WorldWideScience

Sample records for abundance chemical

  1. Precision Chemical Abundance Measurements

    Yong, David; Grundahl, Frank; Meléndez, Jorge;

    2012-01-01

    This talk covers preliminary work in which we apply a strictly differential line-by-line chemical abundance analysis to high quality UVES spectra of the globular cluster NGC 6752. We achieve extremely high precision in the measurement of relative abundance ratios. Our results indicate that the ob...

  2. Origin of Cosmic Chemical Abundances

    Maio, Umberto

    2015-01-01

    Cosmological N-body hydrodynamic computations following atomic and molecular chemistry (e$^-$, H, H$^+$, H$^-$, He, He$^+$, He$^{++}$, D, D$^+$, H$_2$, H$_2^+$, HD, HeH$^+$), gas cooling, star formation and production of heavy elements (C, N, O, Ne, Mg, Si, S, Ca, Fe, etc.) from stars covering a range of mass and metallicity are used to explore the origin of several chemical abundance patterns and to study both the metal and molecular content during simulated galaxy assembly. The resulting trends show a remarkable similarity to up-to-date observations of the most metal-poor damped Lyman-$\\alpha$ absorbers at redshift $z\\gtrsim 2$. These exhibit a transient nature and represent collapsing gaseous structures captured while cooling is becoming effective in lowering the temperature below $\\sim 10^4\\,\\rm K$, before they are disrupted by episodes of star formation or tidal effects. Our theoretical results agree with the available data for typical elemental ratios, such as [C/O], [Si/Fe], [O/Fe], [Si/O], [Fe/H], [O/...

  3. Solar System chemical abundances corrected for systematics

    Gonzalez, Guillermo

    2014-01-01

    The relative chemical abundances between CI meteorites and the solar photosphere exhibit a significant trend with condensation temperature. A trend with condensation temperature is also seen when the solar photospheric abundances are compared to those of nearby solar twins. We use both these trends to determine the alteration of the elemental abundances of the meteorties and the photosphere by fractionation and calculate a new set of primordial Solar System abundances.

  4. Chemical abundance analysis of 19 barium stars

    Yang, G C; Spite, M; Chen, Y Q; Zhao, G; Zhang, B; Liu, G Q; Liu, Y J; Liu, N; Deng, L C; Spite, F; Hill, V; Zhang, C X

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-ca...

  5. Chemical Abundances and Milky Way Formation

    Gilmore, Gerry; Wyse, Rosemary F. G.

    2004-01-01

    Stellar chemical element ratios have well-defined systematic trends as a function of abundance, with an excellent correlation of these trends with stellar populations defined kinematically. This is remarkable, and has significant implications for Galactic evolution. The source function, the stellar Initial Mass Function, must be nearly invariant with time, place and metallicity. Each forming star must see a well-mixed mass-averaged IMF yield, implying low star formation rates, with most star ...

  6. Chemical abundance analysis of 19 barium stars

    Yang, Guo-Chao; Liang, Yan-Chun; Spite, Monique; Chen, Yu-Qin; Zhao, Gang; Zhang, Bo; Liu, Guo-Qing; Liu, Yu-Juan; Liu, Nian; Deng, Li-Cai; Spite, Francois; Hill, Vanessa; Zhang, Cai-Xia

    2016-01-01

    We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescope at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures Teff, surface gravities log g, metallicity [Fe/H] and microturbulence velocity ξt) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants as indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their Na, Al, α- and iron-peak elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The Y I and Zr I abundances are lower than Ba, La and Eu, but higher than the α- and iron-peak elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe] >0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe] <0.54.

  7. Principal Component Analysis on Chemical Abundances Spaces

    Ting, Y S; Kobayashi, C; De Silva, G M; Bland-Hawthorn, J

    2011-01-01

    [Shortened] In preparation for the HERMES chemical tagging survey of about a million Galactic FGK stars, we estimate the number of independent dimensions of the space defined by the stellar chemical element abundances [X/Fe]. [...] We explore abundances in several environments, including solar neighbourhood thin/thick disk stars, halo metal-poor stars, globular clusters, open clusters, the Large Magellanic Cloud and the Fornax dwarf spheroidal galaxy. [...] We find that, especially at low metallicity, the production of r-process elements is likely to be associated with the production of alpha-elements. This may support the core-collapse supernovae as the r-process site. We also verify the over-abundances of light s-process elements at low metallicity, and find that the relative contribution decreases at higher metallicity, which suggests that this lighter elements primary process may be associated with massive stars. [...] Our analysis reveals two types of core-collapse supernovae: one produces mainly alpha-e...

  8. Chemical abundances and kinematics of barium stars

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Silva, J. V. Sales

    2016-04-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, alpha-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of alpha-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anti-correlated with the metallicity. Our kinematical analysis showed that 90% of the barium stars belong to the thin disk population. Based on their luminosities, none of the barium stars are luminous enough to be an AGB star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  9. Chemical abundances and kinematics of barium stars

    de Castro, D. B.; Pereira, C. B.; Roig, F.; Jilinski, E.; Drake, N. A.; Chavero, C.; Sales Silva, J. V.

    2016-07-01

    In this paper, we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scaleheight, radial velocities, abundances of the Na, Al, α-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local thermodynamic equilibrium model atmospheres of Kurucz and the spectral analysis code MOOG. We found that the metallicities, the temperatures and the surface gravities for barium stars cannot be represented by a single Gaussian distribution. The abundances of α-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heavy-element abundance pattern as given by the ratio [s/Fe], we found that the barium stars present several degrees of enrichment. We also obtained the [hs/ls] ratio by measuring the photospheric abundances of the Ba-peak and the Zr-peak elements. Our results indicated that the [s/Fe] and the [hs/ls] ratios are strongly anticorrelated with the metallicity. Our kinematical analysis showed that 90 per cent of the barium stars belong to the thin disc population. Based on their luminosities, none of the barium stars are luminous enough to be an asymptotic giant branch star, nor to become self-enriched in the s-process elements. Finally, we determined that the barium stars also follow an age-metallicity relation.

  10. Evolution of chemical abundances in Seyfert galaxies

    Ballero, S. K.; Matteucci, F; Ciotti, L.; Calura, F; P. Padovani

    2007-01-01

    We computed the chemical evolution of spiral bulges hosting Seyfert nuclei, based on updated chemical and spectro-photometrical evolution models for the bulge of our Galaxy, made predictions about other quantities measured in Seyferts, and modeled the photometry of local bulges. The chemical evolution model contains detailed calculations of the Galactic potential and of the feedback from the central supermassive black hole, and the spectro-photometric model covers a wide range of stellar ages...

  11. Chemical Abundance Inhomogeneities in Globular Cluster Stars

    Cohen, Judith G.

    2004-01-01

    It is now clear that abundance variations from star-to-star among the light elements, particularly C, N, O, Na and Al, are ubiquitous within galactic globular clusters; they appear seen whenever data of high quality is obtained for a sufficiently large sample of stars within such a cluster. The correlations and anti-correlations among these elements and the range of variation of each element appear to be independent of stellar evolutionary state, with the exception that enhanced depletion of ...

  12. Chemical abundances and kinematics of barium stars

    de Castro, D B; Roig, F; Jilinski, E; Drake, N A; Chavero, C; Silva, J V Sales

    2016-01-01

    In this paper we present an homogeneous analysis of photospheric abundances based on high-resolution spectroscopy of a sample of 182 barium stars and candidates. We determined atmospheric parameters, spectroscopic distances, stellar masses, ages, luminosities and scale height, radial velocities, abundances of the Na, Al, $alpha$-elements, iron-peak elements, and s-process elements Y, Zr, La, Ce, and Nd. We employed the local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral analysis code {\\sc moog}. We found that the metallicities, the temperatures and the surface gravities for barium stars can not be represented by a single gaussian distribution. The abundances of $alpha$-elements and iron peak elements are similar to those of field giants with the same metallicity. Sodium presents some degree of enrichment in more evolved stars that could be attributed to the NeNa cycle. As expected, the barium stars show overabundance of the elements created by the s-process. By measuring the mean heav...

  13. Model reduction for stochastic chemical systems with abundant species

    Smith, Stephen; Cianci, Claudia; Grima, Ramon

    2015-12-01

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  14. Model reduction for stochastic chemical systems with abundant species

    Smith, Stephen; Cianci, Claudia; Grima, Ramon [School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH93JR, Scotland (United Kingdom)

    2015-12-07

    Biochemical processes typically involve many chemical species, some in abundance and some in low molecule numbers. We first identify the rate constant limits under which the concentrations of a given set of species will tend to infinity (the abundant species) while the concentrations of all other species remains constant (the non-abundant species). Subsequently, we prove that, in this limit, the fluctuations in the molecule numbers of non-abundant species are accurately described by a hybrid stochastic description consisting of a chemical master equation coupled to deterministic rate equations. This is a reduced description when compared to the conventional chemical master equation which describes the fluctuations in both abundant and non-abundant species. We show that the reduced master equation can be solved exactly for a number of biochemical networks involving gene expression and enzyme catalysis, whose conventional chemical master equation description is analytically impenetrable. We use the linear noise approximation to obtain approximate expressions for the difference between the variance of fluctuations in the non-abundant species as predicted by the hybrid approach and by the conventional chemical master equation. Furthermore, we show that surprisingly, irrespective of any separation in the mean molecule numbers of various species, the conventional and hybrid master equations exactly agree for a class of chemical systems.

  15. Evolution of chemical abundances in Seyfert galaxies

    Ballero, S K; Ciotti, L; Calura, F; Padovani, P

    2007-01-01

    We computed the chemical evolution of spiral bulges hosting Seyfert nuclei, based on updated chemical and spectro-photometrical evolution models for the bulge of our Galaxy, made predictions about other quantities measured in Seyferts, and modeled the photometry of local bulges. The chemical evolution model contains detailed calculations of the Galactic potential and of the feedback from the central supermassive black hole, and the spectro-photometric model covers a wide range of stellar ages and metallicities. We followed the evolution of bulges in the mass range 10^9 - 10^{11} Msun by scaling the star formation efficiency and the bulge scalelength as in the inverse-wind scenario for elliptical galaxies, and considering an Eddington limited accretion onto the central supermassive black hole. We successfully reproduced the observed black hole-host bulge mass relation. The observed nuclear bolometric luminosity is reproduced only at high redshift or for the most massive bulges; in the other cases, at z = 0 a r...

  16. Chemical Constraints on the Oxygen Abundances in Jupiter and Saturn

    Wang, Dong

    2012-01-01

    We perform a comparative analysis of the chemical kinetics of CO and $\\rm PH_3$ in Jupiter and Saturn to assess the full set of constraints available on the troposphere water abundance in the two giant planets. For carbon monoxide we employ both a widely used CO kinetic scheme from Yung et al, and a newly identified CO chemical scheme from Visscher and Moses. For $\\rm PH_3$ chemical scheme, we use the same chemical scheme as in Visscher and Fegley. Yung's chemical scheme for CO yields a water enrichment of 0.95 - 23.0 times solar abundance on Jupiter, and an upper limit of 14.0 for Saturn. Visscher's chemical scheme in contrast produces a water enrichment of 0.24 - 2.6 times solar abundance in Jupiter, and for Saturn an upper limit for water enrichment of 8.0. From this scheme, which takes advantage of the most up-to-date kinetics, we preclude high water enrichments on Jupiter and Saturn, and show that the kinetics approach yields Jovian bulk abundance in which values of C/O elevated relative to solar are adm...

  17. Constraints on chemical evolution models from QSOALS abundances

    Lauroesch, J. T.

    1993-01-01

    Models of the formation and early chemical evolution of our Galaxy are guided and constrained by our knowledge of abundances in globular cluster stars and halo field stars. The abundance patterns identified in halo and disk stars should be discernible in absorption lines of gas clouds in forming galaxies which are accidentally lying in front of background QSO's. Conversely, the ensemble of QSO absorption line systems (QSOALS) at each redshift may suggest a detailed model for the formation of our Galaxy that is testable using abundance patterns in halo stars.

  18. Oxygen abundances and the chemical evolution of spiral galaxies

    Tosi., M; Angeles I. Díaz

    1983-01-01

    This is an electronic version of an article published in Memorie della Società Astronomica Italiana. Tosi, M. and A. I. Díaz. Oxygen abundances and the chemical evolution of spiral galaxies. Memorie della Società Astronomica Italiana 54, 4 (1983): 889-890

  19. Chemical abundances from planetary nebulae in local spiral galaxies

    Richer, M G

    2015-01-01

    While the chemical abudances observed in bright planetary nebulae in local spiral galaxies are less varied than their counterparts in dwarfs, they provide new insight. Their helium abundances are typically enriched by less than 50\\% compared to the primordial abundance. Nitrogen abundances always show some level of secondary enrichment, but the absolute enrichment is not extreme. In particular, type I PNe are rare among the bright PNe in local spirals. The oxygen and neon abundances are very well correlated and follow the relation between these abundances observed in star-forming galaxies, implying that either the progenitor stars of these PNe modify neither abundance substantially or that they modify both to maintain the ratio (not predicted by theory). According to theory, these results imply that the progenitor stars of bright PNe in local spirals have masses of about $2\\,\\mathrm M_{\\odot}$ or less. If so, the progenitors of these PNe have substantial lifetimes that allow us to use them to study the recent...

  20. Chemical Abundance Gradients in the Star-forming Ring Galaxies

    Korchagin, Vladimir; Vorobyov, Eduard; Mayya, Y. D.

    1999-09-01

    Ring waves of star formation, propagating outward in the galactic disks, leave chemical abundance gradients in their wakes. We show that the relative [Fe/O] abundance gradients in ring galaxies can be used as a tool for determining the role of the SN Ia explosions in their chemical enrichment. We consider two mechanisms--a self-induced wave and a density wave--that can create outwardly propagating star-forming rings in a purely gaseous disk and demonstrate that the radial distribution of the relative [Fe/O] abundance gradients depends neither on the particular mechanism of the wave formation anor on the parameters of the star-forming process. We show that the [Fe/O] profile is determined by the velocity of the wave, the initial mass function, and the initial chemical composition of the star-forming gas. If the role of SN Ia explosions is negligible in the chemical enrichment, the ratio [Fe/O] remains constant throughout the galactic disk with a steep gradient at the wave front. If SN Ia stars are important in the production of cosmic iron, the [Fe/O] ratio has a gradient in the wake of the star-forming wave with the value depending on the frequency of SN Ia explosions.

  1. Chemical abundances of distant extremely metal-poor unevolved stars

    Bonifacio, P; Caffau, E; Ludwig, H -G; Spite, M; Hernández, J I González; Behara, N T

    2012-01-01

    Aims: The purpose of our study is to determine the chemical composition of a sample of 16 candidate Extremely Metal-Poor (EMP) dwarf stars, extracted from the Sloan Digital Sky Survey (SDSS). There are two main purposes: in the first place to verify the reliability of the metallicity estimates derived from the SDSS spectra; in the second place to see if the abundance trends found for the brighter nearer stars studied previously also hold for this sample of fainter, more distant stars. Methods: We used the UVES at the VLT to obtain high-resolution spectra of the programme stars. The abundances were determined by an automatic analysis with the MyGIsFOS code, with the exception of lithium, for which the abundances were determined from the measured equivalent widths of the Li I resonance doublet. Results: All candidates are confirmed to be EMP stars, with [Fe/H]<= -3.0. The chemical composition of the sample of stars is similar to that of brighter and nearer samples. We measured the lithium abundance for 12 st...

  2. ASPCAP: The Apogee Stellar Parameter and Chemical Abundances Pipeline

    Pérez, Ana E García; Holtzman, Jon A; Shetrone, Matthew; Mészáros, Szabolcs; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia; García-Hernández, D A; Johnson, Jennifer A; Majewski, Steven R; Nidever, David L; Schiavon, Ricardo P; Shane, Neville; Smith, Verne V; Sobeck, Jennifer; Troup, Nicholas; Zamora, Olga; Bovy, Jo; Eisenstein, Daniel J; Feuillet, Diane; Frinchaboy, Peter M; Hayden, Michael R; Hearty, Fred R; Nguyen, Duy C; O'Connell, Robert W; Pinsonneault, Marc H; Weinberg, David H; Wilson, John C; Zasowski, Gail

    2015-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R=22, 500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using chi-2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization, and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, wh...

  3. ASPCAP: The APOGEE Stellar Parameter and Chemical Abundances Pipeline

    García Pérez, Ana E.; Allende Prieto, Carlos; Holtzman, Jon A.; Shetrone, Matthew; Mészáros, Szabolcs; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia; García-Hernández, D. A.; Johnson, Jennifer A.; Majewski, Steven R.; Nidever, David L.; Schiavon, Ricardo P.; Shane, Neville; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas; Zamora, Olga; Weinberg, David H.; Bovy, Jo; Eisenstein, Daniel J.; Feuillet, Diane; Frinchaboy, Peter M.; Hayden, Michael R.; Hearty, Fred R.; Nguyen, Duy C.; O’Connell, Robert W.; Pinsonneault, Marc H.; Wilson, John C.; Zasowski, Gail

    2016-06-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R ≈ 22,500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using χ2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, which are predominantly giants. It also provides abundances for up to 15 chemical elements with various levels of precision, typically under 0.1 dex. The final data release (DR12) of the Sloan Digital Sky Survey III contains an APOGEE database of more than 150,000 stars. ASPCAP development continues in the SDSS-IV APOGEE-2 survey.

  4. Cosmic rays interactions and the abundances of the chemical elements

    Our Galaxy is the largest nuclear interaction experiment which we know, because of the interaction between cosmic ray particles and the interstellar material. Cosmic rays are particles, which have been accelerated in the Galaxy or in extragalactic space. Cosmic rays come as protons, electrons, heavier nuclei, and their antiparticles. Up to energies up to some tens of TeV of particle energy it is possible to derive chemical abundances of cosmic rays. It has been proposed that cosmic ray particles can be attributed to three main sites of origin and acceleration, a) supernova shocks in the interstellar medium, b) supernova shocks in a stellar wind of the predecessor star, and c) powerful radio galaxies. This proposal leads to quantitative tests, which are encouraging so far. Quantitative models for transport and interaction appear to be consistent with the data. Li, Be, B are secondary in cosmic rays, as are many of the odd-Z elements, as well as the sub-Fe elements. At very low energies, cosmic ray particles are subject to ionization losses, which produce a steep low energy cutoff; all particles below the cutoff are moved into the thermal material population, and the particles above it remain as cosmic rays. This then changes the chemical abundances in the interstellar medium, and is a dominant process for many isotopes of Li, Be, B. With a quantitative theory for the origin of cosmic rays proposed, it appears worthwhile to search for yet better spallation cross sections, especially near threshold. With such an improved set of cross sections, the theory of the interstellar medium and its chemical abundances, both in thermal and in energetic particles, could be taken a large step forward. (author)

  5. Chemical abundances in the old LMC globular cluster Hodge 11

    Mateluna, R.; Geisler, D.; Villanova, S.; Carraro, G.; Grocholski, A.; Sarajedini, A.; Cole, A.; Smith, V.

    2012-12-01

    Context. The study of globular clusters is one of the most powerful ways to learn about a galaxy's chemical evolution and star formation history. They preserve a record of chemical abundances at the time of their formation and are relatively easy to age date. The most detailed knowledge of the chemistry of a star is given by high resolution spectroscopy, which provides accurate abundances for a wide variety of elements, yielding a wealth of information on the various processes involved in the cluster's chemical evolution. Aims: We studied red giant branch (RGB) stars in an old, metal-poor globular cluster of the Large Magellanic Cloud (LMC), Hodge 11 (H11), in order to measure as many elements as possible. The goal is to compare its chemical trends to those in the Milky Way halo and dwarf spheroidal galaxies in order to help understand the formation history of the LMC and our own Galaxy. Methods: We have obtained high resolution VLT/FLAMES spectra of eight RGB stars in H11. The spectral range allowed us to measure a variety of elements, including Fe, Mg, Ca, Ti, Si, Na, O, Ni, Cr, Sc, Mn, Co, Zn, Ba, La, Eu and Y. Results: We derived a mean [Fe/H] = -2.00 ± 0.04, in the middle of previous determinations. We found low [α/Fe] abundances for our targets, more comparable to values found in dwarf spheroidal galaxies than in the Galactic halo, suggesting that if H11 is representative of its ancient populations then the LMC does not represent a good halo building block. Our [Ca/Fe] value is about 0.3 dex less than that of halo stars used to calibrate the Ca IR triplet technique for deriving metallicity. A hint of a Na abundance spread is observed. Its stars lie at the extreme high O, low Na end of the Na:O anti-correlation displayed by Galactic and LMC globular clusters. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal ID 082.B-0458).Table 4 is only available in electronic form at http://www.aanda.org

  6. Chemical abundances of blue straggler stars in Galactic Globular Clusters

    Lovisi, L

    2014-01-01

    By using the high resolution spectrograph FLAMES@VLT we performed the first systematic campaign devoted to measure chemical abundances of blue straggler stars (BSSs). These stars, whose existence is not predicted by the canonical stellar evolutionary theory, are likely the product of the interactions between stars in the dense environment of Globular Clusters. Two main scenarios for BSS formation (mass transfer in binary systems and stellar collisions) have been proposed and hydrodynamical simulations predict different chemical patterns in the two cases, in particular C and O depletion for mass transfer BSSs. In this contribution, the main results for BSS samples in 6 Globular Clusters and their interpretation in terms of BSS formation processes are discussed. For the first time, evidence of radiative levitation in the shallow envelopes of BSSs hotter than $\\sim$8000 K has been found. C and O depletion for some BSSs has been detected in 47 Tucanae, M30 and $\\omega$ Centauri thus suggesting a mass transfer ori...

  7. Stellar Chemical Abundances: In Pursuit of the Highest Achievable Precision

    Bedell, M; Bean, J; Ramirez, I; Leite, P; Asplund, M

    2014-01-01

    The achievable level of precision on photospheric abundances of stars is a major limiting factor on investigations of exoplanet host star characteristics, the chemical histories of star clusters, and the evolution of the Milky Way and other galaxies. While model-induced errors can be minimized through the differential analysis of spectrally similar stars, the maximum achievable precision of this technique has been debated. As a test, we derive differential abundances of 19 elements from high-quality asteroid-reflected solar spectra taken using a variety of instruments and conditions. We treat the solar spectra as being from unknown stars and use the resulting differential abundances, which are expected to be zero, as a diagnostic of the error in our measurements. Our results indicate that the relative resolution of the target and reference spectra is a major consideration, with use of different instruments to obtain the two spectra leading to errors up to 0.04 dex. Use of the same instrument at different epoc...

  8. Ages and chemical abundances in dwarf spheroidal galaxies

    Smecker-Hane, T A; Smecker-Hane, Tammy; William, Andrew Mc

    1999-01-01

    The dwarf spheroidal galaxies (dSphs) in the Local Group are excellent systems on which we can test theories of galaxy formation and evolution. Color-magnitude diagrams (CMDs) containing many thousands of stars from the asymptotic giant branch to well below the oldest main-sequence turnoff are being used to infer their star-formation histories, and surprisingly complex evolutionary histories have been deduced. Spectroscopy of individual red giant stars in the dSphs is being used to determine the distribution of chemical abundances in them. By combining photometry and spectroscopy, we can overcome the age-metallicity degeneracy inherent in CMDs and determine the evolution of dSphs with unprecedented accuracy. We report on recent progress and discuss a new and exciting avenue of research, high-dispersion spectroscopy that yields abundances for numerous chemical elements. The later allows us to estimate the enrichment from both Type Ia and Type II supernovae (SNe) and places new limits on how much of the Galaxy ...

  9. Chemical abundances in LMC stellar populations. II. The bar sample

    Van der Swaelmen, M; Primas, F; Cole, A A

    2013-01-01

    This paper compares the chemical evolution of the Large Magellanic Cloud (LMC) to that of the Milky Way (MW) and investigates the relation between the bar and the inner disc of the LMC in the context of the formation of the bar. We obtained high-resolution and mid signal-to-noise ratio spectra with FLAMES/GIRAFFE at ESO/VLT and performed a detailed chemical analysis of 106 and 58 LMC field red giant stars (mostly older than 1 Gyr), located in the bar and the disc of the LMC respectively. We measured elemental abundances for O, Mg, Si, Ca, Ti, Na, Sc, V, Cr, Co, Ni, Cu, Y, Zr, Ba, La and Eu. We find that the {\\alpha}-element ratios [Mg/Fe] and [O/Fe] are lower in the LMC than in the MW while the LMC has similar [Si/Fe], [Ca/Fe], and [Ti/Fe] to the MW. As for the heavy elements, [Ba,La/Eu] exhibit a strong increase with increasing metallicity starting from [Fe/H]=-0.8 dex, and the LMC has lower [Y+Zr/Ba+La] ratios than the MW. Cu is almost constant over all metallicities and about 0.5 dex lower in the LMC than ...

  10. Multidimensional Chemical Modeling. III. Abundance and excitation of diatomic hydrides

    Bruderer, Simon; Stäuber, P; Doty, Steven D

    2010-01-01

    The Herschel Space Observatory opens the sky for observations in the far infrared at high spectral and spatial resolution. A particular class of molecules will be directly observable; light diatomic hydrides and their ions (CH, OH, SH, NH, CH+, OH+, SH+, NH+). These simple constituents are important both for the chemical evolution of the region and as tracers of high-energy radiation. If outflows of a forming star erode cavities in the envelope, protostellar far UV (FUV; 6 100 K) for water ice to evaporate. If the cavity shape allows FUV radiation to penetrate this hot-core region, the abundance of FUV destroyed species (e.g. water) is decreased. In particular, diatomic hydrides and their ions CH$+, OH+ and NH+ are enhanced by many orders of magnitude in the outflow walls due to the combination of high gas temperatures and rapid photodissociation of more saturated species. The enhancement of these diatomic hydrides is sufficient for a detection using the HIFI and PACS instruments onboard Herschel. The effect...

  11. Chemical tagging can work: Identification of stellar phase-space structures purely by chemical-abundance similarity

    Hogg, David W; Ness, Melissa; Rix, Hans-Walter; Foreman-Mackey, Daniel

    2016-01-01

    Chemical tagging promises to use detailed abundance measurements to identify spatially separated stars that were in fact born together (in the same molecular cloud), long ago. This idea has not previously yielded scientific successes, probably because of the noise and incompleteness in chemical-abundance measurements. However, we have succeeded in substantially improving spectroscopic measurements with The Cannon, which has delivered 15 individual abundances for 100,000 stars observed as part of the APOGEE spectroscopic survey, with precisions around 0.04 dex. We test the chemical-tagging hypothesis by looking at clusters in abundance space and confirming that they are clustered in phase space. We identify (by the k-means algorithm) overdensities of stars in the 15-dimensional chemical-abundance space delivered by The Cannon, and plot the associated stars in phase space. We use only abundance-space information (no positional information) to identify stellar groups. We find that clusters in abundance space are...

  12. The chemical composition of red giants in 47 Tucanae I: Fundamental parameters and chemical abundance patterns

    Thygesen, A O; Andrievsky, S; Korotin, S; Yong, D; Zaggia, S; Ludwig, H -G; Collet, R; Asplund, M; D'Antona, F; Meléndez, J; D'Ercole, A

    2014-01-01

    Context: The study of chemical abundance patterns in globular clusters is of key importance to constrain the different candidates for intra-cluster pollution of light elements. Aims: We aim at deriving accurate abundances for a large range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D LTE atmospheric models together with a combination of equivalent width measurements, LTE, and NLTE synthesis we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al and Ba. We find a mean [Fe/H] = $-0.78\\pm0.07$ and $[\\alpha/{\\rm Fe}]=0.34\\pm0.03$ in...

  13. Chemical abundances of A-type dwarfs in the young open cluster M6

    Kílíçoǧlu, T.; Monier, R.; Fossati, L.

    2011-12-01

    Elemental abundance analysis of five members in the open cluster M6 (age ˜90 myr) were performed using FLAMES-GIRAFFE spectrograph mounted on 8-meter class VLT telescopes. The abundances of 14 chemical elements were derived. Johnson and Geneva photometric systems, hydrogen line profile fittings, and ionization equilibrium were used to derive the atmospheric parameters of the stars. Synthetic spectra were compared to the observed spectra to derive chemical abundances. The abundance analysis of these five members shows that these stars have an enhancement (or solar composition) of metals in general, with some exceptions. C, O, Ca, Sc, Ni, Y, and Ba exhibit the largest star-to-star abundance variations.

  14. Chemical Abundances in our Galaxy and Other Galaxies Derived from H II Regions

    Peimbert, M.; L. Carigi; Peimbert, A.

    2000-01-01

    We discuss the accuracy of the abundance determinations of H II regions in our Galaxy and other galaxies. We focus on the main observational constraints derived from abundance determinations that have implications for models of galactic chemical evolution: a) the helium to hydrogen abundance ratio, He/H; b) the oxygen to hydrogen abundance ratio, O/H; c) the carbon to oxygen abundance ratio, C/O; d) the helium to oxygen and helium to heavy elements abundance ratios, Delta Y/ Delta O and Delta...

  15. Probing the chemical abundances in distant galaxies with 10 m class telescopes

    Contini, T.

    2003-01-01

    The determination of chemical abundances in star-forming galaxies and the study of their evolution on cosmological timescales are powerful tools for understanding galaxy formation and evolution. This contribution presents the latest results in this domain. We show that detailed studies of chemical abundances in UV-selected, HII and starburst nucleus galaxies, together with the development of new chemical evolution models, put strong constraints on the evolutionary stage of these objects in te...

  16. Chemical Abundance Patterns and the Early Environment of Dwarf Galaxies

    Corlies, Lauren; Tumlinson, Jason; Bryan, Greg

    2013-01-01

    Recent observations suggest that abundance pattern differences exist between low metallicity stars in the Milky Way stellar halo and those in the dwarf satellite galaxies. This paper takes a first look at what role the early environment for pre-galactic star formation might have played in shaping these stellar populations. In particular, we consider whether differences in cross-pollution between the progenitors of the stellar halo and the satellites could help to explain the differences in abundance patterns. Using an N-body simulation, we find that the progenitor halos of the main halo are primarily clustered together at z=10 while the progenitors of the satellite galaxies remain on the outskirts of this cluster. Next, analytically modeled supernova-driven winds show that main halo progenitors cross-pollute each other more effectively while satellite galaxy progenitors remain more isolated. Thus, inhomogeneous cross-pollution as a result of different high-z spatial locations of each system's progenitors can ...

  17. Chemical abundances of giant stars in the Crater stellar system

    Bonifacio, P; Zaggia, S; François, P; Sbordone, L; Andrievsky, S M; Korotin, S A

    2015-01-01

    We obtained spectra for two giants of Crater (Crater J113613-105227 and Crater J113615-105244) using X-Shooter at the VLT. The spectra have been analysed with the MyGIsFoS code using a grid of synthetic spectra computed from one dimensional, Local Thermodynamic Equilibrium (LTE) model atmospheres. Effective temperature and surface gravity have been derived from photometry measured from images obtained by the Dark Energy Survey. The radial velocities are 144.3+-4.0 km/s for Crater J113613-105227 and and 134.1+-4.0 km/s for Crater J113615-105244. The metallicities are [Fe/H]=-1.73 and [Fe/H]=-1.67, respectively. Beside the iron abundance we could determine abundances for nine elements: Na, Mg, Ca, Ti, V, Cr, Mn, Ni and Ba. For Na and Ba we took into account deviations from LTE, since the corrections are significant. The abundance ratios are similar in the two stars and resemble those of Galactic stars of the same metallicity. On the deep photometric images we could detect several stars that lie to the blue of t...

  18. The chemical composition of red giants in 47 Tucanae. I. Fundamental parameters and chemical abundance patterns

    Thygesen, A. O.; Sbordone, L.; Andrievsky, S.; Korotin, S.; Yong, D.; Zaggia, S.; Ludwig, H.-G.; Collet, R.; Asplund, M.; Ventura, P.; D'Antona, F.; Meléndez, J.; D'Ercole, A.

    2014-12-01

    Context. The study of chemical abundance patterns in globular clusters is key importance to constraining the different candidates for intracluster pollution of light elements. Aims: We aim at deriving accurate abundances for a wide range of elements in the globular cluster 47 Tucanae (NGC 104) to add new constraints to the pollution scenarios for this particular cluster, expanding the range of previously derived element abundances. Methods: Using tailored 1D local thermodynamic equilibrium (LTE) atmospheric models, together with a combination of equivalent width measurements, LTE, and NLTE synthesis, we derive stellar parameters and element abundances from high-resolution, high signal-to-noise spectra of 13 red giant stars near the tip of the RGB. Results: We derive abundances of a total 27 elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Mo, Ru, Ba, La, Ce, Pr, Nd, Eu, Dy). Departures from LTE were taken into account for Na, Al, and Ba. We find a mean [Fe/H] = -0.78 ± 0.07 and [ α/ Fe ] = 0.34 ± 0.03 in good agreement with previous studies. The remaining elements show good agreement with the literature, but including NLTE for Al has a significant impact on the behavior of this key element. Conclusions: We confirm the presence of an Na-O anti-correlation in 47 Tucanae found by several other works. Our NLTE analysis of Al shifts the [Al/Fe] to lower values, indicating that this may be overestimated in earlier works. No evidence of an intrinsic variation is found in any of the remaining elements. Based on observations made with the ESO Very Large Telescope at Paranal Observatory, Chile (Programmes 084.B-0810 and 086.B-0237).Full Tables 2, 5, and 9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A108Appendix A is available in electronic form at http://www.aanda.org

  19. An accurate and self-consistent chemical abundance catalogue for the APOGEE/Kepler sample

    Hawkins, Keith; Jofre, Paula; Gilmore, Gerry; Elsworth, Yvonne; Hekker, Saskia

    2016-01-01

    Context. The APOGEE survey has obtained high-resolution infrared spectra of more than 100,000 stars. Deriving chemical abundances patterns of these stars is paramount to piecing together the structure of the Milky Way. While the derived chemical abundances have been shown to be precise for most stars, some calibration problems have been reported, in particular for more metal- poor stars. Aims. In this paper, we aim to (1) re-determine the chemical abundances of the APOGEE+Kepler stellar sample (APOKASC) with an independent procedure, line list and line selection, and high quality surface gravity information from astroseismology, and (2) extend the abundance catalogue by including abundances that are not currently reported in the most recent APOGEE release (DR12). Methods. We fixed the Teff and log g to those determined using spectrophotometric and asteroseismic techniques, respectively. We made use of the Brussels Automatic Stellar Parameter (BACCHUS) code to derive the metallicity and broadening parameters f...

  20. The determination and interpretation of chemical abundances from HII region spectra in galaxies

    An overview is given of the determination of element abundances from HII region emission lines in external galaxies. The variation of abundances - particularly O, S and N - with type of, and position in a galaxy is discussed. Some aspects of chemical evolution which may have led to these variations are investigated, introducing a ''throughflow'' model to show some effects of gas flow. (author)

  1. Symmetric vs. asymmetric planetary nebulae: morphology and chemical abundances

    Maciel, W J

    2010-01-01

    We analyse a large sample of galactic planetary nebulae based on their chemical composition and morphology. A recent morphological classification system is adopted, and several elements are considered, namely He, N, O, S, Ar, Ne, and C in order to investigate the correlations involving these elements and the different PN types. Special emphasis is given to the differences between symmetric (round or elliptical) nebulae and those that present some degree of asymmetry (bipolars or bipolar core objects). The results are compared with previous findings both for PN in the Galaxy and in the Magellanic Clouds.

  2. Chemical Abundances of Luminous Cool Stars in the Galactic Center from High-Resolution Infrared Spectroscopy

    Cunha, Katia; Smith, Verne V; Ramirez, Solange V; Blum, Robert D; Terndrup, Donald M

    2007-01-01

    We present chemical abundances in a sample of luminous cool stars located within 30 pc of the Galactic Center. Abundances of carbon, nitrogen, oxygen, calcium, and iron were derived from high-resolution infrared spectra in the H- and K-bands. The abundance results indicate that both [O/Fe] and [Ca/Fe] are enhanced respectively by averages of +0.2 and +0.3 dex, relative to either the Sun or the Milky Way disk at near solar Fe abundances. The Galactic Center stars show a nearly uniform and nearly solar iron abundance. The mean value of A(Fe) = 7.59 +- 0.06 agrees well with previous work. The total range in Fe abundance among Galactic Center stars, 0.16 dex, is significantly narrower than the iron abundance distributions found in the literature for the older bulge population. Our snapshot of the current-day Fe abundance within 30 pc of the Galactic Center samples stars with an age less than 1 Gyr; a larger sample in time (or space) may find a wider spread in abundances.

  3. Eliminating Error in the Chemical Abundance Scale for Extragalactic HII Regions

    Lopez-Sanchez, Angel R; Kewley, L J; Zahid, H J; Nicholls, D C; Scharwachter, J

    2012-01-01

    In an attempt to remove the systematic errors which have plagued the calibration of the HII region abundance sequence, we have theoretically modeled the extragalactic HII region sequence. We then used the theoretical spectra so generated in a double blind experiment to recover the chemical abundances using both the classical electron temperature + ionization correction factor technique, and the technique which depends on the use of strong emission lines (SELs) in the nebular spectrum to estimate the abundance of oxygen. We find a number of systematic trends, and we provide correction formulae which should remove systematic errors in the electron temperature + ionization correction factor technique. We also provide a critical evaluation of the various semi-empirical SEL techniques. Finally, we offer a scheme which should help to eliminate systematic errors in the SEL-derived chemical abundance scale for extragalactic HII regions.

  4. Chemical homogeneity in the Orion Association: Oxygen abundances of B stars

    Lanz T.

    2012-02-01

    Full Text Available We present non-LTE oxygen abundances for a sample of B stars in the Orion association. The abundance calculations included non-LTE line formation and used fully blanketed non-LTE model atmospheres. The stellar parameters were the same as adopted in the previous study by Cunha & Lambert (1994. We find that the young Orion stars in this sample of 10 stars are described by a single oxygen abundance with an average value of A(O = 8.78 and a small dispersion of ±0.05, dex which is of the order of the uncertainties in the analysis. This average oxygen abundance compares well with the average oxygen abundance obtained previously in Cunha & Lambert (1994: A(O = 8.72 ± 0.13 although this earlier study, based upon non-blanketed model atmospheres in LTE, displayed larger scatter. Small scatter of chemical abundances in Orion B stars had also been found in our previous studies for neon and argon; all based on the same effective temperature scale. The derived oxygen abundance distribution for the Orion association compares well with other results for the oxygen abundance in the solar neighborhood.

  5. Detailed chemical abundances of extragalactic globular clusters using high resolution, integrated light spectra

    Colucci, Janet E.

    Globular clusters (GCs) are luminous, observationally accessible objects that are good tracers of the total star formation and evolutionary history of galaxies. We present the first detailed chemical abundances for GCs in M31 using a new abundance analysis technique designed for high resolution, integrated light (IL) spectra of GCs. This technique has recently been developed using a training set of old GCS in the Milky Way (MW), and makes possible detailed chemical evolution studies of distant galaxies, where high resolution abundance analysis of individual stars are not obtainable. For the 5 M31 GCs presented here, we measure abundances of 14 elements: Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba. We find the M31 GCs have ages (>10 Gyr) and chemical properties similar to MW GCs, including an enhancement in the alpha-elements Ca, Ti and Si of [alpha/Fe]˜ +0.4. In this thesis, we also further develop this IL abundance analysis method to include GCs of ages 10 Myr--12 Gyrs using GCs in the Large Magellanic Cloud (LMC), which contains the necessary sample of clusters over this wide age range. This work demonstrates for the first time that this IL abundance analysis method can be used on clusters of all ages, and that ages can be constrained to within 1--2 Gyr for clusters with ages of ˜2 Gyr and within a few 100 Myr for clusters with ages chemical abundances of 22 elements are reported for six LMC clusters.

  6. Chemical Abundances of the Outer Halo Stars in the Milky Way

    Ishigaki, M; Aoki, W

    2009-01-01

    We present chemical abundances of 57 metal-poor stars that are likely constituents of the outer stellar halo in the Milky Way. Almost all of the sample stars have an orbit reaching a maximum vertical distance (Z_max) of >5 kpc above and below the Galactic plane. High-resolution, high signal-to-noise spectra for the sample stars obtained with Subaru/HDS are used to derive chemical abundances of Na, Mg, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y and Ba with an LTE abundance analysis code. The resulting abundance data are combined with those presented in literature that mostly targeted at smaller Z_max stars, and both data are used to investigate any systematic trends in detailed abundance patterns depending on their kinematics. It is shown that, in the metallicity range of -25 kpc are systematically lower (~0.1 dex) than those with smaller Z_max. This result of the lower [alpha/Fe] for the assumed outer halo stars is consistent with previous studies that found a signature of lower [alpha/Fe] ratios for stars with extreme ki...

  7. Chemical Abundances in a Sample of Red Giants in the Open Cluster NGC 2420 from APOGEE

    Souto, Diogo; Smith, Verne; Prieto, Carlos Allende; Pinsonneault, Marc; Zamora, Olga; García-Hernández, D Anibal; Bovy, Szabolcs Meszaros Jo; Pérez, Ana Elia García; Anders, Friedrich; Bizyaev, Dmitry; Carrera, Ricardo; Frinchaboy, Peter; Holtzman, Jon; Ivans, Inese; Majewski, Steve; Shetrone, Matthew; Sobeck, Jennifer; Pan, Kaike; Tang, Baitian; Villanova, Sandro; Geisler, Douglas

    2016-01-01

    NGC 2420 is a $\\sim$2 Gyr-old well-populated open cluster that lies about 2 kpc beyond the solar circle, in the general direction of the Galactic anti-center. Most previous abundance studies have found this cluster to be mildly metal-poor, but with a large scatter in the obtained metallicities for this open cluster. Detailed chemical abundance distributions are derived for 12 red-giant members of NGC 2420 via a manual abundance analysis of high-resolution (R = 22,500) near-infrared ($\\lambda$1.5 - 1.7$\\mu$m) spectra obtained from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. The sample analyzed contains 6 stars that are identified as members of the first-ascent red giant branch (RGB), as well as 6 members of the red clump (RC). We find small scatter in the star-to-star abundances in NGC 2420, with a mean cluster abundance of [Fe/H] = -0.16 $\\pm$ 0.04 for the 12 red giants. The internal abundance dispersion for all elements (C, N, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Co and Ni...

  8. A new comprehensive set of elemental abundances in DLAs - II. Data analysis and chemical variation studies

    Dessauges-Zavadsky, M; D'Odorico, S; Calura, F; Matteucci, F

    2005-01-01

    We present new elemental abundance studies of seven damped Lyman-alpha systems (DLAs). Together with the four DLAs analyzed in Dessauges-Zavadsky et al. (2004), we have a sample of eleven DLA galaxies with uniquely comprehensive and homogeneous abundance measurements. These observations allow one to study the abundance patterns of 22 elements and the chemical variations in the interstellar medium of galaxies outside the Local Group. Comparing the gas-phase abundance ratios of these high redshift galaxies, we found that they show low RMS dispersions, reaching only up 2-3 times the statistical errors for the majority of elements. This uniformity is remarkable given that the quasar sightlines cross gaseous regions with HI column densities spanning over one order of magnitude and metallicities ranging from 1/55 to 1/5 solar. The gas-phase abundance patterns of interstellar medium clouds within the DLA galaxies detected along the velocity profiles show, on the other hand, a high dispersion in several abundance rat...

  9. Chemical abundances of the high-latitude Herbig Ae Star PDS2

    Cowley, C R; Przybilla, N

    2014-01-01

    The Herbig Ae star PDS2 (CD -53 251) is unusual in several ways. It has a high Galactic latitude, unrelated to any known star-forming region. It is at the cool end of the Herbig Ae sequence, where favorable circumstances facilitate the determination of stellar parameters and chemical abundances. We find $T_{\\rm eff} = 6500$ K, and $\\log(g) = 3.5$. The relatively low $v\\cdot\\sin(i) = 12\\pm2$ \\kms made it possible to use mostly weak lines for the abundances. PDS2 appears to belong to the class of Herbig Ae stars with normal volatile and depleted involatile elements. This pattern is seen not only in $\\lambda$ Boo stars, but in some post AGB and RV Tauri stars. The appearance of the same abundance pattern in young stars and highly evolved giants strengthens the hypothesis of gas-grain separation for its origin. The intermediate volatile zinc can violate the pattern of depleted volatiles.

  10. Chemical abundances in a high velocity RR Lyrae star near the bulge

    Hansen, Camilla Juul; Koch, Andreas; Xu, Siyi; Kunder, Andrea; Ludwig, Hans-Guenter

    2016-01-01

    Low-mass, variable, high-velocity stars are interesting study cases for many aspects of Galactic structure and evolution. Until recently, the only known high- or hyper-velocity stars were young stars thought to originate from the Galactic centre. Wide-area surveys like APOGEE and BRAVA have found several low-mass stars in the bulge with Galactic rest-frame velocities larger than 350 km/s. In this study we present the first abundance analysis of a low-mass, RR Lyrae star, located close to the Galactic bulge, with a space motion of ~ -400 km/s. Using medium-resolution spectra, we derive abundances (including upper limits) of 11 elements. These allow us to chemically tag the star and discuss its origin, although our derived abundances and metallicity, at [Fe/H] =-0.9 dex, do not point toward one unambiguous answer. Based on the chemical tagging, we cannot exclude that it originated in the bulge. However, combining its retrograde orbit and the derived abundances suggests that the star was accelerated from the out...

  11. Chemical abundance analysis of the Open Clusters Berkeley 32, NGC 752, Hyades and Praesepe

    Carrera, R

    2011-01-01

    Context. Open clusters are ideal test particles to study the chemical evolution of the Galactic disc. However the existing high-resolution abundance determinations, not only of [Fe/H], but also of other key elements, is largely insufficient at the moment. Aims. To increase the number of Galactic open clusters with high quality abundance determinations, and to gather all the literature determinations published so far. Methods. Using high-resolution (R~30000), high-quality (S/N$>60 per pixel), we obtained spectra for twelve stars in four open clusters with the fiber spectrograph FOCES, at the 2.2 Calar Alto Telescope in Spain. We use the classical equivalent widths analysis to obtain accurate abundances of sixteen elements: Al, Ba, Ca, Co, Cr, Fe, La, Mg, Na, Nd, Ni, Sc, Si, Ti, V, Y. Oxygen abundances have been derived through spectral synthesis of the 6300 A forbidden line. Results. We provide the first determination of abundance ratios other than Fe for NGC 752 giants, and ratios in agreement with the litera...

  12. Chemical abundances of 1111 FGK stars from the HARPS GTO planet search program

    Adibekyan, V Zh; Santos, N C; Mena, E Delgado; Hernandez, J I Gonzalez; Israelian, G; Mayor, M; Khachatryan, G

    2012-01-01

    We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn and V) for a sample of 1111 FGK dwarf stars from the HARPS GTO planet search program. 109 of these stars are known to harbour giant planetary companions and 26 stars are hosting exclusively Neptunians and super-Earths. The main goals of this paper are i) to investigate whether there are any differences between the elemental abundance trends for stars of different stellar populations; ii) to characterise the planet host and non-host samples in term of their [X/H]. The extensive study of this sample, focused on the abundance differences between stars with and without planets will be presented in a parallel paper. The equivalent widths of spectral lines are automatically measured from HARPS spectra with the ARES code. The abundances of the chemical elements are determined using a LTE abundance analysis relative to the Sun, with the 2010 revised version of the spectral synthesis code MOOG a...

  13. HE0107-5240, A Chemically Ancient Star.I. A Detailed Abundance Analysis

    Christlieb, N; Korn, A J; Barklem, P S; Beers, T C; Bessell, M S; Karlsson, T; Mizuno-Wiedner, M

    2004-01-01

    We report a detailed abundance analysis for HE0107-5240, a halo giant with [Fe/H]_NLTE=-5.3. This star was discovered in the course of follow-up medium-resolution spectroscopy of extremely metal-poor candidates selected from the digitized Hamburg/ESO objective-prism survey. On the basis of high-resolution VLT/UVES spectra, we derive abundances for 8 elements (C, N, Na, Mg, Ca, Ti, Fe, and Ni), and upper limits for another 12 elements. A plane-parallel LTE model atmosphere has been specifically tailored for the chemical composition of {\\he}. Scenarios for the origin of the abundance pattern observed in the star are discussed. We argue that HE0107-5240 is most likely not a post-AGB star, and that the extremely low abundances of the iron-peak, and other elements, are not due to selective dust depletion. The abundance pattern of HE0107-5240 can be explained by pre-enrichment from a zero-metallicity type-II supernova of 20-25M_Sun, plus either self-enrichment with C and N, or production of these elements in the AG...

  14. The magnetic field topology and chemical abundance distributions of the Ap star HD 32633

    Silvester, James; Kochukhov, Oleg; Wade, G. A.

    2015-01-01

    Previous observations of the Ap star HD 32633 indicated that its magnetic field was unusually complex in nature and could not be characterised by a simple dipolar structure. Here we derive magnetic field maps and chemical abundance distributions for this star using full Stokes vector (Stokes $IQUV$) high-resolution observations obtained with the ESPaDOnS and Narval spectropolarimeters. Our maps, produced using the Invers10 magnetic Doppler imaging (MDI) code, show that HD 32633 has a strong m...

  15. Detailed chemical abundances of distant RR Lyrae stars in the Virgo Stellar Stream

    Duffau, S; Vivas, A K; Hansen, C J; Zoccali, M; Catelan, M; Minniti, D; Grebel, E K

    2016-01-01

    We present the first detailed chemical abundances for distant RR Lyrae stars members of the Virgo Stellar Stream (VSS), derived from X-Shooter medium-resolution spectra. Sixteen elements from carbon to barium have been measured in six VSS RR Lyrae stars, sampling all main nucleosynthetic channels. For the first time we will be able to compare in detail the chemical evolution of the VSS progenitor with those of Local Group dwarf spheroidal galaxies (LG dSph) as well as the one of the smooth halo.

  16. Abundance analysis of an extended sample of open clusters: A search for chemical inhomogeneities

    Reddy, Arumalla B. S.; Giridhar, Sunetra; Lambert, David L.

    We have initiated a program to explore the presence of chemical inhomogeneities in the Galactic disk using the open clusters as ideal probes. We have analyzed high-dispersion echelle spectra (R ≥ 55,000) of red giant members for eleven open clusters to derive abundances for many elements. The membership to the cluster has been confirmed through their radial velocities and proper motions. The spread in temperatures and gravities being very small among the red giants, nearly the same stellar lines were employed thereby reducing the random errors. The errors of average abundance for the cluster were generally in 0.02 to 0.07 dex range. Our present sample covers galactocentric distances of 8.3 to 11.3 kpc and an age range of 0.2 to 4.3 Gyrs. Our earlier analysis of four open clusters (Reddy A.B.S. et al., 2012, MNRAS, 419,1350) indicate that abundances relative to Fe for elements from Na to Eu are equal within measurement uncertainties to published abundances for thin disk giants in the field. This supports the view that field stars come from disrupted open clusters. In the enlarged sample of eleven open clusters we find cluster to cluster abundance variations for some s- and r- process elements, with certain elements such as Zr and Ba showing large variation. These differences mark the signatures that these clusters had formed under different environmental conditions (Type II SN, Type Ia SN, AGB stars or a mixture of any of these) unique to the time and site of formation. These eleven clusters support the widely held impression that there is an abundance gradient such that the metallicity [Fe/H] at the solar galactocentric distance decreases outwards at about -0.1 dex per kpc.

  17. A determination of the thick disk chemical abundance distribution: Implications for galaxy evolution

    Gilmore, Gerard; Wyse, Rosemary F. G.; Jones, Bryn J.

    1995-01-01

    We present a determination of the thick disk iron abundance distribution obtained from an in situ sample of F/G stars. These stars are faint, 15 less than or approximately = V less than or approximately = 18, selected on the basis of color, being a subset of the larger survey of Gilmore and Wyse designed to determine the properties of the stellar populations several kiloparsecs from the Sun. The fields studied in the present paper probe the iron abundance distribution of the stellar populations of the galaxy at 500-3000 pc above the plane, at the solar Galactocentric distance. The derived chemical abundance distributions are consistent with no metallicity gradients in the thick disk over this range of vertical distance, and with an iron abundance distribution for the thick disk that has a peak at -0.7 dex. The lack of a vertical gradient argues against slow, dissipational settling as a mechanism for the formation of the thick disk. The photometric and metallicity data support a turn-off of the thick disk that is comparable in age to the metal-rich globular clusters, or greater than or approximately = 12 Gyr, and are consistent with a spread to older ages.

  18. A Chemical Abundance Study of 10 Open Clusters Based on WIYN-Hydra Spectroscopy

    Jacobson, H R; Friel, E D

    2011-01-01

    We present a detailed chemical abundance study of evolved stars in 10 open clusters based on Hydra multi-object echelle spectra obtained with the WIYN 3.5m telescope. From an analysis of both equivalent widths and spectrum synthesis, abundances have been determined for the elements Fe, Na, O, Mg, Si, Ca, Ti, Ni, Zr, and for two of the 10 clusters, Al and Cr. To our knowledge, this is the first detailed abundance analysis for clusters NGC 1245, NGC 2194, NGC 2355 and NGC 2425. These 10 clusters were selected for analysis because they span a Galactocentric distance range Rgc~9-13 kpc, the approximate location of the transition between the inner and outer disk. Combined with cluster samples from our previous work and those of other studies in the literature, we explore abundance trends as a function of cluster Rgc, age, and [Fe/H]. The [Fe/H] distribution appears to decrease with increasing Rgc to a distance of ~12 kpc, and then flattens to a roughly constant value in the outer disk. Cluster average element [X/F...

  19. Chemical abundances and properties of the ionized gas in NGC 1705

    Annibali, F; Pasquali, A; Aloisi, A; Mignoli, M; Romano, D

    2015-01-01

    We obtained [O III] narrow-band imaging and multi-slit MXU spectroscopy of the blue compact dwarf (BCD) galaxy NGC 1705 with FORS2@VLT to derive chemical abundances of PNe and H II regions and, more in general, to characterize the properties of the ionized gas. The auroral [O III]\\lambda4363 line was detected in all but one of the eleven analyzed regions, allowing for a direct estimate of their electron temperature. The only object for which the [O III]\\lambda4363 line was not detected is a possible low-ionization PN, the only one detected in our data. For all the other regions, we derived the abundances of Nitrogen, Oxygen, Neon, Sulfur and Argon out to ~1 kpc from the galaxy center. We detect for the first time in NGC 1705 a negative radial gradient in the oxygen metallicity of -0.24 \\pm 0.08 dex kpc^{-1}. The element abundances are all consistent with values reported in the literature for other samples of dwarf irregular and blue compact dwarf galaxies. However, the average (central) oxygen abundance, 12 +...

  20. Chemical Feature of Eu abundance in the Draco dwarf spheroidal galaxy

    Tsujimoto, Takuji; Shigeyama, Toshikazu; Aoki, Wako

    2015-01-01

    Chemical abundance of r-process elements in nearby dwarf spheroidal (dSph) galaxies is a powerful tool to probe the site of r-process since their small-mass scale can sort out individual events producing r-process elements. A merger of binary neutron stars is a promising candidate of this site. In faint, or less massive dSph galaxies such as the Draco, a few binary neutron star mergers are expected to have occurred at most over the whole past. We have measured chemical abundances including Eu and Ba of three red giants in the Draco dSph by Subaru/HDS observation. The Eu detection for one star with [Fe/H]=-1.45 confirms a broadly constant [Eu/H] of ~-1.3 for stars with [Fe/H]>-2. This feature is shared by other dSphs with similar masses, i.e., the Sculptor and the Carina, and suggests that neutron star merger is the origin of r-process elements in terms of its rarity. In addition, two very metal-poor stars with [Fe/H]=-2.12 and -2.51 are found to exhibit very low Eu abundances such as [Eu/H]<-2 with an impl...

  1. Chemical analysis of CH stars - I: atmospheric parameters and elemental abundances

    Karinkuzhi, Drisya

    2014-01-01

    Results from high-resolution spectral analyses of a selected sample of CH stars are presented. Detailed chemical composition studies of these objects, which could reveal abundance patterns that in turn provide information regarding nucleosynthesis and evolutionary status, are scarce in the literature. We conducted detailed chemical composition studies for these objects based on high resolution (R ~ 42000) spectra. The spectra were taken from the ELODIE archive and cover the wavelength range from 3900 to 6800 A, in the wavelength range. We estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from Local thermodynamic equilibrium analyses using model atmospheres. Estimated temperatures of these objects cover a wide range from 4550 K to 6030 K, the surface gravity from 1.8 to 3.8 and metallicity from -0.18 to -1.4. We report updates on elemental abundances for several heavy elements and present estimates of abundance ratios of Sr, Y, Zr, B...

  2. CHEMICAL ABUNDANCES OF METAL-POOR RR LYRAE STARS IN THE MAGELLANIC CLOUDS

    We present for the first time a detailed spectroscopic study of chemical element abundances of metal-poor RR Lyrae stars in the Large and Small Magellanic Cloud (LMC and SMC). Using the MagE echelle spectrograph at the 6.5 m Magellan telescopes, we obtain medium resolution (R ∼ 2000-6000) spectra of six RR Lyrae stars in the LMC and three RR Lyrae stars in the SMC. These stars were chosen because their previously determined photometric metallicities were among the lowest metallicities found for stars belonging to the old populations in the Magellanic Clouds. We find the spectroscopic metallicities of these stars to be as low as [Fe/H]spec = –2.7 dex, the lowest metallicity yet measured for any star in the Magellanic Clouds. We confirm that for metal-poor stars, the photometric metallicities from the Fourier decomposition of the light curves are systematically too high compared to their spectroscopic counterparts. However, for even more metal-poor stars below [Fe/H]phot < –2.8 dex this trend is reversed and the spectroscopic metallicities are systematically higher than the photometric estimates. We are able to determine abundance ratios for 10 chemical elements (Fe, Na, Mg, Al, Ca, Sc, Ti, Cr, Sr, and Ba), which extend the abundance measurements of chemical elements for RR Lyrae stars in the Clouds beyond [Fe/H] for the first time. For the overall [α/Fe] ratio, we obtain an overabundance of 0.36 dex, which is in very good agreement with results from metal-poor stars in the Milky Way halo as well as from the metal-poor tail in dwarf spheroidal galaxies. Comparing the abundances with those of the stars in the Milky Way halo we find that the abundance ratios of stars of both populations are consistent with another. Therefore, we conclude that from a chemical point of view early contributions from Magellanic-type galaxies to the formation of the Galactic halo as claimed in cosmological models are plausible.

  3. Unveiling the Nature of the "Green Pea" Galaxies: Oxygen and Nitrogen Chemical Abundances

    Amorín, R. O.; Pérez-Montero, E.; Vílchez, J. M.

    2011-07-01

    We present recent results on the oxygen and nitrogen chemical abundances in the extremely compact, low-mass starburst galaxies at redshifts 0.1-0.3 usually referred to as "green pea" galaxies. We show that they are metal-poor galaxies (~1/5 solar) with lower oxygen abundances than star-forming galaxies of similar mass and N/O ratios unusually high for galaxies of the same metallicity. Recent, rapid, and massive inflows of cold gas, possibly coupled with enriched outflows from supernova winds, are used to explain the results. This is consistent with the known "pea" galaxy properties and suggest that these rare objects are experiencing a short and extreme phase in their evolution.

