particle-in-cell models of magnetic reconnection on open field lines as found in solar jets. These models help explain ...

  5. SP_Ace: a new code to derive stellar parameters and elemental abundances

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters

  6. On the Measurement of Elemental Abundance Ratios in Inner Galaxy H II Regions

    Simpson, Janet P.; Rubin, Robert H.; Colgan, Sean W. J.; Erickson, Edwin F.; Haas, Michael R.

    2004-01-01

    Although abundance gradients in the Milky Way Galaxy certainly exist, details remain uncertain, particularly in the inner Galaxy, where stars and H II regions in the Galactic plane are obscured optically. In this paper we revisit two previously studied, inner Galaxy H II regions: G333.6-0.2 and W43. We observed three new positions in G333.6-0.2 with the Kuiper Airborne Observatory and reobserved the central position with the Infrared Space Observatory's Long Wavelength Spectrometer in far-infrared lines of S++, N++, N+, and O++. We also added the N+ lines at 122 and 205 microns to the suite of lines measured in W43 by Simpson et al.. The measured electron densities range from approx. 40 to over 4000 per cu cm in a single HII region, indicating that abundance analyses must consider density variations, since the critical densities of the observed lines range from 40 to 9000 per cu cm. We propose a method to handle density variations and make new estimates of the S/H and N/H abundance ratios. We find that our sulfur abundance estimates for G333.6-0.2 and W43 agree with the S/H abundance ratios expected for the gradient previously reported by Simpson et al., with the S/H values revised to be smaller owing to changes in collisional excitation cross sections. The estimated N/H, S/H, and N/S ratios are the most reliable because of their small corrections for unseen ionization states (element and sulfur is a primary element in galactic chemical evolution calculations. We compute models of the two H II regions to estimate corrections for the other unseen ionization states. We find, with large uncertainties, that oxygen does not, have a high abundance, with the result that the N/O ratio is as high (approx. 0.35) as previously reported. The reasons for the uncertainty in the ionization corrections for oxygen are both the non-uniqueness of the H II region models and the sensitivity of these models to different input atomic data and stellar atmosphere models. We discuss these

  7. Sources of carbon and the evolution of the abundance of CNO elements

    Liang, Y. C.; Zhao, G.; Shi, J. R.

    2001-01-01

    Using the standard infall model of Galactic chemical evolution, we explore the origin of carbon and calculate the abundance evolution of CNO elements for 8 different models of stellar nucleosynthesis yields. The results show that, in the early stage of the Galaxy, massive stars are the main producer of carbon, and that as our Galaxy evolves to the late stage, the longer lived intermediate- and low-mass stars play an increasingly important role, while at the same time, metal-rich Wolf-Rayet st...

  8. Trace Element Abundances in an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    Mane, Prajkta; Wadhwa, M.; Keller, L. P.

    2013-01-01

    Calcium-aluminum-rich refractory inclusions (CAIs) are thought to be the first-formed solids in the Solar protoplanetary disk and can provide information about the earliest Solar System processes (e.g., [1]). A hibonite-perovskitebearing CAI from the Allende CV3 chondrite (SHAL, [2]) contains a single of 500 micrometers hibonite grain and coarse-grained perovskite. The mineralogy and oxygen isotopic composition of this CAI shows similarities with FUN inclusions, especially HAL [2]. Here we present trace element abundances in SHAL.

  9. An alternative explanation of the evolution of element abundance ratios during the history of the Galaxy

    It is well established that stellar element abundances show a variation of some ratios, such as oxygen to iron and calcium to iron, with the overall metallicity of the star. This has been ascribed to a time-delay effect due to the different mean lifetimes of the stars and binaries that give rise to Type II and Type I supernovae. We propose here that this identification may be premature, and that the observations could equally well be explained by a 'pseudo-secondary' behaviour in the nucleosynthesis of iron. (author)

  10. Evolution of heavy-element abundances in the galactic halo and disk

    The constraints on the universal energy density and cosmological constant from cosmochronological ages and the Hubble age are reviewed. Observational evidence for the galactic chemical evolution of the heavy-element chronometers is described in the context of numerical models. The viability of the recently discovered Th/Nd stellar chronometer is discussed, along with the suggestion that high r-process abundances in metal-poor stars may have resulted from a primordial r-process, as may be required by some inhomogeneous cosmologies

  11. Galactic abundance gradients from Cepheids. α and heavy elements in the outer disk

    Lemasle, B.; François, P.; Genovali, K.; Kovtyukh, V. V.; Bono, G.; Inno, L.; Laney, C. D.; Kaper, L.; Bergemann, M.; Fabrizio, M.; Matsunaga, N.; Pedicelli, S.; Primas, F.; Romaniello, M.

    2013-10-01

    Context. Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the period-luminosity relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients. Aims: We want to measure the Galactic abundance gradient of several chemical elements. While the slope of the Cepheid iron gradient did not vary much from the very first studies, the gradients of the other elements are not that well constrained. In this paper we focus on the inner and outer regions of the Galactic thin disk. Methods: We use high-resolution spectra (FEROS, ESPADONS, NARVAL) to measure the abundances of several light (Na, Al), α (Mg, Si, S, Ca), and heavy elements (Y, Zr, La, Ce, Nd, Eu) in a sample of 65 Milky Way Cepheids. Combining these results with accurate distances from period-Wesenheit relations in the near-infrared enables us to determine the abundance gradients in the Milky Way. Results: Our results are in good agreement with previous studies on either Cepheids or other tracers. In particular, we confirm an upward shift of ≈0.2 dex for the Mg abundances, as has recently been reported. We also confirm the existence of a gradient for all the heavy elements studied in the context of a local thermodynamic equilibrium analysis. However, for Y, Nd, and especially La, we find lower abundances for Cepheids in the outer disk than reported in previous studies, leading to steeper gradients. This effect can be explained by the differences in the line lists used by different groups. Conclusions: Our data do not support a flattening of the gradients in the outer disk, in agreement with recent Cepheid studies and chemo-dynamical simulations. This is in contrast to the open cluster observations but remains compatible with a picture where the transition zone between the inner disk and the outer disk would move outward with time. Based on observations obtained

  12. On the Measurement of Elemental Abundance Ratios in Inner Galaxy H II Regions

    Simpson, J P; Colgan, S W J; Erickson, E F; Haas, M R; Simpson, Janet P.; Rubin, Robert H.; Colgan, Sean W. J.; Erickson, Edwin F.; Haas, Michael R.

    2004-01-01

    Although variations in elemental abundance ratios in the Milky Way Galaxy certainly exist, details remain uncertain, particularly in the inner Galaxy, where stars and H II regions in the Galactic plane are obscured optically. In this paper we revisit two previously studied, inner Galaxy H II regions: G333.6-0.2 and W43. We observed three new positions in G333.6-0.2 with the Kuiper Airborne Observatory and reobserved the central position with the Infrared Space Observatory's Long Wavelength Spectrometer in far-infrared lines of S++, N++, N+, and O++. We also added the N+ lines at 122 and 205 micron to the suite of lines measured in W43 by Simpson et al. (1995). The measured electron densities range from ~40 to over 4000 cm-3 in a single H II region, indicating that abundance analyses must consider density variations, since the critical densities of the observed lines range from 40 to 9000 cm-3. We propose a method to handle density variations and make new estimates of the S/H and N/H abundance ratios. We find ...

  13. LIGHT-ELEMENT ABUNDANCE VARIATIONS AT LOW METALLICITY: THE GLOBULAR CLUSTER NGC 5466

    We present low-resolution (R ≅850) spectra for 67 asymptotic giant branch (AGB), horizontal branch, and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7 m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s-1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band-strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken for five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function 'bump' on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances.

  14. Solar Flare Element Abundances from the Solar Assembly for X-rays (SAX) on MESSENGER

    Dennis, B R; Schwartz, R A; Tolbert, A K; Starr, R D; Nittler, L R

    2015-01-01

    X-ray spectra in the range $1.5-8.5$~keV have been analyzed for 526 large flares detected with the Solar Assembly for X-rays (SAX) on the Mercury {\\em MESSENGER} spacecraft between 2007 and 2013. For each flare, the temperature and emission measure of the emitting plasma were determined from the spectrum of the continuum. In addition, with the SAX energy resolution of 0.6 keV (FWHM) at 6~keV, the intensities of the clearly resolved Fe-line complex at 6.7~keV and the Ca-line complex at 3.9~keV were determined, along with those of unresolved line complexes from S, Si, and Ar at lower energies. Comparisons of these line intensities with theoretical spectra allow the abundances of these elements relative to hydrogen to be derived, with uncertainties due to instrument calibration and the unknown temperature distribution of the emitting plasma. While significant deviations are found for the abundances of Fe and Ca from flare to flare, the abundances averaged over all flares are found to be enhanced over photospheri...

  15. Beryllium and Alpha-Element Abundances in a Large Sample of Metal-Poor Stars

    Boesgaard, Ann Merchant; Levesque, Emily M; Bowler, Brendan P

    2011-01-01

    The light elements, Li, Be, and B, provide tracers for many aspects of astronomy including stellar structure, Galactic evolution, and cosmology. We have taken spectra of Be in 117 metal-poor stars ranging in metallicity from [Fe/H] = -0.5 to -3.5 with Keck I + HIRES at a resolution of 42,000 and signal-to-noise ratios of near 100. We have determined the stellar parameters spectroscopically from lines of Fe I, Fe II, Ti I and Ti II. The abundances of Be and O were derived by spectrum synthesis techniques, while abundances of Fe, Ti, and Mg were found from many spectral line measurements. There is a linear relationship between [Fe/H] and A(Be) with a slope of +0.88 +-0.03 over three orders of magnitude in [Fe/H]. We fit the relationship between A(Be) and [O/H] with both a single slope and with two slopes. The relationship between [Fe/H] and [O/H] seems robustly linear and we conclude that the slope change in Be vs. O is due to the Be abundance. Although Be is a by-product of CNO, we have used Ti and Mg abundanc...

  16. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. IV. ALPHA ELEMENT DISTRIBUTIONS IN MILKY WAY SATELLITE GALAXIES

    We derive the star formation histories of eight dwarf spheroidal (dSph) Milky Way satellite galaxies from their alpha element abundance patterns. Nearly 3000 stars from our previously published catalog comprise our data set. The average [α/Fe] ratios for all dSphs follow roughly the same path with increasing [Fe/H]. We do not observe the predicted knees in the [α/Fe] versus [Fe/H] diagram, corresponding to the metallicity at which Type Ia supernovae begin to explode. Instead, we find that Type Ia supernova ejecta contribute to the abundances of all but the most metal-poor ([Fe/H] < -2.5) stars. We have also developed a chemical evolution model that tracks the star formation rate, Types II and Ia supernova explosions, and supernova feedback. Without metal enhancement in the supernova blowout, massive amounts of gas loss define the history of all dSphs except Fornax, the most luminous in our sample. All six of the best-fit model parameters correlate with dSph luminosity but not with velocity dispersion, half-light radius, or Galactocentric distance.

  17. Light, alpha, and Fe-peak element abundances in the galactic bulge

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l, b) = (+5.25,–3.02) and (0,–12). The (+5.25,–3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high-resolution (R ∼ 20,000), high signal-to-noise ration (S/N ≳ 70) FLAMES-GIRAFFE spectra obtained through the European Southern Observatory archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. This work extends previous analyses of this data set beyond Fe and the α-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H] ≳ –0.5. In particular, the bulge [α/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick disk, and the Fe-peak elements Co, Ni, and Cu appear enhanced compared to the disk. There is also some evidence that the [Na/Fe] (but not [Al/Fe]) trends between the bulge and local disk may be different at low and high metallicity. We also find that the velocity dispersion decreases as a function of increasing [Fe/H] for both fields, and do not detect any significant cold, high-velocity populations. A comparison with chemical enrichment models indicates that a significant fraction of hypernovae may be required to explain the bulge abundance trends, and that initial mass functions that are steep, top-heavy (and do not include strong outflow), or truncated to avoid including contributions from stars >40 M ☉ are ruled out, in particular because of disagreement with the Fe-peak abundance data. For most elements, the NGC 6553 stars exhibit abundance trends nearly identical to comparable metallicity bulge field stars

  18. Chemical analysis of CH stars - II: atmospheric parameters and elemental abundances

    Karinkuzhi, Drisya

    2014-01-01

    We present detailed chemical analyses for a sample of twelve stars selected from the CH star catalogue of Bartkevicius (1996). The sample includes two confirmed binaries, four objects that are known to show radial velocity variations and the rest with no information on the binary status. A primary objective is to examine if all these objects exhibit chemical abundances characteristics of CH stars, based on detailed chemical composition study using high resolution spectra. We have used high resolution (R ~ 42000) spectra from the ELODIE archive. These spectra cover 3900 to 6800 Angstrom in the wavelength range. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from LTE analysis using model atmospheres. Estimated temperatures of these objects cover a wide range from 4200 K to 6640 K, the surface gravity from 0.6 to 4.3 and metallicity from -0.13 to -1.5. We report updates on elemental abundances for several heavy elements, Sr,...

  19. The Gaia-ESO Survey: Stellar content and elemental abundances in the massive cluster NGC\\,6705

    Cantat-Gaudin, T; Zaggia, S; Bragaglia, A; Sordo, R; Drew, J E; Eisloeffel, J; Farnhill, H J; Gonzalez-Solares, E; Greimel, R; Irwin, M J; Kupcu-Yoldas, A; Jordi, C; Blomme, R; Sampedro, L; Costado, M T; Alfaro, E; Smiljanic, R; Magrini, L; Donati, P; Friel, E D; Jacobson, H; Abbas, U; Hatzidimitriou, D; Spagna, A; Vecchiato, A; Balaguer-Nunez, L; Lardo, C; Tosi, M; Pancino, E; Klutsch, A; Tautvaisiene, G; Drazdauskas, A; Puzeras, E; Jimenez-Esteban, F; Maiorca, E; Geisler, D; San, I; Villanova, S; Gilmore, G; Randich, S; Bensby, T; Flaccomio, E; Lanzafame, A; Recio-Blanco, A; Damiani, F; Hourihane, A; Jofre, P; deLaverny, P; Masseron, T; Morbidelli, L; Prisinzano, L; Sacco, G G; Sbordone, L; Worley, C C

    2014-01-01

    Chemically inhomogeneous populations are observed in most globular clusters, but not in open clusters. Cluster mass seems to play a key role in the existence of multiple populations. Studying the chemical homogeneity of the most massive open clusters is necessary to better understand the mechanism of their formation and determine the mass limit under which clusters cannot host multiple populations. Here we studied NGC6705, that is a young and massive open cluster located towards the inner region of the Milky Way. This cluster is located inside the solar circle. This makes it an important tracer of the inner disk abundance gradient. This study makes use of BVI and ri photometry and comparisons with theoretical isochrones to derive the age of NGC6705. We study the density profile of the cluster and the mass function to infer the cluster mass. Based on abundances of the chemical elements distributed in the first internal data release of the Gaia-ESO Survey, we study elemental ratios and the chemical homogeneity ...

  20. Elemental abundances of the supergiant stars {\\sigma} Cygnus and {\\eta} Leonis

    Tanriverdi, Taner

    2015-01-01

    This study aims to analyse the elemental abundances for the late B type supergiant star $\\sigma$ Cyg and the early A-type supergiant $\\eta$ Leo using ATLAS9 (Kurucz, 1995; Sbordone et al., 2004), assuming local thermodynamic equilibrium (LTE). The spectra used in this study are obtained from Dominion Astrophysical Observatory and have high resolution and signal-to-noise ratios. The effective temperature and the surface gravity of $\\sigma$ Cyg are determined from the ionisation equilibria of Al I/II, Mg I/II, Fe I/II, Fe II/III , and by fitting to the wings of H$_\\gamma$ and H$_\\beta$ profiles as $\\textit{T}$$_{eff}$ = 10388 K and log $\\textit{g}$ = 1.80. The elemental abundances of $\\eta$ Leo} are determined using $\\textit{T}$$_{eff}$ = 9600 K and log $\\textit{g}$ = 2.00, as reported by Przybilla et al. (2006). The ionisation equilibria of C I/II, N I/II, Mg I/II, Ca I/II, Cr I/II and Fe I/II/III are also satisfied in the atmosphere of $\\eta$ Leo. The radial velocities of $\\sigma$ Cyg and $\\eta$ Leo are -7.25...

  1. What Are the Sources of Solar Energetic Particles? Element Abundances and Source Plasma Temperatures

    Reames, Donald V.

    2015-11-01

    We have spent 50 years in heated discussion over which populations of solar energetic particles (SEPs) are accelerated at flares and which by shock waves driven out from the Sun by coronal mass ejections (CMEs). The association of the large "gradual" SEP events with shock acceleration is supported by the extensive spatial distribution of SEPs and by the delayed acceleration of the particles. Recent STEREO observations have begun to show that the particle onset times correspond to the observed time of arrival of the shock on the observer's magnetic flux tube and that the SEP intensities are related to the local shock speed. The relative abundances of the elements in these gradual events are a measure of those in the ambient solar corona, differing from those in the photosphere by a widely-observed function of the first ionization potential (FIP) of the elements. SEP events we call "impulsive", the traditional "3He-rich" events with enhanced heavy-element abundances, are associated with type III radio bursts, flares, and narrow CMEs; they selectively populate flux tubes that thread a localized source, and they are fit to new particle-in-cell models of magnetic reconnection on open field lines as found in solar jets. These models help explain the strong enhancements seen in heavy elements as a power (of 2-8) in the mass-to-charge ratio A/Q throughout the periodic table from He to Pb. A study of the temperature dependence of A/Q shows that the source plasma in impulsive SEP events must lie in the range of 2-4 MK to explain the pattern of abundances. This is much lower than the temperatures of >10 MK seen on closed loops in solar flares. Recent studies of A/Q-dependent enhancements or suppressions from scattering during transport show source plasma temperatures in gradual SEP events to be 0.8-1.6 MK in 69 % of the events, i.e. coronal plasma; 24 % of the events show reaccelerated impulsive-event material.

  2. Oxygen, {\\alpha}-element and iron abundance distributions in the inner part of the Galactic thin disc

    Martin, R P; Kovtyukh, V V; Korotin, S A; Yegorova, I A; Saviane, Ivo

    2015-01-01

    We derived elemental abundances in 27 Cepheids, the great majority situated within a zone of Galactocentric distances ranging from 5 to 7 kpc. One star of our sample, SU Sct, has a Galactocentric distance of about 3 kpc, and thus falls in a poorly investigated region of the inner thin disc. Our new results, combined with data on abundances in the very central part of our Galaxy taken from literature, show that iron, magnesium, silicon, sulfur, calcium and titanium LTE abundance radial distributions, as well as NLTE distribution of oxygen reveal a plateau-like structure or even positive abundance gradient in the region extending from the Galactic center to about 5 kpc.

  3. Abundances of neutron-capture elements in G 24-25. A halo-population CH subgiant

    Liu, S; Schuster, W J; Zhao, G; Chen, Y Q; Liang, Y C

    2012-01-01

    The differences between the neutron-capture element abundances of halo stars are important to our understanding of the nucleosynthesis of elements heavier than the iron group. We present a detailed abundance analysis of carbon and twelve neutron-capture elements from Sr up to Pb for a peculiar halo star G24-25 with [Fe/H] = -1.4 in order to probe its origin. The equivalent widths of unblended lines are measured from high resolution NOT/FIES spectra and used to derive abundances based on Kurucz model atmospheres. In the case of CH, Pr, Eu, Gd, and Pb lines, the abundances are derived by fitting synthetic profiles to the observed spectra. Abundance analyses are performed both relative to the Sun and to a normal halo star G16-20 that has similar stellar parameters as G24-25. We find that G24-25 is a halo subgiant star with an unseen component. It has large overabundances of carbon and heavy s-process elements and mild overabundances of Eu and light s-process elements. This abundance distribution is consistent wi...

  4. Determination of isotope abundance and elemental concentration of lithium by thermal ionization mass spechometry

    An analytical method for the determination of the isotope abundance and elemental concentration of lithium by mass spectrometry has been developed. A study, envolving the optimization of the various experimental parameters aimed at reducing the isotope fractionation that occur during evaporation, has been made. The experimental parameters optimized are: type of filament arrangement, accelerating voltage of the ions, quantity and chemical form of the samples deposited and the temperature of ionization. The effect of isotope fractionation on the isotope ratio measurements has been studied and compared with the theoretical model of Kanno and correction has been applied based on the variation of the isotope ratio of lithium with the time of analysis. The concentration of lithium in a sample of uranyl nitrate and an U.S.G.S. rock standard has been determined by the mass spectrometric isotope dilution technique using a tracer enriched in lithium-6. (Author)

  5. Chemical element abundances in the outer halo globular cluster M 75

    Kacharov, Nikolay

    2013-01-01

    We present the first comprehensive abundance study of the massive, outer halo globular cluster (GC) M 75 (NGC 6864). This unique system shows a very extended trimodal horizontal branch (HB), but no other clues for multiple populations have been detected in its colour-magnitude diagram (CMD). Based on high-resolution spectroscopic observations of 16 red giant stars, we derived the abundances of a large variety of alpha, p-capture, iron-peak, and n-capture elements. We found that the cluster is metal-rich ([Fe/H] = -1.16 +/- 0.02 dex, [alpha/Fe] = +0.30 +/- 0.02 dex), and shows a marginal spread in [Fe/H] of 0.07 dex, typical of most GCs of similar luminosity. We detected significant variations of O, Na, and Al among our sample, suggesting three different populations. Additionally, the two most Na-rich stars are also significantly Ba-enhanced, indicating a fourth population of stars. Curiously, most stars in M 75 (excluding the two Ba-rich stars) show a predominant r-process enrichment pattern, which is unusual...

  6. SP_Ace: a new code to derive stellar parameters and elemental abundances

    Boeche, C

    2015-01-01

    Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R=2,000-20,000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860\\AA\\ and 8400-8924\\AA, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "$GCOG$ library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the s...

  7. The Helium content of Globular Clusters: light element abundance correlations and HB morphology. I. NGC6752

    Villanova, S; Gratton, R G

    2009-01-01

    Helium has been proposed as the key element to interpret the observed multiple main sequences (MS), subgiant branches (SGB) and red giant branches (RGB), as well as the complex horizontal branch (HB) morphology in Globular Clusters (GC). However, up to now, He was never directly measured in suitable GC stars (8500abundances were measured. We could measure He abundance only for stars warmer than Teff=8500 K. All our targets with measurable He are zero age HB (ZAHB) objects and turned out to have a homogeneous He content with a mean value of Y=0.245+-0.012, compatible with the most recent measurements of the primordial He content of the Universe (Y~0.25). The whole sample of stars have a metallicity of [Fe/H]=-1.56+-0.03 and [alpha/Fe]=+0.21+-0.03. Our HB targets show the sa...

