WorldWideScience

Sample records for abstract air thermal

  1. Mercury and Air Pollution: A Bibliography With Abstracts.

    Environmental Protection Agency, Research Triangle Park, NC. Office of Air Programs.

    The Air Pollution Technical Information Center (APTIC) of the Office of Air Programs has selected and compiled this bibliography of abstracts on mercury and air pollution. The abstracted documents are considered representative of available literature, although not all-inclusive. They are grouped into eleven categories: (1) Emission Sources, (2)…

  2. 2015 German refrigeration and air conditioning meeting. Abstracts

    The volume contains the abstracts of the 2015 German refrigeration and air conditioning meeting in 5 chapters: cryo-technology, fundamentals of materials for refrigeration engineering and heat pump technology, facilities and components for the refrigeration and heat pump technology; application of refrigeration engineering; air conditioning technology and heat pump application.

  3. Solar thermal heating and cooling. A bibliography with abstracts

    Arenson, M.

    1979-01-01

    This bibliographic series cites and abstracts the literature and technical papers on the heating and cooling of buildings with solar thermal energy. Over 650 citations are arranged in the following categories: space heating and cooling systems; space heating and cooling models; building energy conservation; architectural considerations, thermal load computations; thermal load measurements, domestic hot water, solar and atmospheric radiation, swimming pools; and economics.

  4. Abstraction of Thermal Hydrology and Coupled Processes for TSPA

    The thermal-hydrologic (TH) and coupled process models describe the evolution of a potential geologic repository as heat is released from emplaced waste. The evolution (thermal, hydrologic, chemical, and mechanical) of the engineered barrier and geologic systems is heavily dependent on the heat released by the waste packages and how the heat is transferred from the emplaced wastes through the drifts and through the repository host rock. The essential elements of this process are extracted (or abstracted) from the process-level models that incorporate the basic energy and mass conservation principles and applied to the total system models used to describe the overall performance of the potential repository. The process of total system performance assessment (TSPA) abstraction is the following. First is a description of the parameter inputs used in the process-level models. A brief description is given hereof past inputs for the viability assessment (e.g., for TSPA-VA) and current inputs for the site recommendation (TSPA-SR). This is followed by a highlight of the process-level models from which the abstractions are made. These include descriptions of TH, thermal-hydrologic-chemical (THC), and thermal-mechanical (TM) processes used to describe the performance of individual waste packages and waste emplacement drifts as well as the repository as a whole. Next is a description of what (and how) information is abstracted from the process-level models. This also includes an accounting of the features, events, and processes (FEPs) that are important to both the regulators and the international repository community in general. Finally, an identification of the TSPA model components that utilize the abstracted information to characterize the overall performance of a potential geologic repository is given

  5. ABSTRACTS

    2011-01-01

    A Preliminary Inquiry into the Intellectual Origins of Li Dazhao's My Idea of Marxism Abstract ;By translingual-textual comparison, this paper attempts to make a preliminary inquiry into the intellectual origins of Li Dazhao's My Idea of Marxism, suggesting that Li's article, instead of being "a complete copy" of the Japanese scholar

  6. Abstracts

    2011-01-01

    The Western Theories of War Ethics and Contemporary Controversies Li Xiaodong U Ruijing (4) [ Abstract] In the field of international relations, war ethics is a concept with distinct westem ideological color. Due to factors of history and reality, the in

  7. Abstract

    2012-01-01

    Cognitive Structure of Scientific Theory in the Scientist-Philosopher's Eyes、Two Theories of Scientific Abstraction Centered on Practices、Many-worlds Interpretation in Quantum Measurement and Its Meaning、Scientific Instrument: Paradigm Shift from Instrumentalism to Realism and Phenomenology

  8. Abstracts

    2011-01-01

    [ Abstract ] The global resurgence of religion and the return of religion from the so-call "Westphalia Exile" to the central stage of international religions have significantly trans- formed the viewpoints of both media and academia toward the role of religion in IR, and the challenges posed by religion to the contemporary international relations are often described as entirely subversive. The author argues that as a second-tier factor in most countries' for- eign policies and international affairs,

  9. ABSTRACTS

    2012-01-01

    (1) Lenin's "Unity of Three Dialectics": Notes Science of Logic and The Capital on Philosophy in the Dual Contexts of Sun Zhengyu 4 Lenin's dialectics in Notes on Philosophy is essentially a unity of materialistic logic, dialectics and epistemology that has arisen from interactions between Hegel' s Science of Logic and Marx' s The Capital. Due to a lack of understanding of Lenin' s "unity of three dialectics," people tend to misunderstand his dialectics for the meeting of two extremes of the "sum total of living instances" and "abstract methods,

  10. ABSTRACT

    2011-01-01

    --Based on of Marx's Economic Philosophy Manuscripts of 1844 HE Jian-jin (Philosophy Department, Fujian Provincial Committee Party School, Fuzhou, Fujian 350012, China) Abstract: Socialism with Chinese characteristics has a close relationship with the return and growth of capital in China. To implement the scientific concept of development, we must confront the problem of scientifically controlling the capital. In Economic and Philosophical Manuscripts of 1844, Marx criticized the three old philosophical thinking of treating capital: Object-oriented thinking, intuitive thinking, purely spiritual abstract thinking, and he established his own unique understanding of the capital that is to understand the capital from the human perceptual activities and practical activities. Contemporary Chinese society exist the problem of underdevelopment and abnormal development, and the three heterogeneity problems of pre-modern, modern, postmodern concurrent. In order to implement the scientific concept of development, we must reject any abstract positive or negative to modern basic principles under the guidance of the capital, against the eternal capital theory and capital theory of evil, and we must oppose the thinking that the capital is eternal or evil. Key words: socialism with Chinese characteristics; capital; national economics; scientific concept of development

  11. ABSTRACTS

    2012-01-01

    The Relation between Individuals and Work Units in Stated-Owned Enterprises in Economic Transitional Pe- riod: Changes and their Influences Abstract: As a representation of extinction of work unit system, some dramatic changes have taken place on the rela- tion between individuals and work units in state-owned enterprises. Among many changes are the radical change of the way work unit stimulating and controlling its employees, the extinction of previous system supported by "work unit people", a tense relation between the employees and the work unit caused by the enterprise' s over-pursuit of performance. These changes result in such problems as grievous inequality, violation of personal interest, lack of mechanism for employees' voices and their low sense of belonging, which has brought unprecedented challenges for business administration and corpo- ration euhure development in China. Keywords: danwei/work unit; stimulate and control; relation between individuals and work units; work unit people

  12. ABSTRACTS

    2012-01-01

    On Rousseau's Equality and Freedom GONG Qun Abstract:Equality and freedom are the two core concepts of political philosophy and Rousseau~s political philosophy is no exception. Freedom and equality in Rousseau in- cludes two levels: natural state and social state under social contract, and among them, there is one state of un-equality. The relationship between the two concepts here is that equality is a necessary precondition of freedom, and that there is no equality, there is no freedom. The achievement of Rousseau~s equality is by one contractual behavior that all the members transfer their rights, especially property rights, and form of the Community. Freedom in Rousseau's mind is through the people's sovereignty in the Community to achieve freedom.

  13. Abstracts

    2012-01-01

    [Abstract] The essay analyzed the action logic of hegemon with a power approach. Hegemony can be classified as benign or malignant. A benign hegemon should be pro- ductive, inclusive and maintain procedure justice when it uses its power. The power of hegemon can be categorized into two types: the hard power, which is the use of coer- cion and payment and can be measured by public products, and the soft power, which shows the ability to attract and co-opt and can be measured by the relationship-specific investments. The relationship between the input of public products and the relationship -specific investments is not positively correlative. Confusing with the public products and the soft power might lead to strategic misleading. A country rich in power re- sources should comply with the following principles if it wanted to improve its hard power and soft power: first, analyze the scope of the existing hegemon's soft power and avoid investing public products in the scope; second, maintain honesty in a long term and continue to increase others' benefits following the rule of neutral Pareto im- provement; third, provide both public goods and public bads; fourth, be more patient to obtain soft power. [ Key Words] hegemon, soft power, relationship-specific investment, strategic misleading [Authors]Feng Weijiang, Ph.D., Associate Professor, Institute of World Economics and Politics, Chinese Academy of Social Science; Yu Jieya, Master, PBC Shanghai Headquarters.

  14. ABSTRACTS

    2012-01-01

    Discussions of Design Highlights for Tailgas Treatment in Sulphuric Acid Plant Using New Technology for Flue Gas Desulfurization Through Catalytic Reduction LI Xin , CAO Long-wen , YIN Hua-qiang , El Yue-li , LI Jian-iun ( 1 ,College of Architecture and Environment, Sichuan University, Chengdu 610065, China;2 ,Daye Nonferrous Metals Co., Ltd., Huangshi 435000, China; 3 ,Tile Sixth Construction Company Ltd. of China National Chemical Engineering Corp., Xiangfan 441021, China) Abstract : For the present situation of tailgas treatment in current sulphuric acid plants and existing problems with commonly used technologies, the fun- damental working principle, process flow and reference project for a new technology for flue gas desulfurization through catalytic redaction which is used for tailgas treatment in a sulphuric acid plant and recovery of sulphur resource are outlined. The design highlights of this technology are analyzed and the are proposed. Compared to conventional technologies, this new technology offers high desulfurization efficiency and unique technology, which can effectively tackle the difficuhies of tailgas treatment in sulphuric acid plants after enforcement of the new standard. This new technology is thought to be significant economic benefit, environmental benefit, as well as a promising future of application.

  15. Abstracts

    2012-01-01

    Strategic Realism: An Option for China' s Grand Strategy Song Dexing (4) [ Abstract] As a non-Western emerging power, China should positively adapt its grand strategy to the strategic psychological traits in the 21st century, maintain a realist tone consistent with the national conditions of China, and avoid adventurist policies while awaring both strategic strength and weakness. In the 21st century, China' s grand strategy should be based on such core values as security, development, peace and justice, especially focusing on development in particular, which we named "strategic realism". Given the profound changes in China and the world, strategic realism encourages active foreign policy to safe- guard the long-term national interests of China. Following the self-help logic and the fun- damental values of security and prosperity, strategic realism concerns national interests as its top-priority. It advocates smart use of power, and aims to achieve its objectives by optimizing both domestic and international conditions. From the perspective of diplomatic phi- losophy, strategic realism is not a summarization of concrete policies but a description of China' s grand strategy orientations in the new century. [ Key Words] China, grand strategy, strategic realism [ Author]Song Dexing, Professor, Ph.D. Supervisor, and Director of the Center for International Strategic Studies, University of International Studies of PLA.

  16. Abstracts

    2012-01-01

    The Western Characteristics of the Pardims of International Studies in America:With the Huaxla System as a Counterexample Ye Zicheng (4)[ Abstract ] Three flaws are obvious in the three paradigms of International Studies in America. Specifically, their arguments are based on the assumption that the world is anarchic ; they go too far in employing the scientific and rational methodology; they pay little attention to the humans. Hence, the three paradigms of international studies in America aren' t necessarily useful for the explanation of China' s history and culture as well as its relations with the outside world. The Huaxia system, for example, is anarchic but also apparently hierarchical; the approach of pursuing security in understanding the rise of western powers may be meaningless, for the hegemony in the Huaxia System needn't worry about its security; the theory of power-balancing seemingly couldn' t explain why Qin ended up in defeating the alliance of the other six states in the Warring-states period. The Huaxia system is quite open, and has free movement of people, goods, and ideas. Some interstate regimes and institutions were formed through Huimeng (alliance-making) among states. However, this kind of limited and fragile interdependence and cooperation soon came to an end after the hegemonies of Qi, Jin and Wei. There does exit the identity problem among states in the Huaxia System, but this problem doesn't play such a great role as the constructivists expect it would.

  17. Thermal oxidation for air toxics control

    The Administration projects annual expenditures of $1.1 billion by 1995, increasing to $6.7 billion by 2005, in order to comply with the new Clean Air Act Title III hazardous air pollutant requirements. The Title III requirements include 189 hazardous air pollutants which must be reduced or eliminated by 2003. Twenty of the 189 listed pollutants account for approximately 75 percent of all hazardous air pollutant emissions. Ninety percent of these 20 pollutants can be effectively controlled through one or mote of the thermal oxidation technologies. This paper reports that the advantages and disadvantages of each thermal oxidation technology vary substantially and must be reviewed for each application in order to establish the most effective thermal oxidation solution. Effective thermal oxidation will meet MACT (maximum achievable control technology) emission standards

  18. Scientific-technical conference Thermal physics of fast reactors (Thermal physics-2014). Book of abstracts

    In the book of abstracts there are the materials of investigations related with scientific and technical justification of new generation fast reactors with different liquid metal coolants. Consideration is given to the thermophysical problems in the field of hydrodynamics and heat transfer in flow path and components of reactor installations; thermophysical properties and physicochemical processes in the systems liquid metal - structural material - inert gas; development and verification of thermophysical calculating codes, numerical simulation of thermophysical processes in nuclear power installations. Considerable attention is paid to liquid metal coolant technologies. The use of fast reactors for non-power applications and liquid metal coolants in non-nuclear technologies is discussed

  19. Scientific-technical conference Thermal physics of new generation reactors (Thermal physics-2015). Book of abstracts

    In the book of abstracts there are the materials connected with justification of new design solutions directed on increasing efficiency and safety of projects of both water-cooled and new generation fast reactors with sodium and lead coolants. Wide range of thermophysical problems in the field of hydrodynamics and heat transfer in flow path and equipment components of reactor facilities, experimental and numerical simulation of accident processes evolution are under consideration. There are the materials on the questions of thermophysical properties of coolants and physicochemical processes in the systems liquid metal - inert gas - structural materials, thermophysical calculational codes development and verification, nuclear power facility thermophysical calculations. Great attention is paid to development of methods and means of control and purification of liquid metal coolants from impurities. The problems of innovation supercritical water-cooled power nuclear reactors are discussed as well as the suggestions on liquid metal coolants in different branches of industry

  20. THERMAL ANALYSIS OF EARTH AIR HEAT EXCHANGER USING CFD

    Vaibhav Madane; Meeta Vedpathak

    2015-01-01

    This project focuses on Earth Air Heat Exchanger which is reducing energy consumption in a building. The air is passing through the buried tubes and heat exchange takes place between air and surrounding soil. This equipment helps to reduce energy consumption of an air conditioning unit. This project analyses the thermal performance of earth air heat exchanger by using computational fluid dynamics modeling. The model is validated against experimental observations and investigations...

  1. Overall energy, exergy and carbon credit analysis by different type of hybrid photovoltaic thermal air collectors

    Highlights: ► Comparative study of PVT air collectors. ► CO2 analysis of all type of PVT air collectors. ► Study of thermal energy, exergy gain and exergy efficiency. ► Exergy efficiency of unglazed hybrid PVT tiles air collector is most efficient. - Abstract: In this paper, comparative analysis of different type of photovoltaic thermal (PVT) air collector namely: (i) unglazed hybrid PVT tiles, (ii) glazed hybrid PVT tiles and (iii) conventional hybrid PVT air collectors have been carried out for the composite climate of Srinagar (India). The comparative study has been carried out in terms of overall thermal energy and exergy gain, exergy efficiency and carbon credit earned by different type of hybrid PVT air collectors. It has been observed that overall annual thermal energy and exergy gain of unglazed hybrid PVT tiles air collector is higher by 27% and 29.3% respectively as compared to glazed hybrid PVT tiles air collector and by 61% and 59.8% respectively as compared to conventional hybrid PVT air collector. It has also been observed that overall annual exergy efficiency of unglazed and glazed hybrid PVT tiles air collector is higher by 9.6% and 53.8% respectively as compared to conventional hybrid PVT air collector. On the basis of comparative study, it has been concluded that CO2 emission reduction per annum on the basis of overall thermal energy gain of unglazed and glazed hybrid PVT tiles air collector is higher by 62.3% and 27.7% respectively as compared to conventional hybrid PVT air collector and on the basis of overall exergy gain it is 59.7% and 22.7%.

  2. Use of Structure as a Basis for Abstraction in Air Traffic Control

    Davison, Hayley J.; Hansman, R. John

    2004-01-01

    The safety and efficiency of the air traffic control domain is highly dependent on the capabilities and limitations of its human controllers. Past research has indicated that structure provided by the airspace and procedures could aid in simplifying the controllers cognitive tasks. In this paper, observations, interviews, voice command data analyses, and radar analyses were conducted at the Boston Terminal Route Control (TRACON) facility to determine if there was evidence of controllers using structure to simplify their cognitive processes. The data suggest that controllers do use structure-based abstractions to simplify their cognitive processes, particularly the projection task. How structure simplifies the projection task and the implications of understanding the benefits structure provides to the projection task was discussed.

  3. The Impact of Air Exchange Effectiveness on Thermal Comfort in an Air-Conditioned Office

    Roonak Daghigh

    2009-01-01

    Full Text Available Problem statement: Impact of air exchange effectiveness on thermal comfort has not been investigated and, therefore, not well understood .Therefore, the influence of air exchange effectiveness on thermal comfort is investigated in this study. Approach: The main objective of this research is to investigate the thermal comfort level of an air-conditioned office room under 14 windows-door opening arrangements as a function of maximum, minimum and mean Air Exchange Effectiveness (AEE, as has not been inquired into already. The tracer gas decay method has been applied during the experimental procedures to estimate air exchange effectiveness, on the basis of room average and local mean age of air. Simultaneously, thermal comfort variables were measured and through these data, the thermal comforts Fanger's indices (PMV and PPD were calculated. Staff answered a survey on their sensation of the indoor climate. Results: Results of 60 survey responses to thermal comfort questions in office and indoor air quality are presented. This study has shown that there are relationship between AEE and thermal comfort and three linear regression equations of PMV versus AEE can be derived for this air-conditioned office. Conclusion: Studies on the effect of air exchange effectiveness on thermal comfort in an office have shown that Thermal comfort is influenced by AEE, which go beyond the six factors which have been taken into account in PMV modeling.

  4. Thermal stratification level of low sidewall air supply with air-conditioning system in large space

    黄晨; 蔡宁; 高雪垒

    2009-01-01

    The thermal stratification level of low sidewall air supply system in large space was defined. Depending on the experiment of low sidewall air supply in summer 2008,the thermal stratification level was studied by simulation. Based on the simulation of experiment condition,the air velocity and vertical temperature distribution in a large space were simulated at different air-outlet velocities,and then the thermal stratification level line was obtained. The simulation results well match with the experimental ones and the average relative error is 3.4%. The thermal stratification level is heightened by increasing the air-outlet velocity with low sidewall air supply mode. It is concluded that when air-outlet velocity is 0.29 m/s,which is the experimental case,a uniform thermal environment in the higher occupied zone and a stable stratification level are formed. When the air-outlet velocity is low,such as 0.05 m/s,the thermal stratification level is too low and the air velocity is too small to meet the human thermal comfort in the occupied zone. So,it would be reasonable that the air-outlet velocity may be designed as 0.31 m/s if the height of the occupied zone is 2 m.

  5. Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance

    Graphical abstract: Surface heat transfer breakdown for an underfloor air distribution (UFAD) system supply plenum. Highlights: ► Thermal decay of a UFAD system is considerable (annual median = 3.7 K). ► Thermal decay is driven by heat transfer through both the concrete slab and the raised floor. ► Thermal decay may lead to higher airflow rates and increased fan and chiller energy consumption. -- Abstract: Underfloor air distribution (UFAD) is a mechanical ventilation strategy in which the conditioned air is primarily delivered to the zone from a pressurized plenum through floor mounted diffusers. Compared to conventional overhead (OH) mixing systems, UFAD has several potential advantages, such as improved thermal comfort and indoor air quality (IAQ), layout flexibility, reduced life cycle costs and improved energy efficiency in suitable climates. In ducted OH systems designers have reasonably accurate control of the diffuser supply temperature, while in UFAD this temperature is difficult to predict due to the heat gain of the conditioned air in the supply plenum. The increase in temperature between the air entering the plenum and air leaving through a diffuser is known as thermal decay. In this study, the detailed whole-building energy simulation program, EnergyPlus, was used to explain the fundamentals of thermal decay, to investigate its influence on energy consumption and to study the parameters that affect thermal decay. It turns out that the temperature rise is considerable (annual median = 3.7 K, with 50% of the values between 2.4 and 4.7 K based on annual simulations). Compared to an idealized simulated UFAD case with no thermal decay, elevated diffuser air temperatures can lead to higher supply airflow rate and increased fan and chiller energy consumption. The thermal decay in summer is higher than in winter and it also depends on the climate. The ground floor with a slab on grade has less temperature rise compared to middle and top floors. An

  6. Solar Air Heaters with Thermal Heat Storages

    Abhishek Saxena; Varun Goel

    2013-01-01

    Solar energy can be converted into different forms of energy, either to thermal energy or to electrical energy. Solar energy is converted directly into electrical power by photovoltaic modules, while solar collector converts solar energy into thermal energy. Solar collector works by absorbing the direct solar radiation and converting it into thermal energy, which can be stored in the form of sensible heat or latent heat or a combination of sensible and latent heats. A theoretical study has be...

  7. An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector

    In this paper, an attempt is made to investigate the thermal and electrical performance of a solar photovoltaic thermal (PV/T) air collector. A detailed thermal and electrical model is developed to calculate the thermal and electrical parameters of a typical PV/T air collector. The thermal and electrical parameters of a PV/T air collector include solar cell temperature, back surface temperature, outlet air temperature, open-circuit voltage, short-circuit current, maximum power point voltage, maximum power point current, etc. Some corrections are done on heat loss coefficients in order to improve the thermal model of a PV/T air collector. A better electrical model is used to increase the calculations precision of PV/T air collector electrical parameters. Unlike the conventional electrical models used in the previous literature, the electrical model presented in this paper can estimate the electrical parameters of a PV/T air collector such as open-circuit voltage, short-circuit current, maximum power point voltage, and maximum power point current. Further, an analytical expression for the overall energy efficiency of a PV/T air collector is derived in terms of thermal, electrical, design and climatic parameters. A computer simulation program is developed in order to calculate the thermal and electrical parameters of a PV/T air collector. The results of numerical simulation are in good agreement with the experimental measurements noted in the previous literature. Finally, parametric studies have been carried out. Since some corrections have been down on thermal and electrical models, it is observed that the thermal and electrical simulation results obtained in this paper is more precise than the one given by the previous literature. It is also found that the thermal efficiency, electrical efficiency and overall energy efficiency of PV/T air collector is about 17.18%, 10.01% and 45%, respectively, for a sample climatic, operating and design parameters.

  8. Thermal modelling of the cathode in air-breathing PEM fuel cells

    Highlights: • A thermal two-dimensional model was developed for an air-breathing PEM fuel cell. • The neglect of Joule heating may significantly underestimate the thermal parameters. • Compared to Joule heating, the thermal parameters are less sensitive to the entropic heat. • Heat is dissipated poorly if the fuel cell is oriented horizontally facing downwards. - Abstract: A thermal two-dimensional model has been built for an air-breathing proton exchange membrane (PEM) fuel cell that has been reported in the literature. The objective of the study is to investigate the thermal situation over the cathode surface of the fuel cell. The Joule heating was found to be significant and therefore it must be incorporated into the model, especially at high current densities. Such incorporation leads to a more accurate estimation of the heat transfer coefficient, which is a major performance indicator for air-breathing PEM fuel cells. The heat transfer coefficient was found to be less sensitive to the entropic heat of the fuel cell; however, this effect cannot be overlooked, especially at low current densities. Finally, the orientation was shown to have a significant effect on the thermal dissipation from the air-breathing PEM fuel cells: the heat is dissipated far more effectively if the fuel cell is oriented vertically or horizontally facing upwards than if it is oriented horizontally facing downwards

  9. Thermal analysis of car air conditioning

    Trzebiński, Daniel; Szczygieł, Ireneusz

    2010-10-01

    Thermodynamic analysis of car air cooler is presented in this paper. Typical refrigerator cycles are studied. The first: with uncontrolled orifice and non controlled compressor and the second one with the thermostatic controlled expansion valve and externally controlled compressor. The influence of the refrigerant decrease and the change of the air temperature which gets to exchangers on the refrigeration efficiency of the system; was analysed. Also, its effectiveness and the power required to drive the compressor were investigated. The impact of improper refrigerant charge on the performance of air conditioning systems was also checked.

  10. Determination of thermal performance of solar air heater

    Kozak, Christina; Zhelykh, Vasil

    2013-01-01

    Considered the basic aspects of passive solar building. Given the main types of solar air heating systems. Proposed heating and ventilation system at the basis of solar air heater. Constructed fourfactors nomohram for determining thermal power of the thermosiphon heliocollector. Obtained analytical dependence of the amount heat of thermo heliocollector from the differential temprature air inlet and outlet, of the area input and output apertures of solar collector, heat fl...

  11. Thermal Analysis of Air-Core Power Reactors

    Zhao Yuan; Jun-jia He; Yuan Pan; Xiao-gen Yin; Can Ding; Shao-fei Ning; Hong-lei Li

    2013-01-01

    A fluid-thermal coupled analysis based on FEM is conducted. The inner structure of the coils is built with consideration of both the structural details and the simplicity; thus, the detailed heat conduction process is coupled with the computational fluid dynamics in the thermal computation of air-core reactors. According to the simulation results, 2D temperature distribution results are given and proved by the thermal test results of a prototype. Then the temperature results are used to calcu...

  12. Thermal analysis of air-cooled fuel cells

    Shahsavari, Setareh

    2011-01-01

    Temperature distribution in a fuel cell significantly affects the performance and efficiency of the fuel cell system. Particularly, in low temperature fuel cells, improvement of the system requires proper thermal management, which indicates the need for developing accurate thermal models. In this study, a 3D numerical thermal model is presented to analyze the heat transfer and predict the temperature distribution in air-cooled proton exchange membrane fuel cells (PEMFC). In the modeled fuel c...

  13. Performance analysis of a hybrid photovoltaic thermal solar air heater

    A photovoltaic (PV/T) air heater is a collector that combines thermal and photovoltaic systems in one single hybrid generating unit. It generators both thermal and electrical energies simultaneously. A new design of a double-pass photovoltaic-thermal solar air collector with CPC and fins was successfully developed and fabricated at Universiti Kebangsaam Malaysia. This collector tested under actual environmental conditions to study its performance over a range of operating conditions. The test set-up, instrumentation and measurement are described further. It was found that the performance of the collector was in agreement with the theoretical prediction. Results of the outdoors test are presented and discussed(Author)

  14. Perceived air quality, thermal comfort, and SBS symptoms at low air temperature and increased radiant temperature

    Toftum, Jørn; Reimann, Gregers Peter; Foldbjerg, P.;

    2002-01-01

    This study investigated if low air temperature, which is known to improve the perception of air quality, also can reduce the intensity of some SBS symptoms. In a low-polluting office, human subjects were exposed to air at two temperatures 23 deg.C and 18 deg.C both with and without a pollution...... source present at the low temperature. To maintain overall thermal neutrality, the low air temperature was partly compensated for by individually controlled radiant heating, and partly by allowing subjects to modify clothing insulation. A reduction of the air temperature from 23 deg.C to 18 deg.......C suggested an improvement of the perceived air quality, while no systematic effect on symptom intensity was observed. The overall indoor environment was evaluated equally acceptable at both temperatures due to local thermal discomfort at the low air temperature....

  15. Effect of Air Velocity on Thermal Comfort under Thermal Environment Ramp Changing

    嵇赟喆; 涂光备; 孙琳

    2004-01-01

    Set points of the indoor air temperature and relative humidity in short-term staying location were studied. In this condition, the thermal reaction of human body varied with the ramp changes of the environmental thermal parameters.The change rules of about 60 subjects'thermal reaction to the ramp change of environment were surveyed, and the effect of air movement on the thermal reaction during transient condition was considered by using a questionnaire. With the experimental results and research findings under stable condition, a way to set environmental parameters of short-time staying location was recommended.

  16. Thermal performance of an open thermosyphon using nanofluid for evacuated tubular high temperature air solar collector

    Highlights: • A novel solar air collector with simplified CPC and open thermosyphon is designed and tested. • Simplified CPC has a much lower cost at the expense of slight efficiency loss. • Nanofluid effectively improves thermal performance of the above solar air collector. • Solar air collector with open thermosyphon is better than that with concentric tube. - Abstract: A novel evacuated tubular solar air collector integrated with simplified CPC (compound parabolic concentrator) and special open thermosyphon using water based CuO nanofluid as the working fluid is designed to provide air with high and moderate temperature. The experimental system has two linked panels and each panel includes an evacuated tube, a simplified CPC and an open thermosyphon. Outdoor experimental study has been carried out to investigate the actual solar collecting performance of the designed system. Experimental results show that air outlet temperature and system collecting efficiency of the solar air collector using nanofluid as the open thermosyphon’s working fluid are both higher than that using water. Its maximum air outlet temperature exceeds 170 °C at the air volume rate of 7.6 m3/h in winter, even though the experimental system consists of only two collecting panels. The solar collecting performance of the solar collector integrated with open thermosyphon is also compared with that integrated with common concentric tube. Experimental results show that the solar collector integrated with open thermosyphon has a much better collecting performance

  17. Plug and Play web-based visualization of mobile air monitoring data (Abstract)

    EPA’s Real-Time Geospatial (RETIGO) Data Viewer web-based tool is a new program reducing the technical barrier to visualize and understand geospatial air data time series collected using wearable, bicycle-mounted, or vehicle-mounted air sensors. The RETIGO tool, with anticipated...

  18. Steady Thermal Field Simulation of Forced Air-cooled Column-type Air-core Reactor

    DENG Qiu; LI Zhenbiao; YIN Xiaogen; YUAN Zhao

    2013-01-01

    Modeling the steady thermal field of the column-type air-core reactor,and further analyzing its distribution regularity,will help optimizing reactor design as well as improving its quality.The operation mechanism and inner insulation structure of a novel current limiting column-type air-core reactor is introduced in this paper.The finite element model of five encapsulation forced air-cooled column type air-core reactor is constructed using Fluent.Most importantly,this paper present a new method that,the steady thermal field of reactor working under forced air-cooled condition is simulated without arbitrarily defining the convection heat transfer coefficient for the initial condition; The result of the thermal field distribution shows that,the maximum steady temperature rise of forced air-cooled columntype air-core reactor happens approximately 5% to its top.The law of temperature distribution indicates:In the 1/3part of the reactor to its bottom,the temperature will rise rapidly to the increasing of height,yet the gradient rate is gradually decreasing; In the 5 % part of the reactor to its top,the temperature will drop rapidly to the increasing of height; In the part between,the temperature will rise slowly to the increasing of height.The conclusion draws that more thermal withstand capacity should be considered at the 5 % part of the reactor to its top to achieve optimal design solution.

  19. Predicted thermal superluminescence in low-pressure air

    Aramyan, A R; Galechyan, G A; Mangasaryan, N R; Nersisyan, H B

    2009-01-01

    It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300-3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested.

  20. Predicted thermal superluminescence in low-pressure air

    Aramyan, A. R.; Haroyan, K. P.; Galechyan, G. A.; Mangasaryan, N. R.; Nersisyan, H. B.

    2009-01-01

    It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300-3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airf...

  1. Thermal computations for electronics conductive, radiative, and convective air cooling

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  2. Proceedings of the twentieth DAE-BRNS symposium on thermal analysis: book of abstracts

    The topics covered in this symposium are: thermodynamics and phase diagram studies, thermochemical and thermophysical properties of materials, solid-state reactions and kinetics, thermal properties of ceramics and cermets, thermal behaviour of nanomaterials and coated particles and thermal analysis of materials. Papers relevant to INIS are indexed separately

  3. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  4. A solar air collector with integrated latent heat thermal storage

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  5. A solar air collector with integrated latent heat thermal storage

    Klimes Lubomir

    2012-04-01

    Full Text Available Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data.

  6. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  7. A solar air collector with integrated latent heat thermal storage

    Klimes Lubomir; Mauder Tomas; Ostry Milan; Charvat Pavel

    2012-01-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage...

  8. Thermal efficiency of single-pass solar air collector

    Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

    2013-11-27

    Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

  9. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  10. Numerical Analysis of Thermal Comfort at Open Air Spaces

    Papakonstantinou, K.; Belias, C.; Pantos-Kikkos, S.; Assana, A.

    2008-09-01

    The present paper refers to the numerical simulation of air velocity at open air spaces and the conducting thermal comfort after the evaluation of the examined space using CFD methods, taking into account bioclimatic principles at the architectural design. More specially, the paper draws attention to the physical procedures governing air movement at an open environment area in Athens (urban park), named "Attiko Alsos," trying to form them in such way that will lead to the thermal comfort of the area's visitors. The study presents a mathematical model, implemented in a general computer code that can provide detailed information on velocity, prevailing in three-dimensional spaces of any geometrical complexity. Turbulent flow is simulated and buoyancy effects are taken into account. This modelling procedure is intended to contribute to the effort towards designing open areas, such as parks, squares or outdoor building environments, using thermal comfort criteria at the bioclimatic design. A computer model of this kind will provide the architects or the environmental engineers with powerful and economical means of evaluating alternative spaces' designs.

  11. Thermal resistances of air in cavity walls and their effect upon the thermal insulation performance

    Bekkouche, S.M.A.; Cherier, M.K.; Hamdani, M.; Benamrane, N. [Application of Renewable Energies in Arid and Semi Arid Environments /Applied Research Unit on Renewable Energies/ EPST Development Center of Renewable Energies, URAER and B.P. 88, ZI, Gart Taam Ghardaia (Algeria); Benouaz, T. [University of Tlemcen, BP. 119, Tlemcen R.p. 13000 (Algeria); Yaiche, M.R. [Development Center of Renewable Energies, CDER and B.P 62, 16340, Route de l' Observatoire, Bouzareah, Algiers (Algeria)

    2013-07-01

    The optimum thickness in cavity walls in buildings is determined under steady conditions; the heat transfer has been calculated according to ISO 15099:2003. Two forms of masonry units are investigated to conclude the advantage of high thermal emissivity. The paper presents also some results from a study of the thermal insulation performance of air cavities bounded by thin reflective material layer 'eta = 0.05'. The results show that the most economical cavity configuration depends on the thermal emissivity and the insulation material used.

  12. Evaluation of sectrally-selective materials for multi-layer solar thermal crop drying (abstract)

    Solar thermal (ST) drying is a ubiquitous method in widespread use for fruit and vegetable crop preservation in developing countries; however, it has had limited commercialization in the United States due to concerns about slow drying rates, poor product quality, and predicted low return-on-investme...

  13. System Level Analysis of a Water PCM HX Integrated Into Orion's Thermal Control System Abstract

    Navarro, Moses; Hansen, Scott; Ungar, Eugene; Sheth, Rubik

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system and in a 100km Lunar orbit. The study analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option. Additionally, it was found that the radiator area would have to be increased over 20% in order to have a viable water-based PCM HX.

  14. Modelling Venting and Pressure Build-up in a 18650 LCO Cell during Thermal Runaway (ABSTRACT)

    Coman, Paul Tiberiu; Veje, Christian; White, Ralph;

    Li-ion batteries are a very popular type of electric storage devices that possess high energy density when compared to the other battery chemistries. Due to this property, when operating under abusive conditions such as high ambient temperature, the batteries can experience thermal runaway, which...

  15. Thermal decomposition kinetics of antimony oxychloride in air

    阳卫军; 唐谟堂; 金胜明

    2002-01-01

    The DTA and XRD techniques were employed to study thermal decomposition mechanism of antimony oxychloride SbOCl in the air. The thermal decomposition reaction occurs in four steps, and the former three steps as: SbOCl(s)→Sb4O5Cl2(s)+SbCl3(g)→Sb8O11Cl2(s)+SbCl3(g)→Sb2O3(s)+SbCl3(g). The forth step is the oxidation of Sb2O3 by air, Sb2O3(s)+O2→Sb2O4(s). The activation energy and the order of the thermal decomposition reaction of antimony oxychloride in three steps presented in DTA curves were calculated according to Kinssinger methods from DTA curves. The values of activation energy and the order are respectively 91.97kJ/mol, 0.73 in the first step, 131.14kJ/mol, 0.63 in the second step and 146.94kJ/mol, 1.58 in the third step.

  16. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling

    Highlights: • Heat accumulation in PCM causes failures of passive thermal management systems. • The introduction of forced air convection improves the reliability of PCMs. • Temperature distribution in the hybrid system remains uniform. • Active cooling and PCMs play separate roles in battery thermal management. • Numerical results agree with experiment data and give theoretic insights. - Abstract: Passive thermal management systems using phase change materials (PCMs) provides an effective solution to the overheating of lithium ion batteries. But this study shows heat accumulation in PCMs caused by the inefficient cooling of air natural convection leads to thermal management system failures: The temperature in a battery pack operating continuously outranges the safety limit of 60 °C after two cycles with discharge rate of 1.5 C and 2 C. Here a hybrid system that integrates PCMs with forced air convection is presented. This combined system successfully prevents heat accumulation and maintains the maximum temperature under 50 °C in all cycles. Study on airspeed effects reveals that thermo-physical properties of PCMs dictate the maximum temperature rise and temperature uniformity in the battery pack, while forced air convection plays a critical role in recovering thermal energy storage capacity of PCMs. A numerical study is also carried out and validated with experiment data, which gives theoretic insights on thermo-physical changes in this hybrid battery thermal management system

  17. Thermal stability under air of tungsten–titanium diffusion barrier layer between silica and platinum

    Highlights: •The thermal stability of SiO2/Ti–W/Pt structure under air has been studied. •Oxidation, diffusion and sublimation processes occurred during annealing. •Film surface chemistry and microstructure were correlated with diffusion phenomena. •We proposed WO3 diffusion mechanisms through platinum film. •The WO3 diffusion mechanisms are mainly governed by the layer microstructure. -- Abstract: The present work investigated the thermal stability of tungsten–titanium diffusion barrier layers intercalated between SiO2 substrate and platinum thin film. The resulting structures were annealed under air in the temperature range 400–600 °C for annealing times up to 100 h. Chemical and structural characterizations at different stages of the treatment evidenced several phenomena occurring during annealing under air, especially the complete oxidation of the adhesive layer, the diffusion of tungsten oxide through platinum film at particle boundaries as well as the sublimation process of tungsten oxide. The results of film surface chemistry and microstructure were correlated with diffusion phenomena

  18. A work procedure of utilising PCMs as thermal storage systems based on air-TES systems

    Highlights: • A procedure to design effective thermal energy storage (TES) system. • A guidance for the selection of the working material (PCM) and the heat exchanger development. • Suggestions for heat transfer enhancement techniques for the air-TES system. • Mathematical, computational and experimental methods optimising the air-TES system. - Abstract: The paper seeks to offer a procedure to design an effective short term thermal energy storage (TES) system using phase change materials. The methodology focus on two main aspects: the selection of the working material and the heat exchanger development. The selection of the appropriate PCMs is one of the main keys for any TES therefore their classifications, properties, advantages and disadvantages need to be investigated. Due to the intensive researches using this kind of materials in the recent years, there are a range of commercial PCMs available and supplied by different companies. However, all types of PCM present their specific problems and therefore requirements are defined in order to select the most suitable PCMs. The other main key when designing TES is related to the heat exchanger formed by the PCM and the cold/hot heat sources. For this step, the choice of the appropriate container to encapsulate the PCM and the heat transfer enhancement techniques are analysed. Distinct methodologies such as experimental and numerical study methods and modelling software tools are presented to analyse the thermal energy performance of the system and achieve the optimal design of the TES system

  19. Thermal diffusion: An important aspect in studies of static air columns such as firn air, sand dunes and soil air

    Thermal diffusion induced by temperature gradients is an additional part of diffusional processes besides the ordinary or concentration diffusion. Heavier molecules normally migrate to the colder end of a static column hence leading to a slight separation in composition. Thermal diffusion can be most easily traced by isotopic ratios which are hardly exposed to changes in other processes, such as nitrogen and argon isotope ratios. Since only a limited number of thermal diffusion factors is measured up to now, it is important to have an idea how large they could be to check whether thermal diffusion effects have to be considered in interpreting corresponding isotope or elemental ratios. The Lennard-Jones (13,7) model is quite successful in estimating these factors as seen by comparison between measured and calculated values. However, there are still large uncertainties, particularly in assigning a correct critical temperature to a complex mixture such as air when considering only a ratio of two air components. It seems that the noble gas ratio Ne/Ar would be ideal to separate the gravitational enrichment from thermal diffusion due to a rather high thermal diffusion factor. However, as helium, neon has a high permeability in ice which strongly hampers this advantage. Therefore other noble gas ratios such as Ar/Kr and/or Ar/Xe are favoured for such experiments. For ice core studies the temporal variation of the thermal diffusion fractionation carries a large potential for reconstructing temperature variations over long time periods as well as synchronising gas and ice records with high precision based on very precise estimates of gas-ice age differences. (author)

  20. Photothermal depth profiling: Comparison between genetic algorithms and thermal wave backscattering (abstract)

    Li Voti, R.; Sibilia, C.; Bertolotti, M.