  4. Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec

    Blanco-Cuaresma, S; Heiter, U; Jofré, P

    2014-01-01

    Context. An increasing number of high-resolution stellar spectra is available today thanks to many past and ongoing extensive spectroscopic surveys. Consequently, the scientific community needs automatic procedures to derive atmospheric parameters and individual element abundances. Aims. Based on the widely known SPECTRUM code by R. O. Gray, we developed an integrated spectroscopic software framework suitable for the determination of atmospheric parameters (i.e., effective temperature, surface gravity, metallicity) and individual chemical abundances. The code, named iSpec and freely distributed, is written mainly in Python and can be used on different platforms. Methods. iSpec can derive atmospheric parameters by using the synthetic spectral fitting technique and the equivalent width method. We validated the performance of both approaches by developing two different pipelines and analyzing the Gaia FGK benchmark stars spectral library. The analysis was complemented with several tests designed to assess other ...

  5. Chemical abundances in a high-velocity RR Lyrae star near the bulge

    Hansen, C. J.; Rich, R. M.; Koch, A.; Xu, S.; Kunder, A.; Ludwig, H.-G.

    2016-05-01

    Low-mass variable high-velocity stars are interesting study cases for many aspects of Galactic structure and evolution. Until recently, the only known high- or hyper-velocity stars were young stars thought to originate from the Galactic center. Wide-area surveys such as APOGEE and BRAVA have found several low-mass stars in the bulge with Galactic rest-frame velocities higher than 350 km s-1. In this study we present the first abundance analysis of a low-mass RR Lyrae star that is located close to the Galactic bulge, with a space motion of ~-400 km s-1. Using medium-resolution spectra, we derived abundances (including upper limits) of 11 elements. These allowed us to chemically tag the star and discuss its origin, although our derived abundances and metallicity, at [Fe/H] =-0.9 dex, do not point toward one unambiguous answer. Based on the chemical tagging, we cannot exclude that it originated in the bulge. However, its retrograde orbit and the derived abundances combined suggest that the star was accelerated from the outskirts of the inner (or even outer) halo during many-body interactions. Other possible origins include the bulge itself, or the star might have been stripped from a stellar cluster or the Sagittarius dwarf galaxy when it merged with the Milky Way. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  6. The magnetic field topology and chemical abundance distributions of the Ap star HD 32633

    Silvester, J.; Kochukhov, O.; Wade, G. A.

    2015-10-01

    Previous observations of the Ap star HD 32633 indicated that its magnetic field was unusually complex in nature and could not be characterized by a simple dipolar structure. Here we derive magnetic field maps and chemical abundance distributions for this star using full Stokes vector (Stokes IQUV) high-resolution observations obtained with the ESPaDOnS and Narval spectropolarimeters. Our maps, produced using the INVERS10 magnetic Doppler imaging (MDI) code, show that HD 32633 has a strong magnetic field which features two large regions of opposite polarity but deviates significantly from a pure dipole field. We use a spherical harmonic expansion to characterize the magnetic field and find that the harmonic energy is predominately in the ℓ = 1 and 2 poloidal modes with a small toroidal component. At the same time, we demonstrate that the observed Stokes parameter profiles of HD 32633 cannot be fully described by either a dipolar or dipolar plus quadrupolar field geometry. We compare the magnetic field topology of HD 32633 with other early-type stars for which MDI analyses have been performed, supporting a trend of increasing field complexity with stellar mass. We then compare the magnetic field topology of HD 32633 with derived chemical abundance maps for the elements Mg, Si, Ti, Cr, Fe, Ni and Nd. We find that the iron-peak elements show similar distributions, but we are unable to find a clear correlation between the location of local chemical enhancements or depletions and the magnetic field structure.

  7. Chemical analysis of CH stars - II: atmospheric parameters and elemental abundances

    Karinkuzhi, Drisya

    2014-01-01

    We present detailed chemical analyses for a sample of twelve stars selected from the CH star catalogue of Bartkevicius (1996). The sample includes two confirmed binaries, four objects that are known to show radial velocity variations and the rest with no information on the binary status. A primary objective is to examine if all these objects exhibit chemical abundances characteristics of CH stars, based on detailed chemical composition study using high resolution spectra. We have used high resolution (R ~ 42000) spectra from the ELODIE archive. These spectra cover 3900 to 6800 Angstrom in the wavelength range. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from LTE analysis using model atmospheres. Estimated temperatures of these objects cover a wide range from 4200 K to 6640 K, the surface gravity from 0.6 to 4.3 and metallicity from -0.13 to -1.5. We report updates on elemental abundances for several heavy elements, Sr,...

  8. Chemical Elements Abundance in the Universe and the Origin of Life

    Valkovic, Vlado

    2016-01-01

    Element synthesis which started with p-p chain has resulted in several specific characteristics including lack of any stable isotope having atomic masses 5 or 8. The carbon to oxygen ratio is fixed early by the chain of coincidences. These, remarkably fine-tuned, conditions are responsible for our own existence and indeed the existence of any carbon based life in the Universe. Chemical evolution of galaxies reflects in the changes of chemical composition of stars, interstellar gas and dust. The evolution of chemical element abundances in a galaxy provides a clock for galactic aging. On the other hand, the living matter on the planet Earth needs only some elements for its existence. Compared with element requirements of living matter a hypothesis is put forward, by accepting the Anthropic Principle, which says: life as we know, (H-C-N-O) based, relying on the number of bulk and trace elements originated when two element abundance curves, living matter and galactic, coincided. This coincidence occurring at part...

  9. Galactic chemical abundance evolution in the solar neighborhood up to the Iron peak

    Alibes, A; Canal, R; Alibes, Andreu; Labay, Javier; Canal, Ramon

    2000-01-01

    We have developed a detailed standard chemical evolution model to study the evolution of all the chemical elements up to the iron peak in the solar vicinity. We consider that the Galaxy was formed through two episodes of exponentially decreasing infall, out of extragalactic gas. In a first infall episode, with a duration of $\\sim$ 1 Gyr, the halo and the thick disk were assembled out of primordial gas, while the thin disk formed in a second episode of infall of slightly enriched extragalactic gas, with much longer timescale. The model nicely reproduces the main observational constraints of the solar neighborhood, and the calculated elemental abundances at the time of the solar birth are in excellent agreement with the solar abundances. By the inclusion of metallicity dependent yields for the whole range of stellar masses we follow the evolution of 76 isotopes of all the chemical elements between hydrogen and zinc. Those results are confronted with a large and recent body of observational data, and we discuss ...

  10. Stokes IQUV magnetic Doppler imaging of Ap stars - III. Next generation chemical abundance mapping of α2 CVn

    Silvester, J.; Kochukhov, O.; Wade, G. A.

    2014-10-01

    In a previous paper, we presented an updated magnetic field map for the chemically peculiar star α2 CVn using ESPaDOnS and Narval time-resolved high-resolution Stokes IQUV spectra. In this paper, we focus on mapping various chemical element distributions on the surface of α2 CVn. With the new magnetic field map and new chemical abundance distributions, we can investigate the interplay between the chemical abundance structures and the magnetic field topology on the surface of α2 CVn. Previous attempts at chemical abundance mapping of α2 CVn relied on lower resolution data. With our high-resolution (R = 65 000) data set, we present nine chemical abundance maps for the elements O, Si, Cl, Ti, Cr, Fe, Pr, Nd and Eu. We also derive an updated magnetic field map from Fe and Cr lines in Stokes IQUV and O and Cl in Stokes IV. These new maps are inferred from line profiles in Stokes IV using the magnetic Doppler imaging code INVERS10. We examine these new chemical maps and investigate correlations with the magnetic topology of α2 CVn. We show that chemical abundance distributions vary between elements, with two distinct groups of elements; one accumulates close to the negative part of the radial field, whilst the other group shows higher abundances located where the radial magnetic field is of the order of 2 kG regardless of the polarity of the radial field component. We compare our results with previous works which have mapped chemical abundance structures of Ap stars. With the exception of Cr and Fe, we find no clear trend between what we reconstruct and other mapping results. We also find a lack of agreement with theoretical predictions. This suggests that there is a gap in our theoretical understanding of the formation of horizontal chemical abundance structures and the connection to the magnetic field in Ap stars.

  11. Chemical abundances for the transiting planet host stars OGLE-TR-10, 56, 111, 113, 132 and TrES-1. Abundances in different galactic populations

    Santos, N C; Israelian, G; Mayor, M; Melo, C; Queloz, D; Udry, S; Ribeiro, J P; Jorge, S

    2006-01-01

    We used the UVES spectrograph (VLT-UT2 telescope) to obtain high-resolution spectra of 6 stars hosting transiting planets, namely for OGLE-TR-10, 56, 111, 113, 132 and TrES-1. The spectra are now used to derive and discuss the chemical abundances for C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Cu and Zn. Abundances were derived in LTE, using 1-D plane-parallel Kurucz model atmospheres. For S, Zn and Cu we used a spectral synthesis procedure, while for the remaining cases the abundances were derived from measurements of line-equivalent widths. The resulting abundances are compared with those found for stars in the solar neighborhood. Distances and galactic coordinates are estimated for the stars. We conclude that besides being particularly metal-rich, with small possible exceptions OGLE-TR-10, 56, 111, 113, 132 and TrES-1 are chemically undistinguishable from the field (thin disk) stars regarding their [X/Fe] abundances. This is particularly relevant for the most distant of the targets, located at ...

  12. Young stars and ionized nebulae in M83: comparing chemical abundances at high metallicity

    Bresolin, Fabio; Urbaneja, Miguel A; Gieren, Wolfgang; Ho, I-Ting; Pietrzynski, Grzegorz

    2016-01-01

    We present spectra of 14 A-type supergiants in the metal-rich spiral galaxy M83. We derive stellar parameters and metallicities, and measure a spectroscopic distance modulus m-M = 28.47 +\\- 0.10 (4.9 +\\- 0.2 Mpc), in agreement with other methods. We use the stellar characteristic metallicity of M83 and other systems to discuss a version of the galaxy mass-metallicity relation that is independent of the analysis of nebular emission lines and the associated systematic uncertainties. We reproduce the radial metallicity gradient of M83, which flattens at large radii, with a chemical evolution model, constraining gas inflow and outflow processes. We carry out a comparative analysis of the metallicities we derive from the stellar spectra and published HII region line fluxes, utilizing both the direct, Te-based method and different strong-line abundance diagnostics. The direct abundances are in relatively good agreement with the stellar metallicities, once we apply a modest correction to the nebular oxygen abundance...

  13. The Complex Chemical Abundances and Evolution of the Sagittarius Dwarf Spheroidal Galaxy

    Smecker-Hane, T A; Smecker-Hane, Tammy A.; William, Andrew Mc

    2002-01-01

    We report on the chemical abundances derived from high-dispersion spectra of 14 red giant stars in the Sagittarius dwarf spheroidal (Sgr dSph) galaxy. The stars span a wide range of metallicities, -1.6 < [Fe/H] < -0.1 dex, and exhibit very unusual abundance variations. For metal-poor stars with [Fe/H] < -1, [alpha/Fe] \\approx +0.3 similar to Galactic halo stars, but for more metal-rich stars the relationship of [alpha/Fe] as a function of [Fe/H] is lower than that of the Galactic disk by 0.1 dex. The light elements [Al/Fe] and [Na/Fe] are sub-solar by an even larger amount, 0.4 dex. The pattern of neutron-capture heavy elements, as indicated by [La/Fe] and [La/Eu], shows an increasing s-process component with increasing [Fe/H], up to [La/Fe] \\sim +0.7 dex for the most metal-rich Sgr dSph stars. The large [La/Y] ratios show that the s-process enrichments came from the metal-poor population. We can best understand the observed abundances with a model in which the Sgr dSph formed stars over a many Gyr a...

  14. Chemical Abundances in the Globular Clusters NGC 6229 and NGC 6779

    A., Khamidullina D; V., Shimansky V; E, Davoust

    2015-01-01

    Long-slit medium-resolution spectra of the Galactic globular clusters (GCs) NGC6229 and NGC6779, obtained with the CARELEC spectrograph at the 1.93-m telescope of the Haute-Provence observatory, have been used to determine the age, helium abundance (Y), and metallicity [Fe/H] as well as the first estimate of the abundances of C, N, O, Mg, Ca, Ti, and Cr for these objects. We solved this task by comparing the observed spectra and the integrated synthetic spectra, calculated with the use of the stellar atmosphere models with the parameters preset for the stars from these clusters. The model mass estimates, $T_{\\rm eff}$, and log~g were derived by comparing the observed "color-magnitude" diagrams and the theoretical isochrones. The summing-up of the synthetic blanketed stellar spectra was conducted according to the Chabrier mass function. To test the accuracy of the results, we estimated the chemical abundances, [Fe/H], $\\log~t$, and $Y$ for the NGC5904 and NGC6254 clusters, which, according to the literature, a...

  15. Chemical abundance gradients from open clusters in the Milky Way disk: results from the APOGEE survey

    Cunha, Katia; Souto, Diogo; Thompson, Benjamin; Zasowski, Gail; Prieto, Carlos Allende; Carrera, Ricardo; Chiappini, Cristina; Donor, John; Garcia-Hernandez, Anibal; Perez, Ana Elia Garcia; Hayden, Michael R; Holtzman, Jon; Jackson, Kelly M; Johnson, Jennifer A; Majewski, Steven R; Meszaros, Szabolcs; Meyer, Brianne; Nidever, David L; O'Connell, Julia; Schiavon, Ricardo P; Schultheis, Mathias; Shetrone, Matthew; Simmons, Audrey; Smith, Verne V; Zamora, Olga

    2016-01-01

    Metallicity gradients provide strong constraints for understanding the chemical evolution of the Galaxy. We report on radial abundance gradients of Fe, Ni, Ca, Si, and Mg obtained from a sample of 304 red-giant members of 29 disk open clusters, mostly concentrated at galactocentric distances between ~8 - 15 kpc, but including two open clusters in the outer disk. The observations are from the APOGEE survey. The chemical abundances were derived automatically by the ASPCAP pipeline and these are part of the SDSS III Data Release 12. The gradients, obtained from least squares fits to the data, are relatively flat, with slopes ranging from -0.026 to -0.033 dex/kpc for the alpha-elements [O/H], [Ca/H], [Si/H] and [Mg/H] and -0.035 dex/kpc and -0.040 dex/kpc for [Fe/H] and [Ni/H], respectively. Our results are not at odds with the possibility that metallicity ([Fe/H]) gradients are steeper in the inner disk (R_GC ~7 - 12 kpc) and flatter towards the outer disk. The open cluster sample studied spans a significant ran...

  16. Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances

    Snaith, O; Di Matteo, P; Lehnert, M D; Combes, F; Katz, D; Gómez, A

    2014-01-01

    We develop a chemical evolution model in order to study the star formation history of the Milky Way. Our model assumes that the Milky Way is formed from a closed box-like system in the inner regions, while the outer parts of the disc experience some accretion. Unlike the usual procedure, we do not fix the star formation prescription (e.g. Kennicutt law) in order to reproduce the chemical abundance trends. Instead, we fit the abundance trends with age in order to recover the star formation history of the Galaxy. Our method enables one to recover with unprecedented accuracy the star formation history of the Milky Way in the first Gyrs, in both the inner (R9-10kpc) discs as sampled in the solar vicinity. We show that, in the inner disc, half of the stellar mass formed during the thick disc phase, in the first 4-5 Gyr. This phase was followed by a significant dip in the star formation activity (at 8-9 Gyr) and a period of roughly constant lower level star formation for the remaining 8 Gyr. The thick disc phase ha...

  17. The Contribution of Chemical Abundances in Nova Ejecta to the Interstellar Medium

    Li, Fanger; Lu, Guoliang; Wang, Zhaojun

    2016-01-01

    According to the nova model from \\citet{Yaron2005} and \\citet{Jose1998} and using Monte Carlo simulation method, we investigate the contribution of chemical abundances in nova ejecta to the interstellar medium (ISM) of the Galaxy. We find that the ejected mass by classical novae (CNe) is about $2.7\\times10^{-3}$ $ \\rm M_\\odot\\ {\\rm yr^{-1}}$. In the nova ejecta, the isotopic ratios of C, N and O, that is, $^{13}$C/$^{12}$C, $^{15}$N/$^{14}$N and $^{17}$O/$^{16}$O, are higher about one order of magnitude than those in red giants. We estimate that about 10$\\%$, 5$\\%$ and 20$\\%$ of $^{13}$C, $^{15}$N and $^{17}$O in the ISM of the Galaxy come from nova ejecta, respectively. However, the chemical abundances of C, N and O calculated by our model can not cover all of observational values. This means that there is still a long way to go for understanding novae.

  18. The contribution of chemical abundances in nova ejecta to the interstellar medium

    Li, Fanger; Zhu, Chunhua; Lü, Guoliang; Wang, Zhaojun

    2016-06-01

    According to the nova model from Yaron et al. (2005, ApJ, 418, 794) and José and Hernanz (1998, ApJ, 494, 680), and using a Monte Carlo simulation method, we investigate the contribution of chemical abundances in nova ejecta to the interstellar medium (ISM) of the Galaxy. We find that the mass ejected from classical novae is about 2.7 × 10-3 M⊙ yr-1. In the nova ejecta, the isotopic ratios of C, N, and O, that is, 13C/12C, 15N/14N, and 17O/16O, are higher by about one order of magnitude than those in red giants. We estimate that about 10%, 5%, and 20% of 13C, 15N, and 17O in the ISM of the Galaxy come from nova ejecta, respectively. However, the chemical abundances of C, N, and O calculated by our model cannot cover all observational values. This means that there is still a long way to go to understand novae.

  19. A CHEMICAL ABUNDANCE STUDY OF 10 OPEN CLUSTERS BASED ON WIYN -HYDRA SPECTROSCOPY

    We present a detailed chemical abundance study of evolved stars in 10 open clusters based on Hydra multi-object echelle spectra obtained with the WIYN 3.5 m telescope. From an analysis of both equivalent widths and spectrum synthesis, abundances have been determined for the elements Fe, Na, O, Mg, Si, Ca, Ti, Ni, Zr, and for two of the 10 clusters, Al and Cr. To our knowledge, this is the first detailed abundance analysis for clusters NGC 1245, NGC 2194, NGC 2355, and NGC 2425. These 10 clusters were selected for analysis because they span a Galactocentric distance range Rgc ∼ 9-13 kpc, the approximate location of the transition between the inner and outer disks. Combined with cluster samples from our previous work and those of other studies in the literature, we explore abundance trends as a function of cluster Rgc, age, and [Fe/H]. As found previously by us and other studies, the [Fe/H] distribution appears to decrease with increasing Rgc to a distance of ∼12 kpc and then flattens to a roughly constant value in the outer disk. Cluster average element [X/Fe] ratios appear to be independent of Rgc, although the picture for [O/Fe] is more complicated with a clear trend of [O/Fe] with [Fe/H] and sample incompleteness. Other than oxygen, no other element [X/Fe] exhibits a clear trend with [Fe/H]; likewise, there does not appear to be any strong correlation between abundance and cluster age. We divided clusters into different age bins to explore temporal variations in the radial element distributions. The radial metallicity gradient appears to have flattened slightly as a function of time, as found by other studies. There is also some indication that the transition from the inner disk metallicity gradient to the ∼constant [Fe/H] distribution of the outer disk occurs at different Galactocentric radii for different age bins. However, interpretation of the time evolution of radial abundance distributions is complicated by the unequal Rgc and [Fe/H] ranges spanned by

  20. Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility.

    Navarrete, Acacio Aparecido; Soares, Tielle; Rossetto, Raffaella; van Veen, Johannes Antonie; Tsai, Siu Mui; Kuramae, Eiko Eurya

    2015-09-01

    Here we show that verrucomicrobial community structure and abundance are extremely sensitive to changes in chemical factors linked to soil fertility. Terminal restriction fragment length polymorphism fingerprint and real-time quantitative PCR assay were used to analyze changes in verrucomicrobial communities associated with contrasting soil nutrient conditions in tropical regions. In case study Model I ("Slash-and-burn deforestation") the verrucomicrobial community structures revealed disparate patterns in nutrient-enriched soils after slash-and-burn deforestation and natural nutrient-poor soils under an adjacent primary forest in the Amazonia (R = 0.819, P = 0.002). The relative proportion of Verrucomicrobia declined in response to increased soil fertility after slash-and-burn deforestation, accounting on average, for 4 and 2 % of the total bacterial signal, in natural nutrient-poor forest soils and nutrient-enriched deforested soils, respectively. In case study Model II ("Management practices for sugarcane") disparate patterns were revealed in sugarcane rhizosphere sampled on optimal and deficient soil fertility for sugarcane (R = 0.786, P = 0.002). Verrucomicrobial community abundance in sugarcane rhizosphere was negatively correlated with soil fertility, accounting for 2 and 5 % of the total bacterial signal, under optimal and deficient soil fertility conditions for sugarcane, respectively. In nutrient-enriched soils, verrucomicrobial community structures were related to soil factors linked to soil fertility, such as total nitrogen, phosphorus, potassium and sum of bases, i.e., the sum of calcium, magnesium and potassium contents. We conclude that community structure and abundance represent important ecological aspects in soil verrucomicrobial communities for tracking the changes in chemical factors linked to soil fertility under tropical environmental conditions. PMID:26184407

  1. DETAILED CHEMICAL ABUNDANCES OF FOUR STARS IN THE UNUSUAL GLOBULAR CLUSTER PALOMAR 1

    Detailed chemical abundances for 21 elements are presented for four red giants in the anomalous outer halo globular cluster Palomar 1 (RGC = 17.2 kpc, Z = 3.6 kpc) using high-resolution (R = 36, 000) spectra from the High Dispersion Spectrograph on the Subaru Telescope. Pal 1 has long been considered unusual because of its low surface brightness, sparse red giant branch, young age, and its possible association with two extragalactic streams of stars. This paper shows that its chemistry further confirms its unusual nature. The mean metallicity of the four stars, [Fe/H] = -0.60 ± 0.01, is high for a globular cluster so far from the Galactic center, but is low for a typical open cluster. The [α/Fe] ratios, though in agreement with the Galactic stars within the 1σ errors, agree best with the lower values in dwarf galaxies. No signs of the Na/O anticorrelation are detected in Pal 1, though Na appears to be marginally high in all four stars. Pal 1's neutron-capture elements are also unusual: its high [Ba/Y] ratio agrees best with dwarf galaxies, implying an excess of second-peak over first-peak s-process elements, while its [Eu/α] and [Ba/Eu] ratios show that Pal 1's contributions from the r-process must have differed in some way from normal Galactic stars. Therefore, Pal 1 is unusual chemically, as well in its other properties. Pal 1 shares some of its unusual abundance characteristics with the young clusters associated with the Sagittarius dwarf galaxy remnant and the intermediate-age LMC clusters, and could be chemically associated with the Canis Majoris overdensity; however, it does not seem to be similar to the Monoceros/Galactic Anticenter Stellar Stream.

  2. Importance of the H2 abundance in protoplanetary disk ices for the molecular layer chemical composition

    Wakelam, V; Hersant, F; Dutrey, A; Semenov, D; Majumdar, L; Guilloteau, S

    2016-01-01

    Protoplanetary disks are the target of many chemical studies (both observational and theoretical) as they contain the building material for planets. Their large vertical and radial gradients in density and temperature make them challenging objects for chemical models. In the outer part of these disks, the large densities and low temperatures provide a particular environment where the binding of species onto the dust grains can be very efficient and can affect the gas-phase chemical composition. We attempt to quantify to what extent the vertical abundance profiles and the integrated column densities of molecules predicted by a detailed gas-grain code are affected by the treatment of the molecular hydrogen physisorption at the surface of the grains. We performed three different models using the Nautilus gas-grain code. One model uses a H2 binding energy on the surface of water (440 K) and produces strong sticking of H2. Another model uses a small binding energy of 23 K (as if there were already a monolayer of H...

  3. Bimodal chemical evolution of the Galactic disk and the Barium abundance of Cepheids

    Lepine, Jacques R D; Barros, Douglas A; Junqueira, Thiago C; Scarano, Sergio

    2013-01-01

    In order to understand the Barium abundance distribution in the Galactic disk based on Cepheids, one must first be aware of important effects of the corotation resonance, situated a little beyond the solar orbit. The thin disk of the Galaxy is divided in two regions that are separated by a barrier situated at that radius. Since the gas cannot get across that barrier, the chemical evolution is independent on the two sides of it. The barrier is caused by the opposite directions of flows of gas, on the two sides, in addition to a Cassini-like ring void of HI (caused itself by the flows). A step in the metallicity gradient developed at corotation, due to the difference in the average star formation rate on the two sides, and to this lack of communication between them. In connection with this, a proof that the spiral arms of our Galaxy are long-lived (a few billion years) is the existence of this step. When one studies the abundance gradients by means of stars which span a range of ages, like the Cepheids, one has...

  4. Episodic Model For Star Formation History and Chemical Abundances in Giant and Dwarf Galaxies

    Debsarma, Suma; Das, Sukanta; Pfenniger, Daniel

    2016-01-01

    In search for a synthetic understanding, a scenario for the evolution of the star formation rate and the chemical abundances in galaxies is proposed, combining gas infall from galactic halos, outflow of gas by supernova explosions, and an oscillatory star formation process. The oscillatory star formation model is a consequence of the modelling of the fractional masses changes of the hot, warm and cold components of the interstellar medium. The observed periods of oscillation vary in the range $(0.1-3.0)\\times10^{7}$\\,yr depending on various parameters existing from giant to dwarf galaxies. The evolution of metallicity varies in giant and dwarf galaxies and depends on the outflow process. Observed abundances in dwarf galaxies can be reproduced under fast outflow together with slow evaporation of cold gases into hot gas whereas slow outflow and fast evaporation is preferred for giant galaxies. The variation of metallicities in dwarf galaxies supports the fact that low rate of SNII production in dwarf galaxies i...

  5. On the oxygen and nitrogen chemical abundances and the evolution of the "green pea" galaxies

    Amorín, Ricardo O; Vílchez, J M

    2010-01-01

    We have investigated the oxygen and nitrogen chemical abundances in extremely compact star-forming galaxies with redshifts between $\\sim$0.11-0.35, popularly referred to as "green peas". Direct and strong-line methods sensitive to the N/O ratio applied to their SDSS spectra reveals that these systems are genuine metal-poor galaxies, with mean oxygen abundances 20% solar. At a given metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong difference between our metallicities measurements and previous ones. While their N/O ratios follow the relation with stellar mass of local star-forming galaxies in the SDSS, we find that the mass--metallicity relation of the "green peas" is offset $\\ga$0.3 dex to lower metallicities. We argue that recent interaction-induced inflow of gas, possibly coupled with a selective metal-rich gas loss, driven by supernova winds, may explain our findings and the known galaxy properties, namely high specific star formati...

  6. Solving the Excitation and Chemical Abundances in Shocks: The Case of HH 1

    Giannini, T.; Antoniucci, S.; Nisini, B.; Bacciotti, F.; Podio, L.

    2015-11-01

    We present deep spectroscopic (3600-24700 Å ) X-shooter observations of the bright Herbig-Haro object HH 1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, H i and He i recombination lines and H2 ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non-local Thermal Equilibiurm codes to derive the electron temperature and density, and for the first time we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 K \\div 80,000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density ˜103 cm-3), and a more compact component (density ≥slant 105 cm-3) likely associated with the hottest gas. A further neutral component is also evidenced, having a temperature ≲10,000 K and a density >104 cm-3. The gas fractional ionization was estimated by solving the ionization equilibrium equations of atoms detected in different ionization stages. We find that neutral and fully ionized regions co-exist inside the shock. Also, indications in favor of at least partially dissociative shock as the main mechanism for molecular excitation are derived. Chemical abundances are estimated for the majority of the detected species. On average, abundances of non-refractory/refractory elements are lower than solar of about 0.15/0.5 dex. This indicates the presence of dust inside the medium, with a depletion factor of iron of ˜40%. Based on observations collected at the European Southern Observatory, (92.C-0058).

  7. Detailed Chemical Abundances in NGC 5824: Another Metal-Poor Globular Cluster with Internal Heavy Element Abundance Variations

    Roederer, Ian U; Bailey, John I; Spencer, Meghin; Crane, Jeffrey D; Shectman, Stephen A

    2015-01-01

    We present radial velocities, stellar parameters, and detailed abundances of 39 elements derived from high-resolution spectroscopic observations of red giant stars in the luminous, metal-poor globular cluster NGC 5824. We observe 26 stars in NGC 5824 using the Michigan/Magellan Fiber System (M2FS) and two stars using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We derive a mean metallicity of [Fe/H]=-1.94+/-0.02 (statistical) +/-0.10 (systematic). The metallicity dispersion of this sample of stars, 0.08 dex, is in agreement with previous work and does not exceed the expected observational errors. Previous work suggested an internal metallicity spread only when fainter samples of stars were considered, so we cannot exclude the possibility of an intrinsic metallicity dispersion in NGC 5824. The M2FS spectra reveal a large internal dispersion in [Mg/Fe], 0.28 dex, which is found in a few other luminous, metal-poor clusters. [Mg/Fe] is correlated with [O/Fe] and anti-correlated with [Na/Fe] and [Al/F...

  8. Stokes $IQUV$ magnetic Doppler imaging of Ap stars - III. Next generation chemical abundance mapping of Alpha 2 CVn

    Silvester, James; Wade, Gregg A

    2014-01-01

    In a previous paper we presented an updated magnetic field map for the chemically peculiar star Alpha 2 CVn using ESPaDOnS and Narval time-resolved high-resolution Stokes $IQUV$ spectra. In this paper we focus on mapping various chemical element distributions on the surface of Alpha 2 CVn. With the new magnetic field map and new chemical abundance distributions we can investigate the interplay between the chemical abundance structures and the magnetic field topology on the surface of Alpha 2 CVn. Previous attempts at chemical abundance mapping of Alpha 2 CVn relied on lower resolution data. With our high resolution (R=65,000) dataset we present nine chemical abundance maps for the elements O, Si, Cl, Ti, Cr, Fe, Pr, Nd and Eu. We also derive an updated magnetic field map from Fe and Cr lines in Stokes $IQUV$ and O and Cl in Stokes $IV$. These new maps are inferred from line profiles in Stokes $IV$ using the magnetic Doppler imaging code Invers10. We examine these new chemical maps and investigate correlations...

  9. Effect of chemical fertilization and green manure on the abundance and community structure of ammonia oxidizers in a paddy soil

    Yu Fang

    2015-12-01

    Full Text Available Ammonia oxidization is a critical step in the soil N cycle and can be affected by the fertilization regimes. Chinese milk-vetch (Astragalus sinicus L., MV is a major green manure of rice (Oryza sativa L. fields in southern China, which is recommended as an important agronomic practice to improve soil fertility. Soil chemical properties, abundance and community structures of ammonia-oxidizing bacteria (AOB and ammonia-oxidizing archaea (AOA in a MV-rice rotation field under different fertilization regimes were investigated. The field experiment included six treatments: control, without MV and chemical fertilizer (CK; 100% chemical fertilizer (NPK; 18 000 kg MV ha-1 plus 100% chemical fertilizer (NPKM1; 18 000 kg MV ha-1 plus 40% chemical fertilizer (NPKM2; 18 000 kg MV ha-1 alone (MV; and 18 000 kg MV ha-1 plus 40% chemical fertilizer plus straw (NPKMS. Results showed that NPKMS treatment could improve the soil fertility greatly although the application of 60% chemical fertilizer. The abundance of AOB only in the MV treatment had significant difference with the control; AOA were more abundant than AOB in all corresponding treatments. The NPKMS treatment had the highest AOA abundance (1.19 x 10(8 amoA gene copies g-1 and the lowest abundance was recorded in the CK treatment (3.21 x 10(7 amoA gene copies g-1. The abundance of AOA was significantly positively related to total N, available N, NH4+-N, and NO3--N. The community structure of AOA exhibited little variation among different fertilization regimes, whereas the community structure of AOB was highly responsive. Phylogenetic analysis showed that all AOB sequences were affiliated with Nitrosospira or Nitrosomonas and all AOA denaturing gradient gel electrophoresis (DGGE bands belonged to the soil and sediment lineage. These findings could be fundamental to improve our understanding of AOB and AOA in the N cycle in the paddy soil.

  10. Chemical Abundances in Field Red Giants from High-Resolution H-Band Spectra using the APOGEE Spectral Linelist

    Smith, Verne V; Shetrone, Matthew D; Meszaros, Szabolcs; Prieto, Carlos Allende; Bizyaev, Dmitry; Perez, Ana Garcia; Majewski, Steven R; Schiavon, Ricardo; Holtzman, Jon; Johnson, Jennifer A

    2012-01-01

    High-resolution H-band spectra of five bright field K, M, and MS giants, obtained from the archives of the Kitt Peak National Observatory (KPNO) Fourier Transform Spectrometer (FTS), are analyzed to determine chemical abundances of 16 elements. The abundances were derived via spectrum synthesis using the detailed linelist prepared for the SDSS III Apache Point Galactic Evolution Experiment (APOGEE), which is a high-resolution near-infrared spectroscopic survey to derive detailed chemical abundance distributions and precise radial velocities for 100,000 red giants sampling all Galactic stellar populations. Measured chemical abundances include the cosmochemically important isotopes 12C, 13C, 14N, and 16O, along with Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, and Cu. A comparison of the abundances derived here with published values for these stars reveals consistent results to ~0.1 dex. The APOGEE spectral region and linelist is, thus, well-suited for probing both Galactic chemical evolution, as well as inter...

  11. Reconstructing the star formation history of the Milky Way disc(s) from chemical abundances

    Snaith, O.; Haywood, M.; Di Matteo, P.; Lehnert, M. D.; Combes, F.; Katz, D.; Gómez, A.

    2015-06-01

    We develop a chemical evolution model to study the star formation history of the Milky Way. Our model assumes that the Milky Way has formed from a closed-box-like system in the inner regions, while the outer parts of the disc have experienced some accretion. Unlike the usual procedure, we do not fix the star formation prescription (e.g. Kennicutt law) to reproduce the chemical abundance trends. Instead, we fit the abundance trends with age to recover the star formation history of the Galaxy. Our method enables us to recover the star formation history of the Milky Way in the first Gyrs with unprecedented accuracy in the inner (R 9-10 kpc) discs, as sampled in the solar vicinity. We show that half the stellar mass formed during the thick-disc phase in the inner galaxy during the first 4-5 Gyr. This phase was followed by a significant dip in star formation activity (at 8-9 Gyr) and a period of roughly constant lower-level star formation for the remaining 8 Gyr. The thick-disc phase has produced as many metals in 4 Gyr as the thin-disc phase in the remaining 8 Gyr. Our results suggest that a closed-box model is able to fit all the available constraints in the inner disc. A closed-box system is qualitatively equivalent to a regime where the accretion rate maintains a high gas fraction in the inner disc at high redshift. In these conditions the SFR is mainly governed by the high turbulence of the interstellar medium. By z ~ 1 it is possible that most of the accretion takes place in the outer disc, while the star formation activity in the inner disc is mostly sustained by the gas that is not consumed during the thick-disc phase and the continuous ejecta from earlier generations of stars. The outer disc follows a star formation history very similar to that of the inner disc, although initiated at z ~ 2, about 2 Gyr before the onset of the thin-disc formation in the inner disc.

  12. The magnetic field topology and chemical abundance distributions of the Ap star HD 32633

    Silvester, J; Wade, G A

    2015-01-01

    Previous observations of the Ap star HD 32633 indicated that its magnetic field was unusually complex in nature and could not be characterised by a simple dipolar structure. Here we derive magnetic field maps and chemical abundance distributions for this star using full Stokes vector (Stokes $IQUV$) high-resolution observations obtained with the ESPaDOnS and Narval spectropolarimeters. Our maps, produced using the Invers10 magnetic Doppler imaging (MDI) code, show that HD 32633 has a strong magnetic field which features two large regions of opposite polarity but deviates significantly from a pure dipole field. We use a spherical harmonic expansion to characterise the magnetic field and find that the harmonic energy is predominately in the $\\ell=1$ and $\\ell=2$ poloidal modes with a small toroidal component. At the same time, we demonstrate that the observed Stokes parameter profiles of HD 32633 cannot be fully described by either a dipolar or dipolar plus quadrupolar field geometry. We compare the magnetic fi...

  13. Chemical abundances in low surface brightness galaxies: Implications for their evolution

    Mcgaugh, S. S.; Bothun, G. D.

    1993-01-01

    Low Surface Brightness (LSB) galaxies are an important but often neglected part of the galaxy content of the universe. Their importance stems both from the selection effects which cause them to be under-represented in galaxy catalogs, and from what they can tell us about the physical processes of galaxy evolution that has resulted in something other than the traditional Hubble sequence of spirals. An important constraint for any evolutionary model is the present day chemical abundances of LSB disks. Towards this end, spectra for a sample of 75 H 2 regions distributed in 20 LSB disks galaxies were obtained. Structurally, this sample is defined as having B(0) fainter than 23.0 mag arcsec(sup -2) and scale lengths that cluster either around 3 kpc or 10 kpc. In fact, structurally, these galaxies are very similar to the high surface brightness spirals which define the Hubble sequence. Thus, our sample galaxies are not dwarf galaxies but instead have masses comparable to or in excess of the Milky Way. The basic results from these observations are summarized.

  14. Effects of episodic gas infall on the chemical abundances in galaxies

    Köppen, J

    2005-01-01

    The chemical evolution of galaxies that undergo an episode of massive and rapid accretion of metal-poor gas is investigated with models using both simplified and detailed nucleosynthesis recipes. The rapid decrease of the oxygen abundance during infall is followed by a slower evolution which leads back to the closed-box relation, thus forming a loop in the N/O-O/H diagram. For large excursions from the closed-box relation, the mass of the infalling material needs to be substantially larger than the gas remaining in the galaxy, and the accretion rate should be larger than the star formation rate. We apply this concept to the encounter of high velocity clouds with galaxies of various masses, finding that the observed properties of these clouds are indeed able to cause substantial effects not only in low mass galaxies, but also in the partial volumes in large massive galaxies that would be affected by the collision. Numerical models with detailed nucleosynthesis prescriptions are constructed. We assume star form...

  15. Parent Stars of Extrasolar Planets. VIII. Chemical Abundances for 18 Elements in 31 Stars

    Gonzalez, Guillermo; Laws, Chris

    2007-01-01

    We present the results of detailed spectroscopic abundance analyses for 18 elements in 31 nearby stars with planets. The resulting abundances are combined with other similar studies of nearby stars with planets and compared to a sample of nearby stars without detected planets. We find some evidence for abundance differences between these two samples for Al, Si and Ti. Some of our results are in conflict with a recent study of stars with planets in the SPOCS database. We encourage continued st...

  16. How to link the relative abundances of gas species in coma of comets to their initial chemical composition ?

    Marboeuf, Ulysse

    2014-01-01

    The chemical composition of comets is frequently assumed to be directly provided by the observations of the abundances of volatile molecules in the coma. The present work aims to determine the relationship between the chemical composition of the coma, the outgassing profile of volatile molecules and the internal chemical composition, and water ice structure of the nucleus, and physical assumptions on comets. To do this, we have developed a quasi 3D model of a cometary nucleus which takes into account all phase changes and water ice structures (amorphous, crystalline, clathrate, and a mixture of them); we have applied this model to the comet 67P/Churyumov-Gerasimenko, the target of the Rosetta mission. We find that the outgassing profile of volatile molecules is a strong indicator of the physical and thermal properties (water ice structure, thermal inertia, abundances, distribution, physical differentiation) of the solid nucleus. Day/night variations of the rate of production of species helps to distinguish th...

  17. Chemical abundances for A-and F-type supergiant stars

    Molina, R E

    2016-01-01

    We present the stellar parameters and elemental abundances of a set of A--F-type supergiant stars HD\\,45674, HD\\,180028, HD\\,194951 and HD\\,224893 using high resolution ($R$\\,$\\sim$\\,42,000) spectra taken from ELODIE library. We present the first results of the abundance analysis for HD\\,45674 and HD\\,224893. We reaffirm the abundances for HD\\,180028 and HD\\,194951 studied previously by Luck (2014) respectively. Alpha-elements indicates that objects belong to the thin disc population. From their abundances and its location on the Hertzsprung-Russell diagram seems point out that HD\\,45675, HD\\,194951 and HD\\,224893 are in the post-first dredge-up (post-1DUP) phase and they are moving in the red-blue loop region. HD~180028, on the contary, shows typical abundances of the population I but its evolutionary status could not be satisfactorily defined.

  18. Chemical Abundances of the Secondary Star in the Black Hole X-Ray Binary V404 Cygni

    Hernández, Jonay I González; Rebolo, Rafael; Israelian, Garik; Filippenko, Alexei V; Chornock, Ryan

    2011-01-01

    We present a chemical abundance analysis of the secondary star in the black hole binary V404 Cygni, using Keck I/HIRES spectra. We adopt a $\\chi^2$-minimization procedure to derive the stellar parameters, taking into account any possible veiling from the accretion disk. With these parameters we determine the atmospheric abundances of O, Na, Mg, Al, Si, Ca, Ti, Fe, and Ni. The abundances of Al, Si, and Ti appear to be slightly enhanced when comparing with average values in thin-disk solar-type stars. The O abundance, derived from optical lines, is particularly enhanced in the atmosphere of the secondary star in V404 Cygni. This, together with the peculiar velocity of this system as compared with the Galactic velocity dispersion of thin-disk stars, suggests that the black hole formed in a supernova or hypernova explosion. We explore different supernova/hypernova models having various geometries to study possible contamination of nucleosynthetic products in the chemical abundance pattern of the secondary star. W...

  19. VizieR Online Data Catalog: Chemical abundances of zeta Reticuly (Adibekyan+, 2016)

    Adibekyan, V.; Delgado-Mena, E.; Figueira, P.; Sousa, S. G.; Santos, N. C.; Faria, J. P.; Gonzalez Hernandez, J. I.; Israelian, G.; Harutyunyan, G.; Suarez-Andres, L.; Hakobyan, A. A.

    2016-05-01

    The file table1.dat lists stellar parameters, S/N, and observation dates of zeta1 Ret and zeta2 Ret derived from individual and combined spectra The file ew.dat lists the equivalent widths (EW) of all the spectral lines. The file s_lines.dat lists the lines that were used in this study. The file abund.dat lists the derived abundances of the elements for each star and spectra. (4 data files).

  20. Chemical Abundances in the Secondary Star of the Neutron Star Binary Centaurus X-4

    Hern'andez, J I G; Israelian, G; Casares, J; Maeda, K; Bonifacio, P; Molaro, P; Hern\\'andez, Jonay I. Gonz\\'alez; Rebolo, Rafael; Israelian, Garik; Casares, Jorge; Maeda, Keiichi; Bonifacio, Piercarlo; Molaro, Paolo

    2005-01-01

    Using a high resolution spectrum of the secondary star in the neutron star binary {Cen X-4}, we have derived the stellar parameters and veiling caused by the accretion disk in a consistent way. We have used a $\\chi^{2}$ minimization procedure to explore a grid of 1 500 000 LTE synthetic spectra computed for a plausible range of both stellar and veiling parameters. Adopting the best model parameters found, we have determined atmospheric abundances of Fe, Ca, Ti, Ni and Al. These element abundances are super solar ($\\mathrm{[Fe/H]}=0.23 \\pm 0.10$), but only the abundance of Ti and Ni appear to be moderately enhanced ($\\ge1\\sigma$) as compared with the average values of stars of similar iron content. These element abundances can be explained if the secondary star captured a significant amount of matter ejected from a spherically symmetric supernova explosion of a 4 {$M_\\odot$} He core progenitor and assuming solar abundances as primordial abundances in the secondary star. The kinematic properties of the system i...

  1. Chemical Abundances of Seven Irregular and Three Tidal Dwarf Galaxies in the M81 Group

    Croxall, Kevin V; Lee, Henry; Skillman, Evan D; Lee, Janice C; Côté, Stéphanie; Kennicutt, Robert C; Miller, Bryan W; 10.1088/0004-637X/705/1/723

    2009-01-01

    We have derived nebular abundances for 10 dwarf galaxies belonging to the M81 Group, including several galaxies which do not have abundances previously reported in the literature. For each galaxy, multiple H \\ii regions were observed with GMOS-N at the Gemini Observatory in order to determine abundances of several elements (oxygen, nitrogen, sulfur, neon, and argon). For seven galaxies, at least one H \\ii region had a detection of the temperature sensitive [OIII] $\\lambda$4363 line, allowing a "direct" determination of the oxygen abundance. No abundance gradients were detected in the targeted galaxies and the observed oxygen abundances are typically in agreement with the well known metallicity-luminosity relation. However, three candidate "tidal dwarf" galaxies lie well off this relation, UGC 5336, Garland, and KDG 61. The nature of these systems suggests that UGC 5336 and Garland are indeed recently formed systems, whereas KDG 61 is most likely a dwarf spheroidal galaxy which lies along the same line of sigh...

  2. Chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core-collapse calculations

    Marchand, P.; Masson, J.; Chabrier, G.; Hennebelle, P.; Commerçon, B.; Vaytet, N.

    2016-07-01

    We develop a detailed chemical network relevant to calculate the conditions that are characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of potassium, sodium, and hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to nH = 1012 cm-3, after which Ohmic diffusion takes over. We find that the time-scale needed to reach chemical equilibrium is always shorter than the typical dynamical (free fall) one. This allows us to build a large, multi-dimensional multi-species equilibrium abundance table over a large temperature, density and ionisation rate ranges. This table, which we make accessible to the community, is used during first and second prestellar core collapse calculations to compute the non-ideal magneto-hydrodynamics resistivities, yielding a consistent dynamical-chemical description of this process. The multi-dimensional multi-species equilibrium abundance table and a copy of the code are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A18

  3. Astrophysical Origins for the Unusual Chemical Abundance of the Globular Cluster Palomar 1

    Niu, Ping; Zhang, Bo; Xie, Geying

    2015-01-01

    We study the abundances of {\\alpha} elements, Fe-peak elements, and neutron-capture elements in Pal 1. We found that the abundances of the SNe Ia and main s-process components of Pal 1 are larger than those of the disk stars and the abundances of the primary component of Pal 1 are smaller than those of the disk stars with similar metallicity. The Fe abundances of Pal 1 and the disk stars mainly originate from the SNe Ia and the primary component, respectively. Although the {\\alpha} abundances dominantly produced by the primary process for the disk stars and Pal 1, the contributions of the primary component to Pal 1 are smaller than the corresponding contributions to the disk stars. The Fe-peak elements V and Co mainly originate from the primary and secondary components for the disk stars and Pal 1, but the contributions of the massive stars to Pal 1 are lower than those of the massive stars to the disk stars. The Yabundances mainly originate from the weak r-component for the disk stars. However, the contribut...

  4. Dust and Chemical Abundances of the Sagittarius dwarf Galaxy Planetary Nebula Hen2-436

    Otsuka, Masaaki; Riebel, David; Hyung, Siek; Tajitsu, Akito; Izumiura, Hideyuki

    2010-01-01

    We have estimated elemental abundances of the planetary nebula (PN) Hen2-436 in the Sagittarius (Sgr) spheroidal dwarf galaxy using ESO/VLT FORS2, Magellan/MMIRS, and Spitzer/IRS spectra. We have detected candidates of [F II] 4790A, [Kr III] 6826A, and [P II] 7875A lines and successfully estimated the abundances of these elements ([F/H]=+1.23, [Kr/H]=+0.26, [P/H]=+0.26) for the first time. We present a relation between C, F, P, and Kr abundances among PNe and C-rich stars. The detections of F and Kr support the idea that F and Kr together with C are synthesized in the same layer and brought to the surface by the third dredge-up. We have estimated the N^2+ and O^2+ abundances using optical recombination lines (ORLs) and collisionally excited lines (CELs). The discrepancy between the abundance derived from the O ORL and that derived from the O CEL is >1 dex. To investigate the status of the central star of the PN, nebula condition, and dust properties, we construct a theoretical SED model with CLOUDY. By compar...

  5. A DETAILED LOOK AT CHEMICAL ABUNDANCES IN MAGELLANIC CLOUD PLANETARY NEBULAE. I. THE SMALL MAGELLANIC CLOUD

    We present an analysis of elemental abundances of He, N, O, Ne, S, and Ar in Magellanic Cloud planetary nebulae (PNe) and focus initially on 14 PNe in the Small Magellanic Cloud (SMC). We derive the abundances from a combination of deep, high-dispersion optical spectra, as well as mid-infrared (IR) spectra from the Spitzer Space Telescope. A detailed comparison with prior SMC PN studies shows that significant variations in relative emission-line flux determinations among the authors, lead to systematic discrepancies in derived elemental abundances between studies that are ∼>0.15 dex, in spite of similar analysis methods. We use ionic abundances derived from IR emission lines, including those from ionization stages not observable in the optical, to examine the accuracy of some commonly used recipes for ionization correction factors (ICFs). These ICFs, which were developed for ions observed in the optical and ultraviolet, relate ionic abundances to total elemental abundances. We find that most of these ICFs work very well even in the limit of substantially sub-solar metallicities, except for PNe with very high ionization. Our abundance analysis shows enhancements of He and N that are predicted from prior dredge-up processes of the progenitors on the asymptotic giant branch (AGB), as well as the well-known correlations among O, Ne, S, and Ar that are little affected by nucleosynthesis in this mass range. We identify MG 8 as an interesting limiting case of a PN central star with a ∼3.5 Msun progenitor in which hot-bottom burning did not occur in its prior AGB evolution. We find no evidence for O depletion in the progenitor AGB stars via the O-N cycle, which is consistent with predictions for lower-mass stars. We also find low S/O ratios relative to SMC H II regions, with a deficit comparable to what has been found for Galactic PNe. Finally, the elemental abundances of one object, SMP-SMC 11, are more typical of SMC H II regions, which raises some doubt about its

  6. Hydrogen Atom Collision Processes in Cool Stellar Atmospheres: Effects on Spectral Line Strengths and Measured Chemical Abundances in Old Stars

    The precise measurement of the chemical composition of stars is a fundamental problem relevant to many areas of astrophysics. State-of-the-art approaches attempt to unite accurate descriptions of microphysics, non-local thermodynamic equilibrium (non-LTE) line formation and 3D hydrodynamical model atmospheres. In this paper I review progress in understanding inelastic collisions of hydrogen atoms with other species and their influence on spectral line formation and derived abundances in stellar atmospheres. These collisions are a major source of uncertainty in non-LTE modelling of spectral lines and abundance determinations, especially for old, metal-poor stars, which are unique tracers of the early evolution of our galaxy. Full quantum scattering calculations of direct excitation processes X(nl) + H ↔ X(n'l') + H and charge transfer processes X(nl) + H ↔ X+ + H− have been done for Li, Na and Mg [1,2,3] based on detailed quantum chemical data, e.g. [4]. Rate coefficients have been calculated and applied to non-LTE modelling of spectral lines in stellar atmospheres [5,6,7,8,9]. In all cases we find that charge transfer processes from the first excited S-state are very important, and the processes affect measured abundances for Li, Na and Mg in some stars by as much as 60%. Effects vary with stellar parameters (e.g. temperature, luminosity, metal content) and so these processes are important not only for accurate absolute abundances, but also for relative abundances among dissimilar stars.

  7. Magnetic Field and Atmospheric Chemical Abundances of the Magnetic Ap Star HD 318107

    Bailey, J D; Bagnulo, S; Fossati, L; Kochukhov, O; Paladini, C; Silvester, J; Wade, G

    2011-01-01

    New spectra have been obtained with the ESPaDOnS spectropolarimeter supplemented with unpolarised spectra from the ESO UVES, UVES-FLAMES, and HARPS spectrographs of the very peculiar large-field magnetic Ap star HD 318107, a member of the open cluster NGC 6405. The available data provide sufficient material with which to re-analyse the first-order model of the magnetic field geometry and to derive abundances of Si, Ti, Fe, Nd, Pr, Mg, Cr, Mn, O, and Ca. The magnetic field structure was modelled with a low-order colinear multipole expansion, using coefficients derived from the observed variations of the field strength with rotation phase. The abundances of several elements were determined using spectral synthesis. After experiments with a very simple model of uniform abundance on each of three rings of equal width in co-latitude and symmetric about the assumed magnetic axis, we decided to model the spectra assuming uniform abundances of each element over the stellar surface. The new magnetic field measurements...

  8. Lithium abundances in nearby FGK dwarf and subgiant stars: internal destruction, Galactic chemical evolution, and exoplanets

    Ramirez, I; Lambert, D L; Prieto, C Allende

    2012-01-01

    We derive atmospheric parameters and lithium abundances for 671 stars and include our measurements in a literature compilation of 1381 dwarf and subgiant stars. First, a "lithium desert" in the effective temperature (Teff) versus lithium abundance (A_Li) plane is observed such that no stars with Teff~6075 K and A_Li~1.8 are found. We speculate that most of the stars on the low A_Li side of the desert have experienced a short-lived period of severe surface lithium destruction as main-sequence or subgiant stars. Next, we search for differences in the lithium content of thin-disk and thick-disk stars, but we find that internal processes have erased from the stellar photospheres their possibly different histories of lithium enrichment. Nevertheless, we note that the maximum lithium abundance of thick-disk stars is nearly constant from [Fe/H]=-1.0 to -0.1, at a value that is similar to that measured in very metal-poor halo stars (A_Li~2.2). Finally, differences in the lithium abundance distribution of known planet...

  9. The Cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses

    Casey, Andrew R; Ness, Melissa; Rix, Hans-Walter; Ho, Anna Q Y; Gilmore, Gerry

    2016-01-01

    We have shown that data-driven models are effective for inferring physical attributes of stars (labels; Teff, logg, [M/H]) from spectra, even when the signal-to-noise ratio is low. Here we explore whether this is possible when the dimensionality of the label space is large (Teff, logg, and 15 abundances: C, N, O, Na, Mg, Al, Si, S, K, Ca, Ti, V, Mn, Fe, Ni) and the model is non-linear in its response to abundance and parameter changes. We adopt ideas from compressed sensing to limit overall model complexity while retaining model freedom. The model is trained with a set of 12,681 red-giant stars with high signal-to-noise spectroscopic observations and stellar parameters and abundances taken from the APOGEE Survey. We find that we can successfully train and use a model with 17 stellar labels. Validation shows that the model does a good job of inferring all 17 labels (typical abundance precision is 0.04 dex), even when we degrade the signal-to-noise by discarding ~50% of the observing time. The model dependencie...

  10. Chemical Abundances for 855 Giants in the Globular Cluster Omega Centauri (NGC 5139)

    Johnson, Christian I

    2010-01-01

    We present elemental abundances for 855 red giant branch (RGB) stars in the globular cluster Omega Centauri (w Cen) from spectra obtained with the Blanco 4m telescope and Hydra multifiber spectrograph. The sample includes nearly all RGB stars brighter than V=13.5, and span's w Cen's full metallicity range. The heavy alpha elements (Si, Ca, and Ti) are generally enhanced by ~+0.3 dex, and exhibit a metallicity dependent morphology that may be attributed to mass and metallicity dependent Type II supernova (SN) yields. The heavy alpha and Fe-peak abundances suggest minimal contributions from Type Ia SNe. The light elements (O, Na, and Al) exhibit >0.5 dex abundance dispersions at all metallicities, and a majority of stars with [Fe/H]>-1.6 have [O/Fe], [Na/Fe], and [Al/Fe] abundances similar to those in monometallic globular clusters, as well as O-Na, O-Al anticorrelations and the Na-Al correlation in all but the most metal-rich stars. A combination of pollution from intermediate mass asymptotic giant branch (AGB...

  11. DUST AND CHEMICAL ABUNDANCES OF THE SAGITTARIUS DWARF GALAXY PLANETARY NEBULA Hen2-436

    We have estimated elemental abundances of the planetary nebula (PN) Hen2-436 in the Sagittarius (Sgr) spheroidal dwarf galaxy using ESO/VLT FORS2, Magellan/MMIRS, and Spitzer/IRS spectra. We have detected candidates of fluorine [F II] λ4790, krypton [Kr III] λ6826, and phosphorus [P II] λ7875 lines and successfully estimated the abundances of these elements ([F/H] = +1.23, [Kr/H] = +0.26, [P/H] = +0.26) for the first time. These elements are known to be synthesized by the neutron capture process in the He-rich intershell during the thermally pulsing asymptotic giant branch (AGB) phase. We present a relation between C, F, P, and Kr abundances among PNe and C-rich stars. The detections of these elements in Hen2-436 support the idea that F, P, Kr together with C are synthesized in the same layer and brought to the surface by the third dredge-up. We have detected N II and O II optical recombination lines (ORLs) and derived the N2+ and O2+ abundances. The discrepancy between the abundance derived from the oxygen ORL and that derived from the collisionally excited line is >1 dex. To investigate the status of the central star of the PN, nebula condition, and dust properties, we construct a theoretical spectral energy distribution (SED) model to match the observed SED with CLOUDY. By comparing the derived luminosity and temperature of the central star with theoretical evolutionary tracks, we conclude that the initial mass of the progenitor is likely to be ∼1.5-2.0 Msun and the age is ∼3000 yr after the AGB phase. The observed elemental abundances of Hen2-436 can be explained by a theoretical nucleosynthesis model with a star of initial mass 2.25 Msun, Z = 0.008, and LMC compositions. We have estimated the dust mass to be 2.9x10-4 Msun (amorphous carbon only) or 4.0x10-4 Msun (amorphous carbon and polycyclic aromatic hydrocarbon). Based on the assumption that most of the observed dust is formed during the last two thermal pulses and the dust-to-gas mass ratio is 5

  12. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs - Implications for stellar and Galactic chemical evolution

    Smiljanic, R; Bragaglia, A; Donati, P; Magrini, L; Friel, E; Jacobson, H; Randich, S; Ventura, P; Lind, K; Bergemann, M; Nordlander, T; Morel, T; Pancino, E; Tautvaisiene, G; Adibekyan, V; Tosi, M; Vallenari, A; Gilmore, G; Bensby, T; Francois, P; Koposov, S; Lanzafame, A C; Recio-Blanco, A; Bayo, A; Carraro, G; Casey, A R; Costado, M T; Franciosini, E; Heiter, U; Hill, V; Hourihane, A; Jofre, P; Lardo, C; de Laverny, P; Lewis, J; Monaco, L; Morbidelli, L; Sacco, G G; Sbordone, L; Sousa, S G; Worley, C C; Zaggia, S

    2016-01-01

    Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~ 1.5--2.0 Msun. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of the Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to quite different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey, using two samples: i) more than 600 dwarfs of the solar neighborhood and of open clusters and ii) low- and intermediate-mass clump giants in six open clusters. Abundances of Na in giants with mass below ~2.0 Msun, and of Al in giants below ~3.0 Msun, seem to be unaffected by internal mixing processes. For more massive giants, the Na o...