  8. Stellar population models of Lick indices with variable element abundance ratios

    Thomas, D; Bender, R; Thomas, Daniel; Maraston, Claudia

    2003-01-01

    We provide the whole set of Lick indices from CN1 to TiO2 of Simple Stellar Population models with, for the first time, variable element abundance ratios, [alpha/Fe]=0.0, 0.3, 0.5, [alpha/Ca]=-0.1, 0.0, 0.2, 0.5, and [alpha/N]=-0.5, 0.0. The models cover ages between 1 and 15 Gyr, metallicities between 1/200 and 3.5 solar. Our models are free from the intrinsic alpha/Fe bias that was imposed by the Milky Way template stars up to now, hence they reflect well-defined alpha/Fe ratios at all metallicities. The models are calibrated with Milky Way globular clusters for which metallicities and alpha/Fe ratios are known from independent spectroscopy of individual stars. The metallicities that we derive from the Lick indices Mgb and Fe5270 are in excellent agreement with the metallicity scale by Zinn & West (1984), and we show that the latter provides total metallicity rather than iron abundance. We can reproduce the relatively strong CN-absorption features CN1 and CN2 of galactic globular clusters with models in...

  9. The Curious Case of Elemental Abundance Differences in the Dual Hot Jupiter Hosts WASP-94AB

    Teske, Johanna K; Ramírez, Ivan

    2016-01-01

    Binary stars provide an ideal laboratory for investigating the potential effects of planet formation on stellar composition. Assuming the stars formed in the same environment/from the same material, any compositional anomalies between binary components might indicate differences in how material was sequestered in planets, or accreted by the star in the process of planet formation. We present here a study of the elemental abundance differences between WASP-94AB, a pair of stars that each host a hot Jupiter exoplanet. The two stars are very similar in spectral type (F8 and F9), and their ~2700 AU separation suggests their protoplanetary disks were likely not influenced by stellar interactions, but WASP-94Ab's orbit -- misaligned with the host star spin axis and likely retrograde -- points towards a dynamically active formation mechanism, perhaps different than that of WASP-94Bb, which is not misaligned and has nearly circular orbit. Based on our high-quality spectra and strictly relative abundance analysis, we ...

  10. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. I. THE SCULPTOR DWARF SPHEROIDAL GALAXY

    We present measurements of Fe, Mg, Si, Ca, and Ti abundances for 388 radial velocity member stars in the Sculptor dwarf spheroidal galaxy (dSph), a satellite of the Milky Way (MW). This is the largest sample of individual α element (Mg, Si, Ca, and Ti) abundance measurements in any single dSph. The measurements are made from Keck/Deep Imaging Multi-Object Spectrometer medium-resolution spectra (6400-9000 A, R ∼ 6500). Based on comparisons to published high-resolution (R ∼> 20,000) spectroscopic measurements, our measurements have uncertainties of σ[Fe/H] = 0.14 and σ[α/Fe] = 0.13. The Sculptor [Fe/H] distribution has a mean ([Fe/H]) = -1.58 and is asymmetric with a long, metal-poor tail, indicative of a history of extended star formation. Sculptor has a larger fraction of stars with [Fe/H] -1 in [Fe/H] and +0.013 ± 0.003 dex arcmin-1 in [α/Fe] out to 11 arcmin (275 pc). Together, these measurements cast Sculptor and possibly other surviving dSphs as representative of the dwarf galaxies from which the metal-poor tail of the Galactic halo formed.

  11. History of Milky Way Dwarf Spheroidal Galaxies Imprinted on Abundance Patterns of Neutron-Capture Elements

    Tsujimoto, T; Tsujimoto, Takuji; Shigeyama, Toshikazu

    2002-01-01

    Stellar abundance pattern of neutron-capture elements such as barium is used as a powerful tool to infer how star formation proceeded in dwarf spheroidal (dSph) galaxies. It is found that the abundance correlation of barium with iron in stars belonging to dSph galaxies orbiting the Milky Way, i.e., Draco, Sextans, and Ursa Minor have a feature similar to the barium-iron correlation in Galactic metal-poor stars. The common feature of these two correlations can be realized by our inhomogeneous chemical evolution model based on the supernova-driven star formation scenario if dSph stars formed from gas with a velocity dispersion of ~26 km/s. This velocity dispersion together with the stellar luminosities strongly suggest that dark matter dominated dSph galaxies. The tidal force of the Milky Way links this velocity dispersion with the currently observed value <10 km/s by stripping the dark matter in dSph galaxies. As a result, the total mass of each dSph galaxy is found to have been originally ~25 times larger ...

  12. Petrogenesis of high-CaO lavas from Mauna Kea, Hawaii: Constraints from trace element abundances

    Huang, Shichun; Humayun, Munir

    2016-07-01

    The role of a mafic component in the petrogenesis of Oceanic Island Basalts (OIBs) is highly debated. As the best studied OIB, Hawaiian lavas provide critical insights into OIB genesis. At a given MgO content, the CaO content in the melt has been used to distinguish between partial melts of peridotite and garnet pyroxenite/eclogite. However, calculations using the BATCH program show that CaO contents in volatile-free melts saturated with all four phases, garnet, clinopyroxene, orthopyroxene and olivine, are controlled by both degrees of partial melting and source compositions, and low melt CaO content is not diagnostic of partial melts from garnet pyroxenite/eclogite. This is an important consideration in understanding the origin of high-CaO lavas recovered from the Hawaii Scientific Drilling Project (HSDP). Detailed geochemical and isotopic studies have been focused on the HSDP high- and low-SiO2 group lavas, and high-CaO lavas were not well studied because they were not included in the original reference suite samples. Here, we report trace element abundances obtained on a suite of high-CaO glasses and compared the trace element abundances of high-CaO lavas to those in high- and low-SiO2 lavas. When normalized to the average composition of low-SiO2 lavas, high-CaO lavas form a U-shaped trace element pattern, enriched in both the most incompatible (Nb, Th) and the least incompatible (Sc, V) elements. This compositional distinction is best explained if high-CaO parental magma represents a mixture of a low degree partial melt of the low-SiO2 mantle source with a high degree (>80%) partial melt derived from a mafic cumulate component. This mafic cumulate must be clinopyroxene-rich, and it could be delaminated mafic cumulate formed under arcs during continent formation, lower continental crust, recycled lower oceanic crust, or high pressure cumulates from a magma chamber.

  13. Organic matter formed from hydrolysis of metal carbides of the iron peak of cosmic elemental abundance

    Cataldo, Franco

    2003-01-01

    This work is a modern revisitation of an old idea of great chemists of the past such as Berthelot, Mendeleev, Cloez and Moissan: the formation of organic matter under pre-biotic conditions starting from the hydrolysis of metal carbides. This idea was originally proposed for the formation of petroleum in the Earth and was extended to other bodies of the solar system by Sokolov at the end of the 19th century. The reason for this revisitation lies in the fact that complex organic matter resembling a petroleum fraction may exist in certain protoplanetary nebulae. The present work starts with a survey of the theory of the inorganic origin of petroleum and reports on current evidence for its derivation from residues of formerly living matter, but also considers theories that admit both a biogenic and an abiogenic origin for petroleum. By considering the cosmic abundance of elements and the evidence concerning the presence of carbides in meteorites, we discuss the formation, structure and hydrolysis products derived from the metal carbides of the iron peak of cosmic elemental abundance. Chromium carbide (Cr3C2) has then been used as a model compound for all the key carbides of the iron peak of the cosmic abundance (Cr, Fe, Ni, V, Mn, Co) and it has been hydrolysed under different conditions and the hydrocarbons formed have been analysed using electronic spectroscopy, high-performance liquid chromatography with a diode-array detector (HPLC-DAD) and by Fourier-transform infrared (FT-IR) spectroscopy. Methane, a series of about 20 different alkenes with single and conjugated double bonds have been detected. Paraffins are formed simultaneously with the alkene series but no acetylenic hydrocarbons have been detected. This study confirms early works considering the easy hydrolysis of the carbides of Cr, Fe, Ni, Mn and Co with the formation of H2, a series of alkanes including methane and a series of alkenes including ethylene. The peculiar behaviour of copper carbide (copper is

  14. Cosmic-ray origin in OB associations and preferential acceleration of refractory elements: Evidence from abundances of elements 26Fe through 34Se

    Rauch, B F; Lodders, K; Israel, M H; Barbier, L M; Binns, W R; Christian, E R; Cummings, J R; De Nolfo, G A; Geier, S; Mewaldt, R A; Mitchell, J W; Schindler, S M; Scott, L M; Stone, E C; Streitmatter, R E; Waddington, C J; Wiedenbeck, M E

    2009-01-01

    We report abundances of elements from 26Fe to 34Se in the cosmic radiation measured during fifty days of exposure of the Trans-Iron Galactic Element Recorder (TIGER) balloon-borne instrument. These observations add support to the concept that the bulk of cosmic-ray acceleration takes place in OB associations, and they further support cosmic-ray acceleration models in which elements present in interstellar grains are accelerated preferentially compared with those found in interstellar gas.

  15. LIGHT-ELEMENT ABUNDANCES OF GIANT STARS IN THE GLOBULAR CLUSTER M71 (NGC 6838)

    Cordero, M. J. [Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, Heidelberg (Germany); Pilachowski, C. A.; Vesperini, E. [Astronomy Department, Indiana University Bloomington, Swain West 319, 727 East 3rd Street, Bloomington, IN 47405-7105 (United States); Johnson, C. I., E-mail: mjcorde@lsw.uni-heidelberg.de, E-mail: catyp@astro.indiana.edu, E-mail: evesperi@indiana.edu, E-mail: cjohnson@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-15, Cambridge, MA 02138 (United States)

    2015-02-10

    Aluminum is the heaviest light element displaying large star-to-star variations in Galactic globular clusters (GCs). This element may provide additional insight into the origin of the multiple populations, now known to be common place in GCs, and also the nature of the first-generation stars responsible for a cluster's chemical inhomogeneities. In a previous analysis, we found that unlike more metal-poor GCs, 47 Tuc did not exhibit a strong Na-Al correlation, which motivates a careful study of the similar metallicity but less massive GC M71. We present chemical abundances of O, Na, Al, and Fe for 33 giants in M71 using spectra obtained with the WIYN-Hydra spectrograph. Our spectroscopic analysis finds that similar to 47 Tuc and in contrast with more metal-poor GCs, M71 stars do not exhibit a strong Na-Al correlation and span a relatively narrow range in [Al/Fe], which are characteristics that GC formation models must reproduce.

  16. The Abundances of the Fe Group Elements in Early B Stars in the Magellanic Clouds and Bridge

    Peters, Geraldine J.; Adelman, Saul J.

    2016-01-01

    The abundances of three Fe Group elements (V, Cr, and Fe) in 9 early main-sequence band B stars in the LMC, 7 in the SMC , and two in the Magellanic Bridge have been determined from archival FUSE observations and the Hubeny/Lanz NLTE programs TLUSTY/SYNSPEC. Lines from the Fe group elements, except for a few weak multiplets of Fe III, are not observable in the optical spectral region. The best set of lines in the FUSE spectral region are Fe III (UV1), V III 1150 Å, and Cr III 1137 Å. The abundances of these elements in early B stars are a marker for recent SNe Ia activity, as a single exploding white dwarf can deliver 0.5 solar masses of Ni-56 that decays into Fe to the ISM. The Fe group abundances in an older population of stars primarily reflect SNe II activity, in which a single explosion delivers only 0.07 solar masses of Ni-56 to the ISM (the rest remains trapped in the neutron star). The abundances of the Fe group elements in early B stars not only track SNe Ia activity but are also important for computing evolutionary tracks for massive stars. In general, the Fe abundance relative to the sun's value is comparable to the mean abundances for the lighter elements in the Clouds/Bridge but the values of [V,Cr/Fe]sun are smaller. This presentation will discuss the spatial distribution of the Fe Group elements in the Magellanic Clouds, and compare it with our galaxy in which the abundance of Fe declines with radial distance from the center. Support from NASA grants NAG5-13212, NNX10AD66G, STScI HST-GO-13346.22, and USC's Women in Science and Engineering (WiSE) program is greatly appreciated.

  17. Abundances of neutron-capture elements in stars of the Galactic disk substructures

    Mishenina, T. V.; Pignatari, M.; Korotin, S. A.; Soubiran, C.; Charbonnel, C.; Thielemann, F.-K.; Gorbaneva, T. I.; Basak, N. Yu.

    2013-04-01

    Aims: The aim of this work is to present and discuss the observations of the iron peak (Fe, Ni) and neutron-capture element (Y, Zr, Ba, La, Ce, Nd, Sm, and Eu) abundances for 276 FGK dwarfs, located in the Galactic disk with metallicity -1 SN and SNIa. The increase in the [Ni/Fe] for metallicity higher than solar is confirmed, and it is due to the metallicity dependence of 56Ni ejecta from SNIa. Under large uncertainty in the age determination of observed stars, we verified that there is a large dispersion in the AMR in the thin disk, and no clear trend as in the thick disk. That may be one of the main reasons for the dispersion, observed for the s-process elements in the thin disk (e.g., Ba and La), whereas much narrower dispersion can be seen for r-process elements (e.g., Eu). Within the current uncertainties, we do not see a clear decreasing trend of [Ba/Fe] or [La/Fe] with metallicity in the thin disk, except maybe for super-solar metallicities. We cannot confirm an increase in the mentioned ratios with decreasing stellar age. Based on spectra collected with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute Provence (France).Tables 4 and 5 are only available at the CDS via anonymous ftp to ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/552/A128

  18. The Abundances of Light Neutron-Capture Elements in Planetary Nebulae III. The Impact of New Atomic Data on Nebular Selenium and Krypton Abundance Determinations

    Sterling, N C; Dinerstein, H L

    2015-01-01

    The detection of neutron(n)-capture elements in several planetary nebulae (PNe) has provided a new means of investigating s-process nucleosynthesis in low-mass stars. However, a lack of atomic data has inhibited accurate trans-iron element abundance determinations in astrophysical nebulae. Recently, photoionization and recombination data were determined for Se and Kr, the two most widely detected n-capture elements in nebular spectra. We have incorporated these new data into the photoionization code Cloudy. To test the atomic data, numerical models were computed for 15 PNe that exhibit emission lines from multiple Kr ions. We found systematic discrepancies between the predicted and observed emission lines that are most likely caused by inaccurate photoionization and recombination data. These discrepancies were removed by adjusting the Kr$^+$--Kr$^{3+}$ photoionization cross sections within their cited uncertainties and the dielectronic recombination rate coefficients by slightly larger amounts. From grids of ...

  19. Deriving Plasma Densities and Elemental Abundances from SERTS Differential Emission Measure Analysis

    Schmelz, J. T.; Kimble, J. A.; Saba, J. L. R.

    2012-01-01

    We use high-resolution spectral emission line data obtained by the SERTS instrument during three rocket flights to demonstrate a new approach for constraining electron densities of solar active region plasma.We apply differential emission measure (DEM) forward-fitting techniques to characterize the multithermal solar plasma producing the observed EUV spectra, with constraints on the high-temperature plasma from the Yohkoh Soft X-ray Telescope. In this iterative process, we compare line intensities predicted by an input source distribution to observed line intensities for multiple iron ion species, and search a broad range of densities to optimize chi-square simultaneously for the many available density-sensitive lines. This produces a density weighted by the DEM, which appears to be useful for characterizing the bulk of the emitting plasma over a significant range of temperature. This "DEM-weighted density" technique is complementary to the use of density-sensitive line ratios and less affected by uncertainties in atomic data and ionization fraction for any specific line. Once the DEM shape and the DEM-weighted density have been established from the iron lines, the relative elemental abundances can be determined for other lines in the spectrum. We have also identified spectral lines in the SERTS wavelength range that may be problematic

  20. Heavy Element Abundances and Dust Depletions in 4 Gamma Ray Bursts

    Savaglio, S; Fiore, F

    2003-01-01

    We have determined the column densities of UV absorption lines in 4 Gamma Ray Burst (GRB) optical transients, using the curve of growth analysis. From a direct comparison with the column densities of the same elements observed in damped Lyman-alpha (DLA) systems along QSO sight lines, we unambiguously find that 3 GRB-DLAs are characterized by much higher column densities of ZnII with respect to QSO-DLAs. The relative abundances of [Fe/Zn], [Si/Zn] and [Cr/Zn] as a function of ZnII column density in QSO--DLAs, are smaller at larger N_{ZnII}. These trends are confirmed by the GRB-DLA measurements, being located at the lower [X/Zn] and higher ZnII column part of the QSO-DLA distribution. Very small [Fe/Zn], [Si/Zn] and [Cr/Zn] values in GRBs also indicate a large dust depletion and extinction. Once the dust-to-metals ratios are determined in 3 GRBs, we find A_V=0.6, 0.9 and 1.1 mags, to be compared with typical A_V \\sim 0.1 in QSO-DLAs. All our findings support the idea that QSOs (fainter than GRBs) can only pro...

  1. Light, Alpha, and Fe-Peak Element Abundances in the Galactic Bulge

    Johnson, Christian I; Kobayashi, Chiaki; Kunder, Andrea; Koch, Andreas

    2014-01-01

    We present radial velocities and chemical abundances of O, Na, Mg, Al, Si, Ca, Cr, Fe, Co, Ni, and Cu for a sample of 156 red giant branch stars in two Galactic bulge fields centered near (l,b)=(+5.25,-3.02) and (0,-12). The (+5.25,-3.02) field also includes observations of the bulge globular cluster NGC 6553. The results are based on high resolution (R~20,000), high signal-to-noise (S/N>70) FLAMES-GIRAFFE spectra obtained through the ESO archive. However, we only selected a subset of the original observations that included spectra with both high S/N and that did not show strong TiO absorption bands. The present work extends previous analyses of this data set beyond Fe and the alpha-elements Mg, Si, Ca, and Ti. While we find reasonable agreement with past work, the data presented here indicate that the bulge may exhibit a different chemical composition than the local thick disk, especially at [Fe/H]>-0.5. In particular, the bulge [alpha/Fe] ratios may remain enhanced to a slightly higher [Fe/H] than the thick...

  2. Oxygen, $\\alpha$-element and iron abundance distributions in the inner part of the Galactic thin disc. II

    Andrievsky, S M; Kovtyukh, V V; Korotin, S A; Lépine, J R D

    2016-01-01

    We have derived the abundances of 36 chemical elements in one Cepheid star, ASAS 181024--2049.6, located R$_{\\rm G}= 2.53$ kpc from the Galactic center. This star falls within a region of the inner thin disc poorly sampled in Cepheids. Our spectral analysis shows that iron, magnesium, silicon, calcium and titanium LTE abundances in that star support the presence of a plateau-like abundance distribution in the thin disc within 5 kpc of the Galactic center, as previously suggested by \\cite{Maret15}. If confirmed, the flattening of the abundance gradient within that region could be the result of a decrease in the star formation rate due to dynamic effects, possibly from the central Galactic bar.

  3. Galactic abundance gradients from Cepheids. α and heavy elements in the outer disk

    B. Lemasle; P. François; K. Genovali; V.V. Kovtyukh; G. Bono; L. Inno; C.D. Laney; L. Kaper; M. Bergemann; M. Fabrizio; N. Matsunaga; S. Pedicelli; F. Primas; M. Romaniello

    2013-01-01

    Context. Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the period-luminosity relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients. A

  4. Galactic abundance gradients from Cepheids : α and heavy elements in the outer disk

    Lemasle, B.; Francois, P.; Genovali, K.; Kovtyukh, V. V.; Bono, G.; Inno, L.; Laney, C. D.; Kaper, L.; Bergemann, M.; Fabrizio, M.; Matsunaga, N.; Pedicelli, S.; Primas, F.; Romaniello, M.

    2013-01-01

    Context. Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the period-luminosity relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients. A

  5. Determination of rare earth and refractory trace element abundances in early solar system objects by ion microprobe

    S Sahijpal; K K Marhas; J N Goswami

    2003-12-01

    Experimental and analytical procedures devised for measurement of rare earth element (REE) abundances using a secondary ion mass spectrometer (ion microprobe) are described. This approach is more versatile than the conventional techniques such as neutron activation analysis and isotope dilution mass spectrometry by virtue of its high spatial resolution that allows determination of REE abundances in small domains (10-20 micron) within individual mineral phases. The ion microprobe measurements are performed at a low mass-resolving power adopting the energy-filltering technique (Zinner and Crozaz 1986) for removal and suppression of unresolved complex molecular interferences in the REE masses of interest. Synthetic standards are used for determining various instrument specific parameters needed in the data deconvolution procedure adopted for obtaining REE abundances. Results obtained from analysis of standards show that our ion microprobe may be used for determining REE abundances down to ppm range with uncertainties of ∼10 to 15%. Abundances of rare earth and several other refractory trace elements in a set of early solar system objects isolated from two primitive carbonaceous chondrites were determined using the procedures devised by us. The results suggest that some of these objects could be high temperature nebular condensates, while others are products of melting and recrystallization of precursor nebular solids in a high temperature environment.

  6. The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells.

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    With limited global resources for many of the elements that are found in some of the most common renewable energy technologies, there is a growing need to use "Earth-abundant" elements as a long-term solution to growing energy demands. The dye-sensitized solar cell has the potential to produce low-cost renewable energy, with inexpensive production and most components using Earth-abundant elements. However, the most commonly used material for the cell counter electrode (CE) is platinum, an extremely expensive and rare element. A selection of the materials investigated as alternative CEs are discussed, including metal sulfides, oxides, carbides, and nitrides and carbon-based materials such as carbon nanotubes, graphene, and conductive polymers. As well as having the potential for lower cost, these materials can also produce more-efficient devices due to their high surface area and catalytic activity. Therefore, once issues such as stability have been studied in more detail and scale-up of production methods are considered, there is a very promising future for the replacement of Pt in DSSCs with lower-cost, Earth-abundant alternatives. PMID:26727984

  7. On the internal pollution mechanisms in the globular cluster NGC 6121 (M4): heavy-element abundances and AGB models

    D'Orazi, Valentina; Lugaro, Maria; Lattanzio, John C; Pignatari, Marco; Carretta, Eugenio

    2013-01-01

    Globular clusters display significant variations in their light-element content, pointing to the existence of a second stellar generation formed from the ejecta of an earlier generation. The nature of these internal polluters is still a matter of debate: the two most popular scenarios indicate intermediate-mass AGB stars and fast rotating massive stars. Abundances determination for some key elements can help distinguish between these competitor candidates. We present in this paper Y abundances for a sample of 103 red giant branch stars in NGC 6121. Within measurement errors, we find that the [Y/Fe] is constant in this cluster contrary to a recent suggestion. For a subsample of six stars we also find [Rb/Fe] to be constant, consistent with previous studies showing no variation in other s-process elements. We also present a new set of stellar yields for intermediate-mass AGB stellar models of 5 and 6 solar masses, including heavy element s-process abundances. The uncertainties on the mass-loss rate, the mixing-...