    2003-01-01

    Photothermal depth profiling has been the subject of many papers in the last years. Inverse problems on different kinds of materials have been identified, classified, and solved. A first classification has been done according to the type of depth profile: the physical quantity to be reconstructed is the optical absorption in the problems of type I, the thermal effusivity for type II, and both of them for type III. Another classification may be done depending on the time scale of the pump beam heating (frequency scan, time scan), or on its geometrical symmetry (one- or three-dimensional). In this work we want to discuss two different approaches, the genetic algorithms (GA) [R. Li Voti, C. Melchiorri, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 410 (2001); R. Li Voti, Proceedings, IV Int. Workshop on Advances in Signal Processing for Non-Destructive Evaluation of Materials, Quebec, August 2001] and the thermal wave backscattering (TWBS) [R. Li Voti, G. L. Liakhou, S. Paoloni, C. Sibilia, and M. Bertolotti, Anal. Sci. 17, 414 (2001); J. C. Krapez and R. Li Voti, Anal. Sci. 17, 417 (2001)], showing their performances and limits of validity for several kinds of photothermal depth profiling problems: The two approaches are based on different mechanisms and exhibit obviously different features. GA may be implemented on the exact heat diffusion equation as follows: one chromosome is associated to each profile. The genetic evolution of the chromosome allows one to find better and better profiles, eventually converging towards the solution of the inverse problem. The main advantage is that GA may be applied to any arbitrary profile, but several disadvantages exist; for example, the complexity of the algorithm, the slow convergence, and consequently the computer time consumed. On the contrary, TWBS uses a simplified theoretical model of heat diffusion in inhomogeneous materials. According to such a model, the photothermal signal depends linearly on the thermal effusivity

  1. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  2. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 μm respectively. The thickness of top coat was about 700 μm in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure

  3. Applicability of thermal energy storage recycled ceramics to high temperature and compressed air operating conditions

    Highlights: • ACW ceramics have been successfully tested under ACAES operating conditions. • ACW ceramics have been successfully tested under gas turbine based CSP conditions. • Under 600 °C-30 bars of air, ACW ceramics Cp is slightly lowered by 5%. • Thermal conductivity of ACW ceramics is advantageously enhanced by 30%. - Abstract: Recycled ceramics made of inertized asbestos containing wastes have been submitted to high pressure/temperature cycling tests in the operating range of ACAES and CSP applications. Ten successive cycles between room conditions and 610 °C/30 bars for a cumulated duration of 2500 h lead to a validation of the ability of the material to resist to those constrains. The Wollastonite/Augite initial structure is gradually transformed in a unique Augite containing material. While mechanical parameters and density are unchanged, thermal capacity is reduced by 5% and thermal conductivity increased by 30%. This last result offers an advantageous way to enhance the thermal conductivity of those recycled ceramics, a key parameter to control the charge/discharge power in TES systems

  4. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  5. Calculation of diffusion coefficients in air-metal thermal plasmas

    Cressault, Y; Gleizes, A [Universite de Toulouse, UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France)

    2010-11-03

    This paper presents the combined diffusion coefficients of metal vapours (silver, copper and iron) in air thermal plasmas for temperatures ranging from 300 to 30 000 K. The theory used to calculate these coefficients is remembered and validated by comparison with the literature values in several cases such as Ar-He, Ar-Cu and N{sub 2}-O{sub 2} mixtures. The results are discussed showing the influences of the metal concentration, of the vapour nature and of the pressure. The results show rather similar behaviour for the three metals. The maximum values of the combined ordinary diffusion coefficient in the evolution with temperature are obtained for temperature around 10 000 K but this peak is shifted to the highest temperatures when the metal proportion increases. Another result shows that the diffusion coefficient decreases when pressure increases.

  6. Modern air protection technologies at thermal power plants (review)

    Roslyakov, P. V.

    2016-07-01

    Realization of the ecologically safe technologies for fuel combustion in the steam boiler furnaces and the effective ways for treatment of flue gases at modern thermal power plants have been analyzed. The administrative and legal measures to stimulate introduction of the technologies for air protection at TPPs have been considered. It has been shown that both the primary intrafurnace measures for nitrogen oxide suppression and the secondary flue gas treatment methods are needed to meet the modern ecological standards. Examples of the environmentally safe methods for flame combustion of gas-oil and solid fuels in the boiler furnaces have been provided. The effective methods and units to treat flue gases from nitrogen and sulfur oxides and flue ash have been considered. It has been demonstrated that realization of the measures for air protection should be accompanied by introduction of the systems for continuous instrumentation control of the composition of combustion products in the gas path of boiler units and for monitoring of atmospheric emissions.

  7. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies

    Highlights: • Three-dimensional CFD model with forced air cooling are developed for battery modules. • Impact of different air cooling strategies on module thermal characteristics are investigated. • Impact of different model structures on module thermal responses are investigated. • Effect of inter-cell spacing on cell thermal characteristics are also studied. • The optimal battery module structure and air cooling strategy is recommended. - Abstract: Thermal management needs to be carefully considered in the lithium-ion battery module design to guarantee the temperature of batteries in operation within a narrow optimal range. This article firstly explores the thermal performance of battery module under different cell arrangement structures, which includes: 1 × 24, 3 × 8 and 5 × 5 arrays rectangular arrangement, 19 cells hexagonal arrangement and 28 cells circular arrangement. In addition, air-cooling strategies are also investigated by installing the fans in the different locations of the battery module to improve the temperature uniformity. Factors that influence the cooling capability of forced air cooling are discussed based on the simulations. The three-dimensional computational fluid dynamics (CFD) method and lumped model of single cell have been applied in the simulation. The temperature distributions of batteries are quantitatively described based on different module patterns, fan locations as well as inter-cell distance, and the conclusions are arrived as follows: when the fan locates on top of the module, the best cooling performance is achieved; the most desired structure with forced air cooling is cubic arrangement concerning the cooling effect and cost, while hexagonal structure is optimal when focus on the space utilization of battery module. Besides, the optimized inter-cell distance in battery module structure has been recommended

  8. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    It is often discussed if a person prefers a low air temperature (ta) and a high mean radiant temperature (tr), vice-versa or it does not matter as long as the operative temperature is acceptable. One of the hypotheses is that it does not matter for thermal comfort but for perceived air quality, a...... lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...

  9. Experimental study on the thermal performance and pressure drop of a solar air collector based on flat micro-heat pipe arrays

    Highlights: • A new type of solar air collector by using flat micro-heat pipe arrays is proposed. • Thermal efficiency rates in summer and winter are approximately 73% and 56%. • The pressure loss is below 25 Pa when the volume flow rate is less than 201.6 m3/h. - Abstract: A new solar air collector that combines the use of flat micro-heat pipe arrays (FMHPA) and evacuated tube is developed and investigated. Using FMHPA as the central transporting component in a solar air collector is an effective approach to improve the collector’s thermal properties and reduce its pressure drop. The thermal properties and pressure drop of the FMHPA solar air collector are analyzed in detail. The main objective of this paper is to report test results of the FMHPA solar air collectors which includes the effects of different seasons and airflow rates on the thermal efficiency and the pressure drop of the air collector. In summer, the thermal efficiency of the collector reaches 73% under stable operation. In the testing airflow range condition, the pressure drop is less than 25 Pa when the flow rate is below 201.6 m3/h. The relative uncertainty of thermal efficiency is approximately 7.73%

  10. Non-thermal plasma for air and water remediation.

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. PMID:27056469

  11. Analysis of air flow distribution and thermal comfort in a hybrid electric vehicle

    Ningbai, Ningbai

    2014-01-01

    Energy efficiency in Hybrid Electric Vehicles (HEV) affects the vehicle mileage and battery durability. Air conditioning is the most energy consuming system after the electric motor in HEVs. Air flow distribution and thermal comfort in an HEV is studied and simulations are performed to investigate the optimum air distribution pattern for providing thermal comfort while maintaining energy efficiency. To acquire a preliminary understanding of the problem, an analytical model is developed for ai...

  12. The Thermal Plume above a Standing Human Body Exposed to Different Air Distribution Strategies

    Liu, Li; Nielsen, Peter V.; Li, Yuguo;

    2009-01-01

    This study compares the impact of air distribution on the thermal plume above a human body in indoor environment. Three sets of measurements are conducted in a full-scale test room with different ventilation conditions. One breathing thermal manikin standing in the room is used to simulate the...... human body. Long-time average air velocity profiles at locations closely above the manikin are taken to identify the wandering thermal plume....

  13. Effective Ventilation Parameters and Thermal Comfort Study of Air-conditioned Offices

    Roonak Daghigh

    2009-01-01

    Full Text Available The study presents objective and subjective studies of thermal comfort levels and ventilation characteristics of two air-conditioned postgraduate study offices. The observations were performed at the offices of Department of Electrical and Electronic Engineering, in University Putra Malaysia. Thermal comfort variables were measured while the students answered a survey on their sensation of the indoor climate. Concurrently, tracer gas analysis, based on concentration decay method, is employed to determine air exchange rate, age of air and air exchange effectiveness. During the air conditioner is working, the study offices had not conditions within the comfort zone, of ASHRAE standard 55 causing occupants to report cold thermal sensations and the objective data analysis showed that the offices were uncomfortable. The thermal neutralities were significantly higher that proposed by ASHRAE Standard 55:1992. The monitored air exchange rates are indicated that the provisions of outside air for ventilation based on design occupancy are adequate for these two study offices. In addition, questionnaires were completed by the students in order to provide a subjective assessment of thermal comfort and indoor air quality. Finally, the outcomes of over 30 surveys for each office responses to the thermal comfort questions are presented and discussed.

  14. Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort

    Rongxiang Zhang; Xiaodong Chu; Wen Zhang; Yutian Liu

    2015-01-01

    Air conditioners have great potential to participate in power system frequency control. This paper proposes a control strategy to facilitate the active participation of air conditioners. For each air conditioner, a decentralized control law is designed to adjust its temperature set point in response to the system frequency deviation. The decentralized control law accounts for the user’s thermal comfort that is evaluated by a fuzzy algorithm. The aggregation of air conditioners’ response is c...

  15. Air-borne noise of thermal module and system for notebook personal computers:experimental study

    2008-01-01

    Thermal performance is the most important issue to be considered when a thermal module is designed for a notebook personal computer (PC).Because the fan causes air-borne noise and affects the user's comfort,the acoustic characteristics of the module attract more attention.Experiments were conducted to study the noise sources,the noise characteristic and the main factors influencing the noise level.The difference between the air-borne noise of the thermal module and the whole computer system was analyzed and its propagating characteristics were derived.The influence of I/O ports on the air-borne noise was also studied experimentally.

  16. Measurement and prediction of indoor air quality using a breathing thermal manikin

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2007-01-01

    The analyses performed in this paper reveal that a breathing thermal manikin with realistic simulation of respiration including breathing cycle, pulmonary ventilation rate, frequency and breathing mode, gas concentration, humidity and temperature of exhaled air and human body shape and surface...... temperature is sensitive enough to perform reliable measurement of characteristics of air as inhaled by occupants. The temperature, humidity, and pollution concentration in the inhaled air can be measured accurately with a thermal manikin without breathing simulation if they are measured at the upper lip...... at a distance of breathing, especially of exhalation, is needed for studying the transport of exhaled air between occupants. A method...

  17. Test Method for Determination of Thermal Shock resistance(Air Quenching)

    LIYong-gang; ZHANGYong-fang; 等

    1995-01-01

    On the basis of the theory of thermal shock resistance in the science of materials and the test method of air quenching which is generally rec-ognized internationally,especially in Europe,the present test methods for determination of thermal shock resistance in China have been analysed,Experiment study on thermal shock resis-tance of silica and basic refractory products has been conducted,and a new test method of thermal shock resistance-air quenching method has been put forward.

  18. Thermal Gradient Behavior of TBCs Subjected to a Laser Gradient Test Rig: Simulating an Air-to-Air Combat Flight

    Lima, Rogerio S.; Marple, Basil R.; Marcoux, P.

    2016-01-01

    A computer-controlled laser test rig (using a CO2 laser) offers an interesting alternative to traditional flame-based thermal gradient rigs in evaluating thermal barrier coatings (TBCs). The temperature gradient between the top and back surfaces of a TBC system can be controlled based on the laser power and a forced air back-face cooling system, enabling the temperature history of complete aircraft missions to be simulated. An air plasma spray-deposited TBC was tested and, based on experimental data available in the literature, the temperature gradients across the TBC system (ZrO2-Y2O3 YSZ top coat/CoNiCrAlY bond coat/Inconel 625 substrate) and their respective frequencies during air-to-air combat missions of fighter jets were replicated. The missions included (i) idle/taxi on the runway, (ii) take-off and climbing, (iii) cruise trajectory to rendezvous zone, (iv) air-to-air combat maneuvering, (v) cruise trajectory back to runway, and (vi) idle/taxi after landing. The results show that the TBC thermal gradient experimental data in turbine engines can be replicated in the laser gradient rig, leading to an important tool to better engineer TBCs.

  19. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  20. Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality

    Melikov, Arsen Krikor; Ivanova, T.; Stefanova, G.

    2012-01-01

    The performance of personalized ventilation with seat headrest-mounted air supply terminal devices (ATD), named seat headrest personalized ventilation (SHPV), was studied. Physical measurements using a breathing thermal manikin were taken to identify its ability to provide clean air to inhalation...... occupants are seated most of the time, e.g. theatres, vehicle compartments, etc. © 2011 ....

  1. DESIGN OF SECONDARY AIR SYSTEM AND THERMAL MODELS FOR TRIPLE SPOOL JET ENGINES

    Caty, Fabien

    2012-01-01

    This master thesis deals with the understanding of the secondary air system of athree spool turbofan. The main purpose is the creation of secondary air systemand thermal models to evaluate the behavior of this kind of engine architectureand estimate the pros and cons in comparison with a typical two spool turbofan. Afinite element model of the secondary air system of the engine has been designedbased on the experience of typical jet engines manufactured by Snecma. Theinner thermodynamic patte...

  2. Thermal behaviour of a solar air heater with a compound parabolic concentrator

    A mathematical model for computing the thermal performance of an air heater with a truncated compound parabolic concentrator having a flat one-sided absorber is presented. A computed code that employs an iterative solution procedure is constructed to solve the governing energy equations and to estimate the performance parameters of the collector. The effects of the air mass flow rate, the wind speed and the collector length on the thermal performance of the present air heater are investigated. Prediction for the performance of the solar heater also exhibits reasonable agreement with experimental data with an average error of 7%. (author)

  3. Conversion of carbon disulfide in air by non-thermal plasma

    Highlights: • The behavior of NTP for CS2 conversion in air was investigated. • CS2 conversion increase with the increase of specific input energy. • Short-living species are more important in CS2 conversion than long-living species. • The main gaseous products of CS2 conversion are CO, CO2, OCS, SO2, SO3 and H2SO4. • YCO2 and YCO increase, YSO3+H2SO4 remains constant, and YSO2 and YOCS follow bell curves as SIE increases. -- Abstract: Carbon disulfide (CS2), a typical odorous organic sulfur compound, has adverse effects on human health and is a potential threat to the environment. In the present study, CS2 conversion in air by non-thermal plasma (NTP) was systematically investigated using a link tooth wheel-cylinder plasma reactor energized by a DC power supply. The results show that corona discharge is effective in removing CS2. The CS2 conversion increases with the increase of specific input energy (SIE). Both short-living (e.g. ·O, ·OH radicals) and long-living species contribute to the CS2 conversion, but the short-living species play a more important role. Both gaseous and solid products are formed during the conversion of CS2. Gaseous products mainly include CO, CO2, OCS, SO2, SO3 and H2SO4. The yields of CO and CO2 increase, the yields of OCS and SO2 follow bell curves while the sum yield of SO3 and H2SO4 remains constant as SIE increases. The solid products, consisting of CO32−, SO42− and possible polymeric sulfur, deposit on the inner wall and electrodes of the plasma reactor

  4. Thermal Comfort Evaluation of a Heat Pump System using Induced-air Supply Unit

    Ling, Jiazhen; Xu, Jian; Aute, Vikrant; Radermacher, Reinhard

    2014-01-01

    Traditional heat pump systems supply conditioned air to space at certain temperatures such as, in summer, about 16°C. When the supply-air temperature drops too low, most occupants tend to feel uncomfortable. On the other hand, a certain amount of dehumidification has to be carried out and sometimes, the velocity of supply-air has to be high which in turn creates a draught. This paper introduces a new air supply method to reduce fan power consumption as well as to improve thermal comfort of oc...

  5. Effect of Air Velocity on Thermal Comfort in an Automobile Cabin

    Mehmet Özgün Korukçu

    2011-06-01

    Full Text Available The aim of this study is to evaluate the effect of air velocity on thermal comfort during heating period in an automobile cabin with experiments. In the evaluation of comfort in automobiles, in general temperature, humidity, air velocity and radiant temperature measurements are taken. In the study, ambient temperature, relative humidity, mean radiant temperature and mean skin temperature of the driver inside the automobile cabin during heating for different vent air mass flow rates were measured in a parked car. Subjective survey was performed during the experiments to the driver. The results for different vent air mass flow rate values were compared with answers taken from the subject and discussed.

  6. Obtaining the Thermal Structure of Lakes from the Air

    Michaella Chung

    2015-11-01

    Full Text Available The significance of thermal heterogeneities in small surface water bodies as drivers of mixing and for habitat provision is increasingly recognized, yet obtaining three-dimensionally-resolved observations of the thermal structure of lakes and rivers remains challenging. Remote observations of water temperature from aerial platforms are attractive: such platforms do not require shoreline access; they can be quickly and easily deployed and redeployed to facilitate repeated sampling and can rapidly move between target locations, allowing multiple measurements to be made during a single flight. However, they are also subject to well-known limitations, including payload, operability and a tradeoff between the extent and density over which measurements can be made within restricted flight times. This paper introduces a novel aerial thermal sensing platform that lowers a temperature sensor into the water to record temperature measurements throughout a shallow water column and presents results from initial field experiments comparing \\emph{in situ} temperature observations to those made from the UAS platform. These experiments show that with minor improvements, UASs have the potential to enable high-resolution 3D thermal mapping of a \\(\\sim\\1-ha lake in 2–3 flights (\\textit{circa} 2 h, sufficient to resolve diurnal variations. This paper identifies operational constraints and key areas for further development, including the need for the integration of a faster temperature sensor with the aerial vehicle and better control of the sensor depth, especially when near the water surface.

  7. Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction

    Highlights: • A novel integrated cool roof system for attic temperature reduction is introduced. • 13 °C temperature reduction achieved due to its efficient heat transfer mechanism. • Aluminium tube cavity of the roof is able to reduce the attic temperature. • This positive result is due to its efficient heat reflection and hot air rejection. • Thermal insulation coating incorporates the usage of eggshell waste as bio-filler. - Abstract: Cool roof systems play a significant role in enhancing the comfort level of occupants by reducing the attic temperature of the building. Heat transmission through the roof can be reduced by applying thermal insulation coating (TIC) on the roof and/or installing insulation under the roof of the attic. This paper focuses on a TIC integrated with a series of aluminium tubes that are installed on the underside of the metal roof. In this study, the recycled aluminium cans were arranged into tubes that act as a moving-air-cavity (MAC). The TIC was formulated using titanium dioxide pigment with chicken eggshell (CES) waste as bio-filler bound together by a polyurethane resin binder. The thermal conductivity of the thermal insulation paint was measured using KD2 Pro Thermal Properties Analyzer. Four types of cool roof systems were designed and the performances were evaluated. The experimental works were carried out indoors by using halogen light bulbs followed by comparison of the roof and attic temperatures. The temperature of the surrounding air during testing was approximately 27.5 °C. The cool roof that incorporated both TIC and MAC with opened attic inlet showed a significant improvement with a reduction of up to 13 °C (from 42.4 °C to 29.6 °C) in the attic temperature compared to the conventional roof system. The significant difference in the results is due to the low thermal conductivity of the thermal insulation paint (0.107 W/mK) as well as the usage of aluminium tubes in the roof cavity that was able to transfer

  8. Human requirements to the indoor air quality and the thermal environment

    Fanger, P. Ole

    Perceived air quality, general thermal sensation of the occupants and risk of draft, aspects which human comfort in a space depends upon, are reviewed separately based on European Guidelines for Ventilation Requirements in Buildings and on a modified ISO (International Standards Organization) standard 7730 on thermal comfort. The perceived air quality is expressed in decipol or percentage of dissatisfied occupants. The general thermal sensation is expressed by the PMV/PPD indices. The perception of draft is expressed by the model of draft risk. Indoor air quality is mediocre and causes complaints in many buildings. The reason for this is often hidden pollution sources in the building, hitherto ignored in previous ventilation standards. To determine the required ventilation, a method is used in the European Guidelines. The new Guidelines acknowledge all pollution sources in the building, expressed in olfs. The method is based on the desired air quality in the space, the available quality of the outdoor air, the ventilation effectiveness and on the total pollution load in the space. The model of draft risk predicts the percentage of occupants feeling draft as a function of the mean air velocity, the turbulence intensity and the air temperature.

  9. Solar thermal drying of apricots: Effect of spectrally-selective cabinet materials on drying rate and quality metrics (abstract)

    Solar thermal (ST) drying is currently not in widespread commercial use due to concerns about slow drying rates and poor product quality. ST dryer cabinets could be constructed from spectrally-selective materials (materials which transmit only certain sunlight wavelength bands), but these types of ...

  10. Microstructure and thermal properties of nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings by air plasma spraying

    Nanostructured lanthana-doped yttria-stabilized zirconia thermal barrier coatings were developed using the air plasma spraying technique. Scanning and transmission electron microscopy studies revealed that the coatings are characterized by a bimodal microstructure consisting of melted zones, nano-zones, splats, nano-pores and micro-cracks, which are typical features of nanostructured plasma-sprayed coatings. These coatings are tetragonal in phase, with a grain size of 30–60 nm. The thermal conductivity achieved by these coatings is lower than that of nanostructured and traditional yttria-stabilized zirconia coatings.

  11. Parametric study of a solar air heater with and without thermal storage for solar drying applications

    Aboul-Enein, S.; El-Sebaii, A.A.; Ramadan, M.R.I.; El-Gohary, H.G. [Tanta Univ., Physics Dept., Tanta (Egypt)

    2000-12-01

    A transient analytical model is presented for a flat-plate solar air heater with and without thermal storage. The flowing air temperature is assumed to vary with time and space coordinates. Analytical expressions are obtained for various temperatures of the air heater elements as well as for the temperature of the storage material. The performance of the air heater is investigated by computer simulation using the climatic conditions of Tanta (Lat. 30deg 47' N, Egypt). Effects of design parameters of the air heater such as length (L), width (b), gap spacing between the absorber plate and glass cover (d{sub f}), mass flow rate (m) and thickness and type of the storage material (sand, granite and water) on the outlet and average temperatures of the flowing air are studied. It is found that as L and b increase the average temperatures of flowing air (T{sub fav}) increases up to typical values for these parameters. Typical values for L and b are obtained as 3 and 2 m, respectively. The outlet temperature (T{sub fo}) of flowing air is found to decrease with increasing gap spacing and mass flow rate of air. Improvements in the heater performance with storage have been achieved at the optimum thickness (0.12 m) of the storage material. Therefore, the air heater can be used as a heat source for drying agricultural products and the drying process will continue during night, instead of re-absorption of moisture from the surrounding air. Comparisons between experimental and theoretical results indicated that the proposed mathematical model can be used for estimating the thermal performance of flat-plate solar air heaters with reasonable accuracy. (Author)

  12. Analysis of thermal and electrical performance of a hybrid (PV/T) air based solar collector for Iraq

    Highlights: ► An improved model is developed for single pass glazed PV/T collector. ► We examined the influence of different parameters. ► A summer day has better heating with lower overall efficiency compared with a winter day. -- Abstract: The electrical and thermal performance of a typical single pass hybrid photovoltaic/thermal (PV/T) air collector is modeled, simulated and analyzed for two selected case studies in Iraq. An improved mathematical thermo-electrical model is derived in terms of design, operating and climatic parameters of the hybrid solar collector to evaluate its important characteristics: collector flow and heat removal factors, PV maximum power point and its temperature coefficient, and overall power and efficiency. Unlike previous PV/T thermal models, the present model is obtained with some additions and corrections in radiation and convection heat coefficients for the top loss and for the air duct with more applicable sky temperature correlation. The well-known 5-parameter electrical model of PV module is solved using improved boundary conditions and translation equations for better convergence and accuracy. The voltage temperature coefficient of the PV module is included in the boundary conditions for convergence stability. The module parameters are taken to be dependent on solar radiation and PV cell temperature for improved accuracy. A Matlab computer simulation program is developed to solve the thermo-electrical model. The developed model is verified with previously published experimental results and theoretical simulations; it is proved to be most accurate in respect to percentage errors and correlation coefficients. Different parameters of the PV/T collector such as cell and air temperatures, thermal gain, PV current and voltage, and fill factor have been investigated. The results identified the effects of most important operating conditions such as sky, inlet and cell temperatures, air flow rate and incident solar radiation on

  13. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time pe...... with the value of the subjects in this study. The comparison shows that the occupants in China had a shorter time period of thermal adaption than European occupants, which means that Chinese occupants can adapt to a new outdoor climate condition faster....... period of thermal adaption was obtained with the proposed method. The result revealed that the subjects needed to take 4.25 days to fully adapt to a step-change in outdoor air temperature. The time period of thermal adaption for the occupants in five European countries was also calculated and compared...

  14. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  15. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose.

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-01-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144

  16. Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China

    Xiaopeng Guo; Xiaodan Guo; Jiahai Yuan

    2014-01-01

    Spurred by the increasingly serious air pollution problem, the Chinese government has launched a series of policies to put forward specific measures of power structure adjustment and the control objectives of air pollution and coal consumption. Other policies pointed out that the coal resources regional blockades will be broken by improving transportation networks and constructing new logistics nodes. Thermal power takes the largest part of China’s total installed power generation capacity,...

  17. Study on the Thermal Effects and Air Quality Improvement of Green Roof

    Heng Luo; Ning Wang; Jianping Chen; Xiaoyan Ye; Yun-Fei Sun

    2015-01-01

    Heat island phenomenon and air quality deterioration issues are two major problems that have occurred during the process of urbanization, especially in developing countries. A number of measures have been proposed, among which roof greening is considered as a promising one due to its outstanding performance in thermal effects as well as air quality improvement. A self-maintenance system, termed the Green Roof Manager (GRM), which comprises the irrigation and shadowing subsystems, is proposed...

  18. Through thickness air permeability and thermal conductivity analysis for textile materials

    Saldaeva, Elena

    2010-01-01

    Woven fabrics have found enormous application in our daily life and in industry because of their flexibility, strength and permeability. The aim of this work was to create a general model for through thickness air permeability and thermal conductivity for different types of textile fabrics because of their applications in industries and everyday life. An analytical model to predict through thickness air permeability was developed. The objective was to create a model which will take into con...

  19. BitWhisper: Covert Signaling Channel between Air-Gapped Computers using Thermal Manipulations

    Guri, Mordechai; Monitz, Matan; Mirski, Yisroel; Elovici, Yuval

    2015-01-01

    It has been assumed that the physical separation (air-gap) of computers provides a reliable level of security, such that should two adjacent computers become compromised, the covert exchange of data between them would be impossible. In this paper, we demonstrate BitWhisper, a method of bridging the air-gap between adjacent compromised computers by using their heat emissions and built-in thermal sensors to create a covert communication channel. Our method is unique in two respects: it supports...

  20. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    Ooshaksaraei, P.; K. Sopian; Zulkifli, R.; Saleem H. Zaidi

    2013-01-01

    Photovoltaic (PV) panels account for a majority of the cost of photovoltaic thermal (PVT) panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum ef...

  1. Performances of air plasma sprayed thermal barrier coatings for industrial gas turbines

    Seraffon, Maud

    2012-01-01

    Future industrial gas turbines will be required to operate at higher temperatures to increase operating efficiencies and will be subjected to more frequent thermal cycles. The temperatures that the substrates of components exposed in the harshest environments experience can be reduced using air-cooling systems coupled with ceramic thermal barrier coatings (TBCs); however, few studies have been carried out at the substrate temperatures encountered in industrial gas turbines (e.g...

  2. Experimental investigation of thermal comfort and air quality in an automobile cabin during the cooling period

    Kilic, M.; Akyol, S. M.

    2012-08-01

    The air quality and thermal comfort strongly influenced by the heat and mass transfer take place together in an automobile cabin. In this study, it is aimed to investigate and assess the effects of air intake settings (recirculation and fresh air) on the thermal comfort, air quality satisfaction and energy usage during the cooling period of an automobile cabin. For this purpose, measurements (temperature, air velocity, CO2) were performed at various locations inside the cabin. Furthermore, whole body and local responses of the human subjects were noted while skin temperatures were measured. A mathematical model was arranged in order to estimate CO2 concentration and energy usage inside the vehicle cabin and verified with experimental data. It is shown that CO2 level inside of the cabin can be greater than the threshold value recommended for the driving safety if two and more occupants exist in the car. It is also shown that an advanced climate control system may satisfy the requirements for the air quality and thermal comfort as well as to reduce the energy usage for the cooling of a vehicle cabin.

  3. Thermal decomposition of rare earth pyromucates in air atmosphere

    The conditions of thermal decomposition of Y, La and lanthanide (from Ce(III) to Lu) pyromucates were studied. On heating these complexes decompose in various ways: La, Pr, Nd and Sm pyromucates in four stages, Ce, Eu, Gd, Dy, Ho and Er in three stages, and Tm, Yb, Lu and Y in two stages, the oxides are formed finally. The hydrated complexes (from La to Er) lose crystallization water to form anhydrous salts. The anhydrous complexes of La, Pr, Nd and Sm decompose to oxides through the intermediate formation of unstable oxypyromucates and Lnsub(2)Osub(2)COsub(3), whereas the anhydrous complexes of Ce(III), Eu, GdDy, Ho, Er, Tm, Yb and Lu decompose to the oxides through the intermediate formation of oxypyromucates. The temperatures of dehydration and oxide formation change periodically with increasing atomic number in the lanthanide series. (author)

  4. Adiabatic Compressed Air Energy Storage with packed bed thermal energy storage

    Highlights: • The paper presents a thermodynamic analysis of A-CAES using packed bed regenerators. • The packed beds are used to store the compression heat. • A numerical model is developed, validated and used to simulate system operation. • The simulated efficiencies are between 70.5% and 71.1% for continuous operation. • Heat build-up in the beds reduces continuous cycle efficiency slightly. - Abstract: The majority of articles on Adiabatic Compressed Air Energy Storage (A-CAES) so far have focussed on the use of indirect-contact heat exchangers and a thermal fluid in which to store the compression heat. While packed beds have been suggested, a detailed analysis of A-CAES with packed beds is lacking in the available literature. This paper presents such an analysis. We develop a numerical model of an A-CAES system with packed beds and validate it against analytical solutions. Our results suggest that an efficiency in excess of 70% should be achievable, which is higher than many of the previous estimates for A-CAES systems using indirect-contact heat exchangers. We carry out an exergy analysis for a single charge–storage–discharge cycle to see where the main losses are likely to transpire and we find that the main losses occur in the compressors and expanders (accounting for nearly 20% of the work input) rather than in the packed beds. The system is then simulated for continuous cycling and it is found that the build-up of leftover heat from previous cycles in the packed beds results in higher steady state temperature profiles of the packed beds. This leads to a small reduction (<0.5%) in efficiency for continuous operation

  5. Micro-fabrication and thermal characteristics of a thermal mass air flow sensor for real-time applications

    A thermal Mass Air Flow Sensor (MAFS), which consists of a micro-heater and thermo-resistive sensors on the silicon-nitride (Si3N4) thin membrane structure, is micro-fabricated by MEMS processes. Two thermo-resistive temperature sensors are located at 100μm upstream and downstream from the micro-heater respectively. The thermal characteristics are measured to find the best measurement indicator. The micro-heater is operated under constant power condition, and four flow indicators are investigated. The normalized temperature indicator shows good physical meaning and is easy to use in practices. It is found that the configurations and heating power of thermal-resistive elements are the dominant factors to determine the range of the flow measurement in the MAFS with higher sensitivity and accuracy

  6. Measurement of Indoor Air Quality by Means of a Breathing Thermal Manikin

    Brohus, Henrik

    When a person is located in a contaminant field with significant gradients the contaminant distribution is modified locally due to the entrainment and transport of room air in the human convective boundary layer as well as due to the effect of the person acting as an obstacle to the flow field, etc....... The local modification of the concentration distribution may affect the personal exposure significantly and, thus, the indoor air quality actually experienced. In this paper measurements of indoor air quality by means of a Breathing Thermal Manikin (BTM) are presented....

  7. Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2015-01-01

    The thermal environment and air quality conditions provided with combined system of chilled ceiling and personalized ventilation (PV) were studied in a simulated office room for two occupants. The proposed system was compared with total volume HVAC solutions used today, namely mixing ventilation...... and chilled ceiling combined with mixing ventilation. The objective of the study was to evaluate whether PV can be the only ventilation system in the rooms equipped with chilled ceiling. The room air temperature was 26°C in cases with traditional systems and 28°C when PV was used. PV supplied air with...

  8. Field study of thermal comfort and indoor air quality in gymnasium

    谢慧; 甘晓爱; 马飞

    2009-01-01

    To analyze the thermal comfort and indoor air quality (IAQ) in a medium-sized mechanically ventilated gymnasium in Beijing,a field study was carried out. PHOENICS,one of the CFD software,was chosen to simulate the distribution of the indicators of indoor air in the gymnasium to check the air-conditioning parameters reasonable or not. And there was a questionnaire for audiences and staff about the acceptance and satisfaction of the thermal comfort,simultaneously,some environmental parameters were monitored. Then an experiment was carried out in gymnasium with the plate sedimentation to the biological aerosol in the air. Finally,the thermal comfort and IAQ in the gymnasium were assessed based on the results of above questionnaire survey and measurements. The results show that most parameters of the environmental are within the standard limits of thermal comfort and IAQ in the monitored period,and the biological contaminants initially come from human beings. The main species in the gymnasium are streptobacillus,coccus,cladosporium,penicillium and neurospora.

  9. Air-ground temperature coupling: analysis by means of Thermal Orbits

    Čermák, Vladimír; Bodri, L.

    2016-01-01

    Roč. 6, č. 1 (2016), s. 112-122. ISSN 2160-0414 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk(CZ) LG13040 Institutional support: RVO:67985530 Keywords : Thermal Orbits * temperature monitoring * air temperature vs ground temperature Subject RIV: DG - Athmosphere Sciences, Meteorology

  10. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  11. Sensitivity analysis of thermal performances of flat plate solar air heaters

    Njomo, Donatien [University of Yaounde I, Heat Transfer Laboratory, PO Box 812, Yaounde (Cameroon); Daguenet, Michel [Universite de Perpignan, Laboratoire de Thermodynamique et Energetique, Perpignan (France)

    2006-10-15

    Sensitivity analysis is a mathematical tool, first developed for optimization methods, which aim is to characterize a system response through the variations of its output parameters following modifications imposed on the input parameters of the system. Such an analysis may quickly become laborious when the thermal model under consideration is complex or the number of input parameters is high. In this paper, we develop a mathematical model to analyse the heat exchanges in four different types of solar air collectors. When building this thermal model we show that for each collector, at quasi-steady state, the energy balance equations of the components of the collector cascade into a single first-order non-linear differential equation that is able to predict the thermal behaviour of the collector. Our heat transfer model clearly demonstrates the existence of an important dimensionless parameter, referred to as the thermal performance factor of the collector, that compares the useful thermal energy which can be extracted from the heater to the overall thermal losses of that collector for a given set of input parameters. A sensitivity analysis of our thermal model has been performed for the most significant input parameters such as the incident solar irradiation, the inlet fluid temperature, the air mass flow rate, the depth of the fluid channel, the number and nature of the transparent covers in order to measure the impact of each of these parameters on our model. An important result which can be drawn from this study is that the heat transfer model developed is robust enough to be used for thermal design studies of most known flat plate solar air heaters, but also of flat plate solar water collectors and linear solar concentrators. (orig.)

  12. Technical meeting on heat transfer, thermal-hydraulics and system design for supercritical pressure water cooled reactors. Book of abstracts

    There is high interest internationally in both developing and industrialized countries in the design of innovative supercritical water cooled reactors (SCWRs). This interest arises from the high thermal efficiencies (44-45%) and improved economic competitiveness promised by this concept, which utilizes and builds upon the recent developments of highly efficient fossil power plants. The SCWR is one of the six concepts included in the Generation-IV International Forum (GIF). In support of Member States' efforts in the area of SCWRs, the IAEA started in 2008 a Coordinated Research Project (CRP) on 'Heat Transfer Behaviour and Thermo-hydraulics Code Testing for SCWRs'. The two key objectives of this CRP are: 1) To establish accurate databases for heat transfer, pressure drop, blowdown, natural circulation, and stability for conditions relevant to supercritical pressure fluids, and 2) To test analysis methods for SCWR thermohydraulic behaviour, and identify code development needs. Annual Research Coordination Meetings take place under the framework of this CRP once a year to assess the progress of the project. These meetings are mainly focused on programmatic issues associated with the project and very little time is available for discussion on details and specific technical areas. This is why during the 2nd Research Coordination Meeting for this CRP held in Vienna in August 24-27, 2009, Member States expressed an interest in organizing a technical meeting in which specialists in the areas of heat transfer and thermal-hydraulics, thermodynamics and systems design for supercritical water cooled reactors would have the opportunity of participating in extended technical discussions on the details associated to the science and engineering of supercritical water cooled reactor concepts. The University of Pisa kindly offered to host such a technical meeting. The purpose of the meeting was to provide a platform for detailed presentations and technical discussions leading, to

  13. The Thermal Performance and Air Leakage Characteristics of Six Log Homes in Idaho.

    Roos, Carolyn; Eklund, Ken; Baylon, David

    1993-08-01

    The thermal performance and air leakage characteristics of four electrically heated log houses located in Idaho are summarized. The air leakage and construction characteristics of two additional log homes are also examined. The energy consumption of the four homes was submetered at weekly reporting intervals for up to 16 months. Blower door tests and site audits were performed. In addition, conditions at two of these homes, including heat flux through the log walls, indoor and outdoor temperatures, solar flux and envelope tightness, were measured in detail over several days during winter conditions. The energy use and thermal performance of these two homes were then modeled using SUNCODE-PC, an hourly thermal simulation program employing a finite difference technique.

  14. Abstract algebra

    Deskins, W E

    1996-01-01

    This excellent textbook provides undergraduates with an accessible introduction to the basic concepts of abstract algebra and to the analysis of abstract algebraic systems. These systems, which consist of sets of elements, operations, and relations among the elements, and prescriptive axioms, are abstractions and generalizations of various models which evolved from efforts to explain or discuss physical phenomena.In Chapter 1, the author discusses the essential ingredients of a mathematical system, and in the next four chapters covers the basic number systems, decompositions of integers, diop

  15. Thermal decomposition of heavy lanthanide 3-hydroxybenzoates in air and nitrogen atmospheres

    The conditions of thermal decomposition of heavy lanthanide complexes with 3-hydroxybenzoic acid in air and nitrogen atmospheres were studied. On heating the complexes of Gd, Dy, Ho, Yb and Lu decompose in three stages. First, the hydrated complexes lose crystallization water and the anhydrous salts heated in air are then transformed to Lnsub(2)Osub(3), or, in a nitrogen atmosphere, to Lnsub(2)Osub(3) and C. Complexes of Tb(III), Ho and Er are dehydrated in two stages during heating, and the anhydrous complexes are converted in air to Lnsub(2)Osub(3) and Tbsub(4)Osub(7), and in a nitrogen atmosphere to a mixture of oxides and C. The carbon content in the decomposition product is 9.7% for Gd and 19.6% for Ho. The dehydration of the complexes is accompanied by endothermic effects. The decomposition of 3-hydroxybenzoates is exothermic in air and endothermic in nitrogen. (author)

  16. NOx emission and thermal efficiency of a 300 MWe utility boiler retrofitted by air staging

    Li, S.; Xu, T.M.; Hui, S.; Wei, X.L. [Chinese Academy of Sciences, Beijing (China). Inst. of Mechanics

    2009-09-15

    Full-scale experiments were performed on a 300 MWe utility boiler retrofitted with air staging. In order to improve boiler thermal efficiency and to reduce NOx emission, the influencing factors including the overall excessive air ratio, the secondary air distribution pattern, the damper openings of CCOFA and SOFA, and pulverized coal fineness were investigated. Through comprehensive combustion adjustment, NOx emission decreased 182 ppm (NOx reduction efficiency was 44%), and boiler heat efficiency merely decreased 0.21%. After combustion improvement, high efficiency and low NOx emission was achieved in the utility coal-fired boiler retrofitted with air staging, and the unburned carbon in ash can maintain at a desired level where the utilization of fly-ash as byproducts was not influenced.

  17. Thermal protection of targeted air instillation in CT-guided radiofrequency ablation

    To evaluate targeted intraperitoneal air instillation for the protection of adjacent structures at high-risk liver metastasis sites. On the basis of an interdisciplinary indication for radiofrequency ablation (RFA), targeted air instillation (up to 200 cc) was performed in 6 patients with a total of 6 liver metastases over an anterior or right lateral access route with a 22 G Chiba needle for the distension of the structures as well as protection against thermal damage from RFA in the close relationship of liver lesions to the stomach or colon. In 6 patients (mean age approximately 66.3 years, 4 males, 2 females) with a risky location of a colorectal metastasis (liver segment III or VI), the targeted air instillation was performed between the liver and stomach (4 / 6) and colon (2 / 6). Protection against thermal damage was able to be established in 6 / 6 liver metastases prior to RFA. All tumor sites were ablated completely without the occurrence of complications requiring treatment. The additional instillation of air into the peritoneum for distension and thermal protection is a useful extension of the RFA technique, which allows successful ablation at high-risk liver tumor sites and also allows interventional radiologists to treat tumor manifestations closely related to the colon or stomach. (orig.)

  18. Properties of thermal air plasma with admixing of copper and carbon

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors

  19. Kinetic study of the thermal decomposition process of calcite particles in air and CO2 atmosphere

    Escardino Benlloch, Agustín; García Ten, Francisco Javier; Feliu Mingarro, Carlos; Saburit Llaudis, Alejandro; Cantavella Soler, Vicente

    2013-01-01

    The thermal decomposition process of calcite particles (0.45–3.60 mm average diameter), made up of porous agglomerates of very small CaCO3 microcrystals, was studied in the 975–1216 K temperature range. The experiments were carried out under isothermal conditions in air atmosphere, in CO2 atmosphere, as well as in a gas stream comprising different concentrations of air and CO2. An equation is proposed that relates the calcite conversion degree to both reaction time and operating condition...