  13. ANALYSIS OF TWO SMALL MAGELLANIC CLOUD H II REGIONS CONSIDERING THERMAL INHOMOGENEITIES: IMPLICATIONS FOR THE DETERMINATIONS OF EXTRAGALACTIC CHEMICAL ABUNDANCES

    We present long-slit spectrophotometry considering the presence of thermal inhomogeneities (t2) of two H II regions in the Small Magellanic Cloud (SMC): NGC 456 and NGC 460. Physical conditions and chemical abundances were determined for three positions in NGC 456 and one position in NGC 460, first under the assumption of uniform temperature and then allowing for the possibility of thermal inhomogeneities. We determined t2 values based on three different methods: (1) by comparing the temperature derived using oxygen forbidden lines with the temperature derived using helium recombination lines (RLs), (2) by comparing the abundances derived from oxygen forbidden lines with those derived from oxygen RLs, and (3) by comparing the abundances derived from ultraviolet carbon forbidden lines with those derived from optical carbon RLs. The first two methods averaged t2 = 0.067 ± 0.013 for NGC 456 and t2 = 0.036 ± 0.027 for NGC 460. These values of t2 imply that when gaseous abundances are determined with collisionally excited lines they are underestimated by a factor of nearly two. From these objects and others in the literature, we find that in order to account for thermal inhomogeneities and dust depletion, the O/H ratio in low-metallicity H II regions should be corrected by 0.25-0.45 dex depending on the thermal structure of the nebula or by 0.35 dex if such information is not available.

  14. Chemical Abundances of Seven Outer Halo M31 Globular Clusters from the Pan-Andromeda Archaeological Survey

    Sakari, Charli M

    2016-01-01

    Observations of stellar streams in M31's outer halo suggest that M31 is actively accreting several dwarf galaxies and their globular clusters (GCs). Detailed abundances can chemically link clusters to their birth environments, establishing whether or not a GC has been accreted from a satellite dwarf galaxy. This talk presents the detailed chemical abundances of seven M31 outer halo GCs (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated-light spectra taken with the Hobby Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS)---this talk presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal-poor ($[\\rm{Fe/H}] < -1.5$), $\\alpha$-enhanced (though they are possibly less alpha-enhanced than Milky Way stars at the 1 sigma level), and show signs of star-to-star Na and Mg variatio...

  15. A spectroscopic study of chemical abundances in the globular cluster Omega Centauri

    Blue spectra at a resolution of 0.5 A of red giants in the globular clusters Omega Centauri and NGCs 288, 362, 6397 and 6809 (M55) have been obtained with the Anglo-Australian Telescope. The observations were made to test Sweigart and Mengel's [Astrophy S. J. 229, 624] theory of mixing of nuclearly-processed material to the star's surface, and to elucidate the relationship between primordial and evolutionary origins for the range in abundance within Omega Cen. The Omega Cen stars were chosen in two groups either side of the giant branch, covering the luminosity range where the onset of mixing was predicted to occur. Abundances of C, N, Fe and other heavy elements have been determined by fitting synthetic spectra, calculated from model atmospheres, to the observational data. (author)

  16. Chemical Abundances in NGC 5024 (M53): A Mostly First Generation Globular Cluster

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2016-06-01

    We present the Fe, Ca, Ti, Ni, Ba, Na, and O abundances for a sample of 53 red giant branch stars in the globular cluster (GC) NGC 5024 (M53). The abundances were measured from high signal-to-noise medium resolution spectra collected with the Hydra multi-object spectrograph on the Wisconsin–Indiana–Yale–NOAO 3.5 m telescope. M53 is of interest because previous studies based on the morphology of the cluster’s horizontal branch suggested that it might be composed primarily of first generation (FG) stars and differ from the majority of other GCs with multiple populations, which have been found to be dominated by the second generation (SG) stars. Our sample has an average [Fe/H] = ‑2.07 with a standard deviation of 0.07 dex. This value is consistent with previously published results. The alpha-element abundances in our sample are also consistent with the trends seen in Milky Way halo stars at similar metallicities, with enhanced [Ca/Fe] and [Ti/Fe] relative to solar. We find that the Na–O anti-correlation in M53 is not as extended as other GCs with similar masses and metallicities. The ratio of SG to the total number of stars in our sample is approximately 0.27 and the SG generation is more centrally concentrated. These findings further support that M53 might be a mostly FG cluster and could give further insight into how GCs formed the light element abundance patterns we observe in them today.

  17. Chemical Abundances of the Highly Obscured Galactic Globular Clusters 2MASS GC02 and Mercer 5

    Penaloza, Francisco; Vasquez, Sergio; Borissova, Jura; Kurtev, Radostin; Zoccali, Manuela

    2015-01-01

    We present the first high spectral resolution abundance analysis of two newly discovered Galactic globular clusters, namely Mercer 5 and 2MASS GC02 residing in regions of high interstellar reddening in the direction of the Galactic center. The data were acquired with the Phoenix high-resolution near-infrared echelle spectrograph at Gemini South (R~50000) in the 15500.0 A - 15575.0 A spectral region. Iron, Oxygen, Silicon, Titanium and Nickel abundances were derived for two red giant stars, in each cluster, by comparing the entire observed spectrum with a grid of synthetic spectra generated with MOOG. We found [Fe/H] values of -0.86 +/- 0.12 and -1.08 +/- 0.13 for Mercer 5 and 2MASS GC02 respectively. The [O/Fe], [Si/Fe] and [Ti/Fe] ratios of the measured stars of Mercer 5 follow the general trend of both bulge field and cluster stars at this metallicity, and are enhanced by > +0.3. The 2MASS GC02 stars have relatively lower ratios, but still compatible with other bulge clusters. Based on metallicity and abund...

  18. Chemical abundance analysis of the old, rich open cluster Trumpler 20

    Carraro, Giovanni; Monaco, Lorenzo; Beccari, Giacomo; Ahumada, Javier; Boffin, Henri

    2014-01-01

    Trumpler 20 is an open cluster located at low Galactic longitude, just beyond the great Carina spiral arm, and whose metallicity and fundamental parameters were very poorly known until now. As it is most likely a rare example of an old, rich open cluster -- possibly a twin of NGC 7789 -- it is useful to characterize it. To this end, we determine here the abundance of several elements and their ratios in a sample of stars in the clump of Trumpler 20. The primary goal is to measure Trumpler 20 metallicity, so far very poorly constrained, and revise the cluster's fundamental parameters. We present high-resolution spectroscopy of eight clump stars. Based on their radial velocities, we identify six bona fide cluster members, and for five of them (the sixth being a fast rotator) we perform a detailed abundance analysis. We find that Trumpler 20 is slightly more metal-rich than the Sun, having [Fe/H]=+0.09$\\pm$0.10. The abundance ratios of alpha-elements are generally solar. In line with recent studies of clusters a...

  19. Chemical abundances in Orion protoplanetary discs: integral field spectroscopy and photoevaporation models of HST 10

    Tsamis, Y G; Henney, W J; Walsh, J R; Mesa-Delgado, A

    2012-01-01

    Photoevaporating protoplanetary discs (proplyds) in the vicinity of hot massive stars, such as those found in Orion, are important objects of study for the fields of star formation, early disc evolution, planetary formation, and H II region astrophysics. Their element abundances are largely unknown, unlike those of the main-sequence stars or the host Orion nebula. We present a spectroscopic analysis of the Orion proplyd HST 10, based on integral field observations with the Very Large Telescope/FLAMES fibre array at a resolution of 0.31" x 0.31". The proplyd and its vicinity are imaged in a variety of emission lines across a 6.6" x 4.2" area. The reddening, electron density and temperature are mapped out from various line diagnostics. The abundances of helium, and eight heavy elements are measured relative to hydrogen using the direct method based on the [O III] electron temperature. The abundance ratios of O/H and S/H are derived without resort to ionization correction factors. We construct dynamic photoevapo...

  20. Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere

    Caffau, E.; Ludwig, H.-G.; Steffen, M.; Freytag, B.; Bonifacio, P.

    2011-02-01

    In the last decade, the photospheric solar metallicity as determined from spectroscopy experienced a remarkable downward revision. Part of this effect can be attributed to an improvement of atomic data and the inclusion of NLTE computations, but also the use of hydrodynamical model atmospheres seemed to play a role. This "decrease" with time of the metallicity of the solar photosphere increased the disagreement with the results from helioseismology. With a CO 5 BOLD 3D model of the solar atmosphere, the CIFIST team at the Paris Observatory re-determined the photospheric solar abundances of several elements, among them C, N, and O. The spectroscopic abundances are obtained by fitting the equivalent width and/or the profile of observed spectral lines with synthetic spectra computed from the 3D model atmosphere. We conclude that the effects of granular fluctuations depend on the characteristics of the individual lines, but are found to be relevant only in a few particular cases. 3D effects are not responsible for the systematic lowering of the solar abundances in recent years. The solar metallicity resulting from this analysis is Z=0.0153, Z/ X=0.0209.

  1. Chemical Abundances of Planetary Nebulae in the Substructures of M31

    Fang, Xuan; Guerrero, Martin A; Liu, Xiaowei; Yuan, Haibo; Zhang, Yong; Zhang, Bing

    2015-01-01

    We present deep spectroscopy of planetary nebulae (PNe) that are associated with the substructures of the Andromeda Galaxy (M31). The spectra were obtained with the OSIRIS spectrograph on the 10.4 m GTC. Seven targets were selected for the observations, three in the Northern Spur and four associated with the Giant Stream. The most distant target in our sample, with a rectified galactocentric distance >100 kpc, was the first PN discovered in the outer streams of M31. The [O III] 4363 auroral line was well detected in the spectra of all targets, enabling electron temperature determination. Ionic abundances are derived based on the [O III] temperatures, and elemental abundances of helium, nitrogen, oxygen, neon, sulfur, and argon are estimated. The relatively low N/O and He/H ratios as well as abundance ratios of alpha-elements indicate that our target PNe might belong to populations as old as ~2 Gyr. Our PN sample, including the current seven and the previous three observed by Fang et al., have rather homogeneo...

  2. The Gaia-ESO Survey: Sodium and aluminium abundances in giants and dwarfs. Implications for stellar and Galactic chemical evolution

    Smiljanic, R.; Romano, D.; Bragaglia, A.; Donati, P.; Magrini, L.; Friel, E.; Jacobson, H.; Randich, S.; Ventura, P.; Lind, K.; Bergemann, M.; Nordlander, T.; Morel, T.; Pancino, E.; Tautvaišienė, G.; Adibekyan, V.; Tosi, M.; Vallenari, A.; Gilmore, G.; Bensby, T.; François, P.; Koposov, S.; Lanzafame, A. C.; Recio-Blanco, A.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lewis, J.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2016-05-01

    Context. Stellar evolution models predict that internal mixing should cause some sodium overabundance at the surface of red giants more massive than ~1.5-2.0 M⊙. The surface aluminium abundance should not be affected. Nevertheless, observational results disagree about the presence and/or the degree of Na and Al overabundances. In addition, Galactic chemical evolution models adopting different stellar yields lead to very different predictions for the behavior of [Na/Fe] and [Al/Fe] versus [Fe/H]. Overall, the observed trends of these abundances with metallicity are not well reproduced. Aims: We readdress both issues, using new Na and Al abundances determined within the Gaia-ESO Survey. Our aim is to obtain better observational constraints on the behavior of these elements using two samples: i) more than 600 dwarfs of the solar neighborhood and of open clusters and ii) low- and intermediate-mass clump giants in six open clusters. Methods: Abundances were determined using high-resolution UVES spectra. The individual Na abundances were corrected for nonlocal thermodynamic equilibrium effects. For the Al abundances, the order of magnitude of the corrections was estimated for a few representative cases. For giants, the abundance trends with stellar mass are compared to stellar evolution models. For dwarfs, the abundance trends with metallicity and age are compared to detailed chemical evolution models. Results: Abundances of Na in stars with mass below ~2.0 M⊙, and of Al in stars below ~3.0 M⊙, seem to be unaffected by internal mixing processes. For more massive stars, the Na overabundance increases with stellar mass. This trend agrees well with predictions of stellar evolutionary models. For Al, our only cluster with giants more massive than 3.0 M⊙, NGC 6705, is Al enriched. However, this might be related to the environment where the cluster was formed. Chemical evolution models that well fit the observed [Na/Fe] vs. [Fe/H] trend in solar neighborhood dwarfs

  3. Detailed Chemical Abundances in the r-process-rich Ultra-faint Dwarf Galaxy Reticulum 2

    Roederer, Ian U.; Mateo, Mario; Bailey, John I., III; Song, Yingyi; Bell, Eric F.; Crane, Jeffrey D.; Loebman, Sarah; Nidever, David L.; Olszewski, Edward W.; Shectman, Stephen A.; Thompson, Ian B.; Valluri, Monica; Walker, Matthew G.

    2016-03-01

    The ultra-faint dwarf (UFD) galaxy Reticulum 2 (Ret 2) was recently discovered in images obtained by the Dark Energy Survey. We have observed the four brightest red giants in Ret 2 at high spectral resolution using the Michigan/Magellan Fiber System. We present detailed abundances for as many as 20 elements per star, including 12 elements heavier than the Fe group. We confirm previous detection of high levels of r-process material in Ret 2 (mean [Eu/Fe] = +1.69 ± 0.05) found in three of these stars (mean [Fe/H] = -2.88 ± 0.10). The abundances closely match the r-process pattern found in the well-studied metal-poor halo star CS 22892-052. Such r-process-enhanced stars have not been found in any other UFD galaxy, though their existence has been predicted by at least one model. The fourth star in Ret 2 ([Fe/H] = -3.42 ± 0.20) contains only trace amounts of Sr ([Sr/Fe] = -1.73 ± 0.43) and no detectable heavier elements. One r-process enhanced star is also enhanced in C (natal [C/Fe] ≈ +1.1). This is only the third such star known, which suggests that the nucleosynthesis sites leading to C and r-process enhancements are decoupled. The r-process-deficient star is enhanced in Mg ([Mg/Fe] = +0.81 ± 0.14), and the other three stars show normal levels of α-enhancement (mean [Mg/Fe] = +0.34 ± 0.03). The abundances of other α and Fe-group elements closely resemble those in UFD galaxies and metal-poor halo stars, suggesting that the nucleosynthesis that led to the large r-process enhancements either produced no light elements or produced light-element abundance signatures indistinguishable from normal supernovae. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  4. Chemical Abundances for Evolved Stars in M5: Lithium through Thorium

    Lai, David K; Bolte, Michael; Johnson, Jennifer A; Lucatello, Sara; Kraft, Robert P; Sneden, Christopher

    2011-01-01

    We present analysis of high-resolution spectra of a sample of stars in the globular cluster M5 (NGC 5904). The sample includes stars from the red giant branch (seven stars), the red horizontal branch (two stars), and the asymptotic giant branch (eight stars), with effective temperatures ranging from 4000 K to 6100 K. Spectra were obtained with the HIRES spectrometer on the Keck I telescope, with a wavelength coverage from 3700 to 7950 angstroms for the HB and AGB sample, and 5300 to 7600 angstroms for the majority of the RGB sample. We find offsets of some abundance ratios between the AGB and the RGB branches. However, these discrepancies appear to be due to analysis effects, and indicate that caution must be exerted when directly comparing abundance ratios between different evolutionary branches. We find the expected signatures of pollution from material enriched in the products of the hot hydrogen burning cycles such as the CNO, Ne-Na, and Mg-Al cycles, but no significant differences within these signatures...

  5. Chemical Abundances and Rotation Velocities of Blue Horizontal-Branch Stars in Six Globular Clusters

    Behr, B B

    2003-01-01

    High-resolution spectroscopic measurements of blue horizontal-branch stars in six metal-poor globular clusters -- M3, M13, M15, M68, M92, and NGC 288 -- reveal remarkable variations in photospheric composition and rotation velocity as a function of a star's position along the horizontal branch. For the cooler stars (Teff < 11200 K), the derived abundances are in good agreement with the canonical cluster metallicities, and we find a wide range of v sin i rotation velocities, some as high as 40 km/s. In the hotter stars, however, most metal species are strongly enhanced, by as much as 3 dex, relative to the expected cluster metallicity, while helium is depleted by 2 dex or more. In addition, the hot stars all rotate slowly, with v sin i < 8 km/s. The anomalous abundances appear to be due to atomic diffusion mechanisms -- gravitational settling of helium, and radiative levitation of metals -- in the non-convective atmospheres of these hot stars. We discuss the influence of these photospheric metal enhancem...

  6. Solar Chemical Abundances Determined with a CO5BOLD 3D Model Atmosphere

    Caffau, Elisabetta; Steffen, Matthias; Freytag, Bernd; Bonifacio, Piercarlo

    2010-01-01

    In the last decade, the photospheric solar metallicity as determined from spectroscopy experienced a remarkable downward revision. Part of this effect can be attributed to an improvement of atomic data and the inclusion of NLTE computations, but also the use of hydrodynamical model atmospheres seemed to play a role. This "decrease" with time of the metallicity of the solar photosphere increased the disagreement with the results from helioseismology. With a CO5BOLD 3D model of the solar atmosphere, the CIFIST team at the Paris Observatory re-determined the photospheric solar abundances of several elements, among them C, N, and O. The spectroscopic abundances are obtained by fitting the equivalent width and/or the profile of observed spectral lines with synthetic spectra computed from the 3D model atmosphere. We conclude that the effects of granular fluctuations depend on the characteristics of the individual lines, but are found to be relevant only in a few particular cases. 3D effects are not reponsible for t...

  7. Detailed Chemical Abundances in the r-Process-Rich Ultra-Faint Dwarf Galaxy Reticulum 2

    Roederer, Ian U; Bailey, John I; Song, Yingyi; Bell, Eric F; Crane, Jeffrey D; Loebman, Sarah; Nidever, David L; Olszewski, Edward W; Shectman, Stephen A; Thompson, Ian B; Valluri, Monica; Walker, Matthew G

    2016-01-01

    The ultra-faint dwarf galaxy Reticulum 2 (Ret 2) was recently discovered in images obtained by the Dark Energy Survey. We have observed the four brightest red giants in Ret 2 at high spectral resolution using the Michigan/Magellan Fiber System. We present detailed abundances for as many as 20 elements per star, including 12 elements heavier than the Fe group. We confirm previous detection of high levels of r-process material in Ret 2 (mean [Eu/Fe]=+1.69+/-0.05) found in three of these stars (mean [Fe/H]=-2.88+/-0.10). The abundances closely match the r-process pattern found in the well-studied metal-poor halo star CS22892-052. Such r-process-enhanced stars have not been found in any other ultra-faint dwarf galaxy, though their existence has been predicted by at least one model. The fourth star in Ret 2 ([Fe/H]=-3.42+/-0.20) contains only trace amounts of Sr ([Sr/Fe]=-1.73+/-0.43) and no detectable heavier elements. One r-process enhanced star is also enhanced in C (natal [C/Fe]=+1.1). This is only the third s...

  8. Chemical Abundances in NGC 5053: A Very Metal-Poor and Dynamically Complex Globular Cluster

    Boberg, Owen M; Vesperini, Enrico

    2015-01-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio $\\sim$ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consist...

  9. Red horizontal branch stars in the Galactic field: A chemical abundance survey

    Fo B.-Q.

    2013-03-01

    Full Text Available A large sample survey of Galactic red horizontal-branch (RHB stars was conducted to investigate their atmospheric parameters and elemental abundances. High-resolution spectra of 76 Galactic field stars were obtained with the 2.7 m Smith Telescope at McDonald Observatory. Only the color and the parallax were considered during the selection of the field stars. Equivalent width or synthetic spectrum analyses were used in order to determine the relative abundances of the following elements: proton-capture elements C, N, O and Li, alpha-elements Ca and Si, and neutron-capture elements Eu and La. Additionally, 12C/13C isotopic ratios were derived by using the CN features mainly located in the 7995 − 8040 Å spectral region. The evaluation of effective temperatures, surface gravities and 12C/13C isotopic ratios together with evolutionary stages of the candidates revealed that 18 out of 76 stars in our sample are probable RHBs. Including both kinematic and evolutionary status information, we conclude that we have five thick disk and 13 thin disk RHB stars in our sample. Although RHB stars have been regarded as thick disk members of the Galaxy, the low-velocity RHBs with a solar metallicity in our sample suggests the existence of a large number of thin disk RHBs, which cannot be easily explained by standard stellar evolutionary models.

  10. Chemical element abundances in the outer halo globular cluster M 75

    Kacharov, Nikolay

    2013-01-01

    We present the first comprehensive abundance study of the massive, outer halo globular cluster (GC) M 75 (NGC 6864). This unique system shows a very extended trimodal horizontal branch (HB), but no other clues for multiple populations have been detected in its colour-magnitude diagram (CMD). Based on high-resolution spectroscopic observations of 16 red giant stars, we derived the abundances of a large variety of alpha, p-capture, iron-peak, and n-capture elements. We found that the cluster is metal-rich ([Fe/H] = -1.16 +/- 0.02 dex, [alpha/Fe] = +0.30 +/- 0.02 dex), and shows a marginal spread in [Fe/H] of 0.07 dex, typical of most GCs of similar luminosity. We detected significant variations of O, Na, and Al among our sample, suggesting three different populations. Additionally, the two most Na-rich stars are also significantly Ba-enhanced, indicating a fourth population of stars. Curiously, most stars in M 75 (excluding the two Ba-rich stars) show a predominant r-process enrichment pattern, which is unusual...

  11. Chemical Abundances in Broad Emission Line Regions The "Nitrogen-Loud" QSO 0353-383

    Baldwin, J A; Korista, K T; Ferland, G J; Dietrich, M; Warner, C

    2003-01-01

    The intensity of the strong N V 1240 line relative to C IV 1549 or to He II 1640 has been proposed as an indicator of the metallicity of QSO broad emission line regions, allowing abundance measurements in a large number of QSOs out to the highest redshifts. Previously, it had been shown that the (normally) much weaker lines N III] 1750 and N IV] 1486 could be used in the same way. The redshift 1.96 QSO 0353-383 has long been known to have N III] and N IV] lines that are far stronger relative to Ly-alpha or C IV than in any other QSO. Because in this particular case these intercombination lines can be easily measured, this unusual object provides an ideal opportunity for testing whether the N V line is a valid abundance indicator. Using new observations of Q0353-383 made both with HST in the ultraviolet and from the ground in the visible passband, we find that intensity ratios involving the strengths of N V, N IV] and N III] relative to lines of He, C and O all indicate that nitrogen is overabundant relative t...

  12. Origin of central abundances in the hot intra-cluster medium - II. Chemical enrichment and supernova yield models

    Mernier, François; Pinto, Ciro; Kaastra, Jelle S; Kosec, Peter; Zhang, Yu-Ying; Mao, Junjie; Werner, Norbert; Pols, Onno R; Vink, Jacco

    2016-01-01

    The hot intra-cluster medium (ICM) is rich in metals, which are synthesised by supernovae (SNe) and accumulate over time into the deep gravitational potential well of clusters of galaxies. Since most of the elements visible in X-rays are formed by type Ia (SNIa) and/or core-collapse (SNcc) supernovae, measuring their abundances gives us direct information on the nucleosynthesis products of billions of SNe since the epoch of the star formation peak (z~2-3). In this study, we compare the most accurate average X/Fe abundance ratios (compiled in a previous work from XMM-Newton EPIC and RGS observations of 44 galaxy clusters, groups, and ellipticals), representative of the chemical enrichment in the nearby ICM, to various SNIa and SNcc nucleosynthesis models found in the literature. The use of a SNcc model combined to any favoured standard SNIa model (deflagration or delayed-detonation) fails to reproduce our abundance pattern. In particular, the Ca/Fe and Ni/Fe ratios are significantly underestimated by the model...

  13. Chemical abundances of the metal-poor horizontal-branch stars CS 22186-005 and CS 30344-033

    Caliskan, S; Bonifacio, P; Christlieb, N; Monaco, L; Beers, T C; Albayrak, B; Sbordone, L

    2014-01-01

    We report on a chemical-abundance analysis of two very metal-poor horizontal-branch stars in the Milky Way halo: CS 22186-005 ([Fe/H]=-2.70) and CS 30344-033 ([Fe/H]=-2.90). The analysis is based on high-resolution spectra obtained at ESO, with the spectrographs HARPS at the 3.6 m telescope, and UVES at the VLT. We adopted one-dimensional, plane-parallel model atmospheres assuming local thermodynamic equilibrium. We derived elemental abundances for 13 elements for CS 22186-005 and 14 elements for CS 30344-033. This study is the first abundance analysis of CS 30344-033. CS 22186-005 has been analyzed previously, but we report here the first measurement of nickel (Ni; Z = 28) for this star, based on twenty-two NiI lines ([Ni/Fe]=-0.21$\\pm$0.02); the measurement is significantly below the mean found for most metal-poor stars. Differences of up to 0.5 dex in [Ni/Fe] ratios were determined by different authors for the same type of stars in the literature, which means that it is not yet possible to conclude that th...

  14. Chemical Abundances in Twelve Red Giants of the Large Magellanic Cloud from High-Resolution Infrared Spectroscopy

    Smith, V V; Cunha, K; Plez, B; Lambert, D L; Pilachowski, C A; Barbuy, B; Melendez, J; Balachandran, S C; Bessell, M S; Geisler, D; Hesser, J E; Winge, C

    2002-01-01

    High-resolution infrared spectra (R=50,000) have been obtained for twelve red-giant members of the LMC with the Gemini South 8.3-meter telescope plus Phoenix spectrometer. Quantitative chemical abundances of carbon-12, carbon-13, nitrogen-14, and oxygen-16 were derived from molecular lines of CO, CN, and OH, while sodium, scandium, titanium, and iron abundances were derived from neutral atomic lines. The LMC giants have masses from about 1 to 4 solar masses and span a metallicity range from [Fe/H]= -1.1 to -0.3. The program red giants all show evidence of first dredge-up mixing, with low 12C/13C ratios, and low 12C correlated with high 14N abundances. Comparisons of the oxygen-to-iron ratios in the LMC and the Galaxy indicate that the trend of [O/Fe] versus [Fe/H] in the LMC falls about 0.2 dex below the Galactic trend. Such an offset can be modeled as due to an overall lower rate of supernovae per unit mass in the LMC relative to the Galaxy, as well as a slightly lower ratio of supernovae of type II to super...

  15. Galactic Chemical Evolution and solar s-process abundances: dependence on the 13C-pocket structure

    Bisterzo, S; Gallino, R; Wiescher, M; Käppeler, F

    2014-01-01

    We study the s-process abundances (A > 90) at the epoch of the solar-system formation. AGB yields are computed with an updated neutron capture network and updated initial solar abundances. We confirm our previous results obtained with a Galactic Chemical Evolution (GCE) model: (i) as suggested by the s-process spread observed in disk stars and in presolar meteoritic SiC grains, a weighted average of s-process strengths is needed to reproduce the solar s-distribution of isotopes with A > 130; (ii) an additional contribution (of about 25%) is required in order to represent the solar s-process abundances of isotopes from A = 90 to 130. Furthermore, we investigate the effect of different internal structures of the 13C-pocket, which may affect the efficiency of the 13C(a, n)16O reaction, the major neutron source of the s-process. First, keeping the same 13C profile adopted so far, we modify by a factor of two the mass involved in the pocket; second, we assume a flat 13C profile in the pocket, and we test again the...

  16. Element Abundances in a Gas-rich Galaxy at z = 5: Clues to the Early Chemical Enrichment of Galaxies

    Morrison, Sean; Som, Debopam; DeMarcy, Bryan; Quiret, Samuel; Peroux, Celine

    2016-01-01

    Element abundances in high-redshift quasar absorbers offer excellent probes of the chemical enrichment of distant galaxies, and can constrain models for population III and early population II stars. Recent observations indicate that the sub-damped Lyman-alpha (sub-DLA) absorbers are more metal-rich than the damped Lyman-alpha (DLA) absorbers at redshifts 0$$4.7. However, only 3 DLAs at $z$$>$4.5 and no sub-DLAs at $z$$>$3.5 have "dust-free" metallicity measurements of undepleted elements. We report the first measurement of element abundances in a sub-DLA at $z$=5.0, using Keck HIRES and ESI data. We obtain fairly robust abundances of C, O, Si, and Fe, using lines outside the Lyman-alpha forest. We find this absorber to be metal-poor, with [O/H]=$-2.02$$\\pm$0.12, which is $>$5$\\sigma$ below the level expected from an extrapolation of the trend for $z$$<$3.5 sub-DLAs. The C/O ratio is $1.7^{+0.4}_{-0.3}$ times lower than in the Sun. More strikingly, Si/O is $3.0^{+0.6}_{-0.5}$ times lower than in the Sun, wh...

  17. Chemical Abundances in 35 Metal-Poor Stars. I. Basic Data

    Lee, Jeong-Deok; Kim, Kang-Min

    2008-01-01

    We carried out a homogeneous abundance study for various elements, including $\\alpha$-elements, iron peak elements and $n$-capture elements for 35 metal-poor stars with a wide metallicity range ($-3.0\\lesssim$[Fe/H]$\\lesssim-0.5$). High-resolution ($R\\simeq30$k), high signal-to-noise($S/N\\geq110$) spectra with a wavelength range of 3800 to 10500 \\AA using the Bohyunsan Optical Echelle Spectrograph (BOES). Equivalent widths were measured by means of the Gaussian-fitting method for numerous isolated weak lines of elements. Atmospheric parameters were determined by a self-consistent LTE analysis technique using Fe I and Fe II lines. In this study, we present the EWs of lines and atmospheric parameters for 35 metal-poor stars.

  18. A chemical solver to compute molecule and grain abundances and non-ideal MHD resistivities in prestellar core collapse calculations

    Marchand, Pierre; Chabrier, Gilles; Hennebelle, Patrick; Commerçon, Benoit; Vaytet, Neil

    2016-01-01

    We develop a detailed chemical network relevant to the conditions characteristic of prestellar core collapse. We solve the system of time-dependent differential equations to calculate the equilibrium abundances of molecules and dust grains, with a size distribution given by size-bins for these latter. These abundances are used to compute the different non-ideal magneto-hydrodynamics resistivities (ambipolar, Ohmic and Hall), needed to carry out simulations of protostellar collapse. For the first time in this context, we take into account the evaporation of the grains, the thermal ionisation of Potassium, Sodium and Hydrogen at high temperature, and the thermionic emission of grains in the chemical network, and we explore the impact of various cosmic ray ionisation rates. All these processes significantly affect the non-ideal magneto-hydrodynamics resistivities, which will modify the dynamics of the collapse. Ambipolar diffusion and Hall effect dominate at low densities, up to n_H = 10^12 cm^-3, after which Oh...

  19. ELEMENTAL ABUNDANCES AND THEIR IMPLICATIONS FOR THE CHEMICAL ENRICHMENT OF THE BOOeTES I ULTRAFAINT GALAXY

    Gilmore, Gerard [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Norris, John E.; Yong, David [Research School of Astronomy and Astrophysics, The Australian National University, Weston, ACT 2611 (Australia); Monaco, Lorenzo [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Santiago 19 (Chile); Wyse, Rosemary F. G. [Department of Physics and Astronomy, The Johns Hopkins University, 3900 North Charles Street, Baltimore, MD 21218 (United States); Geisler, D., E-mail: gil@ast.cam.ac.uk, E-mail: jen@mso.anu.edu.au, E-mail: yong@mso.anu.edu.au, E-mail: lmonaco@eso.org, E-mail: wyse@pha.jhu.edu, E-mail: dgeisler@astro-udec.cl [Departamento de Astronomia, Universidad de Concepcion (Chile)

    2013-01-20

    We present a double-blind analysis of high-dispersion spectra of seven red giant members of the Booetes I ultrafaint dwarf spheroidal galaxy, complemented with re-analysis of a similar spectrum of an eighth-member star. The stars cover [Fe/H] from -3.7 to -1.9 and include a CEMP-no star with [Fe/H] = -3.33. We conclude from our chemical abundance data that Booetes I has evolved as a self-enriching star-forming system, from essentially primordial initial abundances. This allows us uniquely to investigate the place of CEMP-no stars in a chemically evolving system, in addition to limiting the timescale of star formation. The elemental abundances are formally consistent with a halo-like distribution, with enhanced mean [{alpha}/Fe] and small scatter about the mean. This is in accord with the high-mass stellar initial mass function in this low-stellar-density, low-metallicity system being indistinguishable from the present-day solar neighborhood value. There is a non-significant hint of a decline in [{alpha}/Fe] with [Fe/H]; together with the low scatter, this requires low star formation rates, allowing time for supernova ejecta to be mixed over the large spatial scales of interest. One star has very high [Ti/Fe], but we do not confirm a previously published high value of [Mg/Fe] for another star. We discuss the existence of CEMP-no stars, and the absence of any stars with lower CEMP-no enhancements at higher [Fe/H], a situation that is consistent with knowledge of CEMP-no stars in the Galactic field. We show that this observation requires there be two enrichment paths at very low metallicities: CEMP-no and 'carbon-normal'.

  20. Derivation of chemical abundances in star-forming galaxies at intermediate redshift

    Perez-Martinez, J M

    2014-01-01

    We have studied a sample of 11 blue, luminous, metal-poor galaxies at redshift 0.744 < z < 0.835 from the DEEP2 redshift survey. They were selected by the presence of the [OIII]4363 auroral line and the [OII]3726,3729 doublet together with the strong emission nebular [OIII] lines in their spectra from a sample of around 6000 galaxies within a narrow redshift range. All the spectra have been taken with DEIMOS, which is a multi-slit, double-beam spectrograph which uses slitmasks to allow the spectra from many objects to be imaged at the same time. The selected objects present high luminosities (20.3 < MB < 18.5), remarkable blue color index, and total oxygen abundances between 7.69 and 8.15 which represent 1/3 to 1/10 of the solar value. The wide spectral coverage (from 6500 to 9100 angstroms) of the DEIMOS spectrograph and its high spectral resolution, R around 5000, bring us an opportunity to study the behaviour of these star-forming galaxies at intermediate redshift with high quality spectra. We ...

  1. Infrared Spectra and Chemical Abundance of Methyl Propionate in Icy Astrochemical Conditions

    Sivaraman, B; Das, A; Gopakumar, G; Majumdar, L; Chakrabarti, S K; Subramanian, K P; Sekhar, B N Raja; Hada, M

    2014-01-01

    We carried out an experiment in order to obtain the InfraRed (IR) spectra of methyl propionate (CH3CH2COOCH3) in astrochemical conditions and present the IR spectra for future identification of this molecule in the InterStellar Medium (ISM). The experimental IR spectrum is compared with the theoretical spectrum and an attempt was made to assign the observed peak positions to their corresponding molecular vibrations in condensed phase. Moreover, our calculations suggest that methyl propionate must be synthesized efficiently within the complex chemical network of the ISM and therefore be present in cold dust grains, awaiting identification.

  2. The metallicity gradient of M 33: chemical abundances of HII regions

    Magrini, L.; Vilchez, J. M.; A. Mampaso; Corradi, R. L. M.; Leisy, P.

    2007-01-01

    We present spectroscopic observations of a sample of 72 emission-line objects, including mainly HII regions, in the spiral galaxy M 33. Spectra were obtained with the multi-object, wide field spectrograph AF2/WYFFOS at the 4.2m WHT telescope. Line intensities, extinction, and electron density were determined for the whole sample of objects. The aim of the present work was to derive chemical and physical parameters of a set of HII regions, and from them the metallicity gradient. Electron tempe...

  3. Galaxy pairs in cosmological simulations: effects of interactions on colours and chemical abundances

    Perez, M J; Lambas, D G; Scannapieco, C; Tissera, P B; Lambas, Diego G.; Rossi, Maria E. De; Scannapieco, Cecilia; Tissera, Patricia B.

    2006-01-01

    We perform an statistical analysis of galaxies in pairs in a Lambda-CDM scenario by using the chemical GADGET-2 of Scannapieco et al. (2005) in order to study the effects of galaxy interactions on colours and metallicities. We find that galaxy-galaxy interactions can produce a bimodal colour distribution with galaxies with significant recent star formation activity contributing mainly to blue colours. In the simulations, the colours and the fractions of recently formed stars of galaxies in pairs depend on environment more strongly than those of galaxies without a close companion, suggesting that interactions play an important role in galaxy evolution. If the metallicity of the stellar populations is used as the chemical indicator, we find that the simulated galaxies determine luminosity-metallicity and stellar mass-metallicity relations which do not depend on the presence of a close companion. However, in the case of the luminosity-metallicity relation, at a given level of enrichment, we detect a systematic d...

  4. The effect of rotation on the abundances of the chemical elements of the A-type stars in the Praesepe cluster

    Fossati, L.; Bagnulo, S.; Landstreet, J.; Wade, G.; Kochukhov, O.; Monier, R.; Weiss, W.; Gebran, M.

    2008-06-01

    Aims: We study how chemical abundances of late B-, A-, and early F-type stars evolve with time, and we search for correlations between the abundance of chemical elements and other stellar parameters, such as effective temperature and υ sin i. Methods: We observed a large number of B-, A-, and F-type stars belonging to open clusters of different ages. In this paper we concentrate on the Praesepe cluster (log t = 8.85), for which we have obtained high-resolution, high signal-to-noise ratio spectra of sixteen normal A- and F-type stars and one Am star, using the SOPHIE spectrograph of the Observatoire de Haute-Provence. For all the observed stars, we derived fundamental parameters and chemical abundances. In addition, we discuss another eight Am stars belonging to the same cluster, for which the abundance analysis had been presented in a previous paper. Results: We find a strong correlation between the peculiarity of Am stars and υ sin i. The abundance of the elements underabundant in Am stars increases with υ sin i, while it decreases for the overabundant elements. Chemical abundances of various elements appear correlated with the iron abundance. Based on observations made at the Observatoire de Haute-Provence. Figures [see full textsee full textsee full text] to [see full textsee full textsee full text] are only available in electronic form at http://www.aanda.org

  5. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundant proteins, hydrophilins and WHy domain.

    Jaspard, Emmanuel; Hunault, Gilles

    2014-01-01

    Late Embryogenesis Abundant proteins (LEAPs) comprise several diverse protein families and are mostly involved in stress tolerance. Most of LEAPs are intrinsically disordered and thus poorly functionally characterized. LEAPs have been classified and a large number of their physico-chemical properties have been statistically analyzed. LEAPs were previously proposed to be a subset of a very wide family of proteins called hydrophilins, while a domain called WHy (Water stress and Hypersensitive response) was found in LEAP class 8 (according to our previous classification). Since little is known about hydrophilins and WHy domain, the cross-analysis of their amino acids physico-chemical properties and amino acids usage together with those of LEAPs helps to describe some of their structural features and to make hypothesis about their function. Physico-chemical properties of hydrophilins and WHy domain strongly suggest their role in dehydration tolerance, probably by interacting with water and small polar molecules. The computational analysis reveals that LEAP class 8 and hydrophilins are distinct protein families and that not all LEAPs are a protein subset of hydrophilins family as proposed earlier. Hydrophilins seem related to LEAP class 2 (also called dehydrins) and to Heat Shock Proteins 12 (HSP12). Hydrophilins are likely unstructured proteins while WHy domain is structured. LEAP class 2, hydrophilins and WHy domain are thus proposed to share a common physiological role by interacting with water or other polar/charged small molecules, hence contributing to dehydration tolerance. PMID:25296175

  6. Comparison of amino acids physico-chemical properties and usage of late embryogenesis abundant proteins, hydrophilins and WHy domain.

    Emmanuel Jaspard

    Full Text Available Late Embryogenesis Abundant proteins (LEAPs comprise several diverse protein families and are mostly involved in stress tolerance. Most of LEAPs are intrinsically disordered and thus poorly functionally characterized. LEAPs have been classified and a large number of their physico-chemical properties have been statistically analyzed. LEAPs were previously proposed to be a subset of a very wide family of proteins called hydrophilins, while a domain called WHy (Water stress and Hypersensitive response was found in LEAP class 8 (according to our previous classification. Since little is known about hydrophilins and WHy domain, the cross-analysis of their amino acids physico-chemical properties and amino acids usage together with those of LEAPs helps to describe some of their structural features and to make hypothesis about their function. Physico-chemical properties of hydrophilins and WHy domain strongly suggest their role in dehydration tolerance, probably by interacting with water and small polar molecules. The computational analysis reveals that LEAP class 8 and hydrophilins are distinct protein families and that not all LEAPs are a protein subset of hydrophilins family as proposed earlier. Hydrophilins seem related to LEAP class 2 (also called dehydrins and to Heat Shock Proteins 12 (HSP12. Hydrophilins are likely unstructured proteins while WHy domain is structured. LEAP class 2, hydrophilins and WHy domain are thus proposed to share a common physiological role by interacting with water or other polar/charged small molecules, hence contributing to dehydration tolerance.

  7. Solving the excitation and chemical abundances in shocks: the case of HH1

    Giannini, T; Nisini, B; Bacciotti, F; Podio, L

    2015-01-01

    We present deep spectroscopic (3600 - 24700 A) X-shooter observations of the bright Herbig-Haro object HH1, one of the best laboratories to study the chemical and physical modifications caused by protostellar shocks on the natal cloud. We observe atomic fine structure lines, HI, and He, recombination lines and H_2, ro-vibrational lines (more than 500 detections in total). Line emission was analyzed by means of Non Local Thermal Equilibiurm codes to derive the electron temperature and density, and, for the first time, we are able to accurately probe different physical regimes behind a dissociative shock. We find a temperature stratification in the range 4000 - 80000 K, and a significant correlation between temperature and ionization energy. Two density regimes are identified for the ionized gas, a more tenuous, spatially broad component (density about 10^3 cm^-3), and a more compact component (density > 10^5 cm^-3) likely associated with the hottest gas. A further neutral component is also evidenced, having te...

  8. Oxygen Gas Abundances at z~1.4: Implications for the Chemical Evolution History of Galaxies

    Maier, C; Carollo, C M; Meisenheimer, K; Hippelein, H; Stockton, A

    2006-01-01

    The 1chemical evolution models are used to relate t...

  9. Chemical Abundances of the Milky Way Thick Disk and Stellar Halo I.: Implications of [alpha/Fe] for Star Formation Histories in Their Progenitors

    Ishigaki, M N; Aoki, W

    2012-01-01

    We present the abundance analysis of 97 nearby metal-poor (-3.3-2$. These results favor the scenarios that the MW thick disk formed through rapid chemical enrichment primarily through Type II supernovae of massive stars, while the stellar halo has formed at least in part via accretion of progenitor stellar systems having been chemically enriched with different timescales.

  10. Nitrogen and Oxygen Abundance Variations in the Outer Ejecta of Eta Carinae: Evidence for Recent Chemical Enrichment

    Smith, N; Smith, Nathan; Morse, Jon A.

    2004-01-01

    We present optical spectra of the ionized `Outer Ejecta' of Eta Carinae that reveal differences in chemical composition at various positions. In particular, young condensations just outside the dusty Homunculus Nebula show strong nitrogen lines and little or no oxygen -- but farther away, nitrogen lines weaken and oxygen lines become stronger. The observed variations in the apparent N/O ratio may signify either that the various blobs were ejected with different abundances, or more likely, that the more distant condensations are interacting with normal-composition material. The second hypothesis is supported by various other clues involving kinematics and X-ray emission, and would suggest that Eta Car is enveloped in a ``cocoon'' deposited by previous stellar-wind mass loss. In particular, all emission features where we detect strong oxygen lines are coincident with or outside the soft X-ray shell. In either case, the observed abundance variations suggest that Eta Car's ejection of nitrogen-rich material is a ...

  11. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2004-04-01

    We report new chemical abundances of 23 bright red giant members of the globular cluster M3, based on high-resolution (R~45,000) spectra obtained with the Keck I telescope. The observations, which involve the use of multislits in the HIRES Keck I spectrograph, are described in detail. Combining these data with a previously reported small sample of M3 giants obtained with the Lick 3 m telescope, we compare metallicities and [X/Fe] ratios for 28 M3 giants with a 35-star sample in the similar-metallicity cluster M13, and with Galactic halo field stars having [Fe/H]=A(Si), we derive little difference in [X/Fe] ratios in the M3, M13, or halo field samples. All three groups exhibit C depletion with advancing evolutionary state beginning at the level of the red giant branch ``bump,'' but the overall depletion of about 0.7-0.9 dex seen in the clusters is larger than that associated with the field stars. The behaviors of O, Na, Mg, and Al are distinctively different among the three stellar samples. Field halo giants and subdwarfs have a positive correlation of Na with Mg, as predicted from explosive or hydrostatic carbon burning in Type II supernova sites. Both M3 and M13 show evidence of high-temperature proton-capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13: the M3 giants exhibit only modest deficiencies of O and corresponding enhancements of Na, less extreme overabundances of Al, fewer stars with low Mg and correspondingly high Na, and no indication that O depletions are a function of advancing evolutionary state, as has been claimed for M13. We have also considered NGC 6752, for which Mg isotopic abundances have been reported by Yong et al. Giants in NGC 6752 and M13 satisfy the same anticorrelation of O abundances with the ratio (25Mg+26Mg)/24Mg, which measures the relative contribution of rare to

  12. Ionization structure and chemical abundances of the Wolf-Rayet nebula NGC 6888 with integral field spectroscopy

    Fernández-Martín, A.; Martín-Gordón, D.; Vílchez, J. M.; Pérez Montero, E.; Riera, A.; Sánchez, S. F.

    2012-05-01

    Context. The study of nebulae around Wolf-Rayet (WR) stars gives us clues about the mass-loss history of massive stars, as well as about the chemical enrichment of the interstellar medium (ISM). Aims: This work aims to search for the observational footprints of the interactions between the ISM and stellar winds in the WR nebula NGC 6888 in order to understand its ionization structure, chemical composition, and kinematics. Methods: We have collected a set of integral field spectroscopy observations across NGC 6888, obtained with PPAK in the optical range performing both 2D and 1D analyses. Attending to the 2D analysis in the northeast part of NGC 6888, we have generated maps of the extinction structure and electron density. We produced statistical frequency distributions of the radial velocity and diagnostic diagrams. Furthermore, we performed a thorough study of integrated spectra in nine regions over the whole nebula. Results: The 2D study has revealed two main behaviours. We have found that the spectra of a localized region to the southwest of this pointing can be represented well by shock models assuming n = 1000 cm-3, twice solar abundances, and shock velocities from 250 to 400 km s-1. With the 1D analysis we derived electron densities ranging from <100 to 360 cm-3. The electron temperature varies from ~7700 K to ~10 200 K. A strong variation of up to a factor 10 between different regions in the nitrogen abundance has been found: N/H appears lower than the solar abundance in those positions observed at the edges and very enhanced in the observed inner parts. Oxygen appears slightly underabundant with respect to solar value, whereas the helium abundance is found to be above it. We propose a scenario for the evolution of NGC 6888 to explain the features observed. This scheme consists of a structure of multiple shells: i) an inner and broken shell with material from the interaction between the supergiant and WR shells, presenting an overabundance in N/H and a

  13. Exploration of earth-abundant transition metals (Fe, Co, and Ni) as catalysts in unreactive chemical bond activations.

    Su, Bo; Cao, Zhi-Chao; Shi, Zhang-Jie

    2015-03-17

    Activation of inert chemical bonds, such as C-H, C-O, C-C, and so on, is a very important area, to which has been drawn much attention by chemists for a long time and which is viewed as one of the most ideal ways to produce valuable chemicals. Under modern chemical bond activation logic, many conventionally viewed "inert" chemical bonds that were intact under traditional conditions can be reconsidered as novel functionalities, which not only avoids the tedious synthetic procedures for prefunctionalizations and the emission of undesirable wastes but also inspires chemists to create novel synthetic strategies in completely different manners. Although activation of "inert" chemical bonds using stoichiometric amounts of transition metals has been reported in the past, much more attractive and challenging catalytic transformations began to blossom decades ago. Compared with the broad application of late and noble transition metals in this field, the earth-abundant first-row transition-metals, such as Fe, Co, and Ni, have become much more attractive, due to their obvious advantages, including high abundance on earth, low price, low or no toxicity, and unique catalytic characteristics. In this Account, we summarize our recent efforts toward Fe, Co, and Ni catalyzed "inert" chemical bond activation. Our research first unveiled the unique catalytic ability of iron catalysts in C-O bond activation of both carboxylates and benzyl alcohols in the presence of Grignard reagents. The benzylic C-H functionalization was also developed via Fe catalysis with different nucleophiles, including both electron-rich arenes and 1-aryl-vinyl acetates. Cobalt catalysts also showed their uniqueness in both aromatic C-H activation and C-O activation in the presence of Grignard reagents. We reported the first cobalt-catalyzed sp(2) C-H activation/arylation and alkylation of benzo[h]quinoline and phenylpyridine, in which a new catalytic pathway via an oxidative addition process was demonstrated

  14. The Chemical Composition Contrast between M3 and M13 Revisited: New Abundances for 28 Giant Stars in M3

    Sneden, C; Guhathakurta, P; Peterson, R C; Fulbright, J P; Sneden, Christopher; Kraft, Robert P.; Guhathakurta, Puragra; Peterson, Ruth C.; Fulbright, Jon P.

    2003-01-01

    We report new chemical abundances of 23 bright red giants of the globular cluster M3, based on high-resolution spectra obtained with the Keck I telescope. Combining these data with a previously-reported small sample of M3 giants obtained with the Lick 3m telescope, we compare [X/Fe] ratios for 28 M3 giants with 35 M13 giants, and with halo field stars. All three groups exhibit C depletion with advancing evolutionary state beginning at the RGB bump region. but the overall depletion in the clusters is larger than that of the field stars. The behaviors of O, Na, Mg and Al are distinctively different among the three stellar samples. Both M3 and M13 show evidence of high-temperature proton capture synthesis from the ON, NeNa, and MgAl cycles, while there is no evidence for such synthesis among halo field stars. But the degree of such extreme proton-capture synthesis in M3 is smaller than it is in M13, and no indication that O depletions are a function of advancing evolutionary state as has been claimed for M13. We...

  15. A Detailed Study of Giants and Horizontal Branch Stars in M68: Atmospheric Parameters and Chemical Abundances

    Schaeuble, Marc; Sneden, Chris; Thompson, I B; Shectman, S A; Burley, G S

    2015-01-01

    In this paper, we present a detailed high-resolution spectroscopic study of post main sequence stars in the Globular Cluster M68. Our sample, which covers a range of 4000 K in $T_{eff}$, and 3.5 dex in $log(g)$, is comprised of members from the red giant, red horizontal, and blue horizontal branch, making this the first high-resolution globular cluster study covering such a large evolutionary and parameter space. Initially, atmospheric parameters were determined using photometric as well as spectroscopic methods, both of which resulted in unphysical and unexpected $T_{eff}$, $log(g)$, $\\xi_{t}$, and [Fe/H] combinations. We therefore developed a hybrid approach that addresses most of these problems, and yields atmospheric parameters that agree well with other measurements in the literature. Furthermore, our derived stellar metallicities are consistent across all evolutionary stages, with $\\langle$[Fe/H]$\\rangle$ = $-$2.42 ($\\sigma$ = 0.14) from 25 stars. Chemical abundances obtained using our methodology also ...

  16. Abundance Ratios in Stars vs. Hot Gas in Elliptical Galaxies: the Chemical Evolution Modeller Point of View

    Pipino, A

    2009-01-01

    I will present predictions from chemical evolution model aimed at a self-consistent study of both optical (i.e. stellar) and X-ray (i.e.gas) properties of present-day elliptical galaxies. Detailed cooling and heating processes in the interstellar medium (ISM) are taken into and allow a reliable modelling of the SN-driven galactic wind. SNe Ia activity, in fact, may power a galactic wind lasting for a considerable amount of the galactic lifetime, even in the case for which the efficiency of energy transfer into the ISM per SN Ia event is less than unity. The model simultaneously reproduces the mass-metallicity, the colour-magnitude, the L_X - L_B and the L_X - T relations, as well as the observed trend of the [Mg/Fe] ratio as a function of sigma, by adopting the prescriptions of Pipino & Matteucci (2004) for the gas infall and star formation timescales. The "iron discrepancy", namely the too high predicted iron abundance in X-ray haloes of ellipticals compared to observations, can be solved by taking into ...

  17. The effect of rotation on the abundances of the chemical elements of the A-type stars in the Praesepe cluster

    Fossati, L; Landstreet, J; Wade, G; Kochukhov, O; Monier, R; Weiss, W; Gebran, M

    2008-01-01

    We study how chemical abundances of late B-, A- and early F-type stars evolve with time, and we search for correlations between the abundance of chemical elements and other stellar parameters, such as effective temperature and Vsini. We have observed a large number of B-, A- and F-type stars belonging to open clusters of different ages. In this paper we concentrate on the Praesepe cluster (log t = 8.85), for which we have obtained high resolution, high signal-to-noise ratio spectra of sixteen normal A- and F-type stars and one Am star, using the SOPHIE spectrograph of the Observatoire de Haute-Provence. For all the observed stars, we have derived fundamental parameters and chemical abundances. In addition, we discuss another eight Am stars belonging to the same cluster, for which the abundance analysis had been presented in a previous paper. We find a strong correlation between peculiarity of Am stars and Vsini. The abundance of the elements underabundant in Am stars increases with Vsini, while it decreases f...

  18. Chemical abundances and kinematics of 257 G-, K-type field giants. Setting a base for further analysis of giant-planet properties orbiting evolved stars

    Adibekyan, V Zh; Santos, N C; Alves, S; Lovis, C; Udry, S; Israelian, G; Sousa, S G; Tsantaki, M; Mortier, A; Sozzetti, A; De Medeiros, J R

    2015-01-01

    We performed a uniform and detailed abundance analysis of 12 refractory elements (Na, Mg, Al, Si, Ca, Ti, Cr, Ni, Co, Sc, Mn, and V) for a sample of 257 G- and K-type evolved stars from the CORALIE planet search program. To date, only one of these stars is known to harbor a planetary companion. We aimed to characterize this large sample of evolved stars in terms of chemical abundances and kinematics, thus setting a solid base for further analysis of planetary properties around giant stars. This sample, being homogeneously analyzed, can be used as a comparison sample for other planet-related studies, as well as for different type of studies related to stellar and Galaxy astrophysics. The abundances of the chemical elements were determined using an LTE abundance analysis relative to the Sun, with the spectral synthesis code MOOG and a grid of Kurucz ATLAS9 atmospheres. To separate the Galactic stellar populations both a purely kinematical approach and a chemical method were applied. We confirm the overabundance...

  19. CHEMICAL ENRICHMENT IN THE FAINTEST GALAXIES: THE CARBON AND IRON ABUNDANCE SPREADS IN THE BOOeTES I DWARF SPHEROIDAL GALAXY AND THE SEGUE 1 SYSTEM

    We present an AAOmega spectroscopic study of red giants in the ultra-faint dwarf galaxy Booetes I (MV ∼ -6) and the Segue 1 system (MV ∼ -1.5), either an extremely low luminosity dwarf galaxy or an unusually extended globular cluster. Both Booetes I and Segue 1 have significant abundance dispersions in iron and carbon. Booetes I has a mean abundance of [Fe/H] = -2.55 ± 0.11 with an [Fe/H] dispersion of σ = 0.37 ± 0.08, and abundance spreads of Δ[Fe/H] = 1.7 and Δ[C/H] = 1.5. Segue 1 has a mean of [Fe/H] = -2.7 ± 0.4 with [Fe/H] dispersion of σ = 0.7 ± 0.3, and abundances spreads of Δ[Fe/H] = 1.6 and Δ[C/H] = 1.2. Moreover, Segue 1 has a radial-velocity member at four half-light radii that is extremely metal-poor and carbon-rich, with [Fe/H] = -3.5, and [C/Fe] = +2.3. Modulo an unlikely non-member contamination, the [Fe/H] abundance dispersion confirms Segue 1 as the least-luminous ultra-faint dwarf galaxy known. For [Fe/H] V = -5. The very low mean iron abundances and the high carbon and iron abundance dispersions in Segue 1 and Booetes I are consistent with highly inhomogeneous chemical evolution starting in near zero-abundance gas. These ultra-faint dwarf galaxies are apparently surviving examples of the very first bound systems.

  20. Detailed Abundances of Planet-Hosting Wide Binaries. I. Did Planet Formation Imprint Chemical Signatures in the Atmospheres of HD 20782/81?

    Mack, Claude E; Stassun, Keivan G; Pepper, Joshua; Norris, John

    2014-01-01

    Using high-resolution echelle spectra obtained with Magellan/MIKE, we present a chemical abundance analysis of both stars in the planet-hosting wide binary system HD20782 + HD20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters $\\lesssim 0.2\\,$ AU. We investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperatures ($T_{C}\\approx 40-1660\\,$ K). The two stars are found to have a mean element-to-element abundance difference of $0.04\\pm0.07\\,$ dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements ($T_{C} > 900\\,$ K) exhibit a positive correlation between a...

  1. Chemical evolution of A- and B-type stars in open clusters: observed abundances vs. diffusion models. Am stars in the Praesepe cluster

    Fossati, L.; Bagnulo, S.; Monier, R.; Khan, S. A.; Kochukhov, O.; Landstreet, J. D.; Wade, G. A.; Weiss, W. W.

    2008-04-01

    We have decided to address the problem of how abundances and peculiarities change during main sequence evolution. We have setup a program to measure the atmospheric abundance patterns from tens of A-type star members of clusters of different ages, and compare the results with theory predictions. In this paper we present the overall project and we focus on the results obtained for a sample of Am stars of the Praesepe cluster (log t= 8.85 ± 0.15; González-García et al., 2006). We have obtained spectra for eight Am stars, two normal A-type stars and one blue straggler, that are probable members of the Praesepe cluster. For all of these stars we have determined fundamental parameters and photospheric abundances for a large number of chemical elements. For seven stars we also obtained spectra in circular polarisation and applied the LSD technique to measure the mean longitudinal magnetic field. We have found good agreement between abundance predictions of diffusion models and measured abundances, except for Na and S. Li appears to be overabundant in three stars of our sample. No magnetic field was detected in any of the analysed stars.

  2. A window on the efficiency of the s-process in AGB stars: chemical abundances of n-capture elements in the planetary nebula NGC 3918

    Madonna, S; Luridiana, V; Sterling, N C; Morisset, C

    2015-01-01

    The chemical content of the planetary nebula NGC 3918 is investigated through deep, high-resolution (R~40000) UVES at VLT spectrophotometric data. We identify and measure more than 750 emission lines, making ours one of the deepest spectra ever taken for a planetary nebula. Among these lines we detect very faint lines of several neutron-capture elements (Se, Kr, Rb, and Xe), which enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up in the progenitor star of NGC 3918.

  3. Circumstellar molecular composition of the oxygen-rich AGB star IK Tau: I. Observations and LTE chemical abundance analysis

    Kim, Hyunjoo; Menten, Karl M; Decin, Leen

    2010-01-01

    The aim of this paper is to study the molecular composition in the circumstellar envelope around the oxygen-rich star IK Tau. We observed IK Tau in several (sub)millimeter bands using the APEX telescope during three observing periods. To determine the spatial distribution of the $\\mathrm{^{12}CO(3-2)}$ emission, mapping observations were performed. To constrain the physical conditions in the circumstellar envelope, multiple rotational CO emission lines were modeled using a non local thermodynamic equilibrium radiative transfer code. The rotational temperatures and the abundances of the other molecules were obtained assuming local thermodynamic equilibrium. An oxygen-rich Asymptotic Giant Branch star has been surveyed in the submillimeter wavelength range. Thirty four transitions of twelve molecular species, including maser lines, were detected. The kinetic temperature of the envelope was determined and the molecular abundance fractions of the molecules were estimated. The deduced molecular abundances were com...