  8. The Curious Case of Elemental Abundance Differences in the Dual Hot Jupiter Hosts WASP-94A and B

    Teske, Johanna K.; Khanal, Sandhya; Ramírez, Ivan

    2016-03-01

    Binary stars provide an ideal laboratory for investigating the potential effects of planet formation on stellar composition. Assuming that the stars formed in the same environment/from the same material, any compositional anomalies between binary components might indicate differences in how material was sequestered in planets, or accreted by the star in the process of planet formation. We present here a study of the elemental abundance differences between WASP-94A and B, a pair of stars that each host a hot Jupiter exoplanet. The two stars are very similar in spectral type (F8 and F9), and their ˜2700 au separation suggests that their protoplanetary disks were likely not influenced by stellar interactions, but WASP-94Ab’s orbit—misaligned with the host star spin axis and likely retrograde—points toward a dynamically active formation mechanism, perhaps different from that of WASP-94Bb, which is not misaligned and has a nearly circular orbit. Based on our high-quality spectra and strictly relative abundance analysis, we detect a depletion of volatiles (˜-0.02 dex, on average) and enhancement of refractories (˜0.01 dex) in WASP-94A relative to B (standard errors are ˜0.005 dex). This is different from every other published case of binary host star abundances, in which either no significant abundance differences are reported or there is some degree of enhancement in all elements, including volatiles. Several scenarios that may explain the abundance trend are discussed, but none can be definitively accepted or rejected. Additional high-contrast imaging observations to search for companions that may be dynamically affecting the system, as well as a larger sample of binary host star studies, are needed to better understand the curious abundance trends we observe in WASP-94A and B. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  9. The Lyman limit absorption system in the spectrum of PKS 2126-158 - Heavy-element abundance at high redshift

    The heavy element composition of a Lyman limit absorption system at z(abs) = 2.9676 in the spectrum of PKS 2126 - 158 is studied. Early observations had suggested that this absorption system had no detectable lines of heavy elements. However, new observations reveal weak associated lines due to C IV and C II. Photoionization models show that the system has a C/H abundance ratio = -2.3 + or - 0.2 and an Si/H abundance ratio less than -2.3. The possibility that the z(abs) = 2.9676 system in PKS 2126 - 158 is produced in galactic halo material or by primitive gas-rich dwarf galaxies is discussed. 17 refs

  10. Unusually low heavy-element abundance found in the blue compact dwarf galaxy SBSO335-052

    Blue compact dwarf galaxies are noted for their high star-formation activity and young age. They can therefore be used to verify models of galaxy formation, the chemical evolution of matter and the evolution of massive stars, for example. Here we report observations of the blue compact dwarf galaxy, SBS0335-052, which show that this galaxy has an extremely low heavy-element abundance; the oxygen abundance is 77-times lower than the solar value and 1.7-times lower than that found in another galaxy, I Zw 18, which was the most deficient in heavy elements. The electron temperature, 24,800 K, is very high which leads us to conclude that there are a significant number of stars with masses ∼100 solar mass and effective temperatures of ionizing stars of up to 8 x 104 K in the galaxy. Our observations imply that SBS0335-052 is very young. (author)

  11. Elemental abundance analyses with coadded DAO spectrograms. IV - Revision of previous analyses. V - The mercury-manganese stars Phi Herculis, 28 Herculis and HR 7664

    Adelman, Saul J.

    1988-01-01

    Changes in chromium, manganese, and nickel abundances derived from singly ionized lines are incorporated into the elemental abundance of Adelman and Hill (1987) in order to provide more accurate gf values and damping constants for several atomic species. An improved agreement with the values from neutral lines of the same element is found. In the second part, the method is applied to an elemental abundance analysis of three mercury-manganese stars, and correlations are found between the derived abundances and the effective temperature.

  12. Elemental Abundance Ratios in Stars of the Outer Galactic Disk. IV. A New Sample of Open Clusters

    Yong, David; Friel, Eileen D

    2012-01-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be 18, Be 21, Be 22, Be 32, and PWM 4. For Be 18 and PWM 4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [alpha/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance ( 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age (< 0.04 dex/Gyr). We measure the linear relation between [X/Fe] and metallicity, [Fe/...

  13. High-precision abundances of Sc, Mn, Cu, and Ba in solar twins. Trends of element ratios with stellar age

    Nissen, P E

    2016-01-01

    A previous study of correlations between element abundance ratios, [X/Fe], and ages of solar twin stars is extended to include Sc, Mn, Cu, and Ba. HARPS spectra with S/N > 600 are used to derive very precise (+/- 0.01 dex) differential abundances, and stellar ages with internal errors less than 1 Gyr are obtained by interpolation in the logg - Teff diagram between isochrones calculated with the Aarhus Stellar Evolution Code. For stars younger than 6 Gyr, [X/Fe] is tightly correlated with stellar age for all elements. For ages between 6 and 9 Gyr, the [X/Fe] - age correlations break down and the stars split up into two groups having respectively high and low [X/Fe] for the odd-Z elements. It is concluded that while stars in the solar neighborhood younger than about 6 Gyr were formed from interstellar gas with a smooth chemical evolution, older stars have originated from regions enriched by supernovae with different neutron excesses. Furthermore, the correlations between abundance ratios and stellar age suggest...

  14. Element Abundances in a Gas-rich Galaxy at z = 5: Clues to the Early Chemical Enrichment of Galaxies

    Morrison, Sean; Som, Debopam; DeMarcy, Bryan; Quiret, Samuel; Peroux, Celine

    2016-01-01

    Element abundances in high-redshift quasar absorbers offer excellent probes of the chemical enrichment of distant galaxies, and can constrain models for population III and early population II stars. Recent observations indicate that the sub-damped Lyman-alpha (sub-DLA) absorbers are more metal-rich than the damped Lyman-alpha (DLA) absorbers at redshifts 0$$4.7. However, only 3 DLAs at $z$$>$4.5 and no sub-DLAs at $z$$>$3.5 have "dust-free" metallicity measurements of undepleted elements. We report the first measurement of element abundances in a sub-DLA at $z$=5.0, using Keck HIRES and ESI data. We obtain fairly robust abundances of C, O, Si, and Fe, using lines outside the Lyman-alpha forest. We find this absorber to be metal-poor, with [O/H]=$-2.02$$\\pm$0.12, which is $>$5$\\sigma$ below the level expected from an extrapolation of the trend for $z$$<$3.5 sub-DLAs. The C/O ratio is $1.7^{+0.4}_{-0.3}$ times lower than in the Sun. More strikingly, Si/O is $3.0^{+0.6}_{-0.5}$ times lower than in the Sun, wh...

  15. Double white dwarf mergers and elemental surface abundances in extreme helium and R Coronae Borealis stars

    Jeffery, C. Simon; Karakas, Amanda I.; Saio, Hideyuki

    2011-01-01

    The surface abundances of extreme helium (EHe) and R Coronae Borealis (RCB) stars are discussed in terms of the merger of a carbon-oxygen white dwarf with a helium white dwarf. The model is expressed as a linear mixture of the individual layers of both constituent white dwarfs, taking account of the specific evolution of each star. In developing this recipe from previous versions, particular attention has been given to the inter-shell abundances of the asymptotic giant branch star which evolv...

  16. Elemental abundances of metal poor carbon rich lead star: CS29497-030

    Sivarani, T.; Bonifacio, P.; Molaro, P.; Cayrel, R.; Spite, M.; Spite, F.; Plez, B.; Andersen, J.; Barbuy, B.; Beers, T. C.; Depagne, E.; Hill, V.; Francois, P.; Nordstrom, B.; Primas, F.

    2002-01-01

    We present here the abundance analysis of a metal poor carbon rich lead star, CS29497-030. High resolution and high signal to noise spectra were obtained using the UVES spectrograph on the 8.2m VLT-Kueyen telescope. The observations were made as a part of the Large Programme 165.N-0276, P.I. R. Cayrel. Abundance analysis was done using the latest version of the MARCS model atmospheres (Plez et. al. 1992) and the turbospectrum spectrum synthesis code. We have derived Teff = 6650K from the FeI ...

  17. Seasonal and spatial variation in species diversity, abundance, and element accumulation capacities of macroalgae in mangrove forests of Zhanjiang, China

    ZHANG Yubin; LI Yuan; SHI Fei; SUN Xingli; LIN Guanghui

    2014-01-01

    The objective of this study was to investigate whether there was distinctive seasonal and zonal variation in the species diversity, biomass, and element accumulation capacities of macroalgae in two major intertidal mangrove stand types (Avicennia marina assemblage andSonneratia apetala assemblage) in the Zhanjiang region of southern China. Over a year, 31 species in 15 genera were identified in both mangrove assem-blages, of which the dominant species wereCladophoropsis zollingeriand Enteromorpha clathrat.Macroal-gal species were significantly most abundant in spring (p<0.05), followed by summer, winter, and autumn. Variation in the zonal distribution of macroalgal species was conspicuous in both intertidal mangrove as-semblages, with the greatest abundance in the middle zone, and the least in the front zone. Patterns in the seasonal and zonal variation in macroalgal biomass in theS. apetalaassemblage were similar to those of macroalgal species diversity in both mangrove assemblages. The seasonal patterns in tissue concentrations of 15 analyzed elements were not uniform among the macroalgaeC. zollingeri,E. clathrata, andGracilaria salicornia in theA. marina assemblage. All three species exhibited variation in their responses to ambient concentrations of different elements, implying their differential ability to absorb and selectively accumulate certain elements.

  18. Iron and s-elements abundance variations in NGC5286: comparison with anomalous globular clusters and Milky Way satellites

    Marino, A F; Karakas, A I; Casagrande, L; Yong, D; Shingles, L; Da Costa, G; Norris, J E; Stetson, P B; Lind, K; Asplund, M; Collet, R; Jerjen, H; Sbordone, L; Aparicio, A; Cassisi, S

    2015-01-01

    We present a high resolution spectroscopic analysis of 62 red giants in the Milky Way globular cluster NGC5286. We have determined abundances of representative light proton-capture, alpha, Fe-peak and neutron-capture element groups, and combined them with photometry of multiple sequences observed along the colour-magnitude diagram. Our principal results are: (i) a broad, bimodal distribution in s-process element abundance ratios, with two main groups, the s-poor and s-rich groups; (ii) substantial star-to-star Fe variations, with the s-rich stars having higher Fe, e.g. _s-rich - _s-poor ~ 0.2~dex; and (iii) the presence of O-Na-Al (anti-)correlations in both stellar groups. We have defined a new photometric index, c_{BVI}=(B-V)-(V-I), to maximise the separation in the colour-magnitude diagram between the two stellar groups with different Fe and s-element content, and this index is not significantly affected by variations in light elements (such as the O-Na anticorrelation). The variations in the overall metal...

  19. Abundances of Baade's Window Giants from Keck/HIRES Spectra: II. The Alpha- and Light Odd Elements

    Fulbright, J P; Rich, R M; Fulbright, Jon. P.; William, Andrew Mc

    2006-01-01

    We report detailed chemical abundance analysis of 27 RGB stars towards the Galactic bulge in Baade's Window for elements produced by massive stars: O, Na, Mg, Al, Si, Ca and Ti. All of these elements are overabundant in the bulge relative to the disk, especially Mg, indicating that the bulge is enhanced in Type~II supernova ejecta and most likely formed more rapidly than the disk. We attribute a rapid decline of [O/Fe] to metallicity-dependent yields of oxygen in massive stars, perhaps connected to the Wolf-Reyet phenomenon. he explosive nucleosynthesis alphas, Si, Ca and Ti, possess identical trends with [Fe/H], consistent with their putative common origin. We note that different behaviors of hydrostatic and explosive alpha elements can be seen in the stellar abundances of stars in Local Group dwarf galaxies. We also attribute the decline of Si,Ca and Ti relative to Mg, to metallicity- dependent yields for the explosive alpha elements from Type~II supernovae. The starkly smaller scatter of [/Fe] with [Fe/H] ...

  20. The abundance pattern of heavy elements in Sirius: Impact of modern observations (STIS) and improved Atomic data

    Ramsay Cowley, Charles; Ayres, Thomas; Wahlgren, Glenn; Carpenter, Kenneth

    2015-08-01

    The abundance pattern of heavy elements in Sirius: Impact of modern observations (STIS) and improved atomic data. We determine abundances or upper limits for the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The primary observational material consists of Hubble Space Telescope (HST) spectra taken with the Space Telescope Imaging Spectrograph (STIS) from the ASTRAL project (Ayres 2010, ApJS, 187, 149). We have also used archival material from COPERNICUS (retrieved from the MAST) and from HST/GHRS, as well as the ground-based Furenlid, Westin, and Kurucz Sirius Atlas (FWK). The GHRS observations were described by Wahlgren, et al. (1993, Bull. AAS, 25, 1321). We also used the monumental study of Sirius by Klaus Kohl (1964, Zs. f. Ap. 60, 115, 1964, see also 1964, Das Spektrum des Sirius, 3100 - 8863A, Kiel thesis). Abundance determinations are based on the photospheric model of Landstreet (2011, A&A, 528, 132). The atomic data base is significantly improved since the pioneering work by Sadakane (1988, PASP, 100, 811; 1991, 103, 355). The basic source was VALD3 (http://vald.inasan.ru/~vald3/php/vald.php), supplemented for all species by the essential NIST bibliographic data base (http://physics.nist.gov/cgi-bin/ASBib1/TransProbBib.cgi). We determine abundances and upper limits by synthesizing short wavelength regions around strong lines. Virtually all of the abundance/upper limit results show excesses over the solar composition of between 1 and 2 dex. This result is in general agreement with overall results for metallic line stars, though we have no information on possible severe depletions for most elements. We conclude that the mechanisms causing abundance anomalies in Sirius have not acted to produce the extreme excesses of 4 or more dex (Pt, Hg), or deficiencies (Zn) seen in many HgMn stars.CRC thanks Stefano Bagnulo for the UVESPOP Sirius spectrum. Robert Kurucz was most helpful with older Sirius UV and visual spectra.

  1. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  2. Physical conditions and element abundances in SN and GRB host galaxies at different redshifts

    Contini, M

    2016-01-01

    We compare the physical parameters and the relative abundances calculated throughout supernova (SN) and gamma-ray burst (GRB) host galaxies by the detailed modelling of the spectra. The results show that : 1) shock velocities are lower in long period GRB (LGRB) than in SN host galaxies. 2) O/H relative abundance in SN hosts are scattered within a range 8.0 10^5 K. Ts in LGRB hosts are 3-8 10^4 K. 4) Ha increases with the ionization parameter U. We suggest that SN-host symbiosis is stronger in terms of host galaxy activity than GRB-host in the range of energies related to the near UV - optical - near IR spectra.

  3. Light Element Production in Solar Flares and Present Solar System Abundance of Li, Be, and B

    Bransford, M. A.; Willson, L. A.

    1998-12-01

    If production in stellar flares can be ruled out as a significant source of the Li, Be, and B isotopes observed in stellar atmospheres, then observed abundances provide very stringent constraints on stellar mass loss before and during the main sequence phase. Also, stellar surface abundances of these isotopes are often invoked as constraints on Big Bang nucleosynthesis calculations. Thus, it is important to establish reliable limits on the importance of in situ (flare) production of these isotopes. Indeed, the need for reliable limits is becoming increasingly important in light of several recent observational papers suggesting significant flare production of Li, Be, and B. The question of the possible importance of flare production of these light isotopes may be separated into two specific questions. First, can (or do) solar flares produce Li, Be, and B isotopes in the same ratios as found in the solar photosphere, taking account those slower processes that may modify the abundances ratios after they are formed? Second, are stellar flares energetically capable of producing enough Li, Be, and B to account for the observed abundances? We will present the results of calculations exploring the flare production of these light isotopes, and which address these crucial questions. How do our calculations differ from those in other investigations? The most significant difference is the choice of the mathematical form for the energy spectrum of flare accelerated particles. Calculations have previously employed a power law form, however, it has been shown that the more appropriate form is a modified Bessel function of order 2. One can derive the Bessel function solution from a Fokker-Planck equation for stochastic Fermi acceleration. The Bessel function is our adopted form for the particle energy spectrum. In order to contrast the flare production of Li, Be, B, and the ratios of the isotopes, based on the choice of the particle energy spectrum, we present calculations

  4. The Origin of the Metal-Poor Common Proper Motion Pair HD 134439/134440: Insights from New Elemental Abundances

    Chen, Yu; Boesgaard, Ann M

    2014-01-01

    The low [alpha/Fe] ratio in the metal-poor ([Fe/H]= -1.50) common proper motion pair HD 134439 and HD 134440 has been variously attributed to chemical evolution in an extragalactic environment with an irregular star formation history, planetessimal accretion, and formation in an environment with an unusually high dust-to-gas ratio. We explore these various putative origins using CNO, Be, Ag, and Eu abundances derived from high-resolution near-UV Keck/HIRES spectroscopy. While we confirm a previously suggested correlation between elemental abundance ratios and condensation temperature at the 95% confidence level, these ratios lie within the continuum of values manifested by extant dSph data. We argue that the most plausible origin of our stars' distinctive abundance distribution relative to the Galactic halo field is formation in an environment chemically dominated by products of Type II SN of low progenitor mass; such a progenitor mass bias has been previously suggested as an explanation of low alpha-element ...

  5. The Chamaeleon II low-mass star-forming region: radial velocities, elemental abundances, and accretion properties

    Biazzo, K; Covino, E; Frasca, A; Getman, F; Spezzi, L

    2012-01-01

    Radial velocities, elemental abundances, and accretion properties of members of star-forming regions (SFRs) are important for understanding star and planet formation. While infrared observations reveal the evolutionary status of the disk, optical spectroscopy is fundamental to acquire information on the properties of the central star and on the accretion characteristics. 2MASS archive data and the Spitzer c2d survey of the Chamaeleon II dark cloud have provided disk properties of a large number of young stars. We complement these data with spectroscopy with the aim of providing physical stellar parameters and accretion properties. We use FLAMES/UVES+GIRAFFE observations of 40 members of Cha II to measure radial velocities through cross-correlation technique, Li abundances by means of curves of growth, and for a suitable star elemental abundances of Fe, Al, Si, Ca, Ti, and Ni using the code MOOG. From the equivalent widths of the Halpha, Hbeta, and the HeI-5876, 6678, 7065 Angstrom emission lines, we estimate ...

  6. Element abundances in B-stars in the Galaxy, the LMC and the SMC

    Results from the quantitative spectroscopy of B-stars in the Galaxy are discussed with reference to its present chemical composition as a function of galactocentric radial distance. Preliminary results from a differential non-LTE abundance analysis of B-supergiants in the Galaxy, the LMC and the SMC are presented. For the LMC these results indicate moderate deficiencies (relative to the Galaxy) in O accompanied by similar deficiencies for Mg and Si. The results for the SMC are qualitatively the same but here the deficiencies are much greater, approximately a factor of 40 for O. 26 refs

  7. Disk evolution, element abundances and cloud properties of young gas giant planets

    Helling, Ch; Rimmer, P B; Kamp, I; Thi, W -F; Meijerink, R

    2014-01-01

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O i...

  8. A Statistical Model for Predicting the Average Abundance Patterns of Heavier Elements in Metal-Poor Stars

    2002-01-01

    We have collected nearly all the available observed data of the elements from Ba to Dy in halo and disk stars in the metallicity range -4.0 <[Fe/H]< 0.5.Based on the observed data of Ba and Eu, we evaluated the least-squares regressions of [Ba/Fe] on [Fe/H], and [Eu/H] on [Ba/H]. Assuming that the heavy elements (heavier than Ba) are produced by a combination of the main components of s- and r-processes in metal-poor stars, and choosing Ba and Eu as respective representative elements of the main s- and the main r-processes, a statistical model for predicting the Galactic chemical evolution of the heavy elements is presented. With this model,we calculate the mean abundance trends of the heavy elements La, Ce, Pr, Nd,Sm, and Dy with the metallicity. We compare our results with the observed data at various metallicities, showing that the predicted trends are in good agreement with the observed trends, at least for the metallicity range [Fe/H]≥ -2.5. Finally,we discuss our results and deduce some important information about the Galactic chemical evolution.

  9. Metal free earth abundant elemental red phosphorus: a new class of visible light photocatalyst and photoelectrode materials.

    Ansari, Sajid Ali; Ansari, Mohammad Shahnawaze; Cho, Moo Hwan

    2016-02-01

    Developing a high-performance photocatalyst and a photoelectrode with enhanced visible light harvesting properties is essential for practical visible light photocatalytic applications. Noble metal-free, highly visible light-active, elemental red phosphorus (RP) was prepared by a facile mechanical ball milling method, which is a reproducible, low cost and controllable synthesis process. The synthesis used inexpensive and abundant raw materials because most RP hybrids are based on expensive noble-metals. The novel milled RP showed significantly enhanced photocatalytic and photoelectrochemical performances with a lower charge transfer resistance compared to commercial RP under wide visible photoirradiation, making it a feasible alternative for photocatalytic applications. PMID:26765211

  10. On the variation of heavy-element abundances in ω Centauri giants

    Results of model-atmosphere curve-of-growth and spectrum synthesis calculations are presented for eight stars that appear on either the 'blue' or the 'red' flank of the red giant branch in the (V,B-V) diagram for ω Cen, observed with the AAT and IPCS at 10 A mm-1 in the yellow-red. Metal abundances are found to range over nearly an order of magnitude (1.2 =<[H/Fe]=<2.0) in fair agreement with conclusions drawn from RR Lyrae stars in the cluster and from spectrophotometry and infrared photometry of red giants. O and Ca seem to be somewhat enhanced relative to Fe, especially in the more metal-deficient stars. (author)

  11. DcSto: carrot Stowaway-like elements are abundant, diverse, and polymorphic

    We investigated nine families of Stowaway-like MITEs in the carrot genome, named DcSto1 to DcSto9. All of them were AT-rich and shared a highly conserved 6 bp-long TIR typical for Stowaways. The copy number of DcSto1 elements was estimated as ca. 5,000 per diploid genome. We observed preference for ...

  12. Abundances of s-process elements in planetary nebulae: Br, Kr & Xe

    Zhang, Y; Pellegrini, E; Cavagnolo, K; Baldwin, J A; Sharpee, B; Phillips, M; Liu, X W

    2006-01-01

    We identify emission lines of post-iron peak elements in very high signal-to-noise spectra of a sample of planetary nebulae. Analysis of lines from ions of Kr and Xe reveals enhancements in most of the PNe, in agreement with the theories of s-process in AGB star. Surprisingly, we did not detect lines from Br even though s-process calculations indicate that it should be produced with Kr at detectable levels.