  20. Air flow and thermal comfort simulation studies of wind ventilated classrooms in Malaysia

    Rahman, S.A. [Malaysian Institut of Teknologi, Selangor (Malaysia). Kajian Sains Gunaan; Kannan, K.S. [Technology Univ. of Malaysia, Kuala Lumpur (Malaysia)

    1996-05-01

    A CFD software called VORTEX is used as a tool to simulate air flow and thermal comfort in naturally wind ventilated classrooms of an educational institution, which are at different locations, have different configurations and slightly differing outdoor environmental conditions. Simulations of the various classrooms are compared to get the most thermally comfortable and uncomfortable naturally ventilated classroom. An analysis of the simulations will be done, taking into consideration, among others, location of inlets and outlets and the sheltering effects of the surrounding built-up environment. Recommendations will then be made on how to improve the ventilation of the least comfortable room, based on hypothetical simulation results. (author)

  1. Thermal degradation of the vapours of organic nitrogen compounds in the presence of the air

    Following a quick survey of the literature on the products originated during the thermal degradation of some organic nitrogen compounds, the experimental results obtained by applying a technique previously used for other organic compounds are presented. The compounds investigated include: methyl and ethylamines at the origin of the bad smells of many gaseous wastes, trilaurylamine and tetraethylenediamine sometimes used in nuclear facilities. Attention is brought on the emission of noxious products during thermal degradation in the presence of the air, at various temperatures, viz. either usual combustion gases such as carbon monoxide, or nitro-derivatives such as hydrogen cyanide present whatever the compound investigated when temperatures are below 8500C

  2. HVACMeter: Apportionment of HVAC Power to Thermal Zones and Air Handler Units

    Koh, Jason; Balaji, Bharathan; Gupta, Rajesh; Agarwal, Yuvraj

    2015-01-01

    Heating, Ventilation and Air Conditioning (HVAC) systems consume almost half of the total energy use of commercial buildings. To optimize HVAC energy usage, it is important to understand the energy consumption of individual HVAC components at fine granularities. However, buildings typically only have aggregate building level power and thermal meters. We present HVACMeter, a system which leverages existing sensors in commercial HVAC systems to estimate the energy consumed by individual compone...

  3. Thermal comfort in air-conditioned mosques in the dry desert climate

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  4. Evaluation of Single-Pass Photovoltaic-Thermal Air Collector with Rectangle Tunnel Absorber

    Goh L. Jin

    2010-01-01

    Full Text Available Problem statement: Photovoltaic solar cell generate electric by receiving sun light or solar irradiance. But solar cell received heat from solar irradiance as well and this will reduced the efficiency of the solar cell. The heat trap at the solar photovoltaic panel become waste energy. Approach: The solution for this was by adding a cooling system to the photovoltaic panel. The purpose of this study was to cool the solar cell in order to increase its electrical efficiency and also to produce heat energy in the form of hot air. Hot air can be used for drying applications. A single pass PVT with rectangle tunnel absorber has been developed. The rectangle tunnel acted as an absorber and was located at the back side of a standard photovoltaic panel. The dimension of the photovoltaic panel was 120×53 cm. The size of the rectangle tunnel was 27 units of tunnel bar with the size of 1.2×2.5×120 cm (width×tall×length and 12 units with 1.2×2.5×105.3 cm (width×tall×length. The rectangle tunnel was connected in parallel. The PVT collector has been tested using a solar simulator. Results: Electrical efficiency increased when the solar cell was cool by air flow. Solar photovoltaic thermal collector with rectangle tunnel absorber has better electrical and thermal efficiency compared to solar collector without rectangle tunnel absorber. Photovoltaic, thermal and combined photovoltaic thermal efficiency of 10.02, 54.70 and 64.72% at solar irradiance of 817.4 W m-2, mass flow rate of 0.0287 kg sec-1 at ambiant temperature of 25°C respectively has been obtained. Conclusion: The hybrid photovoltaic and thermal with rectangle tunnel as heat absorber shows higher performance compared to conventional PV/T system.

  5. Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China

    Xiaopeng Guo

    2014-12-01

    Full Text Available Spurred by the increasingly serious air pollution problem, the Chinese government has launched a series of policies to put forward specific measures of power structure adjustment and the control objectives of air pollution and coal consumption. Other policies pointed out that the coal resources regional blockades will be broken by improving transportation networks and constructing new logistics nodes. Thermal power takes the largest part of China’s total installed power generation capacity, so these policies will undoubtedly impact thermal coal supply chain member enterprises. Based on the actual situation in China, this paper figures out how the member enterprises adjust their business decisions to satisfy the requirements of air pollution prevention and control policies by establishing system dynamic models of policy impact transfer. These dynamic analyses can help coal enterprises and thermal power enterprises do strategic environmental assessments and find directions of sustainable development. Furthermore, the policy simulated results of this paper provide the Chinese government with suggestions for policy-making to make sure that the energy conservation and emission reduction policies and sustainable energy policies can work more efficiently.

  6. Thermal properties in phase change wallboard room based on air conditioning cold storage

    陈其针; 刘鑫; 牛润萍; 王琳

    2009-01-01

    By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.

  7. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  8. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  9. Calculation of transport coefficients of air-water vapor mixtures thermal plasmas used in circuit breakers

    KOHIO Niéssan

    2014-12-01

    Full Text Available In this paper we calculate the transport coefficients of plasmas formed by air and water vapor mixtures. The calculation, which assume local thermodynamic equilibrium (LTE are performed in the temperature range from 500 to 12000 K. We use the Gibbs free energy minimization method to determine the equilibrium composition of the plasmas, which is necessary to calculate the transport coefficients. We use the Chapman-Enskog method to calculate the transport coefficients. The results are presented and discussed according to the rate of water vapor. The results of the total thermal conductivity and electrical conductivity show in particular that the increasing of the rate of water vapor in air can be interesting for power cut. This could be improve the performance of plasma during current breaking in air contaminate by the water vapor.

  10. Preliminary results of thermal igniter experiments in H2-air-steam environments

    Thermal igniters (glow plugs), proposed by the Tennessee Valley Authority for intentional ignition of hydrogen in nuclear reactor containment, have been tested for functionability in mixtures of air, hydrogen, and steam. Test environments included 6% to 16% hydrogen concentrations in air, and 8%, 10%, and 12% hydrogen in mixtures with 30% and 40% steam fractions. All were conducted in a 10.6 ft3 insulated pressure vessel. For all of these tests the glow plug successfully initiated combustion. Dry air/hydrogen tests exhibited a distinct tendency for complete combustion at hydrogen concentrations between 8% and 9%. Steam suppressed both peak pressures and completeness of combustion. No combustion could be initiated at or above a 50% steam fraction. Circulation of the mixture with a fan increased the completeness of combustion. The glow plug showed no evidence of performance degradation throughout the program

  11. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  12. Impact of summer office set air-conditioning temperature on energy consumption and thermal comfort

    刘红; 马小磊; 高亚峰

    2009-01-01

    To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.

  13. Experimental evidence of the thermal effect of lubricating oil sprayed in sliding-vane air compressors

    Gianluca Valenti

    2014-11-01

    Full Text Available A way to increase the efficiency of positive-displacement air compressor is spraying the lube oil to exploit it not only as lubricating and sealing agent but also as thermal ballast. This work seeks the experimental evidence in sliding-vane compressors by measuring the air standard volume flow rate and the electrical power input of three diverse configurations. The first configuration, taken as the reference, employs a conventional injection system comprising calibrated straight orifices. The other two, referred to as advanced, adopt smaller orifices and pressure-swirl full-cone nozzles designed for the purpose; the third configuration utilizes a pump to boost the oil pressure. The laser imagining technique shows that the nozzles generate sprays that break-up within a short distance into spherical droplets, ligaments, ramifications and undefined structures. Tests on the packaged compressors reveal that the advanced configurations provide almost the same air flow rate while utilizing half of the oil because the sprays generate a good sealing. Moreover, the sprayed oil is acting as a thermal ballast because the electrical input is reduced by 3.5% and 3.0%, respectively, if the pump is present or not , while the specific energy requirement, accounting for the slightly reduced air flow, by 2.4% and 2.9%, respectively.

  14. Experimental Study Abour How the Thermal Plume Affects the Air Quality a Person Breathes

    Olmedo, Inés; Nielsen, Peter V.; Ruiz de Adana, Manuel;

    2011-01-01

    .10 m (length), 3.2 m (width), 2.7 m (height). The incoming air is distributed through a wall-mounted displacement diffuser. A breathing thermal manikin exhaling through the mouth and inhaling through the nose was used. A tracer gas, N2O, was used to simulate the gaseous substances, which might be......The Personal Micro Environment (PME) depends directly on the heat transfer in the surrounding environment. For the displacement ventilation systems the convective transport mechanism, which is found in the thermal plume around a person, influences the human exposure to pollutants. The aim of this...... research is to increase the knowledge of how the thermal plume generated by a person affects the PME and therefore the concentration of contaminants in the inhalation area. An experimental study in a displacement ventilation room was carried out. Experiments were developed in a full scale test chamber 4...

  15. The effect of air temperature and human thermal indices on mortality in Athens, Greece

    Nastos, Panagiotis T.; Matzarakis, Andreas

    2012-05-01

    This paper investigates whether there is any association between the daily mortality for the wider region of Athens, Greece and the thermal conditions, for the 10-year period 1992-2001. The daily mortality datasets were acquired from the Hellenic Statistical Service and the daily meteorological datasets, concerning daily maximum and minimum air temperature, from the Hellinikon/Athens meteorological station, established at the headquarters of the Greek Meteorological Service. Besides, the daily values of the thermal indices Physiologically Equivalent Temperature (PET) and Universal Thermal Climate Index (UTCI) were evaluated in order to interpret the grade of physiological stress. The first step was the application of Pearson's χ 2 test to the compiled contingency tables, resulting in that the probability of independence is zero ( p = 0.000); namely, mortality is in close relation to the air temperature and PET/UTCI. Furthermore, the findings extracted by the generalized linear models showed that, statistically significant relationships ( p PET, UTCI and mortality exist on the same day. More concretely, on one hand during the cold period (October-March), a 10°C decrease in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 13%, 15%, 2%, 7% and 6% of the probability having a death, respectively. On the other hand, during the warm period (April-September), a 10°C increase in daily maximum air temperature, minimum air temperature, temperature range, PET and UTCI is related with an increase 3%, 1%, 10%, 3% and 5% of the probability having a death, respectively. Taking into consideration the time lag effect of the examined parameters on mortality, it was found that significant effects of 3-day lag during the cold period appears against 1-day lag during the warm period. In spite of the general aspect that cold conditions seem to be favourable factors for daily mortality, the air temperature and PET

  16. INVENTORY ABSTRACTION

    G. Ragan

    2001-12-19

    The purpose of the inventory abstraction, which has been prepared in accordance with a technical work plan (CRWMS M&O 2000e for ICN 02 of the present analysis, and BSC 2001e for ICN 03 of the present analysis), is to: (1) Interpret the results of a series of relative dose calculations (CRWMS M&O 2000c, 2000f). (2) Recommend, including a basis thereof, a set of radionuclides that should be modeled in the Total System Performance Assessment in Support of the Site Recommendation (TSPA-SR) and the Total System Performance Assessment in Support of the Final Environmental Impact Statement (TSPA-FEIS). (3) Provide initial radionuclide inventories for the TSPA-SR and TSPA-FEIS models. (4) Answer the U.S. Nuclear Regulatory Commission (NRC)'s Issue Resolution Status Report ''Key Technical Issue: Container Life and Source Term'' (CLST IRSR) key technical issue (KTI): ''The rate at which radionuclides in SNF [spent nuclear fuel] are released from the EBS [engineered barrier system] through the oxidation and dissolution of spent fuel'' (NRC 1999, Subissue 3). The scope of the radionuclide screening analysis encompasses the period from 100 years to 10,000 years after the potential repository at Yucca Mountain is sealed for scenarios involving the breach of a waste package and subsequent degradation of the waste form as required for the TSPA-SR calculations. By extending the time period considered to one million years after repository closure, recommendations are made for the TSPA-FEIS. The waste forms included in the inventory abstraction are Commercial Spent Nuclear Fuel (CSNF), DOE Spent Nuclear Fuel (DSNF), High-Level Waste (HLW), naval Spent Nuclear Fuel (SNF), and U.S. Department of Energy (DOE) plutonium waste. The intended use of this analysis is in TSPA-SR and TSPA-FEIS. Based on the recommendations made here, models for release, transport, and possibly exposure will be developed for the isotopes that would be the highest

  17. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  18. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  19. Performance analysis of a hybrid photovoltaic thermal double pass air collector using ANN

    This paper presents the use of artificial neural network for performance analysis of a semi transparent hybrid photovoltaic thermal double pass air collector for four weather conditions (a, b, c and d type) of New Delhi. The MATLAB 7.1 neural networks toolbox has been used for defining and training of ANN for calculations of thermal energy, electrical energy, overall thermal energy and overall exergy. The ANN model uses ambient air temperature, global solar radiation, diffuse radiation and number of clear days as input parameters for four weather conditions. The transfer function, neural network configuration and learning parameters have been selected based on highest convergence during training and testing of network. About 2000 sets of data from four weather stations (Bangalore, Mumbai, Srinagar, and Jodhpur) have been given as input for training and data of the fifth weather station (New Delhi) has been used for testing purpose. It has been observed that the best transfer function for a given configuration is lag's. The feed forward back-propagation algorithm has been used in this analysis. Further the results of ANN model have been compared with analytical values on the basis of root mean square error. (authors)

  20. Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre

    Kavgic, M.; Mumovic, D.; Young, A. [The Bartlett School of Graduate Studies, University College London, Gower Street, London, WC1E 6BT, England (United Kingdom); Stevanovic, Z. [Institute of Nuclear Sciences - Vinca, P.O. Box 522, 11001 Belgrade (RS)

    2008-07-01

    Theatres are the most complex of all auditorium structures environmentally. They usually have high heat loads, which are of a transient nature as audiences come and go, and from lighting which changes from scene to scene, and they generally have full or nearly full occupancy. Theatres also need to perform well acoustically, both for the spoken word and for music, and as sound amplification is less used than in other auditoria, background noise control is critically important. All these factors place constraints on the ventilation design, and if this is poor, it can lead to the deterioration of indoor air quality and thermal comfort. To analyse the level of indoor air quality and thermal comfort in a typical medium-sized mechanically ventilated theatre, and to identify where improvements could typically be made, a comprehensive post-occupancy evaluation study was carried out on a theatre in Belgrade. The evaluation, based on the results of monitoring (temperature, relative humidity, CO{sub 2}, air speed and heat flux) and modelling (CFD), as well as the assessment of comfort and health as perceived by occupants, has shown that for most of the monitored period the environmental parameters were within the standard limits of thermal comfort and IAQ. However, two important issues were identified, which should be borne in mind by theatre designers in the future. First, the calculated ventilation rates showed that the theatre was over-ventilated, which will have serious consequences for its energy consumption, and secondly, the displacement ventilation arrangement employed led to higher than expected complaints of cold discomfort, probably due to cold draughts around the occupants' feet. (author)

  1. Study on the Thermal Effects and Air Quality Improvement of Green Roof

    Heng Luo

    2015-03-01

    Full Text Available Heat island phenomenon and air quality deterioration issues are two major problems that have occurred during the process of urbanization, especially in developing countries. A number of measures have been proposed, among which roof greening is considered as a promising one due to its outstanding performance in thermal effects as well as air quality improvement. A self-maintenance system, termed the Green Roof Manager (GRM, which comprises the irrigation and shadowing subsystems, is proposed in this paper, focusing on the automatic and reliable operation of the roof greening system rather than exploiting new plant species. A three month long experiment was set up, resulting in the observation that a 14.7% of, on average, temperature reduction can be achieved in summer after deploying the GRM system. During a 24-hour monitoring experiment the PM2.5 concentrations above the GRM was reduced by up to 14.1% over the bare roof.

  2. Control of ammonia air pollution through the management of thermal processes in cowsheds.

    Bleizgys, Rolandas; Bagdoniene, Indre

    2016-10-15

    Experimental researches performed in manufacturing cowsheds have demonstrated a variation of ammonia concentration and the factors influencing this most during different periods of the year. The process of ammonia evaporation from manure is influenced by many varying and interrelated factors with temperature and the intensity of air ventilation being the most critical ones. The influence of these factors on the process of ammonia evaporation was established by laboratory researches. An increase in temperature results in an exponential increase in ammonia emission, whereas the dependence of the emission on the air velocity is best expressed by a second degree polynomial. The results obtained may be used as a forecast of the ammonia emissions from cowsheds during different periods of the year. Intensive ventilation is required for the removal of excess moisture from the housing, and this limits the possibilities to reduce ammonia emissions by controlling the intensity of ventilation. A reduction in the amount of ventilation is only recommended if the air quality indices meet the requirements applied to the housing. Better opportunities to reduce ammonia emissions are provided through management of the thermal processes in a cowshed. If the average annual air temperature (11.3°C) is reduced by one degree in a cubicle housing cowshed, the ammonia emissions will decrease by 10%. PMID:27350091

  3. THERMAL TREATMENT WITH HOT AIR IN THE CONTROL OF FRUIT FLY IN SAPOTA

    João Vilian de Moraes Lima Marinus

    2008-08-01

    Full Text Available One of the main postharvest problems of the sapota (Achras sapota L. is caused by the fruit fly (Ceratitis capitata, affecting its quality and commercialization. With this experiment, the objective was to evaluate the effect of hot air as thermal treatment in the control of immature phases of Ceratitis capitata and the fruit quality. The research was carried out at Entomology Laboratory – Centro de Ciências Agrárias, UFPB, Areia-PB. It was made the damaging of fruits with eggs inoculation of Ceratitis capitata and after three days the fruits were treated in hot air at temperatures of 46±1°C and 50±1°C, during 30, 45, 60, 75 and 90 minutes. Hot air was injected in the chamber using an equipment of the Skill mark. It was used a randomized design, in factorial scheme of 2x5+1 (two temperatures, five times of exhibition and one control, with four replications. The treatment with hot air was efficient to control the immature phases of C. capitata during 75 and 90 minutes of exposure and didn't affect the physical and chemical qualities of the sapota fruits.

  4. Containment vessel, its auxiliary system and plant air conditioning system of advanced thermal reactor Fugen

    The functional requirement for, the design and the construction of, and the functional test on the containment vessel, its auxiliary system, the plant air conditioning and ventilation system of the advanced thermal reactor, Fugen, are described in detail. The main specifications of the containment vessel are as follows: The type enclosed cylinder, the maximum operating pressure 1.35 kg/cm2g, the maximum operating temperature 100 deg C, the leak rate 0.4%/day, the inner diameter 36 m. The height 64 m, the volume 40,900 m3, and the material JIS G3118, SGV-49. The containment vessel is provided with an hatch of 5 m diameter for carrying equipments in two air locks, many high and low voltage cable penetrations, pipe penetrations, a transfer shoot and isolation values. The functions and the specifications of the containment vessel and its auxiliary equipments are explained. The relating auxiliary systems are composed of the containment vessel spray system, the pool facility for steam blow-down, the recirculation system for the air in the vessel, the annulus evacuation system and its pressure control devices, the pressure measuring instruments and pressure relief valves and the temperature measuring devices for the containment vessel, and the object, function, layout and installation of these systems are explained. Concerning the air conditioning system, each main building has the special subsystem, and they are introduced. The progress stage of construction works and the procedure and results of the functional test at the site are described. (Nakai, Y.)

  5. Thermal partition of two asymmetric discrete heat sources by cold air curtain

    DENG Quan-wei; DENG Qi-hong

    2005-01-01

    A partition solution implemented by a cold air curtain for two asymmetric discrete heat sources in a twodimensional rectangular enclosure was numerically studied. Main attentions were focused on the effects of Reynolds number, Grashof number, separation distance between heat sources, and buoyancy ratio. It is found that the airflow and heat transfer are not only determined by governing parameters, but also affected by boundary conditions. It is also found that nearly symmetry of flow structure corresponds to nearly thermal partition, and the symmetry can be enhanced when Reynolds number, separation distance and buoyancy ratio increase. In addition, it is observed that there is a minimum Reynolds number for obtaining nearly thermal partition, which increases when Grashof number increases.

  6. Thermal Decomposition and Dehydration Kinetics of Tetra(piperidinium)Octamolybdate Tetrahydrate in Air

    KU Zong-Jun; ZHANG Zhong-Hai; ZHANG Zhi-Guo; WANG Li-Na; ZHANG Ke-Li

    2008-01-01

    Thermal decomposition of tetra(piperidinium)octamolybdate tetrahydrate,[CsH10NH2]4[Mo8O26]·4H2O,was investigated in air by means of TG-DTG/DTA.DSC,TG-IR and SEM.TG-DTG/DTA curves showed that the decomposition proceeded through three well-defined steps with DTA peaks closely corresponding to mass loss obtained.Kinetics analysis of its dehydration step Was performed under non-isothermal conditions.The dehydrationactivation energy was calculated through Friedman and Flynn-Wall-Ozawa(FWO)methods,and the best-fit dehydration kinetic model function was estimated through the multiple linear regression method.The activation energy for the dehydration step of[C5H10NH2]4[MosO26]·4H2O was 139.7 kJ/mol.The solid particles became smaller accompanied by the thermal decomposition of the title compound.

  7. An experimental investigation of performance of a double pass solar air heater with thermal storage medium

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The performance of a double pass solar air heater was experimentally investigated using four different configurations. First configuration contained only absorber plate whereas copper tubes filled with thermal storage medium (paraffin wax were added on the absorber plate in the second configuration. Aluminum and steel rods as thermal enhancer were inserted in the middle of paraffin wax of each tube for configurations three and four respectively. Second configuration provided useful heat for about 1.5 hours after the sunset compared to first configuration. Configurations three and four provided useful heat for about 2 hours after the sunset. The maximum efficiency of about 96% was achieved using configuration three (i.e. using Aluminum rods in the middle of copper tubes filled with paraffin wax.

  8. Influence of Urban Microclimate on Air-Conditioning Energy Needs and Indoor Thermal Comfort in Houses

    Feng-Chi Liao

    2015-01-01

    Full Text Available A long-term climate measurement was implemented in the third largest city of Taiwan, for the check of accuracy of morphing approach on generating the hourly data of urban local climate. Based on observed and morphed meteorological data, building energy simulation software EnergyPlus was used to simulate the cooling energy consumption of an air-conditioned typical flat and the thermal comfort level of a naturally ventilated typical flat. The simulated results were used to quantitatively discuss the effect of urban microclimate on the energy consumption as well as thermal comfort of residential buildings. The findings of this study can serve as a reference for city planning and energy management divisions to study urban sustainability strategies in the future.

  9. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    Yakut, Kenan; Yeşildal, Faruk; Karabey, Altuǧ; Yakut, Rıdvan

    2016-04-01

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L18(21*36) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η-Re graphics.

  10. RESULTS OF INVESTIGATIONS ON THERMAL CHARACTERISTICS OF AIR HEATER BUNDLE MADE OF BIMETALLIC FINNED TUBES

    V. B. Kuntysh

    2014-01-01

    Full Text Available The paper presents a scheme and description of a new aerodynamic stand that has a 300x300 mm cross-section operating channel. The stand is used for studying thermal and aerodynamic characteristics of bundles made of finned tubes of actual dimensions in crossflow. The paper provides results of an exploratory test pertaining to heat transfer and resistance of four row staggered bundle made of tubes with aluminium spiral fins having outside diameter of 26 mm which are used in the systems of ventilation, air-conditioning and heating of buildings and also in transport heat exchangers.

  11. Thermal energy storages analysis for high temperature in air solar systems

    In this paper a high temperature thermal storage in a honeycomb solid matrix is numerically investigated and a parametric analysis is accomplished. In the formulation of the model it is assumed that the system geometry is cylindrical, the fluid and the solid thermo physical properties are temperature independent and radiative heat transfer is taken into account whereas the effect of gravity is neglected. Air is employed as working fluid and the solid material is cordierite. The evaluation of the fluid dynamic and thermal behaviors is accomplished assuming the honeycomb as a porous medium. The Brinkman–Forchheimer–extended Darcy model is used in the governing equations and the local thermal non equilibrium is assumed. The commercial CFD Fluent code is used to solve the governing equations in transient regime. Numerical simulations are carried out with storage medium for different mass flow rates of the working fluid and different porosity values. Results in terms of temperature profiles, temperatures fields and stored thermal energy as function of time are presented. The effects of storage medium, different porosity values and mass flow rate on stored thermal energy and storage time are shown. - Highlights: • HTTES in a honeycomb solid matrix is numerically investigated. • The numerical analysis is carried out assuming the honeycomb as a porous medium. • The Brinkman–Forchheimer–extended Darcy model is used in the governing equations. • Results are carried out for different mass flow rates and porosity values. • The main effect is due to the porosity which set the thermal energy storage value

  12. Air, aqueous and thermal stabilities of Ce3+ ions in cerium oxide nanoparticle layers with substrates

    Naganuma, Tamaki

    2014-01-01

    Abundant oxygen vacancies coexisting with Ce3+ ions in fluorite cerium oxide nanoparticles (CNPs) have the potential to enhance catalytic ability, but the ratio of unstable Ce3+ ions in CNPs is typically low. Our recent work, however, demonstrated that the abundant Ce3+ ions created in cerium oxide nanoparticle layers (CNPLs) by Ar ion irradiation were stable in air at room temperature. Ce valence states in CNPs correlate with the catalytic ability that involves redox reactions between Ce3+ and Ce4+ ions in given application environments (e.g. high temperature in carbon monoxide gas conversion and immersion conditions in biomedical applications). To better understand the mechanism by which Ce3+ ions achieve stability in CNPLs, we examined (i) extra-long air-stability, (ii) thermal stability up to 500 °C, and (iii) aqueous stability of Ce 3+ ions in water, buffer solution and cell culture medium. It is noteworthy that air-stability of Ce3+ ions in CNPLs persisted for more than 1 year. Thermal stability results showed that oxidation of Ce 3+ to Ce4+ occurred at 350 °C in air. Highly concentrated Ce3+ ions in ultra-thin CNPLs slowly oxidized in water within 1 day, but stability was improved in the cell culture medium. Ce 3+ stability of CNPLs immersed in the medium was associated with phosphorus adsorption on the Ce3+ sites. This study also illuminates the potential interaction mechanisms of stable Ce3+ ions in CNPLs. These findings could be utilized to understand catalytic mechanisms of CNPs with abundant oxygen vacancies in their application environments. © The Royal Society of Chemistry 2014.

  13. Experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solar absorber

    Hejcik J.; Pech O.; Charvat P.

    2013-01-01

    The paper deals with experimental investigations of the performance of a solar air collector with latent heat thermal storage integrated with the solarabsorber. The main purpose of heat storage in solar thermal systems is to store heat when the supply of solar heat exceeds demand and release it when otherwise. A number of heat storage materials can be used for this purpose; the phase change materials among them. Short-term latent heat thermal storage integrated with the solar absorber can sta...

  14. Evaluation of air temperature distribution using thermal image under conditions of nocturnal radiative cooling in winter season over Shikoku area

    Using the thermal images offered by the infra-red thermometer and the LANDSAT, the air temperature distribution over mountainous regions were estimated under conditions of nocturnal radiative cooling in the winter season. The thermal image analyses by using an infra-red thermometer and the micrometeological observation were carried out around Zentsuji Kagawa prefecture. At the same time, the thermal image analyses were carried out by using the LANDSAT data. The LANDSAT data were taken on Dec. 7, 1984 and Dec. 5, 1989. The scenes covered the west part of Shikoku, southwest of Japan.The results were summarized as follows:Values of the surface temperature of trees, which were measured by an infra-red thermometer, were almost equal to the air temperature. On the other hand, DN values detected by LANDSAT over forest area were closely related with air temperature observed by AMeDAS. Therefore, it is possible to evaluate instantaneously a spatial distribution of the nocturnal air temperature from thermal image.The LANDSAT detect a surface temperature over Shikoku area only at 21:30. When radiative cooling was dominant, the thermal belt and the cold air lake were already formed on the mountain slopes at 21:30. Therfore, it is possible to estimate the characteristic of nocturnal temperature distribution by using LANDSAT data.It became clear that the temperature distribution estimated by thermal images offered by the infra-red thermometer and the LANDSAT was useful for the evaluation of rational land use for winter crops

  15. Impact of facially applied air movement on the development of the thermal plume above a sitting occupant

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.; Spletsteser, Joanna

    2011-01-01

    convection boundary layer enveloping the body and caused scattering in the measured values of air speed and temperature excess in the plume. In comparison with the case without airflow, the integral characteristics including volume flux, momentum flux, buoyancy force density and enthalpy flux were greater......In the future the implementation of low power office equipment in practice will make thermal plumes generated by occupants one of the dominant flows affecting the air distribution in spaces. Advanced air distribution methods, such as personalized ventilation, are expected to become widely...... implemented in practice. In this study the impact of locally applied airflow on the thermal plume generated by a sitting human body was investigated. The experiment was performed in a climate chamber with upward piston flow. A thermal manikin was sitting on a computer chair behind a table. The air speed and...

  16. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres

    In the last years the total energy demand of data centres has experienced a dramatic increase which is expected to continue. This is why data centres industry and researchers are working on implementing energy efficiency measures and integrating renewable energy to overcome energy dependence and to reduce operational costs and CO2 emissions. The cooling system of these unique infrastructures can account for 40% of the total energy consumption. To reduce the energy consumption, free cooling strategies are used more and more, but so far there has been little research about the potential of thermal energy storage (TES) solutions to match energy demand and energy availability. Hence, this work intends to provide an overview of the potential of the integration of direct air free cooling strategy and TES systems into data centres located at different European locations. For each location, the benefit of using direct air free cooling is evaluated energetically and economically for a data centre of 1250 kW. The use of direct air free cooling is shown to be feasible. This does not apply the TES systems by itself. But when using TES in combination with an off-peak electricity tariff the operational cooling cost can be drastically reduced. - Highlights: • The total annual hours for direct air free cooling in data centres are calculated. • The potential of TES integration in data centres is evaluated. • The implementation of TES to store the ambient air cold is not recommended. • TES is feasible if combined with redundant chillers and off-peak electricity price. • The cooling electricity cost is being reduced up to 51%, depending on the location

  17. Thermal decomposition of sugarcane straw, kinetics and heat of reaction in synthetic air.

    Rueda-Ordóñez, Yesid Javier; Tannous, Katia

    2016-07-01

    The aim of this work was to analyze the thermal decomposition, kinetics and heat of reaction of sugarcane straw in synthetic air by thermogravimetry (TG) and differential scanning calorimetry (DSC). The TG and DSC experiments were carried out using heating rates of 2.5°C/min, 5°C/min, and 10°C/min, and particle diameter of 0.250mm. In the study of the smoldering reaction were identified three consecutive stages, drying, oxidative pyrolysis, and combustion. Thus, the kinetic pathway was composed by six independent parallel reactions, three for each stage after drying, in which the activation energies were 176, 313, 150, 80, 150, and 100kJ/mol. The heat of reaction in synthetic air was completely exothermic releasing 8MJ/kg. The modeled curves of thermal decomposition of sugarcane straw presented good agreement with experimental data. Then, the kinetic parameters obtained could be used to analyze different processes involving smoldering. PMID:27019126

  18. Thermal effect of lubricating oil in positive-displacement air compressors

    The isentropic efficiency of positive-displacement compressors may be improved in order to follow an increasing demand for energy savings. This work analyzes the thermal effect of the lubricating oil presence in the air during compression with the scope of exploiting it as a thermal ballast to mitigate both the gas temperature rise and its compression work. The bibliographic review shows that other authors suggested that oil can have positive effects if properly injected. Here an energy balance analysis is executed with the scope of deriving relations for the gas–liquid compression in analogy with those typical for the gas-only compression and of confirming that ideally the liquid presence may have beneficial effects, making the gas–liquid compression even better than 1- and 2-time intercooled gas compressions. Given these positive results, a heat transfer analysis is conducted to model the thermal interaction between gas and oil droplets within a mid-size rotary vane air compressor. A droplet diameter of the order of 100 μm leads to large reductions of both temperature increase and compression work: air can exit the discharge port at a temperature as low as 60 °C and compression work can be lowered by 23–28% with respect to conventional compressors. Finally, a test rig is constructed and operated to investigate a large-flow and large-angle oil nozzle taken from the market showing that, at the operating conditions of a compressor, oil breaks up into small droplets and undefined structures with large exchange surfaces. -- Highlights: ► Exploitation of thermal effect of oil in gas compressors is assessed numerically. ► Oil in 100 μm-diameter droplets mitigates effectively the gas temperature rise. ► Discharge temperature and compression work result to be much smaller than typical. ► An experimental setup is used to investigate oil atomization via commercial nozzles. ► A tested nozzle creates fine oil droplets and structures at conditions of

  19. BALWOIS: Abstracts

    anthropogenic pressures and international shared water. Here are the 320 abstracts proposed by authors and accepted by the Scientific Committee. More than 200 papers are presented during the Conference on 8 topics related to Hydrology, Climatology and Hydro biology: - Climate and Environment; - Hydrological regimes and water balances; - Droughts and Floods; -Integrated Water Resources Management; -Water bodies Protection and Eco hydrology; -Lakes; -Information Systems for decision support; -Hydrological modelling. Papers relevant to INIS are indexed separately

  20. Premixed CH4/O2-enriched air combustion: Identification of thermal, chemical and aerodynamic effects

    Most, J.-M.; Dahikar, S.; Pal, S.; Claverie, A.; Denis, D.; Pillier, L.; de Persis, S.

    2012-11-01

    This work contributes to the evaluation of a new innovative process focused on the reduction of the cost of a post-combustion capture of CO2 in a Carbon Capture and Storage system (CCS). The process based on the separation of dried fumes composed mainly by CO2 and N2 by using membranes, which should lead to a lower energetic separation cost than amines. But the membranes become efficient if the upstream CO2 concentration is higher than 30% at their entrance that requires enriching the oxidizer flow by O2. To maintain the exhaust temperature compatible with materials thermal resistance, the reactants are diluted by a recirculation of a part of the flue gases (like N2/O2/CO2). But, the chemical kinetic, the energetic efficiencies, the radiation transfer, the transport and thermal properties of the flow can be affected by CO2. The objective of this work will be to identify the behaviour of the combustion of premixed CH4/O2-enriched air, both diluted in N2 and CO2 and to determine the combustion parameters. This allows to recover the CH4/air conditions in terms of CO2 concentration in reactants, O2 excess, dilution rate, temperature of the reactants, etc. Experiments are performed on the laminar premixed flame using counterflow burner. To characterize the combustion behaviour, the flammability limits are determined and flame thickness and position are measured from PLIF-OH diagnostic. Further, CHEMKIN simulations are performed to check the validity of the GRI3.0 chemical kinetic mechanism for premixed CH4/air synthetic combustion and identify the leading phenomena.

  1. Premixed CH4/O2-enriched air combustion: Identification of thermal, chemical and aerodynamic effects

    This work contributes to the evaluation of a new innovative process focused on the reduction of the cost of a post-combustion capture of CO2 in a Carbon Capture and Storage system (CCS). The process based on the separation of dried fumes composed mainly by CO2 and N2 by using membranes, which should lead to a lower energetic separation cost than amines. But the membranes become efficient if the upstream CO2 concentration is higher than 30% at their entrance that requires enriching the oxidizer flow by O2. To maintain the exhaust temperature compatible with materials thermal resistance, the reactants are diluted by a recirculation of a part of the flue gases (like N2/O2/CO2). But, the chemical kinetic, the energetic efficiencies, the radiation transfer, the transport and thermal properties of the flow can be affected by CO2. The objective of this work will be to identify the behaviour of the combustion of premixed CH4/O2-enriched air, both diluted in N2 and CO2 and to determine the combustion parameters. This allows to recover the CH4/air conditions in terms of CO2 concentration in reactants, O2 excess, dilution rate, temperature of the reactants, etc. Experiments are performed on the laminar premixed flame using counterflow burner. To characterize the combustion behaviour, the flammability limits are determined and flame thickness and position are measured from PLIF-OH diagnostic. Further, CHEMKIN simulations are performed to check the validity of the GRI3.0 chemical kinetic mechanism for premixed CH4/air synthetic combustion and identify the leading phenomena.

  2. Conceptual design and engineering studies of adiabatic compressed air energy storage (CAES) with thermal energy storage

    Hobson, M. J.

    1981-11-01

    The objective of this study was to perform a conceptual engineering design and evaluation study and to develop a design for an adiabatic CAES system using water-compensated hard rock caverns for compressed air storage. The conceptual plant design was to feature underground containment for thermal energy storage and water-compensated hard rock caverns for high pressure air storage. Other design constraints included the selection of turbomachinery designs that would require little development and would therefore be available for near-term plant construction and demonstration. The design was to be based upon the DOE/EPRI/PEPCO-funded 231 MW/unit conventional CAES plant design prepared for a site in Maryland. This report summarizes the project, its findings, and the recommendations of the study team; presents the development and optimization of the plant heat cycle and the selection and thermal design of the thermal energy storage system; discusses the selection of turbomachinery and estimated plant performance and operational capability; describes the control system concept; and presents the conceptual design of the adiabatic CAES plant, the cost estimates and economic evaluation, and an assessment of technical and economic feasibility. Particular areas in the plant design requiring further development or investigation are discussed. It is concluded that the adiabatic concept appears to be the most attractive candidate for utility application in the near future. It is operationally viable, economically attractive compared with competing concerns, and will require relatively little development before the construction of a plant can be undertaken. It is estimated that a utility could start the design of a demonstration plant in 2 to 3 years if research regarding TES system design is undertaken in a timely manner. (LCL)

  3. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  4. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  5. Air-Water Gas Exchange in Wetland Water Columns Due To Wind and Thermal Convection

    Poindexter, C.; Variano, E. A.

    2011-12-01

    The goal of this work is to provide a parameterization of the air-water gas transfer rate in wetlands, and do so in terms of easily measured environmental variables. This parameterization is intended to support biogeochemical modeling in wetlands by providing an interfacial flux of key importance. Our approach uses laboratory experiments describe the oxygen transfer across an air-water interface in a model wetland. The oxygen transfer is sensitive to the externally imposed wind, vegetation characteristics, and vertical thermal convection. We vary these systematically, determining the gas transfer (or "piston") velocity that describes interfacial gas flux. We measure velocity vector fields near the air-water interface using particle image velocimetry, and use these measurements to help explain the mechanisms behind the measured trends in oxygen transfer. The explanatory power of these measurements includes the relationship between plant geometry and surface divergence. We explore the potential impact of our results on wetland modeling and management, for issues such as carbon sequestration and methane emission.

  6. Identification of emitted air pollutants from natural rubber processing via thermal desorbed-gas chromatography

    Natural rubber processing has been identified as one of the major sources of organic pollution in Malaysia. Emissions of malodorous vapors which mainly consist of volatile organic compounds (VOC) resulted from the breakdown of non-rubber constituent during drying of block rubbers has contributed to air pollution. The malodour pollution is currently being controlled by treatment using water scrubber systems as adopted by most rubber processing factories. Performance of water scrubbers is monitored by analyzing vapors before and after treatment using a dynamic olfactometer in a form of odor concentration unit. Most water scrubbers installed are able achieve 75-80 % removal of malodour. However, previous research carried out in identifying and quantifying air pollutants using gas chromatographic technique with calibration against limited volatile fatty acids (VFAs) revealed that 90 % removal of VFAs which is not in agreement with the olfactometric results. This paper describes a new technique to characterize air pollutants using a combination of thermal desorbed and gas chromatography. This set up broadens detection of VFAs and also mercaptans. Present results showed more VFAs and some mercaptans were being detected in the emission as compared to the previous technique using a regular gas chromatography. It was shown that the malodour was contributed by more VOC as reflected from the olfactometric results. The new characterization technique provides new technical information to develop more efficient treatment systems to treat malodour pollution from the rubber processing industry. (author)

  7. Total human exposure and indoor air quality: An automated bibliography (BLIS) with summary abstracts. Volume 2. Final report, January 1987-December 1989

    The Bibliographical Literature Information System (BLIS) is a computer database that provides a comprehensive review of available literature on total human exposure to environmental pollution. Brief abstracts (often condensed versions of the original abstract) are included; if the original document had no abstract, one was prepared. Unpublished draft reports are listed, as well as final reports of the U.S. Government and other countries, reports by governmental research contractors, journal articles, and other publications on exposure models field data, and newly emerging research methodologies. Emphasis is placed on those field studies measuring all the concentrations to which people may be exposed, including indoors, outdoors, and in-transit

  8. Design of a MEMS piezoresistive differential pressure sensor with small thermal hysteresis for air data modules

    Song, Jin Woo; Lee, Jang-Sub; An, Jun-Eon; Park, Chan Gook

    2015-06-01

    The design, fabrication, and evaluation results of a MEMS piezoresistive differential pressure sensor fabricated by the dry etching process are described in this paper. The proposed sensor is designed to have optimal performances in mid-pressure range from 0 psi to 20 psi suitable for a precision air data module. The piezoresistors with a Wheatstone bridge structure are implanted where the thermal effects are minimized subject to sustainment of the sensitivity. The rectangular-shaped silicon diaphragm is adopted and its dimension is analyzed for improving pressure sensitivity and linearity. The bridge resistors are driven by constant current to compensate temperature effects on sensitivity. The designed differential pressure sensor is fabricated by using MEMS dry etching techniques, and the fabricated sensing element is attached and packaged in a Kovar package in consideration of leakage and temperature hysteresis. The implemented sensors are tested and evaluated as well. The evaluation results show the static RSS (root sum square) accuracy including nonlinearity, non-repeatability, and pressure hysteresis before temperature compensation is about 0.09%, and the total error band which includes the RSS accuracy, the thermal hysteresis, and other thermal effects is about 0.11%, which confirm the validity of the proposed design process.