  4. Chemical Abundances in the PN Wray16-423 in the Sagittarius Dwarf Spheroidal Galaxy: Constraining the Dust Composition

    Otsuka, Masaaki

    2015-01-01

    We performed a detailed analysis of elemental abundances, dust features, and polycyclic aromatic hydrocarbons (PAHs) in the C-rich planetary nebula (PN) Wray16-423 in the Sagittarius dwarf spheroidal galaxy, based on a unique dataset taken from the Subaru/HDS, MPG/ESO FEROS, HST/WFPC2, and Spitzer/IRS. We performed the first measurements of Kr, Fe, and recombination O abundance in this PN. The extremely small [Fe/H] implies that most Fe atoms are in the solid phase, considering into account the abundance of [Ar/H]. The Spitzer/IRS spectrum displays broad 16-24 um and 30 um features, as well as PAH bands at 6-9 um and 10-14 um. The unidentified broad 16-24 um feature may not be related to iron sulfide (FeS), amorphous silicate, or PAHs. Using the spectral energy distribution model, we derived the luminosity and effective temperature of the central star, and the gas and dust masses. The observed elemental abundances and derived gas mass are in good agreement with asymptotic giant branch nucleosynthesis models f...

  5. Solar System Abundances of the Elements

    Lodders, Katharina

    2010-01-01

    Representative abundances of the chemical elements for use as a solar abundance standard in astronomical and planetary studies are summarized. Updated abundance tables for solar system abundances based on meteorites and photospheric measurements are presented.

  6. Detailed abundances of planet-hosting wide binaries. I. Did planet formation imprint chemical signatures in the atmospheres of HD 20782/81?

    Using high-resolution, high signal-to-noise echelle spectra obtained with Magellan/MIKE, we present a detailed chemical abundance analysis of both stars in the planet-hosting wide binary system HD 20782 + HD 20781. Both stars are G dwarfs, and presumably coeval, forming in the same molecular cloud. Therefore we expect that they should possess the same bulk metallicities. Furthermore, both stars also host giant planets on eccentric orbits with pericenters ≲0.2 AU. Here, we investigate if planets with such orbits could lead to the host stars ingesting material, which in turn may leave similar chemical imprints in their atmospheric abundances. We derived abundances of 15 elements spanning a range of condensation temperature, T C ≈ 40-1660 K. The two stars are found to have a mean element-to-element abundance difference of 0.04 ± 0.07 dex, which is consistent with both stars having identical bulk metallicities. In addition, for both stars, the refractory elements (T C >900 K) exhibit a positive correlation between abundance (relative to solar) and T C, with similar slopes of ≈1×10–4 dex K–1. The measured positive correlations are not perfect; both stars exhibit a scatter of ≈5×10–5 dex K–1 about the mean trend, and certain elements (Na, Al, Sc) are similarly deviant in both stars. These findings are discussed in the context of models for giant planet migration that predict the accretion of H-depleted rocky material by the host star. We show that a simple simulation of a solar-type star accreting material with Earth-like composition predicts a positive—but imperfect—correlation between refractory elemental abundances and T C. Our measured slopes are consistent with what is predicted for the ingestion of 10-20 Earths by each star in the system. In addition, the specific element-by-element scatter might be used to distinguish between planetary accretion and Galactic chemical evolution scenarios.

  7. The RAVE-on catalog of stellar atmospheric parameters and chemical abundances for chemo-dynamic studies in the Gaia era

    Casey, Andrew R; Hogg, David W; Ness, Melissa; Walter-Rix, Hans; Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Koposov, Sergey; Enke, Harry; Sanders, Jason; Gilmore, Gerry; Zwitter, Tomaž; Freeman, Kenneth C; Casagrande, Luca; Matijevič, Gal; Seabroke, George; Bienaymé, Olivier; Bland-Hawthorn, Joss; Gibson, Brad K; Grebel, Eva K; Helmi, Amina; Munari, Ulisse; Navarro, Julio F; Reid, Warren; Siebert, Arnaud; Wyse, Rosemary

    2016-01-01

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho-Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS ($\\gtrsim$200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon. For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main-sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC. We derive and validate effective temperature $T_{\\rm eff}$, surface gravity $\\log{g}$, and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, Ni). We report a total of 1...

  8. The influence of chemical composition on the properties of Cepheid stars I - Period-Luminosity relation vs iron abundance

    Romaniello, M; Mottini, M; Groenewegen, M; Bono, G; François, P

    2004-01-01

    We have assessed the influence of the stellar iron content on the Cepheid Period-Luminosity (PL) relation by relating the V band residuals from the Freedman et al (2001) PL relation to [Fe/H] for 37 Galactic and Magellanic Clouds Cepheids. The iron abundances were measured from FEROS and UVES high-resolution and high-signal to noise optical spectra. Our data indicate that the stars become fainter as metallicity increases, until a plateau or turnover point is reached at about solar metallicity. Our data are incompatible with both no dependence of the PL relation on iron abundance, and with the linearly decreasing behavior often found in the literature (e.g. Kennicutt et al 1998, Sakai et al 2004). On the other hand, non-linear theoretical models of Fiorentino et al (2002) provide a fairly good description of the data.

  9. CHEMICAL ABUNDANCES IN THE EXTERNALLY POLLUTED WHITE DWARF GD 40: EVIDENCE OF A ROCKY EXTRASOLAR MINOR PLANET

    We present Keck/High Resolution Echelle Spectrometer data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of nine elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen, whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at least the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnesium, silicon, and iron, we find n(Si)/n(Mg) = 0.30 ± 0.11, significantly smaller than the ratio near unity for the bulk Earth, chondrites, the Sun, and nearby stars. This result suggests that differentiation occurred within the parent body.

  10. The Chemical Abundances of the Stellar Populations in the Leo I and Leo II dSph Galaxies

    Bosler, T L; Stetson, P B; Bosler, Tammy L.; Smecker-Hane, Tammy A.; Stetson, Peter B.

    2006-01-01

    We have obtained spectra of 102 red giant branch (RGB) stars in the Leo I dwarf spheroidal galaxy (dSph) and 74 RGB stars in the Leo II dSph using LRIS on the Keck I 10-meter Telescope. We report on the calcium abundances [Ca/H] derived from the strengths of the Ca II triplet absorption lines at 8498, 8542, 8662 angstroms in the stellar spectra using a new Ca II triplet calibration to [Ca/H]. The two galaxies have different average [Ca/H] values of -1.34 +/- 0.02 for Leo I and -1.65 +/- 0.02 for LeoII with intrinsic abundance dispersions of 1.2 and 1.0 dex, respectively. The typical random and total errors in derived abundances are 0.10 and 0.17 dex per star. For comparison to existing literature, we also converted our Ca II measurements to [Fe/H] on the scale of Carretta and Gratton (1997) though we discuss why this may not be the best determinant of metallicity; Leo I has a mean [Fe/H] = -1.34 and Leo II has a mean [Fe/H] = -1.59. The metallicity distribution function of Leo I is approximately Gaussian in s...

  11. Chemical Abundances in the Externally Polluted White Dwarf GD 40: Evidence of a Rocky Extrasolar Minor Planet

    Klein, B; Koester, D; Zuckerman, B; Melis, C

    2009-01-01

    We present Keck/HIRES data with model atmosphere analysis of the helium-dominated polluted white dwarf GD 40, in which we measure atmospheric abundances relative to helium of 9 elements: H, O, Mg, Si, Ca, Ti, Cr, Mn, and Fe. Apart from hydrogen whose association with the other contaminants is uncertain, this material most likely accreted from GD 40's circumstellar dust disk whose existence is demonstrated by excess infrared emission. The data are best explained by accretion of rocky planetary material, in which heavy elements are largely contained within oxides, derived from a tidally disrupted minor planet at least the mass of Juno, and probably as massive as Vesta. The relatively low hydrogen abundance sets an upper limit of 10% water by mass in the inferred parent body, and the relatively high abundances of refractory elements, Ca and Ti, may indicate high-temperature processing. While the overall constitution of the parent body is similar to the bulk Earth being over 85% by mass composed of oxygen, magnes...

  12. The C+N+O abundance of Omega Centauri giant stars: implications on the chemical enrichment scenario and the relative ages of different stellar populations

    Marino, A F; Piotto, G; Cassisi, S; D'Antona, F; Anderson, J; Aparicio, A; Bedin, L R; Renzini, A; Villanova, S

    2011-01-01

    We present a chemical-composition analysis of 77 red-giant stars in Omega Centauri. We have measured abundances for carbon and nitrogen, and combined our results with abundances of O, Na, La, and Fe that we determined in our previous work. Our aim is to better understand the peculiar chemical-enrichment history of this cluster, by studying how the total C+N+O content varies among the different-metallicity stellar groups, and among stars at different places along the Na-O anticorrelation. We find the (anti)correlations among the light elements that would be expected on theoretical ground for matter that has been nuclearly processed via high-temperature proton captures. The overall [(C+N+O)/Fe] increases by 0.5 dex from [Fe/H] -2.0 to [Fe/H] -0.9. Our results provide insight into the chemical-enrichment history of the cluster, and the measured CNO variations provide important corrections for estimating the relative ages of the different stellar populations.

  13. A high precision chemical abundance analysis of the HAT-P-1 stellar binary: constraints on planet formation

    Liu, F; Asplund, M.; Ramirez, I.; Yong, D.; Melendez, J.

    2014-01-01

    We present a high-precision, differential elemental abundance analysis of the HAT-P-1 stellar binary based on high-resolution, high signal-to-noise ratio Keck/HIRES spectra. The secondary star in this double system is known to host a transiting giant planet while no planets have yet been detected around the primary star. The derived metallicities ([Fe/H]) of the primary and secondary stars are identical within the errors: $0.146 \\pm 0.014$ dex ($\\sigma$ = 0.033 dex) and $0.155 \\pm 0.007$ dex ...

  14. A Comparison of the Detailed Chemical Abundances of Globular Clusters in the Milky Way, Andromeda, and Centaurus A Galaxies

    Colucci, Janet E.; Bernstein, Rebecca

    2016-01-01

    We present a homogeneous analysis of high resolution spectra of globular clusters in three massive galaxies: the Milky Way, M31, and NGC 5128. We measure detailed abundance ratios for alpha, light, Fe-peak, and neutron capture elements using our technique for analyzing the integrated light spectra of globular clusters. For many of the heavy elements we provide a first look at the detailed chemistry of old populations in an early type galaxy. We discuss similarities and differences between the galaxies and the potential implications for their star formation histories.

  15. The Chemical Abundances of the Stellar Populations in the Leo I and Leo II dSph Galaxies

    Bosler, Tammy L.; Smecker-Hane, Tammy A.; Stetson, Peter B

    2006-01-01

    We have obtained spectra of 102 red giant branch (RGB) stars in the Leo I dwarf spheroidal galaxy (dSph) and 74 RGB stars in the Leo II dSph using LRIS on the Keck I 10-meter Telescope. We report on the calcium abundances [Ca/H] derived from the strengths of the Ca II triplet absorption lines at 8498, 8542, 8662 angstroms in the stellar spectra using a new Ca II triplet calibration to [Ca/H]. The two galaxies have different average [Ca/H] values of -1.34 +/- 0.02 for Leo I and -1.65 +/- 0.02 ...

  16. Abundances of Sr, Y, and Zr in Metal-Poor Stars and Implications for Chemical Evolution in the Early Galaxy

    Qian, Y -Z

    2008-01-01

    Studies of nucleosynthesis in neutrino-driven winds from nascent neutron stars show that the elements from Sr through Ag with mass numbers A~88-110 are produced by charged-particle reactions (CPR) during the alpha-process in the winds. Accordingly, we have attributed all these elements in stars of low metallicities ([Fe/H]-0.32 for all metal-poor stars. The high-resolution data now available on Sr abundances in Galactic halo stars show that there is a great shortfall of Sr relative to Fe in many stars with [Fe/H]<-3. This is in direct conflict with the above prediction. The same conflict also exists for two other CPR elements Y and Zr. The very low abundances of Sr, Y, and Zr observed in stars with [Fe/H]<-3 thus require a stellar source that cannot be low-mass or normal SNe. We show that this observation requires a stellar source leaving behind black holes and that hypernovae (HNe) from progenitors of ~25-50M_sun are the most plausible candidates. (Abridged)

  17. Chemical abundances for Hf 2-2, a planetary nebula with the strongest known heavy element recombination lines

    Liu, X W; Zhang, Y; Bastin, R J; Storey, P J

    2006-01-01

    We present high quality optical spectroscopic observations of the planetary nebula (PN) Hf 2-2. The spectrum exhibits many prominent optical recombination lines (ORLs) from heavy element ions. Analysis of the H {\\sc i} and He {\\sc i} recombination spectrum yields an electron temperature of $\\sim 900$ K, a factor of ten lower than given by the collisionally excited [O {\\sc iii}] forbidden lines. The ionic abundances of heavy elements relative to hydrogen derived from ORLs are about a factor of 70 higher than those deduced from collisionally excited lines (CELs) from the same ions, the largest abundance discrepancy factor (adf) ever measured for a PN. By comparing the observed O {\\sc ii} $\\lambda$4089/$\\lambda$4649 ORL ratio to theoretical value as a function of electron temperature, we show that the O {\\sc ii} ORLs arise from ionized regions with an electron temperature of only $\\sim 630$ K. The current observations thus provide the strongest evidence that the nebula contains another previously unknown compone...

  18. Chemical abundance analysis of the Open Clusters Cr110, NGC2099 (M37), NGC2420, NGC7789 and M67 (NGC2682)

    Pancino, E; Rossetti, E; Gallart, C

    2009-01-01

    (Abridged) The present number of Galactic Open Clusters that have high-resolution abundance determinations, not only of [Fe/H], but also of other key elements, is largely insufficient to enable a clear modeling of the Galactic Disk chemical evolution. We obtained high-resolution (R~30000), high quality (S/N~50-100 per pixel), echelle spectra with FOCES, at Calar Alto, for 3 red clump stars in each of five Open Clusters. We used the classical Equivalent Width analysis method to obtain accurate abundances of 16 elements. We also derived the oxygen abundance through spectral synthesis of the 6300A forbidden line. Three of the clusters were never studied previously with high-resolution: we found [Fe/H]=+0.03 +/- 0.02 dex for Cr110; [Fe/H]=+0.01 +/- 0.05 dex for NGC2099 (M37) and [Fe/H]=-0.05 +/- 0.03 dex for NGC2420. For the remaining clusters, we find: [Fe/H]=+0.05 +/- 0.02 dex for M67 and [Fe/H]=+0.04 +/- 0.07 dex for NGC7789. We provide the first high-resolution based velocity estimate for Cr110, V=41.0 +/- 3....

  19. The chemical composition of nearby young associations: s-process element abundances in AB Doradus, Carina-Near, and Ursa Major

    D'Orazi, Valentina; Desidera, Silvano; Covino, Elvira; Andrievsky, Sergei M; Gratton, Raffaele G

    2012-01-01

    Recently, several studies have shown that young, open clusters are characterised by a considerable over-abundance in their barium content. In particular, D'Orazi et al. (2009) reported that in some younger clusters [Ba/Fe] can reach values as high as ~0.6 dex. The work also identified the presence of an anti-correlation between [Ba/Fe] and cluster age. For clusters in the age range ~4.5 Gyr-500 Myr, this is best explained by assuming a higher contribution from low-mass asymptotic giant branch stars to the Galactic chemical enrichment. The purpose of this work is to investigate the ubiquity of the barium over-abundance in young stellar clusters. We analysed high-resolution spectroscopic data, focusing on the s-process elemental abundance for three nearby young associations, i.e. AB Doradus, Carina-Near, and Ursa Major. The clusters have been chosen such that their age spread would complement the D'Orazi et al. (2009) study. We find that while the s-process elements Y, Zr, La, and Ce exhibit solar ratios in all...

  20. The source, discharge, and chemical characteristics of selected springs, and the abundance and health of associated endemic anuran species in the Mojave network parks

    Schroeder, Roy A.; Smith, Gregory A.; Martin, Peter; Flint, Alan L.; Gallegos, Elizabeth; Fisher, Robert N.

    2015-01-01

    Hydrological and biological investigations were done during 2005 and 2006 in cooperation with the U.S. National Park Service to investigate the source, discharge, and chemical characteristics of selected springs and the abundance and health of endemic anuran (frog and toad) species at Darwin Falls in Death Valley National Park, Piute Spring in Mojave National Preserve, and Fortynine Palms Oasis in Joshua Tree National Park. Discharge from the springs at these sites sustains isolated riparian habitats in the normally dry Mojave Desert. Data were collected on water quantity (discharge) and quality, air and water temperature, and abundance and health of endemic anuran species. In addition, a single survey of the abundance and health of endemic anuran species was completed at Rattlesnake Canyon in Joshua Tree National Park. Results from this study were compared to limited historical data, where they exist, and can provide a baseline for future hydrological and biological investigations to evaluate the health and sustainability of the resource and its response to changing climate and increasing human use.

  1. Chemical, Physical, and zooplankton abundance/biomass data collected using several instruments in the Coastal Waters of California as a part of the California Cooperative Fisheries Investigation (CALCOFI) project, from 07 January 2000 to 01 July 2000 (NODC Accession 0000298)

    National Oceanic and Atmospheric Administration, Department of Commerce — Chemical, physical, and zooplankton abundance/biomass data were collected using secchi disk, zooplankton net, current meter (ADCP), bottle, and CTD casts in the...

  2. Chemical abundances of giant stars in NGC 5053 and NGC 5634, two globular clusters associated with the Sagittarius dwarf Spheroidal galaxy?

    Sbordone, L; Bidin, C Moni; Bonifacio, P; Villanova, S; Bellazzini, M; Ibata, R; Chiba, M; Geisler, D; Caffau, E; Duffau, S

    2015-01-01

    The tidal disruption of the Sagittarius dwarf Spheroidal galaxy (Sgr dSph) is producing the most prominent substructure in the Milky Way (MW) halo, the Sagittarius Stream. Aside from field stars, the Sgr dSph is suspected to have lost a number of globular clusters (GC). Many Galactic GC are suspected to have originated in the Sgr dSph. While for some candidates an origin in the Sgr dSph has been confirmed due to chemical similarities, others exist whose chemical composition has never been investigated. NGC 5053 and NGC 5634 are two among these scarcely studied Sgr dSph candidate-member clusters. To characterize their composition we analyzed one giant star in NGC 5053, and two in NGC 5634. We analize high-resolution and signal-to-noise spectra by means of the MyGIsFOS code, determining atmospheric parameters and abundances for up to 21 species between O and Eu. The abundances are compared with those of MW halo field stars, of "unassociated" MW halo globulars, and of the metal poor Sgr dSph main body population...

  3. Chemical Abundances in the Secondary Star of the Black Hole Binary V4641 Sagittarii (SAX J1819.3-2525)

    Sadakane, K; Aoki, W; Arimoto, N; Takada-Hidai, M; Ohnishi, T; Tajitsu, A; Beers, T C; Iwamoto, N; Tominaga, N; Umeda, H; Maeda, K; Nomoto, K; Sadakane, Kozo; Arai, Akira; Aoki, Wako; Arimoto, Nobuo; Takada-Hidai, Masahide; Ohnishi, Takashi; Tajitsu, Akito; Beers, Timothy C.; Iwamoto, Nobuyuki; Tominaga, Nozomu; Umeda, Hideyuki; Maeda, Keiichi; Nomoto, Ken'ichi

    2006-01-01

    We report on detailed spectroscopic studies performed for the secondary star in the black hole binary (micro-quasar) V4641 Sgr in order to examine its surface chemical composition and to see if its surface shows any signature of pollution by ejecta from a supernova explosion. High-resolution spectra of V4641 Sgr observed in the quiescent state in the blue-visual region are compared with those of the two bright well-studied B9 stars (14 Cyg and $\

  4. The surface magnetic field and chemical abundance distributions of the B2V helium-strong star HD184927

    Yakunin, I; Bohlender, D; Kochukhov, O; Marcolino, W; Shultz, M; Monin, D; Grunhut, J; Sitnova, T; Tsymbal, V

    2014-01-01

    A new time series of high-resolution Stokes I and V spectra of the magnetic B2V star HD 184927 has been obtained in the context of the Magnetism in Massive Stars (MiMeS) Large Program with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope and dimaPol liquid crystal spectropolarimeter at 1.8-m telescope of Dominion Astrophysical Observatory. We model the optical and UV spectrum obtained from the IUE archive to infer the stellar physical parameters. Using magnetic field measurements we derive an improved rotational period of 9.53102+-0.0007d. We infer the longitudinal magnetic field from lines of H, He and various metals, revealing large differences between the apparent field strength variations determined from different elements. Magnetic Doppler Imaging using He and O lines yields strongly nonuniform surface distributions of these elements. We demonstrate that the diversity of longitudinal field variations can be understood as due to the combination of element-specific surface abundance di...

  5. Synthetic photometry for M and K giants and stellar evolution: hydrostatic dust-free model atmospheres and chemical abundances

    Aringer, Bernhard; Nowotny, Walter; Marigo, Paola; Bressan, Alessandro

    2016-01-01

    Based on a grid of hydrostatic spherical COMARCS models for cool stars we have calculated observable properties of these objects, which will be mainly used in combination with stellar evolution tracks and population synthesis tools. The high resolution opacity sampling and low resolution convolved spectra as well as bolometric corrections for a large number of filter systems are made electronically available. We exploit those data to study the effect of mass, C/O ratio and nitrogen abundance on the photometry of K and M giants. Depending on effective temperature, surface gravity and the chosen wavelength ranges variations of the investigated parameters cause very weak to moderate and, in the case of C/O values close to one, even strong shifts of the colours. For the usage with stellar evolution calculations they will be treated as correction factors applied to the results of an interpolation in the main quantities. When we compare the synthetic photometry to observed relations and to data from the Galactic Bu...

  6. Synthetic photometry for M and K giants and stellar evolution: hydrostatic dust-free model atmospheres and chemical abundances

    Aringer, B.; Girardi, L.; Nowotny, W.; Marigo, P.; Bressan, A.

    2016-04-01

    Based on a grid of hydrostatic spherical COMARCS models for cool stars, we have calculated observable properties of these objects, which will be mainly used in combination with stellar evolution tracks and population synthesis tools. The high-resolution opacity sampling and low-resolution convolved spectra as well as bolometric corrections for a large number of filter systems are made electronically available. We exploit those data to study the effect of mass, C/O ratio and nitrogen abundance on the photometry of K and M giants. Depending on effective temperature, surface gravity and the chosen wavelength ranges, variations of the investigated parameters cause very weak to moderate and, in the case of C/O values close to 1, even strong shifts of the colours. For the usage with stellar evolution calculations, they will be treated as correction factors applied to the results of an interpolation in the main quantities. When we compare the synthetic photometry to observed relations and to data from the Galactic bulge, we find in general a good agreement. Deviations appear for the coolest giants showing pulsations, mass-loss and dust shells, which cannot be described by hydrostatic models.

  7. Analysis of chemical abundances in planetary nebulae with [WC] central stars. I. Line intensities and physical conditions

    García-Rojas, J.; Peña, M.; Morisset, C.; Mesa-Delgado, A.; Ruiz, M. T.

    2012-02-01

    Context. Planetary nebulae (PNe) around Wolf-Rayet [WR] central stars ([WR]PNe) constitute a particular photoionized nebula class that represents about 10% of the PNe with classified central stars. Aims: We analyse deep high-resolution spectrophotometric data of 12 [WR] PNe. This sample of [WR]PNe represents the most extensive analysed so far, at such high spectral resolution. We aim to select the optimal physical conditions in the nebulae to be used in ionic abundance calculations that will be presented in a forthcoming paper. Methods: We acquired spectra at Las Campanas Observatory with the 6.5-m telescope and the Magellan Inamori Kyocera (MIKE) spectrograph, covering a wavelength range from 3350 Å to 9400 Å. The spectra were exposed deep enough to detect, with signal-to-noise ratio higher than three, the weak optical recombination lines (ORLs) of O ii, C ii, and other species. We detect and identify about 2980 emission lines, which, to date, is the most complete set of spectrophotometric data published for this type of objects. From our deep data, numerous diagnostic line ratios for Te and ne are determined from collisionally excited lines (CELs), ORLs, and continuum measurements (H i Paschen continuum in particular). Results: Densities are closely described by the average of all determined values for objects with ne behaviour of both temperatures agrees with the predictions of the temperature fluctuations paradigm, owing to the large errors in Te(H i). We do not find any evidence of low-temperature, high-density clumps in our [WR]PNe from the analysis of faint O ii and N ii plasma diagnostics, although uncertainties dominate the observed line ratios in most objects. The behaviour of Te([O iii])/Te([N ii]), which is smaller for high ionization degrees, can be reproduced by a set of combined matter-bounded and radiation-bounded models, although, for the smallest temperature ratios, a too high metallicity seem to be required. Based on data obtained at Las

  8. Computational and statistical analyses of amino acid usage and physico-chemical properties of the twelve late embryogenesis abundant protein classes.

    Emmanuel Jaspard

    Full Text Available Late Embryogenesis Abundant Proteins (LEAPs are ubiquitous proteins expected to play major roles in desiccation tolerance. Little is known about their structure - function relationships because of the scarcity of 3-D structures for LEAPs. The previous building of LEAPdb, a database dedicated to LEAPs from plants and other organisms, led to the classification of 710 LEAPs into 12 non-overlapping classes with distinct properties. Using this resource, numerous physico-chemical properties of LEAPs and amino acid usage by LEAPs have been computed and statistically analyzed, revealing distinctive features for each class. This unprecedented analysis allowed a rigorous characterization of the 12 LEAP classes, which differed also in multiple structural and physico-chemical features. Although most LEAPs can be predicted as intrinsically disordered proteins, the analysis indicates that LEAP class 7 (PF03168 and probably LEAP class 11 (PF04927 are natively folded proteins. This study thus provides a detailed description of the structural properties of this protein family opening the path toward further LEAP structure - function analysis. Finally, since each LEAP class can be clearly characterized by a unique set of physico-chemical properties, this will allow development of software to predict proteins as LEAPs.

  9. Variation of natural 15N abundance (δ15N) in greenhouse tomato and available nitrogen in soil supplied with cow manure or chemical fertilizers

    Cow manure or chemical fertilizers applied to greenhouse-grown tomato changed N contents and natural 15N abundance (δ15N) in tomato plants and the δ15N values of available N in soil. Cow manure increased and chemical fertilizers decreased the δ15N values of tomato plants. In the early periods of tomato culture with cow manure, the δ15N values of nitrate nitrogen of soil were higher than those of whole cow manure N, and, thereafter, dropped to δ15N values between those of soil and cow manure. Application of chemical fertilizers to soil immediately raised the δ15N values of ammonium nitrogen in soil but they dropped quickly to δ15N values between those of soil and fertilizers. On the estimation of the soil-derived N, manure-derived N and fertilizer-derived N in tomato plants based on the δ15N values of sources, much caution should be paid concerning the isotopic variation caused by N sources and isotopic fractionation during N transformation in soil. (author)

  10. Chemical abundances in the multiple sub-giant branch of 47 Tucanae: insights on its faint sub-giant branch component

    Marino, A. F.; Milone, A. P.; Casagrande, L.; Collet, R.; Dotter, A.; Johnson, C. I.; Lind, K.; Bedin, L. R.; Jerjen, H.; Aparicio, A.; Sbordone, L.

    2016-06-01

    The globular cluster 47 Tuc exhibits a complex sub-giant branch (SGB) with a faint-SGB comprising only about the 10 per cent of the cluster mass and a bright-SGB hosting at least two distinct populations. We present a spectroscopic analysis of 62 SGB stars including 21 faint-SGB stars. We thus provide the first chemical analysis of the intriguing faint-SGB population and compare its abundances with those of the dominant populations. We have inferred abundances of Fe, representative light elements C, N, Na, and Al, α elements Mg and Si for individual stars. Oxygen has been obtained by co-adding spectra of stars on different sequences. In addition, we have analysed 12 stars along the two main RGBs of 47 Tuc. Our principal results are (i) star-to-star variations in C/N/Na among RGB and bright-SGB stars; (ii) substantial N and Na enhancements for the minor population corresponding to the faint-SGB; (iii) no high enrichment in C+N+O for faint-SGB stars. Specifically, the C+N+O of the faint-SGB is a factor of 1.1 higher than the bright-SGB, which, considering random (±1.3) plus systematic errors (±0.3), means that their C+N+O is consistent within observational uncertainties. However, a small C+N+O enrichment for the faint-SGB, similar to what predicted on theoretical ground, cannot be excluded. The N and Na enrichment of the faint-SGB qualitatively agrees with this population possibly being He-enhanced, as suggested by theory. The iron abundance of the bright and faint-SGB is the same to a level of ˜0.10 dex, and no other significant difference for the analysed elements has been detected.

  11. The Chemical Abundance Structure of the Inner Milky Way: A Signature of "Upside-Down" Disk Formation?

    Freudenburg, Jenna K C; Hayden, Michael R; Holtzman, Jon A

    2016-01-01

    We present a model for the [alpha/Fe]-[Fe/H] distribution of stars in the inner Galaxy, R=3-5 kpc, measured as a function of vertical distance |z| from the midplane by Hayden et al. (2015, H15). Motivated by an "upside-down" scenario for thick disk formation, in which the thickness of the star-forming gas layer contracts as the stellar mass of the disk grows, we combine one-zone chemical evolution with a simple prescription in which the scale-height of the stellar distribution drops linearly from z_h=0.8 kpc to z_h=0.2 kpc over a timescale t_c, remaining constant thereafter. We assume a linear-exponential star-formation history, SFR ~ te^{-t/t_sf}. With a star-formation efficiency timescale of 2 Gyr, an outflow mass-loading factor of 1.5, t_sf=3 Gyr, and t_c=2.5 Gyr, the model reproduces the observed locus of inner disk stars in [alpha/Fe]-[Fe/H] and the metallicity distribution functions (MDFs) measured by H15 at |z|=0-0.5 kpc, 0.5-1 kpc, and 1-2 kpc. Substantial changes to model parameters lead to disagreem...

  12. Chemical abundances in the multiple sub-giant branch of 47 Tucanae: insights on its faint sub-giant branch component

    Marino, A F; Casagrande, L; Collet, R; Dotter, A; Johnson, C I; Lind, K; Bedin, L R; Jerjen, H; Aparicio, A; Sbordone, L

    2016-01-01

    The globular cluster 47 Tuc exhibits a complex sub-giant branch (SGB) with a faint-SGB comprising only about the 10% of the cluster mass and a bright-SGB hosting at least two distinct populations.We present a spectroscopic analysis of 62 SGB stars including 21 faint-SGB stars. We thus provide the first chemical analysis of the intriguing faint-SGB population and compare its abundances with those of the dominant populations. We have inferred abundances of Fe, representative light elements C, N, Na, and Al, {\\alpha} elements Mg and Si for individual stars. Oxygen has been obtained by co-adding spectra of stars on different sequences. In addition, we have analysed 12 stars along the two main RGBs of 47 Tuc. Our principal results are: (i) star-to-star variations in C/N/Na among RGB and bright-SGB stars; (ii) substantial N and Na enhancements for the minor population corresponding to the faint-SGB; (iii) no high enrichment in C+N+O for faint-SGB stars. Specifically, the C+N+O of the faint-SGB is a factor of 1.1 hi...

  13. Comparative study on composition and abundance of major planktons and physico-chemical characteristics among two ponds and Lake Tana, Ethiopia

    Wondie Zelalem Amanu

    2015-11-01

    Full Text Available Objective: To evaluate the difference in physico-chemical characteristics, composition and abundance of plankton communities owing to the supplementary feed added in fish ponds as compared to Lake Tana. Methods: Physico-chemical and biological data of plankton were collected from 3 studied sites from November 2008 to October 2009. Data were compared using One-way ANOVA to see the difference among sites. Diversity indices such as Margalef's index, Shannon-Wiener index, and evenness index were employed to describe the distribution of plankton community among the studied sites. Results: The pH value was remarkably higher in ponds water. However, conductivity and total dissolved solids were the highest in lake water. Nitrate concentration was relatively high in ponds. Zooplankton species richness was higher in lake water than ponds. The lake also had the highest mean value of both Shannon-Wiener index and evenness index in phytoplankton. Conclusions: The results revealed that the supplementary feed added to each pond had influence on nutrient content which enhanced algal biomass and productivity of the ponds. However, the pond water has to be regularly refreshed to control eutrophication.

  14. TOPoS . II. On the bimodality of carbon abundance in CEMP stars Implications on the early chemical evolution of galaxies

    Bonifacio, P.; Caffau, E.; Spite, M.; Limongi, M.; Chieffi, A.; Klessen, R. S.; François, P.; Molaro, P.; Ludwig, H.-G.; Zaggia, S.; Spite, F.; Plez, B.; Cayrel, R.; Christlieb, N.; Clark, P. C.; Glover, S. C. O.; Hammer, F.; Koch, A.; Monaco, L.; Sbordone, L.; Steffen, M.

    2015-07-01

    Context. In the course of the Turn Off Primordial Stars (TOPoS) survey, aimed at discovering the lowest metallicity stars, we have found several carbon-enhanced metal-poor (CEMP) stars. These stars are very common among the stars of extremely low metallicity and provide important clues to the star formation processes. We here present our analysis of six CEMP stars. Aims: We want to provide the most complete chemical inventory for these six stars in order to constrain the nucleosynthesis processes responsible for the abundance patterns. Methods: We analyse both X-Shooter and UVES spectra acquired at the VLT. We used a traditional abundance analysis based on OSMARCS 1D local thermodynamic equilibrium (LTE) model atmospheres and the turbospectrum line formation code. Results: Calcium and carbon are the only elements that can be measured in all six stars. The range is -5.0 ≤ [Ca/H] UIP) stars. No lithium is detected in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a robust upper limit of A(Li) UIP stars shows a large star-to-star scatter in the [X/Ca] ratios for all elements up to aluminium (up to 1 dex), but this scatter drops for heavier elements and is at most of the order of a factor of two. We propose that this can be explained if these stars are formed from gas that has been chemically enriched by several SNe, that produce the roughly constant [X/Ca] ratios for the heavier elements, and in some cases the gas has also been polluted by the ejecta of a faint SN that contributes the lighter elements in variable amounts. The absence of lithium in four of the five known unevolved UIP stars can be explained by a dominant role of fragmentation in the formation of these stars. This would result either in a destruction of lithium in the pre-main-sequence phase, through rotational mixing or to a lack of late accretion from a reservoir of fresh gas. The phenomenon should have varying degrees of efficiency. Based on observations obtained at ESO Paranal

  15. The chemical composition of the Orion star forming region: I. Homogeneity of O and Si abundances in B-type stars

    Simón-Díaz, S

    2009-01-01

    Recent accurate abundance analyses of B-type main sequence stars in the solar vicinity has shown that abundances derived from these stellar objects are more homogeneous and metal-rich than previously thought. We investigate whether the inhomogeneity of abundances previously found in B-type stars in the Ori OB1 association is real (hence a signature of enrichment of the newly formed stars in an induced star formation scenario) or a consequence of intrinsic errors induced by the use of photometric indices to establish the stellar parameters prior to the abundance analysis. We obtained a new (improved) spectroscopic data set comprising 13 B-type stars in the various Ori OB1 associations, and performed a detailed, self-consistent spectroscopic abundance analysis by means of the modern stellar atmosphere code FASTWIND. We detect systematic errors in the stellar parameters determined previously which affect the derived abundances. Once these errors are accounted for, we find a high degree of homogeneity in the O an...

  16. Late stages of the evolution of A-type stars on the main sequence: comparison between observed chemical abundances and diffusion models for 8 Am stars of the Praesepe cluster

    Fossati, L; Monier, R; Khan, S A; Kochukhov, O; Landstreet, J; Wade, G; Weiss, W

    2007-01-01

    Aims. We aim to provide observational constraints on diffusion models that predict peculiar chemical abundances in the atmospheres of Am stars. We also intend to check if chemical peculiarities and slow rotation can be explained by the presence of a weak magnetic field. Methods. We have obtained high resolution, high signal-to-noise ratio spectra of eight previously-classified Am stars, two normal A-type stars and one Blue Straggler, considered to be members of the Praesepe cluster. For all of these stars we have determined fundamental parameters and photospheric abundances for a large number of chemical elements, with a higher precision than was ever obtained before for this cluster. For seven of these stars we also obtained spectra in circular polarization and applied the LSD technique to constrain the longitudinal magnetic field. Results. No magnetic field was detected in any of the analysed stars. HD 73666, a Blue Straggler previously considered as an Ap (Si) star, turns out to have the abundances of a no...

  17. MEASURING DETAILED CHEMICAL ABUNDANCES FROM CO-ADDED MEDIUM-RESOLUTION SPECTRA. I. TESTS USING MILKY WAY DWARF SPHEROIDAL GALAXIES AND GLOBULAR CLUSTERS

    The ability to measure metallicities and α-element abundances in individual red giant branch (RGB) stars using medium-resolution spectra (R ≈ 6000) is a valuable tool for deciphering the nature of Milky Way dwarf satellites and the history of the Galactic halo. Extending such studies to more distant systems like Andromeda is beyond the ability of the current generation of telescopes, but by co-adding the spectra of similar stars, we can attain the necessary signal-to-noise ratio (S/N) to make detailed abundance measurements. In this paper, we present a method to determine metallicities and α-element abundances using the co-addition of medium-resolution spectra. We test the method of spectral co-addition using high-S/N spectra of more than 1300 RGB stars from Milky Way globular clusters and dwarf spheroidal galaxies obtained with the Keck II telescope/DEIMOS spectrograph. We group similar stars using photometric criteria and compare the weighted ensemble average abundances ([Fe/H], [Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe]) of individual stars in each group with the measurements made on the corresponding co-added spectrum. We find a high level of agreement between the two methods, which permits us to apply this co-added spectra technique to more distant RGB stars, like stars in the M31 satellite galaxies. This paper outlines our spectral co-addition and abundance measurement methodology and describes the potential biases in making these measurements.

  18. The Chemical Abundances of Stars in the Halo (CASH) Project. III. A New Classification Scheme for Carbon-Enhanced Metal-poor Stars with S-process Element Enhancement

    Hollek, Julie K; Placco, Vinicius M; Karakas, Amanda I; Shetrone, Matthew; Sneden, Christopher; Christlieb, Norbert

    2015-01-01

    We present a detailed abundance analysis of 23 elements for a newly discovered carbon-enhanced metal-poor (CEMP) star, HE 0414-0343, from the Chemical Abundances of Stars in the Halo (CASH) Project. Its spectroscopic stellar parameters are Teff = 4863 K, log g = 1.25, vmic = 2.20 km/s, and [Fe/H] = -2.24. Radial velocity measurements covering seven years indicate HE 0414-0343 to be a binary. HE 0414-0343 has [C/Fe] = 1.44 and is strongly enhanced in neutron-capture elements but its abundances cannot be reproduced by a solar-type s-process pattern alone. Traditionally, it could be classified as "CEMP-r/s" star. Based on abundance comparisons with AGB star nucleosynthesis models, we suggest a new physically-motivated origin and classification scheme for CEMP-s stars and the still poorly-understood CEMP-r/s. The new scheme describes a continuous transition between these two so-far distinctly treated subgroups: CEMP-sA, CEMP-sB, and CEMP-sC. Possible causes for a continuous transition include the number of therma...

  19. Abundance profiles of CH3OH and H2CO toward massive young stars as tests of gas-grain chemical models

    van der Tak, F. F. S.; van Dishoeck, E. F.; Caselli, P.

    2000-09-01

    The chemistry of CH3OH and H2CO in thirteen regions of massive star formation is studied through single-dish and interferometer line observations at submillimeter wavelengths. Single-dish spectra at 241 and 338 GHz indicate that Trot = 30-200 K for CH3OH, but only 60-90 K for H2CO. The tight correlation between Trot(CH3OH) and Tex(C2H2) from infrared absorption suggests a common origin of these species, presumably outgassing of icy grain mantles. The CH3OH line widths are 3-5 km s-1, consistent with those found earlier for C17O and C34S, except in GL 7009S and IRAS 20126, whose line shapes reveal CH3OH in the outflows. This difference suggests that for low-luminosity objects, desorption of CH3OH-rich ice mantles is dominated by shocks, while radiation is more important around massive stars. The wealth of CH3OH and H2CO lines covering a large range of excitation conditions allows us to calculate radial abundance profiles , using the physical structures of the sources derived earlier from submillimeter continuum and CS line data. The data indicate three types of abundance profiles: flat profiles at CH3OH/H2 ~ 10-9 for the coldest sources, profiles with a jump in its abundance from ~ 10-9 to ~ 10-7 for the warmer sources, and flat profiles at CH3OH/H2 ~ few 10-8 for the hot cores. The models are consistent with the ~ 3'' size of the CH3OH 107 GHz emission measured interferometrically. The location of the jump at T~ 100 K suggests that it is due to evaporation of grain mantles, followed by destruction in gas-phase reactions in the hot core stage. In contrast, the H2CO data can be well fit with a constant abundance of a few x 10-9 throughout the envelope, providing limits on its grain surface formation. These results indicate that Trot (CH3OH) can be used as evolutionary indicator during the embedded phase of massive star formation, independent of source optical depth or orientation. Model calculations of gas-grain chemistry show that CO is primarily reduced (into CH3OH

  20. An Investigation into the Physico-chemical Factors Affecting the Abundance and Diversity of Aquatic Insects in Organically Manured Aquadams and Their Utilization by Oreochromis mossambicus (Perciformes: Cichlidae).

    Rapatsa, M M; Moyo, N A G

    2015-08-01

    The interaction between the fish Oreochromis mossambicus (Percifomes: Cichlidae) and aquatic insects after application of chicken, cow, and pig manure was studied in 7,000-liter plastic aquadams. Principal component analysis showed that most of the variation in water quality after application of manure was accounted for by potassium, nitrogen, dissolved oxygen, phosphate, and alkalinity. Canonical correspondence analysis showed that Gyrinidae, Elminidae, Hydrophilidae, Hydraenidae, and Athericidae were associated with high nutrient levels (nitrogen, phosphorus, and potassium) characteristic of the chicken manure. However, the most abundant aquatic insects Gerridae, Notonectidae, and Culicidae were close to the centre of the ordination and not defined by any nutrient gradient. The Shannon-Wiener diversity was highest in the aquadams treated with chicken manure. The most frequently occurring aquatic insects in the diet of O. mossambicus were culicid mosquitoes in all the treatments. However, in the laboratory, Chironomidae were the most preferred because they lacked refuge. Notonectidae and Gerridae were not recorded in the diet of O. mossambicus despite their abundance. This may be because of their anti-predation strategies. Laboratory experiments showed that Notonectidae, Gyrinidae, and Gerridae fed on Chironomidae and Culicidae. This implies that aquatic predatory insects competed for food with O. mossambicus. PMID:26314044

  1. The First Observations of Low-Redshift Damped Lyman-{\\alpha} Systems with the Cosmic Origins Spectrograph: Chemical Abundances and Affiliated Galaxies

    Battisti, A J; Tripp, T M; Prochaska, J X; Werk, J K; Jenkins, E B; Lehner, N; Tumlinson, J; Thom, C

    2011-01-01

    We present Cosmic Origins Spectrograph (COS) measurements of metal abundances in eight 0.083 < zabs < 0.321 damped Lyman-{\\alpha} (DLA) and sub-damped Ly{\\alpha} absorption systems serendipitously discovered in the COS-Halos survey. We find that these systems show a large range in metallicities, with -1.10 < [Z/H] < 0.31, similar to the spread found at higher redshifts. These low-redshift systems on average have subsolar metallicities, but do show a rise in metallicity over cosmic time when compared to higher-redshift systems. Utilizing our sources and those in the literature, we find the average sub-DLA metallicity is higher than the average DLA metallicity at all redshifts. Nitrogen is underabundant with respect to {\\alpha}-group elements in all but perhaps one of the absorbers. In some cases, [N/{\\alpha}] is significantly below the lowest nitrogen measurements in nearby galaxies; the nitrogen abundances are more similar to those observed in high-redshift DLAs. Systems for which depletion patter...

  2. TOPoS: II. On the bimodality of carbon abundance in CEMP stars. Implications on the early chemical evolution of galaxies

    Bonifacio, P; Spite, M; Limongi, M; Chieffi, A; Klessen, R S; François, P; Molaro, P; Ludwig, H G; Zaggia, S; Spite, F; Plez, B; Cayrel, R; Christlieb, N; Clark, P C; Glover, S C O; Hammer, F; Koch, A; Monaco, L; Sbordone, L; Steffen, M

    2015-01-01

    In the course of the TOPoS (Turn Off Primordial Stars) survey, aimed at discovering the lowest metallicity stars, we have found several carbon-enhanced metal-poor (CEMP) stars. We here present our analysis of six CEMP stars. Calcium and carbon are the only elements that can be measured in all six stars. The range is -5.0<=[Ca/H]< -2.1 and 7.12<=A(C)<=8.65. For star SDSS J1742+2531 we were able to detect three FeI lines from which we deduced [Fe/H]=-4.80, from four CaII lines we derived [Ca/H]=-4.56, and from synthesis of the G-band we derived A(C)=7.26. For SDSS J1035+0641 we were not able to detect any iron lines, yet we could place a robust (3sigma) upper limit of [Fe/H]< -5.0 and measure the Ca abundance, with [Ca/H]=-5.0, and carbon, A(C)=6.90. No lithium is detected in the spectrum of SDSS J1742+2531 or SDSS J1035+0641, which implies a robust upper limit of A(Li)<1.8 for both stars. Our measured carbon abundances confirm the bimodal distribution of carbon in CEMP stars, identifying a hi...

  3. CUMULATIVE OXYGEN ABUNDANCES OF SPIRAL GALAXIES

    Studying the global evolution of spiral galaxies requires determining their overall chemical compositions. However, since spirals tend to possess gradients in their chemical compositions, determining their overall chemical abundances poses a challenge. In this study, the framework for a newly proposed method for determining the overall oxygen abundance of a disk is established. By separately integrating the absolute amounts of hydrogen and oxygen out to large radii, the cumulative oxygen abundance is shown to approach an asymptotic value. In this manner, a reliable account of the overall chemical state of a disk is revealed.

  4. CHEMICALS

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  5. Chlorine Abundances in Cool Stars

    Maas, Z G; Hinkle, K

    2016-01-01

    Chlorine abundances are reported in 15 evolved giants and one M dwarf in the solar neighborhood. The Cl abundance was measured using the vibration-rotation 1-0 P8 line of H$^{35}$Cl at 3.69851 $\\mu$m. The high resolution L-band spectra were observed using the Phoenix infrared spectrometer on the Kitt Peak Mayall 4m telescope. The average [$^{35}$Cl/Fe] abundance in stars with --0.72$<$[Fe/H]$<$0.20 is [$^{35}$Cl/Fe]=(--0.10$\\pm$0.15) dex. The mean difference between the [$^{35}$Cl/Fe] ratios measured in our stars and chemical evolution model values is (0.16$\\pm$0.15) dex. The [$^{35}$Cl/Ca] ratio has an offset of $\\sim$0.35 dex above model predictions suggesting chemical evolution models are under producing Cl at the high metallicity range. Abundances of C, N, O, Si, and Ca were also measured in our spectral region and are consistent with F and G dwarfs. The Cl versus O abundances from our sample match Cl abundances measured in planetary nebula and \\ion{H}{2} regions. In one star where both H$^{35}$Cl a...

  6. Abundances in stars with exoplanets

    Israelian, Garik

    2003-01-01

    Extensive spectroscopic studies of stars with and without planets have concluded that stars hosting planets are significantly more metal-rich than those without planets. More subtle trends of different chemical elements begin to appear as the number of detected extrasolar planetary systems continues to grow. I review our current knowledge concerning the observed abundance trends of various chemical elements in stars with exoplanets and their possible implications.

  7. THE FIRST OBSERVATIONS OF LOW-REDSHIFT DAMPED Ly{alpha} SYSTEMS WITH THE COSMIC ORIGINS SPECTROGRAPH: CHEMICAL ABUNDANCES AND AFFILIATED GALAXIES

    Battisti, A. J.; Meiring, J. D.; Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Prochaska, J. X.; Werk, J. K. [Department of Astronomy and Astrophysics, University of California Observatories-Lick Observatory, UC Santa Cruz, CA 95064 (United States); Jenkins, E. B. [Department of Astrophysical Sciences, Princeton University Observatory, Princeton, NJ 08544 (United States); Lehner, N. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Tumlinson, J.; Thom, C. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-01-10

    We present Cosmic Origins Spectrograph (COS) measurements of metal abundances in eight 0.083 < z{sub abs} < 0.321 damped Ly{alpha} (DLA) and sub-DLA absorption systems serendipitously discovered in the COS-Halos survey. We find that these systems show a large range in metallicities, with -1.10 < [Z/H] < 0.31, similar to the spread found at higher redshifts. These low-redshift systems on average have subsolar metallicities, but do show a rise in metallicity over cosmic time when compared to higher-redshift systems. We find that the average sub-DLA metallicity is higher than the average DLA metallicity at all redshifts. Nitrogen is underabundant with respect to {alpha}-group elements in all but perhaps one of the absorbers. In some cases, [N/{alpha}] is significantly below the lowest nitrogen measurements in nearby galaxies. Systems for which depletion patterns can be studied show little, if any, depletion, which is characteristic of Milky Way halo-type gas. We also identify affiliated galaxies for three of the sub-DLAs using spectra obtained from a Keck/Low Resolution Imaging Spectrometer (LRIS). None of these sub-DLAs arise in the stellar disks of luminous galaxies; instead, these absorbers may exist in galaxy halos at impact parameters ranging from 38 to 92 kpc. Multiple galaxies are present near two of the sub-DLAs, and galaxy interactions may play a role in the dispersal of the gas. Many of these low-redshift absorbers exhibit simple kinematics, but one sub-DLA has a complicated mix of at least 13 components spread over 150 km s{sup -1}. We find three galaxies near this sub-DLA, which also suggests that galaxy interactions roil the gas. This study reinforces the view that DLAs have a variety of origins, and low-redshift studies are crucial for understanding absorber-galaxy connections.

  8. The Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project. I. The Lithium-, s-, and r-enhanced Metal-poor Giant HKII 17435-00532

    Roederer, Ian U.; Frebel, Anna; Shetrone, Matthew D.; Allende Prieto, Carlos; Rhee, Jaehyon; Gallino, Roberto; Bisterzo, Sara; Sneden, Christopher; Beers, Timothy C.; Cowan, John J.

    2008-06-01

    We present the first detailed abundance analysis of the metal-poor giant HKII 17435-00532. This star was observed as part of the University of Texas long-term project Chemical Abundances of Stars in the Halo (CASH). A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R ~ 15,000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor ([Fe/H] = - 2.2) star has an unusually high lithium abundance [log ɛ (Li) = + 2.1], mild carbon ([C/Fe] = + 0.7) and sodium ([Na/Fe] = + 0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = + 0.8) and r-process ([Eu/Fe] = + 0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing that connects the convective envelope with the outer regions of the H-burning shell. If so, HKII 17435-00532 is the most metal-poor star in which this short-lived phase of Li enrichment has been observed. The Na and n-capture enrichment can be explained by mass transfer from a companion that passed through the thermally pulsing AGB phase of evolution with only a small initial enrichment of r-process material present in the birth cloud. Despite the current nondetection of radial velocity variations (over ~180 days), it is possible that HKII 17435-00532 is in a long-period or highly inclined binary system, similar to other stars with similar n-capture enrichment patterns. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  9. Unprecedented accurate abundances: signatures of other Earths?

    Melendez, J.; Asplund, M.; Gustafsson, B.; Yong, D.; Ramirez, I.

    2009-01-01

    For more than 140 years the chemical composition of our Sun has been considered typical of solar-type stars. Our highly differential elemental abundance analysis of unprecedented accuracy (~0.01 dex) of the Sun relative to solar twins, shows that the Sun has a peculiar chemical composition with a ~20% depletion of refractory elements relative to the volatile elements in comparison with solar twins. The abundance differences correlate strongly with the condensation temperatures of the elements...

  10. CHEMICAL ABUNDANCES OF DWARF SPIRAL GALAXIES

    A. M. Hidalgo-Gámez; A. Moranchel-Basurto; J. J. González

    2011-01-01

    Se presentan las abundancias de oxígeno para una muestra de galaxias espirales enanas. En casi todos los casos, ésta se obtuvo mediante los llamados métodos semiempíricos. Los valores de la abundancia que se obtienen son, en la mayoría de los casos, menores que la abundancia solar y muy similares a los que se observan en otras galaxias tardías, como las BCG o las irregulares enanas. Se pudo calcular el gradiente para el caso de cuatro de estas galaxias. En todos los casos, el gradiente es muy...

  11. The Sulfur Abundance Anomaly in Planetary Nebulae

    Henry, R B C; Kwitter, K B; Milingo, M B

    2006-01-01

    The failure of S and O abundances in most planetary nebulae to display the same strong direct correlation that is observed in extragalactic H II regions represents one of the most perplexing problems in the area of PN abundances today. Galactic chemical evolution models as well as large amounts of observational evidence from H II region studies support the contention that cosmic abundances of alpha elements such as O, Ne, S, Cl, and Ar increase together in lockstep. Yet abundance results from the Henry, Kwitter, & Balick (2004) database show a strong tendency for most PNe to have S abundances that are significantly less than expected from the observed level of O. One reasonable hypothesis for the sulfur anomaly is the past failure to properly measure the abundances of unseen ionization stages above S^+2. Future observations with Spitzer will allow us to test this hypothesis.

  12. Oxygen abundances in nearby dwarf irregular galaxies

    Oxygen abundances are obtained by optical spectrophotometry of H II regions in seven nearby dwarf irregular galaxies. All of these yield oxygen abundances of less than 1/10 of the solar value, and most are in the range of 3-5 percent of the solar value. This suggests that observations of nearby dwarf galaxies may provide an effective means for studying the chemical evolution of low-mass galaxies and, possibly, the primordial helium abundance. A strong correlation is found between the oxygen abundances and absolute magnitudes for nearby irregular galaxies. This correlation will be useful for estimating abundances of irregular galaxies without observable H II regions, and possibly as a distance indicator for irregular galaxies with known abundances. It is inferred from this relationship that infall is no more important in irregular galaxies with extremely large H I halos than in typical irregular galaxies. 72 refs

  13. Stellar abundances of beryllium and CUBES

    Smiljanic, R

    2014-01-01

    Stellar abundances of beryllium are useful in different areas of astrophysics, including studies of the Galactic chemical evolution, of stellar evolution, and of the formation of globular clusters. Determining Be abundances in stars is, however, a challenging endeavor. The two Be II resonance lines useful for abundance analyses are in the near UV, a region strongly affected by atmospheric extinction. CUBES is a new spectrograph planned for the VLT that will be more sensitive than current instruments in the near UV spectral region. It will allow the observation of fainter stars, expanding the number of targets where Be abundances can be determined. Here, a brief review of stellar abundances of Be is presented together with a discussion of science cases for CUBES. In particular, preliminary simulations of CUBES spectra are presented, highlighting its possible impact in investigations of Be abundances of extremely metal-poor stars and of stars in globular clusters.

  14. Maximum abundant isotopes correlation

    The neutron excess of the most abundant isotopes of the element shows an overall linear dependence upon the neutron number for nuclei between neutron closed shells. This maximum abundant isotopes correlation supports the arguments for a common history of the elements during nucleosynthesis. (Auth.)

  15. Lithium Abundance of Metal-poor Stars

    Hua-Wei Zhang; Gang Zhao

    2003-01-01

    High-resolution, high signal-to-noise ratio spectra have been obtained for 32 metal-poor stars. The equivalent widths of Li λ6708A were measured and the lithium abundances were derived. The average lithium abundance of 21 stars on the lithium plateau is 2.33±0.02 dex. The Lithium plateau exhibits a marginal trend along metallicity, dA(Li)/d[Fe/H] = 0.12±0.06, and no clear trend with the effective temperature. The trend indicates that the abundance of lithium plateau may not be primordial and that a part of the lithium was produced in Galactic Chemical Evolution (GCE).

  16. Unprecedented accurate abundances: signatures of other Earths?

    Melendez, J; Gustafsson, B; Yong, D; Ramírez, I

    2009-01-01

    For more than 140 years the chemical composition of our Sun has been considered typical of solar-type stars. Our highly differential elemental abundance analysis of unprecedented accuracy (~0.01 dex) of the Sun relative to solar twins, shows that the Sun has a peculiar chemical composition with a ~20% depletion of refractory elements relative to the volatile elements in comparison with solar twins. The abundance differences correlate strongly with the condensation temperatures of the elements. A similar study of solar analogs from planet surveys shows that this peculiarity also holds in comparisons with solar analogs known to have close-in giant planets while the majority of solar analogs without detected giant planets show the solar abundance pattern. The peculiarities in the solar chemical composition can be explained as signatures of the formation of terrestrial planets like our own Earth.

  17. Chemical networks*

    Thi Wing-Fai

    2015-01-01

    This chapter discusses the fundamental ideas of how chemical networks are build, their strengths and limitations. The chemical reactions that occur in disks combine the cold phase reactions used to model cold molecular clouds with the hot chemistry applied to planetary atmosphere models. With a general understanding of the different types of reactions that can occur, one can proceed in building a network of chemical reactions and use it to explain the abundance of species seen in disks. One o...

  18. THE ATOMIC WEIGHTS COMMISSION AND ISOTOPIC ABUNDANCE RATIO DETERMINATIONS.

    HOLDEN, N.E.

    2005-08-07

    Following Thomson's discovery of stable isotopes in non-radioactive chemical elements, the derivation of atomic weight values from mass spectrometric measurements of isotopic abundance ratios moved very slowly. Forty years later, only 3 1/2 % of the recommended values were based on mass spectrometric measurements and only 38% in the first half century. It might be noted that two chemical elements (tellurium and mercury) are still based on chemical measurements, where the atomic weight value calculated from the relative isotopic abundance measurement either agrees with the value from the chemical measurement or the atomic weight value calculated from the relative isotopic abundance measurement falls within the uncertainty of the chemical measurement of the atomic weight. Of the 19 chemical elements, whose atomic weight is based on non-corrected relative isotopic abundance measurements, five of these are two isotope systems (indium, iridium, lanthanum, lutetium and tantalum) and one is a three-isotope system (oxygen).

  19. Abundances in Damped Ly-alpha Galaxies

    Molaro, Paolo

    2005-01-01

    Damped Ly_alpha galaxies provide a sample of young galaxies where chemical abundances can be derived throughout the whole universe with an accuracy comparable to that for the local universe. Despite a large spread in redshift, HI column density and metallicity, DLA galaxies show a remarkable uniformity in the elemental ratios rather suggestive of similar chemical evolution if not of an unique population. These galaxies are characterized by a moderate, if any, enhancement of alpha-elements ove...

  20. The Galactic Thick Disk Stellar Abundances

    Prochaska, J X; Carney, B W; McWilliam, A; Wolfe, A M; Prochaska, Jason X.; Naumov, Sergei O.; Carney, Bruce W.; William, Andrew Mc; Wolfe, Arthur M.

    2000-01-01

    We present first results from a program to measure the chemical abundances of a large (N>30) sample of thick disk stars with the principal goal of investigating the formation history of the Galactic thick disk. Our analysis confirms previous studies of O and Mg in the thick disk stars which reported enhancements in excess of the thin disk population. Furthermore, the observations of Si, Ca, Ti, Mn, Co, V, Zn, Al, and Eu all argue that the thick disk population has a distinct chemical history from the thin disk. With the exception of V and Co, the thick disk abundance patterns match or tend towards the values observed for halo stars with [Fe/H]~-1. This suggests that the thick disk stars had a chemical enrichment history similar to the metal-rich halo stars. With the possible exception of Si, the thick disk abundance patterns are in excellent agreement with the chemical abundances observed in the metal-poor bulge stars suggesting the two populations formed from the same gas reservoir at a common epoch. We disc...