  13. Constraints on the Formation of the Galactic Bulge from Na, Al, and Heavy Element Abundances in Plaut's Field

    Johnson, Christian I; Kobayashi, Chiaki; Fulbright, Jon P

    2012-01-01

    We report chemical abundances of Na, Al, Zr, La, Nd, and Eu for 39 red giant branch (RGB) stars and 23 potential inner disk red clump stars located in Plaut-s low extinction window. We also measure lithium for a super Li-rich RGB star. The abundances were determined by spectrum synthesis of high resolution (R~25,000), high signal-to-noise (S/N~50-100 pixel-1) spectra obtained with the Blanco 4m telescope and Hydra multifiber spectrograph. For the bulge RGB stars, we find a general increase in the [Na/Fe] and [Na/Al] ratios with increasing metallicity, and a similar decrease in [La/Fe] and [Nd/Fe]. Additionally, the [Al/Fe] and [Eu/Fe] abundance trends almost identically follow those of the {\\alpha}-elements, and the [Zr/Fe] ratios exhibit relatively little change with [Fe/H]. The consistently low [La/Eu] ratios of the RGB stars indicate that at least a majority of bulge stars formed rapidly (<1 Gyr) and before the main s-process could become a significant pollution source. In contrast, we find that the pot...

  14. Chemical abundances for Hf 2-2, a planetary nebula with the strongest known heavy element recombination lines

    Liu, X W; Zhang, Y; Bastin, R J; Storey, P J

    2006-01-01

    We present high quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy element ions. Analysis of the H {\\sc i} and He {\\sc i} recombination spectrum yields an electron temperature of $\\sim 900$ K, a factor of ten lower than given by the collisionally excited [O {\\sc iii}] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O {\\sc ii} $\\lambda$4089/$\\lambda$4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O {\\sc ii} ORLs arise from ionized regions with an electron temperature of only $\\sim 630$ K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown compone...

  15. Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1 degree by 3 degree quadrangles, Seward Peninsula, Alaska

    Smith, S.C.; King, H.D.; O' Leary, R.M.

    1989-01-01

    Geochemical maps showing the distribution and abundance of selected elements in stream-sediment samples, Solomon and Bendeleben 1{degree} by 3{degree} quadrangles, Seward Peninsula, Alaska is presented.

  16. Elemental abundances of the supernova remnant G292.0+1.8: Evidence for a massive progenitor

    Hughes, John P.; Singh, K. P.

    1994-02-01

    We present a comprehensive nonequilibrium ionization (NEI) analysis of X-ray spectral data from the Einstein Observatory and EXOSAT for the supernova remnant G292.0+1.8. The spectra are well described by a single-temperature, single-timescale NEI model with kT = 1.64-0.19+0.29 keV and net = (5.55-1.12+1.2 x 1010s/cu cm, which establishes that this remnant is indeed young and in the ionizing phase of evolution of its X-ray spectrum. We determine the abundances of the elements O, Ne, Mg, Si, S, Ar, and Fe and examine their variation over the allowed range of column density, kT, and net. Numerical calculations of the nucleosynthesis expected for a 25 solar mass progenitor agree best with the fitted abundances; in fact the minimum rms percent difference between this model and the derived abundances is only 15%. From the fitted emission measure and a simple geometric model of the remnant we estimate the mass of X-ray-emitting plasma to be 9.3-6.2+1.19 solar mass, for an assumed distance of 4.8 +/- 1.6 kpc. Additional errors on this mass estimate, from clumping of the ejecta, for example, may be substantial. No evidence was found for a difference in the thermodynamic state of the plasma as a function of elemental composition based on analysis of the individual ionization timescales of the various species. In this sense then, G292.0+1.8 resembles the remnant Cas A (another product of a massive star supernova), while it is different from the remnants of SN 1572 (Tycho) and SN 1006, both of which are believed to be from Type Ia supernovae.

  17. Assimilation of trace elements ingested by the mussel Mytilus edulis: effects of algal food abundance

    Wang, W.-X.; Fisher, N.S.; Luoma, S. N.

    1995-01-01

    Pulse-chase feeding and multi-labeled radiotracer techniques were employed to measure the assimilation of 6 trace elements (110mAg, 241Am, 109Cd, 57Co, 75Se and 65Zn) from ingested diatoms in the mussel Mytilus edulis feeding at different rates (0.1, 0.49 and 1.5 mg dry wt h-1). Uniformly radiolabeled diatoms Thalassiosira pseudonana were fed to mussels for 0.5 h, and the behavior of the radiotracers in individual mussels was followed for 96 h in a depuration seawater system. Assimilation efficiency (AE) of each element declined with increasing ingestion rate and increased with gut passage time. The importance of extracellular digestion relative to intracellular digestion increased with ingestion activity, which, when coupled with a decline in AE, suggested that extracellular digestion is less efficient in metal absorption. Zn assimilation was most affected by ingestion rate, suggesting that AE may play a role in the physiological regulation of this metal in M. edulis. In an experiment to simulate the effects of an acidic gut, lowered pH (5.5) enhanced the release of elements from intact diatom cells, especially at low particle concentration. These results indicate that both feeding components of the mussel (i.e. gut passage time, digestive partitioning) and metal chemistry (i.e. metal release at lowered pH within the bivalve gut) are responsible for the difference in the assimilation of trace metals at different food quantities observed in mussels.

  18. Determining element abundances of [WC]-type Central Stars for probing stellar evolution and nucleosynthesis

    Todt, H; Hamann, W -R; Gräfener, G

    2007-01-01

    [WC]-type CSPNs are hydrogen-deficient Central Stars of Planetary Nebulae showing strong stellar winds and a carbon-rich chemistry. We have analyzed new high-resolution spectra of [WC]-type CSPNs with the Potsdam Wolf-Rayet (PoWR) non-LTE expanding atmosphere models, using upgraded model atoms and atomic data. Previous analyses are repeated on the basis of the current models which account for iron-line blanketing. We especially focus on determining the chemical composition, including some trace elements like nitrogen which are of key importance for understanding the evolutionary origin of the hydrogen-deficient Central Stars.

  19. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 stars in eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy (MRS) combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters (GCs). We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing to high-resolution spectroscopic abundances of the same stars. For this purpose, a sample of 132 stars with published high-resolution spectroscopy in GCs, the MW halo field, and dwarf galaxies has been observed with MRS. The standard deviations of the differences in [Fe/H] and ([α/Fe]) (the average of [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) between the two samples is 0.15 and 0.16, respectively. This catalog represents the largest sample of multi-element abundances in dwarf galaxies to date. The next papers in this series draw conclusions on the chemical evolution, gas dynamics, and star formation histories from the catalog presented here. The wide range of dwarf galaxy luminosity reveals the dependence of dwarf galaxy chemical evolution on galaxy stellar mass.

  20. Light-Element Abundance Variations at Low Metallicity: the Globular Cluster NGC 5466

    Shetrone, Matthew; Wilkerson, Rachel; Adams, Joshua; Siegel, Michael H; Smith, Graeme H; Bond, Howard E

    2010-01-01

    We present low-resolution (R~850) spectra for 67 asymptotic giant branch (AGB), horizontal branch and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7-m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s-1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken of five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in car...

  1. Subaru/HDS study of CH stars: elemental abundances for stellar neutron-capture process studies

    Goswami, Aruna; Karinkuzhi, Drisya

    2015-01-01

    A comprehensive abundance analysis providing rare insight into the chemical history of lead stars is still lacking. We present results from high resolution (R ~ 50000), spectral analyses of three CH stars, HD 26, HD 198269, HD 224959, and, a carbon star with a dusty envelope, HD 100764. Previous studies on these objects are limited by both resolution and wavelength regions and the results differ significantly from each other. We have undertaken to re-analyse the chemical composition of these objects based on high resolution Subaru spectra covering the wavelength regions 4020 to 6775 A,. Considering local thermodynamic equilibrium and using model atmospheres, we have derived the stellar parameters, the effective temperatures Teff, surface gravities log g, and metallicities [Fe/H] for these objects. The derived parameters for HD 26, HD 100764, HD 198269 and HD 224959 are (5000, 1.6, -1.13), (4750, 2.0 -0.86), (4500, 1.5, -2.06) and (5050, 2.1, -2.44) respectively. The stars are found to exhibit large enhancemen...

  2. Elemental Abundances in the Possible Type Ia Supernova Remnant G344.7-0.1

    Yamaguchi, Hiroya; Maeda, Keiichi; Slane, Patrick O; Foster, Adam; Smith, Randall K; Katsuda, Satoru; Yoshii, Rie

    2012-01-01

    Recent studies on the Galactic supernova remnant (SNR) G344.7-0.1 have commonly claimed its origin to be a core-collapse supernova (SN) explosion, based on its highly asymmetric morphology and/or proximity to a star forming region. In this paper, however, we present an X-ray spectroscopic study of this SNR using Suzaku, which is supportive of a Type Ia origin. Strong K-shell emission from lowly ionized Fe has clearly been detected, and its origin is determined, for the first time, to be the Fe-rich SN ejecta. The abundance pattern is highly consistent with that expected for a somewhat-evolved Type Ia SNR. It is suggested, therefore, that the X-ray point-like source CXOU J170357.8-414302 located at the SNR's geometrical center is not associated with the SNR but is likely to be a foreground object. Our result further indicates that G344.7-0.1 is the first possible Type Ia SNR categorized as a member of the so-called "mixed-morphology" class. In addition, we have detected emission from He-like Al at ~1.6 keV, th...

  3. Elemental Abundances in Milky Way-like Galaxies from a Hierarchical Galaxy Formation Model

    De Lucia, Gabriella; Frenk, Carlos S; Helmi, Amina; Navarro, Julio F; White, Simon D M

    2014-01-01

    We develop a new method to account for the finite lifetimes of stars and trace individual abundances within a semi-analytic model of galaxy formation. At variance with previous methods, based on the storage of the (binned) past star formation history of model galaxies, our method projects the information about the metals produced by each simple stellar population (SSP) in the future. Using this approach, an accurate accounting of the timings and properties of the individual SSPs composing model galaxies is possible. We analyse the dependence of our chemical model on various ingredients, and apply it to six simulated haloes of roughly Milky Way mass and with no massive close neighbour at z=0. For all models considered, the [Fe/H] distributions of the stars in the disc component are in good agreement with Milky Way data, while for the spheroid component (whose formation we model only through mergers) these are offset low with respect to observational measurements for the Milky Way bulge. This is a consequence o...

  4. Stellar substructures in the solar neighbourhood. II. Abundances of neutron-capture elements in the kinematic Group 3 of the Geneva-Copenhagen survey

    Stonkutė, Edita; Nordström, Birgitta; Ženovienė, Renata; 10.1051/0004-6361/201321437

    2013-01-01

    The evolution of chemical elements in a galaxy is linked to its star formation history. Variations in star formation history are imprinted in the relative abundances of chemical elements produced in different supernova events and asymptotic giant branch stars. We determine detailed elemental abundances of s- and r-process elements in stars belonging to Group3 of the Geneva-Copenhagen survey and compare their chemical composition with Galactic disc stars. The aim is to look for possible chemical signatures that might give information about the formation history of this kinematic group of stars, which is suggested to correspond to remnants of disrupted satellites. High-resolution spectra were obtained with the FIES spectrograph at the Nordic Optical Telescope, La Palma, and were analysed with a differential model atmosphere method. Comparison stars were observed and analysed with the same method. Abundances of chemical elements produced mainly by the s-process are similar to those in the Galactic thin-disc dwar...

  5. An instrument for elemental and isotopic abundance characterization of extra-terrestrial materials

    Veryovkin, I. V.; Calaway, W. F.; Moore, J. F.; Pellin, M. J.; Savina, M. R.; King, B. V.; Petravić, M.; Burnett, D. S.

    2002-12-01

    Samples returned from the Genesis and Stardust missions of NASA's Discovery Program require quantitative analysis at sensitivities unobtainable with present instruments. This has driven development of a new generation of instruments for laser-post-ionization secondary neutral mass spectrometry (laser-SNMS). Construction of a prototype time-of-flight (TOF) SNMS instrument has been completed recently at Argonne National Laboratory (ANL) and testing began in August 2002. This instrument is optimized for laser post-ionization of sputtered neutrals and is capable of locating and analyzing individual sub-micrometer interstellar particles on a sample stage for Stardust or determining elemental concentrations in shallow implants at ultra-trace levels for Genesis. Post-ionization can be accomplished with a variety of laser sources. These include high repetition rate tunable Ti-sapphire lasers for ultra-trace analysis of a single element and two vacuum ultraviolet (VUV) light sources for simultaneous ionization of most atomic and molecular species in the sample. The two VUV lasers are an F2 laser with a fixed wavelength of 157 nm and the self-amplified spontaneous emission free-electron laser (SASE FEL) capable of generating tunable VUV at wavelengths down to 60 nm. Fundamental physical theory of ion sputtering forms the scientific basis of the approach used to design the instrument. An ion optics design for the instrument was perfected through extensive three-dimensional computer simulations using SIMION software. Realistic sets of photo-ions were calculated using formalisms derived from sputtering theory. Their trajectories in various instrument designs were then traced by SIMION. Finally, results of the simulations were processed to estimate instrument capabilities including resolution and useful yield. This same approach proved accurate and quantitative during tests of an existing TOF SNMS instrument demonstrating the reliability of the simulation method. The completed

  6. The effect of rotation on the abundances of the chemical elements of the A-type stars in the Praesepe cluster

    Fossati, L.; Bagnulo, S.; Landstreet, J.; Wade, G.; Kochukhov, O.; Monier, R.; Weiss, W.; Gebran, M.

    2008-06-01

    Aims: We study how chemical abundances of late B-, A-, and early F-type stars evolve with time, and we search for correlations between the abundance of chemical elements and other stellar parameters, such as effective temperature and υ sin i. Methods: We observed a large number of B-, A-, and F-type stars belonging to open clusters of different ages. In this paper we concentrate on the Praesepe cluster (log t = 8.85), for which we have obtained high-resolution, high signal-to-noise ratio spectra of sixteen normal A- and F-type stars and one Am star, using the SOPHIE spectrograph of the Observatoire de Haute-Provence. For all the observed stars, we derived fundamental parameters and chemical abundances. In addition, we discuss another eight Am stars belonging to the same cluster, for which the abundance analysis had been presented in a previous paper. Results: We find a strong correlation between the peculiarity of Am stars and υ sin i. The abundance of the elements underabundant in Am stars increases with υ sin i, while it decreases for the overabundant elements. Chemical abundances of various elements appear correlated with the iron abundance. Based on observations made at the Observatoire de Haute-Provence. Figures [see full textsee full textsee full text] to [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  7. Evolution of the lithosphere beneath Oahu, Hawaii: rare earth element abundances in mantle xenoliths

    Sen, Gautam; Frey, Frederick A.; Shimizu, Nobumichi; Leeman, William P.

    1993-08-01

    Rare earth element contents of clinopyroxenes in Hawaiian mantle xenoliths from Oahu were determined with an ion microprobe. The analyzed xenoliths are from four vents of the alkali Honolulu Volcanics (HV). Three (Kaau, Pali and Kalihi—KPK) are located close to the caldera of the extinct Koolau shield volcano, and the fourth, Salt Lake Crater (SLC), is on the periphery of the shield volcano. Systematic differences exist in REE contents between clinopyroxenes of the KPK and SLC xenoliths: (1) KPK pyroxenes are typically zoned in REE contents whereas SLC pyroxenes are homogeneous, (2) the LREE-depleted (chondrite-normalized) patterns that characterize many of the KPK xenoliths are not found in SLC xenoliths, and (3) the convex-upward REE patterns that are characteristic of SLC xenoliths are not found in KPK xenoliths. Relative to abyssal peridotites, the LREE-depleted Hawaiian lherzolite pyroxenes (interpreted to be residual oceanic lithosphere) have higher contents of REE, Na 2O, TiO 2 and FeO, and more modal clinopyroxene. These LREE-depleted Hawaiian xenoliths represent deeper, less-depleted parts of the melting column, whereas the abyssal peridotites represent the uppermost, more strongly depleted part of the mantle. The spoon-shaped, LREE-enriched and convex-upward REE patterns in the xenoliths have resulted from metasomatic enrichment of the lithosphere caused by reaction with magmas that formed the Honolulu Volcanics. A model for the evolution of the oceanic lithosphere is presented in which fractures were the main mode of transport of the Honolulu Volcanics. Metasomatic enrichment resulted from interaction between percolating Honolulu Volcanics magmas and wallrock. The differences between SLC and KPK xenoliths are attributed to chromatographic fractionation effects: SLC xenoliths are postulated to have come from a greater depth where they equilibrated to a larger extent with the percolating magmas than the KPK rocks.

  8. ELEMENTAL ABUNDANCES AND THEIR IMPLICATIONS FOR THE CHEMICAL ENRICHMENT OF THE BOOeTES I ULTRAFAINT GALAXY

    Gilmore, Gerard [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Norris, John E.; Yong, David [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Monaco, Lorenzo [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago 19 (Chile); Wyse, Rosemary F. G. [Department of Physics and Astronomy, The Johns Hopkins University, 3900 North Charles Street, Baltimore, MD 21218 (United States); Geisler, D., E-mail: gil@ast.cam.ac.uk, E-mail: jen@mso.anu.edu.au, E-mail: yong@mso.anu.edu.au, E-mail: lmonaco@eso.org, E-mail: wyse@pha.jhu.edu, E-mail: dgeisler@astro-udec.cl [Departamento de Astronomia, Universidad de Concepcion (Chile)

    2013-01-20

    We present a double-blind analysis of high-dispersion spectra of seven red giant members of the Booetes I ultrafaint dwarf spheroidal galaxy, complemented with re-analysis of a similar spectrum of an eighth-member star. The stars cover [Fe/H] from -3.7 to -1.9 and include a CEMP-no star with [Fe/H] = -3.33. We conclude from our chemical abundance data that Booetes I has evolved as a self-enriching star-forming system, from essentially primordial initial abundances. This allows us uniquely to investigate the place of CEMP-no stars in a chemically evolving system, in addition to limiting the timescale of star formation. The elemental abundances are formally consistent with a halo-like distribution, with enhanced mean [{alpha}/Fe] and small scatter about the mean. This is in accord with the high-mass stellar initial mass function in this low-stellar-density, low-metallicity system being indistinguishable from the present-day solar neighborhood value. There is a non-significant hint of a decline in [{alpha}/Fe] with [Fe/H]; together with the low scatter, this requires low star formation rates, allowing time for supernova ejecta to be mixed over the large spatial scales of interest. One star has very high [Ti/Fe], but we do not confirm a previously published high value of [Mg/Fe] for another star. We discuss the existence of CEMP-no stars, and the absence of any stars with lower CEMP-no enhancements at higher [Fe/H], a situation that is consistent with knowledge of CEMP-no stars in the Galactic field. We show that this observation requires there be two enrichment paths at very low metallicities: CEMP-no and 'carbon-normal'.

  9. A Mass-Dependent Yield Origin of Neutron-Capture Element Abundance Distributions in Ultra-Faint Dwarfs

    Lee, Duane M; Tumlinson, Jason; Sen, Bodhisattva; Simon, Joshua D

    2013-01-01

    One way to constrain the nature of the high-redshift progenitors of the Milky Way is to look at the low-metallicity stellar populations of the different Galactic components today. For example, high-resolution spectroscopy of very metal poor (VMP) stars demonstrates remarkable agreement between the distribution of [Ti/Fe] in the stellar populations of the Milky Way halo (MW) and ultra-faint dwarf (UFD) galaxies. In contrast, for the neutron capture (nc) abundance ratio distributions [(Sr,Ba)/Fe], the peak of the small UFD sample (6 stars) exhibits a signicant under-abundance relative to the VMP stars in the larger MW halo sample (~ 300 stars). We present a simple scenario that can simultaneously explain these similarities and differences by assuming: (i) that the MW VMP stars were predominately enriched by a prior generation of stars which possessed a higher total mass than the prior generation of stars that enriched the UFD VMP stars; and (ii) a much stronger mass-dependent yield (MDY) for nc-elements than fo...

  10. High resolution study of the abundance pattern of the heavy elements in very metal-poor field stars

    Spite, Monique

    2013-01-01

    The abundances of heavy elements in EMP stars are not well explained by the simple view of an initial basic "rapid" process. In a careful and homogeneous analysis of the "First stars" sample (eighty per cent of the stars have a metallicity [Fe/H]=-3.1$\\pm$0.4), it has been shown that at this metallicity [Eu/Ba] is constant, and therefore the Eu-rich stars (generally called "r-rich") are also Ba-rich. The very large variation of [Ba/Fe] (existence of "r-poor" and "r-rich" stars) induces that the early matter was not perfectly mixed. On the other hand, the distribution of the values of [Sr/Ba] vs. [Ba/Fe] appears with well defined upper and lower envelopes. No star was found with [Sr/Ba]<-0.5 and the scatter of [Sr/Ba] increases regularly when [Ba/Fe] decreases. To explain this behavior, we suggest that an early "additional" process forming mainly first peak elements would affect the initial composition of the matter. For a same quantity of accreted matter, this additional Sr production would barely affect t...

  11. First stars. XVI. HST/STIS abundances of heavy elements in the uranium-rich metal-poor star CS 31082-001

    Siqueira Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; Andersen, J.; Nordström, B.; Sneden, C.; Beers, T. C.; Bonifacio, P.; François, P.; Molaro, P.