  9. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  10. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  11. Effect of air ingress on the energy performance of coal fired thermal power plants

    Ingress of air in boilers leads to drops in energy efficiency. This paper presents the effects of air ingress in the combustion zone, post-combustion zone and air pre-heater (APH) on the energy efficiency and loading capacity of a coal fired thermal power plant operating on fuel with high ash (35-45%). The optimal O2 in the flue gas for a pulverized coal fired system is 3.5% (corresponding to 20% excess air). The operating values are in the range of 4.2-6.0% in membrane type boilers and up to 10% in refractory type boilers (after sustained periods of operation). The leakage rate of boilers (up to the entrance of the APH) is designed at 0.2% while the average operating values are 7.25% for membrane type enclosures and 33.61% for refractory enclosures. The leakage rate of the APH is designed at 5.0% while the operating values range from 13.66% to 20.13% for rotary and tubular APHs. When the O2 in the combustion zone varies from 3.5% to 8.0%, efficiency drops of 2.0% points are experienced in the boiler and turbine separately, and the gross overall efficiency drop is ∼3.0% points. The units do not experience any capacity drop up to an O2 in the flue gas of 6.0% before the APH. At an O2 in the flue gas (before APH) of 7.2%, a mild limitation on the unit capacity of around 2-3% is experienced. When O2 in the flue gas (before APH) reaches a level of 9.0%, 20% capacity drop of the unit is experienced due to which the plant load cannot be raised higher than 80%. Beyond the level of 9.0% (rare occurrence), the unit is quite difficult to operate and has to be taken off for overhaul

  12. Proposals to enhance thermal efficiency programs and air pollution control in south-central Chile

    Major cities in South-central Chile suffer high levels of particulate matter PM10 and PM2.5 due to combustion of solid fuels for heating. Exposure to these air pollutants is recognized as a major contribution to ill health in the region. Here we discuss new strategies to reduce air pollution. Regulations and subsidies focusing on improved combustion by providing drier wood fuel and better stoves have been in effect since 2007. However, air pollution due to combustion of wood fuel has been steadily rising, along with reports on health consequences. The paper analyzes a survey of 2025 households in the city of Valdivia, which found that wood fuel quality, stove renewal, and awareness of programs are strongly affected by income level, and that higher consumption of wood fuel is found in households already having better stoves and drier wood fuel. The analysis suggests that regulations intended to improve combustion are influenced by user's behavior and have limited potential for lowering pollution. We conclude that thermal refurbishment has a larger potential for improvement, not yet been implemented as an energy policy for the majority. Here we propose improvements and additions to current programs to enhance effectiveness and cover the whole social spectrum. - Highlights: • High levels of PM2.5 from wood combustion affect cities of south-central Chile. • Current programs on dry wood fuel and stoves renewal have not reduced air pollution. • Real operation of wood stoves strongly depends on user's behavior. • Buildings' energy efficiency has greater potential for reducing emissions. • Retrofit prevents degradation of native forest and improves indoor temperature

  13. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora;

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on thermal comfort and perceived air quality reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels...... comfort compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement...... and (4) two radiant panels with one panel equipped with small fans. A reference condition without cooling was tested as well. The response of the subjects to the exposed conditions was collected by computerized questionnaires. The cooling devices significantly (p<0,05) improved subjects’ thermal...

  14. Impact of kiln thermal energy demand and false air on cement kiln flue gas CO2 capture

    Arachchige, Udara S.P.R.; Kawan, Dinesh; Tokheim, Lars-Andre [Telemark University College, Porsgrunn (Norway); Melaaen, Morten C. [Telemark University College, Porsgrunn (Norway); (Tel-Tek, Porsgrunn (Norway)

    2013-07-01

    The present study is focused on the effect of the specific thermal energy demand and the false air factor on carbon capture applied to cement kiln exhaust gases. The carbon capture process model was developed and implemented in Aspen Plus. The model was developed for flue gases from a typical cement clinker manufacturing plant. The specific thermal energy demand as well as the false air factor of the kiln system were varied in order to determine the effect on CO2 capture plant performance, such as the solvent regeneration energy demand. In general, an increase in the mentioned kiln system factors increases the regeneration energy demand. The reboiler energy demand is calculated as 3270, 3428 and 3589 kJ/kg clinker for a specific thermal energy of 3000, 3400 and 3800 kJ/kg clinker, respectively. Setting the false air factor to 25, 50 or 70% gives a reboiler energy demand of 3428, 3476, 3568 kJ/kg clinker, respectively.

  15. Demonstration of the Performance of an Air-Type Photovoltaic Thermal (PVT System Coupled with a Heat-Recovery Ventilator

    Jin-Hee Kim

    2016-09-01

    Full Text Available A heat-recovery ventilator (HRV effectively conducts ventilation by recovering waste heat from indoors to outdoors during heating periods. However, dew condensation associated with the HRV system may arise due to the difference between the indoor temperature and the very low outdoor temperature in winter, and this can decrease the heat exchange efficiency. These problems can be solved by the pre-heating of the incoming air, but additional energy is required when pursuing such a strategy. On the other hand, an air-type photovoltaic thermal (PVT system produces electricity and thermal energy simultaneously using air as the heat transfer medium. Moreover, the heated air from the air-type PVT system can be connected to the HRV to pre-heat the supply air instead of taking in the cold outdoor air. Thus, the ventilation efficiency can be improved and the problems arising during the heating period can be resolved. Consequentially, the heating energy required in a building can be reduced, with additional electricity acquired as well. In this paper, the performance of an air-type PVT system coupled with an HRV is assessed. To do this, air-type PVT collectors operating at 1 kWp were installed in an experimental house and coupled to an HRV system. Thermal performance and heating energy required during the winter season were analyzed experimentally. Furthermore, the electrical performances of the air-type PVT system with and without ventilation at the back side of the PV during the summer season were analyzed.

  16. Thermal System Analysis and Optimization of Large-Scale Compressed Air Energy Storage (CAES

    Zhongguang Fu

    2015-08-01

    Full Text Available As an important solution to issues regarding peak load and renewable energy resources on grids, large-scale compressed air energy storage (CAES power generation technology has recently become a popular research topic in the area of large-scale industrial energy storage. At present, the combination of high-expansion ratio turbines with advanced gas turbine technology is an important breakthrough in energy storage technology. In this study, a new gas turbine power generation system is coupled with current CAES technology. Moreover, a thermodynamic cycle system is optimized by calculating for the parameters of a thermodynamic system. Results show that the thermal efficiency of the new system increases by at least 5% over that of the existing system.

  17. Modeling of Thermal Arcs in Molded Case Circuit Breakers in Air

    Breden, Doug; Mahadevan, Shankar; Raja, Laxminarayan

    2015-09-01

    A general-purpose thermal plasma simulation tool (VizArc) was utilized to model a circuit breaker in atmospheric pressure air. The molded case circuit breaker (MCCB) circuit breaker works by separating two metal contacts when the breaking current is exceeded generating an arc. The self-consistent Lorentz force generated by the current pushes the arc into an array of splitter plates which quench the arc and break the circuit. The arc channel is modeled by coupling the electromagnetic equations with flow governing equations to model a multi-species, single-temperature quasi neutral arc plasma. Conjugate heat transfer to the metal splitter plates and vapor ablation into the gas are included in the model. The opening action of the moving contact armature is simulated dynamically in the simulation. The set of all governing equations and their implementation in the model will be discussed, and then the simulations of the MCCB circuit breaker using the model will be presented.

  18. Ignition phase and steady-state structures of a non-thermal air plasma

    An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA

  19. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    Serag-Eldin, M. A.

    2011-12-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof-mounted photovoltaic modules. The modules are fixed on special cradles which fold at night to expose the roof to the night sky, thereby enhancing night-time cooling, which is substantial in the desert environment. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. Application to a typical Middle-Eastern desert site reveals that indeed such a design is feasible with present-day technology; and should be even more attractive with future advances in technology. © 2011 Copyright Taylor and Francis Group, LLC.

  20. Selection of Weather Parameters for Air-Conditioning System Design for Buildings with Long Thermal Lag

    GE Lian-feng; LEI Ming; CHEN You-ming

    2009-01-01

    Two building factors-a longer thermal lag of more than one hour for building envelops and a lag of indoor radiation to convert into cooling load-have impact on the instantaneous heat input and instantaneous cooling load.So the two factors should be taken into account when selecting the weather parameters for air-con-ditioning system design.This paper developed a new statistic method for the rational selection of coincident solar irradiance,dry-bulb and wet-bulb temperatures.The method was applied to historic weather records of 25 years in Hong Kong to generate coincident design weather data.And the results show that traditional design solar irra-diance,dry-bulb and wet-bulb temperatures may be significantly overestimated in many conditions,and the de-sign weather data for the three different constructions is not kept constant.

  1. Kinetics of the Thermal Decomposition of Magnesium Salicylate Powder in Air

    2006-01-01

    Simultaneous thermogravimetry-differential thermal analysis (TG-DTA) was used to study the kinetics and the degradation of magnesium salicylate(C14H10MgO6) in air. The results show that the decomposition proceeds through two steps. The kinetics of the first decomposition step was studied. The activation energies were calculated by using the Friedman and Flynn Wall Ozawa (FWO) methods, and the most probable kinetic model function was estimated using the multiple linear regression method. The values of the correlated kinetic parameters for the first decomposition step are E= 152.97 kJ/mol, lg(A/S-1) = 10. 78, f(α) = (1 -α)n(1 + Kcatα) , n =0.691, and Kcat =1.3048.

  2. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  3. Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system

    Highlights: • A prototype of an ALCPC-PV/T system was designed and set up. • Good optical agreements were observed between simulation and experiment. • The effects of the temperature on the electrical characteristics were discussed. • The thermal performance for circulating cooling was analyzed. • The system efficiency was calculated to present the overall performance. - Abstract: A novel air-gap-lens-walled compound parabolic concentrator incorporated with photovoltaic/thermal system (ALCPC-PV/T) was proposed. The optical, electrical and thermal performances of the ALCPC-PV/T under the outdoor condition were analyzed for building integrated concentrating photovoltaic/thermal application. The simulation and experiment were carried out to reveal the optical characteristics of ALCPC-PV/T on two typical days. The experiment results verified the optical simulation results that the ALCPC-PV/T system had a half acceptance angle of 35° and an average optical efficiency of 83.0% within the half acceptance angle for direct incidence. Furthermore, the average optical efficiencies on the two typical days were all above 60% under the actual outdoor condition considering direct and diffuse solar radiation. Details of electrical characteristics affected by the temperature of circulating cooling water were also displayed. The electrical and thermal efficiencies of the ALCPC-PV/T system during the test were 6.0% and 35.0% respectively with the final water temperature of 70 °C. In addition, the fitted results indicated that under the zero reduced temperature condition, the thermal efficiency of the ALCPC PV/T system was 52.0%, and the corresponding electrical efficiency was 6.6%

  4. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    Androula G. Nassiopoulou; Panagiotis Sarafis; Emmanouel Hourdakis

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cyl...

  5. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. PMID:25626476

  6. Novel mass air flow meter for automobile industry based on thermal flow microsensor. I. Analytical model and microsensor

    Sazhin, O.

    2013-01-01

    An analytical model of the thermal flow sensor has been developed. The results of analytical model application are utilized to develop a thermal flow microsensor with optimal functional characteristics. The technology to manufacture the microsensor is described. A prototype of the microsensor suitable to be used in the mass air flow meter has been designed. The basic characteristics of the microsensor are presented. © 2013 Elsevier Ltd.

  7. Theoretical study of a hot air collector consisting of a solar greenhouse and thermal storage: application to drying

    N' Dongo, M.M.; Zeghmati, B.; Mammou, M.; Daguenet, M. (Perpignan Univ., 66 (France). Lab. de Thermodynamique et Energetique)

    1993-04-01

    In this paper, we present a numerical study of a system consisting of a solar greenhouse and thermal storage. The thermal storage consists of insulated pipes which are buried and arranged in parallel inside the greenhouse. This system is used as a solar collector for a fish dryer which is placed near the greenhouse. The numerical results show that the best configuration is to operate the system with dynamic storage in the ground and to recycle the air through the dryer. (Author)

  8. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries

    Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.

    2012-10-01

    Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.

  9. A new concept of high flow rate non-thermal plasma reactor for air treatment

    Goujard, V.; Tatibouet, J.M. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Although several non-thermal plasma reactors have been tested for air treatment at the laboratory scale, up-scaling to pilot or industrial scale remains a challenge because several parameters must be considered, such as hydrodynamic behaviour, maximum voltage in an industrial environment, and maintenance of the system. This paper presented a newly developed reactor which consists to a DBD plasma generated on individual supports that could be directly inserted in gas pipes where air flow must be treated. Elimination of 40 percent of 15 ppm of propene was obtained with a energy density as low as 10 J/L. The propene conversion increased when a manganese oxide based catalyst was used because the ozone produced by the plasma was used as an as an oxidant. A simple model of the plasma-catalyst reactor behaviour showed that more than 90 percent of propene conversion can be expected for an input energy density of 10 J/L and residual ozone concentration less than 100 ppb.

  10. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Photovoltaic (PV panels account for a majority of the cost of photovoltaic thermal (PVT panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum efficiencies of 45% to 63% were observed for the double-path-parallel bifacial PVT panel based on the first law of thermodynamics. Single-path bifacial PVT panel represents the highest exergy efficiency (10%. Double-path-parallel bifacial PVT panel is the second preferred design as it generates up to 20% additional total energy compared with the single-path panel. However, the daily average exergy efficiency of a double-path-parallel panel is 0.35% lower than that of a single-path panel.

  11. A dynamic thermal model for design and control of an 800-element open-air radio telescope

    Bremer, Michael; Greve, Albert

    2011-09-01

    In earlier work we have described the thermal modelling for design and control of a fully insulated, and sometimes ventilated, high precision radio telescope. For such an insulated telescope the modelling of the time-variable dynamic influence of the thermal environment (air, sky and ground radiation, insolation) is relatively simple. The modelling becomes however quite complex for an open-air radio telescope where each individual member of the reflector backup structure (BUS) and the support structure (fork or yoke) is exposed under a different and time-dependent aspect angle to the thermal environment, which applies in particular to solar radiation. We present a time-dependent 800-element thermal model of an open-air telescope. Using the IRAM 30-m radio telescope as the basic mechanical structure, we explain how the temperature induced, real-time pointing and reflector surface deformations can be derived when using as input the day of the year, the thermal environment, and the geographic position of the telescope and its changing pointing direction. Thermal modelling and results similar to those reported here can be used for radio telescope design and real-time control of pointing and surface adjustment of a telescope with active panels.

  12. Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: Global performance

    Highlights: • A large scale thermochemical storage system working with moist air is experimented. • High energy density (203 kW h/m3) and storage capacity (105 kW h) have been obtained. • Hydration specific powers between 0.75 and 2 W/kg have been reached. • The ways to control the storage system have been deeply investigated. • Two important parameters (equilibrium drop and mass flowrate) have been identified. - Abstract: This paper investigates an innovative open thermochemical system dedicated to high density and long term (seasonal) storage purposes. It involves a hydrate/water reactive pair and operates with moist air. This work focuses on the design of and experimentation with a large scale prototype using SrBr2/H2O as a reactive pair (400 kg of hydrated salt, 105 kW h of storage capacity and a reactor energy density of 203 kW h/m3). Promising conclusions have been obtained regarding the feasibility and performance of such a storage process. Hydration specific powers from 0.75 to 2 W/kg have been reached for a bed salt energy density of 388 kW h/m3. Moreover, two important parameters that control the storage system have been identified and investigated: the equilibrium drop and the mass flow rate of moist air. Both have a strong influence on the reaction kinetics and therefore on the reactor’s thermal power

  13. The influence of gas radiation on the thermal behavior of a 2D axisymmetric turbulent non-premixed methane–air flame

    Highlights: • The study evaluates the importance of thermal radiation in a methane–air flame. • The radiative properties are treated with the WSGG based on HITEMP 2010. • The turbulence–radiation interaction (TRI) is based on a RANS approach. • Radiation strongly affected the temperature field but not the chemical composition. • Neglecting TRI led to a lower estimate of the radiation heat transfer. - Abstract: This paper presents a study of the effect of thermal radiation in the simulation of a turbulent, non-premixed methane–air flame. In such a problem, two aspects need to be considered for a precise evaluation of the thermal radiation: the turbulence–radiation interactions (TRI), and the local variation of the radiative properties of the participating species, which are treated here with the weighted-sum-of-gray-gases (WSGG) model based on newly obtained correlations from HITEMP2010 database. The chemical reactions rates were considered as the minimum values between the Arrhenius and Eddy Break-Up rates. A two-step global reaction mechanism was used, while the turbulence modeling was considered via standard k–ε model. The source terms of the energy equation consisted of the heat generated in the chemical reaction rates as well as in the radiation exchanges. The discrete ordinates method (DOM) was employed to solve the radiative transfer equation (RTE), including the TRI. Comparisons of simulations with/without radiation (which in turn was solved with/without TRI) demonstrated that the temperature, the radiative heat source, and the wall heat flux were importantly affected by thermal radiation, while the influence on species concentrations proved to be negligible. Inclusion of thermal radiation led to results that were closer to experimental data available in the literature for the same test case considered in this paper. Inclusion of TRI improved the agreement, although in a smaller degree. The main influence of TRI was mainly on global

  14. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  15. Durability of zirconia thermal-barrier ceramic coatings on air-cooled turbine blades in cyclic jet engine operation

    Liebert, C. H.; Jacobs, R. E.; Stecura, S.; Morse, C. R.

    1976-01-01

    Thermal barrier ceramic coatings of stabilized zirconia over a bond coat of Ni Cr Al Y were tested for durability on air cooled turbine rotor blades in a research turbojet engine. Zirconia stabilized with either yttria, magnesia, or calcia was investigated. On the basis of durability and processing cost, the yttria stabilized zirconia was considered the best of the three coatings investigated.

  16. Study of mixed radiative thermal mass transfer in the case of spherical liquide particle evaporation in a high temperature thermal air plasma

    Radiative transfer in a semi-transparent non-isothermal medium with spherical configuration has been studied. Limit conditions have been detailed, among which the semi-transparent inner sphere case is a new case. Enthalpy and matter transfer equations related to these different cases have been established. An adimensional study of local conservation laws allowed to reveal a parameter set characteristic of radiation coupled phenomena thermal conduction, convection, diffusion. Transfer equations in the case of evaporation of a liquid spherical particle in an air thermal plasma have been simplified. An analytical solution for matter transfer is proposed. Numerical solution of radiative problems and matter transfer has been realized

  17. Thermal profile analysis of Doubly-Fed induction generator based wind power converter with air and liquid cooling methods

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens; Tonnes, Michael

    cooling seen from a thermal profile assessment point of view. Firstly, an analytical approach from loss profile to thermal profile for the power semiconductor is proposed and verified in a 2 MW Doubly-Fed Induction Generator (DFIG) based wind turbine system. Then, the typical air cooling and liquid......Today, wind power generation system keeps on moving from onshore to offshore and also upscaling in size. As the lifetime of the wind power converter is prolonged to 20–25 years, this paper will investigate and compare different cooling methods for power modules — the air cooling and the liquid...... cooling in wind power converter are analyzed and compared in terms of the mean junction temperature and the junction temperature fluctuation. It is concluded that the liquid cooling approach has a similar junction temperature fluctuation but gives a lower mean junction temperature than the air cooling...

  18. Study of the thermal performance and air-flow features of a solar air heater with evacuated tubes

    Papanicolaou, E.; Belessiotis, V. [Solar and other Energy Systems Lab., ' ' Democritos' ' National Center for Scientific Research, Aghia Paraskevi, Attiki (Greece); Li, X.; Wang, Z. [Solar Energy Lab., Inst. of Electrical Engineering, Chinese Academy of Sciences, BJ (China)

    2008-07-01

    In the present paper, aspects related to the energy performance of a solar air heater comprising an array of dual-glass evacuated tubes using air as the working fluid, are investigated. Design parameters affecting the performance of the heater are the air flow-rate, the diameter and length ratios (insert tube/inner glass tube), the latter defining the discharge location, the flow configuration (series or parallel connection of tubes) etc. Numerical simulations of flow and heat transfer within a single tube are performed for a selected configuration, giving insight into details of the flow and temperature fields, which are valuable in the pursuit of the optimal design of the geometric and physical parameters. Besides, efficiency curves for the air heater are obtained from experimental measurements at both cooperating laboratories. (orig.)

  19. AN INVESTIGATION OF THE EFFECTS OF AIR VELOCITY AND MOVEMENT ON THE THERMAL COMFORT INSIDE AN AUTOMOBILE

    Ömer KAYNAKLI

    2003-03-01

    Full Text Available In this study, heat loss from various parts of human body, generated sweat mass and skin wetness depends on this are determined and their effect on thermal comfort are investigated. In the model human body is examined as divided into 16 parts and heat and mass transfer from each parts is simulated, as air flow velocity over the surface and thermal and evaporation resistance of clothing are accounted for the model. After checking the validity of the model (in comparison with results as an experimental study heat transfer coefficients, sensible and latent heat loss, skin wetness and variations of predicted percentage of dissatisfied (PPD are investigated for various air velocities, air temperatures and clothing groups. It is included that, average skin wetness decreases with increasing air velocity and sensible and latent heat losses increase due to the increase in heat transfer coefficient with increasing air velocity. However increase in sensible heat loss is more than latent heat loss. The most sensitive parameter to the air velocity is PPD.

  20. Thermal Performance Evaluation of the 200 kWth Sol Air Volumetric Solar Receiver

    The goal of the Solair project is the design and test of a fully modular, high efficient and durable open volumetric high-flux receiver, which can be easily and safely operated at mean air outlet temperatures of up to 800 degree centigree. The project was thought in two phases, in the first one an advanced 200 kW HitRec receiver called Solair 200 was designed and tested. The Solair 200 was built like one single receiver module (subassembly), to test the thermal performance of the receiver as well as the receiver module behavior. Out of a set of these receiver modules have been developed to assemble the 3 MWth receiver in the second phase of the project. This report describes the used procedure or methodology for data processing for thermal performance evaluation purposes and the data processing results for the first phase of the project. Test campaign started in March 2002 and produced fifty data sheets (each corresponding to a test day) and ended in February 2003. During the test phase three absorber material types (or configurations) have been tested during the test campaign. The data processing and evaluation results show that performance goals for the receiver have been fluffy accomplished: Temperatures of more than 800 degree centigree were achieved for the first two configurations in five test days. For the two absorber configurations for which incident solar power was measured the estimated efficiency at 700 degree centigree was 81 (±6)% for configuration 1 and 83 (±6) % for configuration 2 of the absorber. (Author) 20 refs

  1. EBS Radionuclide Transport Abstraction

    The purpose of this work is to develop the Engineered Barrier System (EBS) radionuclide transport abstraction model, as directed by a written development plan (CRWMS M and O 1999a). This abstraction is the conceptual model that will be used to determine the rate of release of radionuclides from the EBS to the unsaturated zone (UZ) in the total system performance assessment-license application (TSPA-LA). In particular, this model will be used to quantify the time-dependent radionuclide releases from a failed waste package (WP) and their subsequent transport through the EBS to the emplacement drift wall/UZ interface. The development of this conceptual model will allow Performance Assessment Operations (PAO) and its Engineered Barrier Performance Department to provide a more detailed and complete EBS flow and transport abstraction. The results from this conceptual model will allow PA0 to address portions of the key technical issues (KTIs) presented in three NRC Issue Resolution Status Reports (IRSRs): (1) the Evolution of the Near-Field Environment (ENFE), Revision 2 (NRC 1999a), (2) the Container Life and Source Term (CLST), Revision 2 (NRC 1999b), and (3) the Thermal Effects on Flow (TEF), Revision 1 (NRC 1998). The conceptual model for flow and transport in the EBS will be referred to as the ''EBS RT Abstraction'' in this analysis/modeling report (AMR). The scope of this abstraction and report is limited to flow and transport processes. More specifically, this AMR does not discuss elements of the TSPA-SR and TSPA-LA that relate to the EBS but are discussed in other AMRs. These elements include corrosion processes, radionuclide solubility limits, waste form dissolution rates and concentrations of colloidal particles that are generally represented as boundary conditions or input parameters for the EBS RT Abstraction. In effect, this AMR provides the algorithms for transporting radionuclides using the flow geometry and radionuclide concentrations determined by other

  2. Thermodynamic study of the effects of ambient air conditions on the thermal performance characteristics of a closed wet cooling tower

    A thermodynamic model was developed and used to assess the sensitivity of thermal performance characteristics of a closed wet cooling tower to inlet air conditions. In the present study, three cases of different ambient conditions are considered: In the first case, the average mid-winter and mid-summer conditions as well as the extreme case of high temperature and relative humidity, in Athens (Greece) during summer are considered according to the Greek Regulation for Buildings Energy Performance. In the second case, the varied inlet air relative humidity while the inlet air dry bulb temperature remains constant were taken into account. In the last case, the effects on cooling tower thermal behaviour when the inlet air wet bulb temperature remains constant were examined. The proposed model is capable of predicting the variation of air thermodynamic properties, sprayed water and serpentine water temperature inside the closed wet cooling tower along its height. The reliability of simulations was tested against experimental data, which were obtained from literature. Thus, the proposed model could be used for the design of industrial and domestic applications of conventional air-conditioning systems as well as for sorption cooling systems with solid and liquid desiccants where closed wet cooling towers are used for precooling the liquid solutions. The most important result of this theoretical investigation is that the highest fall of serpentine water temperature and losses of sprayed water are observed for the lowest value of inlet wet bulb temperature. Hence, the thermal effectiveness, which is associated with the temperature reduction of serpentine water as well as the operational cost, which is related to the sprayed water loss due to evaporation, of a closed wet cooling tower depend predominantly on the degree of saturation of inlet air.

  3. Failure of thick, low density air plasma sprayed thermal barrier coatings

    Helminiak, Michael Aaron

    This research was directed at developing fundamental understandings of the variables that influence the performance of air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC). Focus was placed on understanding how and why each variable influenced the performance of the TBC system along with how the individual variables interacted with one another. It includes research on the effect of surface roughness of NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying, the interdiffusion behavior of bond coats coupled to commercial superalloys, and the microstructural and compositional control of APS topcoats to maximize the coating thicknesses that can be applied without spallation. The specimens used for this research were prepared by Praxair Surface Technologies and have been evaluated using cyclic oxidation and thermal shock tests. TBC performance was sensitive to bond coat roughness with the rougher bond coats having improved cyclic performance than the smoother bond coats. The explanation being the rough bond coat surface hindered the propagation of the delamination cracks. The failure mechanisms of the APS coatings were found to depend on a combination of the topcoat thickness, topcoat microstructure and the coefficient of thermal expansion (CTE) mismatch between the superalloy and topcoat. Thinner topcoats tended to fail at the topcoat/TGO interface due to bond coat oxidation whereas thicker topcoats failed within the topcoat due to the strain energy release rate of the thicker coating exceeding the fracture strength of the topcoat. Properties of free-standing high and conventional purity YSZ topcoats of both a lowdensity (LD) and dense-vertically fissure (DVF) microstructures were evaluated. The densification rate and phase evolution were sensitive to the YSZ purity and the starting microstructure. Increasing the impurity content resulted in enhanced sintering and phase decomposition rates, with the exception of the

  4. NO{sub x} emission and thermal efficiency of a 300 MWe utility boiler retrofitted by air staging

    Li, Sen; Wei, Xiaolin [Institute of Mechanics, Chinese Academy of Sciences, No.15 Beisihuanxi Road, Beijing 100080 (China); Xu, Tongmo; Hui, Shien [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, 28 Xian Ning Road, Xi' an 710049 (China)

    2009-09-15

    Full-scale experiments were performed on a 300 MWe utility boiler retrofitted with air staging. In order to improve boiler thermal efficiency and to reduce NO{sub x} emission, the influencing factors including the overall excessive air ratio, the secondary air distribution pattern, the damper openings of CCOFA and SOFA, and pulverized coal fineness were investigated. Through comprehensive combustion adjustment, NO{sub x} emission decreased 182 ppm (NO{sub x} reduction efficiency was 44%), and boiler heat efficiency merely decreased 0.21%. After combustion improvement, high efficiency and low NO{sub x} emission was achieved in the utility coal-fired boiler retrofitted with air staging, and the unburned carbon in ash can maintain at a desired level where the utilization of fly-ash as byproducts was not influenced. (author)

  5. Thermal behavior studies in building using artificial neural network for non air conditioned terrace house in Malaysia

    Strategies to improve energy efficiency in buildings have continuously being improved and becoming more effective as new knowledge on the building behavior and technology continue to develop. Nevertheless, effort to explore for further improvement must continuously undertake to seek more energy efficient and cost effective systems. Artificial Neural Network (ANN) is currently one of the most popular mechanisms to forecast any form of behavior and phenomena. Building thermal behavior can be studied and potential for energy utilization improvement without compromising thermal comfort can be explored using ANN. This paper explores the possibility of monitoring, predicting and forecasting the thermal behavior inside a building space and the optimization of building design. Typical result of experimental data and simulated data is presented. The sample house used adopted various thermal comfort strategies like cross ventilation and space air flow consideration

  6. Effects of thermal treatment on mineralogy and heavy metal behavior in iron oxide stabilized air pollution control residues

    Sørensen, Mette Abildgaard; Bender-Koch, C.; Starckpoole, M. M.;

    2000-01-01

    Stabilization of air pollution control residues by coprecipitation with ferrous iron and subsequent thermal treatment (at 600 and 900 °C) has been examined as a means to reduce heavy metal leaching and to improve product stability. Changes in mineralogy and metal binding were analyzed using various...... analytical and environmental techniques. Ferrihydrite was formed initially but transformed upon thermal treatment to more stable and crystalline iron oxides (maghemite and hematite). For some metals leaching studies showed more substantial binding after thermal treatment, while other metals either....... Thermal treatment of the stabilized residues produced structures with an inherently better iron oxide stability. However, the concentration of metals in the leachate generally increased as a consequence of the decreased solubility of metals in the more stable iron oxide structure....

  7. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    2009-01-01

    Hybrid photovoltaic/thermal(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T air system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed. The results show that the solar radiation intensity can be higher than 1200 W/m 2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency, exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  8. Brines, thermal springs, and mineralization phenomena along the eastern coast of Sinai as compared to those of the hot deeps of the Red Sea (abstract)

    Issar, A. (Geological Survey of Israel); Rosenthal, E.; Eckstein, Y.; Bogoch, R.

    1969-01-01

    The chemical composition of brines found as formation waters in oil wells and emerging at the thermal springs along the western coast of the Sinai are shown to have equivalent ionic ratios which are similar to those of hot brines found in the three deeps on the bottom of the Red Sea. Along the cliff close to the thermal spring of Hammam el-Far'un, on the shore of the Suez Gulf, iron mineralization, dolomitization, and heavy-metal enrichment have been observed. The mineralization is shown to be similar to that found in cores collected from the Atlantic II, Discovery, and Chain Deeps of the Red Sea. The thermal regime in the area investigated is characterized by high gradient (10-15 m//sup 0/C) foci occurring within areas having lower gradients (up to 50 m//sup 0/C). Similar phenomena have been observed in the region of the Hot Deeps. The metals found in the waters are believed to be connected partly with hydrothermal activity and partly with the leaching of sedimentary formations. It is suggested that the hot brines of the Red Sea may be submarine thermal springs draining out mineralized formation waters trapped in the sediments underlying the Red Sea.

  9. ABSTRACTION OF DRIFT SEEPAGE

    probability distributions of seepage. These are all discussed in detail in this report. In addition, the work plan calls for evaluation of effects of episodic flow and thermal-hydrologic-chemical alteration of hydrologic properties. As discussed in Section 5, these effects are not addressed in detail in this report because they can be argued to be insignificant. Effects of thermal-mechanical alteration of hydrologic properties are also not addressed in detail in this report because suitable process-model results are not available at this time. If these effects are found to be important, they should be included in the seepage abstraction in a future revision

  10. Theoretical and experimental studies of the recovery of volatile organic compounds from waste air streams in the thermal swing adsorption system with closed-loop regeneration of adsorbent

    Highlights: • The TSA process for VOCs recovery from the waste air was studied. • The closed-loop adsorbent regeneration method was used. • A mathematical model was developed to simulate the TSA process. • The toluene–Sorbonorit 4 activated carbon system was studied. • We proved that toluene can be recovered in moderate condensation temperature range. - Abstract: The cyclic thermal swing adsorption (TSA) process for volatile organic compounds (VOCs) recovery from the waste air is studied theoretically and experimentally. Toluene is chosen as the volatile organic compound. Activated carbon Sorbonorit 4 is used as an adsorbent. The TSA cycle is operated in three steps: an adsorption step with cold feed, a desorption step with hot purge gas and a cooling step with cold inert gas. The desorption and cooling are affected by nitrogen circulated through a heater, an adsorber and a condenser. A nonequilibrium, nonisothermal mathematical model is developed to simulate temperature and concentration breakthrough curves for both adsorption and desorption steps. The computer simulation results are compared with the experimental data. A bench scale fixed bed adsorption unit was used for the experimental study. It is shown that the theoretical model predicts the experimental results well. The computer simulation results are used to study the effect of the purge gas and condensation temperature on the process efficiency

  11. Experimental Investigation of Single Pass, Double Duct Photovoltaic Thermal (PV/T Air Collector with CPC and Fins

    M. E.A. Alfegi

    2008-01-01

    Full Text Available The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water with the photovoltaic module. Such unit is called photovoltaic/thermal collector (pv/t or hybrid (pv/t. An experimental investigation of a solar air heater with photovoltaic cell located at the absorber with compound parabolic collector (CPC and fins have been developed and tested. The performance of the photovoltaic, thermal and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 400 W/m2 showed that the combined pv/t efficiency is increasing from 27.50 % to 40.044 % at mass flow rates various from 0.0316 to 0.09 kg-1 s.

  12. Field study of thermal comfort and preferences in air-conditioned offices in Chongqing,P. R. China

    马小磊; 刘红; 袁杰; 谈美兰

    2009-01-01

    A large-scale field survey to measure indoor environmental parameters such as air temperature,air velocity and relative humidity was conducted in Chongqing,P. R. China,a city in a hot summer and cold winter zone. Subjective questionnaires and the ASHRAE seven-point thermal sensation scale were used to evaluate thermal,humidity and velocity sensations. Probability methods were employed to calculate the preferred temperatures. The results show that the preferred temperatures are 25.1 ℃ in summer and 21.1 ℃ in winter,respectively. Based on a comparison of the difference between neutral and preferred temperatures,it is proposed that human temperature sensitivity influences preferred temperature.

  13. The Transmission of Thermal and Fast Neutrons in Air Filled Annular Ducts through Slabs of Iron and Heavy Water

    An investigation has been carried out concerning the transmission of thermal and fast neutrons in air filled annular ducts through laminated Fe-D2O shields. Measurements have been made with annular air gaps of 0.5, 1.0, 1.5 and 2.0 cm, at a duct length of half a meter. The neutron fluxes were determined with a foil activation technique. The thermal flux was theoretically and experimentally divided into three components, a streaming, a leakage and an albedo component. The fast flux was similarly divided into a streaming component and a 'leakage' component. A calculational model to predict the components was then developed and fitted, to the data obtained by experiments. The model reported here for prediction of neutron attenuation in ducted configurations may be applied to straight annular ducts of arbitrary dimensions and material configurations but is especially designed for the problems met with in short ducts

  14. Thermal and hydrodynamic effects of nanosecond discharges in atmospheric pressure air

    We present quantitative schlieren measurements and numerical analyses of the thermal and hydrodynamic effects of a nanosecond repetitively pulsed (NRP) discharge in atmospheric pressure air at 300 and 1000 K. The plasma is created by voltage pulses at an amplitude of 10 kV and a duration of 10 ns, applied at a frequency of 1–10 kHz between two pin electrodes separated by 2 or 4 mm. The electrical energy of each pulse is of the order of 1 mJ. We recorded single-shot schlieren images starting from 50 ns to 3 µs after the discharge. The time-resolved images show the shock-wave propagation and the expansion of the heated gas channel. Gas density profiles simulated in 1D cylindrical coordinates have been used to reconstruct numerical schlieren images for comparison with experimental ones. We propose an original method to determine the initial gas temperature and the fraction of energy transferred into ultrafast gas heating, using a comparison of the contrast profiles obtained from experimental and numerical schlieren images. This method is found to be much more sensitive to these parameters than the direct comparison of measured and predicted shock-wave and heated channel radii. The results show that a significant fraction of the electric energy is converted into gas heating within a few tens of ns. The values range from about 25% at a reduced electric field of 164 Td to about 75% at 270 Td, with a strong dependance on the initial gas temperature. These experiments support the fast heating processes via dissociative quenching of N2(B3 Πg, C3 Πu) by molecular oxygen. (paper)

  15. Abstractions of stochastic hybrid systems

    Bujorianu, L.M.; Bujorianu, M. C.; Lygeros, J.

    2005-01-01

    Many control systems have large, infinite state space that can not be easily abstracted. One method to analyse and verify these systems is reachability analysis. It is frequently used for air traffic control and power plants. Because of lack of complete information about the environment or unpredict

  16. The solar power tower Jülich – a solar thermal power plant for test and demonstration of air receiver

    Hennecke, Klaus; Schwarzbözl, Peter; Hoffschmidt, Bernhard; Göttsche, Joachim; Koll, Gerrit; Beuter, Matthias; Hartz, Thomas

    2007-01-01

    The paper explains the fundamentals of the open volumetric receiver technology and shows the history of its development. It gives technical information about the system definition and the engineering of the Solar Power Tower Jülich. The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic or metallic absorber structures with a strictly modular receiver design. Highly concentrat...

  17. Modelling LiBr-H2O solution concentration/crystallization of low thermal-powered absorption air conditioning system

    A computer model is developed to predict the concentration of lithium bromide - water (LiBr-H2O) solution for used in low thermal energy-driven absorption air conditioning plants design. The computer program is capable to alert the users from undesirable solidification or crystallization zones. Good agreements between simulated concentration and experimental data from standard chart/table have been obtained. (Author)

  18. Six years of ground–air temperature tracking at Malence (Slovenia): thermal diffusivity from subsurface temperature data

    Dědeček, Petr; Rajver, D.; Čermák, Vladimír; Šafanda, Jan; Krešl, Milan

    2013-01-01

    Roč. 10, č. 2 (2013), 025012/1-025012/9. ISSN 1742-2132 R&D Projects: GA ČR(CZ) GAP210/11/0183; GA MŠk LM2010008 Institutional support: RVO:67985530 Keywords : ground-air temperature coupling * thermal diffusivity * conductive-convective heat transfer Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.895, year: 2013

  19. Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis

    Mohamed F. Zedan; Sami Al-Sanea; Abdulaziz Al-Mujahid; Zeyad Al-Suhaibani

    2016-01-01

    Thermal bridges in building walls are usually caused by mortar joints between insulated building blocks and by the presence of concrete columns and beams within the building envelope. These bridges create an easy path for heat transmission and therefore increase air-conditioning loads. In this study, the effects of mortar joints only on cooling and heating loads in a typical two-story villa in Riyadh are investigated using whole building energy analysis. All loads found in the villa, which br...

  20. Measurement of the thermal performance of a Borehole Heat Exchanger while injecting air bubbles in the groundwater

    Calzada i Oliveras, Eduard

    2012-01-01

    The most common way to exchange heat with the ground in Ground Source Heat Pump (GSHP) applications is with borehole heat exchangers (energy col-lectors in vertical wells). These boreholes contain the pipe with the secondary fluid of the GSHP and they are often filled with natural groundwater. It has been recently discovered that injecting air bubbles in the groundwater side of the boreholes increases the efficiency of the heat transfer. The aim of this thesis is to analyze the thermal change...

  1. Thermodynamic analysis of a hybrid thermal-compressed air energy storage system for the integration of wind power

    In China, a large amount of wind power is abandoned due to the difficulty of integrating fluctuating wind power into electricity grid systems. Advanced adiabatic compressed air energy storage (AA-CAES) is regarded as a promising emission-free technology to facilitate the wind power integration, but its high capital cost has hindered its wide commercialization. In the present work, a novel hybrid system was proposed on the basis of AA-CAES. It can reduce abandoned wind power and improve the financial return per capital cost of the system by increasing power output. In the new system, which is called hybrid thermal-compressed air energy storage (HTCAES), thermal energy storage (TES) units absorb the heat released from air compression and also the thermal energy converted from reluctant wind power using electrical heaters. Theoretical thermodynamic analyses show that the HTCAES system can absorb much more wind power than an AA-CAES system with the same scale of compressors, turbines, and TES units do. And recovery efficiency of this additional wind power is about 41–47%, depending on the final storage temperature of the TES. The power output ratio of the HTCAES system to the AA-CAES system increases with the maximum TES storage temperature and decreases with the operating pressure. - Highlights: •A novel concept of adiabatic compressed air energy storage is proposed. •Heat TES using electricity heaters after TES absorbs heat from air. •Power storage capacity of the new system can be greatly increased. •Recovery efficiency of the wind power used for electric heating is about 41–47%. •Power output increase is about 19–125% depending on the TES storage temperature

  2. Air

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  3. Impact of kiln thermal energy demand and false air on cement kiln flue gas CO2 capture

    Udara S. P. R. Arachchige, Dinesh Kawan, Lars-André Tokheim, Morten C. Melaaen

    2014-01-01

    Full Text Available The present study is focused on the effect of the specific thermal energy demand and the false air factor on carbon capture applied to cement kiln exhaust gases. The carbon capture process model was developed and implemented in Aspen Plus. The model was developed for flue gases from a typical cement clinker manufacturing plant. The specific thermal energy demand as well as the false air factor of the kiln system were varied in order to determine the effect on CO2 capture plant performance, such as the solvent regeneration energy demand. In general, an increase in the mentioned kiln system factors increases the regeneration energy demand. The reboiler energy demand is calculated as 3270, 3428 and 3589 kJ/kg clinker for a specific thermal energy of 3000, 3400 and 3800 kJ/kg clinker, respectively. Setting the false air factor to 25, 50 or 70% gives a reboiler energy demand of 3428, 3476, 3568 kJ/kg clinker, respectively.