  1. Orion A helium abundance

    The 22.4-GHz (H,He)66-alpha and 36.5-GHz (H,He)56-alpha radio recombination lines have been observed at several Jaffe-Pankonin positions in the central part of the Orion A source. The measured relative abundance of ionized helium increases with distance, averaging 11.6 percent at peripheral points. The observed behavior is interpreted by a blister-type model nebula, which implies that Orion A has a true He abundance of 12 percent, is moving with a radial velocity of 5 km/sec, and is expanding. 18 references

  2. Models of Chemical Evolution

    Matteucci, Francesca

    2003-01-01

    The basic principles underlying galactic chemical evolution and the most important results of chemical evolution models are discussed. In particular, the chemical evolution of the Milky Way galaxy, for which we possess the majority of observational constraints, is described. Then, it is shown how different star formation histories influence the chemical evolution of galaxies of different morphological type. Finally, the role of abundances and abundance ratios as cosmic clocks is emphasized an...

  3. Galactic abundance gradients from Cepheids : On the iron abundance gradient around 10-12 kpc

    Lemasle, B.; Francois, P.; Piersimoni, A.; Pedicelli, S.; Bono, G.; Laney, C. D.; Primas, F.; Romaniello, M.

    2008-01-01

    Context: Classical Cepheids can be adopted to trace the chemical evolution of the Galactic disk since their distances can be estimated with very high accuracy. Aims: Homogeneous iron abundance measurements for 33 Galactic Cepheids located in the outer disk together with accurate distance determinations based on near-infrared photometry are adopted to constrain the Galactic iron gradient beyond 10 kpc. Methods: Iron abundances were determined using high resolution Cepheid spectra collected wit...

  4. Surface abundances of ON stars

    Martins, F.; Simón-Díaz, S.; Palacios, A.; Howarth, I.; Georgy, C.; Walborn, N. R.; Bouret, J.-C.; Barbá, R.

    2015-06-01

    Context. Massive stars burn hydrogen through the CNO cycle during most of their evolution. When mixing is efficient or when mass transfer in binary systems occurs, chemically processed material is observed at the surface of O and B stars. Aims: ON stars show stronger lines of nitrogen than morphologically normal counterparts. Whether this corresponds to the presence of material processed through the CNO cycle is not known. Our goal is to answer this question. Methods: We performed a spectroscopic analysis of a sample of ON stars with atmosphere models. We determined the fundamental parameters as well as the He, C, N, and O surface abundances. We also measured the projected rotational velocities. We compared the properties of the ON stars to those of normal O stars. Results: We show that ON stars are usually rich in helium. Their CNO surface abundances are fully consistent with predictions of nucleosynthesis. ON stars are more chemically evolved and rotate - on average - faster than normal O stars. Evolutionary models including rotation cannot account for the extreme enrichment observed among ON main sequence stars. Some ON stars are members of binary systems, but others are single stars as indicated by stable radial velocities. Mass transfer is therefore not a simple explanation for the observed chemical properties. Conclusions: We conclude that ON stars show extreme chemical enrichment at their surface, consistent with nucleosynthesis through the CNO cycle. Its origin is not clear at present. Based on observations obtained 1) at the Anglo-Australian Telescope; 2) at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii; 3) at the ESO/La Silla Observatory under programs 081.D-2008, 083.D-0589, 086.D-0997; 4) the Nordic Optical Telescope, operated on the island of La

  5. Radial molecular abundances and gas cooling in starless cores

    Sipilä, O

    2012-01-01

    Aims: We aim to simulate radial profiles of molecular abundances and the gas temperature in cold and heavily shielded starless cores by combining chemical and radiative transfer models. Methods: A determination of the dust temperature in a modified Bonnor-Ebert sphere is used to calculate initial radial molecular abundance profiles. The abundances of selected cooling molecules corresponding to two different core ages are then extracted to determine the gas temperature at two time steps. The calculation is repeated in an iterative process yielding molecular abundances consistent with the gas temperature. Line emission profiles for selected substances are calculated using simulated abundance profiles. Results: The gas temperature is a function of time; the gas heats up as the core gets older because the cooling molecules are depleted onto grain surfaces. The contributions of the various cooling molecules to the total cooling power change with time. Radial chemical abundance profiles are non-trivial: different s...

  6. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  7. A pedagogy of abundance

    Weller, Martin

    2011-01-01

    The digitisation of content combined with a global network for delivery and an open system for sharing has seen radical changes in many industries. The economic model which has underpinned many content based industries has been based on an assumption of scarcity. With a digital, open, networked approach we are witnessing a shift to abundance of content, and subsequently new economic models are being developed which have this as an assumption. In this article the role of scarcity in developing...

  8. Interstellar Atomic Abundances

    Jenkins, E B

    2003-01-01

    A broad array of interstellar absorption features that appear in the ultraviolet spectra of bright sources allows us to measure the abundances and ionization states of many important heavy elements that exist as free atoms in the interstellar medium. By comparing these abundances with reference values in the Sun, we find that some elements have abundances relative to hydrogen that are approximately consistent with their respective solar values, while others are depleted by factors that range from a few up to around 1000. These depletions are caused by the atoms condensing into solid form onto dust grains. Their strengths are governed by the volatility of compounds that are produced, together with the densities and velocities of the gas clouds. We may characterize the depletion trends in terms of a limited set of parameters; ones derived here are based on measurements of 15 elements toward 144 stars with known values of N(H I) and N(H2). In turn, these parameters may be applied to studies of the production, de...

  9. Abundances in galaxies

    Standard (or mildly inhomogeneous) Big Bang nucleosynthesis theory is well confirmed by abundance measurements of light elements up to 7Li and the resulting upper limit to the number of neutrino families confirmed in accelerator experiments. Extreme inhomogeneous models with a closure density in form of baryons seem to be ruled out and there is no evidence for a cosmic 'floor' to 9Be or heavier elements predicted in some versions of those models. Galaxies show a correlation between luminous mass and abundance of carbon and heavier elements, usually attributed to escape of hot gas from shallow potential wells. Uncertainties include the role of dark matter and biparametric behaviour of ellipticals. Spirals have radial gradients which may arise from a variety of causes. In our own Galaxy one can distinguish three stellar populations - disk, halo and bulge - characterised by differing metallicity distribution functions. Differential abundance effects are found among different elements in stars as a function of metallicity and presumably age, notably in the ratio of oxygen and α-particle elements to iron. These may eventually be exploitable to set a time scale for the formation of the halo, bulge and disk. (orig.)

  10. Radial molecular abundances and gas cooling in starless cores

    Sipilä, O.

    2012-01-01

    Aims: We aim to simulate radial profiles of molecular abundances and the gas temperature in cold and heavily shielded starless cores by combining chemical and radiative transfer models. Methods: A determination of the dust temperature in a modified Bonnor-Ebert sphere is used to calculate initial radial molecular abundance profiles. The abundances of selected cooling molecules corresponding to two different core ages are then extracted to determine the gas temperature at two time steps. The c...

  11. Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    Cowan, J J; Sneden, C; Den Hartog, E A; Collier, J L; Cowan, John J.; Lawler, James E.; Sneden, Christopher; Collier, Jason

    2006-01-01

    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nucleosynthesis. In addition age determinations, based upon long-lived radioactive nuclei abundances, can now be obtained. These stellar abundance determinations depend critically upon atomic data. Improved laboratory transition probabilities have been recently obtained for a number of elements. These new gf values have been used to greatly refine the abundances of neutron-capture elemental abundances in the solar photosphere and in very metal-poor Galactic halo stars. The newly determined stellar abundances are surprisingl...

  12. Abundance, Excess, Waste

    Rox De Luca

    2016-02-01

    Her recent work focuses on the concepts of abundance, excess and waste. These concerns translate directly into vibrant and colourful garlands that she constructs from discarded plastics collected on Bondi Beach where she lives. The process of collecting is fastidious, as is the process of sorting and grading the plastics by colour and size. This initial gathering and sorting process is followed by threading the components onto strings of wire. When completed, these assemblages stand in stark contrast to the ease of disposability associated with the materials that arrive on the shoreline as evidence of our collective human neglect and destruction of the environment around us. The contrast is heightened by the fact that the constructed garlands embody the paradoxical beauty of our plastic waste byproducts, while also evoking the ways by which those byproducts similarly accumulate in randomly assorted patterns across the oceans and beaches of the planet.

  13. Evolutionary origin of power-laws in Biochemical Reaction Network; embedding abundance distribution into topology

    Furusawa, Chikara; Kaneko, Kunihiko

    2005-01-01

    The evolutionary origin of universal statistics in biochemical reaction network is studied, to explain the power-law distribution of reaction links and the power-law distributions of chemical abundances. Using cell models with catalytic reaction network, we find evidence that the power-law distribution in abundances of chemicals emerges by the selection of cells with higher growth speeds. Through the further evolution, this inhomogeneity in chemical abundances is shown to be embedded in the d...

  14. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    Blecic, Jasmina; Bowman, M Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...

  15. Primordial Deuterium Abundance Measurements

    Levshakov, S A; Takahara, F; Levshakov, Sergei A.; Kegel, Wilhelm H.; Takahara, Fumio

    1997-01-01

    Deuterium abundances measured recently from QSO absorption-line systems lie in the range from 3 10^{-5} to 3 10^{-4}, which shed some questions on standard big bang theory. We show that this discordance may simply be an artifact caused by inadequate analysis ignoring spatial correlations in the velocity field in turbulent media. The generalized procedure (accounting for such correlations) is suggested to reconcile the D/H measurements. An example is presented based on two high-resolution observations of Q1009+2956 (low D/H) [1,2] and Q1718+4807 (high D/H) [8,9]. We show that both observations are compatible with D/H = 4.1 - 4.6 10^{-5}, and thus support SBBN. The estimated mean value = 4.4 10^{-5} corresponds to the baryon-to-photon ratio during SBBN eta = 4.4 10^{-10} which yields the present-day baryon density Omega_b h^2 = 0.015.

  16. Beryllium Abundances in Solar Mass Stars

    Krugler, J. A.; Boesgaard, A. M.

    2008-08-01

    Light element abundance analysis allows for a deeper understanding of the chemical composition of a star beneath its surface. Beryllium provides a probe down to 3.5×106 K, where it fuses with protons. In this study, Be abundances were determined for 52 F and G dwarfs selected from a sample of local thin disc stars. These stars were selected by mass to range from 0.9 to 1.1 M⊙. They have effective temperatures from 5600 to 6400 K, and their metallicities [Fe/H]=-0.65 to +0.11. The data were taken with the Keck HIRES instrument and the Gecko spectrograph on the Canada France Hawaii Telescope. The abundances were calculated via spectral synthesis and were analyzed to investigate the Be abundance as a function of age, temperature, metallicity, and its relation to the lithium abundance for this narrow mass range. Be is found to decrease linearly with metallicity down to [Fe/H]˜-4.0 with slope 0.86 ± 0.02. The relation of the Be abundance to effective temperature is dependent upon metallicity, but when metallicity effects are taken into account, there is a spread ˜1.2 dex. We find a 1.5 dex spread in A(Be) when plotted against age, with the largest spread occurring from 6-8 Gyr. The relation with Li is found to be linear with slope 0.36 ± 0.06 for the temperature regime of 5900-6300 K.

  17. The evolution of abundances in the galaxy

    This very brief review of the evolution of the abundances in our Galaxy first recalls the main observational facts regarding such abundances which have to be taken into account by any model of chemical evolution of our Galaxy. After having defined what are the crucial parameters which define such models, the emphasis is made on two approaches: the first analyzed by Vangioni--Flam and Audouze, 1988, and Andreani et al., 1988, in which the rate of star formation is bimodal i.e., is allowed to vary with time, and the second favoured by Matteucci and Francois, 1989, who invoke a multizone galactic model with infall (inflow) of external gas into the galactic disk. A list of problems to be considered in future work is finally proposed

  18. Element Abundances through the Cosmic Ages

    Pettini, M

    2003-01-01

    The horizon for studies of element abundances has expanded dramatically in the last ten years. Once the domain of astronomers concerned chiefly with stars and nearby galaxies, this field has now become a key component of observational cosmology, as technological advances have made it possible to measure the abundances of several chemical elements in a variety of environments at redshifts up to z = 4, when the universe was in its infancy. In this series of lectures I summarise current knowledge on the chemical make-up of distant galaxies observed directly in their starlight, and of interstellar and intergalactic gas seen in absorption against the spectra of bright background sources. The picture which is emerging is one where the universe at z = 3 already included many of the constituents of today's galaxies-even at these early times we see evidence for Population I and II stars, while the `smoking gun' for Population III objects may be hidden in the chemical composition of the lowest density regions of the in...

  19. Abundance Survey of M and K Dwarf Stars

    Woolf, Vincent M. [Astronomy Department, University of Washington, Seattle, WA 98133 (United States); Wallerstein, George [Astronomy Department, University of Washington, Seattle, WA 98133 (United States)

    2005-07-25

    We report the measurement of chemical abundances in 35 low-mass main sequence (M and K dwarf) stars. We have measured the abundance of 12 elements in Kapteyn's Star, a nearby halo M subdwarf. The abundances indicate an iron abundance of [Fe/H] = -0.98, which is about 0.5 dex smaller than that measured in the only previous published measurement using atomic absorption lines. We have measured Fe and Ti abundances in 35 M and K dwarfs with -2.39 [Fe/H] +0.21 using atomic absorption lines, mostly in the 8000A <{lambda} < 8850A range. These will be used to calibrate photometric and low-resolution spectrum metallicity indices for low mass dwarfs, which will make metallicity estimates for these stars more certain. We also describe some difficulties encountered which are not normally necessary to consider when studying warmer stars.

  20. Nucleosynthesis: Stellar and Solar Abundances and Atomic Data

    Cowan, John J.; Lawler, James E.; Sneden, Christopher; Hartog, E.A. den; Collier, Jason

    2006-01-01

    Abundance observations indicate the presence of often surprisingly large amounts of neutron capture (i.e., s- and r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis. Comparisons of abundance trends can be used to understand the chemical evolution of the Galaxy and the nature of heavy element nu...

  1. Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A.

    2011-01-01

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and ve...

  2. Chemical networks

    Thi, Wing-Fai

    2015-09-01

    This chapter discusses the fundamental ideas of how chemical networks are build, their strengths and limitations. The chemical reactions that occur in disks combine the cold phase reactions used to model cold molecular clouds with the hot chemistry applied to planetary atmosphere models. With a general understanding of the different types of reactions that can occur, one can proceed in building a network of chemical reactions and use it to explain the abundance of species seen in disks. One on-going research subject is finding new paths to synthesize species either in the gas-phase or on grain surfaces. Specific formation routes for water or carbon monoxide are discussed in more details. 13th Lecture of the Summer School "Protoplanetary Disks: Theory and Modelling Meet Observations"

  3. Nitrogen and oxygen abundances in the Local Universe

    Vincenzo, Fiorenzo; Belfiore, Francesco; MAIOLINO, Roberto; Matteucci, Francesca; Ventura, Paolo

    2016-01-01

    We present chemical evolution models aimed at reproducing the observed (N/O) vs. (O/H) abundance pattern of star forming galaxies in the Local Universe. We derive gas-phase abundances from SDSS spectroscopy and a complementary sample of low-metallicity dwarf galaxies, making use of a consistent set of abundance calibrations. This collection of data clearly confirms the existence of a plateau in the (N/O) ratio at very low metallicity, followed by an increase of this ratio up to high values as...

  4. Abundances in Stars with Debris Disks

    Ritchey, Adam M; Stone, Myra; Wallerstein, George

    2013-01-01

    We present preliminary results of a detailed chemical abundance analysis for a sample of solar-type stars known to exhibit excess infrared emission associated with dusty debris disks. Our sample of 28 stars was selected based on results from the Formation and Evolution of Planetary Systems (FEPS) Spitzer Legacy Program, for the purpose of investigating whether the stellar atmospheres have been polluted with planetary material, which could indicate that the metallicity enhancement in stars with planets is due to metal-rich infall in the later stages of star and planet formation. The preliminary results presented here consist of precise abundances for 15 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Co, and Ni) for half of the stars in our sample. We find that none of the stars investigated so far exhibit the expected trend of increasing elemental abundance with increasing condensation temperature, which would result from the stars having accreted planetary debris. Rather, the slopes of linear least...

  5. CH abundance gradient in TMC-1

    Suutarinen, Aleksi; Harju, Jorma; Heikkilä, Arto; Hotzel, Stephan; Juvela, Mika; Millar, Tom J; Walsh, Catherina; Wouterloot, Jan Gerard Amos

    2011-01-01

    We observed the 9-cm Lambda-doubling lines of CH along the dense filament of TMC-1. The CH column densities were compared with the total H2 column densities derived using the 2MASS NIR data and previously published SCUBA maps and with OH column densities derived using previous observations with Effelsberg. We also modelled the chemical evolution of TMC-1 adopting physical conditions typical of dark clouds using the UMIST Database for Astrochemistry gas-phase reaction network to aid the interpretation of the observed OH/CH abundance ratios. The CH column density has a clear peak in the vicinity of the cyanopolyyne maximum of TMC-1. The fractional CH abundance relative to H2 increases steadily from the northwestern end of the filament where it lies around 1.0e-8, to the southeast where it reaches a value of 2.0e-8. The OH and CH column densities are well correlated, and we obtained OH/CH abundance ratios of ~ 16 - 20. These values are clearly larger than what has been measured recently in diffuse interstellar g...

  6. Estimating Animal Abundance: Review III

    Schwarz, Carl J; Seber, George A. F.

    1999-01-01

    The literature describing methods for estimating animal abundance and related parameters continues to grow. This paper reviews recent developments in the subject over the past seven years and updates two previous reviews.

  7. Chromospheric Models and the Oxygen Abundance in Giant Stars

    Dupree, A. K.; Avrett, E. H.; Kurucz, R. L.

    2016-04-01

    Realistic stellar atmospheric models of two typical metal-poor giant stars in Omega Centauri, which include a chromosphere (CHR), influence the formation of optical lines of O i: the forbidden lines (λ6300, λ6363) and the infrared triplet (λλ7771‑7775). One-dimensional semi-empirical non-local thermodynamic equilibrium (LTE) models are constructed based on observed Balmer lines. A full non-LTE formulation is applied for evaluating the line strengths of O i, including photoionization by the Lyman continuum and photoexcitation by Lyα and Lyβ. Chromospheric models (CHR) yield forbidden oxygen transitions that are stronger than those in radiative/convective equilibrium (RCE) models. The triplet oxygen lines from high levels also appear stronger than those produced in an RCE model. The inferred oxygen abundance from realistic CHR models for these two stars is decreased by factors of ∼3 as compared to values derived from RCE models. A lower oxygen abundance suggests that intermediate-mass AGB stars contribute to the observed abundance pattern in globular clusters. A change in the oxygen abundance of metal-poor field giants could affect models of deep mixing episodes on the red giant branch. Changes in the oxygen abundance can impact other abundance determinations that are critical to astrophysics, including chemical tagging techniques and galactic chemical evolution.

  8. Abundances of the elements in the intergalactic medium

    We present a summary of the X-ray and optical spectroscopic data on emission lines from Z>6 elements in clusters of galaxies. The best data exists for Fe. For the ∼30 well observed clusters the mean Fe abundance is ∼1.4x10-5 (∼0.4 solar) but there appears to be a real variation of at least a factor of 2. X-ray emission lines from O, Mg, Si and S have been detected and their abundances are within a factor of a few of solar. Analysis of optical emission lines from cooling gas due to O, N and S also indicates abundances not too far from solar values. We discuss the implications of the presence of heavy elements in the intergalactic medium of clusters for the evolution of the chemical abundances of galaxies

  9. On the origin of elemental abundances in the terrestrial planets

    Elser, Sebastian; Moore, Ben

    2012-01-01

    The abundances of elements in the Earth and the terrestrial planets provide the initial conditions for life and clues as to the history and formation of the Solar System. We follow the pioneering work of Bond et al. (2010) and combine circumstellar disk models, chemical equilibrium calculations and dynamical simulations of planet formation to study the bulk composition of rocky planets. We use condensation sequence calculations to estimate the initial abundance of solids in the circumstellar disk with properties determined from time dependent theoretical models. We combine this with dynamical simulations of planetesimal growth that trace the solids during the planet formation process. We calculate the elemental abundances in the resulting planets and explore how these vary with the choice of disk model and the initial conditions within the Solar Nebula. Although certain characteristics of the terrestrial planets in the Solar System could be reproduced, none of our models could reproduce the abundance properti...

  10. Solar and Stellar Photospheric Abundances

    Prieto, Carlos Allende

    2016-01-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  11. Solar and stellar photospheric abundances

    Allende Prieto, Carlos

    2016-07-01

    The determination of photospheric abundances in late-type stars from spectroscopic observations is a well-established field, built on solid theoretical foundations. Improving those foundations to refine the accuracy of the inferred abundances has proven challenging, but progress has been made. In parallel, developments on instrumentation, chiefly regarding multi-object spectroscopy, have been spectacular, and a number of projects are collecting large numbers of observations for stars across the Milky Way and nearby galaxies, promising important advances in our understanding of galaxy formation and evolution. After providing a brief description of the basic physics and input data involved in the analysis of stellar spectra, a review is made of the analysis steps, and the available tools to cope with large observational efforts. The paper closes with a quick overview of relevant ongoing and planned spectroscopic surveys, and highlights of recent research on photospheric abundances.

  12. Metal abundance range in the Draco dwarf galaxy

    The multichannel scanner of the Hale telescope was used to measure the spectral flux distributions of 23 red giants in the Draco system over the range lambda lambda 3240 to 7620. The memberships of these stars in Draco were checked by use of the spectral scans, and for 17 of them the observations are of sufficient quality that estimates of metal abundance can be made. The scans of the Draco stars resemble in every way the scans of red giants in globular clusters. Large differences are seen among the scans of the Draco stars, which are due to a range in Fe/H. The distribution over metal abundance was found from the abundance estimates; its half-width corresponds to an abundance range of a factor of 2.7. The mean metal abundance [Fe/H] = -1.86 +- 0.09, which is larger than the abundance of M92. This result does not support the previous claims that Draco is more metal poor than the most metal-deficient globular clusters. The implications of these results for the interpetations of Draco's color--magnitude diagram and variable star population are discussed. The chemical evolution of Draco was modeled with simple models that assume mass loss and prompt initial enrichment. These models provide adequate fits to the observed abundance distribution, and suggest that the proto-Draco was initially approx. 100 times more massive than Draco is today. 10 figures, 2 tables

  13. Chemical inhomogeneities and pulsation

    Turcotte, S.

    2001-01-01

    Major improvements in models of chemically peculiar stars have been achieved in the past few years. With these new models it has been possible to test quantitatively some of the processes involved in the formation of abundance anomalies and their effect on stellar structure. The models of metallic A (Am) stars have shown that a much deeper mixing has to be present to account for observed abundance anomalies. This has implications on their variability, which these models also reproduce qualita...

  14. Steelhead Abundance - Point Features [ds184

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  15. Coho Abundance - Point Features [ds182

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  16. Coho Abundance - Linear Features [ds183

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  17. Chinook Abundance - Point Features [ds180

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  18. Steelhead Abundance - Linear Features [ds185

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. Beginning in 1998, the Pacific States Marine...

  19. CHEMICAL ABUNDANCES OF THE MAGNETIC CP STAR HD 168733

    Ana Collado

    2009-01-01

    Full Text Available Se ha llevado a cabo un an lisis detallado de las abundancias en la estrella CP magn tica HD 168733 utilizando espectros de alta resoluci n obtenidos con el espectr grafo echelle EBASIM del telescopio de 2.1 m de CASLEO en Argentina. Los espectros cubren la regi n 382{700 nm. La estrella no puede ser clasi cada ni como una peculiar de HgMn ni como perteneciente al grupo CP2 de silicio. Comparada con el Sol, C, N son levementes sobreabundantes mientras que el Mg y S son de cientes, Si es normal y P y Cl son sobreabundantes. Los elementos del pico de hierro: Sc, Ti, Cr y Fe son sobreabundantes. Se han identi cado tambi n l neas de Ti III y Fe III. HD 168733 muestra una gran sobreabundancia de Ga, Sr, Y, Zr, Xe, Pt, Hg y algunas tierras raras.

  20. H II Regions and Protosolar Abundances in Galactic Chemical Evolution

    L. Carigi

    2011-01-01

    Full Text Available Presentamos modelos de evolución química del disco galáctico con diferentes rendimientos dependientes de Z. Encontramos que una tasa moderada de pérdida de masa en estrellas masivas de metalicidad solar produce un excelente ajuste con los gradientes de C/H y C/O del disco de la Galaxia. El mejor modelo reproduce: las abundancias de H, He, C y O derivadas de líneas de recombinación en M17, las abundancias protosolares y las relaciones C/O-O/H, C/Fe-Fe/H y O/Fe-Fe/H derivadas de estrellas de la vecindad solar. La concordancia del modelo con las abundancias protosolares implica que el Sol se originó a una distancia galactocéntrica similar a la actual. El modelo para r = 3 kpc implica que una fracción de las estrellas en la dirección del bulbo se formó en el disco interno. Nuestro modelo reproduce la relación C/O-O/H derivada de regiones H II extragalácticas en galaxias espirales.

  1. Hf Transition Probabilities and Abundances

    Lawler, J E; Labby, Z E; Sneden, C; Cowan, J J; Ivans, I I

    2006-01-01

    Radiative lifetimes from laser-induced fluorescence measurements, accurate to about +/- 5 percent, are reported for 41 odd-parity levels of Hf II. The lifetimes are combined with branching fractions measured using Fourier transform spectrometry to determine transition probabilities for 150 lines of Hf II. Approximately half of these new transition probabilities overlap with recent independent measurements using a similar approach. The two sets of measurements are found to be in good agreement for measurements in common. Our new laboratory data are applied to refine the hafnium photospheric solar abundance and to determine hafnium abundances in 10 metal-poor giant stars with enhanced r-process abundances. For the Sun we derive log epsilon (Hf) = 0.88 +/- 0.08 from four lines; the uncertainty is dominated by the weakness of the lines and their blending by other spectral features. Within the uncertainties of our analysis, the r-process-rich stars possess constant Hf/La and Hf/Eu abundance ratios, log epsilon (Hf...

  2. Gd Transition Probabilities and Abundances

    Den Hartog, E A; Sneden, C; Cowan, J J

    2006-01-01

    Radiative lifetimes, accurate to +/- 5%, have been measured for 49 even-parity and 14 odd-parity levels of Gd II using laser-induced fluorescence. The lifetimes are combined with branching fractions measured using Fourier transform spectrometry to determine transition probabilities for 611 lines of Gd II. This work is the largest-scale laboratory study to date of Gd II transition probabilities and the first using a high performance Fourier transform spectrometer. This improved data set has been used to determine a new solar photospheric Gd abundance, log epsilon = 1.11 +/- 0.03. Revised Gd abundances have also been derived for the r-process-rich metal-poor giant stars CS 22892-052, BD+17 3248, and HD 115444. The resulting Gd/Eu abundance ratios are in very good agreement with the solar-system r-process ratio. We have employed the increasingly accurate stellar abundance determinations, resulting in large part from the more precise laboratory atomic data, to predict directly the Solar System r-process elemental...

  3. Chemical evolution of galaxies

    Initial conditions are probably set by results of Big Bang nucleosynthesis (BBNS) without intervening complications affecting the composition of visible matter so that extrapolation of observed abundances to BBNS products seems fairly secure. Primordial helium and deuterium abundances deduced in this way place upper and lower limits on baryonic density implying that both baryonic and non-baryonic dark matter exist and predicting no more than 3 neutrino flavours as recently confirmed in accelerator experiments. The validity of simple galactic chemical evolution models assumed in extrapolating back to the Big Bang is examined in the light of the frequency distribution of iron or oxygen abundances in the Galactic halo, bulge and disk. (orig.)

  4. Chemical evolution of galaxies

    Matteucci, Francesca

    2012-01-01

    The term “chemical evolution of galaxies” refers to the evolution of abundances of chemical species in galaxies, which is due to nuclear processes occurring in stars and to gas flows into and out of galaxies. This book deals with the chemical evolution of galaxies of all morphological types (ellipticals, spirals and irregulars) and stresses the importance of the star formation histories in determining the properties of stellar populations in different galaxies. The topic is approached in a didactical and logical manner via galaxy evolution models which are compared with observational results obtained in the last two decades: The reader is given an introduction to the concept of chemical abundances and learns about the main stellar populations in our Galaxy as well as about the classification of galaxy types and their main observables. In the core of the book, the construction and solution of chemical evolution models are discussed in detail, followed by descriptions and interpretations of observations of ...

  5. Abundance estimation and Conservation Biology

    Nichols, J. D.

    2004-06-01

    Full Text Available Abundance is the state variable of interest in most population–level ecological research and in most programs involving management and conservation of animal populations. Abundance is the single parameter of interest in capture–recapture models for closed populations (e.g., Darroch, 1958; Otis et al., 1978; Chao, 2001. The initial capture–recapture models developed for partially (Darroch, 1959 and completely (Jolly, 1965; Seber, 1965 open populations represented efforts to relax the restrictive assumption of population closure for the purpose of estimating abundance. Subsequent emphases in capture–recapture work were on survival rate estimation in the 1970’s and 1980’s (e.g., Burnham et al., 1987; Lebreton et al.,1992, and on movement estimation in the 1990’s (Brownie et al., 1993; Schwarz et al., 1993. However, from the mid–1990’s until the present time, capture–recapture investigators have expressed a renewed interest in abundance and related parameters (Pradel, 1996; Schwarz & Arnason, 1996; Schwarz, 2001. The focus of this session was abundance, and presentations covered topics ranging from estimation of abundance and rate of change in abundance, to inferences about the demographic processes underlying changes in abundance, to occupancy as a surrogate of abundance. The plenary paper by Link & Barker (2004 is provocative and very interesting, and it contains a number of important messages and suggestions. Link & Barker (2004 emphasize that the increasing complexity of capture–recapture models has resulted in large numbers of parameters and that a challenge to ecologists is to extract ecological signals from this complexity. They offer hierarchical models as a natural approach to inference in which traditional parameters are viewed as realizations of stochastic processes. These processes are governed by hyperparameters, and the inferential approach focuses on these hyperparameters. Link & Barker (2004 also suggest that

  6. Fluorine Abundances in the Milky Way Bulge

    Cunha, K; Gibson, B K

    2008-01-01

    Fluorine (19F) abundances are derived in a sample of 6 bulge red giants in Baade's Window. These giants span a factor of 10 in metallicity and this is the first study to define the behavior of 19F with metallicity in the bulge. The bulge results show an increase in F/O with increasing oxygen. This trend overlaps what is found in the disk at comparable metallicities, with the most oxygen-rich bulge target extending the disk trend. The increase in F/O in the disk arises from 19F synthesis in both asymptotic giant branch (AGB) stars and metal-rich Wolf-Rayet (WR) stars through stellar winds. The lack of an s-process enhancement in the most fluorine-rich bulge giant in this study, suggests that WR stars represented a larger contribution than AGB stars to 19F production in the bulge when compared to the disk. If this result for fluorine is combined with the previously published overall decline in the O/Mg abundance ratios in metal-rich bulge stars, it suggests that WR winds played a role in shaping chemical evolut...

  7. Manganese abundances in Galactic bulge red giants

    Barbuy, B; Zoccali, M; Minniti, D; Renzini, A; Ortolani, S; Gomez, A; Trevisan, M; Dutra, N

    2013-01-01

    Manganese is mainly produced in type II SNe during explosive silicon burning, in incomplete Si-burning regions, and depends on several nucleosynthesis environment conditions, such as mass cut beween the matter ejected and falling back onto the remnant, electron and neutron excesses, mixing fallback, and explosion energy. Manganese is also produced in type Ia SNe. The aim of this work is the study of abundances of the iron-peak element Mn in 56 bulge giants, among which 13 are red clump stars. Four bulge fields along the minor axis are inspected. The study of abundances of Mn-over-Fe as a function of metallicity in the Galactic bulge may shed light on its production mechanisms. High-resolution spectra were obtained using the FLAMES+UVES spectrograph on the Very Large Telescope. The spectra were obtained within a program to observe 800 stars using the GIRAFFE spectrograph, together with the present UVES spectra. We aim at identifying the chemical evolution of manganese, as a function of metallicity, in the Gala...

  8. Helium in Chemically Peculiar Stars

    Leone, F.

    1998-01-01

    For the purpose of deriving the helium abundances in chemically peculiar stars, the importance of assuming a correct helium abundance has been investigated for determining the effective temperature and gravity of main sequence B-type stars, making full use of the present capability of reproducing their helium lines. Even if the flux distribution of main sequence B-type stars appears to depend only on the effective temperature for any helium abundance, the effective temperature, gravity and he...

  9. Sulfur and zinc abundances of red giant stars

    Takeda, Yoichi; Harakawa, Hiroki; Sato, Bun'ei

    2016-01-01

    Sulfur and zinc are chemically volatile elements, which play significant roles as depletion-free tracers in studying galactic chemical evolution. However, regarding red giants having evolved off the main sequence, reliable abundance determinations of S and Zn seem to be difficult despite that a few studies have been reported so far. Given this situation, we tried to establish the abundances of these elements for an extensive sample of 239 field GK giants (-0.8 < [Fe/H] < +0.2), by applying the spectrum-fitting technique to S I 8694-5, S I 6757, and Zn I 6362 lines and by taking into account the non-LTE effect. Besides, similar abundance analysis was done for 160 FGK dwarfs to be used for comparison. The non-LTE corrections for the S and Zn abundances derived from these lines turned out < 0.1(-0.2) dex for most cases and not very significant. It revealed that the S I 6757 feature is more reliable as an abundance indicator than S I 8694-5 for the case of red giants, because the latter suffers blending ...

  10. Abundance analysis of s-process enhanced barium stars

    Mahanta, Upakul; Karinkuzhi, Drisya; Goswami, Aruna; Duorah, Kalpana

    2016-08-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ˜42000) of these objects spanning a wavelength range from 4000 to 6800 Å, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature Teff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] ≥ 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars with [Ba/Fe] ˜ 0.4. The derived abundances of the elements are interpreted on the basis of existing theories for understanding their origin and evolution.

  11. SULFUR ABUNDANCES IN THE ORION ASSOCIATION B STARS

    Sulfur abundances are derived for a sample of 10 B main-sequence star members of the Orion association. The analysis is based on LTE plane-parallel model atmospheres and non-LTE line formation theory by means of a self-consistent spectrum synthesis analysis of lines from two ionization states of sulfur, S II and S III. The observations are high-resolution spectra obtained with the ARCES spectrograph at the Apache Point Observatory. The abundance distribution obtained for the Orion targets is homogeneous within the expected errors in the analysis: A(S) = 7.15 ± 0.05. This average abundance result is in agreement with the recommended solar value (both from modeling of the photospheres in one-dimensional and three-dimensional, and meteorites) and indicates that little, if any, chemical evolution of sulfur has taken place in the last ∼4.5 billion years. The sulfur abundances of the young stars in Orion are found to agree well with results for the Orion Nebulae, and place strong constraints on the amount of sulfur depletion onto grains as being very modest or nonexistent. The sulfur abundances for Orion are consistent with other measurements at a similar galactocentric radius: combined with previous results for other OB-type stars produce a relatively shallow sulfur abundance gradient with a slope of -0.037 ± 0.012 dex kpc-1.

  12. Sm Transition Probabilities and Abundances

    Lawler, J E; Sneden, C; Cowan, J J

    2005-01-01

    Radiative lifetimes, accurate to +/- 5%, have been measured for 212 odd-parity levels of Sm II using laser-induced fluorescence. The lifetimes are combined with branching fractions measured using Fourier-transform spectrometry to determine transition probabilities for more than 900 lines of Sm II. This work is the largest-scale laboratory study to date of Sm II transition probabilities using modern methods. This improved data set has been used to determine a new solar photospheric Sm abundance, log epsilon = 1.00 +/- 0.03, from 26 lines. The spectra of three very metal-poor, neutron-capture-rich stars also have been analyzed, employing between 55 and 72 Sm II lines per star. The abundance ratios of Sm relative to other rare earth elements in these stars are in agreement, and are consistent with ratios expected from rapid neutron-capture nucleosynthesis (the r-process).

  13. Oxygen Gas Phase Abundance Revisited

    André, M K; Howk, J C; Ferlet, R; Désert, J M; Hébrard, G; Lacour, S; Lecavelier-des-Etangs, A; Vidal-Madjar, A; Moos, H W

    2003-01-01

    We present new measurements of the interstellar gas-phase oxygen abundance along the sight lines towards 19 early-type galactic stars at an average distance of 2.6 kpc. We derive O {\\small I} column densities from {\\it HST}/STIS observations of the weak 1355 \\AA intersystem transition. We derive total hydrogen column densities [N(H {\\small I})+2N(H$_2$)] using {\\it HST}/STIS observations of \\lya and {\\it FUSE} observations of molecular hydrogen. The molecular hydrogen content of these sight lines ranges from f(H$_2$) = 2N(H$_2$)/[N(H {\\small I})+2N(H$_2$)] = 0.03 to 0.47. The average $$ of 6.3$\\times10^{21}$ cm$^{-2}$ mag$^{-1}$ with a standard deviation of 15% is consistent with previous surveys. The mean oxygen abundance along these sight lines, which probe a wide range of galactic environments in the distant ISM, is 10$^6$ \\oh = $408 \\pm 13$ (1 $\\sigma$ in the mean). %$({\\rm O/H})_{gas} = 408 \\pm 14$(1 $\\sigma$). We see no evidence for decreasing gas-phase oxygen abundance with increasing molecular hydroge...

  14. Planetary nebulae abundances and stellar evolution

    Pottasch, S. R.; Bernard-Salas, J.

    2006-01-01

    A summary is given of planetary nebulae abundances from ISO measurements. It is shown that these nebulae show abundance gradients (with galactocentric distance), which in the case of neon, argon, sulfur and oxygen (with four exceptions) are the same as HII regions and early type star abundance gradients. The abundance of these elements predicted from these gradients at the distance of the Sun from the center are exactly the solar abundance. Sulfur is the exception to this; the reason for this...

  15. Investigating Host Star Abundances as Signatures of Terrestrial Planets

    Teske, J.; Schuler, S.; Cunha, K.; Smith, V.

    2014-03-01

    Kepler has fundamentally changed our view of exoplanets, revealing that Jupiter and Saturn-sized planets are not the most common. Of the current ~3600 Kepler planet candidates, ~65% are ≤2.5 REarth and nearly 300 orbit in/near their host stars' habitable zones (180Kanalog, host star abundances are indicative of the precursor materials available in the protoplanetary disk for incorporation into planets. Our own Sun is deficient by ~20% in refractory elements (Tc=900 K) relative to volatile elements when compared to most (~85%) solar-type stars [3,4,5,6]. This has been proposed as a signature of terrestrial planet formation, with the "missing" refractory elements incorporated into rocky planets [3,7,8]. The amount of missing material in our Sun amounts to that needed to form terrestrial planets [3,7,8], and the abundance patterns in meteorites mirror this solar abundance anomaly [9,10]. However, subsequent studies of stars with/without planets indicate that their abundance patterns may not be so different, or indistinguishable from Galactic chemical evolution [11,12,13]. Here we use traditional stellar abundance analysis (non-automated) to independently re-analyze the Keck/HIRES data presented in Melendez et al. (2012) [6] of one of the best solar twins known to date - though not yet known to host any planets - to investigate their finding of refractory elemental abundance depletion similar to the Sun. We compare our results to similar studies implementing the same type differential abundance analysis to search for a Sun-like abundance pattern using Keck/HIRES spectra of stars discovered by Kepler to host small (terrestrial) planets.

  16. Lead abundance in the uranium star CS 31082-001

    Plez, B.; Hill, V.; Cayrel, R.; Spite, M.; Barbuy, B.; Beers, T.C.; Bonifacio, P.; Primas, F.; Nordström, B.

    2004-01-01

    stars:abundances- physical data and processes: nuclear reactions, nucleosynthesis, abundances- atomic data......stars:abundances- physical data and processes: nuclear reactions, nucleosynthesis, abundances- atomic data...

  17. Galactic chemical evolution: the observational side

    McWilliam, Andrew

    2010-01-01

    In this review I outline some ideas in chemical evolution, necessary for understanding the evolution of galaxies from measured elemental abundance ratios. I then discuss abundance results from studies of Local Group dwarf galaxies and the globular cluster Omega Cen. I present a qualitative scenario of prolonged chemical enrichment in a leaky box that can explain the observed abundance ratios in these systems. Space limitations prevent a comprehensive review of this vast field, so I have restr...

  18. O, Na, Ba and Eu abundance patterns in open clusters

    MacLean, B T; Lattanzio, J

    2014-01-01

    Open clusters are historically regarded as single-aged stellar populations representative of star formation within the Galactic disk. Recent literature has questioned this view, based on discrepant Na abundances relative to the field, and concerns about the longevity of bound clusters contributing to a selection bias: perhaps long-lived open clusters are chemically different to the star formation events that contributed to the Galactic disk. We explore a large sample of high resolution Na, O, Ba & Eu abundances from the literature, homogenized as much as reasonable including accounting for NLTE effects, variations in analysis and choice of spectral lines. Compared to a template globular cluster and representative field stars, we find no significant abundance trends, confirming that the process producing the Na-O anti-correlation in globular clusters is not present in open clusters. Furthermore, previously reported Na-enhancement of open clusters is found to be an artefact of NLTE effects, with the open cl...

  19. VizieR Online Data Catalog: High-precision abundances for stars with planets (Ramirez+, 2014)

    Ramirez, I.; Melendez, J.; Asplund, M.

    2013-11-01

    High-precision stellar parameters and chemical abundances are presented for 111 stars; 52 of them are late-F type dwarfs and 59 are metal-rich solar analogs. The atomic linelist employed in the derivation of chemical abundances is also given. This linelist includes hyperfine structure parameters for some species. The stars' isochrone masses and ages are also reported, along with estimates of chromospheric activity. (5 data files).

  20. Beryllium abundances in stars with planets:Extending the sample

    Gálvez-Ortiz, M C; Hernández, J I González; Israelian, G; Santos, N C; Rebolo, R; Ecuvillon, A

    2011-01-01

    Context: Chemical abundances of light elements as beryllium in planet-host stars allow us to study the planet formation scenarios and/or investigate possible surface pollution processes. Aims: We present here an extension of previous beryllium abundance studies. The complete sample consists of 70 stars hosting planets and 30 stars without known planetary companions. The aim of this paper is to further assess the trends found in previous studies with less number of objects. This will provide more information on the processes of depletion and mixing of light elements in the interior of late type stars, and will provide possible explanations for the abundance differences between stars that host planets and "single" stars. Methods: Using high resolution UVES spectra, we measure beryllium abundances of 26 stars that host planets and 1 "single" star mainly using the \\lambda 3131.065 A Be II line, by fitting synthetic spectra to the observational data. We also compile beryllium abundance measurements of 44 stars hos...

  1. Enhanced Abundances in Spiral Galaxies of the Pegasus I Cluster

    Robertson, Paul; Blanc, Guillermo A

    2011-01-01

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to ISM-ICM interaction, albeit to a lesser degree. Based on the abundances of 3 H I deficient spirals and 2 H I normal spirals, we observe a heavy element abundance offset of +0.13\\pm0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log(O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our resul...

  2. ENHANCED ABUNDANCES IN SPIRAL GALAXIES OF THE PEGASUS I CLUSTER

    Robertson, Paul; Shields, Gregory A.; Blanc, Guillermo A., E-mail: paul@astro.as.utexas.edu, E-mail: shields@astro.as.utexas.edu, E-mail: gblancm@astro.as.utexas.edu [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2012-03-20

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 {+-} 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  3. ENHANCED ABUNDANCES IN SPIRAL GALAXIES OF THE PEGASUS I CLUSTER

    We study the influence of cluster environment on the chemical evolution of spiral galaxies in the Pegasus I cluster. We determine the gas-phase heavy element abundances of six galaxies in Pegasus derived from H II region spectra obtained from integral-field spectroscopy. These abundances are analyzed in the context of Virgo, whose spirals are known to show increasing interstellar metallicity as a function of H I deficiency. The galaxies in the Pegasus cluster, despite its lower density and velocity dispersion, also display gas loss due to interstellar-medium-intracluster-medium interaction, albeit to a lesser degree. Based on the abundances of three H I deficient spirals and two H I normal spirals, we observe a heavy element abundance offset of +0.13 ± 0.07 dex for the H I deficient galaxies. This abundance differential is consistent with the differential observed in Virgo for galaxies with a similar H I deficiency, and we observe a correlation between log (O/H) and the H I deficiency parameter DEF for the two clusters analyzed together. Our results suggest that similar environmental mechanisms are driving the heavy element enhancement in both clusters.

  4. Applications of abundance data and requirements for cosmochemical modeling

    Busemann, H.; Binns, W. R.; Chiappini, C.; Gloeckler, G.; Hoppe, P.; Kirilova, Donka; Leske, R. A.; Manuel, O. K.; Wiens, R. C. (Roger C.)

    2001-01-01

    Understanding the evolution of the universe from Big Bang to its present state requires an understanding of the evolution of the abundances of the elements and isotopes in galaxies, stars, the interstellar medium, the Sun and the heliosphere, planets and meteorites. Processes that change the state of the universe include Big Bang nucleosynthesis, star formation and stellar nucleosynthesis, galactic chemical evolution, propagation of cosmic rays, spallation, ionization and particle transport of interstellar material, formation of the solar system, solar wind emission and its fractionation (FIP/FIT effect), mixing processes in stellar interiors, condensation of material and subsequent geochemical fractionation. Here, we attempt to compile some major issues in cosmochemistry that can be addressed with a better knowledge of the respective element or isotope abundances. Present and future missions such as Genesis, Stardust, Interstellar Pathfinder, and Interstellar Probe, improvements of remote sensing instrumentation and experiments on extraterrestrial material such as meteorites, presolar grains, and lunar or returned planetary or cometary samples will result in an improved database of elemental and isotopic abundances. This includes the primordial abundances of D, 3He, 4He, and 7Li, abundances of the heavier elements in stars and galaxies, the composition of the interstellar medium, solar wind and comets as well as the (highly) volatile elements in the solar system such as helium, nitrogen, oxygen or xenon.

  5. New Radial Abundance Gradients for NGC 628 and NGC 2403

    Berg, Danielle A; Garnett, Donald R; Croxall, Kevin V; Marble, Andrew R; Smith, J D; Gordon, Karl; Kennicutt, Robert C

    2013-01-01

    Motived by recent ISM studies, we present high quality MMT and Gemini spectroscopic observations of H II regions in the nearby spiral galaxies NGC 628 and NGC 2403 in order to measure their chemical abundance gradients. Using long-slit and multi-object mask optical spectroscopy, we obtained measurements of the temperature sensitive auroral lines [O III] {\\lambda}4363 and/or [N II] {\\lambda}5755 at a strength of 4{\\sigma} or greater in 11 H II regions in NGC 628 and 7 regions in NGC 2403. These observations allow us, for the first time, to derive an oxygen abundance gradient in NGC 628 based solely on "direct" oxygen abundances of H II regions: 12 + log(O/H) = (8.43+/-0.03) + (-0.017+/-0.002) x Rg (dex/kpc), with a dispersion in log(O/H) of {\\sigma} = 0.10 dex, from 14 regions with a radial coverage of ~2-19 kpc. This is a significantly shallower slope than found by previous "strong-line" abundance studies. In NGC 2403, we derive an oxygen abundance gradient of 12 + log(O/H) = (8.48+/-0.04) + (-0.032+/-0.007) ...

  6. A note on the abundance conjecture

    Dorsch, Tobias; Lazić, Vladimir

    2014-01-01

    We prove that the abundance conjecture for non-uniruled klt pairs in dimension $n$ implies the abundance conjecture for uniruled klt pairs in dimension $n$, assuming the Minimal Model Program in lower dimensions.

  7. A High Deuterium Abundance at z=0.7

    Webb, J. K.; Carswell, R. F.; Lanzetta, K. M.; Ferlet, R.; Lemoine, M; Vidal-Madjar, A.; Bowen, D. V.

    1997-01-01

    Of the light elements, the primordial abundance of deuterium, (D/H)_p, provides the most sensitive diagnostic for the cosmological mass density parameter Omega_B. Recent high redshift (D/H) measurements are highly discrepant, although this may reflect observational uncertainties. The larger (D/H) values, which imply a low Omega_B and require the Universe to be dominated by non-baryonic matter (dynamical studies indicate a higher total density parameter), cause problems for galactic chemical e...

  8. Abundance analysis of s-process enhanced barium stars

    Mahanta, Upakul; Goswami, Aruna; Duorah, Kalpana

    2016-01-01

    Detailed chemical composition studies of stars with enhanced abundances of neutron-capture elements can provide observational constraints for neutron-capture nucleosynthesis studies and clues for understanding their contribution to the Galactic chemical enrichment. We present abundance results from high-resolution spectral analyses of a sample of four chemically peculiar stars characterized by s-process enhancement. High-Resolution spectra (R ~ 42000) of these objects spanning a wavelength range from 4000 to 6800 A, are taken from the ELODIE archive. We have estimated the stellar atmospheric parameters, the effective temperature T_eff, the surface gravity log g, and metallicity [Fe/H] from local thermodynamic equilibrium analysis using model atmospheres. We report estimates of elemental abundances for several neutron-capture elements, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu and Dy. While HD 49641 and HD 58368 show [Ba/Fe] > 1.16 the other two objects HD 119650 and HD 191010 are found to be mild barium stars wit...

  9. Abundance Distribution of Slow-Process Main Heavy Elements in AGB Stars

    张妙静; 张波; 厉光烈

    2003-01-01

    By re-analysing the results of the theoretical abundance of asymptotic giant branch (AGB) stellar models and the observed abundances of 51 AGB samples, we find that the abundance distribution of s-process main heavy (SMH) elements of any AGB star is similar to the scaled s-process main component of the solar system. This means that superposition of the SMH element abundance distributions of AGB stars should be similar to the scaled solar s-process main component. As a conclusion, the abundance pattern of the solar SMH elements is not only an average result of a complex chemical evolution of galaxy, but also a typical one that can be used as a standard in abundance investigation.

  10. ZIRCONIUM, BARIUM, LANTHANUM, AND EUROPIUM ABUNDANCES IN OPEN CLUSTERS

    We present an analysis of the s-process elements Zr, Ba, and La and the r-process element Eu in a sample of 50 stars in 19 open clusters. Stellar abundances of each element are based on measures of a minimum of two lines per species via both equivalent width and spectrum synthesis techniques. We investigate cluster mean neutron-capture abundance trends as a function of cluster age and location in the Milky Way disk and compare them to results found in other studies in the literature. We find a statistically significant trend of increasing cluster [Ba/Fe] as a function of decreasing cluster age, in agreement with recent findings for other open cluster samples, supporting the increased importance of low-mass asymptotic giant branch stars to the generation of s-process elements. However, the other s-process elements, [La/Fe] and [Zr/Fe], do not show similar dependences, in contrast to theoretical expectations and the limited observational data from other studies. Conversely, cluster [Eu/Fe] ratios show a slight increase with increasing cluster age, although with marginal statistical significance. Ratios of [s/r]-process abundances, [Ba/Eu] and [La/Eu], however, show more clearly the increasing efficiency of s-process relative to r-process enrichment in open cluster chemical evolution, with significant increases among younger clusters. Last, cluster neutron-capture element abundances appear to be independent of Galactocentric distance. We conclude that a homogeneous analysis of a larger sample of open clusters is needed to resolve the apparent discrepant conclusions between different studies regarding s-process element abundance trends with age to better inform models of galactic chemical evolution.

  11. Significant biases affecting abundance determinations

    Wesson, Roger

    2015-08-01

    I have developed two highly efficient codes to automate analyses of emission line nebulae. The tools place particular emphasis on the propagation of uncertainties. The first tool, ALFA, uses a genetic algorithm to rapidly optimise the parameters of gaussian fits to line profiles. It can fit emission line spectra of arbitrary resolution, wavelength range and depth, with no user input at all. It is well suited to highly multiplexed spectroscopy such as that now being carried out with instruments such as MUSE at the VLT. The second tool, NEAT, carries out a full analysis of emission line fluxes, robustly propagating uncertainties using a Monte Carlo technique.Using these tools, I have found that considerable biases can be introduced into abundance determinations if the uncertainty distribution of emission lines is not well characterised. For weak lines, normally distributed uncertainties are generally assumed, though it is incorrect to do so, and significant biases can result. I discuss observational evidence of these biases. The two new codes contain routines to correctly characterise the probability distributions, giving more reliable results in analyses of emission line nebulae.

  12. Symmetric and asymmetric planetary nebulae and the time variation of the radial abundance gradients

    Maciel, W.; Costa, R. D. D.

    2014-04-01

    Planetary nebulae (PN) are excellent laboratories to study the chemical evolution of their host galaxies, especially concerning the radial abundance gradients and their time and spatial variations. Current chemical evolution models predict either some steepening or flattening of the abundance gradients with time, and PN can be useful in order to provide observational constraints on this issue. It is generally believed that asymmetrical nebulae, especially bipolars, are formed by younger, more massive progenitor stars, while symmetrical nebulae, such as the round and elliptical objects, are formed by older, less massive stars. As a consequence, if the abundance gradients change with time, some differences are expected between the gradients measured in symmetrical and asymmetrical nebulae. We have considered a large sample of well-studied galactic PN for which accurate abundances of O, S, Ne, and Ar are known, and for which a reliable morphological classification can be made. Average abundances and radial gradients of the ratios O/H, S/H, Ne/H and Ar/H were then determined for the main morphological classes, comprising B, E, R, and P nebulae. It is found that the average abundances of the younger objects are larger than those of the older nebulae, as expected on chemical evolution grounds, but the derived gradients are essentially the same within the uncertainties. It can then be concluded that the radial abundance gradients have not changed appreciably since the older progenitor stars were born, approximately 4 to 5 Gyr ago.

  13. Hydrocarbon Reserves: Abundance or Scarcity

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may impact on the growth

  14. Hydrocarbon Reserves: Abundance or Scarcity

    NONE

    2005-07-01

    IFP and the OAPEC jointly organize a regular international seminar dealing with world oil-related problems appearing in the news. For the first time, this seminar has been opened to oil and gas company specialists, service companies, research centers and independents. This year's theme concerns oil and gas reserves: are they abundant or are we headed towards the shortages announced by some experts? This theme is especially topical in that: oil and gas currently meet two thirds of world energy needs and almost completely dominate the transport sector; the reserves declared by the OAPEC countries account for nearly half of world reserves; the price of a barrel of oil went through the roof in 2004; world energy demand is growing fast and alternative sources of energy are far from ready to take over from oil and gas in the next few decades. Since the reserves correspond to the volume it is technically and economically viable to produce, the seminar has, of course, dealt with the technical and economic questions that arise in connection with exploration and production, but it has also considered changes in the geopolitical context. Presentations by the leading companies of the OAPEC countries and by the IFP group were completed by presentation from the International Energy Agency (IEA), the United States Geological Survey (USGS), the IHS Energy Group, Total and Gaz de France. This document gathers the transparencies of the following presentations: Hydrocarbon reserves in OAPEC members countries: current and future (M. Al-Lababidi); Non OAPEC liquid reserves and production forecasts (Y. Mathieu); World oil and gas resources and production outlook (K. Chew); Global investments in the upstream (F. Birol); Total's policy in the oil and gas sector (C. de Margerie); Gaz de France's policy in the oil and gas sector (J. Abiteboul); NOC/IOC's opportunities in OPEC countries (I. Sandrea); Relationships between companies, countries and investors: How they may

  15. Red Supergiants as Cosmic Abundance Probes: The Magellanic Clouds

    Davies, Ben; Gazak, Zach; Plez, Bertrand; Bergemann, Maria; Evans, Chris; Patrick, Lee

    2015-01-01

    Red Supergiants (RSGs) are cool (~4000K), highly luminous stars (L - 10^5 Lsun), and are among the brightest near-infrared (NIR) sources in star-forming galaxies. This makes them powerful probes of the properties of their host galaxies, such as kinematics and chemical abundances. We have developed a technique whereby metallicities of RSGs may be extracted from a narrow spectral window around 1{\\mu}m from only moderate resolution data. The method is therefore extremely efficient, allowing stars at large distances to be studied, and so has tremendous potential for extragalactic abundance work. Here, we present an abundance study of the Large and Small Magellanic Clouds (LMC and SMC respectively) using samples of 9-10 RSGs in each. We find average abundances for the two galaxies of [Z]LMC = -0.37 +/- 0.14 and [Z]SMC = -0.53 +/- 0.16 (with respect to a Solar metallicity of Zsun=0.012). These values are consistent with other studies of young stars in these galaxies, and though our result for the SMC may appear hig...

  16. Climate and local abundance in freshwater fishes

    Knouft, Jason H; Anthony, Melissa M.

    2016-01-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide va...

  17. Monitoring Butterfly Abundance: Beyond Pollard Walks

    Pellet, Jérôme; Bried, Jason T.; Parietti, David; Gander, Antoine; Heer, Patrick O.; Cherix, Daniel; Arlettaz, Raphaël

    2012-01-01

    Most butterfly monitoring protocols rely on counts along transects (Pollard walks) to generate species abundance indices and track population trends. It is still too often ignored that a population count results from two processes: the biological process (true abundance) and the statistical process (our ability to properly quantify abundance). Because individual detectability tends to vary in space (e.g., among sites) and time (e.g., among years), it remains unclear whether index counts truly...

  18. Planetary Nebulae as Probes of the Chemical Evolution of Dynamically Hot Systems

    Michael G. Richer; McCall, Marshall L.

    2004-01-01

    The measurement of chemical abundances in planetary nebulae in nearby galaxies is now relatively straightforward. The challenge is to use these chemical abundances to infer the chemical evolution of their host galaxies. At this point, our understanding of chemical evolution based upon planetary nebulae in galaxies without star formation is strongly coupled to our understanding of the relationship between the chemical abundances in stars and planetary nebulae in the Milky Way bulge. Supposing ...

  19. Abundance of introduced species at home predicts abundance away in herbaceous communities

    Firn, Jennifer; Moore, Joslin L.; MacDougall, Andrew S.; Borer, Elizabeth T.; Seabloom, Eric W.; HilleRisLambers, Janneke; Harpole, W. Stanley; Cleland, Elsa E.; Brown, Cynthia S.; Knops, Johannes M.H.; Prober, Suzanne M.; Pyke, David A.; Farrell, Kelly A.; Bakker, John D.; O'Halloran, Lydia R.; Adler, Peter B.; Collins, Scott L.; D'Antonio, Carla M.; Crawley, Michael J.; Wolkovich, Elizabeth M.; La Pierre, Kimberly J.; Melbourne, Brett A.; Hautier, Yann; Morgan, John W.; Leakey, Andrew D.B.; Kay, Adam; McCulley, Rebecca; Davies, Kendi F.; Stevens, Carly J.; Chu, Cheng-Jin; Holl, Karen D.; Klein, Julia A.; Fay, Phillip A.; Hagenah, Nicole; Kirkman, Kevin P.; Buckley, Yvonne M.

    2011-01-01

    Many ecosystems worldwide are dominated by introduced plant species, leading to loss of biodiversity and ecosystem function. A common but rarely tested assumption is that these plants are more abundant in introduced vs. native communities, because ecological or evolutionary-based shifts in populations underlie invasion success. Here, data for 26 herbaceous species at 39 sites, within eight countries, revealed that species abundances were similar at native (home) and introduced (away) sites - grass species were generally abundant home and away, while forbs were low in abundance, but more abundant at home. Sites with six or more of these species had similar community abundance hierarchies, suggesting that suites of introduced species are assembling similarly on different continents. Overall, we found that substantial changes to populations are not necessarily a pre-condition for invasion success and that increases in species abundance are unusual. Instead, abundance at home predicts abundance away, a potentially useful additional criterion for biosecurity programmes.