    2013-02-01

    Context. The origin and site(s) of the r-process nucleosynthesis is(are) still not known with certainty, but complete, detailed r-element abundances offer our best clues. The few extremely metal-poor (EMP) stars with large r-element excesses allow us to study the r-process signatures in great detail, with minimal interference from later stages of Galactic evolution. CS 31082-001 is an outstanding example of the information that can be gathered from these exceptional stars. Aims: Here we aim to complement our previous abundance determinations for third-peak r-process elements with new and improved results for elements of the first and second r-process peaks from near-UV HST/STIS and optical UVES spectra. These results should provide new insight into the nucleosynthesis of the elements beyond iron. Methods: The spectra were analyzed by a consistent approach based on an OSMARCS LTE model atmosphere and the Turbospectrum spectrum synthesis code to derive abundances of heavy elements in CS 31082-001, and using updated oscillator strengths from the recent literature. Synthetic spectra were computed for all lines of the elements of interest to check for proper line intensities and possible blends in these crowded spectra. Our new abundances were combined with the best previous results to provide reliable mean abundances for the first and second-peak r-process elements. Results: We present new abundances for 23 neutron-capture elements, 6 of which - Ge, Mo, Lu, Ta, W, and Re - have not been reported before. This makes CS 31082-001 the most completely studied r-II star, with abundances for a total of 37 neutron-capture elements. We also present the first NLTE+3D abundance of lead in this star, further constraining the nature of the r-process. Based on observations made with the NASA/ESA Hubble Space Telescope (HST) through the Space Telescope Science Institute, operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555; and

  12. First stars XVI. STIS/HST abundances of heavy-elements in the uranium-rich star CS 31082-001

    Mello, C Siqueira; Barbuy, B; Spite, F; Caffau, E; Hill, V; Wanajo, S; Primas, F; Plez, B; Cayrel, R; Andersen, J; Nordström, B; Sneden, C; Beers, T C; Bonifacio, P; François, P; Molaro, P

    2012-01-01

    Detailed abundances of the elements produced by r-process nucleosynthesis in various circumstances are our best observational clues to their origin, since the site(s) of r-element production is(are) still not known with certainty. A small fraction of extremely metal-poor (EMP) stars exhibit excesses of heavy neutron-capture elements produced in the r-process, and CS 31082-001 is among the 4 well-known r-process-enhanced EMP stars. Observations with HST/STIS provide abundances for elements observable only from the UV region. Here we aim to supplement the optical data with abundances from near-UV spectroscopy of the first and second peak of the r-elements, which are crucial to giving insight into the nucleosynthesis of the elements beyond iron. The UVES spectrum provided additional measurements, thereby improving the previous results. The spectra were analyzed with the OSMARCS LTE model atmosphere and with a consistent approach based on the spectrum synthesis code Turbospectrum to derive abundances of heavy ele...

  13. Major Elements Abundances in Chang'E-3 Landing Site from Active Particle-induced X-ray Spectrometer

    Zhang, Xiaoping; Xie, Minggang; Zhu, Meng-Hua; Dong, Wudong; Tang, Zesheng; Xu, Aoao

    2015-04-01

    Chang'E-3, China's first Moon lander and rover mission, was launched at 17:30 on 1st December 2013 (UTC) and successfully landed on Moon surface at 13:11 on 14th December 2013 (UTC). About 8 hours later after the soft landing, the rover, named "Yutu' after a mythological rabbit that lives on the Moon as a pet of the Moon goddess, was successfully separated from the lander and started its adventure on the Moon. The success of this mission marks the first soft-landing on the Moon since 1976. The landing site is in northern Mare Imbrium (N44.12, W19.51), close to the boundary of two different geologic units and sits on 'young' Eratoshenian lava flows which spread several hundreds to thousands of kilometers. The mare basalts in the landing site are believed to be formed from the lava flows ~2.5 billion years ago, which are significantly younger than all of the returned lunar samples, dating from 3.1 to 3.8 billion years ago. This makes the landing site a very interesting place for exploring geochemical characteristics of the young lava flows and lunar evolution in a later stage. Active Particle-induced X-ray Spectrometer (APXS) is the only payload on the robotic arm of Yutu rover. It was designed to measure the intensities of characteristic fluorescent X-rays produced by interactions of lunar sample with incident X-rays. Major elements abundances of Mg, Al, Si, Ca, Ti, Fe on the lunar surface were expected to be detected after the exploration. On December 24th (UTC), 2013 and January 14th (UTC), 2014, APXS performed 4 successful measurements on lunar soils along Yutu's track. Characteristic peaks of Mg, Al, Si, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Sr and Zr could be clearly seen from the measured spectra. A global fit based on minimum chi-square method has been performed to disentangle different components in the measured spectra. These components include Kα and/or Kβ peaks of each element, escape peaks, exponential and shelf tail of major peaks and electronic noises, etc

  14. Elemental abundance analyses with coadded DAO spectrograms. VI - The mercury-manganese stars Nu Cancri, Iota Coronae Borealis and HR 8349

    Adelman, Saul J.

    1989-01-01

    The elemental abundances of three mercury-manganese stars, Nu Cancri, Iota Coronae Borealis, and HR 8349, were found to be consistent with previous analyses of this series. As Iota CrB is a double-lined spectroscopic binary with a small velocity amplitude for most of its period, its study required determining whether the observed lines were produced in the primary or secondary or both. The derived abundances and effective termperatures were used along with those of mercury-manganese stars previously analyzed in order to extend the study of probable correlations between abundances, with the effective temperature and surface gravity in accordance with radiative diffusion explanations.

  15. Major and trace element abundances, and Sr and Nd isotopic composition of Carbonatites from Amba Dongar, Gujarat, India

    Chandra, Jyoti; Paul, Debajyoti; Viladkar, Shrinivas G.; Sensarma, Sarajit

    2015-04-01

    Despite significant progress during the last decade, the petrogenesis of carbonatites is still highly debated regarding the exact mechanism of carbonatite magma generation (fractional crystallization of carbonated-silicate magmas, liquid immiscibility of carbonated-silicate magmas, partial melting of carbonated mantle peridotite or carbonated lherzolitic mantle) and its evolution. The Amba Dongar carbonatite complex in Chhota Udaipur district, Gujarat is the youngest Indian carbonatite complex, which intruded into the ~ 90 Ma Bagh sandstones and limestone and 68-65 Ma Deccan flood basalts. The emplacement age (40Ar/39Ar age of 65±0.3 Ma; Ray and Pande, 1999) coincides with the age of main pulse of Deccan flood basalts at ca. 65 Ma. We report new geochemical data (major oxide and trace element abundances, and Sr and Nd isotopic ratios) on 23 carbonatite samples from Amba Dongar. The Amba Dongar carbonatite complex consists of carbonatite (sövite, and ankerite), and associated nephelinite, phonolite, and both pre- and post-carbonatite basalts. Detailed minerology of carbonatite include dominant calcite along with pyrochlore, apatite, magnetite, aegirine-augite and accessory phases. Apatite crystals are observed in carbonatite as well as in nephelinite. In sövites, apatite occur in various forms including cumulus, clusters and scattered within and along the boundary of calcite crystals. Two generation of apatite crystals are commonly observed in sövite and nephelinite; textural changes suggest presence of different five pulses of sövitic magma during the emplacement of the sövite ring dike. Bulk major oxides and trace element (including REEs) compositions of carbonatites and associated silicate rocks are determined by WD-XRF and ICP-MS, respectively. Major oxides abundances are consistent with the already available data on the Amba Dongar carbonatite complex. Trace element concentrations for the sövite reveals high concentrations of Sr (929-7476 ppm), Ba (344

  16. The effects of oxides of carbon and nitrogen emissions on the isotope and element abundances in foliage of C3 plants

    The carbon and nitrogen stable isotope abundance of C3 plants mango (Magnifera indica L), molave (Vitex parviflora Juss), talisay (Terminalia catappa L.) leaves harvested from sites with ambient air conditions and sites receiving air pollution contributions from coal-fired power plants were determined and compared. Isotope Ratio Mass Spectroscopy, IRMS was used to determine 13C and 15N in the samples. The elemental composition of the samples was determined using Inductively Coupled Plasma-Atomic Emission Spectrometry, ICP-AES. The 13C of the leaves grown in ambient air were found to fall within the range of -25.0 to -22.0 per mill and a close agreement with the literature values for the natural abundance of 13C in C3 plants (-27.0 to -21.0 per mill). The 13C abundance of plants obtained from sites polluted by coal-fired plants were sporadic from -35 to 24.0 per mille. The 15N abundance in leaves grown under ambient air condition (-1.0 to 2.0 per mille) were way below the 15N abundance of plants from coal-fired plant-polluted regions (16.0 to 17.5 per mille). Elemental exposition indicated no differences in element concentrations in leaves from ambient and polluted sites. Differences exist in the Ca, Mg, K ratios across species and are affected by seasonal variation. (author)

  17. GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY. IV. THE LARGE MAGELLANIC CLOUD: {alpha}, Fe-PEAK, LIGHT, AND HEAVY ELEMENTS

    Colucci, Janet E.; Bernstein, Rebecca A. [Department of Astronomy and Astrophysics, UCO/Lick Observatory, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); Cameron, Scott A. [Science Department, 3000 College Heights Blvd., Cerro Coso Community College, Ridgecrest, CA 93555 (United States); McWilliam, Andrew, E-mail: jcolucci@ucolick.org, E-mail: rab@ucolick.org, E-mail: scameron@cerrocoso.edu, E-mail: andy@ociw.edu [The Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States)

    2012-02-10

    We present detailed chemical abundances in eight clusters in the Large Magellanic Cloud (LMC). We measure abundances of 22 elements for clusters spanning a range in age of 0.05-12 Gyr, providing a comprehensive picture of the chemical enrichment and star formation history of the LMC. The abundances were obtained from individual absorption lines using a new method for analysis of high-resolution (R {approx} 25,000), integrated-light (IL) spectra of star clusters. This method was developed and presented in Papers I, II, and III of this series. In this paper, we develop an additional IL {chi}{sup 2}-minimization spectral synthesis technique to facilitate measurement of weak ({approx}15 mA) spectral lines and abundances in low signal-to-noise ratio data (S/N {approx} 30). Additionally, we supplement the IL abundance measurements with detailed abundances that we measure for individual stars in the youngest clusters (age < 2 Gyr) in our sample. In both the IL and stellar abundances we find evolution of [{alpha}/Fe] with [Fe/H] and age. Fe-peak abundance ratios are similar to those in the Milky Way (MW), with the exception of [Cu/Fe] and [Mn/Fe], which are sub-solar at high metallicities. The heavy elements Ba, La, Nd, Sm, and Eu are significantly enhanced in the youngest clusters. Also, the heavy to light s-process ratio is elevated relative to the MW ([Ba/Y] >+0.5) and increases with decreasing age, indicating a strong contribution of low-metallicity asymptotic giant branch star ejecta to the interstellar medium throughout the later history of the LMC. We also find a correlation of IL Na and Al abundances with cluster mass in the sense that more massive, older clusters are enriched in the light elements Na and Al with respect to Fe, which implies that these clusters harbor star-to-star abundance variations as is common in the MW. Lower mass, intermediate-age, and young clusters have Na and Al abundances that are lower and more consistent with LMC field stars. Our

  18. The effect of rotation on the abundances of the chemical elements of the A-type stars in the Praesepe cluster

    Fossati, L; Landstreet, J; Wade, G; Kochukhov, O; Monier, R; Weiss, W; Gebran, M

    2008-01-01

    We study how chemical abundances of late B-, A- and early F-type stars evolve with time, and we search for correlations between the abundance of chemical elements and other stellar parameters, such as effective temperature and Vsini. We have observed a large number of B-, A- and F-type stars belonging to open clusters of different ages. In this paper we concentrate on the Praesepe cluster (log t = 8.85), for which we have obtained high resolution, high signal-to-noise ratio spectra of sixteen normal A- and F-type stars and one Am star, using the SOPHIE spectrograph of the Observatoire de Haute-Provence. For all the observed stars, we have derived fundamental parameters and chemical abundances. In addition, we discuss another eight Am stars belonging to the same cluster, for which the abundance analysis had been presented in a previous paper. We find a strong correlation between peculiarity of Am stars and Vsini. The abundance of the elements underabundant in Am stars increases with Vsini, while it decreases f...

  19. High-Resolution X-ray Spectroscopy of Hercules X-1 with the XMM-Newton RGS: CNO Element Abundance Measurements and Density Diagnostics of a Photoionized Plasma

    Jimenez-Garate, M. A.; Hailey, C. J.; Herder, J. W. den; Zane, S.; Ramsay, G

    2002-01-01

    We analyze the high-resolution X-ray spectrum of Hercules X-1, an intermediate-mass X-ray binary, which was observed with the XMM-Newton Reflection Grating Spectrometer. We measure the elemental abundance ratios by use of spectral models, and we detect material processed through the CNO-cycle. The CNO abundances, and in particular the ratio N/O > 4.0 times solar, provide stringent constraints on the evolution of the binary system. The low and short-on flux states of Her X-1 exhibit narrow lin...

  20. Investigation for the enrichment pattern of the element abundances in r+s star HE 0338-3945: a special r-II star?

    Cui, Wenyuan; Zhu, Zizhong; Zhang, Bo; 10.1088/0004-637X/708/1/51

    2010-01-01

    The very metal-poor star HE 0338-3945 shows a double-enhanced pattern of the neutron-capture elements. The study to this sample could make people gain a better understanding of s- and r-process nucleosynthesis at low metallicity. Using a parametric model,we find that the abundance pattern of the neutron-capture elements could be best explained by a binary system formed in a molecular cloud, which had been polluted by r-process material. The observed abundance pattern of C and N can be explained by an AGB model(Karakas & Lattanzio 2007), . Combing with the parameters obtained from Cui & Zhang (2006), we suggest that the initial mass of the AGB companion is most likely to be about 2.5Msun, which excludes the possibility of forming a type-1.5 supernova. By comparing with the observational abundance pattern of CS 22892-052, we find that the dominating production of O should accompany with the production of the heavy r-process elements of r+s stars. Similar to r-II stars, the heavy r-process elements are n...

  1. X-ray Evidence for Spectroscopic Diversity of Type Ia Supernovae XMM observation of the elemental abundance pattern in M87

    Finoguenov, A; Böhringer, H; Ikebe, Y; Arnaud, M

    2002-01-01

    We present the results of a detailed element abundance study of hot gas in M87, observed by XMM-Newton. We choose two radial bins, 1'-3' and 8'-16' (8'-14' for EMOS; hereafter the central and the outer zones), where the temperature is almost constant, to carry out the detailed abundance measurements of O, Ne, Mg, Si, S, Ar, Ca, Fe and Ni using EPIC-PN (EPN) and -MOS (EMOS) data. First, we find that the element abundance pattern in the central compared to the outer zone in M87 is characterized by SN Ia enrichment of a high (roughly solar) ratio of Si-group elements (Si, S, Ar, Ca) to Fe, implying that Si burning in SN Ia is highly incomplete. In nucleosynthesis modeling this is associated with either a lower density of the deflagration-detonation transition and/or lower C/O and/or lower central ignition density and observationally detected as optically subluminous SNe Ia in early-type galaxies. Second, we find that SN Ia enrichment has a systematically lower ratio of the Si-group elements to Fe by 0.2 dex in t...

  2. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    Agrawal, Rakesh [Purdue Univ., West Lafayette, IN (United States)

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical

  3. Rb, Sr and strontium isotopic composition, K/Ar age and large ion lithophile trace element abundances in rocks and glasses from the Wanapitei Lake impact structure

    Shock metamorphosed rocks and shock-produced melt glasses from the Wanapitei Lake impact structure have been examined petrographically and by electron microprobe. Eleven clasts exhibiting varying degrees of shock metamorphism and eight impact-produced glasses have been analyzed for Rb, Sr and Sr isotopic composition. Five clasts and one glass have also been analyzed for large ion lithophile (LIL) trace element abundances including Li, Rb, Sr, and Ba and the REE's. The impact event forming the Wanapitei Lake structure occurred 37 m.y. ago based on K/Ar dating of glass and glassy whole-rock samples. Rb/Sr isotopic dating failed to provide a meaningful whole-rock or internal isochron. The isotopic composition of the glasses can be explained by impact-produced mixing and melting of metasediments. Large ion lithophile trace element abundance patterns confirm the origin of the glasses by total shock melting of metasediments. (author)

  4. Elemental abundances of the B and A stars. 2: Gamma Geminorum, HD 60825, 7 Sextantis, HR 4817, and HR 5780

    Adelman, Saul J.; Philip, A. G. Davis

    1994-01-01

    We extend fine analyses of the B and A stars, gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780 using additional spectroscopic data from the Kitt Peak National Observatory (KPNO) coude feed telescope with a TI CCD, camera 5, and grating A, and ATLAS9 model atmospheres. In addition we study HD 60825, which had colors similar to the FHB A stars, but was found to be a Population I star. HD 60825, as is gamma Gem, is a sharp-lined early-A star with nearly solar derived abundances. HR 5780 and 7 Sex are also examples of stars which for the most part have solar abundances. The newly derived abundances for HR 4817 reveal important differences with respect to 53 Tau, a somewhat similar HgMn star.

  5. Elemental abundances of the B and A stars Gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780

    Adelman, Saul J.; Philip, A. G. D.

    1992-01-01

    Fine analyses of the B and A stars, Gamma Geminorum, 7 Sextantis, HR 4817, and HR 5780 are performed. Although the data cover rather limited spectral regions, still useful results were obtained. The data were mostly obtained at the KPNO coude feed telescope with CCD TI No. 3, camera 5, and grating A. The He/H ratio of HR 4817 confirms the similarity of many abundance values with those of the peculiar Mn star 53 Tauri. For the most part Gamma Gem, 7 Sex, and HR 5780 have derived abundances similar to those of other normal sharp-lined stars of similar effective temperature.

  6. Investigation for the puzzling abundance pattern of the neutron-capture elements in the ultra metal-poor star: CS 30322-023

    Cui, W Y; Ma, K; Zhang, L

    2007-01-01

    The s-enhanced and very metal-poor star CS 30322-023 shows a puzzling abundance pattern of the neutron-capture elements, i.e. several neutron-capture elements such as Ba, Pb etc. show enhancement, but other neutron-capture elements such as Sr, Eu etc. exhibit deficient with respect to iron. The study to this sample star could make people gain a better understanding of s- and r-process nucleosynthesis at low metallicity. Using a parametric model, we find that the abundance pattern of the neutron-capture elements could be best explained by a star that was polluted by an AGB star and the CS 30322-023 binary system formed in a molecular cloud which had never been polluted by r-process material. The lack of r-process material also indicates that the AGB companion cannot have undergone a type-1.5 supernova, and thus must have had an initial mass below 4.0M$_\\odot$, while the strong N overabundance and the absence of a strong C overabundance indicate that the companion's initial mass was larger than 2.0M$_\\odot$. Th...

  7. Elemental Abundance Analyses with DAO Spectrograms. XXXVIII. The SB2 Stars HR 104 (A2 V) and θ Aql (B9.5 III)

    Adelman, Saul J.; Yüce, Kutluay; Gulliver, Austin F.

    2015-06-01

    The study of the elemental abundances of double-lined spectroscopic binaries should provide information on the chemical differentiation of a once uniform prestellar nebula. To determine the effective temperatures and surface gravities of the primary and secondary stellar components of HR 104 and θ Aql, we used parameters derived from their orbital analyses and the requirement of equal abundances derived from Fe I and Fe II lines. For constraints we had optical region spectrophotometry for θ Aql and the large equivalent width ratios for the many spectral metal lines which were produced in both stellar atmospheres for HR 104. Since the primary stars were much brighter than the secondary stars, the abundances are considerably better determined for the primary stars. For HR 104 A we found Teff = 9875 K, log g = 4.26, and ξ = 1.7 km s-1 for HR 104 B Teff = 7200 K, log g = 4.26, and ξ = 0.6 km s-1 for θ Aql A Teff = 10400 K, log = 3.63, and ξ = 0.3 km s-1 and for θ Aql B Teff = 10250 K, log = 4.20, and ξ = 1.9 km s-1. The abundances of HR 104 A, HR 104 B, and θ Aql A are best described as the solar pattern. Those of θ Aql B suggest a weak nonmagnetic CP star pattern. While there is no trace of the Hg II 3984 line for θ Aql, the most extreme observed abundance anomalies for the secondary are those of Ca, V, Mn, and Ni. Further study of this hot marginal Am star could provide insights into the origin of the nonsolar chemical abundances.

  8. Physical conditions and element abundances in supernova and γ-ray burst host galaxies at different redshifts

    Contini, M.

    2016-08-01

    We compare the physical parameters and the relative abundances calculated throughout supernova (SN) and gamma-ray burst (GRB) host galaxies by the detailed modelling of the spectra. The results show that : 1) shock velocities are lower in long period GRB (LGRB) than in SN host galaxies. 2) O/H relative abundance in SN hosts are scattered within a range 8.0 10^5 K. Ts in LGRB hosts are 3-8 10^4 K. 4) Ha increases with the ionization parameter U. We suggest that SN-host symbiosis is stronger in terms of host galaxy activity than GRB-host in the range of energies related to the near UV - optical - near IR spectra.

  9. Multi-Element Abundance Measurements from Medium-Resolution Spectra. II. Catalog of Stars in Milky Way Dwarf Satellite Galaxies

    Kirby, Evan N; Simon, Joshua D; Geha, Marla C; Rockosi, Constance M; Sneden, Christopher; Cohen, Judith G; Sohn, Sangmo Tony; Majewski, Steven R; Siegel, Michael

    2010-01-01

    We present a catalog of Fe, Mg, Si, Ca, and Ti abundances for 2961 red giant stars that are likely members of eight dwarf satellite galaxies of the Milky Way (MW): Sculptor, Fornax, Leo I, Sextans, Leo II, Canes Venatici I, Ursa Minor, and Draco. For the purposes of validating our measurements, we also observed 445 red giants in MW globular clusters and 21 field red giants in the MW halo. The measurements are based on Keck/DEIMOS medium-resolution spectroscopy combined with spectral synthesis. We estimate uncertainties in [Fe/H] by quantifying the dispersion of [Fe/H] measurements in a sample of stars in monometallic globular clusters. We estimate uncertainties in Mg, Si, Ca, and Ti abundances by comparing our medium-resolution spectroscopic measurements to high-resolution spectroscopic abundances of the same stars. For this purpose, our DEIMOS sample included 132 red giants with published high-resolution spectroscopy in globular clusters, the MW halo field, and dwarf galaxies. The standard deviations of the ...

  10. The chemical composition of nearby young associations: s-process element abundances in AB Doradus, Carina-Near, and Ursa Major

    D'Orazi, Valentina; Desidera, Silvano; Covino, Elvira; Andrievsky, Sergei M; Gratton, Raffaele G

    2012-01-01

    Recently, several studies have shown that young, open clusters are characterised by a considerable over-abundance in their barium content. In particular, D'Orazi et al. (2009) reported that in some younger clusters [Ba/Fe] can reach values as high as ~0.6 dex. The work also identified the presence of an anti-correlation between [Ba/Fe] and cluster age. For clusters in the age range ~4.5 Gyr-500 Myr, this is best explained by assuming a higher contribution from low-mass asymptotic giant branch stars to the Galactic chemical enrichment. The purpose of this work is to investigate the ubiquity of the barium over-abundance in young stellar clusters. We analysed high-resolution spectroscopic data, focusing on the s-process elemental abundance for three nearby young associations, i.e. AB Doradus, Carina-Near, and Ursa Major. The clusters have been chosen such that their age spread would complement the D'Orazi et al. (2009) study. We find that while the s-process elements Y, Zr, La, and Ce exhibit solar ratios in all...