  4. Determination of Efficiency of Hybrid Photovoltaic Thermal Air Collectors Using Artificial Neural Network Approach for Different PV Technology

    G. N. Tiwari

    2012-01-01

    Full Text Available In this paper an attempt has been made to determine efficiency of semi transparent hybrid photovoltaic thermal double pass air collector for different PV technology and compare it with single pass air collector using artificial neural network (ANN technique for New Delhi weather station of India. The MATLAB 7.1 neural networks toolbox has been used for defining and training of ANN for determination of thermal, electrical, overall thermal and overall exergy efficiency of the system. The ANN model uses ambient air temperature, number of sunshine hours, number of clear days, temperature coefficient, cell efficiency, global and diffuse radiation as input parameters. The transfer function, neural network configuration and learning parameters have been selected based on highest convergence during training and testing of network. About 2000 sets of data from four weather stations (Bangalore, Mumbai, Srinagar and Jodhpur have been given as input for training and data of the fifth weather station (New Delhi has been used for testing purpose. It has been observed that the best transfer function for a given configuration is logsig. The feed forward back-propagation algorithm has been used in this analysis. Further the results of ANN model have been compared with analytical values on the basis of root mean square error.

  5. Design and parametric optimization of thermal management of lithium-ion battery module with reciprocating air-flow

    刘燕平; 欧阳陈志; 江清柏; 梁波

    2015-01-01

    Single cell temperature difference of lithium-ion battery (LIB) module will significantly affect the safety and cycle life of the battery. The reciprocating air-flow module created by a periodic reversal of the air flow was investigated in an effort to mitigate the inherent temperature gradient problem of the conventional battery system with a unidirectional coolant flow with computational fluid dynamics (CFD). Orthogonal experiment and optimization design method based on computational fluid dynamics virtual experiments were developed. A set of optimized design factors for the cooling of reciprocating air flow of LIB thermal management was determined. The simulation experiments show that the reciprocating flow can achieve good heat dissipation, reduce the temperature difference, improve the temperature homogeneity and effectively lower the maximal temperature of the modular battery. The reciprocating flow improves the safety, long-term performance and life span of LIB.

  6. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    Li, Ruixin; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied by...... the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD...

  7. [Determination of volatile organic compounds in ambient air by thermal desorption-gas chromatography-triple quadrupole tandem mass spectrometry].

    Feng, Lili; Hu, Xiaofang; Yu, Xiaojuan; Zhang, Wenying

    2016-02-01

    A method was established for the simultaneous determination of 23 volatile organic compounds (VOCs) in ambient air with combination of thermal desorption (TD) and gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The air samples were collected by active sampling method using Tenax-TA sorbent tubes, and desorbed by thermal desorption. The analytes were determined by GC-MS/MS in selected reaction monitoring (SRM) mode, and internal standard method was applied to quantify the VOCs. The results of all the 23 VOCs showed good linearities in low level (0. 01-1 ng) and high level (1-100 ng) with all the correlation coefficients (r2) more than 0. 99. The method quantification limits were between 0. 000 08-1 µg/m3. The method was validated by means of recovery experiments (n = 6) at three spiked levels of 2, 10 and 50 ng. The recoveries between 77% and 124% were generally obtained. The relative standard deviations (RSDs) in all cases were lower than 20%, except for chlorobenzene at the low spiked level. The developed method was applied to determine VOCs in ambient air collected at three sites in Shanghai. Several compounds, like benzene, toluene, ethylbenzene, m-xylenes, p-xylenes, styrene, 1, 2, 4-trimethylbenzene and hexachlorobutadiene were detected and confirmed in all the samples analyzed. The method is highly accurate, reliable and sensitive for monitoring the VOCs in ambient air. PMID:27382728

  8. Thermal characteristics of air-water spray impingement cooling of hot metallic surface under controlled parametric conditions

    Nayak, Santosh Kumar; Mishra, Purna Chandra

    2016-06-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper. The controlling input parameters investigated were the combined air and water pressures, plate thickness, water flow rate, nozzle height from the target surface and initial temperature of the hot surface. The effects of these input parameters on the important thermal characteristics such as heat transfer rate, heat transfer coefficient and wetting front movement were measured and examined. Hot flat plate samples of mild steel with dimension 120 mm in length, 120 mm breadth and thickness of 4 mm, 6 mm, and 8 mm respectively were tested. The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface. Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e, 4 mm thick plates. Increase in the nozzle height reduced the heat transfer efficiency of spray cooling. At an inlet water pressure of 4 bar and air pressure of 3 bar, maximum cooling rates 670°C/s and average cooling rate of 305.23°C/s were achieved for a temperature of 850°C of the steel plate.

  9. Thermal Characteristics of Air-Water Spray Impingement Cooling of Hot Metallic Surface under Controlled Parametric Conditions

    Santosh Kumar Nayak; Purna Chandra Mishra

    2016-01-01

    Experimental results on the thermal characteristics of air-water spray impingement cooling of hot metallic surface are presented and discussed in this paper.The controlling input parameters investigated were the combined air and water pressures,plate thickness,water flow rate,nozzle height from the target surface and initial temperature of the hot surface.The effects of these input parameters on the important thermal characteristics such as heat transfer rate,heat transfer coefficient and wetting front movement were measured and examined.Hot flat plate samples of mild steel with dimension 120 mm in length,120 mm breadth and thickness of 4 mm,6 mm,and 8 mm respectively were tested.The air assisted water spray was found to be an effective cooling media and method to achieve very high heat transfer rate from the surface.Higher heat transfer rate and heat transfer coefficients were obtained for the lesser i.e,4 mm thick plates.Increase in the nozzle height reduced the heat transfer efficiency of spray cooling.At an inlet water pressure of 4 bar and air pressure of 3 bar,maximum cooling rates 670℃/s and average cooling rate of 305.23℃/s were achieved for a temperature of 850℃ of the steel plate.

  10. Energy and exergy analysis of a two pass photovoltaic –thermal (PV/T) air heater

    Srinivas, M.; Jayaraj, S. [Department of Mechanical Engineering, National Institute of Technology, Calicut-673601 (India)

    2013-07-01

    A double pass hybrid solar air (PV/T) heater with slats is designed and fabricated to study elaborately its thermal and electrical performance corresponding to the warm and humid environment. Air as a heat removing fluid is made to flow through upper and lower channels of the collector. The collector is designed in such way that the absorber plate is partially covered by solar cells. Thin metallic strips (called slats) are attached longitudinally at the bottom side of the absorber plate to improve the overall system performance (by increasing the cooling rate of the absorber plate). Thermal and electrical performances of the whole system at different cooling rates are presented. The exergy analysis of double pass hybrid solar air (PV/T) heater with slats has also been carried out. The instantaneous overall energy and overall exergy efficiency of the double pass hybrid (PV/T) solar air heater varies between 29 – 37 percent and 14-17 percent respectively. These obtained values are comparable with that of published results.

  11. Gas exchange in wetlands with emergent vegetation: The effects of wind and thermal convection at the air-water interface

    Poindexter, Cristina M.; Variano, Evan A.

    2013-07-01

    Methane, carbon dioxide, and oxygen are exchanged between wetlands and the atmosphere through multiple pathways. One of these pathways, the hydrodynamic transport of dissolved gas through the surface water, is often underestimated in importance. We constructed a model wetland in the laboratory with artificial emergent plants to investigate the mechanisms and magnitude of this transport. We measured gas transfer velocities, which characterize the near-surface stirring driving air-water gas transfer, while varying two stirring processes important to gas exchange in other aquatic environments: wind and thermal convection. To isolate the effects of thermal convection, we identified a semiempirical model for the gas transfer velocity as a function of surface heat loss. The laboratory results indicate that thermal convection will be the dominant mechanism of air-water gas exchange in marshes with emergent vegetation. Thermal convection yielded peak gas transfer velocities of 1 cm h-1. Because of the sheltering of the water surface by emergent vegetation, gas transfer velocities for wind-driven stirring alone are likely to exceed this value only in extreme cases.

  12. Optimization of thermal performance of a smooth flat-plate solar air heater using teaching–learning-based optimization algorithm

    R. Venkata Rao

    2015-12-01

    Full Text Available This paper presents the performance of teaching–learning-based optimization (TLBO algorithm to obtain the optimum set of design and operating parameters for a smooth flat plate solar air heater (SFPSAH. The TLBO algorithm is a recently proposed population-based algorithm, which simulates the teaching–learning process of the classroom. Maximization of thermal efficiency is considered as an objective function for the thermal performance of SFPSAH. The number of glass plates, irradiance, and the Reynolds number are considered as the design parameters and wind velocity, tilt angle, ambient temperature, and emissivity of the plate are considered as the operating parameters to obtain the thermal performance of the SFPSAH using the TLBO algorithm. The computational results have shown that the TLBO algorithm is better or competitive to other optimization algorithms recently reported in the literature for the considered problem.

  13. Air

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  14. Air Quality Over Baghdad City Using Earth Observation And Landsat Thermal Data

    Salah A. H. Saleh

    2011-01-01

    Air pollution problem is a major concern in many large cities and becomes increasingly critical in this present-day in developed or developing countries around the world. Mapping of urban air pollution dispersion is very complex as it depends upon various factors including weather conditions, urban structural features and their topologies. Air pollution dispersion distribution can be mapped by using mathematical models and interpolation methods based on ground local measurements of meteorolog...

  15. Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis

    Mohamed F. Zedan

    2016-06-01

    Full Text Available Thermal bridges in building walls are usually caused by mortar joints between insulated building blocks and by the presence of concrete columns and beams within the building envelope. These bridges create an easy path for heat transmission and therefore increase air-conditioning loads. In this study, the effects of mortar joints only on cooling and heating loads in a typical two-story villa in Riyadh are investigated using whole building energy analysis. All loads found in the villa, which broadly include ventilation, transmission, solar and internal loads, are considered with schedules based on local lifestyles. The thermal bridging effect of mortar joints is simulated by reducing wall thermal resistance by a percentage that depends on the bridges to wall area ratio (TB area ratio or Amj/Atot and the nominal thermal insulation thickness (Lins. These percentage reductions are obtained from a correlation developed by using a rigorous 2D dynamic model of heat transmission through walls with mortar joints. The reduction in thermal resistance is achieved through minor reductions in insulation thickness, thereby keeping the thermal mass of the wall essentially unchanged. Results indicate that yearly and monthly cooling loads increase almost linearly with the thermal bridge to wall area ratio. The increase in the villa’s yearly loads varies from about 3% for Amj/Atot = 0.02 to about 11% for Amj/Atot = 0.08. The monthly increase is not uniform over the year and reaches a maximum in August, where it ranges from 5% for Amj/Atot = 0.02 to 15% for Amj/Atot = 0.08. In winter, results show that yearly heating loads are generally very small compared to cooling loads and that heating is only needed in December, January and February, starting from late night to late morning. Monthly heating loads increase with the thermal bridge area ratio; however, the variation is not as linear as observed in cooling loads. The present results highlight the importance of

  16. Programme and abstracts

    Abstracts of 25 papers presented at the congress are given. The abstracts cover various topics including radiotherapy, radiopharmaceuticals, radioimmunoassay, health physics, radiation protection and nuclear medicine

  17. Piaget on Abstraction.

    Moessinger, Pierre; Poulin-Dubois, Diane

    1981-01-01

    Reviews and discusses Piaget's recent work on abstract reasoning. Piaget's distinction between empirical and reflective abstraction is presented; his hypotheses are considered to be metaphorical. (Author/DB)

  18. Optimization of air conditioning systems utilizing low temperature thermal storage; Optimizacion de sistemas de acondicionamiento de aire utilizando sistemas de almacenamiento termico de baja temperatura

    Contreras Ramirez, J.; Dorantes Rodriguez, R. [Departamento de Energia, Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D. F. (Mexico)

    1997-12-31

    In the last few years the different projects on the saving and efficient use of energy in the tertiary sector have been demonstrating the existing great potential in the air conditioning systems and equipment, whose intensive use is due to the predominance of hot and dry and hot and humid climate prevailing in a large part of the Mexican territory. Without any doubts one of the most serious problems facing the complex management and optimization of these systems is related to the variability of the thermal load and the regulation possibilities of the thermal machines, so as to attain, along the day an appropriate use and optimization of the total installed load, with the best possible economic benefits. Among the strategies that allow the optimization of the installed capacity and the variability of the thermal load is the low temperature thermal storage, for instance, the storage of ice, which is produced and stored to be used when the cooling machines are in standby in order to use this stored energy during the peak hours and during the normal operation of the equipment, but diminishing in a significant amount the electrical demand of the system to satisfy the thermal load with a combination thermal storage-cooling machine. This paper presents some case histories and the type of thermal storage commonly used; a methodology is discussed that allows to determine technically as well as economically the size of a thermal storage room. Some problems in the control and operation of these thermal systems are also presented. [Espanol] En los ultimos anos los diversos proyectos sobre ahorro y uso eficiente de la energia en el sector terciario han venido mostrando el gran potencial existente en los sistemas y equipos de aire acondicionado, cuyo uso intensivo se debe al predominio de los climas calidos seco y calido humedo en buena parte del territorio nacional. Sin lugar a dudas uno de los problemas mas serios que enfrenta la compleja gestion y optimizacion de estos

  19. Increasing reliability of gas-air systems of piston and combined internal combustion engines by improving thermal and mechanic flow characteristics

    Brodov, Yu. M.; Grigor'ev, N. I.; Zhilkin, B. P.; Plotnikov, L. V.; Shestakov, D. S.

    2015-12-01

    Results of experimental study of thermal and mechanical characteristics of gas exchange flow in piston and combined engines are presented. Ways for improving intake and exhaust processes to increase reliability of gas-air engine systems are proposed.

  20. High-Temperature Thermal Storage System for Solar Tower Power Plants with Open-Volumetric Air Receiver Simulation and Energy Balancing of a Discretized Model

    Kronhardt, Valentina; Alexopoulos, Spiros; Reißel, Martin; Sattler, Johannes; Hoffschmidt, Bernhard; Hänel, Matthias; Doerbeck, Till

    2013-01-01

    This paper describes the modeling of a high-temperature storage system for an existing solar tower power plant with open volumetric receiver technology, which uses air as heat transfer medium (HTF). The storage system model has been developed in the simulation environment Matlab/Simulink®. The storage type under investigation is a packed bed thermal energy storage system which has the characteristics of a regenerator. Thermal energy can be stored and discharged as required via the HTF air. ...

  1. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  2. Design and optimization of personalized ventilation for overall improvement of thermal comfort, air quality, and energy efficiency

    Metzger, Ian Dominic

    This paper presents a simple and repeatable CFD-based method that can accurately predict the optimal operating conditions of personalized ventilation systems. In contrast to previous studies, the optimal performance of the PV system includes the influences of various operation characteristics (supply air velocity, PV flow rate, PV temperature, PV distance from face, turbulence intensity, relative humidity, central system flow rate, central system temperature, central system type, and PV on/off operation) on three critical performance factors: thermal comfort, indoor air quality, and energy savings. This method is able to predict more achievable and comprehensive operating performance of PV systems. It is found for the computer perimeter grill air terminal device that supply temperatures, central flow rate, and PV flow rate are the most influential factors on performance in terms of thermal comfort, IAQ, and energy. Using the Taguchi design of experiment and optimal performance prediction method, the computer perimeter grill personalized ventilation system is optimized in conjunction with under-floor and overhead central systems, separately.

  3. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    Androula G. Nassiopoulou

    2012-11-01

    Full Text Available An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB, on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine.

  4. Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation.

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189

  5. Numerical study on optical and electric-thermal performance for solar concentrating PV/T air system

    SUN Jian; SHI MingHeng

    2009-01-01

    Hybrid photovoltaic/thermsl(PV/T)system with solar concentrator is an effective way to improve solar energy conversion efficiency.In this work,a single-pass PV/T sir system with a three-trough compound parabolic concentrator(CPC)of concentration ratio 2.0 is designed and the solar incident distributions at the solar cell surface are calculated by ray tracing method.Based on energy balance,the heat transfer models of all main components in this system are developed.The effects of some main designing and operational parameters on the electric-thermal performance of the system are analyzed.The results show that the solar radiation intensity can be higher than 1200 W/m~2 at most area of the cell surface.The temperature of the air and cell surface increases along the length of the system.Thus the system efficiency of the CPC is higher than that of the system without the CPC.The thermal efficiency,exergy and electrical efficiency of this CPC system increase with increasing of the air mass flow rate and the length of the system.With increasing packing fraction the electrical efficiency increases,but the thermal efficiency decreases.The exergy efficiency increases slightly with the packing fraction rising.The data obtained in this work are valuable for the design and operation for this kind of solar concentrating PV/T systems.

  6. The effects of electron thermal radiation on laser ablative shock waves from aluminum plasma into ambient air

    Sai Shiva, S.; Leela, Ch.; Prem Kiran, P.; Sijoy, C. D.; Chaturvedi, S.

    2016-05-01

    The effect of electron thermal radiation on 7 ns laser ablative shock waves from aluminum (Al) plasma into an ambient atmospheric air has been numerically investigated using a one-dimensional, three-temperature (electron, ion, and radiation) radiation hydrodynamic code MULTI. The governing equations in Lagrangian form are solved using an implicit scheme for planar, cylindrical, and spherical geometries. The shockwave velocities (Vsw) obtained numerically are compared with our experimental values obtained over the intensity range of 2.0 × 1010 to 1.4 × 1011 W/cm2. It is observed that the numerically obtained Vsw is significantly influenced by the thermal radiation effects which are found to be dominant in the initial stage up to 2 μs depending on the input laser energy. Also, the results are found to be sensitive to the co-ordinate geometry used in the simulation (planar, cylindrical, and spherical). Moreover, it is revealed that shock wave undergoes geometrical transitions from planar to cylindrical nature and from cylindrical to spherical nature with time during its propagation into an ambient atmospheric air. It is also observed that the spatio-temporal evolution of plasma electron and ion parameters such as temperature, specific energy, pressure, electron number density, and mass density were found to be modified significantly due to the effects of electron thermal radiation.

  7. Impacts of dynamic interactions on the predicted thermal performance of earth–air heat exchangers for preheating, cooling and ventilation of buildings

    Gan, Guohui

    2015-01-01

    Earth–air tunnel ventilation is an energy efficient ventilation technique that makes use of relatively stable soil temperature in shallow ground for preheating and cooling of supply air to a building. During operation, an earth–air heat exchanger interacts with the soil and atmosphere and the performance varies with the soil and atmospheric conditions. A computer program has been developed for modelling of coupled heat and moisture transfer in soil and for simulation of the dynamic thermal pe...

  8. Comparison of mass and energy balances for air blown and thermally ballasted fluidized bed gasifiers

    The objective of this study was to compare the mass and energy balances for a conventional air blown fluidized bed gasifier and a ballasted fluidized bed gasifier developed at Iowa State University. The ballasted gasifier is an indirectly heated gasifier that uses a single reactor for both combustion and pyrolysis. Heat accumulated in high-temperature phase change material during the combustion phase is released during the pyrolysis phase to generate producer gas. Gas composition, tar and char contents, cold gas efficiency, carbon conversion, and hydrogen yield per unit biomass input were determined as part of these evaluation. During the pyrolysis phase of ballasted gasification, higher volumetric concentrations of hydrogen and methane were obtained than during air blown gasification. Hydrogen yield for ballasted gasification was 14 g kg−1 of biomass, which was about 20% higher than that obtained during air blown gasification. The higher heating value of the producer gas also reached higher levels during the ballasted pyrolysis phase than that of air blown gasification. Heating value for air blown gasification was 5.2 MJ m−3 whereas the heating value for the ballasted pyrolysis phase averaged 5.5 MJ m−3, reaching a maximum of 8.0 MJ m−3. The ballasted gasifier was expected to yield producer gas with average heating value as high as 15 MJ m−3 but excessive use of nitrogen to purge and cool the fuel feeder system greatly diluted the producer gas. Relatively simple redesign of the feeder system would greatly reduce the use of purge gas and may increase the heating values to about 17.5 MJ m−3. Higher char production per kilogram of biomass was associated with the ballasted system, producing 140 g kg−1 of biomass compared to only 53 g kg−1 of biomass during air blown gasification. On the other hand, tar concentrations in the producer gas were 6.0 g m−3 for ballasted gasification compared to 11.7 g m−3 for air blown gasification. On balance, carbon

  9. SolAir. Innovative solar collectors for efficient and cost-effective solar thermal power generation - Final report

    Barbato, M. C.; Haueter, Ph.; Bader, R.; Steinfeld, A.; Pedretti, A.

    2008-12-15

    This report presents the main results of the project. The project has been started at the end of 2007 and has been successfully finished in December 2008. The present project of ALE AirLight Energy aims at the engineering investigation and design of a novel concept of a solar collector system for efficient and cost-effective solar thermal power generation. The technology exploits an air-inflated reflective structure to concentrate solar radiation. This new arrangement reduces investment costs of the collector field and promises to be economically competitive. A first prototype, built in 2007, has been redesigned and heavily modified during this project. In the new configuration, by using secondary mirrors, the focal area is located close to the main structure and allows the integration of the receiver into the inflated structure. The topics developed in this document are as follows: (i) Design solutions for the concentrated energy receiver suitable for the revised SolAir concentrator concept. (ii) Solar flux simulation via Monte Carlo method. (iii) New version of the ALE AirLight Energy concentrator prototype. (iv) Prototype radiative flux measurements. (author)

  10. Forecast of thermal-hydrological conditions and air injection test results of the single heater test at Yucca Mountain

    The heater in the Single Heater Test (SHT) in alcove 5 of the Exploratory Studies Facility (ESF) was turned on August 26, 1996. A large number of sensors are installed in the various instrumented boreholes to monitor the coupled thermal-hydrological-mechanical-chemical responses of the rock mass to the heat generated in the single heater. In this report the authors present the results of the modeling of both the heating and cooling phases of the Single Heater Test (SHT), with focus on the thermal-hydrological aspect of the coupled processes. Also in this report, the authors present simulations of air injection tests will be performed at different stages of the heating and cooling phase of the SHT

  11. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  12. Evaluation of thermal formation and air ventilation inside footwear during gait: The role of gait and fitting.

    Shimazaki, Yasuhiro; Matsutani, Toshiki; Satsumoto, Yayoi

    2016-07-01

    Comfort is an important concept in footwear design. The microclimate inside footwear contributes to the perception of thermal comfort. To investigate the effect of ventilation on microclimate formation inside footwear, experiments with subjects were conducted at four gait speeds with three different footwear sizes. Skin temperature, metabolism, and body mass were measured at approximately 25 °C and 50% relative humidity, with no solar radiation and a calm wind. The footwear occupancy and ventilation rate were also estimated, with the latter determined using the tracer gas method. The experimental results revealed that foot movement, metabolism, evaporation, radiation, convection, and ventilation were the main factors influencing the energy balance for temperature formation on the surface of the foot. The cooling effect of ventilation on the arch temperature was observed during gait. The significance of the amount of air space and ventilation on the improvement in the thermal comfort of footwear was clarified. PMID:26611985

  13. The conference of Russian Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics (ABOK

    V.M. Yakubson

    2014-04-01

    Full Text Available On April, 11th, in Lenexpo the XVI conference of Russian Association of Engineers for Heating, Ventilation, Air-Conditioning, Heat Supply and Building Thermal Physics (ABOK “Effective HVAC and Heat Supply Systems” took place. There were a lot of presentations of new equipment for building systems and networks. All these reports were dedicated to the ways to make buildings more comfortable for people, to increase the energy efficiency, to reduce expenses and to improve the production efficiency. But besides the specific equipment, there were some reports dedicated to more general problems in design, installation and maintenance of building systems and networks

  14. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    Koh Sakai; Yuri Kobayashi; Tsuguyuki Saito; Akira Isogai

    2016-01-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather cl...

  15. Investigation of Structure of Turbulent Boundary Layer Between Thermal Plasma Jet and Ambient Air

    Hrabovský, Milan; Konrád, Miloš; Kopecký, Vladimír

    St. Petersburg : University St. Petersburg, 1998 - (Dresvin, S.), s. 117 [European Conference on Thermal Plasma Processes /5./. St.Petersburg (RU), 13.07.1998-16.07.1998] R&D Projects: GA AV ČR IAA1043804; GA ČR GV106/96/K245 Institutional research plan: CEZ:AV0Z2043910 Keywords : thermal plasma jet, water stabilized plasma Subject RIV: BL - Plasma and Gas Discharge Physics

  16. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles

    Choi, Yong Seok; Kang, Dal Mo

    2014-12-01

    Thermal management has been one of the major issues in developing a lithium-ion (Li-ion) hybrid electric vehicle (HEV) battery system since the Li-ion battery is vulnerable to excessive heat load under abnormal or severe operational conditions. In this work, in order to design a suitable thermal management system, a simple modeling methodology describing thermal behavior of an air-cooled Li-ion battery system was proposed from vehicle components designer's point of view. A proposed mathematical model was constructed based on the battery's electrical and mechanical properties. Also, validation test results for the Li-ion battery system were presented. A pulse current duty and an adjusted US06 current cycle for a two-mode HEV system were used to validate the accuracy of the model prediction. Results showed that the present model can give good estimations for simulating convective heat transfer cooling during battery operation. The developed thermal model is useful in structuring the flow system and determining the appropriate cooling capacity for a specified design prerequisite of the battery system.

  17. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  18. Hybrid Photovoltaic Thermal (PV/T Air and Water Based Solar Collectors Suitable for Building Integrated Applications

    Adnan Ibrahim

    2009-01-01

    Full Text Available Problem statement: Experiments have been conducted to investigate the effect of mass flow rates on the electrical, thermal and combined of photovoltaic thermal efficiencies of the hybrid collectors. Approach: Two photovoltaic thermal solar collectors were designed and fabricated. The first collector, known as spiral flow absorber collector, designed to generate hot water and electricity. The second collector, known as single pass rectangular tunnel absorber collector designed to generate hot air and electricity. Both absorber collectors were fixed underneath the flat plate single glazing sheet of polycrystalline silicon PV module. Water was used as a heat transfer medium in spiral flow absorber collector and air for the Single pass rectangular tunnel absorber collector respectively. Results: The experiment results showed that the single flow absorber collector generates combined PV/T efficiency of 64%, electrical efficiency of 11% and power maximum achieved at 25.35 W. Moreover, Single pass rectangular tunnel absorber collector generated combined PV/T efficiency of 55%, electrical efficiency of 10% and maximum power of 22.45 W. Conclusion/Recommendations: The best mass flow rate achieved for spiral flow absorber collector is 0.011 kg sec-1 at surface temperature of 55% and 0.0754 kg sec-1 at surface temperature of 39°C for single pass rectangular collector absorber. It was recommended for PV/T system to further improve its efficiency by optimizing the contact surfaces between the solar panel (photovoltaic module and the tubes underneath and also recommended to use other type of photovoltaic cell such as amorphous silicon cell that posses the black mat surfaces property that will improve it thermal absorption.

  19. Abstractions of stochastic hybrid systems

    Bujorianu, L.M.; Lygeros, J.; Bujorianu, M.C.

    2005-01-01

    Many control systems have large, infinite state space that can not be easily abstracted. One method to analyse and verify these systems is reachability analysis. It is frequently used for air traffic control and power plants. Because of lack of complete information about the environment or unpredicted changes, the stochastic approach is a viable alternative. In this paper, different ways of introducing rechability under uncertainty are presented. A new concept of stochastic bisimulation is in...

  20. Thermal comfort and indoor air quality in the lecture room with 4-way cassette air-conditioner and mixing ventilation system

    We performed the experimental and the numerical studies on thermal comfort (TC) and indoor air quality (IAQ) in the lecture room with cooling loads when the operating conditions are changed. Predicted mean vote (PMV) value and CO2 concentration of the lecture room were measured and compared to the numerical results. Both of them showed a reasonable agreement with each other and then we applied the numerical model to analyze TC and IAQ for a couple of different operating conditions. From the results we found that the increment of the discharge angle of 4-way cassette air-conditioner makes uniformity of TC worse, but rarely affects IAQ. It turned out that TC and IAQ are hardly affected by the variation of the discharge airflow. Finally TC was merely affected by the increment of the ventilation rate, but when the ventilation rate is more than 800m3/h, the average CO2 concentration can be satisfied with the standard limits of Japanese in our case studies. (author)

  1. Energy performance of supermarket refrigeration and air conditioning integrated systems

    Cecchinato, Luca; Corradi, Marco; Minetto, Silvia

    2008-01-01

    Abstract The electricity consumption for air conditioning and refrigerated cases in large supermarkets represents a substantial share of the total electricity consumption. The energy efficiency of supermarkets can be improved by optimising components design, recovering thermal and refrigerating energy, adopting innovative technology solutions, integrating the HVAC system with medium temperature and low temperature refrigeration plants and, finally, reducing thermal loads on refrige...

  2. Prediction of thermal sensation in non-air-conditioned buildings in warm climates

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  3. Program and abstracts

    Abstracts of the papers given at the conference are presented. The abstracts are arranged under sessions entitled:Theoretical Physics; Nuclear Physics; Solid State Physics; Spectroscopy; Physics Education; SANCGASS; Astronomy; Plasma Physics; Physics in Industry; Applied and General Physics

  4. Thermal plasma of electric arc discharge in air between composite Cu-C electrodes

    The complex technique of plasma property studies is suggested. As the first step the radial profiles of temperature and electron density in plasma of free burning electric arc discharge in air between Cu-C composite and brass electrodes, as well as copper electrodes in air flow, were measured by optical emission spectroscopy techniques. As the next step the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. The electron density is obtained from electric conductivity by calculation in assumption of local thermodynamical equilibrium in plasma.

  5. INVESTIGATION OF THERMAL PERFORMANCE OF AIR TO WATER HEAT EXCHANGER USING NANO-FLUIDS

    Nawaf Hazim Saeid

    2011-01-01

    In the present study the three-dimensional numerical simulation is selected as a tool to investigate the effectiveness of a cross flow heat exchanger. Water is selected to be mixed with nano-particles and flow inside a circular pipe while a pure air is flowing across it. Numerical simulations is carried out under laminar flow for both water and air sides. The thickness of the pipe is neglected in the present preliminary study. From the physics of the problem, the governing parameters can...

  6. Introduction to abstract algebra

    Nicholson, W Keith

    2012-01-01

    Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."-Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately be

  7. Recent changes in ground surface thermal regimes in the context of air temperature warming over the Heihe River Basin, China

    QingFeng Wang; TingJun Zhang; XiaoQing Peng; Bin Cao

    2014-01-01

    Changes-in-ground-surface-thermal-regimes-play-a-vital-role-in-surface-and-subsurface-hydrology,-ecosystem-diversity-and-productivity,-and-global-thermal,-water-and-carbon-budgets-as-well-as-climate-change.-Estimating-spring,-summer,-autumn-and-winter-air-temperatures-and-mean-annual-air-temperature-(MAAT)-from-1960-through-2008-over-the-Heihe-River-Basin-reveals-a-statistically-significant-trend-of-0.31-°C/decade,-0.28-°C/decade,-0.37-°C/decade,-0.50-°C/decade,-and-0.37-°C-/decade,-respectively.-The-averaged-time-series-of-mean-annual-ground-surface-temperature-(MAGST)-andmaximum-annual-ground-surface-temperature(MaxAGST)-for-1972-2006-over-the-basin-indicates-a-statistically-significant-trend-of-0.58-°C/decade-and-1.27-°C/decade,-respectively.-The-minimum-annual-ground-surface-temperature-(MinAGST)-in-the-same-period-remains-unchanged-as-a-whole.-Estimating-surface-freezing/thawing-index-as-well-as-the-ratio-of-freezing-index-to-thawing-index-(RFT)in-the-period-between-1959-and-2006-over-the-basin-indicates-a-statistically-significant-trend-of-42.5-°C-day/decade,-85.4-°C-day/decade-and-0.018/decade,-respectively.

  8. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report

    Waye, Scot [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  9. Total uncertainty of low velocity thermal anemometers for measurement of indoor air movements

    Jørgensen, F.; Popiolek, Z.; Melikov, Arsen Krikor;

    2004-01-01

    developed mathematical model of the anemometer in combination with a large database of representative room flows measured with a 3-D Laser Doppler anemometer (LDA). A direct comparison between measurements with a thermal anemometer and a 3-D LDA in flows of varying velocity and turbulence intensity shows...

  10. Influence of Gas Flow Rate on Mixing of Argon with Air in Thermal Plasma Jets

    Gonzalez, J. J.; Gleizes, A.; Freton, P.; Hlína, Jan; Šlechta, Jiří

    2002-01-01

    Roč. 52, - (2002), s. D842-D849. ISSN 0011-4626. [Symposium on Plasma Physics and Technology SPPT 2002 /20./. Prague, 10.06.2002-13.06.2002] R&D Projects: GA AV ČR IAA1057202 Keywords : plasma jet * thermal plasma * temperature field Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  11. Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS.

    Wu, Chien-Hou; Feng, Chien-Tai; Lo, Yu-Shiu; Lin, Tsai-Yin; Lo, Jiunn-Guang

    2004-07-01

    Investigation of volatile organic compounds (VOCs) was first conducted in the air of class-100 cleanrooms at liquid crystal display (LCD) fabrication facilities. Air samples were collected on multisorbent tubes (including Carbopack B, Carbopack C, and Carbosieve S-III) and analyzed using adsorption/thermal desorption coupled with gas chromatography-mass spectrometry (GC-MS). Optimal conditions lead to average recoveries in the range of 96.2-98.2%, and method detection limits between 0.38 and 0.78 ppb, under the condition of 1-l sampling volume and 80% relative humidity. The method appears to be accurate, sensitive, simple and well-suited for determining VOC distributions from various stages of LCD manufacturing process and temporal variations of the analyte concentrations. About 15 VOCs were identified in workplace air. The major pollutants such as propylene glycol methyl ether acetate (PGMEA), butyl acetate, and acetone that are commonly used in the opto-electronics industry were detected and accurately quantified with the established method. PMID:15109881

  12. A review on the thermal hydraulic characteristics of the air-cooled heat exchangers in forced convection

    Ankur Kumar; Jyeshtharaj B Joshi; Arun K Nayak; Pallippattu K Vijayan

    2015-05-01

    In this paper, a review is presented on the experimental investigations and the numerical simulations performed to analyze the thermal-hydraulic performance of the air-cooled heat exchangers. The air-cooled heat exchangers mostly consist of the finned-tube bundles. The primary role of the extended surfaces (fins) is to provide more heat transfer area to enhance the rate of heat transfer on the air side. The secondary role of the fins is to generate vortices, which help in enhancing the mixing and the heat transfer coefficient. In this study, the annular and plate fins are considered, the annular fins are further divided into four categories: (1) plane annular fins, (2) serrated fins, (3) crimped spiral fins, (4) perforated fins, and similarly for the plate fins, the fin types are: (1) plain plate fins, (2) wavy plate fins, (3) plate fins with DWP, and (4) slit and strip fins. In Section 4, the performance of the various types of fins is presented with respect to the parameters: (1) Reynolds number, (2) fin pitch, (3) fin height, (4) fin thickness, (5) tube diameter, (6) tube pitch, (7) tube type, (8) number of tube rows, and (9) effect of dehumidifying conditions. In Section 5, the conclusions and the recommendations for the future work have been given.

  13. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al2O3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al2O3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  14. Energy metrics of photovoltaic/thermal and earth air heat exchanger integrated greenhouse for different climatic conditions of India

    Nayak, Sujata; Tiwari, G.N. [Centre for Energy Studies, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2010-10-15

    In this paper, a study is carried out to evaluate the annual thermal and exergy performance of a photovoltaic/thermal (PV/T) and earth air heat exchanger (EAHE) system, integrated with a greenhouse, located at IIT Delhi, India, for different climatic conditions of Srinagar, Mumbai, Jodhpur, New Delhi and Bangalore. A comparison is made of various energy metrics, such as energy payback time (EPBT), electricity production factor (EPF) and life cycle conversion efficiency (LCCE) of the system by considering four weather conditions (a-d type) for five climatic zones. The embodied energy and annual energy outputs have been used for evaluation of the energy metrics. The annual overall thermal energy, annual electrical energy savings and annual exergy was found to be best for the climatic condition of Jodhpur at 29,156.8 kWh, 1185 kWh and 1366.4 kWh, respectively when compared with other weather stations covered in the study, due to higher solar intensity I and sunshine hours, and is lowest for Srinagar station. The results also showed that energy payback time for Jodhpur station is lowest at 16.7 years and highest for Srinagar station at 21.6 years. Electricity production factor (EPF) is highest for Jodhpur, i.e. 2.04 and Life cycle conversion efficiency (LCCE) is highest for Srinagar station. It is also observed that LCCE increases with increase in life cycle. (author)

  15. INTEGRATION OF SCIENTIFIC AND EDUCATIONAL UNIVERSITY WORK: EXPERIENCE OF COMPARATIVE ANALYSIS OF THE THERMAL DECOMPOSITION OF Mg(NO32 · 6H2O IN AIR AND SUPERHEATED WATER VAPOR

    Sergey F. Katyshev

    2016-04-01

    Full Text Available Abstract. The aim of the investigation is to select how the thermal decomposition of crystallohydrate magnesium nitrates to capture the nitrogen compounds that are harmful to the environment; for the return of nitric acid to the initial stage of the process. Methods. The methods involve physical and chemical analysis (IR spectroscopy, rentgennofazovy analysis, thermolysis and thermal hydrolysis of magnesium nitrate. Results. Magnitudes of thermal effects are determined; mechanisms of thermal decomposition of magnesium nitrate in air and overheated water vapor are posed. Thermohydrolysis renders possible to produce undiluted magnesium oxide and regenerate nitric acid. Scientific novelty. Undiluted magnesium oxide was produced by the method that requires less energy consumption. Practical significance. The research results on regeneration of nitric acid and its reuse in the raw material processing containing magnesium open new prospects for production and can be applied as course materials for a practical training in organic chemistry in postgraduate study on chemical specialties. 

  16. Thermal sensation and comfort with five different air terminal devices for personalized ventilation

    Kaczmarczyk, Jan; Melikov, Arsen Krikor; Bolashikov, Z.;

    constant at 23°C and relative humidity at 30%. A total supply of 90 L/s outdoor air was maintained with PVS and mixing ventilation or only with mixing ventilation. Air quality in the low-polluting office space was decreased by a 20-year-old used carpet that was placed behind a screen, so that subjects...... of the facility provided to control the airflow rate and the position and direction of the ATD. The preferred airflow rate varied from 3 L/s to 15 L/s.person. It was observed that over time, participants tended to change the position of the ATD less frequently. Analysis of the positioning at the end of each...

  17. Adaptive individual-cylinder thermal state control using intake air heating for a GDCI engine

    Roth, Gregory T.; Sellnau, Mark C.

    2016-08-09

    A system for a multi-cylinder compression ignition engine includes a plurality of heaters, at least one heater per cylinder, with each heater configured to heat air introduced into a cylinder. Independent control of the heaters is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the heater for that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder compression ignition engine, including determining a combustion parameter for combustion taking place in a cylinder of the engine and controlling a heater configured to heat air introduced into that cylinder, is also provided.

  18. Providing better thermal and air quality conditions in school classrooms would be cost-effective

    Wargocki, Pawel; Wyon, David Peter

    2013-01-01

    allowing outdoor air supply rates to remain so low that carbon dioxide (CO2) levels during school hours exceed 1000 ppm for long periods, in order to conserve energy. The research that is summarized in this paper shows that the indoor environmental consequences of either of these investment-free but ill......-advised energy conservation measures can reduce children's performance of schoolwork by as much as 30%, so a more sophisticated approach to maintaining good classroom indoor environmental quality (IEQ) is required....

  19. Availability analysis of thermal power plant boiler air circulation system using Markov approach

    Ravinder Kumar

    2014-01-01

    The long term operation and planning of power plant depend upon an effective availability analysis and assessment of various systems in the plant concerned. The plant is expected to remain operational in a continual manner to achieve the desired production targets. Hence, the availability analysis of the boiler air circulation system plays an important role in this direction. For this purpose, the concerned system mathematical model based on Markov Birth-Death process has been developed. The ...

  20. Thermal-economic optimization of an air-cooled heat exchanger unit

    Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined. -- Highlights: ► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation

  1. Availability analysis of thermal power plant boiler air circulation system using Markov approach

    Ravinder Kumar

    2014-01-01

    Full Text Available The long term operation and planning of power plant depend upon an effective availability analysis and assessment of various systems in the plant concerned. The plant is expected to remain operational in a continual manner to achieve the desired production targets. Hence, the availability analysis of the boiler air circulation system plays an important role in this direction. For this purpose, the concerned system mathematical model based on Markov Birth-Death process has been developed. The system consists of four subsystems. The transition diagram represents reduced capacity, full working and failed state of the system. The differential equations associated with the transition diagram based on probabilistic approach have been solved recursively in order to develop the system steady state availability. Availability matrices represented measures the performance of the system concerned. In addition, different combinations of failures and repair rates provide various availability levels of the system. Maintenance decisions are taken based upon these values for improving availability of the power plant as well as the power supply. The result shows that the failure of the primary air fan affects the system availability at most, while failure of air heater affect it at least for different failures and repair rate combination of subsystems under study.