  20. Comparing Amino Acid Abundances and Distributions Across Carbonaceous Chondrite Groups

    Burton, Aaron S.; Callahan, Michael P.; Glavin, Daniel P.; Elsila, Jamie E.; Dworkin, Jason P.

    2012-01-01

    Meteorites are grouped according to bulk properties such as chemical composition and mineralogy. These parameters can vary significantly among the different carbonaceous chondrite groups (CI, CM, CO, CR, CH, CB, CV and CK). We have determined the amino acid abundances of more than 30 primary amino acids in meteorites from each of the eight groups, revealing several interesting trends. There are noticeable differences in the structural diversity and overall abundances of amino acids between meteorites from the different chondrite groups. Because meteorites may have been an important source of amino acids to the prebiotic Earth and these organic compounds are essential for life as we know it, the observed variations of these molecules may have been important for the origins of life.

  1. New Insights on Jupiter's Deep Water Abundance from Disequilibrium Species

    Wang, Dong; Lunine, Jonathan; Mousis, Olivier

    2014-01-01

    The bulk water abundance on Jupiter potentially constrains the planet's formation conditions. We improve the chemical constraints on Jupiter's deep water abundance in this paper. The eddy diffusion coefficient is used to model vertical mixing in planetary atmosphere, and based on laboratory studies dedicated to turbulent rotating convection, we propose a new formulation of the eddy diffusion coefficient for the troposphere of giant planets. The new formulation predicts a smooth transition from the slow rotation regime (near the equator) to the rapid rotation regime (near the pole). We estimate an uncertainty for the newly derived coefficient of less than 25$\\%$, which is much better than the one order of magnitude uncertainty used in the literature. We then reevaluate the water constraint provided by CO, using the newer eddy diffusion coefficient. We considered two updated CO kinetic models, one model constrains the water enrichment (relative to solar) between 0.1 and 0.75, while the other constrains the wate...

  2. Light bosons and photospheric solutions to the solar abundance problem

    Vincent, Aaron C; Trampedach, Regner

    2012-01-01

    It is well known that current spectroscopic determinations of the chemical composition of the Sun are starkly at odds with the metallicity implied by helioseismology. We propose that the discrepancy may be due to conversion of photons to a new light boson in the solar photosphere. We investigate the impact of particles with axion-like interactions with the photon on the inferred photospheric abundances. Conversion of photons into new light bosons can in principle easily produce the +0.2 dex change in derived abundances required to reconcile spectroscopic and helioseismological determinations of the solar metallicity. We show that this is however not possible for any of the presently-allowed parameter space of either the QCD axion or a standard axion-like particle. We speculate that other models involving photon-boson mixing, such as hidden photons, might prove more successful.

  3. Histogrammatic Method for Determining Relative Abundance of Input Gas Pulse

    Mandrake, Lukas; Bornstein, Benjamin J.; Madzunkov, Stojan; MacAskill, John A.

    2012-01-01

    To satisfy the Major Constituents Analysis (MCA) requirements for the Vehicle Cabin Atmosphere Monitor (VCAM), this software analyzes the relative abundance ratios for N2, O2, Ar, and CO2 as a function of time and constructs their best-estimate mean. A histogram is first built of all abundance ratios for each of the species vs time. The abundance peaks corresponding to the intended measurement and any obfuscating background are then separated via standard peak-finding techniques in histogram space. A voting scheme is then used to include/exclude this particular time sample in the final average based on its membership to the intended measurement or the background population. This results in a robust and reasonable estimate of the abundance of trace components such as CO2 and Ar even in the presence of obfuscating backgrounds internal to the VCAM device. VCAM can provide a means for monitoring the air within the enclosed environments, such as the ISS (International Space Station), Crew Exploration Vehicle (CEV), a Lunar Habitat, or another vehicle traveling to Mars. Its miniature pre-concentrator, gas chromatograph (GC), and mass spectrometer can provide unbiased detection of a large number of organic species as well as MCA analysis. VCAM s software can identify the concentration of trace chemicals and whether the chemicals are on a targeted list of hazardous compounds. This innovation s performance and reliability on orbit, along with the ground team s assessment of its raw data and analysis results, will validate its technology for future use and development.

  4. Chemical Emergencies

    When a hazardous chemical has been released, it may harm people's health. Chemical releases can be unintentional, as in the case of an ... the case of a terrorist attack with a chemical weapon. Some hazardous chemicals have been developed by ...

  5. A semi-automatic procedure for abundance determination of A- and F-type stars

    Hekker, S; Lampens, P; De Cat, P; Niemczura, E; Creevey, O L; Zorec, J

    2009-01-01

    A variety of physical processes leading to different types of pulsations and chemical compositions is observed among A- and F-type stars. To investigate the underlying mechanisms responsible for these processes in stars with similar locations in the H-R diagram, an accurate abundance determination is needed, among others. Here, we describe a semi-automatic procedure developed to determine chemical abundances of various elements ranging from helium to mercury for this type of stars. We test our procedure on synthetic spectra, demonstrating that our procedure provides abundances consistent with the input values, even when the stellar parameters are offset by reasonable observational errors. For a fast-rotating star such as Vega, our analysis is consistent with those carried out with other plane-parallel model atmospheres. Simulations show that the offsets from the input abundances increase for stars with low inclination angle of about 4 degrees. For this inclination angle, we also show that the distribution of ...

  6. Climate and local abundance in freshwater fishes.

    Knouft, Jason H; Anthony, Melissa M

    2016-06-01

    Identifying factors regulating variation in numbers of individuals among populations across a species' distribution is a fundamental goal in ecology. A common prediction, often referred to as the abundant-centre hypothesis, suggests that abundance is highest near the centre of a species' range. However, because of the primary focus on the geographical position of a population, this framework provides little insight into the environmental factors regulating local abundance. While range-wide variation in population abundance associated with environmental conditions has been investigated in terrestrial species, the relationship between climate and local abundance in freshwater taxa across species' distributions is not well understood. We used GIS-based temperature and precipitation data to determine the relationships between climatic conditions and range-wide variation in local abundance for 19 species of North American freshwater fishes. Climate predicted a portion of the variation in local abundance among populations for 18 species. In addition, the relationship between climatic conditions and local abundance varied among species, which is expected as lineages partition the environment across geographical space. The influence of local habitat quality on species persistence is well documented; however, our results also indicate the importance of climate in regulating population sizes across a species geographical range, even in aquatic taxa. PMID:27429769

  7. Taking species abundance distributions beyond individuals

    Morlon, Helene; White, Ethan P.; Etienne, Rampal S.; Green, Jessica L.; Ostling, Annette; Alonso, David; Enquist, Brian J.; He, Fangliang; Hurlbert, Allen; Magurran, Anne E.; Maurer, Brian A.; McGill, Brian J.; Olff, Han; Storch, David; Zillio, Tommaso; Chave, Jérôme

    2009-01-01

    The species abundance distribution (SAD) is one of the few universal patterns in ecology. Research on this fundamental distribution has primarily focused on the study of numerical counts, irrespective of the traits of individuals. Here we show that considering a set of Generalized Species Abundance

  8. Methanol abundance in low mass protostars

    Maret, S

    2004-01-01

    Methanol lines observations of a sample of low mass Class 0 protostars are presented. Using a 1D radiative transfer model, I show that several protostars have large abundance jumps in the inner hot and dense region of envelopes, probably because of thermal grain mantle evaporation. These abundances are compared with a grain surface chemistry model.

  9. Solar Energetic Particles: Sampling Coronal Abundances

    Reames, Donald V.

    1998-05-01

    In the large solar energetic particle (SEP) events, coronal mass ejections (CMEs) drive shock waves out through the corona that accelerate elements of the ambient material to MeV energies in a fairly democratic, temperature-independent manner. These events provide the most complete source of information on element abundances in the corona. Relative abundances of 22 elements from H through Zn display the well-known dependence on the first ionization potential (FIP) that distinguishes coronal and photospheric material. For most elements, the main abundance variations depend upon the gyrofrequency, and hence on the charge-to-mass ratio, Q/A, of the ion. Abundance variations in the dominant species, H and He, are not Q/A dependent, presumably because of non-linear wave-particle interactions of H and He during acceleration. Impulsive flares provide a different sample of material that confirms the Ne:Mg:Si and He/C abundances in the corona.

  10. Statistical analysis from recent abundance determinations in HgMn stars

    Ghazaryan, S.; Alecian, G.

    2016-08-01

    To better understand the hot chemically peculiar group of HgMn stars, we have considered a compilation of a large number of recently published data obtained for these stars from spectroscopy. We compare these data to the previous compilation by Smith. We confirm the main trends of the abundance peculiarities, namely the increasing overabundances with increasing atomic number of heavy elements, and their large spread from star to star. For all the measured elements, we have looked for correlations between abundances and effective temperature (Teff). In addition to the known correlation for Mn, some other elements are found to show some connection between their abundances and Teff. We have also checked if multiplicity is a determinant parameter for abundance peculiarities determined for these stars. A statistical analysis using a Kolmogorov-Smirnov test shows that the abundances anomalies in the atmosphere of HgMn stars do not present significant dependence on the multiplicity.

  11. Can X-rays provide a solution to the abundance discrepancy problem in photoionised nebulae?

    Ercolano, Barbara

    2009-01-01

    We re-examine the well-known discrepancy between ionic abundances determined via the analysis of recombination lines (RLs) and collisionally excited lines (CELs). We show that abundance variations can be mimicked in a {\\it chemically homogeneous} medium by the presence of dense X-ray irradiated regions which present different ionisation and temperature structures from those of the more diffuse medium they are embedded in, which is predominantly ionised by extreme-ultraviolet radiation. The presence of X-ray ionised dense clumps or filaments also naturally explains the lower temperatures often measured from O {\\sc ii} recombination lines and from the Balmer jump when compared to temperatures determined by CELs. We discuss the implications for abundances determined via the analysis of CELs and RLs and provide a simple analytical procedure to obtain upwards corrections for CEL-determined abundance. While we show that the abundance discrepancy factor (ADF) and the Balmer Jump temperature determined from observati...

  12. The Abundance of Iron-Peak Elements and the Dust Composition in eta Carinae: Manganese

    Bautista, M. A.; Melendez, M.; Hartman, H.; Gull, T. R.; Lodders, K.

    2010-01-01

    We study the chemical abundances of the Strontium Filament found in the ejecta of (eta) Carinae. In particular, we derive the abundances of iron-peak elements front spectra of their singly ionized ions present in the optical/IR spectra. In this paper we analyze the spectrum of Mn II using a new non-LTE model for this system. In constructing this models we carried out theoretical calculations of radiative transition rates and electron impact excitation rate coefficients. We find that relative to Ni the gas phase abundance ratio of Mn is roughly solar, similar to the Cr abundance but in contrast to the large enhancements in the abundances of Sc and Ti. NVe interpret this result as an indication of non-equilibrium condensation in the ejecta of (eta) Carinae.

  13. Species diversity and abundance of aphids and their natural enemies in a crop association

    Chevalier Mendes Lopes, Thomas; Hatt, Séverin; Starý, Petr; JAPOSHVILI, George; Francis, Frédéric

    2015-01-01

    Crop associations can be efficient to reduce aphid populations, by disrupting the visual and olfactory location of host plants. However, increasing the chemical and structural complexity of vegetation can also decrease the searching efficiency of predators and parasitoids, which are not always more abundant in complex habitats. Using attractive semiochemicals such as methyl salicylate (MeSA) combined with a crop association seems promising to maximise aphid control. We compared the abundances...

  14. An abundance analysis for Vega Is it a $\\lambda$ Boo star?

    Ilijic, S; Dominis, D; Planinic, M; Pavlovski, K

    1998-01-01

    Since Baschek & Slettebak (1988) drew attention to the similarity between the abundance pattern of lambda Boo stars and that of Vega, there has been a long debate whether Vega should be listed among the chemically peculiar stars of lambda Boo type. We performed an elemental abundance analysis using a high dispersion spectrum in the optical region, and confirmed its mild metal underabundance. In our discussion we reinforce the suggestion that Vega is a mild lambda Boo star.

  15. Chemical Evolution of the Galaxy

    Tosi, M.

    1994-01-01

    Standard models for the chemical evolution of the Galaxy are reviewed with particular emphasis on the history of the abundance gradients in the disk. The effects on the disk structure and metallicity of gas accretion are discussed, showing that a significant fraction of the current disk mass has been accreted in the last Gyrs and that the chemical abundances of the infalling gas can be non primordial but should not exceed 0.3 Z(sun). The distributions with time and with galactocentric distanc...

  16. Statistical analysis of Fe abundances gradients in the Galaxy

    CUI; Chenzhou

    2001-01-01

    [1]Shaver, P. A., McGee, R. X., Newton, L. M. et al., The galactic abundance gradient, MNRAS, 983, 204: 53.[2]Amnuel, P. R., The features of chemical abundances in Galactic planetary nebulae, MNRAS, 993, 26: 263.[3]Maciel, W. J., Kǒppen, J., Abundance gradents from disk planetary nebulae: O, Ne, S and Ar, A&A, 994, 282, 436.[4]Maciel, W. J., Abundance gradients from planetary nebulae in the galactic disk, IAU Samp., 997, 80: 397.[5]Maciel, W. J., Quireza, C., Abundance gradients in the outer galactic disk from planetary nebulae, A&A, 999, 345: 629.[6]Lennon, D. J., Dufton, P. L., Fitzsimmons, A. et al., Dolidze 25: a metal-deficient galactic open cluster, A&A, 990, 240: 349.[7]Fitzsimmons, A., Dufton, P. L., Rolleston, W. R. J., A comparison of oxygen and nitrogen abundances in young clusters and associations and in the interstellar gas, MNRAS, 992, 259: 489.[8]Kilian, J., Montenbruck, O., Nissen, P. E., The galactic distribution of chemical elements as derived from B-stars in open clusters, A&A, 994, 284: 437.[9]Kaufer, A., Szeifert, T., Krenzin, R. et al., The galactic abundance gradients traced by B-type stars, A&A, 994, 289: 740.[10]Smartt, S. J., Dufton, P. L., Rolleston, W. R. J., A metal deficient early B-type star near the edge of the galactic disk, A&A, 996, 305: 64.[11]Smartt, S. J., Dufton, P. L., Rolleston, W. R. J., The chemical composition towards the galactic anti-centre, A&A, 996, 30: 23.[12]Binette, L., Dopita, M. A., D'Odorico, S. et al., The galactic abundance gradient from supernova remnant observations, A&A, 982, 5: 35.[13]Dauphole, B., Geffert, M., Colin, J. et al., The kinematics of globular clusters, apocentric distances and a halo metallicity gradient, A&A, 996, 33: 9.[14]Marsakov, V. A., Shevelev, Y. G., Catalogue of ages, metallicities, orbital elements and other parameters for nearby F stars, BICDS, 995, 47: 3.[15]Cayrel de Strobel, G., Soubiran, C., Friel, E. D. et al., A

  17. Abundance determination of A, Am and F stars in the Pleiades and Coma Berenices clusters

    Gebran, M.; Monier, R.; Richard, O.

    2008-04-01

    Abundances of 18 chemical elements have been derived for 27 A/Am and 16 F stars members of the Pleiades and Coma Berenices open clusters. We have specifically computed, with the Montrèal code, a series of evolutionary models for two A star members of these two clusters. None of the models reproduces entirely the overall shape of the abundance patterns. The inclusion of competing processes such as rotational mixing in the radiative zones of these stars seems necessary to improve the agreement between observed and predicted abundance patterns.

  18. Abundances determination of A, Am and F stars in the Pleiades and Coma Berenices clusters

    Gebran, M; Richard, O

    2008-01-01

    Abundances of 18 chemical elements have been derived for 27 A/Am and 16 F stars members of the Pleiades and Coma Berenices open clusters. We have specifically computed, with the Montr\\'eal code, a series of evolutionary models for two A stars members of these two clusters. None of the models reproduces entirely the overall shape of the abundances patterns. The inclusion of competing processes such as rotational mixing in the radiative zones of these stars seems necessary to improve the agreement between observed and predicted abundances patterns.

  19. Sodium and Oxygen Abundances in the Open Cluster NGC 6791 from APOGEE H-Band Spectroscopy

    Cunha, Katia; Smith, Verne V.; Johnson, Jennifer A.; Bergemann, Maria; Meszaros, Szabolcs; Shetrone, Matthew D.; Souto, Diogo; Prieto, Carlos Allende; Schiavon, Ricardo P.; Frinchaboy, Peter; Zasowski, Gail; Bizyaev, Dmitry; Holtzman, Jon; Perez, Ana E. Garcia; Majewski, Steven R.

    2014-01-01

    The open cluster NGC 6791 is among the oldest, most massive and metal-rich open clusters in the Galaxy. High-resolution $H$-band spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) of 11 red giants in NGC 6791 are analyzed for their chemical abundances of iron, oxygen, and sodium. The abundances of these three elements are found to be homogeneous (with abundance dispersions at the level of $\\sim$ 0.05 - 0.07 dex) in these cluster red giants, which span much of the...

  20. Abundance analysis of B, A and F dwarfs in the M6 open cluster: Spectrum synthesis method

    Kiliçoğlu, T.; Monier, R.; Fossati, L.

    2012-12-01

    The chemical abundances of 10 stars in the M6 open cluster (˜100 Myr) were derived using spectrum synthesis. The stars were observed using the FLAMES/GIRAFFE spectrograph. We found star-to-star variations in abundances for A type stars. General enrichment of Si, Cr, and Y were obtained for the cluster.

  1. Observational nuclear astrophysics: neutron-capture element abundances in old, metal-poor stars

    The chemical abundances of metal-poor stars provide a great deal of information regarding the individual nucleosynthetic processes that created the observed elements and the overall process of chemical enrichment of the galaxy since the formation of the first stars. Here we review the abundance patterns of the neutron-capture elements (Z ⩾ 38) in those metal-poor stars and our current understanding of the conditions and sites of their production at early times. We also review the relative contributions of these different processes to the build-up of these elements within the galaxy over time, and outline outstanding questions and uncertainties that complicate the interpretation of the abundance patterns observed in metal-poor stars. It is anticipated that future observations of large samples of metal-poor stars will help discriminate between different proposed neutron-capture element production sites and better trace the chemical evolution of the galaxy. (paper)

  2. Discovery of secular variations in the atmospheric abundances of magnetic Ap stars

    Bailey, J D; Bagnulo, S

    2013-01-01

    The stars of the middle main sequence have relatively quiescent outer layers, and unusual chemical abundance patterns may develop in their atmospheres. The presence of chemical peculiarities reveal the action of such subsurface phenomena as gravitational settling and radiatively driven levitation of trace elements, and their competition with mixing processes such as turbulent diffusion. We want to establish whether abundance peculiarities change as stars evolve on the main sequence, and provide observational constraints to diffusion theory. We have performed spectral analysis of 15 magnetic Bp stars that are members of open clusters (and thus have well-known ages), with masses between about 3 and 4 M_sun. For each star, we measured the abundances of He, O, Mg, Si, Ti, Cr, Fe, Pr and Nd. We have discovered the systematic time evolution of trace elements through the main-sequence lifetime of magnetic chemically peculiar stars as their atmospheres cool and evolve toward lower gravity. During the main sequence li...

  3. Silicon abundances in population I giants

    Boehm-Vitense, Erika

    1992-01-01

    Silicon to carbon abundance ratios for population I giants were determined from emission lines originating in the transition layers between stellar chromospheres and coronae. For effective temperatures larger than 6200 K we find a group of stars with increased silicon to carbon but normal nitrogen to carbon abundance ratios. These stars are presumably descendents from Ap stars with increased surface silicon to carbon abundance ratios. For G stars this anomaly disappears as is to be expected due to the increased depth of the convection zone and therefore deeper mixing which dilutes the surface overabundances. The disappearance of the abundance anomalies proves that the anomalous abundances observed for the F giants are indeed only a surface phenomenon. It also proves that the same holds for their progenitors, the Ap and Am stars, as has been generally believed. Unexplained is the increased silicon to carbon abundance ratio observed for several stars cooler than 5100 L. RS CVn and related stars do not show this increased abundance ratio. There are also some giants which appear to be enriched in carbon, perhaps due to a helium flash with some mixing if the star is a clump star.

  4. Predicting the dynamics of protein abundance.

    Mehdi, Ahmed M; Patrick, Ralph; Bailey, Timothy L; Bodén, Mikael

    2014-05-01

    Protein synthesis is finely regulated across all organisms, from bacteria to humans, and its integrity underpins many important processes. Emerging evidence suggests that the dynamic range of protein abundance is greater than that observed at the transcript level. Technological breakthroughs now mean that sequencing-based measurement of mRNA levels is routine, but protocols for measuring protein abundance remain both complex and expensive. This paper introduces a Bayesian network that integrates transcriptomic and proteomic data to predict protein abundance and to model the effects of its determinants. We aim to use this model to follow a molecular response over time, from condition-specific data, in order to understand adaptation during processes such as the cell cycle. With microarray data now available for many conditions, the general utility of a protein abundance predictor is broad. Whereas most quantitative proteomics studies have focused on higher organisms, we developed a predictive model of protein abundance for both Saccharomyces cerevisiae and Schizosaccharomyces pombe to explore the latitude at the protein level. Our predictor primarily relies on mRNA level, mRNA-protein interaction, mRNA folding energy and half-life, and tRNA adaptation. The combination of key features, allowing for the low certainty and uneven coverage of experimental observations, gives comparatively minor but robust prediction accuracy. The model substantially improved the analysis of protein regulation during the cell cycle: predicted protein abundance identified twice as many cell-cycle-associated proteins as experimental mRNA levels. Predicted protein abundance was more dynamic than observed mRNA expression, agreeing with experimental protein abundance from a human cell line. We illustrate how the same model can be used to predict the folding energy of mRNA when protein abundance is available, lending credence to the emerging view that mRNA folding affects translation efficiency

  5. Study of the primordial lithium abundance

    2011-01-01

    Lithium isotopes have attracted an intense interest because the abundance of both 6Li and 6Li from big bang nucleosynthesis (BBN) is one of the puzzles in nuclear astrophysics. Many investigations of both astrophysical observation and nucleosynthesis calculation have been carried out to solve the puzzle, but it is not solved yet. Several nuclear reactions involving lithium have been indirectly measured at China Institute of Atomic Energy, Beijing. The Standard BBN (SBBN) network calculations are then performed to investigate the primordial Lithium abundance. The result shows that these nuclear reactions have minimal effect on the SBBN abundances of 6Li and 7Li.

  6. Abundance analysis of HD 22920 spectra

    Khalack, Viktor

    2015-01-01

    The new spectropolarimetric observations of HD 22920 with ESPaDOnS at CFHT reveal a strong variability of its spectral line profiles with the phase of stellar rotation. We have obtained Teff = 13640 K, logg=3.72 for this star from the best fit of its nine Balmer line profiles. The respective model of stellar atmosphere was calculated to perform abundance analysis of HD 22920 using the spectra obtained for three different phases of stellar rotation. We have found that silicon and chromium abundances appear to be vertically stratified in the atmosphere of HD 22920. Meanwhile, silicon shows hints for a possible variability of vertical abundance stratification with rotational phase.

  7. Abundances and kinematics for ten anticentre open clusters

    Cantat-Gaudin, T; Vallenari, A; Sordo, R; Bragaglia, A; Magrini, L

    2016-01-01

    Open clusters are distributed all across the disk and are convenient tracers of its properties. In particular, outer disk clusters bear a key role for the investigation of the chemical evolution of the Galactic disk. The goal of this study is to derive homogeneous elemental abundances for a sample of ten outer disk OCs, and investigate possible links with disk structures such as the Galactic Anticenter Stellar Structure. We analyse high-resolution spectra of red giants, obtained from the HIRES@Keck and UVES@VLT archives. We derive elemental abundances and stellar atmosphere parameters by means of the classical equivalent width method. We also performed orbit integrations using proper motions. The Fe abundances we derive trace a shallow negative radial metallicity gradient of slope -0.027+/-0.007 dex.kpc-1 in the outer 12 kpc of the disk. The [alpha/Fe] gradient appears flat, with a slope of 0.006+/-0.007 dex.kpc-1 . The two outermost clusters (Be 29 and Sau 1) appear to follow elliptical orbits. Be 20 also ex...

  8. The Origin of Fluorine: Abundances in AGB Carbon Stars Revisited

    Abia, C; Cristallo, S; de Laverny, P

    2015-01-01

    Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 mu region have been recently available, allowing a revision of the F content in AGB stars. AGB carbon stars are the only observationally confirmed sources of fluorine. Nowadays there is not a consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Using new spectroscopic tools and LTE spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J and SC spanning a wide range of metallicities. On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as...

  9. A High Deuterium Abundance at z=0.7

    Webb, J K; Lanzetta, K M; Ferlet, R; Lemoine, M; Vidal-Madjar, A; Bowen, D V

    1997-01-01

    Of the light elements, the primordial abundance of deuterium, (D/H)_p, provides the most sensitive diagnostic for the cosmological mass density parameter Omega_B. Recent high redshift (D/H) measurements are highly discrepant, although this may reflect observational uncertainties. The larger (D/H) values, which imply a low Omega_B and require the Universe to be dominated by non-baryonic matter (dynamical studies indicate a higher total density parameter), cause problems for galactic chemical evolution models since they have difficulty in reproducing the large decline down to the lower present-day (D/H). Conversely, low (D/H) values imply an Omega_B greater than derived from ^7Li and ^4He abundance measurements, and may require a deuterium abundance evolution that is too low to easily explain. Here we report the first measurement at intermediate redshift, where the observational difficulties are smaller, of a gas cloud with ideal characteristics for this experiment. Our analysis of the z = 0.7010 absorber towar...

  10. Nitrogen and oxygen abundances in the Local Universe

    Vincenzo, Fiorenzo; Maiolino, Roberto; Matteucci, Francesca; Ventura, Paolo

    2016-01-01

    We present chemical evolution models aimed at reproducing the observed (N/O) vs. (O/H) abundance pattern of star forming galaxies in the Local Universe. We derive gas-phase abundances from SDSS spectroscopy and a complementary sample of low-metallicity dwarf galaxies, making use of a consistent set of abundance calibrations. This collection of data clearly confirms the existence of a plateau in the (N/O) ratio at very low metallicity, followed by an increase of this ratio up to high values as the metallicity increases. This trend can be interpreted as due to two main sources of nitrogen in galaxies: i) massive stars, which produce small amounts of pure primary nitrogen and are responsible for the (N/O) ratio in the low metallicity plateau; ii) low- and intermediate-mass stars, which produce both secondary and primary nitrogen and enrich the interstellar medium with a time delay relative to massive stars, and cause the increase of the (N/O) ratio. We find that the length of the low-metallicity plateau is almos...

  11. NGC 55: a disc galaxy with flat abundance gradients

    Magrini, Laura; Vajgel, Bruna

    2016-01-01

    We present new spectroscopic observations obtained with GMOS@Gemini-S of a sample of 25 hii regions located in NGC 55, a late-type galaxy in the nearby Sculptor group. We derive physical conditions and chemical composition through the te-method for 18 hii regions, and strong-line abundances for 22 hii regions. We provide abundances of He, O, N, Ne, S, Ar, finding a substantially homogenous composition in the ionised gas of the disc of NGC 55, with no trace of radial gradients. The oxygen abundances, both derived with \\te- and strong-line methods, have similar mean values and similarly small dispersion: 12+$\\log$(O/H)=8.13$\\pm$0.18~dex with the former and 12+$\\log$(O/H)=8.17$\\pm$0.13~dex with the latter. The average metallicities and the flat gradients agree with previous studies of smaller samples of \\hii\\ regions and there is a qualitative agreement with the blue supergiant radial gradient as well. We investigate the origin of such flat gradients comparing NGC 55 with NGC 300, its companion galaxy, which is ...

  12. A holistic abundance analysis of r-rich stars

    Zhang, Jiang; Zhang, Bo; 10.1111/j.1365-2966.2010.17374.x

    2010-01-01

    The chemical abundances of metal-poor stars are an excellent test bed by which to set new constraints on models of neutron-capture processes at low metallicity. Some r-process-rich (hereafter r-rich) metal-poor stars, such as HD221170, show an overabundance of the heavier neutron-capture elements and excesses of lighter neutron-capture elements. The study of these r-rich stars could give us a better understanding of weak and main r-process nucleosynthesis at low metallicity. Based on conclusions from the observation of metal-poor stars and neutron-capture element nucleosynthesis theory, we set up a model to determine the relative contributions from weak and main r-processes to the heavy-element abundances in metal-poor stars. Using this model, we find that the abundance patterns of light elements for most sample stars are close to the pattern of weak r-process stars, and those of heavier neutron-capture elements very similar to the pattern of main r-process stars, while the lighter neutron-capture elements ca...

  13. CHAOS II: Gas-Phase Abundances in NGC 5194

    Croxall, Kevin V; Berg, Danielle; Skillman, Evan D; Moustakas, John

    2015-01-01

    We have observed NGC5194 (M51a) as part of the CHemical Abundances of Spirals (CHAOS) project. Using the Multi Object Double Spectrographs (MODS) on the Large Binocular Telescope (LBT) we are able to measure one or more of the temperature-sensitive auroral lines ([O III] 4363, [N II] 5755, [S III] 6312) and thus measure "direct" gas-phase abundances in 29 individual HII regions. [O III] 4363 is only detected in two HII regions both of which show indications of excitation by shocks. We compare our data to previous direct abundances measured in NGC5194 and find excellent agreement for all but one region (Delta[log(O/H)] ~ 0.04). We find no evidence of trends in Ar/O, Ne/O, or S/O within NGC5194 or compared to other galaxies. We find modest negative gradients in both O/H and N/O with very little scatter (sigma = -0.62) suggests secondary nitrogen production is responsible for a significantly larger fraction of nitrogen (e.g., factor of 8-10) relative to primary production mechanisms than predicted by theoretica...

  14. Comparisons of picophytoplankton abundance, size, and fluorescence between summer and winter in northern South China Sea

    Chen, Bingzhang; Wang, Lei; Song, Shuqun; Huang, Bangqin; Sun, Jun; Liu, Hongbin

    2011-09-01

    The abundance, size, and fluorescence of picophytoplankton cells were investigated during the summer (July-August of 2009) and winter (January of 2010) extending from near-shore coastal waters to oligotrophic open waters in northern South China Sea, under the influence of contrasting seasonal monsoons. We found that the median abundance of Prochlorococcus averaged over top 150 m decreased nearly 10 times in the winter compared to the summer in the whole survey area, while median abundance of Synechococcus and picoeukaryotes increased 2.6 and 2.4 folds, respectively. Vertical abundance profiles of picoeukaryotes usually formed a subsurface maximum during the summer with the depth of maximal abundances tracking the depth of nutricline, whereas their vertical distributions were more uniform during the winter. Size and cellular fluorescence of Prochlorococcus and Synechococcus usually increased with depth in the summer, while the size of picoeukaryotes was smallest at the depth of maximal abundances. Size, cellular fluorescence, and chlorophyll-to-carbon ratio of Prochlorococcus and Synechococcus in surface waters were generally higher in the winter than in the summer and onshore than offshore, probably resulting from different temperature, nutrient, and light environments as well as different ecotype compositions. Prochlorococcus cells were most abundant in warm and oligotrophic environments, while the abundance of Synechococcus and picoeukaryotes was the highest in waters with intermediate chlorophyll and nutrient concentrations. The distributional patterns of picophytoplankton groups are consistent with their specific physiology documented in previous studies and can be possibly predicted by environmental physical and chemical variables.

  15. Subaru/HDS Abundances in Three Giant Stars in the Ursa Minor Dwarf Spheroidal Galaxy

    Sadakane, K; Ikuta, C; Aoki, W; Jablonka, P; Tajitsu, A

    2004-01-01

    With the HDS (High Dispersion Spectrograph) on the Subaru telescope, we obtained high resolution optical region spectra of three red giant stars (cos 4, cos 82, and cos 347) in the Ursa Minor dwarf spheriodal galaxy. Chemical abundances in these stars have been analysed for 26 elements including alpha-, iron-peak, and neutron capture elements. All three stars show low abundances of alpha-elements (Mg, Si, and Ca) and two stars (cos 82 and cos 347) show high abundance of Mn compared to Galactic halo stars of similar metallicity. One star (cos 4) has been confirmed to be very metal deficient ([Fe/H]=-2.7) and found to show anomalously low abundances of Mn, Cu, and Ba. In another star cos 82 ([Fe/H]=-1.5), we have found large excess of heavy neutron-capture elements with the general abundance pattern similar to the scaled solar system r-process abundance curve. These observational results are rather puzzling: low abundances of alpha-elements and high abundance of Mn seem to sugggest a significant contribution of...

  16. Introduction to Galactic Chemical Evolution

    Matteucci, Francesca

    2016-01-01

    In this lecture I will introduce the concept of galactic chemical evolution, namely the study of how and where the chemical elements formed and how they were distributed in the stars and gas in galaxies. The main ingredients to build models of galactic chemical evolution will be described. They include: initial conditions, star formation history, stellar nucleosynthesis and gas flows in and out of galaxies. Then some simple analytical models and their solutions will be discussed together with the main criticisms associated to them. The yield per stellar generation will be defined and the hypothesis of instantaneous recycling approximation will be critically discussed. Detailed numerical models of chemical evolution of galaxies of different morphological type, able to follow the time evolution of the abundances of single elements, will be discussed and their predictions will be compared to observational data. The comparisons will include stellar abundances as well as interstellar medium ones, measured in galax...

  17. Iron abundance in the atmosphere of Arcturus

    Sheminova, V A

    2015-01-01

    Abundance of iron in the atmosphere of Arcturus has been determined from the profiles or regions of the profiles of the weak lines sensitive to iron abundance. The selected lines of Fe I and Fe II were synthesized with the MARCS theoretical models of the atmosphere. From the observed profiles of lines available with a high spectral resolution in the atlas by Hinkle and Wallace (2005), the values of the iron abundance $A = 6.95 \\pm 0.03$ and the radial-tangential macroturbulent velocity $5.6 \\pm 0.2$ km/s were obtained for Arcturus. The same physical quantities were found for the Sun as a star; they are $7.42 \\pm 0.02$ and $3.4 \\pm 0.3$ km/s, respectively. For Arcturus, the iron abundance relative to the solar one was determined with the differential method as [Fe/H] $=-0.48 \\pm 0.02$.

  18. SWFSC/MMTD: Vaquita Abundance Survey 1997

    National Oceanic and Atmospheric Administration, Department of Commerce — In 1997, the Southwest Fisheries Science Center (SWFSC) conducted a survey designed to estimate the abundance of vaquita, the Gulf of California harbor porpoise...

  19. Chinook Abundance - Linear Features [ds181

    California Department of Resources — The dataset 'ds181_Chinook_ln' is a product of the CalFish Adult Salmonid Abundance Database. Data in this shapefile are collected from stream sections or reaches...

  20. Testing Relationships between Energy and Vertebrate Abundance

    Understanding what drives variation in the abundance of organisms is fundamental to evolutionary ecology and wildlife management. Yet despite its importance, there is still great uncertainty about the main factors influencing variation in vertebrate abundance across taxa. We believe valuable knowledge and increased predictive power could be gained by taking into account both the intrinsic factors of species and the extrinsic factors related to environmental surroundings in the commonly cited RQ model, which provides a simple conceptual framework valid at both the interspecific and the intraspecific scales. Approaches comparing studies undertaken at different spatial and taxonomic scales could be key to our ability to better predict abundance, and thanks to the increased availability of population size data, global geographic datasets, and improved comparative methods, there might be unprecedented opportunities to (1) gain a greater understanding of vertebrate abundance patterns and (2) test existing theories on free-ranging animals.

  1. Primordial Deuterium Abundance and Cosmic Baryon Density

    Hogan, Craig J.

    1994-01-01

    The comparison of cosmic abundances of the light elements with the density of baryonic stars and gas in the universe today provides a critical test of big bang theory and a powerful probe of the nature of dark matter. A new technique allows determination of cosmic deuterium abundances in quasar absorption clouds at large redshift, allowing a new test of big bang homogeneity in diverse, very distant systems. The first results of these studies are summarized, along with their implications. The ...

  2. Estimating whale abundance using sparse hydrophone arrays

    Harris, Danielle Veronica

    2012-01-01

    Passive acoustic monitoring has been used to investigate many aspects of marine mammal ecology, although methods to estimate absolute abundance and density using acoustic data have only been developed in recent years. The instrument configuration in an acoustic survey determines which abundance estimation methods can be used. Sparsely distributed arrays of instruments are useful because wide geographic areas can be covered. However, instrument spacing in sparse arrays is such that the same...

  3. Spatial scaling of species abundance distributions

    Borda-de-Água, Luís; Borges, Paulo A. V.; Hubbell, Stephen P.; Pereira, Henrique M

    2012-01-01

    Copyright © 2012 The Authors. Ecography © 2012 Nordic Society Oikos. Species abundance distributions are an essential tool in describing the biodiversity of ecological communities. We now know that their shape changes as a function of the size of area sampled. Here we analyze the scaling properties of species abundance distributions by using the moments of the logarithmically transformed number of individuals. We find that the moments as a function of area size are well fitted by power law...

  4. How selection structures species abundance distributions

    Magurran, A.E; Henderson, P. A.

    2012-01-01

    How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in l...

  5. Solar Models with New Low Metal Abundances

    Yang, Wuming

    2016-04-01

    In the past decade, the photospheric abundances of the Sun had been revised several times by many observers. The standard solar models constructed with the new low-metal abundances disagree with helioseismic results and detected neutrino fluxes. The solar model problem has puzzled some stellar physicists for more than 10 years. Rotation, enhanced diffusion, convection overshoot, and magnetic fields are used to reconcile the new abundances with helioseismology. The too low helium subsurface abundance in enhanced diffusion models can be improved by the mixing caused by rotation and magnetic fields. The problem of the depth of the convective zone in rotating models can be resolved by convection overshoot. Consequently, the Asplund–Grevesse–Sauval rotation model including overshooting (AGSR) reproduces the seismically inferred sound-speed and density profiles and the convection zone depth as well as the Grevesse & Sauval model computed before. But this model fails to reproduce the surface helium abundance, which is 0.2393 (2.6σ away from the seismic value), and neutrino fluxes. The magnetic model called AGSM keeps the agreement of the AGSR and improves the prediction of the surface helium abundance. The observed separation ratios r02 and r13 are reasonably reproduced by AGSM. Moreover, neutrino fluxes calculated by this model are not far from the detected neutrino fluxes and the predictions of previous works.

  6. Report on carbon and nitrogen abundance studies

    Boehm-Vitense, Erika

    1991-01-01

    The aim of the proposal was to determine the nitrogen to carbon abundance ratios from transition layer lines in stars with different T(sub eff) and luminosities. The equations which give the surface emission line fluxes and the measured ratio of the NV to CIV emission line fluxes are presented and explained. The abundance results are compared with those of photospheric abundance studies for stars in common with the photospheric investigations. The results show that the analyses are at least as accurate as the photospheric determinations. These studies can be extended to F and early G stars for which photospheric abundance determinations for giants are hard to do because molecular bands become too weak. The abundance determination in the context of stellar evolution is addressed. The N/C abundance ratio increases steeply at the point of evolution for which the convection zone reaches deepest. Looking at the evolution of the rotation velocities v sin i, a steep decrease in v sin i is related to the increasing depth of the convection zone. It is concluded that the decrease in v sin i for T(sub eff) less than or approximately = 5800 K is most probably due to the rearrangement of the angular momentum in the stars due to deep convective mixing. It appears that the convection zone is rotating with nearly depth independent angular momentum. Other research results and ongoing projects are discussed.

  7. Modelling Void Abundance in Modified Gravity

    Voivodic, Rodrigo; Llinares, Claudio; Mota, David F

    2016-01-01

    We use a spherical model and an extended excursion set formalism with drifting diffusive barriers to predict the abundance of cosmic voids in the context of general relativity as well as f(R) and symmetron models of modified gravity. We detect spherical voids from a suite of N-body simulations of these gravity theories and compare the measured void abundance to theory predictions. We find that our model correctly describes the abundance of both dark matter and galaxy voids, providing a better fit than previous proposals in the literature based on static barriers. We use the simulation abundance results to fit for the abundance model free parameters as a function of modified gravity parameters, and show that counts of dark matter voids can provide interesting constraints on modified gravity. For galaxy voids, more closely related to optical observations, we find that constraining modified gravity from void abundance alone may be significantly more challenging. In the context of current and upcoming galaxy surv...

  8. Germanium, Arsenic, and Selenium Abundances in Metal-Poor Stars

    Roederer, Ian U

    2012-01-01

    The elements germanium (Ge, Z=32), arsenic (As, Z=33), and selenium (Se, Z=34) span the transition from charged-particle or explosive synthesis of the iron-group elements to neutron-capture synthesis of heavier elements. Among these three elements, only the chemical evolution of germanium has been studied previously. Here we use archive observations made with the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope and observations from several ground-based facilities to study the chemical enrichment histories of seven stars with metallicities -2.6 < [Fe/H] < -0.4. We perform a standard abundance analysis of germanium, arsenic, selenium, and several other elements produced by neutron-capture reactions. When combined with previous derivations of germanium abundances in metal-poor stars, our sample reveals an increase in the [Ge/Fe] ratios at higher metallicities. This could mark the onset of the weak s-process contribution to germanium. In contrast, the [As/Fe] and [Se/Fe] ratios rema...

  9. Gaia FGK benchmark stars: abundances of α and iron-peak elements

    Jofré, P.; Heiter, U.; Soubiran, C.; Blanco-Cuaresma, S.; Masseron, T.; Nordlander, T.; Chemin, L.; Worley, C. C.; Van Eck, S.; Hourihane, A.; Gilmore, G.; Adibekyan, V.; Bergemann, M.; Cantat-Gaudin, T.; Delgado-Mena, E.; González Hernández, J. I.; Guiglion, G.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Mikolaitis, S.; Montes, D.; Pancino, E.; Recio-Blanco, A.; Sordo, R.; Sousa, S.; Tabernero, H. M.; Vallenari, A.

    2015-10-01

    Context. In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. Aims: We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni for our predefined set of Gaia FGK benchmark stars. Methods: By analysing high-resolution spectra with a high signal-to-noise ratio taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We performed a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis. We also assessed errors that are due to non-local thermal equilibrium and the stellar parameters in our final abundances. Results: Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. Conclusions: The atmospheric parameters of the Gaia FGK benchmark stars are already being widely used for calibration of several pipelines that are applied to different surveys. With the added reference abundances of ten elements, this set is very suitable for calibrating the chemical abundances obtained by these pipelines. Based on NARVAL and HARPS data obtained within the Gaia DPAC (Data Processing and Analysis Consortium) and coordinated by the GBOG (Ground-Based Observations for Gaia) working group and on data retrieved from the ESO-ADP database.Tables C.1-C.35 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/582/A81

  10. The origin of fluorine: abundances in AGB carbon stars revisited

    Abia, C.; Cunha, K.; Cristallo, S.; de Laverny, P.

    2015-09-01

    Context. Revised spectroscopic parameters for the HF molecule and a new CN line list in the 2.3 μm region have recently become available, facilitating a revision of the F content in asymptotic giant branch (AGB) stars. Aims: AGB carbon stars are the only observationally confirmed sources of fluorine. Currently, there is no consensus on the relevance of AGB stars in its Galactic chemical evolution. The aim of this article is to better constrain the contribution of these stars with a more accurate estimate of their fluorine abundances. Methods: Using new spectroscopic tools and local thermodynamical equilibrium spectral synthesis, we redetermine fluorine abundances from several HF lines in the K-band in a sample of Galactic and extragalactic AGB carbon stars of spectral types N, J, and SC, spanning a wide range of metallicities. Results: On average, the new derived fluorine abundances are systematically lower by 0.33 dex with respect to previous determinations. This may derive from a combination of the lower excitation energies of the HF lines and the larger macroturbulence parameters used here as well as from the new adopted CN line list. Yet, theoretical nucleosynthesis models in AGB stars agree with the new fluorine determinations at solar metallicities. At low metallicities, an agreement between theory and observations can be found by handling the radiative/convective interface at the base of the convective envelope in a different way. Conclusions: New fluorine spectroscopic measurements agree with theoretical models at low and at solar metallicity. Despite this, complementary sources are needed to explain its observed abundance in the solar neighbourhood.

  11. Chemical evolution of molecular clouds

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  12. Clonal growth and plant species abundance

    Herben, Tomáš; Nováková, Zuzana; Klimešová, Jitka

    2014-01-01

    Background and Aims Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf–height–seed) traits and by actual performance in the botanical garden. Methods Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area – height – seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. Key Results After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. Conclusions Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially

  13. TOWARD A REMOVAL OF TEMPERATURE DEPENDENCIES FROM ABUNDANCE DETERMINATIONS: NGC 628

    Croxall, Kevin V. [Department of Astronomy, The Ohio State University, 4051 McPherson Laboratory, 140 West 18th Avenue, Columbus, OH 43210 (United States); Smith, J. D.; Pellegrini, E. [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Brandl, B. R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Groves, B. A.; Kreckel, K.; Sandstrom, K. M.; Walter, F.; Schinnerer, E. [Max-Planck-Institut fur Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kennicutt, R. C.; Galametz, M. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Johnson, B. D. [Institut d' Astrophysique de Paris, UMR7095 CNRS, Université Pierre and Marie Curie, 98 bis Boulevard Arago, F-75014 Paris (France); Armus, L. [Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125 (United States); Beirão, P. [Observatoire de Paris, 61 avenue de l' Observatoire, F-75014 Paris (France); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Hinz, J. L. [MMT Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hunt, L. K. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Koda, J., E-mail: croxall@astronomy.ohio-state.edu [Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, NY 11794-3800 (United States)

    2013-11-10

    The metal content of a galaxy, a key property for distinguishing between viable galaxy evolutionary scenarios, strongly influences many of the physical processes in the interstellar medium. An absolute and robust determination of extragalactic metallicities is essential in constraining models of chemical enrichment and chemical evolution. Current gas-phase abundance determinations, however, from optical fine-structure lines are uncertain to 0.8 dex as conversion of these optical line fluxes to abundances is strongly dependent on the electron temperature of the ionized gas. In contrast, the far-infrared (far-IR) emission lines can be used to derive an O{sup ++} abundance that is relatively insensitive to temperature, while the ratio of the optical to far-IR lines provides a consistent temperature to be used in the derivation of an O{sup +} abundance. We present observations of the [O III] 88 μm fine-structure line in NGC 628 that were obtained as part of the Key Insights on Nearby Galaxies: a Far Infared Survey with Herschel program. These data are combined with optical integrated field unit data to derive oxygen abundances for seven H II regions. We find the abundance of these regions to all lie between the high and low values of strong-line calibrations and to be in agreement with estimates that assume temperature fluctuations are present in the H II regions.

  14. Linking species abundance distributions in numerical abundance and biomass through simple assumptions about community structure

    Henderson, Peter A.; Magurran, Anne E

    2010-01-01

    Species abundance distributions (SADs) are widely used as a tool for summarizing ecological communities but may have different shapes, depending on the currency used to measure species importance. We develop a simple plotting method that links SADs in the alternative currencies of numerical abundance and biomass and is underpinned by testable predictions about how organisms occupy physical space. When log numerical abundance is plotted against log biomass, the species lie within an approximat...

  15. On the nature of sn stars. I. A detailed abundance study

    Saffe, C.; H. Levato

    2014-01-01

    The sn stars present sharp Balmer lines, sharp metallic lines and broad coreless He I lines. Initially Abt & Levato proposed a shell-like nature to explain the sn stars, although this scenario was subsequently questioned. We aim to derive abundances for a sample of 9 stars, including sn and non-sn stars, to determine the possible relation between sn and CP stars. We analysed the photospheric chemical composition of sn stars and show that approximately 40% of them display chemical peculiaritie...

  16. Good abundances from bad spectra; 1, techniques

    Bryn, J; Wyse, R F G; Gilmore, Gerard; Wyse, Rosemary F G

    1995-01-01

    We have developed techniques to extract true iron abundances and surface gravities from spectra of the type provided by the multiple-object fibre-fed spectroscopic radial-velocity surveys underway with 2dF, HYDRA, NESSIE, and the forthcoming Sloan survey. Our method is optimised for low S/N, intermediate resolution blue spectra of G stars. Spectroscopic indices sensitive to iron abundance and gravity are defined from a set of narrow (few Angstrom) wavelength intervals, and calibrated using synthetic spectra. We have also defined a single abundance indicator which is able to provide useful iron abundance information from spectra having S/N ratios as low as 10 per Angstrom. The theoretical basis and calibration using synthetic spectra are described in this paper. The empirical calibration of these techniques by application to observational data is described in Jones, Wyse and Gilmore (PASP July 1995). The technique provides precise iron abundances, with zero-point correct to \\sim 0.1 dex, and is reliable, with ...

  17. Oxygen abundance maps of CALIFA galaxies

    Zinchenko, I A; Grebel, E K; Sanchez, S F; Vilchez, J M

    2016-01-01

    We construct maps of the oxygen abundance distribution across the disks of 88 galaxies using CALIFA data release 2 (DR2) spectra. The position of the center of a galaxy (coordinates on the plate) were also taken from the CALIFA DR2. The galaxy inclination, the position angle of the major axis, and the optical radius were determined from the analysis of the surface brightnesses in the SDSS $g$ and $r$ bands of the photometric maps of SDSS data release 9. We explore the global azimuthal abundance asymmetry in the disks of the CALIFA galaxies and the presence of a break in the radial oxygen abundance distribution. We found that there is no significant global azimuthal asymmetry for our sample of galaxies, i.e., the asymmetry is small, usually lower than 0.05 dex. The scatter in oxygen abundances around the abundance gradient has a comparable value, $\\lesssim 0.05$ dex. A significant (possibly dominant) fraction of the asymmetry can be attributed to the uncertainties in the geometrical parameters of these galaxie...

  18. Abundances of Molecular Species in Barnard 68

    Francesco, J D; Welch, W J; Bergin, E A; Francesco, James Di; Hogerheijde, Michiel R.; Welch, William J.; Bergin, Edwin A.

    2002-01-01

    Abundances for 5 molecules (C18O, CS, NH3, H2CO, and C3H2) and 1 molecular ion (N2H+) and upper limits for the abundances of 1 molecule (13CO) and 1 molecular ion (HCO+) are derived for gas within the Bok globule Barnard 68 (B68). The abundances were determined using our own BIMA millimeter interferometer data and single-dish data gathered from the literature, in conjunction with a Monte Carlo radiative transfer model. Since B68 is the only starless core to have its density structure strongly constrained via extinction mapping, a major uncertainty has been removed from these determinations. All abundances for B68 are lower than those derived for translucent and cold dense clouds, but perhaps only significantly for N2H+, NH3, and C3H2. Depletion of CS toward the extinction peak of B68 is hinted at by the large offset between the extinction peak and the position of maximum CS line brightness. Abundances derived here for C18O and N2H+ are consistent with other, recently determined values at positions observed in...

  19. VizieR Online Data Catalog: A and F stars abundances in the Hyades (Gebran+, 2010)

    Gebran, M.; Vick, M.; Monier, R.; Fossati, L.

    2010-06-01

    In table 5 and 6, we present the abundances of 15 chemical elements in 16 A and 26 F stars members of the Hyades open cluster. These abundances are relative to hydrogen and to the sun. The abundances derived for procyon are also included. The absolute parameters for the observed stars as the luminosity, effective temperature, mass and fractional age (fraction of time spent on the Main Sequence) are displayed in table 7. Table 8 collects the abundances derived for each transition for each studied element in all A and F stars including Procyon (F5V) which served as control star for the spectral synthesis. In this table, the absolute values are represented (log(X/H)+12) and the wavelengths are in Angstrom. (4 data files).

  20. On the Relationship Between Molecular Hydrogen and Carbon Monoxide Abundances in Molecular Clouds

    Glover, S C O

    2010-01-01

    The most usual tracer of molecular gas is line emission from CO. However, the reliability of that tracer has long been questioned in environments different from the Milky Way. We study the relationship between H2 and CO abundances using a fully dynamical model of magnetized turbulence coupled to a chemical network simplified to follow only the dominant pathways for H2 and CO formation and destruction, and including photodissociation using a six-ray approximation. We find that the abundance of H2 is primarily determined by the amount of time available for its formation, which is proportional to the product of the density and the metallicity, but insensitive to photodissociation. Photodissociation only becomes important at extinctions under a few tenths of a visual magnitude, in agreement with both observational and prior theoretical work. On the other hand, CO forms quickly, within a dynamical time, but its abundance depends primarily on photodissociation, with only a weak secondary dependence on H2 abundance....

  1. GALA: an automatic tool for the abundance analysis of stellar spectra

    Mucciarelli, A; Lovisi, L; Ferraro, F R; Lapenna, E

    2013-01-01

    GALA is a freely distributed Fortran code to derive automatically the atmospheric parameters (temperature, gravity, microturbulent velocity and overall metallicity) and abundances for individual species of stellar spectra using the classical method based on the equivalent widths of metallic lines. The abundances of individual spectral lines are derived by using the WIDTH9 code developed by R. L. Kurucz. GALA is designed to obtain the best model atmosphere, by optimizing temperature, surface gravity, microturbulent velocity and metallicity, after rejecting the discrepant lines. Finally, it computes accurate internal errors for each atmospheric parameter and abundance. The code permits to obtain chemical abundances and atmospheric parameters for large stellar samples in a very short time, thus making GALA an useful tool in the epoch of the multi-object spectrographs and large surveys. An extensive set of tests with both synthetic and observed spectra is performed and discussed to explore the capabilities and ro...

  2. Age-abundance relationships for neutral communities

    Danino, Matan; Shnerb, Nadav M.

    2015-10-01

    Neutral models for the dynamics of a system of competing species are often used to describe a wide variety of empirical communities. These models are used in many situations, ranging from population genetics and ecological biodiversity to macroevolution and cancer tumors. One of the main issues discussed within this framework is the relationships between the abundance of a species and its age. Here we provide a comprehensive analysis of the age-abundance relationships for fixed-size and growing communities. Explicit formulas for the average and the most likely age of a species with abundance n are given, together with the full probability distribution function. We further discuss the universality of these results and their applicability to the tropical forest community.

  3. Estimating the relationship between abundance and distribution

    Rindorf, Anna; Lewy, Peter

    2012-01-01

    Numerous studies investigate the relationship between abundance and distribution using indices reflecting one of the three aspects of distribution: proportion of area occupied, aggregation, and geographical range. Using simulations and analytical derivations, we examine whether these indices...... based on Euclidean distance to the centre of gravity of the spatial distribution. Only the proportion of structurally empty areas, Lloyds index, and indices of the distance to the centre of gravity of the spatial distribution are unbiased at all levels of abundance. The remaining indices generate...... relationships between abundance and distribution even in cases where no underlying relationships exists, although the problem decreases for measures derived from Lorenz curves when samples contain more than four individuals on average. To illustrate the problem, the indices are applied to juvenile North Sea cod...

  4. Gaia FGK benchmark stars: abundances of alpha and iron-peak elements

    Jofré, P; Soubiran, C; Blanco-Cuaresma, S; Masseron, T; Nordlander, T; Chemin, L; Worley, C C; Van Eck, S; Hourihane, A; Gilmore, G; Adibekyan, V; Bergemann, M; Cantat-Gaudin, T; Delgado-Mena, E; Hernández, J I González; Guiglion, G; Lardo, C; de Laverny, P; Lind, K; Magrini, L; Mikolaitis, S; Montes, D; Pancino, E; Recio-Blanco, A; Sordo, R; Sousa, S; Tabernero, H M; Vallenari, A

    2015-01-01

    In the current era of large spectroscopic surveys of the Milky Way, reference stars for calibrating astrophysical parameters and chemical abundances are of paramount importance. We determine elemental abundances of Mg, Si, Ca, Sc, Ti, V, Cr, Mn, Co and Ni for our predefined set of Gaia FGK benchmark stars. By analysing high-resolution and high-signal to noise spectra taken from several archive datasets, we combined results of eight different methods to determine abundances on a line-by-line basis. We perform a detailed homogeneous analysis of the systematic uncertainties, such as differential versus absolute abundance analysis, as well as we assess errors due to NLTE and the stellar parameters in our final abundances. Our results are provided by listing final abundances and the different sources of uncertainties, as well as line-by-line and method-by-method abundances. The Gaia FGK benchmark stars atmospheric parameters are already being widely used for calibration of several pipelines applied to different su...

  5. Metal Abundances in Hot DO White Dwarfs

    Werner, K; Ringat, E; Kruk, J W

    2012-01-01

    The relatively high abundance of carbon in the hot DO white dwarf RE0503-289 indicates that it is a descendant of a PG1159 star. This is corroborated by the recent detection of the extremely high abundances of trans-Fe elements which stem from s-process nucleosynthesis in the precursor AGB star, dredged up by a late He-shell flash and possibly amplified by radiative levitation. On the other hand, the hottest known DO white dwarf, KPD0005+5106, cannot have evolved from a PG1159 star but represents a distinct He-rich evolutionary sequence that possibly originates from a binary white dwarf merger.

  6. NLTE strontium abundance in a sample of extremely metal poor stars and the Sr/Ba ratio in the early Galaxy

    Andrievsky, S M; Korotin, S A; Francois, P; Spite, M; Bonifacio, P; Cayrel, R; Hill, V

    2011-01-01

    Heavy element abundances in extremely metal-poor stars provide strong constraints on the processes of forming these elements in the first stars. We attempt to determine precise abundances of strontium in a homogeneous sample of extremely metal-poor stars. The abundances of strontium in 54 very or extremely metal-poor stars, was redetermined by abandoning the local thermodynamic equilibrium (LTE) hypothesis, and fitting non-LTE (NLTE) profiles to the observed spectral lines. The corrected Sr abundances and previously obtained NLTE Ba abundances are compared to the predictions of several hypothetical formation processes for the lighter neutron-capture elements. Our NLTE abundances confirm the previously determined huge scatter of the strontium abundance in low metallicity stars. This scatter is also found (and is even larger) at very low metallicities (i. e. early in the chemical evolution). The Sr abundance in the extremely metal-poor (EMP) stars is compatible with the main r-process involved in other processe...

  7. Non-Salmonid Abundance - Line Features [ds186

    California Department of Resources — The CalFish Abundance Database contains a comprehensive collection of anadromous fisheries abundance information. The "Other Fish" category contains data collected...

  8. North Sea Elasmobranchs: distribution, abundance and biodiversity

    Daan, N.; Heessen, H.J.L.; Hofstede, ter R.