  11. A deep survey of heavy element lines in planetary nebulae -- II. Recombination line abundances and evidence for ultra-cold plasma

    Tsamis, Y G; Liu, X W; Storey, P J; Danziger, I J

    2004-01-01

    [Abridged] Deep optical observations of the spectra of 12 Galactic planetary nebulae (PNe) and 3 Magellanic Cloud PNe were presented in Paper I by Tsamis et al. (2003b), who carried out an abundance analysis using the collisionally excited forbidden lines. Here, the relative intensities of faint optical recombination lines (ORLs) from ions of carbon, nitrogen and oxygen are analysed in order to derive the abundances of these ions relative to hydrogen. We define an abundance discrepancy factor (ADF) as the ratio of the abundance derived for a heavy element ion from its recombination lines to that derived for the same ion from its ultraviolet, optical or infrared collisionally excited lines (CELs). All of the PNe in our sample are found to have ADF's that exceed unity. There is no dependence of the magnitude of the ADF upon the excitation energy of the UV, optical or IR CEL transition used, indicating that classical nebular temperature fluctuations--i.e. in a chemically homogeneous medium--are not the cause of ...

  12. Determination of rare earth and other trace element abundances in human kidney stones and brain tissue by instrumental neutron activation analysis

    INAA was used to analyze more than 30 minor and trace elements in 10 human kidney stones (phosphate and oxalate types). In addition human brain tissue samples were also analyzed for trace elements by INAA to determine the limitations of the method. Samples were taken from the temporal and frontal cortex of the brain of a patient that suffered from dialysis encephalopathy (where an increased Al content is expected), as well as a number of control samples. Trace elements were analyzed to study possible compositional differences other than the Al content. The analyses were done using large volume HPGe detectors; because of the low abundances, accuracy and precision vary between 3-80% for individual elements. Difference was found between the rare earth element (REE) patterns for apatite and oxalate kidney stones, and a fractionation compared to typical REE contents in plants. For the brain samples there is evidence for differences between the dialysis patient and the control samples not only for Al, but also for some other elements including the REEs, but most differences are minimal, and may not be significant. (author) 19 refs.; 2 figs.; 2 tabs

  13. Highly Sideophile Element Abundance Constraints on the Nature of the Late Accretionary Histories of Earth, Moon and Mars

    Walker, R. J.; Puchtel, I. S.; Brandon, A. D.; Horan, M. F.; James, O. B.

    2007-01-01

    The highly siderophile elements (HSE) include Re, Os, Ir, Ru, Pt and Pd. These elements are initially nearly-quantitatively stripped from planetary silicate mantles during core segregation. They then may be re-enriched in mantles via continued accretion sans continued core segregation. This suite of elements and its included long-lived radiogenic isotopes systems (Re-187 (right arrow) Os-187; Pt-190 (right arrow) Os-186) can potentially be used to fingerprint the characteristics of late accreted materials. The fingerprints may ultimately be useful to constrain the prior nebular history of the dominant late accreted materials, and to compare the proportion and genesis of late accretionary materials added to the inner planets. The past ten years have seen considerable accumulation of isotopic and compositional data for HSE present in the Earth's mantle, lunar mantle and impact melt breccias, and Martian meteorites. Here we review some of these data and consider the broader implications of the compiled data.

  14. A window on the efficiency of the s-process in AGB stars: chemical abundances of n-capture elements in the planetary nebula NGC 3918

    Madonna, S; Luridiana, V; Sterling, N C; Morisset, C

    2015-01-01

    The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution (R~40000) UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever taken for a planetary nebula. Among these lines we detect very faint lines of several neutron-capture elements (Se, Kr, Rb, and Xe), which enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up in the progenitor star of NGC 3918.

  15. Maximum abundant isotopes correlation

    The neutron excess of the most abundant isotopes of the element shows an overall linear dependence upon the neutron number for nuclei between neutron closed shells. This maximum abundant isotopes correlation supports the arguments for a common history of the elements during nucleosynthesis. (Auth.)

  16. Elemental abundance analyses with Coudé Echelle spectrograms from the TÜBİTAK National Observatory of Turkey: I. The HgMn stars 11 Per, HR 2801, and ν Cnc

    Adelman, S. J.; Yüce, K.

    2010-08-01

    Using coadded spectrograms taken with the Coudé Echelle Spectrograph (CES) of the 1.50-m Russian-Turkish Telescope of the TÜBİTAK National Observatory (TUG) near Antalya in Turkey, elemental abundance analyses of three HgMn stars 11 Per, HR 2801, and ν Cnc were performed. Comparisons are made with spectra obtained with the long camera of the Dominion Astrophysical Observatory (DAO) coudé spectrograph and its SITe4 CCD. The CES equivalent widths are about 12% larger than that for the DAO long camera. Our first results from TUG data/spectra show that all three stars exhibit the Hg II λ3984 line and somewhat diverse abundance patterns. 11 Per tends to have underabundant light elements with underabundant and overabundant Fe-peak elements. HR 2801 has mostly underabundant elements, with a few elements having solar abundances while N and Mn are overabundant. The coolest star ν Cnc has light elements having mostly solar abundances, overabundant iron group abundances, and very overabundant SrYZr and Ba. Comparisons with the abundance patterns of other HgMn stars show that they have a wide diversity of abundance patterns. Tables 2 and 6 are available at the CDS via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/AN/331/785.

  17. The Distribution of the Elements in the Galactic Disk II. Azimuthal and Radial Variation in Abundances from Cepheids

    Luck, R E; Kovtyukh, V V; Gieren, W; Graczyk, D

    2011-01-01

    This paper reports on the spectroscopic investigation of 101 Cepheids in the Carina region. These Cepheids extend previous samples by about 35% in number and increase the amount of the galactic disk coverage especially in the direction of l \\approx 270{\\deg}. The new Cepheids do not add much information to the radial gradient, but provide a substantial increase in azimuthal coverage. We find no azimuthal dependence in abundance over an 80{\\deg} angle from the galactic center in an annulus of 1 kpc depth centered on the Sun. A simple linear fit to the Cepheid data yields a gradient d[Fe/H]/dRG = -0.055 \\pm 0.003 dex/kpc which is somewhat shallower than found from our previous, smaller Cepheid sample.

  18. Abundance and distribution of selected elements in soils, stream sediments, and selected forage plants from desert tortoise habitats in the Mojave and Colorado deserts, USA

    Chaffee, M.A.; Berry, K.H.

    2006-01-01

    A baseline and background chemical survey was conducted in southeastern California, USA, to identify potential sources of toxicants in natural and anthropogenically-altered habitats of the threatened desert tortoise (Gopherus agassizii). Soil, stream sediment, and plant samples were collected from six tortoise habitat study areas in the Mojave and Colorado deserts and analysed for up to 66 different elements. The chemical analyses provided new information on the abundances and distributions of selected elements in this region. Soil, stream-sediment, and plant analyses showed distinct variations in bulk chemistries from locality to locality. Variations were, in general, consistent with the many types of exposed rock units in the region, their highly variable bulk mineralogies, and chemical contents. Of elements in soils that might have been toxic to tortoises, only As seemed to be anomalous region-wide. Some soil and plant anomalies were clearly anthropogenic. In the Rand and Atolia mining districts, soil anomalies for As, Au, Cd, Hg, Sb, and(or) W and plant anomalies for As, Sb, and(or) W extend as far as ???15 km outward from the present area of mining; soils containing anomalous Hg were found at least 6 km away from old piles of tailings. The anomalous concentrations of As and Hg may have been the source of elevated levels of these elements found in ill tortoises from the region. In the Goldstone mining district, soil anomalies extended several km from the mining area. These areas probably represented anthropogenic surface contamination of dust redistributed by wind, vehicles, and rainfall. One of two study areas transected by a paved road (Chemehuevi Valley) showed weakly elevated levels of Pb, which extended as far as ???22 m from the pavement edge and were probably related to vehicle exhaust. No soil or plant samples from historically used military areas (Goldstone, Goffs, Chemehuevi Valley, Chuckwalla Bench) contained anomalous concentrations of the elements

  19. Mantle in the Manihiki Plateau source with ultra-depleted incompatible element abundances but FOZO-like isotopic signature

    Golowin, R.; Hoernle, K.; Portnyagin, M.; Hauff, F.; Gurenko, A.; Garbe-Schoenberg, C. D.; Werner, R.

    2014-12-01

    The ~120Ma Manihiki Plateau basement consists of high-Ti tholeiitic basalts with EM-I type isotopic signatures, similar to the Singgalo basalts at Ontong Java, and low-Ti tholeiitic basalts with FOZO (Kwaimbaita/Kroenke) to HIMU-type isotopic compositions, similar to late stage volcanism on Hikurangi and Manihiki Plateaus (Hoernle et al. 2010; Timm et al. 2011). The low-Ti basalts have affinities to boninites and have been interpreted to be derived from residual mantle wedge mantle (Ingle et al. 2007). New major, volatile and trace element and radiogenic isotope data have been generated from fresh low-Ti glass samples recovered during R/V Sonne cruises SO193 and SO225. The low-Ti samples have distinctly lower Ti/V ratios compared to lavas from Ontong Java Plateau (Kwaimbaita-Kroenke and Singgalo), but similar to boninitic rocks. Glasses and melt inclusions in olivine have low volatile contents (0.12-0.25 wt% H2O). Olivine chemistry points to derivation from peridotite source. Therefore we interpret the low-Ti lavas to have formed through melting of dry and depleted peridotite at high temperatures, consistent with Timm et al (2011). The low-Ti group is characterized by U-shaped trace element patterns. The glass samples form linear mixing arrays on radiogenic isotope diagrams, pointing to the involvement of two components: 1) a component ultra-depleted in highly incompatible elements (UDC) but with intermediate Pb, Sr and Nd isotopic compositions, being similar to Kwaimbaita/Kroenke lavas from Ontong Java, and 2) an enriched component with HIMU-type incompatible element and isotopic characteristics, similar to late-stage volcanism on Manihiki, Hikurangi and Ontong Java (e.g. Hoernle et al. 2010). The ultra-depleted, FOZO-like mantle component could represent second stage melting of FOZO type mantle or re-melting of young recycled oceanic lithosphere within the plume head. Enrichment with HIMU type melts is required to explain the enrichment in the most incompatible

  20. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791—ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]n with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li

  1. THE OLD, SUPER-METAL-RICH OPEN CLUSTER, NGC 6791—ELEMENTAL ABUNDANCES IN TURN-OFF STARS FROM KECK/HIRES SPECTRA

    Merchant Boesgaard, Ann; Lum, Michael G. [Institute for Astronomy, University of Hawai' i at Manoa, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Deliyannis, Constantine P., E-mail: boes@ifa.hawaii.edu, E-mail: mikelum@ifa.hawaii.edu, E-mail: cdeliyan@indiana.edu [Department of Astronomy, Indiana University 727 East 3rd Street, Swain Hall West 319, Bloomington, IN 47405-7105 (United States)

    2015-02-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution, and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (R = 46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 ± 0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and we perform a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]{sub n} with a mean of –0.06 ± 0.02. This is low with respect to field stars that are also both old and metal-rich and continue the trend of decreasing [O/Fe] with increasing [Fe/H]. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] are near solar and compare well with those of the old, metal-rich field stars. The two Fe-peak elements, Cr and Ni, are consistent with Fe. These turn-off-star abundances provide benchmark abundances to investigate whether there are any observable abundance differences with the giants that might arise from nuclear-burning and dredge-up processes. Determinations of upper limits were found for Li by spectrum synthesis and are consistent with the upper limits in similar stars in the relatively old, super-metal-rich cluster NGC 6253. Our results support the prediction from standard theory that higher-metallicity stars deplete more Li. Probably no stars in NGC 6791 have retained their initial Li.

  2. A comprehensive set of elemental abundances in damped Ly-alpha systems: revealing the nature of these high-redshift galaxies

    Dessauges-Zavadsky, M; Prochaska, J X; D'Odorico, S; Matteucci, F

    2003-01-01

    By combining our UVES-VLT spectra of a sample of four damped Ly-alpha systems (DLAs) toward the quasars Q0100+13, Q1331+17, Q2231-00 and Q2343+12 with the existing HIRES-Keck spectra, we covered the total spectral range from 3150 to 10000 A for the four quasars. This large wavelength coverage and the high quality of the spectra allowed us to measure the column densities of up to 21 ions, namely of 15 elements - N, O, Mg, Al, Si, P, S, Cl, Ar, Ti, Cr, Mn, Fe, Ni, Zn. Such a large amount of information is necessary to constrain the photoionization and dust depletion effects, two important steps in order to derive the intrinsic chemical abundance patterns of DLAs. We evaluated the photoionization effects with the help of the Al+/Al++, Fe+/Fe++, N0/N+ and Ar/Si,S ratios, and computed dust corrections. Our analysis revealed that the DLA toward Q2343+12 requires important ionization corrections. The access to the complete series of relatively robust intrinsic elemental abundances in the other three DLAs allowed us ...

  3. Ion-microprobe measurements of Mg, Ca, Ti and Fe isotopic ratios and trace element abundance in hibonite-bearing inclusions in primitive meteorites

    This thesis reports the isotopic abundances of Mg, Ca, and Ti and rare earth element (REE) abundances in 19 hibonite-bearing inclusions from primative meteorites. The isotopic ratios of Fe were measured in one of the samples, Lance HH-1. These measurements were made by means of secondary ion mass spectrometry (CAMECA IMS-3f). The novel hardware and software developments that made this work possible are described in detail. The samples were studied in thin section in order to investigate the relationship between the inclusions and their mineralogical environments. Inclusions from a number of different meteorites, specifically, Mighei, Murray, Murchison, Lance, Efremovka, Vigarano, Qingzhen, Dhajala, and Semarkona, were studied. The isotopes of Ca and Ti show large and correlated abundance anomalies in their most neutron-rich isotopes, 48Ca and 50Ti. The largest anomalies among the samples studied here are in the Murray inclusion MY-F6, with a 4.6% deficit in 48Ca and a 5.2% deficit in 50Ti, and Lance HH-1, with 3.3% and 6.0% deficits in 48Ca and 50Ti respectively. Correlated excesses of 48Ca and 50Ti, up to 2.4% and 1.4% respectively, are found in some other samples studied here. The fact that there is a correlation of isotopic anomalies in two different elements is clear evidence for a nucleosynthetic origin of these effects. Various possibilities for the origin of these isotopic anomalies are discussed and it is shown that a Cosmic Chemical Memory-like model of the incomplete mixing of dust grains from one or several supernovae is sufficient to explain the data. Magnesium isotopes show excesses of 26Mg, attributable to the in-situ decay of 26Al, in 7 of these inclusions

  4. Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in Inner Mongolia, China.

    Wang, Lingqing; Liang, Tao

    2016-06-01

    The Bayan Obo Mine, the largest rare earth element (REE) deposit ever found in the world, has been mined for nearly 60 years for iron and rare earth elements. To assess the influences of mining activities on geochemical behavior of REEs in soils, 27 surface soil samples and three soil profile samples were collected from different directions in the vicinity of the mine area. The total concentrations of REEs in surface soils varied from 149.75 to 18,891.81 mg kg(-1) with an average value of 1906.12 mg kg(-1), which was apparently higher than the average values in China (181 mg kg(-1)). The order of the average concentrations of individual REEs in surface soils was similar to that in Bayan Obo ores, which confirmed that the concentration and distribution of REEs in the soils was influenced by the mining activities. The concentrations of single REE in the soil profiles showed a similar trend with depth with an increase at 0-25 cm section, then decreased and remained relatively stable in the deep part. The normalized curves inclined to the right side, showing the conspicuous fractionation between the light and heavy REEs, which supported by the North American Shale Composite (NASC) and Post-Archean Australian Shale (PAAS) normalized concentration ratios calculated for selected elements (La N /Yb N , La N /Sm N , Gd N /Yb N ). Slight positive Ce anomaly and negative Eu anomaly were also observed. PMID:26931660

  5. Carbon, nitrogen and $\\alpha$-element abundances determine the formation sequence of the Galactic thick and thin disks

    Masseron, T

    2015-01-01

    Using the DR12 public release of APOGEE data, we show that thin and thick disk separate very well in the space defined by [$\\alpha$/Fe], [Fe/H] and [C/N]. Thick disk giants have both higher [C/N] and higher [$\\alpha$/Fe] than do thin disk stars with similar [Fe/H]. We deduce that the thick disk is composed of lower mass stars than the thin disk. Considering the fact that at a given metallicity there is a one-to-one relation between stellar mass and age, we are then able to infer the chronology of disk formation. Both the thick and the thin disks - defined by [$\\alpha$/Fe] -- converge in their dependance on [C/N] and [C+N/Fe] at [Fe/H]$\\approx$-0.7. We conclude that 1) the majority of thick disk stars formed earlier than did the thin disk stars 2) the formation histories of the thin and thick disks diverged early on, even when the [Fe/H] abundances are similar 3) that the star formation rate in the thin disk has been lower than in the thick disk, at all metallicities. Although these general conclusions remain ...

  6. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. III. METALLICITY DISTRIBUTIONS OF MILKY WAY DWARF SATELLITE GALAXIES

    We present metallicity distribution functions (MDFs) for the central regions of eight dwarf satellite galaxies of the Milky Way: Fornax, Leo I and II, Sculptor, Sextans, Draco, Canes Venatici I, and Ursa Minor. We use the published catalog of abundance measurements from the previous paper in this series. The measurements are based on spectral synthesis of iron absorption lines. For each MDF, we determine maximum likelihood fits for Leaky Box, Pre-Enriched, and Extra Gas (wherein the gas supply available for star formation increases before it decreases to zero) analytic models of chemical evolution. Although the models are too simplistic to describe any MDF in detail, a Leaky Box starting from zero metallicity gas fits none of the galaxies except Canes Venatici I well. The MDFs of some galaxies, particularly the more luminous ones, strongly prefer the Extra Gas Model to the other models. Only for Canes Venatici I does the Pre-Enriched Model fit significantly better than the Extra Gas Model. The best-fit effective yields of the less luminous half of our galaxy sample do not exceed 0.02 Zsun, indicating that gas outflow is important in the chemical evolution of the less luminous galaxies. We surmise that the ratio of the importance of gas infall to gas outflow increases with galaxy luminosity. Strong correlations of average [Fe/H] and metallicity spread with luminosity support this hypothesis.

  7. Multi-Element Abundance Measurements from Medium-Resolution Spectra. III. Metallicity Distributions of Milky Way Dwarf Satellite Galaxies

    Kirby, Evan N; Simon, Joshua D; Cohen, Judith G; Guhathakurta, Puragra

    2010-01-01

    We present metallicity distribution functions (MDFs) for the central regions of eight dwarf satellite galaxies of the Milky Way: Fornax, Leo I and II, Sculptor, Sextans, Draco, Canes Venatici I, and Ursa Minor. We use the published catalog of abundance measurements from the previous paper in this series. The measurements are based on spectral synthesis of iron absorption lines. For each MDF, we determine maximum likelihood fits for Leaky Box, Pre-Enriched, and Extra Gas (wherein the gas supply available for star formation increases before it decreases to zero) analytic models of chemical evolution. Although the models are too simplistic to describe any MDF in detail, a Leaky Box starting from zero metallicity gas fits none of the galaxies except Canes Venatici I well. The MDFs of some galaxies, particularly the more luminous ones, strongly prefer the Extra Gas Model to the other models. Only for Canes Venatici I does the Pre-Enriched Model fit significantly better than the Extra Gas Model. The best-fit effect...

  8. A deep survey of heavy element lines in planetary nebulae - I. Observations and forbidden-line densities, temperatures and abundances

    Tsamis, Y G; Liu, X W; Danziger, I J; Storey, P J; Shtengel, Kirill; Nayak, Chetan; Bishara, Waheb; Chamon, Claudio

    2003-01-01

    We present spectrophotometry of 12 Galactic and 3 Magellanic Cloud planetary nebulae (PNe). Nine of the Galactic PNe were observed by scanning the slit across the PN. We use the fluxes of collisionally excited lines (CELs) to derive electron densities (D's) and temperatures (T's), and ionic abundances. We find that the D's derived from optical CEL ratios are systematically higher than those derived from the ratios of the IR fine-structure (FS) lines of [OIII], indicating the presence of significant density variations within the PNe. We also compare T's obtained from the ratio of optical nebular to auroral [OIII] lines with those obtained from the ratio of [OIII] optical to IR FS lines. We find that when the latter are derived using D's based on the [OIII] 52um/88um ratio, they yield values that are significantly higher than the optical [OIII] T's. Contrasting this, [OIII] optical/IR T's derived using the higher D's obtained from [ClIII] 5517A/5537A ratios show much closer agreement with optical [OIII] T's, im...

  9. Identification of Columbia River basalt flows from deep cores in the Pasco Basin based on trace element abundances

    Fruchter, J.S.; Rancitelli, L.A.

    1976-03-31

    Samples of basalt from three deep core holes drilled in the Pasco Basin, Washington (DDH-3, DH-4, DH-5) were analyzed by instrumental neutron activation (INAA) for up to fifteen trace and major elements. These analyses were used to assign each basalt flow to one of a series of previously defined chemical types of the Columbia River Basalt Group. All of the flows except the two flows at the bottom of well DDH-3 were clearly assignable to one of the defined chemical types. These two flows apparently represent new, as yet undefined chemical types. Average values and standard deviations for compositions of each of the chemical types found in the three wells are presented along with two-element variation diagrams for the geochemically important pair La-Cr, La-Fe, La-Th and La-Sc. The assignment of the flows to known chemical types accomplished in this study was very helpful in relating the basalts in the core holes to stratigraphically defined basalt flows in surface sections. A correlation diagram relating the flows in the core holes to one another on the basis of chemical type is presented.