  2. Mössbauer Study of Transformation of Fe Cations during Thermal Treatment of Glauconite in Air

    Mašláň, M.; Martinec, Petr; Kašlík, J.; Kovářová, E.; Ščučka, Jiří

    Melville: American Institute of Physics, 2012 - (Tuček, J.; Machala, L.), s. 169-173. (AIP Conference Proceedings). ISBN 978-0-7354-1101-2. ISSN 0094-243X. [Mössbauer Spectroscopy in Materials Science 2012. Olomouc (CZ), 11.06.2012-15.06.2012] R&D Projects: GA MŠk ED2.1.00/03.0082 Grant ostatní: GA ČR(CZ) GA106/08/1440; GA ČR(CZ) GA205/08/0869; GA MŠk(CZ) 1M6198959201 Institutional support: RVO:68145535 Keywords : glauconite * thermal decomposition * maghemite * Mössbauer spectroscopy Subject RIV: CB - Analytical Chemistry, Separation http://www.deepdyve.com/lp/american-institute-of-physics/mo-ssbauer-study-of-transformation-of-fe-cations-during-thermal-CMBsTKkgNo

  3. Study on a heat recovery system for the thermal power plant utilizing air cooling island

    A new heat recovery system for CHP (combined heat and power) systems named HRU (heat recovery unit) is presented, which could recover the low grade heat of exhausted steam from the turbine at the thermal power plant directly. Heat recovery of exhausted steam is often accomplished by recovering the heat of cooling water in current systems. Therefore, two processes of heat transfer is needed at least. However, exhausted steam could be condensed in the evaporator of HRU directly, which reduce one process of heat transfer. A special evaporator is designed condense the exhausted steam directly. Simulated results are compared to experiments, which could include the calculation of heat transfer coefficients of different parts of HRU. It is found that about 25Mw of exhausted steam is recovered by this system. HRU could be promising for conventional CHP systems, which could increase the total energy efficiency obviously and enlarge the heating capacity of a built CHP system. - Highlights: • A new heat recovery system for thermal power plant is presented. • A mathematical model including heat transfer coefficients calculation is given. • This heat recovery system is experimented at a thermal power plant. • Performances of this system under different working conditions are simulated

  4. Effect of air-oxidation on the thermal diffusivity of the nuclear grade 2-dimensional carbon fiber reinforced carbon/carbon composite

    2D-C/C composite is one of the promising materials as a next-generation core material in gas-cooled reactors. Effect of air-oxidation on the thermal diffusivity of the 2D-C/C composite was investigated in this study. Tested composite consists of 6K plain-woven fabrics with PAN-based carbon fiber and graphite matrix. Final heat-treatment of around 3073 K was applied to the composite. The C/C composite specimens for measurement of thermal diffusivity were oxidized from 1 to 11% weight loss in air at 823 K. Oxidation loss of the composite preferentially occurred at matrix part near the fiber bundles, and then occurred at fiber bundles. This composite exhibited large anisotropy in thermal diffusivity, higher value for parallel to lamina direction and lower value for perpendicular, e.g. thermal diffusivity of 1.1 cm2/s for parallel to lamina and 0.2 cm2/s for perpendicular at room temperature. Thermal diffusivity at room temperature declined 10∼20% for parallel to lamina direction and 5∼9% for that of perpendicular within 11% weight loss by oxidation. Thermal diffusivity tended to decrease gradually as the increase of oxidation loss in parallel to lamina, however, it decreased in the beginning of oxidation pretty much and not so changed by further oxidation loss in perpendicular to lamina. The different behavior due to air-oxidation on the thermal diffusivity in two directions was discussed from the fiber and/or matrix texture changes due to air-oxidation. Change in thermal conductivity under oxidation condition was also estimated from the obtained thermal diffusivity. (author)

  5. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air%Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    杨国清; 张冠军; 张文元

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  6. INVESTIGATION OF THERMAL PERFORMANCE OF AIR TO WATER HEAT EXCHANGER USING NANO-FLUIDS

    Nawaf Hazim Saeid

    2011-12-01

    Full Text Available 0 0 1 291 1661 International Islamic University 13 3 1949 14.0 Normal 0 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Times New Roman";} In the present study the three-dimensional numerical simulation is selected as a tool to investigate the effectiveness of a cross flow heat exchanger. Water is selected to be mixed with nano-particles and flow inside a circular pipe while a pure air is flowing across it. Numerical simulations is carried out under laminar flow for both water and air sides. The thickness of the pipe is neglected in the present preliminary study. From the physics of the problem, the governing parameters can be determined as: the Reynolds, the type and the volume fraction of the nono-fluid. The effect of these governing parameters is studied and the results are presented. The results show significant enhancement of heat transfer with introduction of nano-particles, such as titanium-oxide (TiO2 nano-powder, compared to the pure base fluid. The accuracy of the results presented in the present study depends on the accuracy of the effective properties of the nano-fluids, which are taken from the open literature. ABSTRAK: Dalam kajian ini, simulasi tiga dimensi berangka digunakan untuk mengkaji keberkesanan penukar haba aliran silang.  Air dipilih untuk dicampurkan dengan zarah bersaiz nano dan dialirkan di dalam paip berbentuk bulat, sementara udara tulen mengalir melaluinya.  Simulasi berangka dijalankan di bawah aliran lamina untuk kedua-dua belah air dan udara. Ketebalan paip diabaikan di dalam kajian permulaan ini.  Dari sudut permasalahan fizik, parameter pengawal imbang boleh ditentukan sebagai

  7. Pulsed-CO2-laser interaction with aluminum in air: Thermal response and plasma characteristics

    Simultaneous target heating, plasma spectral emission, and time-resolved plasma interferometry data were taken for the interaction of CO2 (lambda2, the pulse duration was 1.8 μs, and the maximum peak flux on target was 8 x 107 W/cm2. The target thermal response is analyzed to provide both the total energy deposited on target and the spatial distribution of the energy. The total energy deposited increases in direct proportion to the laser-pulse energy, with a coupling coefficient of 18% above the plasma ignition threshold

  8. Air Motion and Thermal Environment in Pig Housing Facilities with Diffuse Inlet

    Jacobsen, Lis

    estimation of thermal comfort in terms of the operative temperature of the occupational zone. A model of the boundary condition of the diffuse inlet is necessary because the inlet is a conglomeration of an inlet and a wall boundary condition. Two methods of modelling can be chosen, a model based on the...... velocity and temperature. A linear approach has been taken to develop a model of the surface temperature from experimental data of the independent parameters of flow through the diffuse material and flow and radiation properties in the occupational room....

  9. The ecologically clear and safe nuclear reactor RUTA for aims of the thermal delivery, the seawater desalination and air conditioning

    Scientific research and design institute of energy technic (Moscow, Russia) works up the projects of thermal pool reactors RUTA with power 20 and 55 MW for heat delivery of apartment buildings and production premises. The reactors may be use as protected sources of energy for air conditioning or seawater desalination. Variant of underground siting of heat delivery atomic station with reactor RUTA is examined. Calculation studies of worked regimes confirms the high level of safety of heat delivery atomic station with the reactor RUTA. Work analysis of reactor installation RUTA in the central heat delivery systems is showing that for practically all space heating period this reactor is satisfying the standard requirements of heat delivery of buildings

  10. A tough, thermally conductive silicon carbide composite with high strength up to 1600 degreesC in Air

    Ishikawa; Kajii; Matsunaga; Hogami; Kohtoku; Nagasawa

    1998-11-13

    A sintered silicon carbide fiber-bonded ceramic, which consists of a highly ordered, close-packed structure of very fine hexagonal columnar fibers with a thin interfacial carbon layer between fibers, was synthesized by hot-pressing plied sheets of an amorphous silicon-aluminum-carbon-oxygen fiber prepared from an organosilicon polymer. The interior of the fiber element was composed of sintered beta-silicon carbide crystal without an obvious second phase at the grain boundary and triple points. This material showed high strength (over 600 megapascals in longitudinal direction), fibrous fracture behavior, excellent high-temperature properties (up to 1600 degreesC in air), and high thermal conductivity (even at temperatures over 1000 degreesC). PMID:9812889

  11. Nuclear medicine. Abstracts; Nuklearmedizin 2000. Abstracts

    Anon.

    2000-07-01

    This issue of the journal contains the abstracts of the 183 conference papers as well as 266 posters presented at the conference. Subject fields covered are: Neurology, psychology, oncology, pediatrics, radiopharmacy, endocrinology, EDP, measuring equipment and methods, radiological protection, cardiology, and therapy. (orig./CB) [German] Die vorliegende Zeitschrift enthaelt die Kurzfassungen der 183 auf der Tagung gehaltenen Vortraege sowie der 226 praesentierten Poster, die sich mit den folgenden Themen befassten: Neurologie, Psychiatrie, Onkologie, Paediatrie, Radiopharmazie, Endokrinologie, EDV, Messtechnik, Strahlenschutz, Kardiologie sowie Therapie. (MG)

  12. Turbulence structure and CO2 transfer at the air-sea interface and turbulent diffusion in thermally-stratified flows

    A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations

  13. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  14. Simulation of Thermal and Chemical Relaxation in a Post-Discharge Air Corona Reactor

    Meziane, M; Ducasse, O; Yousfi, M

    2016-01-01

    In a DC point-to-plane corona discharge reactor, the mono filamentary streamers cross the inter electrode gap with a natural repetition frequency of some tens of kHz. The discharge phase (including the primary and the secondary streamers development) lasts only some hundred of nanoseconds while the post-discharge phases occurring between two successive discharge phases last some tens of microseconds. From the point of view of chemical activation, the discharge phases create radical and excited species located inside the very thin discharge filaments while during the post-discharge phases these radical and excited species induce a chemical kinetics that diffuse in a part of the reactor volume. From the point of view of hydrodynamics activation, the discharge phases induce thermal shock waves and the storage of vibrational energy which relaxes into thermal form only during the post-discharge phase. Furthermore, the glow corona discharges that persist during the post-discharge phases induce the so called electri...

  15. Journalism Abstracts. Vol. 15.

    Popovich, Mark N., Ed.

    This book, the fifteenth volume of an annual publication, contains 373 abstracts of 52 doctoral and 321 master's theses from 50 colleges and universities. The abstracts are arranged alphabetically by author, with the doctoral dissertations appearing first. These cover such topics as advertising, audience analysis, content analysis of news issues…

  16. Completeness of Lyapunov Abstraction

    Wisniewski, Rafal; Sloth, Christoffer

    This paper addresses the generation of complete abstractions of polynomial dynamical systems by timed automata. For the proposed abstraction, the state space is divided into cells by sublevel sets of functions. We identify a relation between these functions and their directional derivatives along...

  17. Program and abstracts

    Abstracts of the papers given at the conference are presented. The abstracts are arranged under sessions entitled: Theoretical Physics; Nuclear Physics; Solid State Physics; Spectroscopy; Plasma Physics; Solar-Terrestrial Physics; Astrophysics and Astronomy; Radioastronomy; General Physics; Applied Physics; Industrial Physics

  18. Designing for Mathematical Abstraction

    Pratt, Dave; Noss, Richard

    2010-01-01

    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as "designing for abstraction." In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing…

  19. Effect of high heating rate on thermal decomposition behaviour of titanium hydride (TiH2) powder in air

    A Rasooli; M A Boutorabi; M Divandari; A Azarniya

    2013-04-01

    DTA and TGA curves of titanium hydride powder were determined in air at different heating rates. Also the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into consideration. A great breakthrough of the practical interest in the research was the depiction of the H2-time curves of TiH2 powder at various temperatures in air. In accordance with the results, an increase in heating rate to higher degrees does not change the process of releasing hydrogen from titanium hydride powder, while switching it from internal diffusion to chemical reaction. At temperatures lower than 600 °C, following the diffusion of hydrogen and oxygen atoms in titanium lattice, thin layers TiH phase and oxides form on the powder surface, controlling the process. On the contrary, from 700 °C later on, the process is controlled by oxidation of titanium hydride powder. In fact, the powder oxidation starts around 650 °C and may escalate following an increase in the heating rate too.

  20. Choice of Domestic Air-Sourced Solar Photovoltaic Thermal Systems through the Operational Energy Cost Implications in Scotland

    Masa Noguchi

    2013-03-01

    Full Text Available In Scotland, homebuilders are requested to take valiant efforts to meet the government’s ambition that all newly built homes should be carbon-neutral by 2016/17. In delivering net zero carbon homes, the application of renewable energy technologies, such as solar photovoltaic (PV power generating systems, is almost inevitable. Cost-effectiveness of emerging green technologies is a major factor that affects stakeholders’ housing design decision-making on whether or not the innovations can be applied in practical terms. Based on the United Kingdom (UK government’s Standard Assessment Procedure (SAP for energy rating of dwellings, this study conducted a comparative value assessment of 19 design alternatives set. The options also included ones that encompassed both electricity and heat generation potentials of PV applications—i.e., air-sourced PV thermal (PV/T systems. Based on the SAP simulation results, it concluded that operational energy use and cost, as well as carbon dioxide (CO2 emission levels, can drastically be reduced particularly when a PV/T system is combined with a low-energy and high-performance mechanical ventilation with heat recovery (MVHR system that can extract fresh air heated by PV. This study led to visualizing the cost-effectiveness of PV/T MVHR systems and identifying the economic value over 10 years at the interest rate of 10%, based on an assumption that the innovations are applied to Scottish homes today.

  1. Using thermal infrared imagery produced by unmanned air vehicles to evaluate locations of ecological road structures

    Sercan Gülci

    2016-07-01

    Full Text Available The aerial photos and satellite images are widely used and cost efficient data for monitoring and analysis of large areas in forestry activities. Nowadays, accurate and high resolution remote sensing data can be generated for large areas by using Unmanned Aerial Vehicles (UAV integrated with sensors working in various spectral bands. Besides, the UAV systems (UAVs have been used in interdisciplinary studies to produce data of large scale forested areas for desired time periods (i.e. in different seasons or different times of a day. In recent years, it has become more important to conduct studies on determination of wildlife corridors for controlling and planning of habitat fragmentation of wild animals that need vast living areas. The wildlife corridors are a very important base for the determination of a road network planning and placement of ecological road structures (passages, as well as for the assessment of special and sensitive areas such as riparian zones within the forest. It is possible to evaluate wildlife corridors for large areas within a shorter time by using data produced by ground measurements, and remote sensing and viewer systems (i.e. photo-trap, radar and etc., as well as by using remote sensing data generated by UAVs. Ecological behaviors and activities (i.e. sheltering, feeding, mating, etc. of wild animals vary spatially and temporally. Some species are active in their habitats at day time, while some species are active during the night time. One of the most effective methods for evaluation of night time animals is utilizing heat sensitive thermal cameras that can be used to collect thermal infrared images with the night vision feature. When the weather conditions are suitable for a flight, UAVs assist for determining location of corridors effectively and accurately for moving wild animals at any time of the day. Then, the most suitable locations for ecological road structures can be determined based on wildlife corridor

  2. The thermal performance of the two-pass, two-glass-cover solar air heater

    Persad, P.; Sateunanathan, S.

    1983-08-01

    Analytic models are developed for the performance prediction of a two-glass-cover solar air heater operated in both the single-pass and two-pass modes. It is shown that the two-pass mode of operation is superior to the single-pass mode of operation over the range of collector inlet temperatures considered. This is seen to be mainly due to the fact that, in the two-pass mode of operation, the outer glass cover is cooled by the working fluid, thereby reducing the top losses. It is also shown that the performance in the two-pass mode of operation is independent of length, over the range of collector lengths considered, and that a critical plate spacing, dependent on the temperature level of operation of the collector, is indicated. Predicted values of performance are in good agreement with experimental results.

  3. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Hye Yeon Seo

    Full Text Available The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ, elicited from one of two different gas sources (nitrogen and air, to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in

  4. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer

  5. Steam and hot air injection for thermal rehabilitation of contaminated sites; Wasserdampf- und Heissluftinjektion zur thermischen Sanierung kontaminierter Standorte

    Schmidt, R.

    2001-07-01

    Thermal in situ rehabilitation technologies are a promising alternative to conventional methods of cleaning up contaminated sites. The fact that an increase in temperature changes the physical properties of materials makes it possible, in principle, to release large quantities of pollutants within short time periods. The use of pure steam or steam/air mixtures as fluid thermal carriers permits converting subterranean non-aqueous-phase pollutants into the gas phase through increased vapour pressure and transporting them to the surface by means of soil air aspiration for further treatment. The purpose of the present two-stage research project was to systematically develop a thermal in situ rehabilitation technology using steam as fluid heat carrier and use it for land rehabilitation operations on a pilot basis. In the first, fundamental project phase aspects of heat transport (Faerber, 1997) and pollutant behaviour (Betz, 1998)in homogenous porous media upon pure steam injection were explored at a laboratory and technical scale using containers of different sizes (1D, 2D, 3D). The results were used to derive application criteria for this technology. [German] Thermische In-situ-Sanierungstechnologien stellen bei der Reinigung kontaminierter Standorte eine vielversprechende Alternative zu konventionellen Verfahren dar. Die Veraenderung physikalischer Stoffeigenschaften mit steigender Temperatur ermoeglicht grundsaetzlich hohe Schadstoffaustraege innerhalb kurzer Zeitraeume. Beim Einsatz von reinem Wasserdampf oder Wasserdampf-Luft-Gemischen als Waermetraegerfluid koennen im Untergrund in nicht waessriger Phase vorliegende Schadstoffe hauptsaechlich wegen der erhoehten Dampfdruecke in die Gasphase ueberfuehrt, ueber eine Bodenluftabsaugung an die Oberflaeche transportiert und dann einer weiteren Behandlung zugefuehrt werden. Zielsetzung eines zweistufigen Forschungsvorhabens war die systematische Entwicklung einer thermischen In-situ-Sanierungstechnologie unter

  6. Computational Abstraction Steps

    Thomsen, Lone Leth; Thomsen, Bent; Nørmark, Kurt

    2010-01-01

    In this paper we discuss computational abstraction steps as a way to create class abstractions from concrete objects, and from examples. Computational abstraction steps are regarded as symmetric counterparts to computational concretisation steps, which are well-known in terms of function calls and...... capturing concrete values, objects, or actions. As the next step, some of these are lifted to a higher level by computational means. In the object-oriented paradigm the target of such steps is classes. We hypothesise that the proposed approach primarily will be beneficial to novice programmers or during the...

  7. Thermal performance of solar air collector with transparent honeycomb made of glass tube

    2009-01-01

    Transparent honeycomb structure with thin-walled glass tube as the honeycomb unit is designed and applied to a flat-plate solar air collector. Experiments are performed for solar collectors with six different honeycomb sizes. The emphasis is to study the effects of diameter and aspect ratio of the honeycomb unit on the transmittance and efficiency of the solar collector. It is shown that for the same diameter but different aspect ratios, there are large temperature differences between the collector’s exits; the smaller the aspect ratio, the larger the exit temperature, with a maximum difference of 10℃; for the same aspect ratio but different diameters, the temperature differences are small; the maximum temperature difference between the collectors with and without honeycombs is 12℃. A theoretical expression for the honeycomb transmittance is derived with a simplified method. The result shows that the honeycomb transmittance is only related with the aspect ratio and the materials’ optical properties but not the actual size of the honeycomb.

  8. ABSTRACTS AND KEY WORDS

    2011-01-01

    Influence of Fermented Product from Beneficial Microorganism on the Cultivation of Larvae Apostichopus japonicus Li Shuang et al(1) Abstract The fermented product from beneficial microorganism was applied in the seed rearing of sea cucumber.The result

  9. 2016 ACPA MEETING ABSTRACTS.

    2016-07-01

    The peer-reviewed abstracts presented at the 73rd Annual Meeting of the ACPA are published as submitted by the authors. For financial conflict of interest disclosure, please visit http://meeting.acpa-cpf.org/disclosures.html. PMID:27447885

  10. Abstracts of SIG Sessions.

    Proceedings of the ASIS Annual Meeting, 1997

    1997-01-01

    Presents abstracts of SIG Sessions. Highlights include digital collections; information retrieval methods; public interest/fair use; classification and indexing; electronic publication; funding; globalization; information technology projects; interface design; networking in developing countries; metadata; multilingual databases; networked…

  11. Studies on the air distribution and thermal performance of the air circulation wall. Part 4. Study on the thermal emissivity of the air circulation layer`s surfaces; Gaidannetsu tsuki koho ni okeru tsuki sonai no netsu tsuki tokusei ni kansuru kenkyu. 4. Tsuki sonai hyomen no hosha tokusei ni kansuru kosatsu

    Kamimori, K.; Sakai, K.; Ishihara, O. [Kumamoto University, Kumamoto (Japan)

    1996-10-27

    The thermal and air distribution characteristics of the air circulation wall in a heat-insulated system were grasped using an experimental model. In this paper, the difference in the heat exchange between the wall and air was confirmed based on the radiation on the circulation layer`s surface. In this system, thin air circulation layers with ventilating holes at the top and bottom are attached to the south and north outer walls of a wooden building. This system is a kind of passive solar house that achieves the insolation screening effect and the temperature rising effect based on solar collection. The heat flow in a circulation layer is eliminated by the natural convection heat transfer on the outer wall. The heat flow passing through insulating materials is the heat transfer by radiation. The heat flow based on the in-layer natural convection is increasingly eliminated by the decrease in temperature on the air circulation layer`s surface. The decrease in room surface temperature using aluminum foil and the reflective heat-insulated effect showed that the heat passing through the wall surface decreases as the convection heat transfer in an air circulation layer increases. 6 refs., 20 figs., 3 tabs.

  12. 07381 Abstracts Collection -- Cryptography

    Blömer, Johannes; Boneh, Dan; Cramer, Ronald; Maurer, Ueli

    2008-01-01

    From 16.09.2007 to 21.09.2007 the Dagstuhl Seminar 07381 ``Cryptography'' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goa...

  13. Painting, abstraction, discourse

    Besson, Christian

    2012-01-01

    Four catalogues and compilations published this year once again raise the issue of the linkage between painting and critical discourse, with abstraction, where applicable, exacerbating the tension between the two. The first essay, La Peinture après l’abstraction, is nothing less than stimulating. Certain observations made by Alain Cueff about the neglected role of poster artists in the renewed formulation of painting, between 1955 and 1965, lie at the root of the comparison--a new departure--...

  14. Abstract Delta Modeling

    Dave Clarke; Michiel Helvensteijn; Ina Schaefer

    2011-01-01

    Delta modeling is an approach to facilitate automated product derivation for software product lines. It is based on a set of deltas specifying modifications that are incrementally applied to a core product. The applicability of deltas depends on feature-dependent conditions. This paper presents abstract delta modeling, which explores delta modeling from an abstract, algebraic perspective. Compared to previous work, we take a more flexible approach with respect to conflicts between modificatio...

  15. Abstracts of contributed papers

    1994-08-01

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  16. 08071 Abstracts Collection -- Scheduling

    Jane W. S. Liu; Rolf H. Möhring; Pruhs, Kirk

    2008-01-01

    From 10.02. to 15.02., the Dagstuhl Seminar 08071 ``Scheduling'' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in gen...

  17. 10071 Abstracts Collection -- Scheduling

    Albers, Susanne; Baruah, Sanjoy K; Rolf H. Möhring; Pruhs, Kirk

    2010-01-01

    From 14.02. to 19.02.2010, the Dagstuhl Seminar 10071 ``Scheduling '' was held in Schloss Dagstuhl-Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to ext...

  18. Quantification of Alkyl Nitrates in Ambient Air by Thermal Dissociation Cavity Ring-Down Spectroscopy with Preconcentration

    Ye, C. Z.; Osthoff, H. D.; Taha, Y. M.; Pak, J. K.; Saowapon, M. T.

    2015-12-01

    Alkyl nitrates (AN, molecular formula RONO2) play a crucial role in the troposphere as temporary reservoirs of nitrogen oxides (NOx =NO +NO2) and by acting as chain terminators in the photochemical production of ozone. Mixing ratios of AN in ambient air are commonly quantified by gas chromatography with electron capture or mass spectrometric detection (GC-ECD or GC-MS) coupled to purge-and-trap preconcentration, usually on Tenax sorbent, to improve the detection limits. The analysis, however, is quite laborious as there are many alkyl nitrates that are low in individual abundance (often less than 1 parts-per-trillion by volume, pptv) and that exhibit different instrumental response factors. An alternative method is to determine alkyl nitrates as a sum (ΣAN) by thermal dissociation (TD) to a common fragment (NO2), which can then be quantified with a uniform response factor by optical absorption, for example by cavity ring-down spectroscopy (CRDS). However, the determination of ΣAN by TD-CRDS is hampered by its relatively high detection limits (several 100 pptv) and secondary chemistry following TD that results in both negative and positive interferences and depends on the composition of the ambient air sampled. In this work, a TD-CRDS equipped with a Tenax preconcentration unit is described. Matrix effects are minimized by desorbing the samples from the Tenax in a background of nitrogen. The performance of the instrument, in particular the recovery from the Tenax sorbent, was evaluated by sampling laboratory-generated mixtures of alkyl and peroxyacyl nitrates. Field data from a coastal site collected during the Ozone-depleting reactions in a coastal atmosphere (ORCA) campaign, which took place at the Amphitrite Point Observatory in Ucluelet, BC, from July 6 - 31, 2015, are presented. Advantages and disadvantages of the new method are discussed.

  19. Metacognition and abstract reasoning.

    Markovits, Henry; Thompson, Valerie A; Brisson, Janie

    2015-05-01

    The nature of people's meta-representations of deductive reasoning is critical to understanding how people control their own reasoning processes. We conducted two studies to examine whether people have a metacognitive representation of abstract validity and whether familiarity alone acts as a separate metacognitive cue. In Study 1, participants were asked to make a series of (1) abstract conditional inferences, (2) concrete conditional inferences with premises having many potential alternative antecedents and thus specifically conducive to the production of responses consistent with conditional logic, or (3) concrete problems with premises having relatively few potential alternative antecedents. Participants gave confidence ratings after each inference. Results show that confidence ratings were positively correlated with logical performance on abstract problems and concrete problems with many potential alternatives, but not with concrete problems with content less conducive to normative responses. Confidence ratings were higher with few alternatives than for abstract content. Study 2 used a generation of contrary-to-fact alternatives task to improve levels of abstract logical performance. The resulting increase in logical performance was mirrored by increases in mean confidence ratings. Results provide evidence for a metacognitive representation based on logical validity, and show that familiarity acts as a separate metacognitive cue. PMID:25416026

  20. Abstractions for Mechanical Systems

    Sloth, Christoffer; Wisniewski, Rafael

    2012-01-01

    mechanical system. The tangential manifolds are generated using constants of motion, which can be derived from Noether's theorem. The transversal manifolds are subsequently generated on a reduced space, given by the Routhian, via action-angle coordinates. The method fully applies for integrable systems. We...... focus on a particular aspect of abstraction - partitioning the state space, as existing methods can be applied on the discretized state space to obtain an automata-based model. The contribution of the paper is to show that well-known reduction methods can be used to generate abstract models, which can...

  1. Energy saving by means of air conditioning equipment replacement and the household application of thermal insulation; Ahorro de energia electrica por reemplazo de equipos de aire acondicionado y aplicacion de aislamiento termico en viviendas

    Peralta Solorio, Jose Luis [Fideicomiso para el Ahorro de la Energia (Mexico)

    2005-07-15

    An extension study of the Financing Program for Energy Saving looked for the evaluation of the electric energy saving potential obtained by the replacement of air conditioning equipment and the application of thermal insulation in 30 houses of two Mexican cities with warmth climate. In a joint effort with Comision Federal de Electricidad the consumption files of the users were analyzed and field measurements of electric demand and of refrigeration were made. As a following step the change of the refrigeration necessities derived from the application of thermal insulation were evaluated as well as the energy efficiency improvement obtained by the substitution of the air conditioning equipment and the favorable results obtained by the implementation of both measures - thermal insulation and change of air conditioning equipment in a joint form. This way, as a conclusion, the optimum sequence of application of these measures is revealed. [Spanish] Un estudio extension del Programa de Financiamiento para el Ahorro de Energia Electrica busco evaluar el potencial de ahorro de energia electrica alcanzado por el reemplazo de equipos de aire acondicionado y la aplicacion de aislamiento termico en 30 viviendas de dos ciudades mexicanas con clima calido. En un esfuerzo conjunto con la Comision Federal de Electricidad se analizaron los historiales de consumo de los usuarios y se efectuaron las mediciones de campo de demanda electrica y de refrigeracion. Como paso siguiente se valoro el cambio en las necesidades de refrigeracion derivado de la aplicacion de aislamiento termico al igual que la mejora en eficiencia energetica obtenida por la sustitucion de aire acondicionado y se identificaron los resultados favorecedores arrojados por la implementacion de ambas medidas -aislamiento termico y cambio de equipo de aire acondicionado- en forma conjunta. De esta manera, como conclusion, se devela la mas optima secuencia de aplicacion de estas medidas.

  2. Numerical simulation on air distribution of a tennis hall in winter and evaluation on indoor thermal environment

    Sui, Xuemin; Han, Guanghui; Chen, Fu

    2014-01-01

    Supplying air with ball spout air diffusers is a common air-conditioning system for air distribution in large space stadiums. When supplying hot air with ball spout diffusers in winter, the phenomenon of hot jet upturning may appear, so the design should consider adjusting the spout angle so as to control the rising airflow. The purpose of the paper is to predict and optimize the air distribution of a tennis hall in winter for the purpose of guiding the design and regulation of air-conditioni...

  3. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    Lee, Jung-Hwan; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-06-01

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment.

  4. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment. (paper)

  5. Thermodynamic properties and transport coefficients of air thermal plasmas mixed with ablated vapors of Cu and polytetrafluoroethylene

    Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around the number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc

  6. Building Safe Concurrency Abstractions

    Madsen, Ole Lehrmann

    2014-01-01

    as well as programming, and we describe how this has had an impact on the design of the language. Although Beta supports the definition of high-level concurrency abstractions, the use of these rely on the discipline of the programmer as is the case for Java and other mainstream OO languages. We...

  7. ABSTRACTS AND KEY WORDS

    2011-01-01

    Study of Feeding Effects of EM Fermented Feed on the Growth and Survival of Juvenile Sea Cucumber Apostichopus japonicus Gong Hai-ning et al(1) Abstract In this study, comparisons of feeding effects on the sea cucumber Apostichopus japonicus between th

  8. Abstraction through Game Play

    Avraamidou, Antri; Monaghan, John; Walker, Aisha

    2012-01-01

    This paper examines the computer game play of an 11-year-old boy. In the course of building a virtual house he developed and used, without assistance, an artefact and an accompanying strategy to ensure that his house was symmetric. We argue that the creation and use of this artefact-strategy is a mathematical abstraction. The discussion…

  9. Learning Abstracts, 2001.

    Wilson, Cynthia, Ed.

    2001-01-01

    Volume 4 of the League for Innovation in the Community College's Learning Abstracts include the following: (1) "Touching Students in the Digital Age: The Move Toward Learner Relationship Management (LRM)," by Mark David Milliron, which offers an overview of an organizing concept to help community colleges navigate the intersection between digital…

  10. 2002 NASPSA Conference Abstracts.

    Journal of Sport & Exercise Psychology, 2002

    2002-01-01

    Contains abstracts from the 2002 conference of the North American Society for the Psychology of Sport and Physical Activity. The publication is divided into three sections: the preconference workshop, "Effective Teaching Methods in the Classroom;" symposia (motor development, motor learning and control, and sport psychology); and free…

  11. Annual Conference Abstracts

    Engineering Education, 1976

    1976-01-01

    Presents the abstracts of 158 papers presented at the American Society for Engineering Education's annual conference at Knoxville, Tennessee, June 14-17, 1976. Included are engineering topics covering education, aerospace, agriculture, biomedicine, chemistry, computers, electricity, acoustics, environment, mechanics, and women. (SL)

  12. Monadic abstract interpreters

    Sergey, Ilya; Devriese, Dominique; Might, Matthew;

    2013-01-01

    Recent developments in the systematic construction of abstract interpreters hinted at the possibility of a broad unification of concepts in static analysis. We deliver that unification by showing context-sensitivity, polyvariance, flow-sensitivity, reachabilitypruning, heap-cloning and cardinalit...

  13. Seismic Consequence Abstraction

    M. Gross

    2004-10-25

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274]).

  14. Testing abstract behavioral specifications

    Wong, P.Y.H.; Bubel, R.; Boer, F.S. de; Gouw, C.P.T. de; Gómez-Zamalloa, M.; Haehnle, R; Meinke, K.; Sindhu, M.A.

    2015-01-01

    We present a range of testing techniques for the Abstract Behavioral Specification (ABS) language and apply them to an industrial case study. ABS is a formal modeling language for highly variable, concurrent, component-based systems. The nature of these systems makes them susceptible to the introduc

  15. Abstracts of submitted papers

    The conference proceedings contain 152 abstracts of presented papers relating to various aspects of personnel dosimetry, the dosimetry of the working and living environment, various types of dosemeters and spectrometers, the use of radionuclides in various industrial fields, the migration of radionuclides on Czechoslovak territory after the Chernobyl accident, theoretical studies of some parameters of ionizing radiation detectors, and their calibration. (M.D.)

  16. Seismic Consequence Abstraction

    The primary purpose of this model report is to develop abstractions for the response of engineered barrier system (EBS) components to seismic hazards at a geologic repository at Yucca Mountain, Nevada, and to define the methodology for using these abstractions in a seismic scenario class for the Total System Performance Assessment - License Application (TSPA-LA). A secondary purpose of this model report is to provide information for criticality studies related to seismic hazards. The seismic hazards addressed herein are vibratory ground motion, fault displacement, and rockfall due to ground motion. The EBS components are the drip shield, the waste package, and the fuel cladding. The requirements for development of the abstractions and the associated algorithms for the seismic scenario class are defined in ''Technical Work Plan For: Regulatory Integration Modeling of Drift Degradation, Waste Package and Drip Shield Vibratory Motion and Seismic Consequences'' (BSC 2004 [DIRS 171520]). The development of these abstractions will provide a more complete representation of flow into and transport from the EBS under disruptive events. The results from this development will also address portions of integrated subissue ENG2, Mechanical Disruption of Engineered Barriers, including the acceptance criteria for this subissue defined in Section 2.2.1.3.2.3 of the ''Yucca Mountain Review Plan, Final Report'' (NRC 2003 [DIRS 163274])

  17. Reasoning abstractly about resources

    Clement, B.; Barrett, A.

    2001-01-01

    r describes a way to schedule high level activities before distributing them across multiple rovers in order to coordinate the resultant use of shared resources regardless of how each rover decides how to perform its activities. We present an algorithm for summarizing the metric resource requirements of an abstract activity based n the resource usages of its potential refinements.

  18. SPR 2015. Abstracts

    NONE

    2015-04-01

    The volume contains the abstracts of the SPR (society for pediatric radiology) 2015 meeting covering the following issues: fetal imaging, muscoskeletal imaging, cardiac imaging, chest imaging, oncologic imaging, tools for process improvement, child abuse, contrast enhanced ultrasound, image gently - update of radiation dose recording/reporting/monitoring - meaningful or useless meaning?, pediatric thoracic imaging, ALARA.

  19. ABSTRACTS AND KEY WORDS

    2012-01-01

    Morphological Variations and Discriminant Analysis of Three Populations of Mytilus coruscus Ye Ya-qiu et al. (4) Abstract The multivariate morphometrics analysis method was used for studying four morphological characters of three geographical populations of Mytilus coruscus from Sheng-si, Zhou-shan, Tai-zhou along the coast of Zhe-jiang province of China.

  20. ESPR 2014. Abstracts

    NONE

    2014-06-15

    The Proceedings on ESPR 2014 include abstracts concerning the following topics: pediatric imaging: thorax, cardiovascular system, CT-technique, head and neck, perinatal imaging, molecular imaging; interventional imaging; specific focus: muscoskeletal imaging in juvenile idiopathic arthritis; radiation protection; oncology; molecular imaging - nuclear medicine; uroradiology and abdominal imaging.

  1. ABSTRACTS AND KEY WORDS

    2012-01-01

    Study on the Enrichment Regularity of Semicarbazide in Algae Tian Xiu-hui eta1. (1) Abstract Semicarbazide (SEM) in three kinds of representative algae (Nitzschia closterium, Tetraselmis chui and Dicrateria sp) and seawater was determined using ultra performance liquid chromatogram tandem mass spectrometry in this work. Accumulation of semicarbazide (SEM) in algae under laboratory conditions was studied.

  2. Abstract Film and Beyond.

    Le Grice, Malcolm

    A theoretical and historical account of the main preoccupations of makers of abstract films is presented in this book. The book's scope includes discussion of nonrepresentational forms as well as examination of experiments in the manipulation of time in films. The ten chapters discuss the following topics: art and cinematography, the first…

  3. Thermal protection of targeted air instillation in CT-guided radiofrequency ablation; Thermische Protektion mittels gezielter Luftinstillation im Rahmen der CT-gesteuerten Radiofrequenz-Ablation

    Kamusella, P.; Wissgott, C.; Andresen, R. [Westkuestenklinikum Heide (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie/Neuroradiologie; Wiggermann, P. [Universitaetsklinikum Dresden (Germany). Radiologie; Stroszczynski, C. [Uniklinikum Regensburg (Germany). Radiologie

    2011-10-15

    To evaluate targeted intraperitoneal air instillation for the protection of adjacent structures at high-risk liver metastasis sites. On the basis of an interdisciplinary indication for radiofrequency ablation (RFA), targeted air instillation (up to 200 cc) was performed in 6 patients with a total of 6 liver metastases over an anterior or right lateral access route with a 22 G Chiba needle for the distension of the structures as well as protection against thermal damage from RFA in the close relationship of liver lesions to the stomach or colon. In 6 patients (mean age approximately 66.3 years, 4 males, 2 females) with a risky location of a colorectal metastasis (liver segment III or VI), the targeted air instillation was performed between the liver and stomach (4 / 6) and colon (2 / 6). Protection against thermal damage was able to be established in 6 / 6 liver metastases prior to RFA. All tumor sites were ablated completely without the occurrence of complications requiring treatment. The additional instillation of air into the peritoneum for distension and thermal protection is a useful extension of the RFA technique, which allows successful ablation at high-risk liver tumor sites and also allows interventional radiologists to treat tumor manifestations closely related to the colon or stomach. (orig.)

  4. Thermal Decomposition Kinetics and Mechanism of Tb(Ⅲ) m-Methylbenzoate Complex with 1,10-Phenanthroline in Static Air Atmosphere

    2002-01-01

    The thermal behavior of [Tb2(m-MBA)6(phen)2](H2O)2(m-MBA=C8H7O2, methoxybenzoate; phen=C12H8N2, 1,10-phenanthroline) in static air atmosphere was investigated by means of TG-DTG and DTA methods. The thermal decomposition of the title compound takes place mainly in two steps. The intermediate and the residue for each decomposition were identified by the TG curve. By the kinetic method of processing thermal analysis data put forward by Malek et al., it is defined that the kinetics model for the first-step thermal decomposition is SB(m,n).

  5. Detection of thermal neutrons with the PRISMA-YBJ array in Extensive Air Showers selected by the ARGO-YBJ experiment

    Bartoli, B; Bi, X J; Cao, Z; Catalanotti, S; Chen, S Z; Chen, T L; Cui, S W; Dai, B Z; D'Amone, A; Danzengluobu,; De Mitri, I; Piazzoli, B D'Ettorre; Di Girolamo, T; Di Sciascio, G; Feng, C F; Feng, Zhaoyang; Feng, Zhenyong; Gou, Q B; Guo, Y Q; He, H H; Hu, Haibing; Hu, Hongbo; Iacovacci, M; Iuppa, R; Jia, H Y; Labaciren,; Li, H J; Liu, C; Liu, J; Liu, M Y; Lu, H; Ma, L L; Ma, X H; Mancarella, G; Mari, S M; Marsella, G; Mastroianni, S; Montini, P; Ning, C C; Perrone, L; Pistilli, P; Salvini, P; Santonico, R; Shen, P R; Sheng, X D; Shi, F; Surdo, A; Tan, Y H; Vallania, P; Vernetto, S; Vigorito, C; Wang, H; Wu, C Y; Wu, H R; Xue, L; Yang, Q Y; Yang, X C; Yao, Z G; Yuan, A F; Zha, M; Zhang, H M; Zhang, L; Zhang, X Y; Zhang, Y; Zhao, J; Zhaxiciren,; Zhaxisangzhu,; Zhou, X X; Zhu, F R; Zhu, Q Q; Stenkin, Yu V; Alekseenko, V V; Aynutdinov, V; Cai, Z Y; Guo, X W; Liu, Y; Rulev, V; Shchegolev, O B; Stepanov, V; Volchenko, V; Zhang, H

    2015-01-01

    We report on a measurement of thermal neutrons, generated by the hadronic component of extensive air showers (EAS), by means of a small array of EN-detectors developed for the PRISMA project (PRImary Spectrum Measurement Array), novel devices based on a compound alloy of ZnS(Ag) and 6LiF. This array has been operated within the ARGO-YBJ experiment at the high altitude Cosmic Ray Observatory in Yangbajing (Tibet, 4300 m a.s.l.). Due to the tight correlation between the air shower hadrons and thermal neutrons, this technique can be envisaged as a simple way to get information on the EAS hadronic component, avoiding the use of huge calorimeters. Coincident events generated by primary cosmic rays of energies greater than 100 TeV have been selected and analyzed. The EN-detectors have been used to record simultaneously thermal neutrons and the air shower electromagnetic component. The density distribution of both components and the total number of thermal neutrons have been measured. The correlation of these data w...

  6. Exergetic analysis of a double stage LiBr-H{sub 2}O thermal compressor cooled by air/water and driven by low grade heat

    Izquierdo, M. [Instituto C.C. Eduardo Torroja (CSIC), Edificacion y Habitabilidad, Madrid (Spain); Venegas, M.; Garcia, N. [Universidad Carlos III de Madrid (Spain). Departamento de Ingenieria Termica y Fluidos; Palacios, E. [Universidad Politecnica de Madrid (Spain). Departamento de Mecanica Industrial

    2005-05-01

    In the present paper, an exergetic analysis of a double stage thermal compressor using the lithium bromide-water solution is performed. The double stage system considered allows obtaining evaporation temperatures equal to 5{sup o} C using solar heat coming from flat plate collectors and other low grade thermal sources. In this study, ambient air and water are alternatively used as cooling fluids without crystallization problems up to condensation-absorption temperatures equal to 50 {sup o}C. The results obtained give the entropy generated, the exergy destroyed and the exergetic efficiency of the double stage thermal compressor as a function of the absorption temperature. The conclusions obtained show that the irreversibilities generated by the double stage thermal compressor will tend to increase with the absorption temperature up to 45 {sup o}C. The maximum value corresponds to 1.35 kJ kg{sup -}1{sup K-1}. The entropy generated and the exergy destroyed by the air cooled system are higher than those by the water cooled one. The difference between the values increases when the absorption temperature increases. For an absorption temperature equal to 50 {sup o}C, the air cooled mode generates 14% more entropy and destroys 14% more exergy than the water cooled one. Also, the results are compared with those of previous studies for single and double effect air cooled and water cooled thermal compressors. The conclusions show that the double stage system has about 22% less exergetic efficiency than the single effect one and 32% less exergetic efficiency than the double effect one. (author)

  7. Thermal environmental case study of an existing underfloor air distribution (UFAD) system in a high-rise building in the tropics

    Ya, Y. H.; Poh, K. S.