    2005-01-01

    Based on data from various international and national surveys, an overview is given of the fine-scale distribution (resolution of 20¿longitude * 10¿ latitude; ¿ 10*10 nm) and trends in abundance of elasmobranch species reported from the North Sea. Presence-absence maps are produced based on 4 survey

  9. Heavy element abundances and massive star formation

    Wang, Boqi; Silk, Joseph

    1993-01-01

    The determination of the stellar initial mass function (IMF) remains a great challenge in astronomy. In the solar neighborhood, the IMF is reasonable well determined for stellar masses from about 0.1 to 60 solar mass. However, outside the solar neighborhood, the IMF is poorly known. Among those frequently discussed arguments favoring a different IMF outside the solar neighborhood are the estimated time to consume the remaining gas in spiral galaxies, and the high rate of forming massive stars in starburst galaxies. An interesting question then is whether there may be an independent way of testing possible variations in the IMF. Indeed, the heavy elements in the interstellar medium are mostly synthesized in massive stars, so increasing, or decreasing, the fraction of massive stars naturally leads to a variation in the heavy element yield, and thus, the metallicity. The observed abundance should severely constrain any deviations of the IMF from the locally determined IMF. We focus on element oxygen, which is the most abundant heavy element in the interstellar medium. Oxygen is ejected only by massive stars that can become Type 1 supernovae, and the oxygen abundance is, therefore, a sensitive function of the fraction of massive stars in the IMF. Adopting oxygen enables us to avoid uncertainties in Type 1 supernovae. We use the nucleosynthesis results to calculate the oxygen yield for given IMF. We then calculate the oxygen abundance in the interstellar medium assuming instantaneous recycling of oxygen.

  10. The Abundance of Large Arcs From CLASH

    Xu, Bingxiao; Postman, Marc; Meneghetti, Massimo; Coe, Dan A.; Clash Team

    2015-01-01

    We have developed an automated arc-finding algorithm to perform a rigorous comparison of the observed and simulated abundance of large lensed background galaxies (a.k.a arcs). We use images from the CLASH program to derive our observed arc abundance. Simulated CLASH images are created by performing ray tracing through mock clusters generated by the N-body simulation calibrated tool -- MOKA, and N-body/hydrodynamic simulations -- MUSIC, over the same mass and redshift range as the CLASH X-ray selected sample. We derive a lensing efficiency of 15 ± 3 arcs per cluster for the X-ray selected CLASH sample and 4 ± 2 arcs per cluster for the simulated sample. The marginally significant difference (3.0 σ) between the results for the observations and the simulations can be explained by the systematically smaller area with magnification larger than 3 (by a factor of ˜4) in both MOKA and MUSIC mass models relative to those derived from the CLASH data. Accounting for this difference brings the observed and simulated arc statistics into full agreement. We find that the source redshift distribution does not have big impact on the arc abundance but the arc abundance is very sensitive to the concentration of the dark matter halos. Our results suggest that the solution to the "arc statistics problem" lies primarily in matching the cluster dark matter distribution.

  11. Will Abundant Natural Gas Solve Climate Change?

    McJeon, H. C.; Edmonds, J.; Bauer, N.; Leon, C.; Fisher, B.; Flannery, B.; Hilaire, J.; Krey, V.; Marangoni, G.; Mi, R.; Riahi, K.; Rogner, H.; Tavoni, M.

    2015-12-01

    The rapid deployment of hydraulic fracturing and horizontal drilling technologies enabled the production of previously uneconomic shale gas resources in North America. Global deployment of these advanced gas production technologies could bring large influx of economically competitive unconventional gas resources to the energy system. It has been hoped that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions, which in turn could reduce climate forcing. Other researchers countered that the non-CO2 greenhouse gas (GHG) emissions associated with shale gas production make its lifecycle emissions higher than those of coal. In this study, we employ five state-of-the-art integrated assessment models (IAMs) of energy-economy-climate systems to assess the full impact of abundant gas on climate change. The models show large additional natural gas consumption up to +170% by 2050. The impact on CO2 emissions, however, is found to be much smaller (from -2% to +11%), and a majority of the models reported a small increase in climate forcing (from -0.3% to +7%) associated with the increased use of abundant gas. Our results show that while globally abundant gas may substantially change the future energy market equilibrium, it will not significantly mitigate climate change on its own in the absence of climate policies.

  12. Abundance of Terrestrial Planets by Microlensing

    Yock, Philip

    2000-01-01

    Terrestrial planets may be detected using the gravitational microlensing technique. This was demonstrated in the high magnification event MACHO-98-BLG-35. Observing strategies aimed at measuring the abundance of terrestrial planets are discussed, using both existing telescopes and planned telescopes.

  13. Quasar Elemental Abundances at High Redshifts

    Dietrich, M.; Hamann, F.; Shields, J. C.; Constantin, A.; Heidt, J.; Jaeger, K.; Vestergaard, Marianne; Wagner, S. J.

    2003-01-01

    framework of the most recent photoionization models to estimate the metallicity of the gas associated with the high-z quasars. Standard photoionization parameters and the assumption of secondary nitrogen enrichment indicate an average abundance of Z/Z_sol = 4 to 5 in the line emitting gas. Assuming a time...

  14. Nitrogen and oxygen abundances in the Local Universe

    Vincenzo, F.; Belfiore, F.; Maiolino, R.; Matteucci, F.; Ventura, P.

    2016-06-01

    We present chemical evolution models aimed at reproducing the observed (N/O) versus (O/H) abundance pattern of star-forming galaxies in the Local Universe. We derive gas-phase abundances from Sloan Digital Sky Survey (SDSS) spectroscopy and a complementary sample of low-metallicity dwarf galaxies, making use of a consistent set of abundance calibrations. This collection of data clearly confirms the existence of a plateau in the (N/O) ratio at very low metallicity, followed by an increase of this ratio up to high values as the metallicity increases. This trend can be interpreted as due to two main sources of nitrogen in galaxies: (i) massive stars, which produce small amounts of pure primary nitrogen and are responsible for the (N/O) ratio in the low-metallicity plateau; (ii) low- and intermediate-mass stars, which produce both secondary and primary nitrogen and enrich the interstellar medium with a time delay relative to massive stars, and cause the increase of the (N/O) ratio. We find that the length of the low-metallicity plateau is almost solely determined by the star formation efficiency, which regulates the rate of oxygen production by massive stars. We show that, to reproduce the high observed (N/O) ratios at high (O/H), as well as the right slope of the (N/O) versus (O/H) curve, a differential galactic wind - where oxygen is assumed to be lost more easily than nitrogen - is necessary. No existing set of stellar yields can reproduce the observed trend without assuming differential galactic winds. Finally, considering the current best set of stellar yields, a bottom-heavy initial mass function is favoured to reproduce the data.

  15. Characterizing Abundances of Volatiles in Comets Through Multiwavelength Observations

    Milam, Stefanie N.; Charnley, Steven B.; Kuan, Yi-Jehng; Chuang, Yo-Ling; DiSanti, Michael A.; Bonev, Boncho P.; Remijan, Anthony J.; Coulson, Iain; Haynes, Lillian; Stenborg, Maria

    2012-01-01

    Recently, there have been complimentary observations from multiple facilities to try to unravel the chemical complexity of comets. Incorporating results from various techniques, including: single-dish millimeter wavelength observations, interferometers, and/or IR spectroscopy, one can gain further insight into the abundances, production rates, distributions, and formation mechanisms of molecules in these objects [I]. Such studies have provided great detail towards molecules with a-typical chemistries, such as H2CO [2]. We report spectral observations of C/2007 N3 (Lulin), C/2009 R1 (McNaught), 103P/Hartley 2, and C/2009 P1 (Garradd) with the Arizona Radio Observatory's SMT and 12-m telescopes, as well as the NRAO Greenbank telescope and IRTF-CSHELL. Multiple parent volatiles (HCN, CH3OH, CO, CH4, C2H6, and H2O) as well as a number of daughter products (CS and OH) have been detected in these objects. We will present a comparison of molecular abundances in these comets to those observed in others, supporting a long-term effort of building a comet taxonomy based on composition. Previous work has revealed a range of abundances of parent species (from "organics-poor" to "organics-rich") with respect to water among comets [3,4,5], however the statistics are still poorly constrained and interpretations of the observed compositional diversity are uncertain. We gratefully acknowledge support from the NSF Astronomy and Astrophysics Program, the NASA Planetary Astronomy Program, NASA Planetary Atmospheres Program, and the NASA Astrobiology Program.

  16. Chemical use

    US Fish and Wildlife Service, Department of the Interior — This is a summary of research and activities related to chemical use on Neal Smith National Wildlife Refuge between 1992 and 2009. The chemicals used on the Refuge...

  17. The Deep Water Abundance on Jupiter: New Constraints from Thermochemical Kinetics and Diffusion Modeling

    Visscher, Channon; Saslow, Sarah A

    2010-01-01

    We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter's atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the Jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) x 10^-3 in Jupiter's deep troposphere, corresponding to an enrichment of 0.3 to 7.3 times the protosolar abundance (assumed to be H2O/H2 = 9.61 x 10^-4). Our results suggest that Jupiter's oxygen enrichment is roughly similar to that for carb...

  18. Abundances of Jupiter's Trace Hydrocarbons from Voyager and Cassini

    Nixon, C. A.; Achterberg, R. K.; Romani, P. N.; Allen, M.; Zhang, X.; Teanby, N. A.; Irwin, P. G. J.; Flasar, F. M.

    2010-01-01

    The flybys of Jupiter by the Voyager spacecraft in 1979, and over two decades later by Cassini in 2000, have provided us with unique datasets from two different epochs, allowing the investigation of seasonal change in the atmosphere. In this paper we model zonal averages of thermal infrared spectra from the two instruments, Voyager 1 IRIS and Cassini CIRS, to retrieve the vertical and meridional profiles of temperature, and the abundances of the two minor hydrocarbons, acetylene (C2H2) and ethane (C2H6). The spatial variation of these gases is controlled by both chemistry and dynamics, and therefore their observed distribution gives us an insight into both processes, We find that the two gases paint quite different pictures of seasonal change. Whilst the 2-D cross-section of C2H6 abundance is slightly increased and more symmetric in 2000 (northern summer solstice) compared to 1979 (northern fall equinox), the major trend of equator to pole increase remains. For C2H2 on tile other hand, the Voyager epoch exhibits almost no latitudinal variation, whilst the Cassini era shows a marked decrease polewards in both hemispheres. At the present time, these experimental findings are in advance of interpretation, as there are no published models of 2-D Jovian seasonal chemical variation available for comparison.

  19. FLUORINE ABUNDANCES OF GALACTIC LOW-METALLICITY GIANTS

    With abundances and 2σ upper limits of fluorine (F) in seven metal-poor field giants, nucleosynthesis of stellar F at low metallicity is discussed. The measurements are derived from the HF(1-0) R9 line at 23358 Å using near-infrared K-band high-resolution spectra obtained with CRIRES at the Very Large Telescope. The sample reaches lower metallicities than previous studies on F of field giants, ranging from [Fe/H] = -1.56 down to –2.13. Effects of three-dimensional model atmospheres on the derived F and O abundances are quantitatively estimated and shown to be insignificant for the program stars. The observed F yield in the form of [F/O] is compared with two sets of Galactic chemical evolution models, which quantitatively demonstrate the contribution of Type II supernova (SN II) ν-process and asymptotic giant branch/Wolf-Rayet stars. It is found that at this low-metallicity region, models cannot well predict the observed distribution of [F/O], while the observations are better fit by models considering an SN II ν-process with a neutrino energy of E ν = 3 × 1053 erg. Our sample contains HD 110281, a retrograde orbiting low-α halo star, showing a similar F evolution as globular clusters. This supports the theory that such halo stars are possibly accreted from dwarf galaxy progenitors of globular clusters in the halo.

  20. CHAOS III: Gas-Phase Abundances in NGC5457

    Croxall, Kevin; Berg, Danielle A; Skillman, Evan D; Moustakas, John

    2016-01-01

    The CHemical Abundances of Spirals (CHAOS) project leverages the combined power of the Large Binocular Telescope with the broad spectral range and sensitivity of the Multi Object Double Spectrograph (MODS) to measure direct abundances in large samples of HII regions in spiral galaxies. We present LBT MODS observations of 109 Hii regions in NGC5457, of which 74 have robust measurements of key auroral lines, a factor of 3 larger than all previous published detections of auroral lines in the HII regions of NGC5457. Comparing the temperatures derived from the different ionic species we find: (1) strong correlations of T[NII] with T[SIII] and T[OIII], consistent with little or no intrinsic scatter; (2) a correlation of T[SIII] with T[OIII], but with significant intrinsic dispersion; (3) overall agreement between T[NII], T[SII], and T[OII], as expected, but with significant outliers; (4) the correlations of T[NII] with T[SIII] and T[OIII] match the predictions of photoionization modeling while the correlation of T[...

  1. CNO and F abundances in the barium star HD 123396

    Alves-Brito, Alan; Yong, David; Meléndez, Jorge; Vásquez, Sergio

    2011-01-01

    [Abridged] Barium stars are moderately rare chemically peculiar objects which are believed to be the result of the pollution of an otherwise normal star by material from an evolved companion on the asymptotic giant branch (AGB). We aim to derive carbon, nitrogen, oxygen, and fluorine abundances for the first time from infrared spectra of the barium red giant star HD 123396 to quantitatively test AGB nucleosynthesis models for producing barium stars via mass accretion. High-resolution and high S/N infrared spectra were obtained using the Phoenix spectrograph mounted at the Gemini South telescope. The abundances were obtained through spectrum synthesis of individual atomic and molecular lines, using the MOOG stellar line analysis program together with Kurucz's stellar atmosphere models. The analysis was classical, using 1D stellar models and spectral synthesis under the assumption of local thermodynamic equilibrium. We confirm that HD 123396 is a metal-deficient barium star ([Fe/H] = -1.05), with A(C) = 7.88, A...

  2. Constraining stellar population models - I. Age, metallicity, and abundance pattern compilation for Galactic globular clusters

    Roediger, Joel C; Graves, Genevieve; Schiavon, Ricardo

    2013-01-01

    We present an extenstive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. (2005). Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavours, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the alpha-elements. When paired with the ages...

  3. Chemical sensor

    Rauh, R. David (Inventor)

    1990-01-01

    A sensor for detecting a chemical substance includes an insertion element having a structure which enables insertion of the chemical substance with a resulting change in the bulk electrical characteristics of the insertion element under conditions sufficient to permit effective insertion; the change in the bulk electrical characteristics of the insertion element is detected as an indication of the presence of the chemical substance.

  4. Relative abundance determinations in extremely metal poor giants. II. Transition probabilities and the abundance determinations

    The abundances of Fe and other elements are determined for a star of intermediate metallicity and for nine extremely metal poor stars, including two members of the globular cluster M92 and CD -38 deg 245. The accuracy of the transition probabilities for Fe I and other elements is evaluated. The distribution of the abundances of other elements with respect to Fe is the same for most of the cases studied. Manganese is the only element that shows a different relative abundance in an extremely metal poor star. 120 refs

  5. Deuterium Abundance in Consciousness and Current Cosmology

    Rauscher, Elizabeth A.

    We utilize the deuterium-hydrogen abundances and their role in setting limits on the mass and other conditions of cosmogenesis and cosmological evolution. We calculate the dependence of a set of physical variables such as density, temperature, energy mass, entropy and other physical variable parameters through the evolution of the universe under the Schwarzschild conditions as a function from early to present time. Reconciliation with the 3°K and missing mass is made. We first examine the Schwarzschild condition; second, the geometrical constraints of a multidimensional Cartesian space on closed cosmologies, and third we will consider the cosmogenesis and evolution of the universe in a multidimensional Cartesian space, obeying the Schwarzschild condition. Implications of this model for matter creation are made. We also examine experimental evidence for closed versus open cosmologies; x-ray detection of the "missing mass" density. Also the interstellar deuterium abundance, along with the value of the Hubble constant set a general criterion on the value of the curvature constant, k. Once the value of the Hubble constant, H is determined, the deuterium abundance sets stringent restrictions on the value of the curvature constant k by an detailed discussion is presented. The experimental evidences for the determination of H and the primary set of coupled equations to determine D abundance is given. 'The value of k for an open, closed, or flat universe will be discussed in terms of the D abundance which will affect the interpretation of the Schwarzschild, black hole universe. We determine cosmology solutions to Einstein's field obeying the Schwarzschild solutions condition. With this model, we can form a reconciliation of the black hole, from galactic to cosmological scale. Continuous creation occurs at the dynamic blackhole plasma field. We term this new model the multiple big bang or "little whimper model". We utilize the deuteriumhydrogen abundances and their role in

  6. Abundance trend with condensation temperature for stars with different Galactic birth places

    Adibekyan, V; Figueira, P; Sousa, S G; Santos, N C; Hernandez, J I Gonzalez; Minchev, I; Faria, J P; Israelian, G; Harutyunyan, G; Suarez-Andres, L; Hakobyan, A A

    2016-01-01

    During the past decade, several studies reported a correlation between chemical abundances of stars and condensation temperature (also known as Tc trend). However, the real astrophysical nature of this correlation is still debated. The main goal of this work is to explore the possible dependence of the Tc trend on stellar Galactocentric distances, Rmean. We used high-quality spectra of about 40 stars observed with the HARPS and UVES spectrographs to derive precise stellar parameters, chemical abundances, and stellar ages. A differential line-by-line analysis was applied to achieve the highest possible precision in the chemical abundances. We confirm previous results that [X/Fe] abundance ratios depend on stellar age and that for a given age, some elements also show a dependence on Rmean. When using the whole sample of stars, we observe a weak hint that the Tc trend depends on Rmean. The observed dependence is very complex and disappears when only stars with similar ages are considered. To conclude on the poss...

  7. GIANO Y-band spectroscopy of dwarf stars: Phosphorus, Sulphur, and Strontium abundances

    Caffau, E; Korotin, S; Origlia, L; Oliva, E; Sanna, N; Ludwig, H -G; Bonifacio, P

    2015-01-01

    In recent years a number of poorly studied chemical elements, such as phosphorus, sulphur, and strontium, have received special attention as important tracers of the Galactic chemical evolution. By exploiting the capabilities of the infrared echelle spectrograph GIANO mounted at the Telescopio Nazionale Galileo, we acquired high resolution spectra of four Galactic dwarf stars spanning the metallicity range between about one-third and twice the solar value. We performed a detailed feasibility study about the effectiveness of the P, S, and Sr line diagnostics in the Y band between 1.03 and 1.10 microm. Accurate chemical abundances have been derived using one-dimensional model atmospheres computed in local thermodynamic equilibrium (LTE). We computed the line formation assuming LTE for P, while we performed non-LTE analysis to derive S and Sr abundances. We were able to derive phosphorus abundance for three stars and an upper limit for one star, while we obtained the abundance of sulphur and strontium for all of...

  8. Chemical machining

    A. Yardimeden

    2007-08-01

    Full Text Available Purpose: Nontraditional machining processes are widely used to manufacture geometrically complex and precision parts for aerospace, electronics and automotive industries. There are different geometrically designed parts, such as deep internal cavities, miniaturized microelectronics and fine quality components may only be produced by nontraditional machining processes. This paper is aiming to give details of chemical machining process, industrial applications, applied chemical etchants and machined materials. Advantages and disadvantages of the chemical machining are mentioned.Design/methodology/approach: In this study, chemical machining process was described its importance as nontraditional machining process. The steps of process were discussed in detail. The tolerances of machined parts were examined.Findings: Paper describes the chemical machining process, industrial applications, applied chemical etchants and machined materials.Practical implications: The machining operation should be carried out carefully to produce a desired geometry. Environmental laws have important effects when chemical machining is used.Originality/value: The importance of nontraditional machining processes is very high.

  9. Chemical Leukoderma.

    Bonamonte, Domenico; Vestita, Michelangelo; Romita, Paolo; Filoni, Angela; Foti, Caterina; Angelini, Gianni

    2016-01-01

    Chemical leukoderma, often clinically mimicking idiopathic vitiligo and other congenital and acquired hypopigmentation, is an acquired form of cutaneous pigment loss caused by exposure to a variety of chemicals that act through selective melanocytotoxicity. Most of these chemicals are phenols and aromatic or aliphatic catechols derivatives. These chemicals, however, are harmful for melanocytes in individuals with an individual susceptibility. Nowadays, chemical leukoderma is fairly common, caused by common domestic products. The presence of numerous acquired confetti- or pea-sized macules is clinically characteristic of chemical leukoderma, albeit not diagnostic. Other relevant diagnostic elements are a history of repeated exposure to a known or suspected depigmenting agent at the sites of onset and a macules distribution corresponding to sites of chemical exposure. Spontaneous repigmentation has been reported when the causative agent is avoided; the repigmentation process is perifollicular and gradual, taking place for a variable period of weeks to months. PMID:27172302

  10. Impact of Grassland Reseeding, Herbicide Spraying and Ploughing on Diversity and Abundance of Soil Arthropods.

    Liu, Wei; Zhang, Junling; Norris, Stuart L; Murray, Philip J

    2016-01-01

    In order to determine the interactive effect of reseeding, herbicide spraying and ploughing on soil fauna communities, we conducted a grassland reseeding experiment combined with pre-reseed management to examine how with the whole reseeding process affects soil faunal composition. Sampling occasions and exact treatments were as follows: (1) before chemical herbicide spray; (2) after spray but before ploughing; (3) after ploughing but before reseeding; and (4) after 1 year of recovery. Our results demonstrate that, Acari and Collembola were the two soil fauna taxa with the highest abundance and accounted for around 96% of the relative total abundance among the various managements. Herbicide application tended to increase soil invertebrate abundance. Conversely, subsequent ploughing significantly reduced soil invertebrate abundance and had an obvious negative effect on soil primary and secondary decomposers, which were mainly due to the variations of Acari (especially Oribatida) and Coleoptera group abundance. Moreover, reseeding also reduced the individual number of the groups mentioned above, and favored those predators with a larger body size and individual weight. After 1 year recovery, Collembola abundance recovered to the pre-treatment levels, while with Arthropod and Acari groups were still fluctuating. PMID:27555863

  11. Globular Cluster Abundances from High-Resolution Integrated Light Spectra, I: 47 Tuc

    McWilliam, Andrew

    2007-01-01

    We describe the detailed chemical abundance analysis of a high-resolution (R~30,000), integrated-light (IL), spectrum of the core of the Galactic globular cluster (GC) 47 Tuc. This is the first paper in a series in which we develop and demonstrate a method for measuring detailed abundances in spatial unresolved extragalactic GCs. The echelle spectra were taken with the du Pont telescope at Las Campanas observatory. We have computed elemental abundances for Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Ba, La, Nd and Eu. Our mean [Fe/H] value (-0.75 +/- 0.03 dex) is in good agreement with the mean of 5 recent high resolution abundance studies of individual stars in 47 Tuc (-0.70 dex). Our typical random errors on [X/Fe] ratios are in the 0.07--0.10 dex range, similar to the dispersion between the different abundance studies of individual stars in 47 Tuc. Only our Na and Al abundances differ from results of these previous studies: Na and Al are enhanced in the IL spectrum, which may reflect prot...

  12. The primordial deuterium abundance problems and prospects

    Levshakov, S A; Kegel, W H; Levshakov, Sergei A.; Takahara, Fumio; Kegel, Wilhelm H.

    1997-01-01

    The current status of extragalactic deuterium abundance is discussed using two examples of `low' and `high' D/H measurements. We show that the discordance of these two types of D abundances may be a consequence of the spatial correlations in the stochastic velocity field. Within the framework of the generalized procedure (accounting for such effects) one finds good agreement between different observations and the theoretical predictions for standard big bang nucleosynthesis (SBBN). In particular, we show that the deuterium absorption seen at z = 2.504 toward Q1009+2956 and the H+D Ly-alpha profile observed at z = 0.701 toward Q1718+4807 are compatible with D/H $\\sim 4.1 - 4.6\\times10^{-5}$. This result supports SBBN and, thus, no inhomogeneity is needed. The problem of precise D/H measurements is discussed.

  13. Helium abundance in the Orion A source

    The H, He 66α (22.4 GHz) and H, He 56α (36.5 GHz) recombination line observations were made at several positions of the central region of Orion A (R ∼ 3'). The observed relative helium abundance y' is found to increase with the angular distance from the nebular centre and to amount the mean value of 11.6% at the peripherycal positions. The comparison with the results of low frequency observations (H, He 109α, ν ∼ 5.0 GHz) shows that measurements towards the centre (y'=8-9%) is in agreement with the low frequency measurements of y', however y' at the peripherycal positions are higher than that at low frequency. The nebula model of a ''blister'' type is constructed to explain such behaviour. The conclusions are made that the actual helium abundance y in Orion A is ∼ 12%, the Orion Nebula expands and its radial velocity is ∼ 5 km/s

  14. Elemental Abundances in PG1159 Stars

    Werner, K; Reiff, E; Kruk, J W

    2007-01-01

    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric elemental abundances of these stars allow to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted elemental abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. PG1159 stars appear to be the direct progeny of [WC] stars.

  15. The primordial helium abundance from updated emissivities

    Aver, Erik; Porter, R L; Skillman, Evan D

    2013-01-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y_p. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, & Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, & Stasinska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y_p. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increase...

  16. Abundances in the diffuse interstellar medium

    The wealth of interstellar absorption line data obtained with the Copernicus and IUE satellites has opened up a new era in studies of the interstellar gas. It is now well established that certain elements, generally those with high condensation temperatures, are substantially under-abundant in the gas-phase relative to total solar or cosmic abundances. This depletion of elements is due to the existence of solid material in the form of dust grains in the interstellar medium. Surprisingly, however, recent surveys indicate that even volatile elements such as Zn and S are significantly depleted in many sight lines. Developments in this field which have been made possible by the large base of UV interstellar absorption line data built up over recent years are reviewed and the implications of the results for our understanding of the physical processes governing depletion are discussed. (author)

  17. Nitrous Oxide Production by Abundant Benthic Macrofauna

    Stief, Peter; Schramm, Andreas

    screened more than 20 macrofauna species for nitrous oxide production and identified filter-feeders and deposit-feeders that occur ubiquitously and at high abundance (e.g., chironomids, ephemeropterans, snails, and mussels) as the most important emitters of nitrous oxide. In contrast, predatory species......Detritivorous macrofauna species co-ingest large quantities of microorganisms some of which survive the gut passage. Denitrifying bacteria, in particular, become metabolically induced by anoxic conditions, nitrate, and labile organic compounds in the gut of invertebrates. A striking consequence...... that do not ingest large quantities of microorganisms produced insignificant amounts of nitrous oxide. Ephemera danica, a very abundant mayfly larva, was monitored monthly in a nitrate-polluted stream. Nitrous oxide production by this filter-feeder was highly dependent on nitrate availability...

  18. Attenuation of species abundance distributions by sampling.

    Shimadzu, Hideyasu; Darnell, Ross

    2015-04-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  19. A TEMPERATURE AND ABUNDANCE RETRIEVAL METHOD FOR EXOPLANET ATMOSPHERES

    strong CO2 absorption in one data set is significantly weaker in another. We must, therefore, acknowledge the strong possibility that the atmosphere is variable, both in its energy redistribution state and in the chemical abundances.

  20. Properties of the outer regions of spiral disks: abundances, colors and ages

    Mollá, Mercedes; Gibson, Brad K; Cavichia, Oscar; López-Sánchez, Ángel-R

    2016-01-01

    We summarize the results obtained from our suite of chemical evolution models for spiral disks, computed for different total masses and star formation efficiencies. Once the gas, stars and star formation radial distributions are reproduced, we analyze the Oxygen abundances radial profiles for gas and stars, in addition to stellar averaged ages and global metallicity. We examine scenarios for the potential origin of the apparent flattening of abundance gradients in the outskirts of disk galaxies, in particular the role of molecular gas formation prescriptions.

  1. Natural Resource Abundance and Human Capital Accumulation

    Jean-Philippe C. Stijns

    2001-01-01

    This study examines indicators of human capital accumulation together with data for natural resource abundance and rents in a panel of 102 countries running from 1970 to 1999. Mineral wealth makes a positive and marked difference on human capital accumulation. Matching on observables reveals that cross-country results are not driven by a third factor such as overall economic development. Political stability does seem to affect both human capital accumulation and subsoil wealth, but not enough...

  2. Tracing the Evolution of High-redshift Galaxies Using Stellar Abundances

    Crosby, Brian D.; O'Shea, Brian W.; Beers, Timothy C.; Tumlinson, Jason

    2016-03-01

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation and evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.

  3. Water Abundance in Molecular Cloud Cores

    Snell, R L; Ashby, M L N; Bergin, E A; Chin, G; Erickson, N R; Goldsmith, P F; Harwit, M; Kleiner, S C; Koch, D G; Neufeld, D A; Patten, B M; Plume, R; Schieder, R; Stauffer, J R; Tolls, V; Wang, Z; Winnewisser, G; Zhang, Y F; Melnick, G J

    2000-01-01

    We present Submillimeter Wave Astronomy Satellite (SWAS) observations of the 1_{10}-1_{01} transition of ortho-water at 557 GHz toward 12 molecular cloud cores. The water emission was detected in NGC 7538, Rho Oph A, NGC 2024, CRL 2591, W3, W3(OH), Mon R2, and W33, and was not detected in TMC-1, L134N, and B335. We also present a small map of the water emission in S140. Observations of the H_2^{18}O line were obtained toward S140 and NGC 7538, but no emission was detected. The abundance of ortho-water relative to H_2 in the giant molecular cloud cores was found to vary between 6x10^{-10} and 1x10^{-8}. Five of the cloud cores in our sample have previous water detections; however, in all cases the emission is thought to arise from hot cores with small angular extents. The water abundance estimated for the hot core gas is at least 100 times larger than in the gas probed by SWAS. The most stringent upper limit on the ortho-water abundance in dark clouds is provided in TMC-1, where the 3-sigma upper limit on the ...

  4. Abundances In Very Metal Poor Dwarf Stars

    Cohen, J G; McWilliam, A; Shectman, S; Thompson, I; Wasserburg, G J; Ivans, I I; Dehn, M; Karlsson, T; Melendez, J; Cohen, Judith G.; Christlieb, Norbert; William, Andrew Mc; Shectman, Steve; Thompson, Ian; Ivans, Inese; Dehn, Matthias; Karlsson, Torgny

    2004-01-01

    We discuss the detailed composition of 28 extremely metal-poor dwarfs, 22 of which are from the Hamburg/ESO Survey, based on Keck Echelle spectra. Our sample has a median [Fe/H] of -2.7 dex, extends to -3.5 dex, and is somewhat less metal-poor than was expected from [Fe/H](HK,HES) determined from low resolution spectra. Our analysis supports the existence of a sharp decline in the distribution of halo stars with metallicity below [Fe/H] = -3.0 dex. So far no additional turnoff stars with [Fe/H]}<-3.5 have been identified in our follow up efforts. For the best observed elements between Mg and Ni, we find that the abundance ratios appear to have reached a plateau, i.e. [X/Fe] is approximately constant as a function of [Fe/H], except for Cr, Mn and Co, which show trends of abundance ratios varying with [Fe/H]. These abundance ratios at low metallicity correspond approximately to the yield expected from Type II SN with a narrow range in mass and explosion parameters; high mass Type II SN progenitors are requir...

  5. Absolute Quantification of Endogenous Ras Isoform Abundance.

    Craig J Mageean

    Full Text Available Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data.

  6. Aerial survey estimates of fallow deer abundance

    Gogan, Peter J.; Gates, Natalie B.; Lubow, Bruce C.; Pettit, Suzanne

    2012-01-01

    Reliable estimates of the distribution and abundance of an ungulate species is essential prior to establishing and implementing a management program. We used ground surveys to determine distribution and ground and aerial surveys and individually marked deer to estimate the abundance of fallow deer (Dama dama) in north-coastal California. Fallow deer had limited distribution and heterogeneous densities. Estimated post-rut densities across 4 annual surveys ranged from a low of 1.4 (SE=0.2) deer/km2 to a high of 3.3 (se=0.5) deer/km2 in a low density stratum and from 49.0 (SE=8.3) deer/km2 to 111.6 deer/km2 in a high density stratum. Sightability was positively influenced by the presence of white color-phase deer in a group and group size, and varied between airial and ground-based observers and by density strata. Our findings underscore the utility of double-observer surveys and aerial surveys with individually marked deer, both incorporating covariates to model sightability, to estimate deer abundance.

  7. Environmental factors shaping ungulate abundances in Poland.

    Borowik, Tomasz; Cornulier, Thomas; Jędrzejewska, Bogumiła

    2013-01-01

    Population densities of large herbivores are determined by the diverse effects of density-dependent and independent environmental factors. In this study, we used the official 1998-2003 inventory data on ungulate numbers from 462 forest districts and 23 national parks across Poland to determine the roles of various environmental factors in shaping country-wide spatial patterns of ungulate abundances. Spatially explicit generalized additive mixed models showed that different sets of environmental variables explained 39 to 50 % of the variation in red deer Cervus elaphus, wild boar Sus scrofa, and roe deer Capreolus capreolus abundances. For all of the studied species, low forest cover and the mean January temperature were the most important factors limiting their numbers. Woodland cover above 40-50 % held the highest densities for these species. Wild boar and roe deer were more numerous in deciduous or mixed woodlands within a matrix of arable land. Furthermore, we found significant positive effects of marshes and water bodies on wild boar abundances. A juxtaposition of obtained results with ongoing environmental changes (global warming, increase in forest cover) may indicate future growth in ungulate distributions and numbers. PMID:24244044

  8. The shape of terrestrial abundance distributions.

    Alroy, John

    2015-09-01

    Ecologists widely accept that the distribution of abundances in most communities is fairly flat but heavily dominated by a few species. The reason for this is that species abundances are thought to follow certain theoretical distributions that predict such a pattern. However, previous studies have focused on either a few theoretical distributions or a few empirical distributions. I illustrate abundance patterns in 1055 samples of trees, bats, small terrestrial mammals, birds, lizards, frogs, ants, dung beetles, butterflies, and odonates. Five existing theoretical distributions make inaccurate predictions about the frequencies of the most common species and of the average species, and most of them fit the overall patterns poorly, according to the maximum likelihood-related Kullback-Leibler divergence statistic. Instead, the data support a low-dominance distribution here called the "double geometric." Depending on the value of its two governing parameters, it may resemble either the geometric series distribution or the lognormal series distribution. However, unlike any other model, it assumes both that richness is finite and that species compete unequally for resources in a two-dimensional niche landscape, which implies that niche breadths are variable and that trait distributions are neither arrayed along a single dimension nor randomly associated. The hypothesis that niche space is multidimensional helps to explain how numerous species can coexist despite interacting strongly. PMID:26601249

  9. Distribution and Abundance of Mars' Atmospheric Argon

    Sprague, A. L.; Boynton, W. V.; Kerry, K. E.; Nelli, Steven; Murphy, Jim; Reedy, R. C.; Metzger, A. E.; Hunten, D. M.; Janes, K. D.; Crombie, M. K.

    2005-01-01

    One and one half Mars years (MY 26 and 27) of atmospheric Argon measurements are described and studied in the context of understanding how Argon, a minor constituent of Mars atmosphere that does not condense at Mars temperatures, can be used to study martian circulation and dynamics. Argon data are from the 2001 Mars Odyssey Gamma Subsystem (GS) of the suite of three instruments comprising the Gamma Ray Spectrometer (GRS). A comprehensive data analysis including gamma-ray production and attenuation by the atmosphere is included. Of particular interest is the enhanced abundance of Ar over the observed Ar abundance at lower latitudes at south (up to a factor of 10) and north (up to a factor of 4) polar regions during winter. Calibration of the measurements to actual Ar abundance is possible because GS measurements cover the same latitude and season as measurements made by the gas chromatograph mass spectrometer (GCMS) on Viking Landers 1 and 2 (VL1 and VL2). [2].

  10. Relative Abundance Measurements in Plumes and Interplumes

    Guennou, Chloé; Savin, Daniel Wolf

    2015-01-01

    We present measurements of relative elemental abundances in plumes and interplumes. Plumes are bright, narrow structures in coronal holes that extend along open magnetic field lines far out into the corona. Previous work has found that in some coronal structures the abundances of elements with a low first ionization potential (FIP) 10 eV). We have used EIS spectroscopic observations made on 2007 March 13 and 14 over an ~24 hour period to characterize abundance variations in plumes and interplumes. To assess their elemental composition, we have used a differential emission measure (DEM) analysis, which accounts for the thermal structure of the observed plasma. We have used lines from ions of iron, silicon, and sulfur. From these we have estimated the ratio of the iron and silicon FIP bias relative to that for sulfur. From the results, we have created FIP-bias-ratio maps. We find that the FIP-bias ratio is sometimes higher in plumes than in interplumes and that this enhancement can be time dependent. These res...

  11. The primordial helium abundance from updated emissivities

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Yp. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Yp. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Yp = 0.2465 ± 0.0097, in good agreement with the BBN result, Yp = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination

  12. How selection structures species abundance distributions

    Magurran, Anne E.; Henderson, Peter A.

    2012-01-01

    How do species divide resources to produce the characteristic species abundance distributions seen in nature? One way to resolve this problem is to examine how the biomass (or capacity) of the spatial guilds that combine to produce an abundance distribution is allocated among species. Here we argue that selection on body size varies across guilds occupying spatially distinct habitats. Using an exceptionally well-characterized estuarine fish community, we show that biomass is concentrated in large bodied species in guilds where habitat structure provides protection from predators, but not in those guilds associated with open habitats and where safety in numbers is a mechanism for reducing predation risk. We further demonstrate that while there is temporal turnover in the abundances and identities of species that comprise these guilds, guild rank order is conserved across our 30-year time series. These results demonstrate that ecological communities are not randomly assembled but can be decomposed into guilds where capacity is predictably allocated among species. PMID:22787020

  13. Abundant Solar Nebula Solids in Comets

    Messenger, S.; Keller, L. P.; Nakamura-Messenger, K.; Nguyen, A. N.; Clemett, S.

    2016-01-01

    Comets have been proposed to consist of unprocessed interstellar materials together with a variable amount of thermally annealed interstellar grains. Recent studies of cometary solids in the laboratory have shown that comets instead consist of a wide range of materials from across the protoplanetary disk, in addition to a minor complement of interstellar materials. These advances were made possible by the return of direct samples of comet 81P/Wild 2 coma dust by the NASA Stardust mission and recent advances in microscale analytical techniques. Isotopic studies of 'cometary' chondritic porous interplanetary dust particles (CP-IDPs) and comet 81P/Wild 2 Stardust samples show that preserved interstellar materials are more abundant in comets than in any class of meteorite. Identified interstellar materials include sub-micron-sized presolar silicates, oxides, and SiC dust grains and some fraction of the organic material that binds the samples together. Presolar grain abundances reach 1 weight percentage in the most stardust-rich CP-IDPs, 50 times greater than in meteorites. Yet, order of magnitude variations in presolar grain abundances among CP-IDPs suggest cometary solids experienced significant variations in the degree of processing in the solar nebula. Comets contain a surprisingly high abundance of nebular solids formed or altered at high temperatures. Comet 81P/Wild 2 samples include 10-40 micron-sized, refractory Ca- Al-rich inclusion (CAI)-, chondrule-, and ameboid olivine aggregate (AOA)-like materials. The O isotopic compositions of these refractory materials are remarkably similar to their meteoritic counterparts, ranging from 5 percent enrichments in (sup 16) O to near-terrestrial values. Comet 81P/Wild 2 and CP-IDPs also contain abundant Mg-Fe crystalline and amorphous silicates whose O isotopic compositions are also consistent with Solar System origins. Unlike meteorites, that are dominated by locally-produced materials, comets appear to be composed of

  14. Abundance and size of Gulf shrimp in Louisiana's coastal estuaries following the Deepwater Horizon oil spill.

    Joris L van der Ham

    Full Text Available The Deepwater Horizon oil spill impacted Louisiana's coastal estuaries physically, chemically, and biologically. To better understand the ecological consequences of this oil spill on Louisiana estuaries, we compared the abundance and size of two Gulf shrimp species (Farfantepeneus aztecus and Litopeneus setiferus in heavily affected and relatively unaffected estuaries, before and after the oil spill. Two datasets were used to conduct this study: data on shrimp abundance and size before the spill were available from Louisiana Department of Wildlife and Fisheries (LDWF. Data on shrimp abundance and size from after the spill were independently collected by the authors and by LDWF. Using a Before-After-Control-Impact with Paired sampling (BACIP design with monthly samples of two selected basins, we found brown shrimp to become more abundant and the mean size of white shrimp to become smaller. Using a BACIP with data on successive shrimp year-classes of multiple basins, we found both species to become more abundant in basins that were affected by the spill, while mean shrimp size either not change after the spill, or increased in both affected and unaffected basins. We conclude that following the oil spill abundances of both species increased within affected estuaries, whereas mean size may have been unaffected. We propose two factors that may have caused these results: 1 exposure to polycyclic aromatic hydrocarbons (PAHs may have reduced the growth rate of shrimp, resulting in a delayed movement of shrimp to offshore habitats, and an increase of within-estuary shrimp abundance, and 2 fishing closures established immediately after the spill, may have resulted in decreased fishing effort and an increase in shrimp abundance. This study accentuates the complexities in determining ecological effects of oil spills, and the need of studies on the organismal level to reveal cause-and-effect relationships of such events.

  15. Geographic and Temporal Variation in Moth Chemical Communication

    Unlike acoustic and visual communication, chemical communication cues have not been viewed in the background of a chemically noisy habitat. Species with similar chemical cues may not only directly interfere with each other's communication channels, but the presence and abundance of other species may...

  16. Normal A0--A1 stars with low rotational velocities. I. Abundance determination and classification

    Royer, F; Monier, R; Adelman, S; Smalley, B; Pintado, O; Reiners, A; Hill, G; Gulliver, A

    2014-01-01

    Context. The study of rotational velocity distributions for normal stars requires an accurate spectral characterization of the objects in order to avoid polluting the results with undetected binary or peculiar stars. This piece of information is a key issue in the understanding of the link between rotation and the presence of chemical peculiarities. Aims. A sample of 47 low v sin i A0-A1 stars (v sin i < 65km/s), initially selected as main-sequence normal stars, are investigated with high-resolution and high signal-to-noise spectroscopic data. The aim is to detect spectroscopic binaries and chemically peculiar stars, and eventually establish a list of confirmed normal stars. Methods. A detailed abundance analysis and spectral synthesis is performed to derive abundances for 14 chemical species. A hierarchical classification, taking measurement errors into account, is applied to the abundance space and splits the sample into two different groups, identified as the chemically peculiar stars and the normal sta...

  17. Average Extinction Curves and Relative Abundances for QSO Absorption Line Systems at 1 <= z_abs < 2

    York, Donald G.; Khare, Pushpa; Berk, Daniel Vanden; Kulkarni, Varsha P.; Crotts, Arlin P. S.; Lauroesch, James T.; Richards, Gordon T.; Schneider, Donald P.; Welty, Daniel E.; AlSayyad, Yusra; Kumar, Abhishek; Lundgren, Britt; Shanidze, Natela; Smith, Tristan; Vanlandingham, Johnny

    2006-01-01

    We have studied a sample of 809 Mg II absorption systems with 1.0 < z_abs < 1.86 in the spectra of SDSS QSOs, with the aim of understanding the nature and abundance of the dust and the chemical abundances in the intervening absorbers. Normalized, composite spectra were derived, for abundance measurements, for the full sample and several sub-samples, chosen on the basis of the line strengths and other absorber and QSO properties. Average extinction curves were obtained for the sub-samples by c...

  18. The Chemical Evolution of Dynamically Hot Galaxies

    Michael G. Richer

    2001-01-01

    Full Text Available We investigate the chemical properties of M32, the bulges of M31 and the Milky Way, and the dwarf spheroidal galaxies NGC 205, NGC 185, Sagittarius, and Fornax using oxygen abundances for their planetary nebulae. Our principal result is that the mean stellar oxygen abundances correlate very well with thei r mean velocity dispersions, implying that the balance between energy input from type II supernovae and the gravitational potential controls chemical evolution in bulges, ellipticals, and dwarf spheroidals. It appears that chemical evolution ceases once supernovae have injected sufficient energy that a galacti c wind develops. All of the galaxies follow a single relation between oxygen abundance and luminosity, but the dwarf spheroidals have systematically higher [O/Fe] ratios than the other galaxies. Consequently, dynamically hot galaxies do not share a common star formation history nor need to a common chemical evolution, despite attaining similar mean stellar oxygen abundances when formin g similar masses. The oxygen abundances support previous indications that stars in higher luminosity ellipticals and bulges were formed on a shorter time scale than their counterparts in less luminous systems.

  19. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. II. NLTE EFFECTS IN J-BAND SILICON LINES

    Bergemann, Maria; Kudritzki, Rolf-Peter; Wuerl, Matthias [Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str.1, D-85741 Garching (Germany); Plez, Bertrand [Laboratoire Univers et Particules de Montpellier, Universite Montpellier 2, CNRS, F-34095 Montpellier (France); Davies, Ben [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 OHA (United Kingdom); Gazak, Zach, E-mail: mbergema@mpa-garching.mpg.de, E-mail: Matthias.Wuerl@physik.uni-muenchen.de, E-mail: kud@ifa.hawaii.edu, E-mail: zgazak@ifa.hawaii.edu, E-mail: bertrand.plez@univ-montp2.fr, E-mail: bdavies@ast.cam.ac.uk [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-02-20

    Medium-resolution J-band spectroscopy of individual red supergiant stars is a promising tool to investigate the chemical composition of the young stellar population in star-forming galaxies. As a continuation of recent work on iron and titanium, detailed non-LTE (NLTE) calculations are presented to investigate the influence of NLTE on the formation of silicon lines in the J-band spectra of red supergiants. Substantial effects are found resulting in significantly stronger absorption lines of neutral silicon in NLTE. As a consequence, silicon abundances determined in NLTE are significantly smaller than in local thermodynamic equilibrium (LTE) with the NLTE abundance corrections varying smoothly between -0.4 dex and -0.1 dex for effective temperatures between 3400 K and 4400 K. The effects are largest at low metallicity. The physical reasons behind the NLTE effects and the consequences for extragalactic J-band abundance studies are discussed.

  20. Kinematics and abundances of K giants in the nuclear bulge of the Galaxy

    Radial velocities have been determined for 53 K giants in Baade's window, which belong to the nuclear bulge population and have abundances derived from low resolution spectra. Additional radial velocities for an overlapping sample of 71 bulge K giants show the same dependence of velocity dispersion on abundance; in both samples, the lower velocity dispersion of the metal-rich giants is found to be significant at a level above 90 percent. Extant data support the hypothesis that both M giants and IRAS bulge sources follow steep density laws similar to that which has been predicted for the metal-rick K giants. The abundance distribution of 88 K giants in Baade's window is noted to be notably well fitted by the simple, closed box model of chemical evolution. 85 refs

  1. RED SUPERGIANT STARS AS COSMIC ABUNDANCE PROBES. II. NLTE EFFECTS IN J-BAND SILICON LINES

    Medium-resolution J-band spectroscopy of individual red supergiant stars is a promising tool to investigate the chemical composition of the young stellar population in star-forming galaxies. As a continuation of recent work on iron and titanium, detailed non-LTE (NLTE) calculations are presented to investigate the influence of NLTE on the formation of silicon lines in the J-band spectra of red supergiants. Substantial effects are found resulting in significantly stronger absorption lines of neutral silicon in NLTE. As a consequence, silicon abundances determined in NLTE are significantly smaller than in local thermodynamic equilibrium (LTE) with the NLTE abundance corrections varying smoothly between –0.4 dex and –0.1 dex for effective temperatures between 3400 K and 4400 K. The effects are largest at low metallicity. The physical reasons behind the NLTE effects and the consequences for extragalactic J-band abundance studies are discussed.

  2. Red Supergiant Stars as Cosmic Abundance Probes: II. NLTE Effects in J-band Silicon Lines

    Bergemann, Maria; Wueurl, Matthias; Plez, Bertrand; Davies, Ben; Gazak, Zach

    2012-01-01

    Medium resolution J-band spectroscopy of individual red supergiant stars is a promising tool to investigate the chemical composition of the young stellar population in star forming galaxies. As a continuation of recent work on iron and titanium, detailed non-LTE calculations are presented to investigate the influence of NLTE on the formation of silicon lines in the J-band spectra of red supergiants. Substantial effects are found resulting in significantly stronger absorption lines of neutral silicon in non-LTE. As a consequence, silicon abundances determined in non-LTE are significantly smaller than in LTE with the non-LTE abundance corrections varying smoothly between -0.4 dex to -0.1 dex for effective temperatures between 3400K to 4400K. The effects are largest at low metallicity. The physical reasons behind the non-LTE effects and the consequences for extragalactic J-band abundance studies are discussed.

  3. Elemental Abundance Ratios in Stars of the Outer Galactic Disk. IV. A New Sample of Open Clusters

    Yong, David; Friel, Eileen D

    2012-01-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be 18, Be 21, Be 22, Be 32, and PWM 4. For Be 18 and PWM 4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [alpha/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance ( 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age (< 0.04 dex/Gyr). We measure the linear relation between [X/Fe] and metallicity, [Fe/...

  4. Abundance anomalies in tidal disruption events

    Kochanek, C. S.

    2016-05-01

    The ˜10 per cent of tidal disruption events (TDEs) due to stars more massive than M* ≳ M⊙ should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ˜25 per cent on average because it becomes inaccessible once it is sequestered in the high-density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main-sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle - stars with M* ≳ M⊙ quickly show an increase in their average N/C ratio by factors of 3-10. Because low-mass stars evolve slowly and high-mass stars are rare, TDEs showing high N/C will almost all be due to ˜1-2 M⊙ stars disrupted on the main sequence. Like helium, portions of the debris will show still larger changes in C and N, and the anomalies decline as the star leaves the main sequence. The enhanced [N/C] abundance ratio of these TDEs provides the first natural explanation for the rare, nitrogen-rich quasars and may also explain the strong nitrogen emission seen in ultraviolet spectra of ASASSN-14li.

  5. The primordial helium abundance from updated emissivities

    Aver, Erik [Department of Physics, Gonzaga University, 502 E Boone Ave, Spokane, WA, 99258 (United States); Olive, Keith A.; Skillman, Evan D. [School of Physics and Astronomy, University of Minnesota, 116 Church St. SE, Minneapolis, MN, 55455 (United States); Porter, R.L., E-mail: aver@gonzaga.edu, E-mail: olive@umn.edu, E-mail: ryanlporter@gmail.com, E-mail: skillman@astro.umn.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602 (United States)

    2013-11-01

    Observations of metal-poor extragalactic H II regions allow the determination of the primordial helium abundance, Y{sub p}. The He I emissivities are the foundation of the model of the H II region's emission. Porter, Ferland, Storey, and Detisch (2012) have recently published updated He I emissivities based on improved photoionization cross-sections. We incorporate these new atomic data and update our recent Markov Chain Monte Carlo analysis of the dataset published by Izotov, Thuan, and Stasi'nska (2007). As before, cuts are made to promote quality and reliability, and only solutions which fit the data within 95% confidence level are used to determine the primordial He abundance. The previously qualifying dataset is almost entirely retained and with strong concordance between the physical parameters. Overall, an upward bias from the new emissivities leads to a decrease in Y{sub p}. In addition, we find a general trend to larger uncertainties in individual objects (due to changes in the emissivities) and an increased variance (due to additional objects included). From a regression to zero metallicity, we determine Y{sub p} = 0.2465 ± 0.0097, in good agreement with the BBN result, Y{sub p} = 0.2485 ± 0.0002, based on the Planck determination of the baryon density. In the future, a better understanding of why a large fraction of spectra are not well fit by the model will be crucial to achieving an increase in the precision of the primordial helium abundance determination.

  6. Abundances of refractory elements in quasars

    New observations of iron, silicon, aluminum, magnesium, and carbon lines in quasars are presented. From comparison of these and previous observations with theoretical models, it is found that the gas-phase abundances of these refractory elements cannot be much less than solar, and in particular that they do not show the order of magnitude depletions that are found in planetary nebulae and the interstellar medium. Because of this lack of depletion of refractory elements it is argued that the broad emission-line clouds are probably deviod of dust

  7. North Sea Elasmobranchs: distribution, abundance and biodiversity

    Daan, N.; Heessen, H.J.L.; Hofstede, ter, AHM Arthur

    2005-01-01

    Based on data from various international and national surveys, an overview is given of the fine-scale distribution (resolution of 20¿longitude * 10¿ latitude; ¿ 10*10 nm) and trends in abundance of elasmobranch species reported from the North Sea. Presence-absence maps are produced based on 4 surveys, which help to delineate distribution limits of the less common species, while maps in terms of catch rates (International Bottom Trawl Survey data only) are given for the seven most common shark...

  8. Abundance Anomalies In Tidal Disruption Events

    Kochanek, C. S.

    2015-01-01

    The ~10% of tidal disruption events (TDEs) due to stars more massive than the Sun should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ~25% on average because it becomes inaccessible once it is sequestered in the high density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main sequence star can be enhanced in helium by factors of ...

  9. Detecting significant changes in protein abundance

    Kai Kammers

    2015-06-01

    Full Text Available We review and demonstrate how an empirical Bayes method, shrinking a protein's sample variance towards a pooled estimate, leads to far more powerful and stable inference to detect significant changes in protein abundance compared to ordinary t-tests. Using examples from isobaric mass labelled proteomic experiments we show how to analyze data from multiple experiments simultaneously, and discuss the effects of missing data on the inference. We also present easy to use open source software for normalization of mass spectrometry data and inference based on moderated test statistics.

  10. Abundance and diversity of marine microbial eukaryotes

    Pernice, Massimo Ciro

    2014-01-01

    [EN]Microeukaryotes are important ecological players in any kind of ecosystem, most notably in the ocean, and it is therefore essential to collect information about their abundance and diversity. To achieve this general goal this thesis was structured in two parts. The first part represents an effort to define our “diversity unit” from studies based on the well-known cloning and Sanger sequencing approach. Basically, we wanted to establish a solid baseline for the second part of the thesis. W...

  11. The chemical ecology of copepods

    Heuschele, Jan; Selander, Erik

    2014-01-01

    An increasing number of studies show the importance of chemical interactions in the aquatic environment. Our understanding of the role of chemical cues and signals in larger crustaceans has advanced in the last decades. However, for copepods, the most abundant metazoan zooplankton and essential for...... the functioning of the marine food web, much is still unknown. We synthesize current knowledge about chemical ecology of copepods including foraging, survival and reproduction. We also compile information on the sensory apparatus and new analytical approaches that may facilitate the identification of...... signal molecules. The review illustrates the importance of chemical interactions in many aspects of copepod ecology and identifies gaps in our knowledge, such as the lack of identified infochemicals and electrophysiological studies to confirm the function of sensory structures. We suggest approaches that...

  12. Non-additive effects of genotypic diversity increase floral abundance and abundance of floral visitors.

    Mark A Genung

    Full Text Available BACKGROUND: In the emerging field of community and ecosystem genetics, genetic variation and diversity in dominant plant species have been shown to play fundamental roles in maintaining biodiversity and ecosystem function. However, the importance of intraspecific genetic variation and diversity to floral abundance and pollinator visitation has received little attention. METHODOLOGY/PRINCIPAL FINDINGS: Using an experimental common garden that manipulated genotypic diversity (the number of distinct genotypes per plot of Solidago altissima, we document that genotypic diversity of a dominant plant can indirectly influence flower visitor abundance. Across two years, we found that 1 plant genotype explained 45% and 92% of the variation in flower visitor abundance in 2007 and 2008, respectively; and 2 plant genotypic diversity had a positive and non-additive effect on floral abundance and the abundance of flower visitors, as plots established with multiple genotypes produced 25% more flowers and received 45% more flower visits than would be expected under an additive model. CONCLUSIONS/SIGNIFICANCE: These results provide evidence that declines in genotypic diversity may be an important but little considered factor for understanding plant-pollinator dynamics, with implications for the global decline in pollinators due to reduced plant diversity in both agricultural and natural ecosystems.

  13. Metal Abundances of KISS Galaxies. V. Nebular Abundances of Fifteen Intermediate Luminosity Star-Forming Galaxies

    Hirschauer, Alec S; Bresolin, Fabio; Saviane, Ivo; Yegorova, Irina

    2015-01-01

    We present high S/N spectroscopy of 15 emission-line galaxies (ELGs) cataloged in the KPNO International Spectroscopic Survey (KISS), selected for their possession of high equivalent width [O III] lines. The primary goal of this study was to attempt to derive direct-method ($T_e$) abundances for use in constraining the upper-metallicity branch of the $R_{23}$ relation. The spectra cover the full optical region from [O II]{\\lambda}{\\lambda}3726,3729 to [S III]{\\lambda}{\\lambda}9069,9531 and include the measurement of [O III]{\\lambda}4363 in 13 objects. From these spectra, we determine abundance ratios of helium, nitrogen, oxygen, neon, sulfur, and argon. We find these galaxies to predominantly possess oxygen abundances in the range of 8.0 $\\lesssim$ 12+log(O/H) $\\lesssim$ 8.3. We present a comparison of direct-method abundances with empirical SEL techniques, revealing several discrepancies. We also present a comparison of direct-method oxygen abundance calculations using electron temperatures determined from e...

  14. Chemical machining

    A. Yardimeden; T. Ozben; O. Cakir

    2007-01-01

    Purpose: Nontraditional machining processes are widely used to manufacture geometrically complex and precision parts for aerospace, electronics and automotive industries. There are different geometrically designed parts, such as deep internal cavities, miniaturized microelectronics and fine quality components may only be produced by nontraditional machining processes. This paper is aiming to give details of chemical machining process, industrial applications, applied chemical etchants and mac...

  15. The Hyades open cluster is chemically inhomogeneous

    Liu, F; Yong, D.; Asplund, M.; Ramirez, I.; Melendez, J.

    2016-01-01

    We present a high-precision differential abundance analysis of 16 solar-type stars in the Hyades open cluster based on high resolution, high signal-to-noise ratio (S/N ~ 350 - 400) spectra obtained from the McDonald 2.7m telescope. We derived stellar parameters and differential chemical abundances for 19 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and Ba) with uncertainties as low as ~ 0.01 - 0.02 dex. Our main results include: (1) there is no clear chemical ...

  16. Chemical Radioprotectors

    S. N. Upadhyay

    2005-10-01

    Full Text Available Protection of biological systems against radiation damage is of paramount importance during accidental and unavoidable exposure to radiation. Several physico-chemical and biological factors collectively contribute to the damage caused by radiation and are, therefore, targets for developing radioprotectors. Work on the development of chemicals capable of protecting biological systemsfrom radiation damage was initiated nearly six decades ago with cysteine being the first molecule to be reported. Chemicals capable of scavenging free radicals, inducing oxygen depletion,antioxidants and modulators of immune response have been some of the radioprotectors extensively investigated with limited success. Mechanism of action of some chemical radioprotectors and their combinations have been elucidated, while further understanding is required in many instances. The present review elaborates on structure-activity relationship of some of the chemical radioprotectors, their evaluation, and assessment, limitation, and future prospects.

  17. LiHe{sup +} IN THE EARLY UNIVERSE: A FULL ASSESSMENT OF ITS REACTION NETWORK AND FINAL ABUNDANCES

    Bovino, Stefano; Tacconi, Mario; Gianturco, Francesco A. [Department of Chemistry, Universita degli Studi di Roma ' La Sapienza' , Piazzale A. Moro 5, 00185 Roma (Italy); Curik, Roman [J. Heyrovsky Institute of Physical Chemistry, Dolejskova 3, Prague (Czech Republic); Galli, Daniele, E-mail: fa.gianturco@caspur.it [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy)

    2012-06-10

    We present the results of quantum calculations based on entirely ab initio methods for a variety of molecular processes and chemical reactions involving the LiHe{sup +} ionic polar molecule. With the aid of these calculations, we derive accurate reaction rates and fitting expressions valid over a range of gas temperatures representative of the typical conditions of the pregalactic gas. With the help of a full chemical network, we then compute the evolution of the abundance of LiHe{sup +} as function of redshift in the early universe. Finally, we compare the relative abundance of LiHe{sup +} with that of other polar cations formed in the same redshift interval.