  10. Bird Surveys at DARHT Before and During Operations: Comparison of Species Abundance and Composition and Trace Element Uptake

    P. R. Fresquez, D. C. Keller, C. D. Hathcock

    2007-11-30

    The Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility Mitigation Action Plan specifies the comparison of baseline conditions in biotic and abiotic media with those collected after operations have started. Operations at DARHT at Los Alamos National Laboratory started in 2000. In this study, the abundance and composition of birds collected near the DARHT facility from 2003 through 2006 were determined and compared to a preoperational period (1999). In addition, the levels of radionuclides and other inorganic chemicals in birds were compared to regional statistical reference levels (RSRLs). The number and diversity of bird species generally increased over preoperational levels with the greatest number of birds (412) and species (46) occurring in 2005. The most common bird species collected regardless of time periods were the chipping sparrow (Spizella passerina), the Virginia's warbler (Vermivora virginiae), the western bluebird (Sialia mexicana), the broad-tailed hummingbird (Selasphorus platycercus), the sage sparrow (Amphispiza belli), and the western tanager (Piranga ludoviciana). Most radionuclides, with the exception of uranium-234 and uranium-238, in (whole body) birds collected after operations began were either not detected or below RSRLs. Uranium-234 and uranium-238 concentrations in a few samples were far below screening levels and do not pose a potential unacceptable dose to the birds. In contrast, many inorganic chemicals, particularly arsenic and silver, in birds collected before and after operations began were in higher concentrations than RSRLs. Because birds (skin plus feathers) collected in the years before operations began contained higher levels of arsenic and silver than RSRLs and because there was no evidence of these metals in soil and sediment directly around the DARHT facility, the elevated levels of these metals in birds during early operations are probably not related to DARHT operations. Arsenic and silver in birds, however

  11. Abundances of light elements in metal-poor stars; 1, atmospheric parameters and a new T$_{eff}$ scale

    Gratton, R G; Castelli, F

    1996-01-01

    We present atmospheric parameters for about 300 stars of different chemical composition, whose spectra will be used to study the galactic enrichment of Fe and light elements. These parameters were derived using an homogenous iterative procedure, which considers new calibrations of colour-\\teff\\ relations for F, G and K-type stars based on Infrared Flux Method (IRFM) and interferometric diameters for population~I stars, and the Kurucz (1992) model atmospheres. We found that these calibrations yield a self-consistent set of atmospheric parameters for \\teff>4400~K, representing a clear improvement over results obtained with older model atmospheres. Using this \\teff-scale and Fe equilibrium of ionization, we obtained very low gravities (implying luminosities incompatible with that expected for RGB stars) for metal-poor stars cooler than 4400~K; this might be due either to a moderate Fe overionization (expected from statistical equilibrium calculations) or to inadequacy of Kurucz models to describe the atmospheres...

  12. Mineralogy and Major Element Abundance of the Dust Particles Recovered from Muses-C Regio on the Asteroid Itokawa

    Nakamura, T.; Noguchi, T.; Tanaka, M.; Zolensky, M. E.; Kimura, M.; Nakato, A.; Ogami, T.; Ishida, H.; Tsuchiyama, A.; Yada, T.; Shirai, K.; Okazaki, R.; Fujimura, A.; Ishibashi, Y.; Abe, M.; Okada, T.; Ueno, M.; Mukai, T.

    2011-01-01

    Remote sensing by the spacecraft Hayabusa suggested that outermost surface particles of Muses-C regio of the asteroid Itokawa consist of centimeter and sub-centimeter size small pebbles. However, particles we found in the sample catcher A stored in the Hayabusa capsule, where Muses-C particles were captured during first touchdown, are much smaller. i.e., most are smaller than 100 microns in size. This suggests that only small fractions of Muses-C particles were stirred up due to the impact of the sampling horn onto the surface, or due to jets from chemical thrusters during the lift off of the spacecraft from the surface. X-ray fluorescence and near-infrared measurements by the Hayabusa spacecraft suggested that Itokawa surface materials have mineral and major element composition roughly similar to LL chondrites. The particles of the Muses-C region are expected to have experienced some effects of space weathering. Both of these prospects can be tested by the direct mineralogical analyses of the returned Itokawa particles in our study and another one. This comparison is most important aspect of the Hayabusa mission, because it finally links chemical analyses of meteorites fallen on the Earth to spectroscopic measurements of the asteroids.

  13. Element Abundances at High-redshift: Magellan MIKE Observations of sub-Damped Lyman-alpha Absorbers at 1.7 < z <2.4

    Som, Debopam; Meiring, Joseph; York, Donald G; Péroux, Celine; Khare, Pushpa; Lauroesch, James T

    2013-01-01

    We present chemical abundance measurements from high-resolution observations of 5 sub-damped Lyman-alpha absorbers at 1.7 < z < 2.4 observed with the Magellan Inamori Kyocera Echelle (MIKE) spectrograph on the 6.5-m Magellan II Clay telescope. Lines of Zn II, Mg I, Mg II, Al II, Al III, S II, Si II, Si IV, C II, C II*, C IV, Ni II, Mn II and Fe II were detected and column densities were determined. The metallicity of the absorbing gas, inferred from the nearly undepleted element Zn, is in the range of < -0.95 to +0.25 dex for the five absorbers in our sample, with three of the systems being near-solar or super-solar. We also investigate the effect of ionisation on the observed abundances using photoionisation modelling. Combining our data with other sub-DLA and DLA data from the literature, we report the most complete existing determination of the metallicity vs. redshift relation for sub-DLAs and DLAs. We confirm the suggestion from previous investigations that sub-DLAs are, on average, more metal-r...

  14. High-Resolution X-ray Spectroscopy of Hercules X-1 with the XMM-Newton RGS CNO Element Abundance Measurements and Density Diagnostics of a Photoionized Plasma

    Jiménez-Garate, M A; Den Herder, J W A; Zane, S; Ramsay, G

    2002-01-01

    We analyze the high-resolution X-ray spectrum of Hercules X-1, an intermediate-mass X-ray binary, which was observed with the XMM-Newton Reflection Grating Spectrometer. We measure the elemental abundance ratios by use of spectral models, and we detect material processed through the CNO-cycle. The CNO abundances, and in particular the ratio N/O > 4.0 times solar, provide stringent constraints on the evolution of the binary system. The low and short-on flux states of Her X-1 exhibit narrow line emission from C VI, N VI, N VII, O VII, O VIII, Ne IX, and Ne X ions. The spectra show signatures of photoionization. We measure the electron temperature, quantify photoexcitation in the He alpha lines, and set limits on the location and density of the gas. The recombination lines may originate in the accretion disk atmosphere and corona, or on the X-ray illuminated face of the mass donor (HZ Her). The spectral variation over the course of the 35 d period provides additional evidence for the precession of the disk. Duri...

  15. Discovery of a Katablepharis sp. in the Columbia River estuary that is abundant during the spring and bears a unique large ribosomal subunit sequence element

    Kahn, Peter; Herfort, Lydie; Peterson, Tawnya D; Zuber, Peter

    2014-01-01

    Heterotrophic protists play significant roles in pelagic food webs as bacterivorous and herbivorous consumers. However, heterotrophic protists—unlike autotrophic ones—are often difficult to track since they tend to lack features such as photosynthetic pigments that allow for remote sensing or for bulk characterization. Difficulty in the identification of heterotrophic protists has often resulted in lumping them into broad groups, but there is a strong need to develop methods that increase the spatial and temporal resolution of observations applied to particular organisms in order to discover the drivers of population structure and ecological function. In surveys of small subunit rRNA, gene (SSU) sequences of microbial eukaryotes from the Columbia River to the Pacific Ocean, the heterotrophic flagellate Katablepharis sp. were found to dominate protist assemblages (including autotrophic and heterotrophic fractions) in the spring, prior to the freshet. We discovered a 332 base pair unique sequence element (USE) insertion in the large subunit rRNA gene (28S) that is not present in other katablepharids or in any other eukaryote. Using this USE, we were able to detect Katablepharis within mixed assemblages in river, estuarine, and oceanic samples and determine spatial and temporal patterns in absolute abundance through quantitative PCR and fluorescence in situ hybridization. Given their high abundance and repeatable temporal patterns of occurrence, we hypothesize that the Columbia River Estuary Katablepharis (Katablepharis CRE) plays an important role in estuarine biogeochemical and ecosystem function. PMID:25168204

  16. Soft X-ray spectrum of BL Lacertae object AO 0235+164 as a tracer of elemental abundances at z approximately 0.5

    Madejski, Greg

    1994-01-01

    We report the soft X-ray spectrum of BL Lac object AO 0235+164, observed with the Einstein Observatory Imaging Proportional Counter (IPC). This object (z = 0.94) has an intervening galaxy (or a protogalactic disk) at z = 0.524 present in the line of sight, producing both radio and optical absorption lines in the background BL Lac continuum. The X-ray spectrum exhibits a substantial soft X-ray cutoff, corresponding to several times that expected from our own Galaxy; we interpret that excess cutoff as due to the intervening galaxy. The comparison of the hydrogen column density inferred from the 21 cm radio data and the X-ray absorption allows, in principle, the determination of the elemental abundances in the intervening galaxy. However, the uncertainties in both the H I spin temperature and X-ray spectral parameters only loosely restrict these abundances to be 2 +/- 1 solar, which even at the lower limit appears higher than that inferred from studies of samples of optical absoprtion-line systems.

  17. The Old, Super-Metal-Rich Open Cluster, NGC 6791 - Elemental Abundances in Turn-off Stars from Keck/HIRES Spectra

    Boesgaard, Ann Merchant; Deliyannis, Constantine P

    2014-01-01

    The study of star clusters has advanced our understanding of stellar evolution, Galactic chemical evolution and nucleosynthesis. Here we investigate the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich with high-resolution (46,000) Keck/HIRES spectra. We find [Fe/H] = +0.30 +/-0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 A and we do a differential analysis relative to the Sun from our Lunar spectrum also obtained with Keck/HIRES. The O results are corrected for small nLTE effects. We find consistent ratios of [O/Fe]n with a mean of $-$0.06 +/-0.02. This continues the trend of decreasing [O/Fe] with increasing [Fe/H] found in field stars that are also both old and metal-rich. The small range in our oxygen abundances is consistent with a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]...

  18. Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: Implications for magma origins and crust-mantle evolution

    We present Hf, Nd and Sr isotopic data and abundances of K, Rb, Cs, Ba, Sr, Hf and REE for 32 samples from seven intra-oceanic island arcs. Samples from the Marianas, Izu, Aleutian and New Britain arcs have tightly grouped 176Hf/177Hfproportional0.28320, 143Nd/144Ndproportional0.51303 and 87Sr/86Srproportional0.7035 close to, but distinct from, mid-ocean ridge basalts (MORB) for 143Nd/144Nd and 87Sr/86Sr. In contrast, samples from the Sunda, Banda and Lesser Antilles arcs are much more variable towards lower 176Hf/177Hf and 143Nd/144Nd, and higher 87Sr/86Sr. Isotopically, island arcs on the whole are closely similar to ocean islands. Some commonly-occurring features of the trace element geochemistry of island arcs are apparent in our data: alkali and alkaline-earth elements, particularly Cs, have high abundance relative to LREE compared to oceanic basalts; negative Ce anomalies occur in six out of seven arcs. However, Hf does not appear underabundant relative to REE. The isotopic data require a continental component in all island arcs, in addition to probable mantle and oceanic crust contributions, even for the arcs with isotope ratios close to MORB. In the absence of continental crust, we can best explain this component by subducted pelagic sediment in the arc magma source region. The involvement of sediments in all arcs implies that there is an inherent recycling of older continent to island arcs, and potentially to new continent, of at least 1%. Conservative calculations show that the upper subducted slab (basalt + sediment) passes beyond the arc magma genesis zone and enters the deep mantle with a minimum of 500-1000 ppm K, and corresponding amounts of other incompatible elements. If this material is not completely homogenized with the mantle and later becomes part of the source of ocean island magmas, then the ocean island-island arc isotopic similarity is a result of their similar mix of source materials-mantle peridotite with trace element signatures from

  19. Puzzling Origin of CEMP-r/s Stars: An Interpretation of Abundance and Enrichment of s- and r-Process Elements from Asymptotic Giant Branch Supernovae

    Jiang Zhang; Fang Zhao; Yanping Chen; Wenyuan Cui; Bo Zhang

    2013-12-01

    CEMP-r/s stars at low metallicity are known as double-enhanced stars that show enhancements of both r-process and s-process elements. The chemical abundances of these very metal-poor stars provide us a lot of information for putting new restraints on models of neutron-capture processes. In this article, we put forward an accreted scenario in which the double enrichment of r-process and s-process elements is caused by a former intermediate-mass Asymptotic Giant Branch (AGB) companion in a detached binary system. As the AGB superwind is only present at the ultimate phase of AGB stars, there is thus a lot of potential that the degenerate-core mass of an intermediate-mass AGB star reaches the Chandrasekhar limit before the AGB superwind. In these circumstances, both s-process elements produced in the AGB shell and r-process elements synthesized in the subsequent explosion would be sprayed contemporaneously and accreted by its companion. Despite similarity to physical conditions of a core-collapse supernova, a major focus in this scenario is the degenerate C–O core surrounded by an envelope of a former intermediate-mass AGB donor that may collapse and explode. Due to the existence of an outer envelope, r-process nucleosynthesis is expected to occur. Hypothesizing the material-rich europium (Eu) accreted by the secondary via the wind from the supernova to be in proportion to the geometric fraction of the companion with respect to the exploding donor star, we find that the estimated yield of Eu (as representative of r-process elements) per AGB supernova event is about 1 × 10-9⊙ ∼ 5 × 10-9⊙. Using the yields of Eu, the overabundance of r-process elements in CEMP-r/s stars can be accounted for. The calculated results show that the value of parameter , standing for efficiency of wind pollution from the AGB supernova, will reach about 104, which means that the enhanced factor is much larger than unity due to the impact of gravity of the donor and the result of the

  20. Evaluation of relative isotopic abundance measurements in a quadrupole time-of-flight mass spectrometer for elemental composition determination of natural products in traditional Chinese medicine.

    Wu, Zhi-Jun; Huo, Jia-Li; Chen, Jian-Zhong; Li, Na; Fang, Dong-Mei; Chen, Xiao-Zhen; Zhang, Guo-Lin; Wang, Jian-Hua; Xu, Xiao-Ying

    2013-01-01

    The relative isotopic abundance (RIA) measurement errors of a quadrupole time-of-flight (Q-ToF) instrument incorporating analog-to-digital converter detectors were systemically evaluated by stochastically collecting about 200 data in positive ion mass spectrometry (MS) mode. Errors varied with peak intensities at definite spectral acquisition rates but were very close, even if peak intensities changed sharply at different spectral acquisition rates with the same concentration. Intensity thresholds were systematically defined at 1 Hz of spectral acquisition rates. RIA measurement errors were also evaluated using peak area. It seemed that peak area was better adapted for the high-intensity ions while peak intensity was suited for very low-intensity ions. Several known compounds were selected for RIA measurements for product ions in tandem mass spectropmetry (MS/MS) mode. An extract of a representative traditional Chinese medicinal, Paederia scandens was analyzed with high-performance liquid chromatography-electrospray ionization-QToF-MS/MS. The unique elemental compositions of some compounds could not be identified even with exact masses and MS/MS spectra of measured and reference compounds. RIA errors, especially of (M+2)M(-1), provided vital information for determining the elemental composition. PMID:24261081

  1. A comparative study on the abundance and elemental composition of POM in three interconnected basins: the Black, the Marmara and the Mediterranean Seas

    Y. COBAN-YILDIZ

    2012-12-01

    Full Text Available The abundance and elemental composition of suspended particulate organic matter in the upper layers of the interconnected Mediterranean, Marmara and Black Seas having different ecosystems were determined in 1990-1998. The aim was principally to compare the C:N:P ratio of seston and understand factors controlling the seston composition in near- and off-shore waters of these seas. In the Marmara Sea, euphotic zone average particulate concentrations varied regionally and seasonally between 10-35 ìM for POC, 0.4-4.5 ìM for PON and 0.05-0.45 ìM for PP. These concentrations are mostly above the off-shore Black Sea values but much greater than those measured in the open waters of the north-eastern Mediterranean whose near-shore data are comparable with the seston content of the deep Black Sea. Comparison of C:N:P ratios of seston reveals that atmospheric and land-based phosphorus input influences the C:P and N:P ratios in the near-shore waters. Apparent nutrient deficiencies observed in the water column were not as remarkable in the elemental composition of seston. Unexpectedly, in the NE Mediterranean, N:P ratios from regression analyses of particulate data are very low (7-9 in the coastal region but slightly increase to levels of 10-15 in the open sea. In the Sea of Marmara, the N:P ratios (7-12 of seston are as low as in the Mediterranean, being consistent with the particulate ratios of the Black Sea inflow and NO3:PO4 ratios of the Marmara sub-halocline water. The Black Sea seston is relatively rich in carbonaceous compounds with N:P ratio ranging merely between 15-17 in the open sea but 9-27 in coastal waters where riverine discharges markedly influence the stoichiometry of seston.

  2. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization.

    Seibt, Kathrin M; Wenke, Torsten; Muders, Katja; Truberg, Bernd; Schmidt, Thomas

    2016-05-01

    Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions. PMID:26996788

  3. Rapid and simultaneous determination of multi-element abundances and U-Pb age for zircon crystal using UV laser ablation ICP-MS technique: critical evaluation of the technique with 91500 zircon standard

    A new analytical technique for simultaneous determinations of REE, U, Th, Pb abundances and U-Pb age from a single analysis spot of zircon crystal is presented in this paper. It uses ultra-violet (U)-laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Coupling of multi-element abundance data and U-Pb age data can provide piercing information for petrogenetic studies of igneous rocks and for provenance studies of sedimentary and metamorphic rocks. The REE, U, Th and Pb abundances and 207Pb/206Pb and 206Pb/238U ratios for a 91500 zircon standard were simultaneously analyzed in order to test the accuracy of the measurement and to evaluated homogeneity within a grain of the standard sample. The resulted abundance data for almost of all rare earth elements (REE) show good agreement with those obtained by the secondary ion mass spectrometry (SIMS) and with LA-ICP-MS data. The data obtained in this study fell in the range of published data. Only exception is the abundance data for Er, Lu, Pb and U. These elements are differed largely from the published data beyond the precision of our measurements (∼10% in SD). The large discrepancy between present results and previous authors' data can be explained by heterogeneity among different grains of the zircon standard. In the case of U-Pb age, resulted 238U-206Pb and 207Pb-206Pb ages were 1131±152 Ma (2SD) and 1156±132 Ma (2SD), respectively, showing an excellent agreement with the TIMS data within analytical uncertainties achieved in this study (∼20%, 2SD). The abundance data for REE, U, Th and Pb, together with U-Pb isotopic ones demonstrate clearly that the present LA-ICPMS technique can provide a rapid and versatile tool for the multi-element abundances and U-Pb age determinations. (author)

  4. A back-arc setting for mafic rocks of the Honeysuckle Beds, southeastern N.S.W.: the use of trace and rare earth element abundances determined by INAA

    Dadd, K.A. [University of Technology, Sydney, NSW (Australia)

    1993-12-31

    Major, trace and rare earth elements abundance in mafic rocks of the Honeysuckle Beds was determined by x-ray fluorescence and neutron activation analysis . A comparison with typical mid-ocean ridge basalt compositions reveals an enrichment in light rare earths elements (Ba, Rb, and Th) and depletion in Nb, Ta and Ti, consistent with modifications of the source by subduction-related fluids. 9 refs., 6 figs.

  5. The apogee red-clump catalog: Precise distances, velocities, and high-resolution elemental abundances over a large area of the Milky Way's disk

    The Sloan Digital Sky Survey III's Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution near-infrared spectroscopic survey covering all of the major components of the Galaxy, including the dust-obscured regions of the inner Milky Way disk and bulge. Here we present a sample of 10,341 likely red-clump stars (RC) from the first two years of APOGEE operations, selected based on their position in color-metallicity-surface-gravity-effective-temperature space using a new method calibrated using stellar evolution models and high-quality asteroseismology data. The narrowness of the RC locus in color-metallicity-luminosity space allows us to assign distances to the stars with an accuracy of 5%-10%. The sample extends to typical distances of about 3 kpc from the Sun, with some stars out to 8 kpc, and spans a volume of approximately 100 kpc3 over 5 kpc ≲ R ≲ 14 kpc, |Z| ≲ 2 kpc, and –15° ≲ Galactocentric azimuth ≲ 30°. The APOGEE red-clump (APOGEE-RC) catalog contains photometry from the Two Micron All Sky Survey, reddening estimates, distances, line-of-sight velocities, stellar parameters and elemental abundances determined from the high-resolution APOGEE spectra, and matches to major proper motion catalogs. We determine the survey selection function for this data set and discuss how the RC selection samples the underlying stellar populations. We use this sample to limit any azimuthal variations in the median metallicity within the ≈45° azimuthal region covered by the current sample to be ≤0.02 dex, which is more than an order of magnitude smaller than the radial metallicity gradient. This result constrains coherent non-axisymmetric flows within a few kiloparsecs from the Sun.

  6. Abundances of platinum group elements in native sulfur condensates from the Niuatahi-Motutahi submarine volcano, Tonga rear arc: Implications for PGE mineralization in porphyry deposits

    Park, Jung-Woo; Campbell, Ian H.; Kim, Jonguk

    2016-02-01

    -forming fluid exsolved. Pd-rich porphyry Cu-Au deposits are associated with highly oxidized magmas. Prior to sulfide saturation Pd, Au and Cu behave as incompatible elements and concentrate in the melt with fractional crystallization, whereas Pt is depleted by early crystallization of a Pt-rich alloy and the other PGEs by the co-crystallization of the Pt-rich alloy and Cr spinel. As a consequence the Pd/Pt and Pd/Ir in the evolving melt and the magmatic volatile phases that exsolve from that melt, increase with increased fractionation. The high Pd content and high Pd/Pt (∼7-60) of Cu-Au porphyry ores therefore require the parent magma to have undergone extensive sulfide-undersaturated fractional crystallization prior to volatile exsolution. Our study also showed that the altered dacites contain PGE abundances that are similar to those of fresh dacites although Pt and Rh are slightly enriched in the altered dacites, which indicates low mobility of PGEs during secondary hydrothermal alteration.

  7. Non-constant relative atomic masses due to varying isotopic abundance of polynuclidic elements and their effect on the accuracy of analytical results

    Alterations of actual relative atomic masses occur in natural samples by natural isotope ratio shifts of polynuclidic elements. Therefore, using nuclear properties for gaining a measuring signal, isotopic shifts of certain elements may lead to significant measuring errors

  8. DcSto, stowaway-like miniature inverted-repeat transposable elements (MITEs), are abundant and polymorphic in the carrot genome

    Transposable elements constitute a large fraction of plant genomes and strongly influence gene and genome evolution. Stowaway elements, a group of MITEs present in high copy number, are preferentially located in the vicinity of coding regions. Stowaway elements are characterized by short length, sim...

  9. The Chemical Abundances of Stars in the Halo (CASH) Project. III. A New Classification Scheme for Carbon-Enhanced Metal-poor Stars with S-process Element Enhancement

    Hollek, Julie K; Placco, Vinicius M; Karakas, Amanda I; Shetrone, Matthew; Sneden, Christopher; Christlieb, Norbert

    2015-01-01

    We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo (CASH) Project. Its spectroscopic stellar parameters are Teff = 4863 K, log g = 1.25, vmic = 2.20 km/s, and [Fe/H] = -2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has [C/Fe] = 1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as "CEMP-r/s" star. Based on abundance comparisons with AGB star nucleosynthesis models, we suggest a new physically-motivated origin and classification scheme for CEMP-s stars and the still poorly-understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of therma...