    2015-09-01

    The performance of an existing underfloor air distribution (UFAD) system in a renowned high-rise office tower in Malaysia was studied to identify the root cause issues behind the poor indoor air quality. Occupants are the best thermal sensor. The building was detected with the sick building syndrome (SBS) that causes runny noses, flu-like symptoms, irritated skin, and etc. Long period of exposure to indoor air pollutants may increase the occupant's health risk. The parameters such as the space temperature, relative humidity, air movement, air change, fresh air flow rate, chilled water supply and return are evaluated at three stories that consist of five open offices. A full traverse study was carried out at one of the fresh air duct. A simplified duct flow measurement method using pitot-tubes was developed. The results showed that the diffusers were not effective in creating the swirl effect to the space. Internal heat gain from human and office electrical equipment were not drawn out effectively. Besides, relative humidity has exceeded the recommended level. These issues were caused by the poor maintenance of the building. The energy efficiency strategy of the UFAD system comes from the higher supply air temperature. It may leads to insufficient cooling load for the latent heat gained under improper system performance. Special care and considerations in design, construction and maintenance are needed to ensure the indoor air quality to be maintained. Several improvements were recommended to tackle the existing indoor air quality issues. Solar system was studied as one of the innovative method for retrofitting.

  8. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering

  9. Abstracts of Main Essays

    2012-01-01

    The Position of Capitalist Study in Marx's Social Formation Theory Yang Xue-gong Xi Da-min The orientation and achievements of Marx's study of Capitalism or bourgeois society is the foundation of his social formation theory. On the base of his scientific study of capitalism, Marx evolves his concept of eco- nomic social formation, the scientific methodology of researching other social formations or social forms, the clues of the development of social formations, the abstraction of the general laws as well as his reflection on this abstraction. A full evaluation and acknowledgement of the position of capitalist study in Marx's social formation theory is crucial for revising Marx's social formation theory in the new era and for solving some controversial issues in the research of social formation theory.

  10. Ghana Science Abstracts

    This issue of the Ghana Science Abstracts combines in one publication all the country's bibliographic output in science and technology. The objective is to provide a quick reference source to facilitate the work of information professionals, research scientists, lecturers and policy makers. It is meant to give users an idea of the depth and scope and results of the studies and projects carried out. The scope and coverage comprise research outputs, conference proceedings and periodical articles published in Ghana. It does not capture those that were published outside Ghana. Abstracts reported have been grouped under the following subject areas: Agriculture, Biochemistry, Biodiversity conservation, biological sciences, biotechnology, chemistry, dentistry, engineering, environmental management, forestry, information management, mathematics, medicine, physics, nuclear science, pharmacy, renewable energy and science education

  11. The deleuzian abstract machines

    Werner Petersen, Erik

    2005-01-01

    in emphasis from the three syntheses to mappings and rhizomatic diagrams that cut across semiotics or “blow apart regimes of signs”. The aim here is the absolute deterritorialization. Deleuze has shown how abstract machines operate in the philosophy of Foucault, the literature of Proust and Kafka......, and the painting of Bacon. We will finish our presentation by showing how these machines apply to architecture....

  12. SPR 2014. Abstracts

    NONE

    2014-05-15

    The proceedings of the SPR 2014 meeting include abstracts on the following topics: Body imaging techniques: practical advice for clinic work; thoracic imaging: focus on the lungs; gastrointestinal imaging: focus on the pancreas and bowel; genitourinary imaging: focus on gonadal radiology; muscoskeletal imaging; focus on oncology; child abuse and nor child abuse: focus on radiography; impact of NMR and CT imaging on management of CHD; education and communication: art and practice in pediatric radiology.

  13. NPP life management (abstracts)

    Abstracts of the papers presented at the International conference of the Ukrainian Nuclear Society 'NPP Life Management'. The following problems are considered: modernization of the NPP; NPP life management; waste and spent nuclear fuel management; decommissioning issues; control systems (including radiation and ecological control systems); information and control systems; legal and regulatory framework. State nuclear regulatory control; PR in nuclear power; training of personnel; economics of nuclear power engineering

  14. Medical physics 2013. Abstracts

    The proceedings of the medical physics conference 2013 include abstract of lectures and poster sessions concerning the following issues: Tele-therapy - application systems, nuclear medicine and molecular imaging, neuromodulation, hearing and technical support, basic dosimetry, NMR imaging -CEST (chemical exchange saturation transfer), medical robotics, magnetic particle imaging, audiology, radiation protection, phase contrast - innovative concepts, particle therapy, brachytherapy, computerized tomography, quantity assurance, hybrid imaging techniques, diffusion and lung NMR imaging, image processing - visualization, cardiac and abdominal NMR imaging.

  15. SPR 2014. Abstracts

    The proceedings of the SPR 2014 meeting include abstracts on the following topics: Body imaging techniques: practical advice for clinic work; thoracic imaging: focus on the lungs; gastrointestinal imaging: focus on the pancreas and bowel; genitourinary imaging: focus on gonadal radiology; muscoskeletal imaging; focus on oncology; child abuse and nor child abuse: focus on radiography; impact of NMR and CT imaging on management of CHD; education and communication: art and practice in pediatric radiology.

  16. Abstracts of the communications

    2014-01-01

    (P) paper, (A) abstract only Dietary patterns and habitat of the Grimm’s duiker, Sylvicapra grimmia in Benin, (P)Abdoul Razack Adjibi Oualiou, Jean Claude Codjia, Guy Apollinaire Mensah The distribution of protected areas and conservation of flora in the republic of Benin, (P)Aristide Adomou, Hounnankpon Yedomonhan, Brice Sinsin, Laurentius Josephus and Gerardus Van Der Maesen The problem of invasive plants in protected areas. Chromolaena odorata in the regeneration process of the dense, semi...

  17. Historical development of abstracting.

    Skolnik, H

    1979-11-01

    The abstract, under a multitude of names, such as hypothesis, marginalia, abridgement, extract, digest, précis, resumé, and summary, has a long history, one which is concomitant with advancing scholarship. The progression of this history from the Sumerian civilization ca. 3600 B.C., through the Egyptian and Greek civilizations, the Hellenistic period, the Dark Ages, Middle Ages, Renaissance, and into the modern period is reviewed. PMID:399482

  18. WWNPQFT-2011 - Abstracts

    The object of this workshop is to consolidate and publicize new efforts in non-perturbative field theories. This year the presentations deal with quantum gravity, non-commutative geometry, fat-tailed wave-functions, strongly coupled field theories, space-times two time-like dimensions, and multiplicative renormalization. A presentation is dedicated to the construction of a nucleon-nucleon potential from an analytical, non-perturbative gauge invariant QCD. This document gathers the abstracts of the presentations

  19. Thermally-driven advections of aerosol-rich air masses to an Alpine valley: Theoretical considerations and experimental evidences

    Diémoz, Henri; Magri, Tiziana; Pession, Giordano; Zublena, Manuela; Campanelli, Monica; Gobbi, Gian Paolo; Barnaba, Francesca; Di Liberto, Luca; Dionisi, Davide

    2016-04-01

    A CHM-15k laser radar (lidar) was installed in April 2015 at the solar observatory of the Environmental Protection Agency (ARPA) of the Aosta Valley (Northern Italy, 45.74N, 7.36E, 560 m a.s.l.). The instrument operates at 1064 nm, is capable of mapping the vertical profile of aerosols and clouds up to the tropopause and is part of the Alice-net ceilometers network (www.alice-net.eu). The site is in a large Alpine valley floor, in a semi-rural context. Among the most interesting cases observed in the first months of operation, several days characterised by weak synoptic circulation and well-developed, thermally-driven up-valley winds are accompanied by the appearance of a thick aerosol layer in the afternoon. The phenomenon is frequent in Spring and Summer and is likely to be related to easterly airmass advections from polluted sites (e.g., the Po basin) rather than to local emissions. To test this hypothesis, the following method was adopted. First, some case studies were selected and the respective meteorological fields were analysed based on both observations at ground and the high-resolution output of the nonhydrostatic limited-area atmospheric prediction model maintained by the COnsortium for Small-scale MOdelling (COSMO) over the complex orography of the domain. Then, to evaluate the dynamics of the aerosol diffusion in the valley, the chemical transport 2D/3D eulerian Flexible Air quality Regional Model (FARM) was run. Finally, the three-dimensional output of the model was compared to the vertically-resolved aerosol field derived from the lidar-ceilometer soundings. The effects of up-slope winds, and the resulting subsidence along the main axis of the valley, is hypothesised to break up the aerosol layer close to the ground in the middle of the day and to drag the residual layer down into the mixing layer. The measurements by a co-located sun/sky photometer operating in the framework of the EuroSkyRad (ESR) network were additionally analysed to detect any

  20. EBS Radionuclide Transport Abstraction

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment (TSPA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport model considers advective transport and diffusive transport

  1. Energy-smart calculation of thermal loads in mobile and stationary heating, ventilation, air conditioning, and refrigeration systems

    Fayazbakhsh, Mohammad Ali

    2015-01-01

    The energy consumption by heating, ventilation, air conditioning, and refrigeration systems forms a large portion of the total energy usage in buildings. Vehicle fuel consumption and emissions are also significantly affected by air conditioning. Air conditioning is also a critical system for hybrid electric vehicles and electric vehicles as the second most energy consuming system after the electric motor. Proper design and efficient operation of air conditioning systems require accurate calcu...

  2. Studi Eksperimental Pengaruh Laju Aliran Air Terhadap Efisiensi Thermal pada Kolektor Surya Pemanas Air dengan Penambahan External Helical Fins pada Pipa

    Sandy Pramirtha

    2015-03-01

    Full Text Available Energi matahari merupakan salah satu sumber energi alternatif untuk menggantikan peran minyak bumi sebagai sumber energi utama. Kolektor surya pemanas air merupakan salah satu contoh pemanfaatan energi surya. Ada beberapa tipe kolektor surya salah satunya adalah  kolektor surya pelat datar, tetapi kolektor surya pelat datar memiliki tingkat efisiensi yang rendah. Salah satu cara untuk meningkatkan efisiensi dari kolektor surya pemanas air pelat datar adalah dengan menambahkan fins pada pipa-pipa yang mengalirkan air. Salah satu bentuk fins yang dapat digunakan adalah helical fins. Pengujian dilakukan dengan variasi debit aliran air yaitu 75 liter/jam, 150 liter/jam, 225 liter/jam dan 300 liter/jam serta variasi warna kaca penutup yaitu warna hitam dan bening. Kolektor surya diletakkan pada sudut kemiringan β = 10o. Pengambilan data dimulai pukul 09.00-15.00 WIB. Setiap satu jam dilakukan pengambilan data berupa temperatur fluida masuk, temperatur fluida keluar, temperatur pelat absorber, temperatur cover glass, temperatur base dan intensitas matahari. Hasil yang didapatkan dari penelitian ini adalah efisiensi rerata kolektor terbesar terjadi pada kolektor dengan kaca penutup bening untuk variasi debit aliran air 300 liter/jam yaitu sebesar 63.06%, energi berguna terbesar terjadi pada kolektor dengan kaca penutup bening untuk variasi debit aliran air 300 liter/jam yaitu sebesar 1.24 MJ, serta temperatur air keluar kolektor terbesar terjadi pada kaca penutup bening dengan variasi debit aliran air 75 liter/jam yaitu sebesar 49 oC. Penambahan helical fins pada pipa tembaga dapat meningkatkan efisiensi kolektor. Kolektor surya dengan helical fins mempunyai efisiensi yang lebih tinggi dibandingkan kolektor tanpa fin maupun annular fins.

  3. Thermal-optical analysis for the measurement of elemental carbon (EC and organic carbon (OC in ambient air a literature review

    A. Karanasiou

    2015-09-01

    Full Text Available Thermal-optical analysis is currently under consideration by the European standardization body (CEN as the reference method to quantitatively determine organic carbon (OC and elemental carbon (EC in ambient air. This paper presents an overview of the critical parameters related to the thermal-optical analysis including thermal protocols, critical factors and interferences of the methods examined, method inter-comparisons, inter-laboratory exercises, biases and artifacts, and reference materials. The most commonly used thermal protocols include NIOSH-like, IMPROVE_A and EUSAAR_2 protocols either with light transmittance or reflectance correction for charring. All thermal evolution protocols are comparable for total carbon (TC concentrations but the results vary significantly concerning OC and especially EC concentrations. Thermal protocols with a rather low peak temperature in the inert mode like IMPROVE_A and EUSAAR_2 tend to classify more carbon as EC compared to NIOSH-like protocols, while charring correction based on transmittance usually leads to smaller EC values compared to reflectance. The difference between reflectance and transmittance correction tends to be larger than the difference between different thermal protocols. Nevertheless, thermal protocols seem to correlate better when reflectance is used as charring correction method. The difference between EC values as determined by the different protocols is not only dependent on the optical pyrolysis correction method, but also on the chemical properties of the samples due to different contributions from various sources. The overall conclusion from this literature review is that it is not possible to identify the "best" thermal-optical protocol based on literature data only, although differences attributed to the methods have been quantified when possible.

  4. Thermal-optical analysis for the measurement of elemental carbon (EC) and organic carbon (OC) in ambient air a literature review

    Karanasiou, A.; Minguillón, M. C.; Viana, M.; Alastuey, A.; Putaud, J.-P.; Maenhaut, W.; Panteliadis, P.; Močnik, G.; Favez, O.; Kuhlbusch, T. A. J.

    2015-09-01

    Thermal-optical analysis is currently under consideration by the European standardization body (CEN) as the reference method to quantitatively determine organic carbon (OC) and elemental carbon (EC) in ambient air. This paper presents an overview of the critical parameters related to the thermal-optical analysis including thermal protocols, critical factors and interferences of the methods examined, method inter-comparisons, inter-laboratory exercises, biases and artifacts, and reference materials. The most commonly used thermal protocols include NIOSH-like, IMPROVEA and EUSAAR2 protocols either with light transmittance or reflectance correction for charring. All thermal evolution protocols are comparable for total carbon (TC) concentrations but the results vary significantly concerning OC and especially EC concentrations. Thermal protocols with a rather low peak temperature in the inert mode like IMPROVEA and EUSAAR2 tend to classify more carbon as EC compared to NIOSH-like protocols, while charring correction based on transmittance usually leads to smaller EC values compared to reflectance. The difference between reflectance and transmittance correction tends to be larger than the difference between different thermal protocols. Nevertheless, thermal protocols seem to correlate better when reflectance is used as charring correction method. The difference between EC values as determined by the different protocols is not only dependent on the optical pyrolysis correction method, but also on the chemical properties of the samples due to different contributions from various sources. The overall conclusion from this literature review is that it is not possible to identify the "best" thermal-optical protocol based on literature data only, although differences attributed to the methods have been quantified when possible.

  5. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  6. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  7. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Sabanskis A.; Virbulis J.

    2016-01-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Result...

  8. Assessment of MARS for downcomer multi-dimensional thermal hydraulics during LBLOCA reflood using KAERI air-water direct vessel injection tests

    The MARS code has been assessed for the downcomer multi-dimensional thermal hydraulics during a large break loss-of-coolant accident (LBLOCA) reflood of Korean Next Generation Reactor (KNGR) that adopted an upper direct vessel injection (DVI) design. Direct DVI bypass and downcomer level sweep-out tests carried out at 1/50-scale air-water DVI test facility are simulated to examine the capability of MARS. Test conditions are selected such that they represent typical reflood conditions of KNGR, that is, DVI injection velocities of 1.0 ∼ 1.6 m/sec and air injection velocities of 18.0 ∼ 35.0 m/sec, for single and double DVI configurations. MARS calculation is first adjusted to the experimental DVI film distribution that largely affects air-water interaction in a scaled-down downcomer, then, the code is assessed for the selected test matrix. With some improvements of MARS thermal-hydraulic (T/H) models, it has been demonstrated that the MARS code is capable of simulating the direct DVI bypass and downcomer level sweep-out as well as the multi-dimensional thermal hydraulics in downcomer, where condensation effect is excluded. (authors)

  9. Inyección de aire secundario caliente en calderas de vapor bagaceras y su influencia en el rendimiento térmico Injection of heated secondary air in steam bagasse boilers and its influence on thermal efficiency

    Marcos A. Golato

    2005-12-01

    Full Text Available Como alternativa para aumentar la eficiencia térmica de calderas bagaceras productoras de vapor, se evalúa la inyección de aire secundario al hogar, previamente calentado. Además, se reúne información sobre la combustión y los factores que influyen en dicho fenómeno. Se calculó el rendimiento térmico en una caldera bagacera con inyección de aire secundario frío, mediante el empleo de balances de masa y energía con datos de ensayos experimentales. Se planteó luego un modelo teórico para el caso de calentar todo este aire secundario, y se determinó el nuevo rendimiento térmico. Finalmente se realizó un análisis técnico-económico para evaluar la rentabilidad del uso de esta tecnología, teniendo en cuenta el ahorro de bagazo y su equivalente en gas natural. Para el caso analizado, los resultados mostraron: aumento del rendimiento térmico de la caldera (1,62 puntos; mejora del índice de generación de vapor (2,27%; reducción del consumo de bagazo (2,45%; aceptable periodo de repago de la inversión (114 días de zafra.Previously heated secondary air injection is evaluated as an alternative to increase thermal efficiency of bagasse steam boilers. Aspects regarding the combustion process and the factors affecting it are also described. Tests were made in a bagasse boiler of a sugar mill. Thermal efficiency of the bagasse boiler with cold secondary air injection was determined by solving mass and energy balances. A new thermal efficiency for the case in which all secondary air is pre-heated with hot gases was determined afterwards. Finally, a technical-economic analysis was made to evaluate the yield of this technology, taking into account bagasse saving and its equivalent in natural gas. For the analyzed case, the results showed: an increase in the thermal efficiency of the boiler (1,62 points; a higher steam production index (2,27%; a reduction in bagasse consumption (2,45%; an acceptable payback period of the investment (114

  10. Beyond the abstractions?

    Olesen, Henning Salling

    2006-01-01

      The anniversary of the International Journal of Lifelong Education takes place in the middle of a conceptual landslide from lifelong education to lifelong learning. Contemporary discourses of lifelong learning etc are however abstractions behind which new functions and agendas for adult education...... are set. The ideological discourse of recent policies seems to neglect the fact that history and resources for lifelong learning are different across Europe, and also neglects the multiplicity of adult learners. Instead of refusing the new agendas, however, adult education research should try to dissolve...... learning. Adult education research must fulfil it's potential conversion from normative philosophy to critical and empirical social science....

  11. Program and abstracts

    This volume contains the program and abstracts of the conference. The following topics are included: metal vapor molecular lasers, magnetohydrodynamics, rare gas halide and nuclear pumped lasers, transfer mechanisms in arcs, kinetic processes in rare gas halide lasers, arcs and flows, XeF kinetics and lasers, fundamental processes in excimer lasers, electrode effects and vacuum arcs, electron and ion transport, ion interactions and mobilities, glow discharges, diagnostics and afterglows, dissociative recombination, electron ionization and excitation, rare gas excimers and group VI lasers, breakdown, novel laser pumping techniques, electrode-related discharge phenomena, photon interactions, attachment, plasma chemistry and infrared lasers, electron scattering, and reactions of excited species

  12. Circularity and Lambda Abstraction

    Danvy, Olivier; Thiemann, Peter; Zerny, Ian

    2013-01-01

    In this tribute to Doaitse Swierstra, we present the rst transformation between lazy circular programs a la Bird and strict cir- cular programs a la Pettorossi. Circular programs a la Bird rely on lazy recursive binding: they involve circular unknowns and make sense equa- tionally. Circular...... unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...

  13. IPR 2016. Abstracts

    NONE

    2016-05-15

    The volume on the meeting of pediatric radiology includes abstract on the following issues: chest, cardiovascular system, neuroradiology, CT radiation DRs (diagnostic reference levels) and dose reporting guidelines, genitourinary imaging, gastrointestinal radiology, oncology an nuclear medicine, whole body imaging, fetal/neonates imaging, child abuse, oncology and hybrid imaging, value added imaging, muscoskeletal imaging, dose and radiation safety, imaging children - immobilization and distraction techniques, information - education - QI and healthcare policy, ALARA, the knowledge skills and competences for a technologist/radiographer in pediatric radiology, full exploitation of new technological features in pediatric CT, image quality issues in pediatrics, abdominal imaging, interventional radiology, MR contrast agents, tumor - mass imaging, cardiothoracic imaging, ultrasonography.

  14. ESPR 2015. Abstracts

    NONE

    2015-05-10

    The volume includes the abstracts of the ESPR 2015 covering the following topics: PCG (post graduate courses): Radiography; fluoroscopy and general issue; nuclear medicine, interventional radiology and hybrid imaging, pediatric CT, pediatric ultrasound; MRI in childhood. Scientific sessions and task force sessions: International aspects; neuroradiology, neonatal imaging, engineering techniques to simulate injury in child abuse, CT - dose and quality, challenges in the chest, cardiovascular and chest, muscoskeletal, oncology, pediatric uroradiology and abdominal imaging, fetal and postmortem imaging, education and global challenges, neuroradiology - head and neck, gastrointestinal and genitourinary.

  15. IPR 2016. Abstracts

    The volume on the meeting of pediatric radiology includes abstract on the following issues: chest, cardiovascular system, neuroradiology, CT radiation DRs (diagnostic reference levels) and dose reporting guidelines, genitourinary imaging, gastrointestinal radiology, oncology an nuclear medicine, whole body imaging, fetal/neonates imaging, child abuse, oncology and hybrid imaging, value added imaging, muscoskeletal imaging, dose and radiation safety, imaging children - immobilization and distraction techniques, information - education - QI and healthcare policy, ALARA, the knowledge skills and competences for a technologist/radiographer in pediatric radiology, full exploitation of new technological features in pediatric CT, image quality issues in pediatrics, abdominal imaging, interventional radiology, MR contrast agents, tumor - mass imaging, cardiothoracic imaging, ultrasonography.

  16. Abstracts of Major Articles

    2012-01-01

    On Problems in Fujian's Present Health Insurance Professionals and Related Suggestions LIN Deng-hui,WU Xiao-nan (School of Public Health, Fujian Medical University, Fuzhou 350108, China) Abstract:Based on a statistical analysis of questionnaire survey data collected from practitioners in Fu- jian's medical insurance management system, the paper discusses the problems relevant to the staff's qua lity structure in this industry as well as mechanisms for continuing education and motivation. Finally, the authors advance such suggestions as increasing the levels of practitioner's expertise and working capacity by developing disciplinary education and continuing motivated with a well-established motivation system. education, and encouraging employees to get highly

  17. Las masas de aire que afectan el sur de la provincia de Santa Fe y su relación con la precipitación diaria en enero Classification of air masses that affect the south of Santa Fe, their trajectories and the relationship between them to the the daily precipitation in January abstract

    Alejandra S. Coronel

    2010-06-01

    temperatures; Moderate Humid: very humid air mass, daily losses thermal amplitude, associated to the previous conditions to the passage of cold fronts. The 50% of the precipitation days happen during Warm Humid masses and the 32% with Moderate Humid, and 93% of the most intense occurs during these masses. Moderate Humid have major efficiency in the precipitation occurrence because in 50% of the cases precipitates, and for Warm Humid only in 27%.

  18. Computer code abstract: NESTLE

    NESTLE is a few-group neutron diffusion equation solver utilizing the nodal expansion method (NEM) for eigenvalue, adjoint, and fixed-source steady-state and transient problems. The NESTLE code solve the eigenvalue (criticality), eigenvalue adjoint, external fixed-source steady-state, and external fixed-source or eigenvalue initiated transient problems. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two- or four-energy groups can be utilized, with all energy groups being thermal groups (i.e., upscatter exits) is desired. Core geometries modeled include Cartesian and hexagonal. Three-, two-, and one-dimensional models can be utilized with various symmetries. The thermal conditions predicted by the thermal-hydraulic model of the core are used to correct cross sections for temperature and density effects. Cross sections for temperature and density effects. Cross sections are parameterized by color, control rod state (i.e., in or out), and burnup, allowing fuel depletion to be modeled. Either a macroscopic or microscopic model may be employed

  19. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-01

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. PMID:25576042

  20. In-situ, in air, high-temperature phase transformations in rare-earth niobates and titanium oxides (dysprosium and yttrium) using a thermal-image furnace

    Siah, Lay Foong

    Thermal-image furnaces afford two major advantages over the conventional resistance heating systems for high-temperature studies of oxides in air, namely: (i) the highly localized heating allows temperatures in excess of 2500°C to be reached in air or in an oxidizing atmosphere, and (ii) no sample contamination from volatile furnace components since the sample is heated by absorption of a focused, high intensity light beam. In this work, we developed a compact furnace powered by four halogen infrared reflector lamps (150 W each), for in-situ high-temperature studies using synchrotron radiation. The primary objective was to evaluate the feasibility of the thermal-image technique for in-situ, in air, studies of high-temperature phase transformations in oxide ceramics. Specifically, the issues of temperature measurement and reliability of results obtained in comparison with published literature were addressed. The use of a co-existent "in-situ thermometer" was found to be a viable method to monitor the sample temperature in the image "hot-spot". Studies of YNbO4 and DyNbO4 revealed the existence of a new cubic phase at elevated temperatures beyond the commonly known ferroelastic monoclinic-to-paraelastic tetragonal transformations. A series of high-temperature powder patterns of the pure hexagonal phase of DY2TiO5 was also collected in-situ, in air.

  1. Effects of Thermal Mass, Window Size, and Night-Time Ventilation on Peak Indoor Air Temperature in the Warm-Humid Climate of Ghana

    S. Amos-Abanyie

    2013-01-01

    Full Text Available Most office buildings in the warm-humid sub-Saharan countries experience high cooling load because of the predominant use of sandcrete blocks which are of low thermal mass in construction and extensive use of glazing. Relatively, low night-time temperatures are not harnessed in cooling buildings because office openings remain closed after work hours. An optimization was performed through a sensitivity analysis-based simulation, using the Energy Plus (E+ simulation software to assess the effects of thermal mass, window size, and night ventilation on peak indoor air temperature (PIAT. An experimental system was designed based on the features of the most promising simulation model, constructed and monitored, and the experimental data used to validate the simulation model. The results show that an optimization of thermal mass and window size coupled with activation of night-time ventilation provides a synergistic effect to obtain reduced peak indoor air temperature. An expression that predicts, indoor maximum temperature has been derived for models of various thermal masses.

  2. EBS Radionuclide Transport Abstraction

    J.D. Schreiber

    2005-08-25

    The purpose of this report is to develop and analyze the engineered barrier system (EBS) radionuclide transport abstraction model, consistent with Level I and Level II model validation, as identified in ''Technical Work Plan for: Near-Field Environment and Transport: Engineered Barrier System: Radionuclide Transport Abstraction Model Report Integration'' (BSC 2005 [DIRS 173617]). The EBS radionuclide transport abstraction (or EBS RT Abstraction) is the conceptual model used in the total system performance assessment for the license application (TSPA-LA) to determine the rate of radionuclide releases from the EBS to the unsaturated zone (UZ). The EBS RT Abstraction conceptual model consists of two main components: a flow model and a transport model. Both models are developed mathematically from first principles in order to show explicitly what assumptions, simplifications, and approximations are incorporated into the models used in the TSPA-LA. The flow model defines the pathways for water flow in the EBS and specifies how the flow rate is computed in each pathway. Input to this model includes the seepage flux into a drift. The seepage flux is potentially split by the drip shield, with some (or all) of the flux being diverted by the drip shield and some passing through breaches in the drip shield that might result from corrosion or seismic damage. The flux through drip shield breaches is potentially split by the waste package, with some (or all) of the flux being diverted by the waste package and some passing through waste package breaches that might result from corrosion or seismic damage. Neither the drip shield nor the waste package survives an igneous intrusion, so the flux splitting submodel is not used in the igneous scenario class. The flow model is validated in an independent model validation technical review. The drip shield and waste package flux splitting algorithms are developed and validated using experimental data. The transport

  3. 车站高大空间空调系统气流组织与热舒适性分析%Air Distribution and Thermal Comfort of Air Conditioning System in a Large Space Building of Railway Station

    常远; 刘泽勤

    2014-01-01

    兼顾人体热舒适和建筑节能的要求,对目前车站高大空间空调气流组织的数值模拟研究报道进行对比分析。分析结果显示,人们对高大空间建筑室内热舒适要求高于居住建筑和办公建筑;从满足人体热舒适角度出发,空调送风加地板辐射供冷方案适于夏季满员工况,地板辐射供热加空调加湿方案适用于冬季满员工况;高大空间的空调系统适宜采用上送上回的送风方式,其温度场和速度场均优于上送下回的空调送风方式;在高大空间内设置分层空调系统将在一定程度上降低空调能耗,且分层空调中送风速度对分层界面的位置影响较大,送风温差对高大空间分层空调的温度分布和流场分布有较大影响。%The numerical simulation of air distribution of air conditioning in larger space of current railway stations are studied with consideration to requirements of both human thermal comfort and building energy efficiency. The analysis shows that, the indoor thermal comfort requirements of human body in large space building are more than that in residential buildings and office buildings. The scheme of the air con-ditioning supply air plus radiant floor cooling is suitable for the full working conditions in summer from the viewpoint of satisfying the human thermal comfort, and the scheme of the floor radiant heating plus air con-ditioning humidification is suitable for the full working conditions in winter. The air supply mode of upper supply top return is suitable for air conditioning system in large space buildings, and the temperature field and velocity field of this mode were superior to the mode of upper supply bottom return. The stratified air conditioning systems installed in large space could reduce the energy consumption of the air conditioning system to a certain extent, the velocity of supply air in the stratified air conditioning system has greater in-fluence on the position

  4. Summer 2015 Internship Abstract

    Smith, Courtney

    2015-01-01

    Green fluorescent protein (GFP) visually shows the expression of proteins by fluorescing when exposed to certain wavelengths of light. The GFP in this experiment was used to identify cells actively releasing viruses. The experiment focused on the effect of microgravity on the GFP expression of Akata B-cells infected with Epstein Barr Virus (EBV). Two flasks were prepared with 30 million cells each and two bioreactors were prepared with 50 million cells each. All four cultures were incubated for 16 days and fed every four days. Cellometer readings were taken on the feeding days to find cell size, viability, and GFP expression. In addition, the cells were treated with Propodium monoazide (PMA) and run through real time PCR to determine viral load on the feeding days. On the International Space Station air samples are taken to analyze the bacterial and fungal organisms in the air. The Sartorius Portable Airport is being investigated for potential use on the ISS to analyze for viral content in the air. Multiple samples were taken around Johnson Space Center building 37 and in Clear Lake Pediatric Clinic. The filter used was the gelatin membrane filter and the DNA was extracted directly from the filter. The DNA was then run through real time PCR for Varicella Zoster Virus (VZV) and EBV as well as GAPDH to test for the presence of DNA. The results so far have shown low DNA yield and no positive results for VZV or EBV. Further inquiry involves accurately replicating an atmosphere with high viral load from saliva as would be found on the ISS to run the air sampler in. Another line of research is stress hormones that may be correlated to the reactivation of latent viruses. The stress hormones from saliva samples are analyzed rather than blood samples. The quantity found in saliva shows the quantity of the hormones actually attached to cells and causing a reaction, whereas in the blood the quantity of hormones is the total amount released to cause a reaction. The particular

  5. Thermography colloquium 2015. Abstracts

    The USB stick contains 17 lectures which where held on the Thermography colloquium 2015 in Leinfelden-Echterdingen (Germany). Here a selection of the topics: Thermal Chladni sound figures in nondestructive testing (M. Rahammer); Flash thermography with several flashes (R. Krankenhagen); Frequency optimization of ultrasound-induced thermography during the measurement (C. Srajbr); Worldwide introduction of a thermographic inspection system for gas turbine components (M. Goldammer); Practical aspects of automation of thermographic weld inspection (G.Mahler); Investigations to determine the crack depth with inductive thermography (B. Oswald-Tranta); Testing of spot welds with laser thermography (M. Ziegler).

  6. A LARI Experience (Abstract)

    Cook, M.

    2015-12-01

    (Abstract only) In 2012, Lowell Observatory launched The Lowell Amateur Research Initiative (LARI) to formally involve amateur astronomers in scientific research by bringing them to the attention of and helping professional astronomers with their astronomical research. One of the LARI projects is the BVRI photometric monitoring of Young Stellar Objects (YSOs), wherein amateurs obtain observations to search for new outburst events and characterize the colour evolution of previously identified outbursters. A summary of the scientific and organizational aspects of this LARI project, including its goals and science motivation, the process for getting involved with the project, a description of the team members, their equipment and methods of collaboration, and an overview of the programme stars, preliminary findings, and lessons learned is presented.

  7. Abstracts of Selected Papers

    2012-01-01

    On the Social Solidarity of Organization An Empirical Analysis Li Hanlin Abstract: Based on the 2002 survey data, this paper tries to measure solidarity in organization. The operationalization for this measurement goes from two points of view. One is from the degree of cohesion and another one is from the degree of vulnerability. To observe and measure the degree of cohesion three subscales like social support, vertical integration and organizational identity have been used. To observe and measure the degree of vulnerability other three subscales like dissatisfaction, relative deprivation and anomie have been used. The paper tries to explore finally under which condition the organization behavior and behavior orientation could go to the similarity or make some difference. Key words: Organization Cohesion Vulnerability Organization Behavior

  8. ABSTRACTS AND KEY WORDS

    2012-01-01

    Determination of the Estrogen Alkylphenols and Bisphenol A in Marine Sediments by Gas Chromatography-Mass Spectrometry Deng Xu-xiu et al. (1) Abstract Octylphenol, nonylphenol and bisphenol A are recognized environmental endocrine disruptors. A quantitative method was established for the simultaneous determination of octylphenol, nonylphenol and bisphenol A in marine sediments by gas chromatography-mass spectrometry. The test sample was extracted by methanol with ultrasonic technique, purified with copper powder and carbon solid phase extraction column, and derived with heptafluorobutyric anhydride. Then the analytes were separated on HP-5ms column and determined by gas chromatography-mass. The recovery of the method was between 84.3% and 94.5%, and the LOQ of 4-N- octylphenol, nonylphenol and bisphenol A was 0.25 g/kg, 0.15 g/kg and 0.15 g/kg. Key words octylphenol; nonylphenol; bisphenol A; gas chromatography-mass spectrometry

  9. Contents and Abstracts

    2012-01-01

    [Ancient Mediterranean Civilizations] Title: On Poseidon's Image in Homeric Epics Author: Zhu Yizhang, Lecturer, School of History and Culture, Shandong University, Jinan, Shandong, 250100, China. Abstract: Poseidon was an important role in religion, myth and literature of ancient Greece. His religious functions, and status in mythical image in literature were mainly established by Homeric Epics. Poseidon doesn't only appear frequently in the Homeric Epics but also influences the development of the plots directly; therefore, he could be seen as one of the most important gods in the Epics. But Homeric Epics do not introduce his basic image clearly. In Homeric Epics, Poseidon carries the deity and humanity aspect of the figure, and the latter was emphasized, which implied his archetype was a mortal wanax.

  10. ICENES 2007 Abstracts

    In this book Conference Program and Abstracts were included 13th International Conference on Emerging Nuclear Energy Systems which held between 03-08 June 2007 in Istanbul, Turkey. The main objective of International Conference series on Emerging Nuclear Energy Systems (ICENES) is to provide an international scientific and technical forum for scientists, engineers, industry leaders, policy makers, decision makers and young professionals who will shape future energy supply and technology , for a broad review and discussion of various advanced, innovative and non-conventional nuclear energy production systems. The main topics of 159 accepted papers from 35 countries are fusion science and technology, fission reactors, accelerator driven systems, transmutation, laser in nuclear technology, radiation shielding, nuclear reactions, hydrogen energy, solar energy, low energy physics and societal issues

  11. ABSTRACTS AND KEY WORDS

    2012-01-01

    Comparative Study on Adhesion Effect Among Different Materials of Sepia esculenta Wang Xue-mei et al. (1) Abstract PE Harness, mesh, sea cucumber seedling box attached, sorghum bar, tamarix (fresh, and old), artemisia annua (fresh, and old) and artificial egg-based subsidiary were used as spawning substrates of Sepia esculenta for comparative study on adhesion effect during artificial breeding. The results showed that the best was artificial egg-based subsidiary produced by the process of invention in this study. The second was old artemisia annua and tamarix. PE Harness, mesh, sea cucumber seedling box attached, sorghum bar were unsatisfactory for using as spawning substrates of Sepia esculenta. Key words Sepia esculenta; adhesion effect; different materials

  12. Teaching for Abstraction: A Model

    White, Paul; Mitchelmore, Michael C.

    2010-01-01

    This article outlines a theoretical model for teaching elementary mathematical concepts that we have developed over the past 10 years. We begin with general ideas about the abstraction process and differentiate between "abstract-general" and "abstract-apart" concepts. A 4-phase model of teaching, called Teaching for Abstraction, is then proposed…

  13. Abstraction of Drift-Scale Coupled Processes

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M andO 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  14. Book of Abstracts

    ANIMMA 2013 is the third of a series of conferences devoted to endorsing and promoting scientific and technical activities based on nuclear instrumentation and measurements. The main objective of ANIMMA conference is to unite the various scientific communities not only involved in nuclear instrumentation and measurements, but also in nuclear medicine and radiation. The conference is all about getting scientists, engineers and the industry to meet, exchange cultures and identify new scientific and technical prospects to help overcome both current and future unresolved issues. The conference provides scientists and engineers with a veritable opportunity to compare their latest research and development in different areas: physics, nuclear energy, nuclear fuel cycle, safety, security, future energies (GEN III+, GENIV, ITER, ...). The conference topics include instrumentation and measurement methods for: Fundamental physics; Fusion diagnostics and technology; Nuclear power reactors; Research reactors; Nuclear fuel cycle; Decommissioning, dismantling and remote handling; Safeguards, homeland security; Severe accident monitoring; Environmental and medical sciences; Education, training and outreach. This document brings together the abstracts of the presentations. Each presentation (full paper) is analysed separately and entered in INIS

  15. Stellar Presentations (Abstract)

    Young, D.

    2015-12-01

    (Abstract only) The AAVSO is in the process of expanding its education, outreach and speakers bureau program. powerpoint presentations prepared for specific target audiences such as AAVSO members, educators, students, the general public, and Science Olympiad teams, coaches, event supervisors, and state directors will be available online for members to use. The presentations range from specific and general content relating to stellar evolution and variable stars to specific activities for a workshop environment. A presentation—even with a general topic—that works for high school students will not work for educators, Science Olympiad teams, or the general public. Each audience is unique and requires a different approach. The current environment necessitates presentations that are captivating for a younger generation that is embedded in a highly visual and sound-bite world of social media, twitter and U-Tube, and mobile devices. For educators, presentations and workshops for themselves and their students must support the Next Generation Science Standards (NGSS), the Common Core Content Standards, and the Science Technology, Engineering and Mathematics (STEM) initiative. Current best practices for developing relevant and engaging powerpoint presentations to deliver information to a variety of targeted audiences will be presented along with several examples.

  16. Automated Supernova Discovery (Abstract)

    Post, R. S.

    2015-12-01

    (Abstract only) We are developing a system of robotic telescopes for automatic recognition of Supernovas as well as other transient events in collaboration with the Puckett Supernova Search Team. At the SAS2014 meeting, the discovery program, SNARE, was first described. Since then, it has been continuously improved to handle searches under a wide variety of atmospheric conditions. Currently, two telescopes are used to build a reference library while searching for PSN with a partial library. Since data is taken every night without clouds, we must deal with varying atmospheric and high background illumination from the moon. Software is configured to identify a PSN, reshoot for verification with options to change the run plan to acquire photometric or spectrographic data. The telescopes are 24-inch CDK24, with Alta U230 cameras, one in CA and one in NM. Images and run plans are sent between sites so the CA telescope can search while photometry is done in NM. Our goal is to find bright PSNs with magnitude 17.5 or less which is the limit of our planned spectroscopy. We present results from our first automated PSN discoveries and plans for PSN data acquisition.

  17. SENSE 2010, Abstracts

    The microscopic origin of unconventional superconductivity continues to attract the attention of the condensed matter community. Whereas rare-earth / actinide-based intermetallic and copper oxide-based high temperature superconductors are studied for more than twenty years, the iron-based superconductors have been in the focus of interest since their recent discovery. Inelastic neutron scattering experiments have been of particular importance for the understanding of the magnetic and superconducting properties of these compounds. With its 29 talks and 14 posters the workshop provided a forum for the 71 registered participants to review and discuss experimental achievements, recognize the observed synergy and differences as well as discuss theoretical efforts to identify the symmetry of the superconducting order parameter in addition to the coupling mechanisms of the Cooper pairs. The workshop covered different topics relevant for the study of unconventional superconductivity. Magnetization and lattice dynamics such as spin resonances, phonons, magnetic and other excitations as studied by spectroscopic methods were presented. Investigations of (doping, pressure and magnetic field dependent) phase diagrams, electronic states as well as vortex physics by the various diffraction techniques were also addressed. This document gathers only the abstracts of the papers. (authors)

  18. Determination of the integral characteristics of an asymmetrical thermal plume from air speed/velocity and temperature measurements

    Zukowska, Daria; Popiolek, Zbigniew; Melikov, Arsen Krikor

    2010-01-01

    , generated by a thermal manikin resembling the complex body shape and heat generated by a sitting person, were measured. Using the measured data, the integral characteristics of the generated asymmetrical thermal plume were calculated by the ADI-method, and the uncertainty in determination of the...