  18. The Effects of Magnetic Field Morphology on the Determination of Oxygen and Iron Abundances in the Solar Photosphere

    Moore, Christopher S.; Uitenbroek, Han; Rempel, Matthias; Criscuoli, Serena; Rast, Mark

    2016-01-01

    The solar chemical abundance (or a scaled version of it) is implemented in numerous astrophysical analyses. Thus, an accurate and precise estimation of the solar elemental abundance is crucial in astrophysics.We have explored the impact of magnetic fields on the determination of the solar photospheric oxygen andiron abundances using 3D radiation-magnetohydrodynamic (MHD) simulations of convection. Specifically, weexamined differences in abundance deduced from three classes of atmospheres simulated with the MURaM code: apure hydrodynamic (HD) simulation, an MHD simulation with a local dynamo magnetic field that has saturated withan unsigned vertical field strength of 80 G at the optical depth unity surface, and an MHD simulation with an initially imposed vertical mean field of 80 G. We use differential equivalent width analysis for diagnosing abundances derived from five oxygen and four iron spectral lines of differing wavelength, oscillator strength, excitation potential, and Lande g-factor, and find that the morphology of the magnetic field is important to the outcome of abundance determinations. The largest deduced abundance differences are found in the vertical mean field simulations and small scale unresolved field resulting from the local dynamo has a smaller impact on abundance determinations.

  19. Beryllium Abundances of Solar-Analog Stars

    Takeda, Yoichi; Honda, Satoshi; Kawanomoto, Satoshi; Ando, Hiroyasu; Sakurai, Takashi

    2011-01-01

    An extensive beryllium abundance analysis was conducted for 118 solar analogs (along with 87 FGK standard stars) by applying the spectrum synthesis technique to the near-UV region comprising the Be II line at 3131.066 A, in an attempt to investigate whether Be suffers any depletion such as the case of Li showing a large diversity. We found that, while most of these Sun-like stars are superficially similar in terms of their A(Be) (Be abundances) around the solar value within ~ +/- 0.2dex, 4 out of 118 samples turned out strikingly Be-deficient (by more than ~2 dex) and these 4 stars belong to the group of lowest v_e sin i (projected rotation velocity). Moreover, even for the other majority showing an apparent similarity in Be, we can recognize a tendency that A(Be) gradually increases with an increase in v_e sin i. These observational facts suggest that any solar analog star (including the Sun) generally suffers some kind of Be depletion during their lives, where the rotational velocity (or the angular momentu...

  20. Oxygen Abundance Measurements of SHIELD Galaxies

    Haurberg, Nathalie C; Cannon, John M; Marshall, Melissa V

    2015-01-01

    We have derived oxygen abundances for 8 galaxies from the Survey of HI in Extremely Low-mass Dwarfs (SHIELD). The SHIELD survey is an ongoing study of very low-mass galaxies, with M$_{\\rm HI}$ between 10$^{6.5}$ and 10$^{7.5}$ M$_{\\odot}$, that were detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. H$\\alpha$ images from the WIYN 3.5m telescope show that these 8 SHIELD galaxies each possess one or two active star-forming regions which were targeted with long-slit spectral observations using the Mayall 4m telescope at KPNO. We obtained a direct measurement of the electron temperature by detection of the weak [O III] $\\lambda$4363 line in 2 of the HII regions. Oxygen abundances for the other HII regions were estimated using a strong-line method. When the SHIELD galaxies are plotted on a B-band luminosity-metallicity diagram they appear to suggest a slightly shallower slope to the relationship than normally seen. However, that offset is systematically reduced when the near-infrared luminosity is used ins...

  1. Abundance Anomalies In Tidal Disruption Events

    Kochanek, C S

    2015-01-01

    The ~10% of tidal disruption events (TDEs) due to stars more massive than the Sun should show abundance anomalies due to stellar evolution in helium, carbon and nitrogen, but not oxygen. Helium is always enhanced, but only by up to ~25% on average because it becomes inaccessible once it is sequestered in the high density core as the star leaves the main sequence. However, portions of the debris associated with the disrupted core of a main sequence star can be enhanced in helium by factors of 2-3 for debris at a common orbital period. These helium abundance variations may be a contributor to the observed diversity of hydrogen and helium line strengths in TDEs. A still more striking anomaly is the rapid enhancement of nitrogen and the depletion of carbon due to the CNO cycle -- stars more massive than the Sun quickly show an increase in their average N/C ratio by factors of 3-10. Because low mass stars evolve slowly and high mass stars are rare, TDEs showing high N/C will almost all be due to 1-2Msun stars disr...

  2. Automatic abundance analysis of high resolution spectra

    Bonifacio, P; Bonifacio, Piercarlo; Caffau, Elisabetta

    2003-01-01

    We describe an automatic procedure for determining abundances from high resolution spectra. Such procedures are becoming increasingly important as large amounts of data are delivered from 8m telescopes and their high-multiplexing fiber facilities, such as FLAMES on ESO-VLT. The present procedure is specifically targeted for the analysis of spectra of giants in the Sgr dSph; however, the procedure may be, in principle, tailored to analyse stars of any type. Emphasis is placed on the algorithms and on the stability of the method; the external accuracy rests, ultimately, on the reliability of the theoretical models (model-atmospheres, synthetic spectra) used to interpret the data. Comparison of the results of the procedure with the results of a traditional analysis for 12 Sgr giants shows that abundances accurate at the level of 0.2 dex, comparable with that of traditional analysis of the same spectra, may be derived in a fast and efficient way. Such automatic procedures are not meant to replace the traditional ...

  3. Beryllium abundances in stars hosting giant planets

    Santos, N C; Israelian, G; Mayor, M; Rebolo, R; García-Gíl, A; Pérez de Taoro, M R; Randich, S

    2002-01-01

    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be deple...

  4. Abundances of Refractory Elements for G-type Stars with Extrasolar Planets

    Kang, Wonseok; Kim, Kang-Min

    2011-01-01

    We confirm the difference of chemical abundance between stars with and without exoplanet, as well as present the relation between chemical abundances and the physical properties of exoplanets such as planetary mass and semi-major axis of planetary orbit. We have obtained the spectra of 52 G-type stars with BOES (BOAO Echelle Spectrograph) and carried out the abundance analysis for 12 elements of Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni. We first have found that the [Mn/Fe] ratios of planet-host stars are higher than those of comparisons in the whole metallicity range, and in metal-poor stars of [Fe/H] $<$ -0.4, the abundance difference have been larger than in metal-rich samples, especially for the elements of Mg, Al, Sc, Ti, V, and Co. When examined the relation between planet properties and metallicities of planet-host stars, we have observed that planet-host stars with low-metallicity tend to bear several low-mass planets ($< M_J$) instead of a massive gas-giant planet.

  5. Investigation of the Puzzling Abundance Pattern in the Stars of the Fornax Dwarf Spheroidal Galaxy

    Li, Hongjie; Zhang, Bo

    2013-01-01

    Many works have found unusual characteristics of elemental abundances in nearby dwarf galaxies. This implies that there is a key factor of galactic evolution that is different from that of the Milky Way (MW). The chemical abundances of the stars in the Fornax dwarf spheroidal galaxy (Fornax dSph) provide excellent information for setting constraints on the models of the galactic chemical evolution. In this work, adopting the five-component approach, we fit the abundances of the Fornax dSph stars, including $\\alpha$ elements, iron group elements and neutron-capture elements. For most sample stars, the relative contributions from the various processes to the elemental abundances are not usually in the MW proportions. We find that the contributions from massive stars to the primary $\\alpha$ elements and iron group elements increase monotonously with increasing [Fe/H]. This means that the effect of the galactic wind is not strong enough to halt star formation and the contributions from massive stars to $\\alpha$ e...

  6. The Cocoon Nebula and its ionizing star: do stellar and nebular abundances agree?

    García-Rojas, J; Esteban, C

    2014-01-01

    (Abridged) Main sequence massive stars embedded in an HII region should have the same chemical abundances as the surrounding nebular gas+dust. The Cocoon nebula, a close-by Galactic HII region ionized by a narrow line B0.5 V single star (BD+46 3474), is an ideal target to perform a detailed comparison of nebular and stellar abundances in the same Galactic HII region. We investigate the chemical content of O, N and S in the Cocoon nebula from two different points of view: an empirical analysis of the nebular spectrum and a detailed spectroscopic analysis of its ionizing B-type star using state-of-the-art stellar atmosphere modeling. By comparing the stellar and nebular abundances, we aim to indirectly address the long-standing problem of the discrepancy found between abundances obtained from collisionally excited lines (CELs) and optical recombination lines in photoionized nebulae. We collect spatially resolved spectroscopy of the Cocoon nebula and a high resolution optical spectrum of its ionizing star. Stand...

  7. Molecular Abundances in the Disk of AN Active Galactic Nucleus

    Harada, N.; Thompson, T. A.; Herbst, E.

    2011-06-01

    There are galactic nuclei that emit high luminosities L˜1044-46 erg S-1 including luminosity produced by X-rays from high mass accretion onto the central black holes. These nuclei are called active galactic nuclei (AGNs), and they are accompanied by molecular disks. Observations show high abundances of CN and HCN in the disks; the molecules are proposed to be probes of X-ray dominated regions (XDRs) created by the X-rays from AGNs. We have constructed a spatially-dependent chemical-abundance model of the molecular disk in NGC 1068, a typical AGN-dominated galaxy. Recently, new observations of CN and HCN have been made at much higher spatial resolution, and there are also detections of polyatomic molecules such as HC3N, c-C3H2, and C2H. We discuss how these observations and our simulations can help us to better understand the physical conditions, the disk structure, and conditions for star formation within molecular disks, which are still uncertain. We also include a comparison with other types of galaxies such as (ultra-) luminous infrared galaxies. Usero et al.Astronomy and Astrophysics. 419 (897), 2004. Initial results were presented at the International Symposium on Molecular Spectroscopy 2010, RF05 Garcia-Burillo et al. Astronomy and Astrophysics. 519 (2), 2010. Garcia-Burillo et al. Journal of Physics Conference Series, 131 (12031), 2008. Costagliola et al. ArXiv e-print arXiv:1101.2122, 2011. Nakajima et al. Astrophysical Journal Letters 728 (L38), 2008.

  8. Abundances from disentangled component spectra: the eclipsing binary V578 Mon

    Pavlovski, K

    2005-01-01

    Chemical abundances of the early-B type components of the binary V578 Mon are derived from disentangled component spectra. This is a pilot study showing that, even with moderately high line-broadening, metal abundances can be derived from disentangled spectra with a precision 0.1 dex, relative to sharp-lined single stars of the same spectral type. This binary is well-suited for such an assessment because of its youth as a member of the Rosette Nebula cluster NGC 2244, strengthening the expectation of an unevolved ZAMS chemical composition. The method is of interest to study rotational driven mixing in main-sequence stars, with fundamental stellar parameters known with higher accuracy in (eclipsing) binaries. The paper also includes an evaluation of the bias that might be present in disentangled spectra.

  9. PNe as observational constraints in chemical evolution models for NGC 6822

    Hernández-Martínez, L.; L. Carigi; Peña, M. (Marian); M. Peimbert

    2011-01-01

    Chemical evolution models are useful for understanding the formation and evolution of stars and galaxies. Model predictions will be more robust as more observational constraints are used. We present chemical evolution models for the dwarf irregular galaxy NGC 6822 using chemical abundances of old and young Planetary Nebulae (PNe) and \\ion{H}{ii} regions as observational constraints. Two sets of chemical abundances, one derived from collisionally excited lines (CELs) and one, from recombinatio...

  10. Earth abundant thin film technology for next generation photovoltaic modules

    Alapatt, Githin Francis

    With a cumulative generation capacity of over 100 GW, Photovoltaics (PV) technology is uniquely poised to become increasingly popular in the coming decades. Although, several breakthroughs have propelled PV technology, it accounts for only less than 1% of the energy produced worldwide. This aspect of the PV technology is primarily due to the somewhat high cost per watt, which is dependent on the efficiency of the PV cells as well as the cost of manufacturing and installing them. Currently, the efficiency of the PV conversion process is limited to about 25% for commercial terrestrial cells; improving this efficiency can increase the penetration of PV worldwide rapidly. A critical review of all possibilities pursued in the public domain reveals serious shortcomings and manufacturing issues. To make PV generated power a reality in every home, a Multi-Junction Multi-Terminal (MJMT) PV architecture can be employed combining silicon and another earth abundant material. However, forming electronic grade thin films of earth abundant materials is a non-trivial challenge; without solving this, it is impossible to increase the overall PV efficiency. Deposition of Copper (I) Oxide, an earth abundant semiconducting material, was conducted using an optimized Photo assisted Chemical Vapor Deposition process. X-Ray Diffraction, Ellipsometry, Transmission Electron Microscopy, and Profilometry revealed that the films composed of Cu2O of about 90 nm thickness and the grain size was as large as 600 nm. This result shows an improvement in material properties over previously grown thin films of Cu2O. Measurement of I-V characteristics of a diode structure composed of the Cu2O indicates an increase in On/Off ratio to 17,000 from the previous best value of 800. These results suggest that the electronic quality of the thin films deposited using our optimized process to be better than the results reported elsewhere. Using this optimized thin film forming technique, it is now possible to

  11. Estimating R-Process Yields from Abundances of the Metal-Poor Stars

    Li, Hongjie; Cui, Wenyuan; Zhang, Bo

    2014-01-01

    The chemical abundances of metal-poor stars provide important clues to explore stellar formation history and set significant constraints on models of the r-process. In this work, we find that the abundance patterns of the light and iron group elements of the main r-process stars are very close to those of the weak r-process stars. Based on a detailed abundance comparison, we find that the weak r-process occurs in supernovae with a progenitor mass range of $\\sim11-26M_{\\odot}$. Using the SN yields given by Heger & Woosley and the abundances of the weak r-process stars, the weak r-process yields are derived. The SNe with a progenitor mass range of $15M_{\\odot}abundance ratios of the weak r-process and the main r-process in the solar system, the average yields of the main r-process are estimated. The observed correlations of the [neutron-capture/Eu] versus [Eu/Fe] can be explained by mixing o...

  12. Galactic abundance gradients from Cepheids: alpha and heavy elements in the outer disk

    Lemasle, B; Genovali, K; Kovtyukh, V V; Bono, G; Inno, L; Laney, C D; Kaper, L; Bergemann, M; Fabrizio, M; Matsunaga, N; Pedicelli, S; Primas, F; Romaniello, M

    2013-01-01

    Context: Galactic abundance gradients set strong constraints to chemo-dynamical evolutionary models of the Milky Way. Given the PL relations that provide accurate distances and the large number of spectral lines, Cepheids are excellent tracers of the present-day abundance gradients. Aims: We want to measure the Galactic abundance gradient of several chemical elements. While the slope of the Cepheid iron gradient did not vary much from the very first studies, the gradients of the other elements are not that well constrained. In this paper we focus on the inner and outer regions of the Galactic thin disk. Methods: We use HR spectra (FEROS, ESPADONS, NARVAL) to measure the abundances of several light (Na, Al), alpha (Mg, Si, S, Ca), and heavy elements (Y, Zr, La, Ce, Nd, Eu) in a sample of 65 Milky Way Cepheids. Combining these results with accurate distances from period-Wesenheit relations in the NIR enables us to determine the abundance gradients in the Milky Way. Results: Our results are in good agreement wit...

  13. Complete element abundances of nine stars in the r-process galaxy Reticulum II

    Ji, Alexander P; Simon, Joshua D; Chiti, Anirudh

    2016-01-01

    We present chemical abundances derived from high-resolution Magellan/MIKE spectra of the nine brightest known red giant members of the ultra-faint dwarf galaxy Reticulum II. These stars span the full metallicity range of Ret II (-3.5 < [Fe/H] < -2). Seven of the nine stars have extremely high levels of r-process material ([Eu/Fe]~1.7), in contrast to the extremely low neutron-capture element abundances found in every other ultra-faint dwarf galaxy studied to date. The other two stars are the most metal-poor stars in the system ([Fe/H] < -3), and they have neutron-capture element abundance limits similar to those in other ultra-faint dwarf galaxies. We confirm that the relative abundances of Sr, Y, and Zr in these stars are similar to those found in r-process halo stars but ~0.5 dex lower than the solar r-process pattern. If the universal r-process pattern extends to those elements, the stars in Ret II display the least contaminated known r-process pattern. The abundances of lighter elements up to the...

  14. The Distribution of Carbon Abundances in Stars in the Milky Way’s Satellite Galaxies

    Guo, Michelle; Zhang, A.

    2013-01-01

    There is evidence that the Milky Way halo is comprised in part of disrupted dwarf satellite galaxies; however, the extent to which they contribute to the halo’s formation is unclear. To further examine the role of dwarf galaxies in building the halo, we compared the degrees of carbon enhancement of the dwarf spheroidal (dSph) galaxies and field halo populations. We generated a grid of high-resolution synthetic spectra for hypothetical stars of specific effective temperature, surface gravity, metallicity, alpha element abundance, and carbon abundance for comparison with medium-resolution observed spectra of dSph stars of unmeasured [C/Fe] but otherwise known properties. After smoothing, rebinning, and normalizing the two data sets, we varied carbon abundance to find the best carbon abundance by determining the synthetic spectrum that gave the minimal deviation. We found a lower Carbon-Enhanced Metal-Poor (CEMP) fraction in the dSph galaxies, which suggests that they have evolved over time. Whereas star formation and chemical evolution stopped for accreted galaxies, the surviving galaxies evolved to became less carbon enhanced and more metal rich. The variation in carbon abundances supports prior knowledge of dSph stars and provide a deeper understanding the formation of stars such as those of the Milky Way halo. We thank the US National Science Foundation, the UCSC Science Internship Program, and the W. M. Keck Observatory where the spectra were obtained.

  15. Abundances of carbon-enhanced metal-poor stars as constraints on their formation

    Hansen, C J; Hansen, T T; Kennedy, C R; Placco, V M; Beers, T C; Andersen, J; Cescutti, G; Chiappini, C

    2015-01-01

    An increasing fraction of carbon-enhanced metal-poor (CEMP) stars is found as their iron abundance, [Fe/H], decreases below [Fe/H] = -2.0. The CEMP-s stars have the highest absolute carbon abundances, [C/H], and are thought to owe their enrichment in carbon and the slow neutron-capture (s-process) elements to mass transfer from a former asymptotic giant-branch (AGB) binary companion. The most Fe-poor CEMP stars are normally single, exhibit somewhat lower [C/H] than CEMP-s stars, but show no s-process element enhancement (CEMP-no stars). CNO abundance determinations offer clues to their formation sites. C, N, Sr, and Ba abundances (or limits) and 12C/13C ratios where possible are derived for a sample of 27 faint metal-poor stars for which the X-shooter spectra have sufficient S/N ratios. These moderate resolution, low S/N (~10-40) spectra prove sufficient to perform limited chemical tagging and enable assignment of these stars into the CEMP sub-classes (CEMP-s and CEMP-no). According to the derived abundances,...

  16. Abundance Profiling of Extremely Metal-Poor Stars and Supernova Properties in the Early Universe

    Tominaga, Nozomu; Nomoto, Ken'ichi

    2013-01-01

    The first metal enrichment in the universe was made by a supernova (SN) explosion of a population (Pop) III star and chemical evolution of the universe is recorded in abundance patterns of extremely metal-poor (EMP) stars. Increasing number of the EMP stars are now being discovered. This allows us to statistically constrain properties of SNe of Pop III stars (Pop III SNe). We investigate the properties of Pop III SNe by comparing their nucleosynthetic yields with the abundance patterns of the EMP stars. We focus on the most metal-poor stars with [Fe/H] $\\lsim-3.5$ and present Pop III SN models that reproduce well their individual abundance patterns. From these models we derive relations between abundance ratios and properties of Pop III SNe: [(C+N)/Fe] vs. an ejected Fe mass, and [(C+N)/Mg] vs. a remnant mass. Using fitting formulae, distribution of the abundance ratios of EMP stars is converted to those of the properties of Pop III SNe, which can be compared with SNe in the present day. Large samples of EMP ...

  17. Phytoplankton abundance and community structure in the Antarctic polar frontal region during austral summer of 2009

    SHRAMIK Patil; RAHUL Mohan; SUHAS Shetye; SAHINA Gazi

    2013-01-01

    The Antarctic polar front region in the Southern Ocean is known to be most productive.We studied the phytoplankton community structure in the Indian sector at this frontal location during late austral summer (February,2009) onboard R/V Akademic Boris Petrov.We used the phytoplankton and microheterotrophs abundance,as also the associated physico-chemical parameters to explain the low phytoplankton abundance in the study region.This study emphasizes the shift of phytoplankton,from large (>10 μm) to small (<10 μm) size.The phytoplankton abundance appears to be controlled by physical parameters and by nutrient concentrations and also by the microheterotrophs (ciliates and dinoflagellates) which exert a strong grazing pressure.This probably reduces small (<10 μm) and large (>10 μm)phytoplankton abundance during the late austral summer.This study highlights the highly productive polar front nevertheless becomes a region of low phytoplankton abundance,due to community shifts towards pico-phytoplankton (<10 μm) during late austral summer.

  18. M31 GLOBULAR CLUSTER ABUNDANCES FROM HIGH-RESOLUTION, INTEGRATED-LIGHT SPECTROSCOPY

    We report the first detailed chemical abundances for five globular clusters (GCs) in M31 from high-resolution (R ∼ 25,000) spectroscopy of their integrated light (IL). These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its GC population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope and are analyzed using a new IL spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages ≥10 Gyr, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the α-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [α/Fe], and [Al/Fe] to be enhanced in the IL abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from IL do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low- or high-resolution IL abundances of GCs that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all five M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.

  19. Evolved stars and the origin of abundance trends in planet hosts

    Maldonado, J.; Villaver, E.

    2016-01-01

    Tentative evidence that the properties of evolved stars with planets may be different from what we know for MS hosts has been recently reported. We aim to test whether evolved stars with planets show any chemical peculiarity that could be related to the planet formation process. We determine in a consistent way the metallicity and individual abundances of a large sample of evolved (subgiants and red giants) and MS stars with and without known planetary companions. No differences in the vs. c...

  20. The Phytoplankton Composition, Abundance and Temporal Variation of a Polluted Estuarine Creek in Lagos, Nigeria

    Onyema, I. C

    2007-01-01

    The phytoplankton composition, abundance and temporal variation of a polluted estuarine creek in Lagos was investigated for 6 months (February - July, 2003). Strong positive correlation (≥7.3) recorded between physico-chemical characteristics at two stations within the creek likely point to their control by similar factors, chiefly hydro-meteorological forcings and the creeks pollution status. A total of 48 taxa from 26 genera and 3 classes namely bacillariophyceae (37 taxa), cyanophyce...

  1. Hazardous Chemicals

    2007-04-10

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  2. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method o...

  3. Distribution of chemical elements in marine algae

    The analytical data on the distribution of chemical elements in the biosphere is promptly increasing in numbers. A method of data analysis which can arrange these data in accordance with a definite principle has been proposed. In our laboratory, systematic study of chemical elements in various Japanese seaweeds has been carried out and a relationship between the concentration factor for elements on a seaweed and its oceanic residence time emerged from the results: the logarithm of the concentration factor(y) tends to be inversely proportional to the logarithm of the residence time(x). Consequently the following rormula can be assumed: log y = log a + b log x. The values of log a, b, and the correlation coefficient r are calculated from the individual data. Usually the value of +r+ was more than 0.8. And in general the larger value of log a the sample has, the larger one of +b+ it has. This regularity between residence time and concentration factor was observed also in other phyla of marine organisms such as marine zoo plankton. Furthermore, since the ocean is closely connected with each of geochemical spheres, there is a tendency that the value of oceanic residence time has similar relation with the concentration ratio of many other geochemical abundance to oceanic chemical abundance as well as with concentration factor of marine organisms. In connection with these results it was found that there is close correlation between the two of each ratio of geochemical abundance to oceanic abundance. On the other hand, it was seen that there are no close correlation between ratios of geochemical abundance to crustal chemical abundance or other ones. Therefore it is again presumed that the ocean gives important contributions on the distribution of chemical elements in many kinds of substances in biosphere. (author)

  4. The Hyades open cluster is chemically inhomogeneous

    Liu, F.; Yong, D.; Asplund, M.; Ramírez, I.; Meléndez, J.

    2016-04-01

    We present a high-precision differential abundance analysis of 16 solar-type stars in the Hyades open cluster based on high-resolution, high signal-to-noise ratio (S/N ≈ 350-400) spectra obtained from the McDonald 2.7-m telescope. We derived stellar parameters and differential chemical abundances for 19 elements (C, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ba) with uncertainties as low as ˜0.01-0.02 dex. Our main results include: (1) there is no clear chemical signature of planet formation detected among the sample stars, i.e. no correlations in abundances versus condensation temperature; (2) the observed abundance dispersions are a factor of ≈1.5-2 larger than the average measurement errors for most elements; (3) there are positive correlations, of high statistical significance, between the abundances of at least 90 per cent of pairs of elements. We demonstrate that none of these findings can be explained by errors due to the stellar parameters. Our results reveal that the Hyades is chemically inhomogeneous at the 0.02 dex level. Possible explanations for the abundance variations include (1) inhomogeneous chemical evolution in the proto-cluster environment, (2) supernova ejection in the proto-cluster cloud and (3) pollution of metal-poor gas before complete mixing of the proto-cluster cloud. Our results provide significant new constraints on the chemical composition of open clusters and a challenge to the current view of Galactic archaeology.

  5. Stellar substructures in the solar neighbourhood. II. Abundances of neutron-capture elements in the kinematic Group 3 of the Geneva-Copenhagen survey

    Stonkutė, Edita; Nordström, Birgitta; Ženovienė, Renata; 10.1051/0004-6361/201321437

    2013-01-01

    The evolution of chemical elements in a galaxy is linked to its star formation history. Variations in star formation history are imprinted in the relative abundances of chemical elements produced in different supernova events and asymptotic giant branch stars. We determine detailed elemental abundances of s- and r-process elements in stars belonging to Group3 of the Geneva-Copenhagen survey and compare their chemical composition with Galactic disc stars. The aim is to look for possible chemical signatures that might give information about the formation history of this kinematic group of stars, which is suggested to correspond to remnants of disrupted satellites. High-resolution spectra were obtained with the FIES spectrograph at the Nordic Optical Telescope, La Palma, and were analysed with a differential model atmosphere method. Comparison stars were observed and analysed with the same method. Abundances of chemical elements produced mainly by the s-process are similar to those in the Galactic thin-disc dwar...

  6. Abundance gradients in the Milky Way for alpha elements, Iron peak elements, Barium, Lanthanum and Europium

    Cescutti, G; François, P; Chiappini, C

    2006-01-01

    We model the abundance gradients in the disk of the Milky Way for several chemical elements (O, Mg, Si, S, Ca, Sc, Ti, Co, V, Fe, Ni, Zn, Cu, Mn, Cr, Ba, La and Eu), and compare our results with the most recent and homogeneous observational data. We adopt a chemical evolution model able to well reproduce the main properties of the solar vicinity. We compute, for the first time, the abundance gradients for all the above mentioned elements in the galactocentric distance range 4 - 22 kpc. The comparison with the observed data on Cepheids in the galactocentric distance range 5-17 kpc gives a very good agreement for many of the studied elements. In addition, we fit very well the data for the evolution of Lanthanum in the solar vicinity for which we present results here for the first time. We explore, also for the first time, the behaviour of the abundance gradients at large galactocentric distances by comparing our results with data relative to distant open clusters and red giants and select the best chemical evol...

  7. Chemical Peels

    ... pills, who subsequently become pregnant or have a history of brownish facial discoloration. Scarring Reactivation of cold sores What can I expect after having a chemical peel? All peels require some follow-up care: ...

  8. Unnecessary Chemicals

    Johnson, Anita

    1978-01-01

    Discusses the health hazards resulting from chemical additions of many common products such as cough syrups, food dyes, and cosmetics. Steps being taken to protect consumers from these health hazards are included. (MDR)

  9. Forms and genesis of species abundance distributions

    Evans O. Ochiaga

    2015-12-01

    Full Text Available Species abundance distribution (SAD is one of the most important metrics in community ecology. SAD curves take a hollow or hyperbolic shape in a histogram plot with many rare species and only a few common species. In general, the shape of SAD is largely log-normally distributed, although the mechanism behind this particular SAD shape still remains elusive. Here, we aim to review four major parametric forms of SAD and three contending mechanisms that could potentially explain this highly skewed form of SAD. The parametric forms reviewed here include log series, negative binomial, lognormal and geometric distributions. The mechanisms reviewed here include the maximum entropy theory of ecology, neutral theory and the theory of proportionate effect.

  10. $^{7}$Li abundances in halo stars testing stellar evolution models and the primordial $^{7}$Li abundance

    Chaboyer, B; Brian Chaboyer

    1994-01-01

    A large number of stellar evolution models with [Fe/H] = -2.3 and -3.3 have been calculated in order to determine the primordial .sup(7)Li abundance and to test current stellar evolution models by a comparison to the extensive database of Li abundances in extremely metal poor halo stars observed by Thorburn (1994). Standard models do a good job of fitting the observed Li abundances in stars hotter than 5600 K. They predict a primordial ^7Li abundance of log N(Li) = 2.24\\pm 0.03. Models which include microscopic diffusion predict a downward curvature in the .sup(7)Li destruction isochrones at hot temperatures which is not present in the observations. Thus, the observations clearly rule out models which include uninhibited microscopic diffusion of .sup(7)Li from the surface of the star. The [Fe/H] = -2.3 stellar models which include both diffusion and rotational mixing provide an excellent match to the observations. Both the plateau stars and the heavily depleted cool stars are well fit by these models. The rot...

  11. Chemical kinetics

    This book gives descriptions of chemical kinetics. It starts summary of chemical kinetics and reaction mechanism, and explains basic velocity law, experiment method for determination of reaction velocity, temperature dependence of reaction velocity, theory of reaction velocity, theory on reaction of unimolecular, process of atom and free radical, reaction in solution, catalysis, photochemical reaction, such as experiment and photochemical law and rapid reaction like flame, beam of molecule and shock tube.

  12. Dynamical implications of Jupiter's tropospheric ammonia abundance

    Showman, Adam P.; de Pater, Imke

    2005-03-01

    Groundbased radio observations indicate that Jupiter's ammonia is globally depleted from 0.6 bars to at least 4-6 bars relative to the deep abundance of ˜3 times solar, a fact that has so far defied explanation. The observations also indicate that (i) the depletion is greater in belts than zones, and (ii) the greatest depletion occurs within Jupiter's local 5-μm hot spots, which have recently been detected at radio wavelengths. Here, we first show that both the global depletion and its belt-zone variation can be explained by a simple model for the interaction of moist convection with Jupiter's cloud-layer circulation. If the global depletion is dynamical in origin, then important endmember models for the belt-zone circulation can be ruled out. Next, we show that the radio observations of Jupiter's 5-μm hot spots imply that the equatorial wave inferred to cause hot spots induces vertical parcel oscillation of a factor of ˜2 in pressure near the 2-bar level, which places important constraints on hot-spot dynamics. Finally, using spatially resolved radio maps, we demonstrate that low-latitude features exceeding ˜4000 km diameter, such as the equatorial plumes and large vortices, are also depleted in ammonia from 0.6 bars to at least 2 bars relative to the deep abundance of 3 times solar. If any low-latitude features exist that contain 3-times-solar ammonia up to the 0.6-bar ammonia condensation level, they must have diameters less than ˜4000 km.

  13. Abundant thorium as an alternative nuclear fuel

    It has long been known that thorium-232 is a fertile radioactive material that can produce energy in nuclear reactors for conversion to electricity. Thorium-232 is well suited to a variety of reactor types including molten fluoride salt designs, heavy water CANDU configurations, and helium-cooled TRISO-fueled systems. Among contentious commercial nuclear power issues are the questions of what to do with long-lived radioactive waste and how to minimize weapon proliferation dangers. The substitution of thorium for uranium as fuel in nuclear reactors has significant potential for minimizing both problems. Thorium is three times more abundant in nature than uranium. Whereas uranium has to be imported, there is enough thorium in the United States alone to provide adequate grid power for many centuries. A well-designed thorium reactor could produce electricity less expensively than a next-generation coal-fired plant or a current-generation uranium-fueled nuclear reactor. Importantly, thorium reactors produce substantially less long-lived radioactive waste than uranium reactors. Thorium-fueled reactors with molten salt configurations and very high temperature thorium-based TRISO-fueled reactors are both recommended for priority Generation IV funding in the 2030 time frame. - Highlights: • Thorium is an abundant nuclear fuel that is well suited to three advanced reactor configurations. • Important thorium reactor configurations include molten salt, CANDU, and TRISO systems. • Thorium has important nuclear waste disposal advantages relative to pressurized water reactors. • Thorium as a nuclear fuel has important advantages relative to weapon non-proliferation

  14. High Precision Abundances of the Old Solar Twin HIP 102152: Insights on Li Depletion from the Oldest Sun

    Monroe, TalaWanda R; Ramírez, Iván; Yong, David; Bergemann, Maria; Asplund, Martin; Bean, Jacob; Bedell, Megan; Maia, Marcelo Tucci; Lind, Karin; Alves-Brito, Alan; Casagrande, Luca; Castro, Matthieu; Nascimento, José-Dias do; Bazot, Michael; Freitas, Fabrício C

    2013-01-01

    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ($\\lesssim$1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2-m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 $\\pm$ 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined vs. dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 02152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a...

  15. The GAPS Programme with HARPS-N at TNG. IX. Differential abundances in the XO-2 planet hosting binary

    Biazzo, K; Desidera, S; Lucatello, S; Sozzetti, A; Bonomo, A S; Damasso, M; Gandolfi, D; Affer, L; Boccato, C; Borsa, F; Claudi, R; Cosentino, R; Covino, E; Knapic, C; Lanza, A F; Maldonado, J; Marzari, F; Micela, G; Molaro, P; Pagano, I; Pedani, M; Pillitteri, I; Piotto, G; Poretti, E; Rainer, M; Santos, N C; Scandariato, G; Sanchez, R Zanmar

    2015-01-01

    Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure with high accuracy the elemental abundances of both stellar components, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high resolution HARPS-N@TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect they should possess the same initial elemental abundances. We investigate if the presence of planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature $T_{\\rm C}=40-1741$ K, achieving typical precisions of $\\sim 0.07$ dex. The North component shows abundances in all elements higher by $+0.067 \\pm 0.032$ dex on average, with a mean difference of +0.078 dex for element...

  16. Testing the chemical tagging technique with open clusters

    González Hernández, J. I.; Montes Gutiérrez, David; Tabernero Guzmán, Hugo Martín

    2015-01-01

    Context. Stars are born together from giant molecular clouds and, if we assume that the priors were chemically homogeneous and well-mixed, we expect them to share the same chemical composition. Most of the stellar aggregates are disrupted while orbiting the Galaxy and most of the dynamic information is lost, thus the only possibility of reconstructing the stellar formation history is to analyze the chemical abundances that we observe today. Aims. The chemical tagging technique aims to recover...

  17. SP_Ace: a new code to derive stellar parameters and elemental abundances

    Boeche, C.; Grebel, E. K.

    2016-03-01

    Context. Ongoing and future massive spectroscopic surveys will collect large numbers (106-107) of stellar spectra that need to be analyzed. Highly automated software is needed to derive stellar parameters and chemical abundances from these spectra. Aims: We developed a new method of estimating the stellar parameters Teff, log g, [M/H], and elemental abundances. This method was implemented in a new code, SP_Ace (Stellar Parameters And Chemical abundances Estimator). This is a highly automated code suitable for analyzing the spectra of large spectroscopic surveys with low or medium spectral resolution (R = 2000-20 000). Methods: After the astrophysical calibration of the oscillator strengths of 4643 absorption lines covering the wavelength ranges 5212-6860 Å and 8400-8924 Å, we constructed a library that contains the equivalent widths (EW) of these lines for a grid of stellar parameters. The EWs of each line are fit by a polynomial function that describes the EW of the line as a function of the stellar parameters. The coefficients of these polynomial functions are stored in a library called the "GCOG library". SP_Ace, a code written in FORTRAN95, uses the GCOG library to compute the EWs of the lines, constructs models of spectra as a function of the stellar parameters and abundances, and searches for the model that minimizes the χ2 deviation when compared to the observed spectrum. The code has been tested on synthetic and real spectra for a wide range of signal-to-noise and spectral resolutions. Results: SP_Ace derives stellar parameters such as Teff, log g, [M/H], and chemical abundances of up to ten elements for low to medium resolution spectra of FGK-type stars with precision comparable to the one usually obtained with spectra of higher resolution. Systematic errors in stellar parameters and chemical abundances are presented and identified with tests on synthetic and real spectra. Stochastic errors are automatically estimated by the code for all the parameters

  18. Introduction to Galactic Chemical Evolution

    Matteucci, Francesca

    2016-04-01

    In this lecture I will introduce the concept of galactic chemical evolution, namely the study of how and where the chemical elements formed and how they were distributed in the stars and gas in galaxies. The main ingredients to build models of galactic chemical evolution will be described. They include: initial conditions, star formation history, stellar nucleosynthesis and gas flows in and out of galaxies. Then some simple analytical models and their solutions will be discussed together with the main criticisms associated to them. The yield per stellar generation will be defined and the hypothesis of instantaneous recycling approximation will be critically discussed. Detailed numerical models of chemical evolution of galaxies of different morphological type, able to follow the time evolution of the abundances of single elements, will be discussed and their predictions will be compared to observational data. The comparisons will include stellar abundances as well as interstellar medium ones, measured in galaxies. I will show how, from these comparisons, one can derive important constraints on stellar nucleosynthesis and galaxy formation mechanisms. Most of the concepts described in this lecture can be found in the monograph by Matteucci (2012).

  19. Chemical Evolution models of Local Group galaxies

    Tosi., M

    2003-01-01

    Status quo and perspectives of standard chemical evolution models of Local Group galaxies are summarized, discussing what we have learnt from them, what we know we have not learnt yet, and what I think we will learn in the near future. It is described how Galactic chemical evolution models have helped showing that: i) stringent constraints on primordial nucleosynthesis can be derived from the observed Galactic abundances of the light elements, ii) the Milky Way has been accreting external gas...

  20. Chemical differentiation of planets: a core issue

    Toulhoat, Herve; Beaumont, Valerie; Zgonnik, Viacheslav; Larin, Nikolay; Larin, Vladimir N.

    2012-01-01

    Prevalent theories of the Solar System formation minimize the role of matter ionization and magnetic field in the Solar nebula. Instead, we propose that a magnetically driven chemical gradient at the scale of the Solar nebula has imprinted chemical differentiation of planets in the further accretion stages. For a given planet, we theoretically relate element abundances relative to Sun to first ionization potentials and distance to Sun. This simple model is successfully tested against availabl...

  1. Chemical characterization of a marine conditioning film

    Garg, A.; Jain, A.; Bhosle, N.B.

    in marine waters. Abundance and composition of neutral sugars and its composition are useful tools to assess the sources of organic matter (Cowie and Hedges, 1984; Skoog and Benner, 1997; D’Souza et al., 2005). Carbohydrate polymers appear to play... procedures and substratum surface properties may influence the chemical composition and the amount of the adsorbed material (Little and Zsolnay, 1985; Taylor et al., 1997; Compere et al., 2001). Changes in the chemical composition of the conditioning film...

  2. Environmental chemicals and thyroid function: an update

    Boas, M.; Main, K.M.; Feldt-Rasmussen, U.

    2009-01-01

    PURPOSE OF REVIEW: To overview the effects of endocrine disrupters on thyroid function. RECENT FINDINGS: Studies in recent years have revealed thyroid-disrupting properties of many environmentally abundant chemicals. Of special concern is the exposure of pregnant women and infants, as thyroid...... pregnant women, neonates and small children in order to avoid potential impairment of brain development. Future studies will indicate whether adults also are at risk of thyroid damage due to these chemicals Udgivelsesdato: 2009/10...

  3. Magnesium isotopes as a probe of the Milky Way chemical evolution

    Thygesen, Anders Overaa

    2015-01-01

    The study of elemental abundance ratios from spectroscopy of stars has for a long time been used to investigate the structure and the chemical evolution history of the Milky Way. However, even with the ever-increasing number of stars with detailed abundances, many details about the Milky Way evolution are still not understood. While elemental abundance measurements already provide a lot of information, nucleosynthesis models predict not only bulk abundances of an element, but also its isotopi...

  4. The detailed chemical composition of the terrestrial planet host Kepler-10

    Liu, F.; Yong, D.; Asplund, M.; Ramirez, I.; Melendez, J.; Gustafsson, B.; Howes, L. M.; Roederer, I. U.; Lambert, D. L.; Bensby, T.

    2015-01-01

    Chemical abundance studies of the Sun and solar twins have demonstrated that the solar composition of refractory elements is depleted when compared to volatile elements, which could be due to the formation of terrestrial planets. In order to further examine this scenario, we conducted a line-by-line differential chemical abundance analysis of the terrestrial planet host Kepler-10 and fourteen of its stellar twins. Stellar parameters and elemental abundances of Kepler-10 and its stellar twins ...

  5. Protein abundance profiling of the Escherichia coli cytosol

    Ishihama, Y.; Schmidt, T.; Rappsilber, J.;

    2008-01-01

    sample. Using a combination of LC-MS/MS approaches with protein and peptide fractionation steps we identified 1103 proteins from the cytosolic fraction of the Escherichia coli strain MC4100. A measure of abundance is presented for each of the identified proteins, based on the recently developed em...... between protein and mRNA abundance in E. coli cells. Conclusion: Abundance measurements for more than 1000 E. coli proteins presented in this work represent the most complete study of protein abundance in a bacterial cell so far. We show significant associations between the abundance of a protein and its...

  6. Patrones de forrajeo en dos especies de peces intermareales herbívoros de las costas de Chile: Efecto de la abundancia y composición química del alimento Foraging patterns of two species of intertidal herbivorous fishes: Effect of food abundance and chemical composition

    CRISTIAN W. CACERES

    2000-06-01

    in relation to fish herbivory are: i which are the factors that determine the selection or rejection of a given algal item? and ii are herbivorous fishes capable of extracting the nutrients and energy of a macroalgal diet? In this work, we studied in two species of herbivorous intertidal fishes, Scartichthys viridis and Girella laevifrons, the patterns of food selectivity in the field and in laboratory experiments, the assimilation efficiency for different dietary algal items, and the relationship between the observed patterns and the chemical composition of the algae. The results showed that more than 90% of the diet of these organisms consisted of benthic macroalgae. In the field both species present a non-selective trophic behavior in summer and selective one in winter, characterized by the consumption of green algae in the later season. Furthermore, in the experiments of food selection both species showed a similar pattern characterized by the preference of green and red algae. The results of the assimilation experiments, indicate that Girella laevifrons presents higher values of this parameter than Scartichthys viridis, being in the former the green algae Ulva and Enteromorpha, the items that present a higher efficiency of assimilation. Finally, the results obtained suggest in this herbivorous species a strong relationship among the patterns of food selection and the relationship between food composition and digestive characteristics

  7. Patterns in Abundance, Cell Size and Pigment Content of Aerobic Anoxygenic Phototrophic Bacteria along Environmental Gradients in Northern Lakes.

    Lisa Fauteux

    Full Text Available There is now evidence that aerobic anoxygenic phototrophic (AAP bacteria are widespread across aquatic systems, yet the factors that determine their abundance and activity are still not well understood, particularly in freshwaters. Here we describe the patterns in AAP abundance, cell size and pigment content across wide environmental gradients in 43 temperate and boreal lakes of Québec. AAP bacterial abundance varied from 1.51 to 5.49 x 105 cells mL-1, representing <1 to 37% of total bacterial abundance. AAP bacteria were present year-round, including the ice-cover period, but their abundance relative to total bacterial abundance was significantly lower in winter than in summer (2.6% and 7.7%, respectively. AAP bacterial cells were on average two-fold larger than the average bacterial cell size, thus AAP cells made a greater relative contribution to biomass than to abundance. Bacteriochlorophyll a (BChla concentration varied widely across lakes, and was not related to AAP bacterial abundance, suggesting a large intrinsic variability in the cellular pigment content. Absolute and relative AAP bacterial abundance increased with dissolved organic carbon (DOC, whereas cell-specific BChla content was negatively related to chlorophyll a (Chla. As a result, both the contribution of AAP bacteria to total prokaryotic abundance, and the cell-specific BChla pigment content were positively correlated with the DOC:Chla ratio, both peaking in highly colored, low-chlorophyll lakes. Our results suggest that photoheterotrophy might represent a significant ecological advantage in highly colored, low-chlorophyll lakes, where DOC pool is chemically and structurally more complex.

  8. The chemical homogeneity of open clusters

    Bovy, Jo

    2015-01-01

    Determining the level of chemical homogeneity in open clusters is of fundamental importance in the study of the evolution of star-forming clouds and that of the Galactic disk. Yet limiting the initial abundance spread in clusters has been hampered by difficulties in obtaining consistent spectroscopic abundances for different stellar types. Without reference to any specific model of stellar photospheres, a model for a homogeneous cluster is that it forms a one-dimensional sequence, with any differences between members due to variations in stellar mass and observational uncertainties. I present a novel method for investigating the abundance spread in open clusters that tests this one-dimensional hypothesis at the level of observed stellar spectra, rather than constraining homogeneity using derived abundances as traditionally done. Using high-resolution APOGEE spectra for 49 giants in M67, NGC 6819, and NGC 2420 I demonstrate that these spectra form one-dimensional sequences for each cluster. With detailed forwa...

  9. Equilibrium and Sudden Events in Chemical Evolution

    Weinberg, David H; Freudenburg, Jenna

    2016-01-01

    We present new analytic solutions for one-zone (fully mixed) chemical evolution models and explore their implications. In contrast to existing analytic models, we incorporate a realistic delay time distribution for Type Ia supernovae (SNIa) and can therefore track the separate evolution of $\\alpha$-elements produced by core collapse supernovae (CCSNe) and iron peak elements synthesized in both CCSNe and SNIa. In generic cases, $\\alpha$ and iron abundances evolve to an equilibrium at which element production is balanced by metal consumption and gas dilution, instead of continuing to increase over time. The equilibrium absolute abundances depend principally on supernova yields and the outflow mass loading parameter $\\eta$, while the equilibrium abundance ratio [$\\alpha$/Fe] depends mainly on yields and secondarily on star formation history. A stellar population can be metal-poor either because it has not yet evolved to equilibrium or because high outflow efficiency makes the equilibrium abundance itself low. Sy...

  10. Prospecting for chemical tags among open clusters

    Lambert, David L

    2016-01-01

    Determinations of the chemical composition of red giants in a large sample of open clusters show that the abundances of the heavy elements La, Ce, Nd and Sm but not so obviously Y and Eu vary from one cluster to another across a sample all having about the solar metallicity. For La, Ce, Nd and Sm the amplitudes of the variations at solar metallicity scale approximately with the main s-process contribution to solar system material. Consideration of published abundances of field stars suggest that such a spread in heavy element abundances is present for the thin and thick disk stars of different metallicity. This new result provides an opportunity to chemically tag stars by their heavy elements and to reconstruct dissolved open clusters from the field star population.

  11. Oxygen, $\\alpha$-element and iron abundance distributions in the inner part of the Galactic thin disc. II

    Andrievsky, S M; Kovtyukh, V V; Korotin, S A; Lépine, J R D

    2016-01-01

    We have derived the abundances of 36 chemical elements in one Cepheid star, ASAS 181024--2049.6, located R$_{\\rm G}= 2.53$ kpc from the Galactic center. This star falls within a region of the inner thin disc poorly sampled in Cepheids. Our spectral analysis shows that iron, magnesium, silicon, calcium and titanium LTE abundances in that star support the presence of a plateau-like abundance distribution in the thin disc within 5 kpc of the Galactic center, as previously suggested by \\cite{Maret15}. If confirmed, the flattening of the abundance gradient within that region could be the result of a decrease in the star formation rate due to dynamic effects, possibly from the central Galactic bar.

  12. Abundance of sardine fish species in Bangladesh

    Roy Bikram Jit

    2012-06-01

    Full Text Available The study was conducted during January, 2012 to December 2012 in the sardine fisheries which is occurred both in artisanal and industrial fishing sector in the marine water of the Bay of Bengal of Bangladesh region. During this study period the total landing amounts by weight of sardines were 7352.99 MT, among these 23.76% (1747.22 MT was exploited by the artisanal mechanized boats and 76.24% (5605.77 MT captured through different industrial fishing trawlers and contributed 17.51% of the total marine fish production by commercial fish trawlers during the study period. 4 sardine species have been recorded from our marine territory. Among them, 2 sardine species are highly abundant, Sardinella fimbriata total production volumes was 5495.79 MT (74.74% contributed 1747.22MT (31.79% from the artisanal and 3748.57MT (68.21% from the industrial sector and Dussumieria acuta production amounts was 1857.20MT (25.26% contributed only from the industrial fishing sector.Species wise contribution shows that S. fimbriata contributed 100% in the artisanal sector and in the industrial fishing S. fimbriata contributed 66.87% and D. acuta contributed the rest 33.13%. The distribution of the S. fimbriata is within 10-20 meters depth and abundance was observed in the southern part of the South patches and South of south patches (N: 210.09// -22, E: 920.04/-07 to N: 200.45/-25, E: 920.18/-56 and 10-50m depth in onshore and off shore areas in the north-west to north-east of Middle ground (Kohinoor point -N: 210.36/.23, E: 900.06/.43 to N: 210.18/.18, E 910.17/.57. The distribution of the D. acuta is within 40-60 m. depth and abundance was observed in the north-west to north-east of Middle ground areas (Kohinoor point - N: 210.36/.23, E: 900.06/.43 to N: 210.18/.18, E 910.17/.57 and south-west to south-east of Middle ground (Kohinoor point- N: 200-17/.29, E: 900.15/.21 to N: 200.29/.56, E: 910.24/.22 in the Bay of Bengal of Bangladesh region. The peak capture season of

  13. Probing AGB nucleosynthesis via accurate Planetary Nebula abundances

    Marigo, P; Pottasch, S R; Tielens, A G G M; Wesselius, P R

    2003-01-01

    The elemental abundances of ten planetary nebulae, derived with high accuracy including ISO and IUE spectra, are analysed with the aid of synthetic evolutionary models for the TP-AGB phase. Model prescriptions are varied until we achieve the simultaneous reproduction of all elemental features, which allows placing important constraints on the characteristic masses and nucleosynthetic processes experienced by the stellar progenitors. First of all, it is possible to separate the sample into two groups of PNe, one indicating the occurrence of only the third dredge-up during the TP-AGB phase, and the other showing also the chemical signature of hot-bottom burning. The former group is reproduced by stellar models with variable molecular opacities (see Marigo 2002), adopting initial solar metallicity, and typical efficiency of the third dredge-up 0.3-0.4. The latter group of PNe, with extremely high He content 0.15 4.5-5.0 Mo) with LMC composition have suffered a number of very efficient, carbon-poor, dredge-up eve...

  14. SDSS-III/APOGEE: Detailed Abundances of Galactic Star Clusters

    Frinchaboy, Peter M; Jackson, Kelly; Johnson, Jennifer A; Majewski, Steven R; Shetrone, Matthew; Rocha, Aaron

    2010-01-01

    The Sloan Digital Sky Survey III/Apache Point Observatory Galactic Evolution Experiment (SDSS-III/APOGEE) is a large-scale spectroscopic survey of Galactic stars and star clusters. The SDSS-III/APOGEE survey is designed to produce high-S/N, R = 27,500-31,000 spectra that cover a wavelength range of 1.51 to 1.68 microns. By utilizing APOGEE's excellent kinematics (error <= 0.5 km/s) and abundances (errors ~ 0.1 dex), we will be able to study star cluster kinematics and chemical properties in detail. Over the course of the 3-year survey beginning in 2011, APOGEE will target 25-30 key open and globular clusters. In addition, the large area coverage of the SDSS focal plane will also allow us to target stars in 100-200 additional star clusters during the main survey observations. We present the strength of APOGEE for both open and globular star cluster studies and the methods of identifying probable clusters members utilizing 2MASS and IRAC/WISE data.

  15. The CH+ Abundance in Turbulent, Diffuse Molecular Clouds

    Myers, Andrew; Li, Pak Shing

    2015-01-01

    The intermittent dissipation of interstellar turbulence is an important energy source in the diffuse ISM. Though on average smaller than the heating rates due to cosmic rays and the photoelectric effect on dust grains, the turbulent cascade can channel large amounts of energy into a relatively small fraction of the gas that consequently undergoes significant heating and chemical enrichment. In particular, this mechanism has been proposed as a solution to the long-standing problem of the high abundance of CH+ along diffuse molecular sight lines, which steady-state, low temperature models under-produce by over an order of magnitude. While much work has been done on the structure and chemistry of these small-scale dissipation zones, comparatively little attention has been paid to relating these zones to the properties of the large-scale turbulence. In this paper, we attempt to bridge this gap by estimating the temperature and CH+ column density along diffuse molecular sight-lines by post-processing 3-dimensional...

  16. Akari Observations of Brown Dwarfs. II CO2 as Probe of Carbon and Oxygen Abundances in Brown Dwarfs

    Tsuji, Takashi; Sorahana, Satoko

    2011-01-01

    Recent observations with the infrared astronomical satellite AKARI have shown that the CO2 bands at 4.2 micron in three brown dwarfs are much stronger than expected from the unified cloudy model (UCM) based on recent solar C & O abundances. This result has been a puzzle, but we now find that this is simply an abundance effect: We show that these strong CO2 bands can be explained with the UCMs based on the classical C & O abundances (log Ac and log Ao), which are about 0.2 dex larger compared to the recent values. Since three other brown dwarfs could be well interpreted with the recent solar C & O abundances, we require at least two model sequences based on the different chemical compositions to interpret all the AKARI spectra. The reason for this is that the CO2 band is especially sensitive to C & O abundances, since the CO2 abundance depends approximately on AcAo^2 --- the cube of C & O abundances. For this reason, even low resolution spectra of very cool dwarfs, especially of CO2 cannot ...

  17. HIGH PRECISION ABUNDANCES OF THE OLD SOLAR TWIN HIP 102152: INSIGHTS ON Li DEPLETION FROM THE OLDEST SUN

    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex (∼<1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2 m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = –0.013 ± 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined versus dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 102152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log ε (Li) = 0.48 ± 0.07, 1.62 ± 0.02, and 1.07 ± 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars

  18. HIGH PRECISION ABUNDANCES OF THE OLD SOLAR TWIN HIP 102152: INSIGHTS ON Li DEPLETION FROM THE OLDEST SUN

    Monroe, TalaWanda R.; Melendez, Jorge; Tucci Maia, Marcelo; Freitas, Fabricio C. [Departamento de Astronomia do IAG/USP, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil); Ramirez, Ivan [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Yong, David; Asplund, Martin; Alves-Brito, Alan; Casagrande, Luca [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bergemann, Maria [Max Planck Institute for Astrophysics, Postfach 1317, D-85741 Garching (Germany); Bedell, Megan; Bean, Jacob [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave., Chicago, IL 60637 (United States); Lind, Karin [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Castro, Matthieu; Do Nascimento, Jose-Dias [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil); Bazot, Michael, E-mail: tmonroe@usp.br [Centro de Astrofisica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2013-09-10

    We present the first detailed chemical abundance analysis of the old 8.2 Gyr solar twin, HIP 102152. We derive differential abundances of 21 elements relative to the Sun with precisions as high as 0.004 dex ({approx}<1%), using ultra high-resolution (R = 110,000), high S/N UVES spectra obtained on the 8.2 m Very Large Telescope. Our determined metallicity of HIP 102152 is [Fe/H] = -0.013 {+-} 0.004. The atmospheric parameters of the star were determined to be 54 K cooler than the Sun, 0.09 dex lower in surface gravity, and a microturbulence identical to our derived solar value. Elemental abundance ratios examined versus dust condensation temperature reveal a solar abundance pattern for this star, in contrast to most solar twins. The abundance pattern of HIP 102152 appears to be the most similar to solar of any known solar twin. Abundances of the younger, 2.9 Gyr solar twin, 18 Sco, were also determined from UVES spectra to serve as a comparison for HIP 102152. The solar chemical pattern of HIP 102152 makes it a potential candidate to host terrestrial planets, which is reinforced by the lack of giant planets in its terrestrial planet region. The following non-local thermodynamic equilibrium Li abundances were obtained for HIP 102152, 18 Sco, and the Sun: log {epsilon} (Li) = 0.48 {+-} 0.07, 1.62 {+-} 0.02, and 1.07 {+-} 0.02, respectively. The Li abundance of HIP 102152 is the lowest reported to date for a solar twin, and allows us to consider an emerging, tightly constrained Li-age trend for solar twin stars.

  19. Late Embryogenesis Abundant (LEA proteins in legumes

    Marina eBattaglia

    2013-06-01

    Full Text Available Plants are exposed to different external conditions that affect growth, development, and productivity. Water deficit is one of these adverse conditions caused by drought, salinity, and extreme temperatures. Plants have developed different responses to prevent, ameliorate or repair the damage inflicted by these stressful environments. One of these responses is the activation of a set of genes encoding a group of hydrophilic proteins that typically accumulate to high levels during seed dehydration, at the last stage of embryogenesis, hence named Late Embryogenesis Abundant (LEA proteins. LEA proteins also accumulate in response to water limitation in vegetative tissues, and have been classified in seven groups based on their amino acid sequence similarity and on the presence of distinctive conserved motifs. These proteins are widely distributed in the plant kingdom, from ferns to angiosperms, suggesting a relevant role in the plant response to this unfavorable environmental condition. In this review, we analyzed the LEA proteins from those legumes whose complete genomes have been sequenced such as Phaseolus vulgaris, Glycine max, Medicago truncatula, Lotus japonicus, Cajanus cajan and Cicer arietinum. Considering their distinctive motifs, LEA proteins from the different groups were identified, and their sequence analysis allowed the recognition of novel legume specific motifs. Moreover, we compile their transcript accumulation patterns based on publicly available data. In spite of the limited information on these proteins in legumes, the analysis and data compiled here confirms the high correlation between their accumulation and water deficit, reinforcing their functional relevance under this detrimental conditions.

  20. Radiogenic lead-208 abundance 88.34 %

    Brazil has a long tradition in thorium technology, from the monazite ores mining until the production of the nuclear grade thorium compounds. Early in 1969 the Institute of Energy and Nuclear Research (IPEN) designed a project for a pilot plant installation to purify the thorium compounds, based on the solvent extraction technique. Thorium compounds used came from monazite's industrialization. During the course of the operation of this plant, a crude sludge were formed containing thorium not extracted and the whole rare earths, plus minor impurities like sodium, titanium, zirconium, hafnium, iron, silicon, phosphate and the thorium daughters were accumulated. Included is the radiogenic lead-208. This sludge, hereafter named 'RETOTER', was treated with hydrochloric acid and the lead was separated and recovered by anion exchange technology. The lead-208 was analyzed by mass spectrometry (HR-ICPMS) technique. The lead-208 abundance measure was 88.34%, this allowed the calculation of the thermal neutron capture cross section of σ0γ = 14,6 +/- 0.7 mb, considerably lower than the σ0γ = 174.2 +/- 0.7 mb value of the natural lead. (author)