  10. Abundances in galaxies

    Standard (or mildly inhomogeneous) Big Bang nucleosynthesis theory is well confirmed by abundance measurements of light elements up to 7Li and the resulting upper limit to the number of neutrino families confirmed in accelerator experiments. Extreme inhomogeneous models with a closure density in form of baryons seem to be ruled out and there is no evidence for a cosmic 'floor' to 9Be or heavier elements predicted in some versions of those models. Galaxies show a correlation between luminous mass and abundance of carbon and heavier elements, usually attributed to escape of hot gas from shallow potential wells. Uncertainties include the role of dark matter and biparametric behaviour of ellipticals. Spirals have radial gradients which may arise from a variety of causes. In our own Galaxy one can distinguish three stellar populations - disk, halo and bulge - characterised by differing metallicity distribution functions. Differential abundance effects are found among different elements in stars as a function of metallicity and presumably age, notably in the ratio of oxygen and α-particle elements to iron. These may eventually be exploitable to set a time scale for the formation of the halo, bulge and disk. (orig.)

  11. Interstellar Atomic Abundances

    Jenkins, E B

    2003-01-01

    A broad array of interstellar absorption features that appear in the ultraviolet spectra of bright sources allows us to measure the abundances and ionization states of many important heavy elements that exist as free atoms in the interstellar medium. By comparing these abundances with reference values in the Sun, we find that some elements have abundances relative to hydrogen that are approximately consistent with their respective solar values, while others are depleted by factors that range from a few up to around 1000. These depletions are caused by the atoms condensing into solid form onto dust grains. Their strengths are governed by the volatility of compounds that are produced, together with the densities and velocities of the gas clouds. We may characterize the depletion trends in terms of a limited set of parameters; ones derived here are based on measurements of 15 elements toward 144 stars with known values of N(H I) and N(H2). In turn, these parameters may be applied to studies of the production, de...

  12. Long-term Cultivation of the Deep-Sea Clam Calyptogena okutanii: Changes in the Abundance of Chemoautotrophic Symbiont, Elemental Sulfur, and Mucus.

    Ohishi, Kazue; Yamamoto, Masahiro; Tame, Akihiro; Kusaka, Chiho; Nagai, Yukiko; Sugimura, Makoto; Inoue, Koji; Uematsu, Katsuyuki; Yoshida, Takao; Ikuta, Tetsuro; Toyofuku, Takashi; Maruyama, Tadashi

    2016-06-01

    Survival of deep-sea Calyptogena clams depends on organic carbon produced by symbiotic, sulfur-oxidizing, autotrophic bacteria present in the epithelial cells of the gill. To understand the mechanism underlying this symbiosis, the development of a long-term cultivation system is essential. We cultivated specimens of Calyptogena okutanii in an artificial chemosynthetic aquarium with a hydrogen sulfide (H2S) supply system provided by the sulfate reduction of dog food buried in the sediment. We studied morphological and histochemical changes in the clams' gills by immunohistochemical and energy-dispersive X-ray analyses. The freshly collected clams contained a high amount of elemental sulfur in the gill epithelial cells, as well as densely packed symbiotic bacteria. Neither elemental sulfur nor symbiotic bacteria was detected in any other organs except the ovaries, where symbiotic bacteria, but not sulfur, was detected. The longest survival of an individual clam in this aquarium was 151 days. In the 3 clams dissected on Days 57 and 91 of the experiment, no elemental sulfur was detected in the gills. The symbiotic bacteria content had significantly decreased by Day 57, and was absent by Day 91. For comparison, we also studied the deep-sea mussel Bathymodiolus septemdierum, which harbors a phylogenetically close, sulfur-oxidizing, symbiotic bacterium with similar sulfur oxidation pathways. Sulfur particles were not detected, even in the gills of the freshly collected mussels. We discuss the importance of the proportion of available H2S and oxygen to the bivalves for elemental sulfur accumulation. Storage of nontoxic elemental sulfur, an energy source, seems to be an adaptive strategy of C. okutanii. PMID:27365420

  13. Planetary nebulae abundances and stellar evolution

    Pottasch, S. R.; Bernard-Salas, J.

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradients. The abundance of these elements predicted from these gradients at the distance of the Sun from the center are exactly the solar abundance. Sulfur is the exception to this; the reason for this...

  14. Trace element abundances in rutile from eclogite-granulite rock series of the Złote Mountains in the Sudetes (SW Poland)

    Bakun-Czubanov, N.; Kusy, D.; Fiala, Jiří

    2005-01-01

    Roč. 26, - (2005), s. 132-136. ISSN 0867-7360. [Crystalline Rocks of the East-European Craton. meeting of the Petrology Group of the Mineralogical Society of Poland /12./. Stary Folwark, 13.10.2005-16.10.2005] Institutional research plan: CEZ:AV0Z30130516 Keywords : rutile * trace elements * Zr-in-rutile geothermometer Subject RIV: DB - Geology ; Mineralogy http://www.geo.uw.edu.pl/PTMINSP/2005/2005.htm

  15. 盐湖丰产元素与Zintl化合物(续完)%The Correlation of Abundant Elements and Zintl Phases

    贾永忠; 景燕; 马军; 岳都元; Claude Belin; Monique Tillard

    2011-01-01

    Zintl化合物是以Edward Zintl命名的化合物,是一类由电正性的碱金属或碱土金属与电负性的13族或14族元素形成的特殊金属间化合物.其价键模式可以是离子键、金属键和共价键共存,其中的准金属可以共价键的形式形成各种形式的离子簇,因而其结构复杂多样.这类化合物的部分阴离子簇不仅具有稳定的笼状、层状和链状结构,并且具有特殊的光、电、磁等性能,使得在半导体、催化、电极材料等方面都有应用的前景和发展潜力.介绍了几个特殊Zintl化合物体系,盐湖丰产元素在Zinfi化合物中的作用,指出了含有盐湖丰产元素的Zintl化合物的应用前景和方向.%The term Zintl phase has been coined in honour of Edward Zintl,a German chemist. Zintl phases are formed by combinations of moderately electronegative post-transition elements, such as main group 13 and 14 elements with electropositive alkaline or alkaline-earth metals. In these combinations, owing to electron transfers ( total or partial) from the electropositive to the electronegative elements, anionic frameworks are formed in solid state that range from isolated anionic clusters, rings. cages and 1,2 or 3-D extended structures of which clathrates are among the most remarkable.The authors discuss the correlation of salt lake resources and Zintl phases. The potential applications of Zintl phases in salt lake resources are briefly discussed. This strategy for the synthesis of solid state compounds, which comprised light elements of salt lake resources, main group 13 and 14 elements and transition metal, have unique magnetic, electronic, thermoelectric, colossal magnetoresistance and ferromagnetic properties.

  16. Dye-Sensitized Solar Cells: The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells (Adv. Mater. 20/2016).

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    Sustainability is an important concept generating traction in the research community. To be really sustainable the full life cycle of a product needs to be carefully considered. A key aspect of this is using elements that are either readily recycled or accessible in the Earth's biosphere. Jigsawing these materials together in compounds to address our future energy needs represents a great opportunity for the current generation of researchers. On page 3802, S. Dunn and J. Briscoe summarize the performance of a selection of alternative materials to replace platinum in the counter electrodes of dye-sensitized solar cells. PMID:27197641

  17. Maps showing interpretation, using R-mode factor analysis, of trace-element abundances in heavy-mineral concentrate samples, Delta 1° x 2° Quadrangle, Utah

    Zimbelman, David R.

    1994-01-01

    A set of heavy-mineral concentrate data for the Delta 1° x 2° quadrangle, Utah Conterminous U.S. Mineral Assessment Program (CUSMAP) project was compiled from results of analyses of samples collected during the National Uranium Resource Evaluation Program (SURE), as well as results obtained from samples collected more recently by the USGS. Data results, sampling methods, and analytical methods are provided in Abrogast and others, 1993; 1990; 1988a; 1988b). A similar report, discussing results obtained from stream-sediment samples, is presented in Zimbelman (1993a). The Delta 1° x 2° quadrangle, Utah (figure 1) contains a variety of hydrothermal mineral deposit types, including porphyry-, vein-, replacement-, and Carlin-type deposits. These deposit types have been worked for commodities including gold, silver, beryllium, uranium, lead, zinc, copper, manganese, and cadmium (Lindsey, 1977; Morris and Mogensen, 1978; Zimbelman and others, 1990; Zimbelman and others, 1988). Heavy-mineral concentrate and stream-sediment samples derived from these hydrothermally altered rocks typically contain many geochemical anomalies (for example, see Zimbelman 1993b, c, d). Element associations characterizing lithology and hydrothermal mineral deposits can be distinguished using R-mode factor analysis. This tool often is useful in reconnaissance-scale surveys where sample anomalies are often weak. and single-element distributions may not help to delineate targets. R-mode factors analysis can help identify geologic trends and areas most likely to contain the mineral deposits. R-mode factor analysis was performed on a data set of results of analyses for 19 elements in 643 samples and produced a six-factor model. These six factors represent the geochemical contributions to the data set provided by lithologic and mineralization processes, The distribution of samples that contain high scores for mineralization-related factors is widespread in the Delta quadrangle. These sample sites

  18. Unprecedented accurate abundances: signatures of other Earths?

    Melendez, J.; Asplund, M.; Gustafsson, B.; Yong, D.; Ramirez, I.

    2009-01-01

    For more than 140 years the chemical composition of our Sun has been considered typical of solar-type stars. Our highly differential elemental abundance analysis of unprecedented accuracy (~0.01 dex) of the Sun relative to solar twins, shows that the Sun has a peculiar chemical composition with a ~20% depletion of refractory elements relative to the volatile elements in comparison with solar twins. The abundance differences correlate strongly with the condensation temperatures of the elements...

  19. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China

    Dai, Shifeng [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), D 11, Xueyuan Road, Haidian District, Beijing 100083 (China); Department of Resources and Earth Science, China University of Mining and Technology, D11, Xueyuan Road, Haidian District, Beijing 100083 (China); Zhao, Lei; Wang, Xibo; Zhang, Yong; Li, Dan; Sun, Yingying [Department of Resources and Earth Science, China University of Mining and Technology, D11, Xueyuan Road, Haidian District, Beijing 100083 (China); Peng, Suping [State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), D 11, Xueyuan Road, Haidian District, Beijing 100083 (China); Chou, Chen-Lin [Illinois State Geological Survey (emeritus), University of Illinois, 615 East Peabody Drive, Champaign, IL 61820 (United States)

    2010-04-01

    The fly ash from the Jungar Power Plant, Inner Mongolia, China, is unique because it is highly enriched in alumina (Al{sub 2}O{sub 3} > 50%). The fly ash mainly consists of amorphous glass and mullite and trace amounts of corundum, quartz, char, calcite, K-feldspar, clay minerals, and Fe-bearing minerals. The mullite content in fly ash is as high as 37.4% because of high boehmite and kaolinite contents in feed coal. Corundum is a characteristic mineral formed during the combustion of boehmite-rich coal. Samples from the economizer were sieved into six size fractions (< 120, 120-160, 160-300, 300-360, 360-500, and > 500 mesh) and separated into magnetic, mullite + corundum + quartz (MCQ) and glass phases for mineralogical and chemical analysis. The corundum content increases but amorphous glass decreases with decreasing particle size. Fractions of small particle sizes are relatively high in mullite, probably because mullite was formed from fine clay mineral particles under high-temperature combustion condition. Similarly, fine corundum crystals formed in the boiler from boehmite in feed coal. The magnetic phase consists of hematite, magnetite, magnesioferrite, and MgFeAlO{sub 4} crystals. The MCQ phase is composed of 89% mullite, 6.1% corundum, 4.5% quartz, and 0.5% K-feldspar. Overall, the fly ash from the power plant is significantly enriched in Al{sub 2}O{sub 3} with an average of 51.9%, but poor in SiO{sub 2}, Fe{sub 2}O{sub 3}, CaO, MgO, Na{sub 2}O, P{sub 2}O{sub 5}, and As. Arsenic, TiO{sub 2}, Th, Al{sub 2}O{sub 3}, Bi, La, Ga, Ni, and V are high in mullite, and the magnetic matter is enriched in Fe{sub 2}O{sub 3}, CaO, MnO, TiO{sub 2}, Cs, Co, As, Cd, Ba, Ni, Sb, MgO, Zn, and V. The remaining elements are high in the glass fraction. The concentration of K{sub 2}O, Na{sub 2}O, P{sub 2}O{sub 5}, Nb, Cr, Ta, U, W, Rb, and Ni do not clearly vary with particle size, while SiO{sub 2} and Hg decrease and the remaining elements clearly increase with decreasing

  20. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China

    Dai, S.; Zhao, L.; Peng, S.; Chou, C.-L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y.

    2010-01-01

    The fly ash from the Jungar Power Plant, Inner Mongolia, China, is unique because it is highly enriched in alumina (Al2O3>50%). The fly ash mainly consists of amorphous glass and mullite and trace amounts of corundum, quartz, char, calcite, K-feldspar, clay minerals, and Fe-bearing minerals. The mullite content in fly ash is as high as 37.4% because of high boehmite and kaolinite contents in feed coal. Corundum is a characteristic mineral formed during the combustion of boehmite-rich coal.Samples from the economizer were sieved into six size fractions (500 mesh) and separated into magnetic, mullite+corundum+quartz (MCQ) and glass phases for mineralogical and chemical analysis. The corundum content increases but amorphous glass decreases with decreasing particle size. Fractions of small particle sizes are relatively high in mullite, probably because mullite was formed from fine clay mineral particles under high-temperature combustion condition. Similarly, fine corundum crystals formed in the boiler from boehmite in feed coal. The magnetic phase consists of hematite, magnetite, magnesioferrite, and MgFeAlO4 crystals. The MCQ phase is composed of 89% mullite, 6.1% corundum, 4.5% quartz, and 0.5% K-feldspar.Overall, the fly ash from the power plant is significantly enriched in Al2O3 with an average of 51.9%, but poor in SiO2, Fe2O3, CaO, MgO, Na2O, P2O5, and As. Arsenic, TiO2, Th, Al2O3, Bi, La, Ga, Ni, and V are high in mullite, and the magnetic matter is enriched in Fe2O3, CaO, MnO, TiO2, Cs, Co, As, Cd, Ba, Ni, Sb, MgO, Zn, and V. The remaining elements are high in the glass fraction. The concentration of K2O, Na2O, P2O5, Nb, Cr, Ta, U, W, Rb, and Ni do not clearly vary with particle size, while SiO2 and Hg decrease and the remaining elements clearly increase with decreasing particle size. ?? 2009 Elsevier B.V.

  1. Interannual variation of rare earth element abundances in corals from northern coast of the South China Sea and its relation with sea-level change and human activities

    Liu, Yajing; Peng, Z.; Wei, G.; Chen, T.; Sun, W.; He, J.; Liu, Gaisheng; Chou, C.-L.; Shen, C.-C.

    2011-01-01

    Here we present interannual rare earth element (REE) records spanning the last two decades of the 20th century in two living Porites corals, collected from Longwan Bay, close to the estuarine zones off Wanquan River of Hainan Island and Hong Kong off the Pearl River Delta of Guangdong Province in the northern South China Sea. The results show that both coral REE contents (0.5-40 ng g-1 in Longwan Bay and 2-250 ng g-1 in Hong Kong for La-Lu) are characterized with a declining trend, which are significantly negative correlated with regional sea-level rise (9.4 mm a-1 from 1981 to 1996 in Longwan Bay, 13.7 mm a-1 from 1991 to 2001 in Hong Kong). The REE features are proposed to be resulted from seawater intrusion into the estuaries in response to contemporary sea-level rise. However, the tendency for the coral Er/Nd time series at Hong Kong site is absent and there is no significant relation between Er/Nd and total REEs as found for the coral at Longwan Bay site. The observations are likely attributed to changes of the water discharge and sediment load of Pearl River, which have been significantly affected by intense human activities, such as the construction of dams/reservoirs and riverbed sediment mining, in past decades. The riverine sediment load/discharge ratio of the Pearl River decreased sharply with a rate of 0.02 kg m-3 a-1, which could make significant contribution to the declining trend of coral REE. We propose that coastal corals in Longwan Bay and similar unexplored sites with little influences of river discharge and anthropogenic disruption are ideal candidates to investigate the influence of sea-level change on seawater/coral REE. ?? 2010 Elsevier Ltd.

  2. Evaluating the primary and/or diagenetic origin of rare earth element abundances in Ediacaran to early Cambrian phosphate deposits, Yangtze Platform (South China) by LA-ICPMS

    Hippler, Dorothee; Klügel, Andreas; Biedermann, Nicole; Guo, Qingjun; Franz, Gerhard

    2014-05-01

    The Precambrian-Cambrian time interval represents one of the greatest phosphogenic episodes in Earth's history with giant and well-preserved phosphate deposits occurring on the Yangtze Platform in South China. We investigated concentrations of rare earth elements (REE) and yttrium of shallow and deep-water sedimentary phosphate deposits of the Ediacaran Doushantou Formation and the early Cambrian Zhongyicun Formation by using LA-ICP mass spectrometry. The aim is to examine the temporal and spatial variability of seawater chemistry in conjunction with the conditions of phosphate formation and the evaluation of the extent of diagenetic modification. The mineralogical and textural composition of the samples was pre-screened using SEM and XRD, and polished thick sections were prepared for subsequent high-resolution LA-ICPMS analyses. Overall concentrations in REE range between 18 and 657 ppm, with elevated concentrations (> 200 ppm) in apatite from the deep-water phosphate deposits. REE+Y patterns of shallow-water phosphate deposits exhibit the evolution from flat shale-like to gently inclined seawater-derived patterns, with the early Cambrian phosphate deposits revealing distinct negative Ce- and positive Y-anomalies indicative for oxygenated surface waters. REE+Y patterns of phosphate deposits of the deep-water facies are flat to highly enriched in MREE, which is manifested in variably pronounced concave-down patterns. In detail, these patterns display different Ce-anomalies, as well as small positive Eu-anomalies. We propose that REE+Y patterns of Ediacaran and early Cambrian sedimentary phosphate deposits can inherit both primary and secondary signatures reflecting either seawater composition or diagenetic modification and fluid flow. The combination of imaging techniques and in-situ LA-ICPMS thereby enables a more sophisticated examination of the potential sources and processes than whole rock determinations. Placing the results in stratigraphic order and assuming

  3. Solar System chemical abundances corrected for systematics

    Gonzalez, Guillermo

    2014-01-01

    The relative chemical abundances between CI meteorites and the solar photosphere exhibit a significant trend with condensation temperature. A trend with condensation temperature is also seen when the solar photospheric abundances are compared to those of nearby solar twins. We use both these trends to determine the alteration of the elemental abundances of the meteorties and the photosphere by fractionation and calculate a new set of primordial Solar System abundances.

  4. Abundances in stars with exoplanets

    Israelian, Garik

    2003-01-01

    Extensive spectroscopic studies of stars with and without planets have concluded that stars hosting planets are significantly more metal-rich than those without planets. More subtle trends of different chemical elements begin to appear as the number of detected extrasolar planetary systems continues to grow. I review our current knowledge concerning the observed abundance trends of various chemical elements in stars with exoplanets and their possible implications.

  5. Solar Energetic Particles: Sampling Coronal Abundances

    Reames, Donald V.

    1998-05-01

    In the large solar energetic particle (SEP) events, coronal mass ejections (CMEs) drive shock waves out through the corona that accelerate elements of the ambient material to MeV energies in a fairly democratic, temperature-independent manner. These events provide the most complete source of information on element abundances in the corona. Relative abundances of 22 elements from H through Zn display the well-known dependence on the first ionization potential (FIP) that distinguishes coronal and photospheric material. For most elements, the main abundance variations depend upon the gyrofrequency, and hence on the charge-to-mass ratio, Q/A, of the ion. Abundance variations in the dominant species, H and He, are not Q/A dependent, presumably because of non-linear wave-particle interactions of H and He during acceleration. Impulsive flares provide a different sample of material that confirms the Ne:Mg:Si and He/C abundances in the corona.

  6. Elemental Abundances in Leonid and Perseid Meteoroids

    Borovička, Jiří

    2005-01-01

    Roč. 95, 1-4 (2005), s. 245-253. ISSN 0167-9295. [Meteoroids 2004. London, Ontario, 16.08.2004-20.08.2004] R&D Projects: GA ČR GA205/02/0982 Institutional research plan: CEZ:AV0Z1003909 Keywords : meteors * meteoroids * spectroscopy Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.975, year: 2005

  7. Relative abundance determinations in extremely metal poor giants. II. Transition probabilities and the abundance determinations

    The abundances of Fe and other elements are determined for a star of intermediate metallicity and for nine extremely metal poor stars, including two members of the globular cluster M92 and CD -38 deg 245. The accuracy of the transition probabilities for Fe I and other elements is evaluated. The distribution of the abundances of other elements with respect to Fe is the same for most of the cases studied. Manganese is the only element that shows a different relative abundance in an extremely metal poor star. 120 refs

  8. Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    Cowan, J J; Sneden, C; Den Hartog, E A; Collier, J L; Cowan, John J.; Lawler, James E.; Sneden, Christopher; Collier, Jason

    2006-01-01

    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingl...

  9. The Sulfur Abundance Anomaly in Planetary Nebulae

    Henry, R B C; Kwitter, K B; Milingo, M B

    2006-01-01

    The failure of S and O abundances in most planetary nebulae to display the same strong direct correlation that is observed in extragalactic H II regions represents one of the most perplexing problems in the area of PN abundances today. Galactic chemical evolution models as well as large amounts of observational evidence from H II region studies support the contention that cosmic abundances of alpha elements such as O, Ne, S, Cl, and Ar increase together in lockstep. Yet abundance results from the Henry, Kwitter, & Balick (2004) database show a strong tendency for most PNe to have S abundances that are significantly less than expected from the observed level of O. One reasonable hypothesis for the sulfur anomaly is the past failure to properly measure the abundances of unseen ionization stages above S^+2. Future observations with Spitzer will allow us to test this hypothesis.

  10. Unprecedented accurate abundances: signatures of other Earths?

    Melendez, J; Gustafsson, B; Yong, D; Ramírez, I

    2009-01-01

    For more than 140 years the chemical composition of our Sun has been considered typical of solar-type stars. Our highly differential elemental abundance analysis of unprecedented accuracy (~0.01 dex) of the Sun relative to solar twins, shows that the Sun has a peculiar chemical composition with a ~20% depletion of refractory elements relative to the volatile elements in comparison with solar twins. The abundance differences correlate strongly with the condensation temperatures of the elements. A similar study of solar analogs from planet surveys shows that this peculiarity also holds in comparisons with solar analogs known to have close-in giant planets while the majority of solar analogs without detected giant planets show the solar abundance pattern. The peculiarities in the solar chemical composition can be explained as signatures of the formation of terrestrial planets like our own Earth.