  19. Notice of Construction (NOC) Application for Criteria and Toxic Air Pollutant Emissions from Thermal Stabilization of Polycubes at the Plutonium Finishing Plant (PFP)

    This is a notice of construction (NOC) application for thermal stabilization of plutonium in a polystyrene matrix (polycubes) in the muffle furnaces at the Plutonium Finishing Plant (PFP). This NOC application is required by Washington Administrative Code (WAC) 173-460-040. During the 1960's and 1970's, polycubes were thermally stabilized using a pyrolysis process at PFP. The proposed process of thermal stabilization of polycubes in muffle furnaces results in emissions of air contaminants not emitted since implementation of WAC 173-460 (effective 9/18/91). The new process and related air contaminants are the basis for this NOC application. The proposed activity would use the muffle furnaces in the 234-52 Building to stabilize polycubes. The resulting plutonium oxides would be packaged to meet storage requirements specified in Stabilization, Packaging, and Storage of Plutonium Bearing Materials (DOE-STD-3013). The PFP is located in the 200 West Area of the Hanford Site. The PFP consists of several large and small buildings that are grouped to form the processing complex. The PFP activities are focused on the stabilization of plutonium-bearing materials to a form suitable for long-term storage; immobilization of residual plutonium-bearing materials; and removal of readily retrievable, plutonium-bearing materials left behind in process equipment and process areas

  20. Effect of Gd2O3 on the microstructure and thermal properties of nanostructured thermal barrier coatings fabricated by air plasma spraying

    Yixiong Wang

    2016-08-01

    Full Text Available The nanostructured 4–8 mol% Gd2O3−4.5 mol% Y2O3-ZrO2 (4–8 mol% GdYSZ coatings were developed by the atmospheric plasma spraying technique. The microstructure and thermal properties of plasma-sprayed 4–8 mol% GdYSZ coatings were investigated. The experimental results indicate that typical microstructure of the as-sprayed coatings were consisted of melted zones, nano-zones, splats, nano-pores, high-volume spheroidal pores and micro-cracks. The porosity of the 4, 6 and 8 mol% GdYSZ coatings was about 9.3%, 11.7% and 13.3%, respectively. It was observed that the addition of gadolinia to the nano-YSZ could significantly reduce the thermal conductivity of nano-YSZ. The thermal conductivity of GdYSZ decreased with increasing Gd2O3 addition. And the reduction in thermal conductivity is mainly attributed to the addition of Gd2O3, which results in the increase in oxygen vacancies, lattice distortion and porosity.

  1. Abstraction of Drift Seepage

    J.T. Birkholzer

    2004-11-01

    This model report documents the abstraction of drift seepage, conducted to provide seepage-relevant parameters and their probability distributions for use in Total System Performance Assessment for License Application (TSPA-LA). Drift seepage refers to the flow of liquid water into waste emplacement drifts. Water that seeps into drifts may contact waste packages and potentially mobilize radionuclides, and may result in advective transport of radionuclides through breached waste packages [''Risk Information to Support Prioritization of Performance Assessment Models'' (BSC 2003 [DIRS 168796], Section 3.3.2)]. The unsaturated rock layers overlying and hosting the repository form a natural barrier that reduces the amount of water entering emplacement drifts by natural subsurface processes. For example, drift seepage is limited by the capillary barrier forming at the drift crown, which decreases or even eliminates water flow from the unsaturated fractured rock into the drift. During the first few hundred years after waste emplacement, when above-boiling rock temperatures will develop as a result of heat generated by the decay of the radioactive waste, vaporization of percolation water is an additional factor limiting seepage. Estimating the effectiveness of these natural barrier capabilities and predicting the amount of seepage into drifts is an important aspect of assessing the performance of the repository. The TSPA-LA therefore includes a seepage component that calculates the amount of seepage into drifts [''Total System Performance Assessment (TSPA) Model/Analysis for the License Application'' (BSC 2004 [DIRS 168504], Section 6.3.3.1)]. The TSPA-LA calculation is performed with a probabilistic approach that accounts for the spatial and temporal variability and inherent uncertainty of seepage-relevant properties and processes. Results are used for subsequent TSPA-LA components that may handle, for example, waste package

  2. Book of abstracts

    The document contains abstracts of 24 review papers, 24 invited papers, 24 oral contributions and 120 posters. 10 review papers summarize the status of laser fusion research and progress in high-power laser facilities in major world laboratories. Four papers review research programs (laser-matter interaction studies and X-ray source development) based on KrF laser systems. Other review papers discuss the problems of laser energy conversion into X-rays in laser-heated cavities, X-ray lasing at shorter wavelengths, optimization of targets for inertial fusion. Two review papers are devoted to light ion fusion. The subjects of most invited papers are special problems of current laser plasma research, such as hot electron generation, nonlinear resonance absorption, energy accumulation limits, pellet ignition, conversion of laser light into X-rays, high-pressure plasma generation. Three invited papers review laser plasma research in Czechoslovakia, Poland and Spain. One paper suggests a new method of producing muonic superdense matter. The remaining inivited papers deal with the progress in XUV lasers and with laser plasma applications for further laser development. Of the papers accepted for oral presentation 12 papers discuss various problems of laser-plasma interaction; 4 papers deal with laser targets, 4 papers with laser-initiated X-ray sources, 3 papers with the diagnostics of laser-produced plasma. The last oral contribution presents the main principles of the excimer laser theory. The largest group of posters is related to laser-plasma interaction and energy absorption problems, to laser-target interaction and various methods of laser plasma diagnostics. The other posters deal with plasma applications in laser development, plasma mirrors, Brillouin and Raman scattering, X-ray emission, harmonic generation, electron acceleration, production of high-Z plasmas and other related problems. (J.U.)

  3. Dealing With Abstraction: Reducing Abstraction in Teaching (RAiT)

    Subedi, Krishna Prasad

    2014-01-01

    One of the most important challenges for mathematics teachers involves dealing with mathematical abstraction, specifically; figuring out efficient ways to translate abstract concepts into more easily understandable ideas for their students. Reducing abstraction is one of the theoretical frameworks originally proposed by Hazzan (1991) to examine how learners deal with mathematical abstraction while working with new mathematical tasks or concepts. However, very little is known about how teache...

  4. Applications of satellite data to the studies of agricultural meteorology, 2: Relationship between air temperature and surface temperature measured by infrared thermal radiometer

    Experiments were performed in order to establish interpretation keys for estimation of air temperature from satellite IR data. Field measurements were carried out over four kinds of land surfaces including seven different field crops on the university campus at Sapporo. The air temperature was compared with the surface temperature measured by infrared thermal radiometer (National ER2007, 8.5-12.5μm) and, also with other meteorological parameters (solar radiation, humidity and wind speed). Also perpendicular vegetation index (PVI) was measured to know vegetation density of lands by ho radio-spectralmeter (Figs. 1 & 2). Table 1 summarizes the measurements taken in these experiments.The correlation coefficients between air temperature and other meteorological parameters for each area are shown in Table 2. The best correlation coefficient for total data was obtained with surface temperature, and it suggests the possibility that air temperature may be estimated by satellite IR data since they are related to earth surface temperatures.Further analyses were done between air temperature and surface temperature measured with thermal infrared radiometer.The following conclusions may be drawn:(1) Air temperature from meteorological site was well correlated to surface temperature of lands that were covered with dense plant and water, for example, grass land, paddy field and rye field (Table 2).(2) The correlation coefficients and the regression equations on grass land, paddy field and rye field were almost the same (Fig. 3). The mean correlation coefficient for these three lands was 0.88 and the regression equation is given in Eq. (2).(3) There was good correlation on bare soil land also, but had large variations (Fig. 3).(4) The correlations on crop fields depend on the density of plant cover. Good correlation is obtained on dense vegetative fields.(5) Small variations about correlation coefficients were obtained for the time of day (Table 3).(6) On the other hand, large

  5. A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.; Lee, Kam-Pui

    1990-01-01

    Reaction rate coefficients and thermodynamic and transport properties are reviewed and supplemented for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium up to temperatures of 3000 K. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Curve fits are given for the various species properties for their efficient computation in flowfield codes. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in a high energy environment. Limitations of the approximate mixing laws are discussed for a mixture of ionized species. An electron number-density correction for the transport properties of the charged species is obtained. This correction has been generally ignored in the literature.

  6. Kinetics of Thermal Decomposition of Zn1-xMnxC2O4·2H2O in Air

    CONG, Chang-Jie; HONG, Jian-He; LUO, Shi-Ting; TAO, Hai-Bo; ZHANG, Ke-Li

    2006-01-01

    Thermal decomposition processes taking place in solid state complex of Zn1-xMnxC2O4·2H2O have been investigated in air using TG-DTG/DTA, XRD and TEM techniques. TG-DTG/DTA curves showed that the decomposition proceeded through two well-defined steps with DTA peaks closely to correspond to the weight loss. XRD and formed under nonisothermal conditions, the activation energies were estimated by Friedman and Flynn-Wall-Ozawa(FWO) methods, and the most probable kinetic model has been estimated with multiple linear regression method.kJ/mol, respectively.

  7. Recent abstracts in biochemical technology

    R R Siva Kiran; Brijesh P

    2008-01-01

    “Recent abstracts in biochemical technology” is a collection of interesting research articles published in “List of biochemical technology journals” (Table 1). The abstracts are most likely to report significant results in biochemical technology.

  8. A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell

    Al-Baghdadi, Maher A.R. Sadiq [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2011-07-01

    The need for improved lifetime of air-breathing proton exchange membrane (PEM) fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi-phase, non-isothermal computational fluid dynamics model of a planar ambient air-breathing, proton exchange membrane fuel cell has been developed and used to study the effects of ambient conditions on the temperature distribution, displacement, deformation, and stresses inside the cell. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. A unique feature of the present model is to incorporate the effect of mechanical, hygro and thermal stresses into actual three-dimensional fuel cell model. The results show that the non

  9. A CFD analysis on the effect of ambient conditions on the hygro-thermal stresses distribution in a planar ambient air-breathing PEM fuel cell

    Maher A.R. Sadiq Al-Baghdadi

    2011-07-01

    Full Text Available The need for improved lifetime of air-breathing proton exchange membrane (PEM fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature and humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a planar ambient air-breathing, proton exchange membrane fuel cell has been developed and used to study the effects of ambient conditions on the temperature distribution, displacement, deformation, and stresses inside the cell. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. A unique feature of the present model is to incorporate the effect of mechanical, hygro and thermal stresses into actual three-dimensional fuel cell model. The results show

  10. Contents and structure of abstracts

    Nemecková, Lenka; Dobrovolný, Viktor; Šauperl, Alenka; Jamar, Nina; Veselá, Eliška

    2015-01-01

    Purpose - Publishers of some scientific journals and the ISO standard require or recommend specific information to be present in abstracts. However little is known whether this is what scientists give when they write abstracts. The structure of abstracts was tested in Czech, Slovenian and international scientific journals in the English language in the areas of library and information science and materials science. Design/methodology/approach - One hundred research paper abstracts were select...

  11. The impact of human perception of simultaneous exposure to thermal load, low-frequency ventilation noise and indoor air pollution

    Alm, Ole; Witterseh, Thomas; Clausen, Geo;

    1999-01-01

    Human perception of simultaneous exposure to combinations of three different levels of operative temperature, low-frequency ventilation noise and indoor air pollution (27 combinations) was studied in climate chambers. The operative temperatures studied were: 26.0 deg.C, 27.6 deg.C and 29.6 deg.......C, and the sound pressure levels were: 45 dB(A), 48 dB(A) and 51 dB(A). The air pollution corresponding to these three levels of perceived air quality (at 26 deg.C) was: 1.1 decipol (dp), 2.4 dp and 4.5 dp. A 1 deg.C change in operative temperature had the same impact on the human perception of the overall...... conditions as a change of 3.8 dB(A) in sound pressure level or a change of 7 dp in air pollution (at 26 deg.C). The percentage of dissatisfied with the perceived air quality increased with increasing temperature. An elevated temperature had a dominant impact on the human perception of the indoor environment...

  12. Effects of thermal discomfort in an office on perceived air quality, SBS symptoms, physiological responses and human performance

    Lan, Li; Wargocki, Pawel; Wyon, David Peter;

    2011-01-01

    The effects of thermal discomfort on health and human performance were investigated in an office, in an attempt to elucidate the physiological mechanisms involved. Twelve subjects (six men and six women) performed neurobehavioral tests and tasks typical of office work while thermally neutral (at 22...... were less willing to exert effort. Task performance decreased when the subjects felt warm. Their heart rate, respiratory ventilation, and end-tidal partial pressure of carbon dioxide increased significantly, and their arterial oxygen saturation decreased. Tear film quality was found to be significantly...

  13. A CFD study of hygro-thermal stresses distribution in tubular-shaped ambient air-breathing PEM micro fuel cell during regular cell operation

    Al-Baghdadi, Maher A.R. Sadiq [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O. Box 39 (Iraq)

    2010-07-01

    The need for improved lifetime of air-breathing proton exchange membrane (PEM) fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature, humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi-phase, non-isothermal computational fluid dynamics model of a novel, tubular, ambient air-breathing, proton exchange membrane micro fuel cell has been developed and used to investigate the displacement, deformation, and stresses inside the whole cell, which developed during the cell operation due to the changes of temperature and relative humidity. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. In addition to the new and complex geometry, a unique feature of the present model is to incorporate the effect of mechanical, hygro and

  14. A CFD study of hygro-thermal stresses distribution in tubular-shaped ambient air-breathing PEM micro fuel cell during regular cell operation

    Maher A.R. Sadiq Al-Baghdadi

    2010-03-01

    Full Text Available The need for improved lifetime of air-breathing proton exchange membrane (PEM fuel cells for portable applications necessitates that the failure mechanisms be clearly understood and life prediction models be developed, so that new designs can be introduced to improve long-term performance. An operating air-breathing PEM fuel cell has varying local conditions of temperature, humidity. As a result of in the changes in temperature and moisture, the membrane, GDL and bipolar plates will all experience expansion and contraction. Because of the different thermal expansion and swelling coefficients between these materials, hygro-thermal stresses are introduced into the unit cell during operation. In addition, the non-uniform current and reactant flow distributions in the cell result in non-uniform temperature and moisture content of the cell which could in turn, potentially causing localized increases in the stress magnitudes, and this leads to mechanical damage, which can appear as through-the-thickness flaws or pinholes in the membrane, or delaminating between the polymer membrane and gas diffusion layers. Therefore, in order to acquire a complete understanding of these damage mechanisms in the membranes and gas diffusion layers, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operation conditions. A three-dimensional, multi–phase, non-isothermal computational fluid dynamics model of a novel, tubular, ambient air-breathing, proton exchange membrane micro fuel cell has been developed and used to investigate the displacement, deformation, and stresses inside the whole cell, which developed during the cell operation due to the changes of temperature and relative humidity. The behaviour of the fuel cell during operation has been studied and investigated under real cell operating conditions. In addition to the new and complex geometry, a unique feature of the present model is to incorporate the effect of

  15. Investigation of Soil for Shallow Geothermal: field tests and laboratory measurements for the determination of thermal properties for the design of combined abstraction of heat and storage of solar energy

    Alberdi Pagola, María

    2013-01-01

    Soil thermal properties determination for shallow geothermal systems is vital since they constrain the design and optimisation of the system for either heat extraction or storing airos. Hence, the testing of the ground becomes an important aspect. This subsoil understanding can be achieved by literature estimations, laboratory tests, in-situ tests and numerical simulations. VIA University College owns in its facilities three100m depth different BHE (Single U, Double U and Coaxial...

  16. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  17. Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling

    In this study, a mathematical model of an ice thermal energy storage (ITES) system for gas turbine cycle inlet air cooling is developed and thermal, economic, and environmental (emissions cost) analyses have been applied to the model. While taking into account conflicting thermodynamic and economic objective functions, a multi-objective genetic algorithm is employed to obtain the optimal design parameters of the plant. Exergetic efficiency is chosen as the thermodynamic objective while the total cost rate of the system including the capital and operational costs of the plant and the social cost of emissions, is considered as the economic objective. Performing the optimization procedure, a set of optimal solutions, called a Pareto front, is obtained. The final optimal design point is determined using TOPSIS decision-making method. This optimum solution results in the exergetic efficiency of 34.06% and the total cost of 28.7 million US$ y−1. Furthermore, the results demonstrate that inlet air cooling using an ITES system leads to 11.63% and 3.59% improvement in the output power and exergetic efficiency of the plant, respectively. The extra cost associated with using the ITES system is paid back in 4.72 years with the income received from selling the augmented power. - Highlights: • Mathematical model of an ITES system for a GT cycle inlet air cooling is developed. • Exergetic, economic and environmental analyses were performed on the developed model. • Exergy efficiency and total cost rate were considered as the objective functions. • The total cost rate involves the capital, maintenance, operational and emissions costs. • Multi-objective optimization was applied to obtain the Pareto front

  18. Conjugate heat transfer investigation on the cooling performance of air cooled turbine blade with thermal barrier coating

    Ji, Yongbin; Ma, Chao; Ge, Bing; Zang, Shusheng

    2016-08-01

    A hot wind tunnel of annular cascade test rig is established for measuring temperature distribution on a real gas turbine blade surface with infrared camera. Besides, conjugate heat transfer numerical simulation is performed to obtain cooling efficiency distribution on both blade substrate surface and coating surface for comparison. The effect of thermal barrier coating on the overall cooling performance for blades is compared under varied mass flow rate of coolant, and spatial difference is also discussed. Results indicate that the cooling efficiency in the leading edge and trailing edge areas of the blade is the lowest. The cooling performance is not only influenced by the internal cooling structures layout inside the blade but also by the flow condition of the mainstream in the external cascade path. Thermal barrier effects of the coating vary at different regions of the blade surface, where higher internal cooling performance exists, more effective the thermal barrier will be, which means the thermal protection effect of coatings is remarkable in these regions. At the designed mass flow ratio condition, the cooling efficiency on the pressure side varies by 0.13 for the coating surface and substrate surface, while this value is 0.09 on the suction side.

  19. Visualization of Structure of Boundary Layer Between Thermal Plasma Jet and Ambient Air by Moving Electric Probes

    Hrabovský, Milan; Kopecký, Vladimír

    2005-01-01

    Roč. 33, č. 2 (2005), s. 420-421. ISSN 0093-3813 R&D Projects: GA ČR GA202/02/1027 Institutional research plan: CEZ:AV0Z20430508 Keywords : electric probes * thermal plasma jet Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.143, year: 2005

  20. Development of a thermal desorption gas chromatography-mass spectrometry method for quantitative determination of haloanisoles and halophenols in wineries' ambient air.

    Camino-Sánchez, F J; Ruiz-García, J; Zafra-Gómez, A

    2013-08-30

    An analytical method for the detection and quantification of haloanisoles and their corresponding halophenols in wineries' ambient air was developed. The target analytes were haloanisoles and halophenols, reported by previous scientific literature as responsible for wine taint. A calibrated pump and active tubes filled with Tenax GR™ were used for sampling. These tubes were thermally desorbed and analyzed using gas chromatography-triple quadrupole mass spectrometry in the selected reaction monitoring mode. The adsorption efficiencies of five commercial sampling tubes filled with different materials were evaluated. The efficiencies of the selected adsorbent were close to 100% for all sampled compounds. Desorption, chromatographic and mass spectrometric conditions were accurately optimized allowing very low limits of quantification and wide linear ranges. The limits of quantification in ambient air ranged from 0.8pgtube(-1) for 2,4,6-trichlorophenol, to 28pgtube(-1) for pentachlorophenol. These results are of great importance because human sensory threshold for haloanisoles is very low. The chromatographic method was also validated and the instrumental precision and trueness were established, a maximum RSD of 9% and a mean recovery of 91-106% were obtained. The proposed method involves an easy and sensitive technique for the early detection of haloanisoles and their precursor halophenols in ambient air avoiding contamination of wine or winery facilities. PMID:23891369

  1. Study of suitability of Fricke-gel-layer dosimeters for in-air measurements to characterise epithermal/thermal neutron beams for NCT.

    Gambarini, G; Artuso, E; Giove, D; Felisi, M; Volpe, L; Barcaglioni, L; Agosteo, S; Garlati, L; Pola, A; Klupak, V; Viererbl, L; Vins, M; Marek, M

    2015-12-01

    The reliability of Fricke gel dosimeters in form of layers for measurements aimed at the characterization of epithermal neutron beams has been studied. By means of dosimeters of different isotopic composition (standard, containing (10)B or prepared with heavy water) placed against the collimator exit, the spatial distribution of gamma and fast neutron doses and of thermal neutron fluence are attained. In order to investigate the accuracy of the results obtained with in-air measurements, suitable MC simulations have been developed and experimental measurements have been performed utilizing Fricke gel dosimeters, thermoluminescence detectors and activation foils. The studies were related to the epithermal beam designed for BNCT irradiations at the research reactor LVR-15 (Řež). The results of calculation and measurements have revealed good consistency of gamma dose and fast neutron 2D distributions obtained with gel dosimeters in form of layers. In contrast, noticeable modification of thermal neutron fluence is caused by the neutron moderation produced by the dosimeter material. Fricke gel dosimeters in thin cylinders, with diameter not greater than 3mm, have proved to give good results for thermal neutron profiling. For greater accuracy of all results, a better knowledge of the dependence of gel dosimeter sensitivity on radiation LET is needed. PMID:26249744

  2. Effect of thermal energy storage in energy consumption required for air conditioning system in office building under the African Mediterranean climate

    Abdulgalil Mohamed M.

    2014-01-01

    Full Text Available In the African Mediterranean countries, cooling demand constitutes a large proportion of total electrical demand for office buildings during peak hours. The thermal energy storage systems can be an alternative method to be utilized to reduce and time shift the electrical load of air conditioning from on-peak to off-peak hours. In this study, the Hourly Analysis Program has been used to estimate the cooling load profile for an office building based in Tripoli weather data conditions. Preliminary study was performed in order to define the most suitable operating strategies of ice thermal storage, including partial (load leveling and demand limiting, full storage and conventional A/C system. Then, the mathematical model of heat transfer for external ice storage would be based on the operating strategy which achieves the lowest energy consumption. Results indicate that the largest rate of energy consumption occurs when the conventional system is applied to the building, while the lowest rate of energy consumption is obtained when the partial storage (demand limiting 60% is applied. Analysis of results shows that the new layer of ice formed on the surface of the existing ice lead to an increase of thermal resistance of heat transfer, which in return decreased cooling capacity.

  3. Nuclear code abstracts (1975 edition)

    Nuclear Code Abstracts is compiled in the Nuclear Code Committee to exchange information of the nuclear code developments among members of the committee. Enlarging the collection, the present one includes nuclear code abstracts obtained in 1975 through liaison officers of the organizations in Japan participating in the Nuclear Energy Agency's Computer Program Library at Ispra, Italy. The classification of nuclear codes and the format of code abstracts are the same as those in the library. (auth.)

  4. Mechanical Engineering Department technical abstracts

    Denney, R.M. (ed.)

    1982-07-01

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts.

  5. Mechanical Engineering Department technical abstracts

    The Mechanical Engineering Department publishes listings of technical abstracts twice a year to inform readers of the broad range of technical activities in the Department, and to promote an exchange of ideas. Details of the work covered by an abstract may be obtained by contacting the author(s). Overall information about current activities of each of the Department's seven divisions precedes the technical abstracts

  6. Abstract Possible: The Birmingham Beat

    Bergman, Aeron; Salinas, Alejandra

    2013-01-01

    Gruppeutstilling. Samarbeidspartner: Alejandra Salinas. ABSTRACT YOUR SHIT IS Video loop and billboard. Eastside Projects, Birmingham UK Abstract Possible: The Birmingham Beat Curated by Maria Lind 6 October - 1 December 2012. Invited artists: José León Cerrillo, Zachary Formwalt, Goldin+Senneby, Wade Guyton, Yelena Popova, Alejandra Salinas and Aeron Bergman. Visningssted: Eastside Projects, Birmingham, UK. Se også: http://eastsideprojects.org/past/abstract-possible

  7. Computational Fluid Dynamics and Room Air Movement

    Nielsen, Peter Vilhelm

    considerations are important elements in the study of energy consumption, thermal comfort and indoor air quality in buildings. The paper discusses the quality level of Computational Fluid Dynamics and the involved schemes (first, second and third order schemes) by the use of the Smith and Hutton problem on the......Nielsen, P.V. Computational Fluid Dynamics and Room Air Movement. Indoor Air, International Journal of Indoor Environment and Health, Vol. 14, Supplement 7, pp. 134-143, 2004. ABSTRACT Computational Fluid Dynamics (CFD) and new developments of CFD in the indoor environment as well as quality...... mass fraction transport equation. The importance of ?false? or numerical diffusion is also addressed in connection with the simple description of a supply opening. The different aspects of boundary conditions in the indoor environment as e.g. the simulation of Air Terminal Devices and the simulation of...

  8. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    Le Dréau, Jérôme

    based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam......, radiant floor, wall and ceiling) have been compared for a typical office room, both numerically and experimentally. From the steady-state numerical analysis and the full-scale experiments, it has been observed that the difference between the two types of terminals is mainly due to changes in the...... back losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different...

  9. Dimensional Stability of Plywood Panels Made from Thermally Modified Poplar Veneers in the Conditions of Variable Air Humidity

    Vladislav Zdravković

    2013-09-01

    Full Text Available Some properties of plywood panels made from untreated and thermally modified (90 min. at 200 ºC poplar veneers and their combinations have been analyzed. The change in equilibrium moisture content and the change in dimensions of the samples conditioned above water in closed containers were examined. The analysis using F-test (ANOVA at the significance level of 95% confirmed that, regarding moisture content, all combinations of plywood panels differed significantly from the control panels. However, the analysis of thickness swelling showed that there was no significant difference among the plywood panels of similar construction. The highest values of anti-swelling efficiency were shown by plywood panels made from thermally modified veneers.

  10. Long Term Thermal Stability In Air Of Ionic Liquid Based Alternative Heat Transfer Fluids For Clean Energy Production

    The purpose of this study was to investigate the effect of long-term aging on the thermal stability and chemical structure of seven different ILs so as to explore their suitability for use as a heat transfer fluid. This was accomplished by heating the ILs for 15 weeks at 200 °C in an oxidizing environment and performing subsequent analyses on the aged chemicals

  11. Dimensional Stability of Plywood Panels Made from Thermally Modified Poplar Veneers in the Conditions of Variable Air Humidity

    Vladislav Zdravković; Aleksandar Lovrić; Bojana Stanković

    2013-01-01

    Some properties of plywood panels made from untreated and thermally modified (90 min. at 200 ºC) poplar veneers and their combinations have been analyzed. The change in equilibrium moisture content and the change in dimensions of the samples conditioned above water in closed containers were examined. The analysis using F-test (ANOVA) at the significance level of 95% confirmed that, regarding moisture content, all combinations of plywood panels differed significantly from the control panels. H...

  12. Investigation on thermal comfort response space and energy saving potential of summer air-conditioning system%夏季空调热舒适响应空间及节能潜力研究

    雍静; 文充; 曾礼强

    2012-01-01

    Air-conditioning system as the power system user side of one high-power electrical equipment,heavy use of air conditioning system in summer has become the cause power shortage in the peak power one of the reasons. Paper to meet the requirements of human thermal comfort under the premise of air through the simulation of thermal comfort equation,established a comfortable air-conditioning system of space environment parameters and establish the parameters on the extent of comfort index. Through constructs the room cold load computation analysis to the air conditioning,confirmed the air-conditioning system to hare certain energy conservation potential in the thermal comfortable environment parameter space. Provide evidence for energy efficient operation of air conditioning system.%在满足人体热舒适要求的前提下,通过对空调热舒适方程的仿真分析,建立了空调系统环境参数的舒适空间,确立各参数对舒适性指标的影响程度;通过对空调建筑房间冷负荷计算分析,验证了空调系统在热舒适环境参数空间内存在一定节能潜力.

  13. Study on Energy Design Factors of Air Conditioning Based on Thermal Comfort%热舒适空调的能量设计因子研究

    王雁; 刘光复; 张雷; 周丹

    2014-01-01

    为确定热舒适需求与空调节能设计过程中的关键能量设计要素之间的关联性,提出了一种基于热舒适的空调能量设计因子提取及其重要度计算方法。在热舒适空调节能设计过程框架的基础上,建立了基于热舒适需求的功能质量屋,并将热舒适性转化为空调功能及权重等设计信息;分析功能的能量特性,针对与能耗相关的功能,给出了能量设计因子提取策略,以及能量设计因子对热舒适及能耗综合影响程度量化方法。以家用空调为例,提取了基于热舒适的能量设计因子,对容积效率和传热系数两项耦合因子进行了分解,并对整体层能量设计因子的热舒适性及能耗的影响系数进行计算,按综合影响系数由大到小排序,结果为压缩机功率、系统控制方式、通风量和换热量。%In order to determining the relevance between thermal comfort and key energy design elements during energy-saving design process,the method of extracting energy design factors of air conditioning and calculating its weight is proposed. The house of quality based on thermal comfort is built with the energy-saving design frame. The thermal comfort requirements are converted to function and weight of air conditioning. The energy characteristic of the function is analyzed,and the extract means of energy design factors is provided based on the relation of functions with energy. The method of calculating influence degree of energy design factors on thermal comfort and energy consumption is also put forward. Taking the household air conditioning as a case study,the energy design factors based on thermal comfort are extracted. Two coupled factors,volume efficiency and heat transfer coefficient,are decoupled,and the influence coefficient of energy design factors on thermal comfort and energy consumption in overall layer are calculated. The comprehensive influence coefficient in descending order is

  14. Abstract

    Tafdrup, Oliver

    2013-01-01

    Udgivet som en del af Tidskrifts specialudgivelse om Adorno. http://tidskrift.dk/data/50/Aforismesamling.pdf......Udgivet som en del af Tidskrifts specialudgivelse om Adorno. http://tidskrift.dk/data/50/Aforismesamling.pdf...

  15. Abstract

    2012-01-01

    Function Ascriptions of Technical Artifacts (p.1) CHEN Fan, XU Jia (Research Center for Philosophy of Science and Technology, Northeastern University, Shenyang, Liaoning, 110004) Abstract: The function of technical artifacts is mind dependent. It is an ontologicaUy subjective entity and an epistemologically objective judgment. Function ascription is a general form of technical function in the epistemological sense. Function ascriptions may be taken in a descriptive and in a performative sense. The former can be called function ascriptions for short and the latter function assignments. The mind dependency of the function of technical artifacts is grounded in performative function ascriptions instead of descriptive function ascriptions. Key Words: Function ascriptions; Descriptive function ascriptions; Performative function ascriptions; Function assignments

  16. ABSTRACTS

    2012-01-01

    A Representative work that Vainly Attempts to Westernize China On Yang Ji.sheng's Paper "My View of Chinese Pattern" XU Chong-wenAbstract: Mr. Yang Ji-sheng calls economic connotation of Chinese pattern "market economy of power" with all sorts of drawbacks, it is to take the problems that Chinese model deliberately struggles with and even the objects must be resolutely eliminated as the parts of Chinese pattern, thus they are absolute nonsense; he boils down political connotation of Chinese pattern to "authority politics" of "thoroughly denying modem democratic system",

  17. ABSTRACTS

    2011-01-01

    Mud logging subject and its speciality construction is an important practical issue in the field of mud logging engineering and accurately positioning mud logging subject and reasonably setting mud logging speciality have an important significance for promoting and guiding the rapid development of mud logging technology.

  18. ABSTRACTS

    2011-01-01

    The establishment of spectroscopy logging theory and application prospects. Zhu Genqing. Mud Logging Engineering, 2011,22(3) :2-6,28 Based on a lot of research and years' practice and set ting out from the purpose of enriching the basic theory of mud logging technology, the author described several spectroscopic methods and theories commonly used in mud logging technology and explored the concept of the spectroscopy logging and the views to establish mud logging theory svstem.

  19. ABSTRACTS

    2012-01-01

    4 Introduction of the Methods Generalized from Mineral Exploration HU Kui (Consulting & Research Center Ministry of Land & Resources, Beijing 100035, China) Abstract: This paper focuses on the introduction of prospecting methods generalized from mineral exploration, these include: prospecting in deep part of the deposit based on shallow deposit, and periphery prospecting within the ore district; finding other type ( kind ) of deposit according to this type; lean ore is the base for rich deposit; small rich ore can depends on large lean ore; the dependence of economical mineral resource is uneconomical mineral resource; prospecting mineral deposit on the basis of different minerals; following outcrop mine to find blind ore; and with marks to explore ore.

  20. ABSTRACT

    2015-01-01

    As the institutional quality audit is being conducted in some pilot provinces,different interpretations of it have occurred,some of which appear to be misleading.This paper is to redefine it in terms of thematic focus,role,value and method to facilitate its implementation.It proposes that the institutional quality audit should keep consistently focused on internal quality assurance,in-volve various stakeholders,enhance its empowerment function and develop itself into a comprehen-sive and systematic approach to continuous quality improvement.

  1. ABSTRACTS

    2001-01-01

    @@CONCURRENT SESSION: FOOD AND WATERBORNE DISEASES      Chair  Prof. Liu Xiu-mei, Institute of Nutrition and Food Hygiene (CAPM), China   Co-chair   Dr. Jorgen Schlundt, World Health Organization, Switzerland   1530-1545 hrs Emerging Foodborne Disearse: An Evolving Public Health Challenge   Robert Baldwin, Center for Disease Control, USA   1545-1600 hrs Food Poisoning Typicality in Food Safety Vulnerable Area of Indonesia   Adil Basuki Abza, Bogor Agricultural University, Indonesia   1600-1615 hrs The Management of Food Poisoning in China   Li Tai-ran, Institute of Food Safety Control and Inspection, Ministry of Health, China   1615-1630 hrs Detection of Campylobacter Species Using a Fluorogenic Real-Time PCR Detection System   Hai-yan Wang, Bureau of Microbial Hazards, Health Canada, Canada   1630-1645 hrs An Overview on Bongkrekic Acid Food Poisoning   Liu Xiu-mei, Institute of Nutrition and Food Hygiene (CAPM), China   1645-1700 hrs Screening Procedure from Cattle Feces and the Prevalence of Escherichia coli O157 in Taiwan Dairy Cattle   Chin-Cheng Chou, Taiwan University, Taibei, China

  2. Abstract

    2011-01-01

    Representation or Construction? An Interpretation of Quantum Field Theory Abstract: In this essay, I argue that the basic entities in the causality organized hierarchy of entities that quantum field theory describes are not particles but fields. Then I

  3. ABSTRACTS

    2012-01-01

    Research on the Theory and Standard of Peasants" Life Cycle Pension Compensation Mu Huaizhong Shen Yi· 2 · Thedifficulties of full coverage in pension system lie in rural farmers. In this paper, we put forward a "dual agricultural welfare difference" theory and apply it to the issues regarding peasants' life cycle pension compensation. Taking differential between equilib- rium and biased agricultural incomes as the key indicator, we build mathematical models of "dual agricultural welfare balance" and measure the size from 1953 to 2009. Our finding shows that China's "dual agricultnral welfare difference" has a fluctuation ranged be- tween 0.4 and 0.6. Based on life cycle characteristics, such as natural life cycle, policy and institutional life cycle, our suggestion is to compensate peasants' primary pension with a balance of "dual agriculture welfare difference" and other countermeasures.

  4. ABSTRACTS

    2012-01-01

    Judicature, Public Opinion, and Politics at An Age of Disordered Legal World View :A Study Centered on the Case of Li Changkui The Case of L/Changkui represents a kind of simple "hard case", in which whatever the judge made a de- cision, result of the case failed to gain good social and legal effects, and the causation, however, rested on the internal system of judicature. The Case of Li reflects an age at which legal world view is deficient in coherence and integration. Although it's not an exclusive problem for China that judicature, public opinion and politics in- teract complicatedly, and the society shows distustt upon the criminal justice system, it reveals that, in the case of Li, some judicial personnel and academics hold an uni-dimensional and prejudiced understanding on the credi- bility, legitimacy and stability of judicature.

  5. ABSTRACTS

    2012-01-01

    Analysis and forecast of the world economy The pace of global economic recovery has slowed down markedly and the risk of a sagging world economy has been increasing in 2011. However, the economic slowdown was taking place at different speeds in different categories of economies. The momentum of economic recovery in the developed economies is clearly insufficient, and its economic growth rate is far lower than the rate of the emerging economies and has declined much more than that of emerging economies. Many big developed economies are facing very severe employment situation now, while the space of the their fiscal and monetary policies have been compressed by the upgrade of the sovereign debt crisis and long-term low interest rates, which are associated with the turmoil in international financial markets, the sluggish growth of international trade and investment, fluctuations in international commodity prices, and aggravated social problems.

  6. ABSTRACTS

    2012-01-01

    Reliability validation studies of locomotive engine turbocharger LI Yu (Dalian Locomotive Research Institute Co., Ltd., Dalian 116021, China) Abstract: Considering the use features of the locomotive diesel engine turbocharger and combining the finite element simulation with experiment, the validation method of tile turbocharger has been studied. In this way, the number of tests can be reduced and the success rate of the test can be increased. And the turbocharger relia- bility assessment can be ahead of the schedule. Key words: turbocharger; reliability; validation test

  7. Abstracts

    The proceedings contain 106 papers of which 2 fall under the INIS Scope. One concerns seismic risk assessment at radioactive waste repositories in the U.S., the other concerns the possibility of predicting earthquakes from changes in radon 222 levels in selected ground water springs of northern Italy. (M.D.)

  8. Abstract

    2012-01-01

    Scientific Culture and Cultural Science (p.1) Today science advances at an astonishingly high speed, and driven by the ideological and industrial revolutions, it even becomes a dominant culture in the society and is respected as the supreme authority. However, the scientific culture, which plays the leading role in the industrial civilization, turns out to be more and more alienated from culture and humanity, resulting in the so-called cultural confusions and loss of humanity. This article, investigating the phenomenon deeply, argues that science has no privileged position over the other cultural traditions, and suggests that science identify itself as a member equal with the other cultural patterns in the society in order to restore its cultural connotations. It is believed that by establishing the cultural science, we can bring culture and humanity back to science.

  9. Abstract

    Alexandre Costa Quintana

    2003-01-01

    Full Text Available The purpose of this article is to show the importance of the Cash Flow Statement and the Value Added Statement as effective instruments of financial management, due to the information that these statements can provide. To demonstrate this, a financial analysis of the principal financial statements of the Empresa Transmissora de Energia Elétrica do Sul do Brasil S.A. – Eletrosul – was made and in particular, a detailed analysis of the Cash Flow Statement and the Value Added Statement. To do this, the financial statements published by the company were obtained. First, liquidity ratios from the Balance Sheet were calculated and, subsequently, an analysis of the Cash Flow Statement and the Value Added Statement was made. This was done to demonstrate that the information obtained from the Balance Sheet could be better detailed by the use of the referenced statements, showing in the end that alterations in the liquidity of the company can be explained by the changes in the ways in which the company used its cash resources.

  10. ABSTRACTS

    2012-01-01

    (1) New Forms of the "Production of Social Relations" under the Scrutiny of Social Engineering Tian Pengying In the Marxist perspective, the production and reproduction of social relations constitute the basic prerequisite and guarantee for human existence and development, and the establishment of an orderly and harmonious modern social relationship that promotes the coordinated development of material production and spiritual production is an important symbol of man's self-conscientiousness to adapt to, rely on and transform the society. The development, transformation and evolution of social relations is both a natural historical process and a creative process in which social subjects participate, design and construct.

  11. Abstract

    2012-01-01

    The Establishment and Distribution of the Police Stations in the Public Concessions in Modern Shanghai -Also on the Substitution Index of the Expansion of City Space WU Heng By analyzing relevant materials, this paper finds that the total number of police stations and the population is closely related to each other and regards it as the substitution index of city expansion. The author thinks that the urbanization of the public concessions can be divided into three phases, while this process is not in synchronization with the expansion of the land expansion of public concessions.

  12. ABSTRACTS

    2015-01-01

    In order to study the state development of fuel-spray in the combustion chamber of TBD620 diesel engine, a spray visualization system was construc-ted by the method of flash photography capturing images of fuel spray at different times. Fuel injection characteris-tics changes were studied by changing the fuel injection pressure and the spray wall-impingement was discovered, which provides a basis of structural optimization for the combustion chamber.

  13. ABSTRACTS

    2012-01-01

    The Practice and Implications of Judicial Innovation: A Study of Administrative Litigation from City T Drawing on data from a mid-sized city, this article finds that the courts, caught between the unruly adminis- trative agencies and legal rhetoric, seek support from the Party to enhance their authority. They then devise tac- tics such as putting the chief official of agencies on the stand, issuing judicial suggestions, and innovatively ap- plying the laws. Contrary to the conventional wisdom that the courts are only a passive actor in local politics, the development indicates that the role of the courts is by no means negligible in translating the national laws into lo- cal practice. Social stability, industrial structure, the power and resource of administrative agencies, and profes- sionalism of court staff are important factors affecting the development of the rule of law.

  14. Abstracts

    2011-01-01

    Changing the Means of Structural Adjustment for Transformation of Development Pattern SONG Ze Abstract: History of China's reform and opening up has proven that government-led industrial structural adjustment is unsuccessful. Facing the new situation and economic development tasks, new ideas of industrial restructuring should be clearly put forward that the government will create conditions to adjust the structure by the market. During the Twelve-Five Years, the most priority should be how to reform the way how to change the structural adjustment. If the "structural adjustment" approach, especially in the manufacturing sector can not be changed, many goals on economic transition are likely to fall again. Under the circumstance it is necessary to accelerate the development of a unified, open and orderly modern market system, and effectively implement the market-pushed industrial restructuring approach, and strengthen the intermediary function of finance and inner trade and create good policy environment conducive to promoting the services sector in the process of structural adjustment and industrial upgrading. Key Words:industrial structure; adjustment approach

  15. Abstract

    2011-01-01

    Management fraud and auditing scandals became more serious since the 70s-80s of the last century, so that the independence of CPA faced nprecedented challenges. Growing emphasis was put on the independence of CPA on which the academic research deepened too. This article analyzes the nfluence of the independence of CPA from the conflict of the owners / shareholders, managers, and CPA. By analysing the balance of power of those conflict nd the factors that restrict them, and basing on a summary research in this area of other scholars, this paper put forward a CPA conflict model based on the orporate governance structure, and suggest on the issue of how to protect the auditing independence under this new model.

  16. ABSTRACTS

    2012-01-01

    (1) The Narrative Structure and Mode of Realization of Marx's Theory of Human Emancipation Liu Tongfang Understanding the inherent logic of the ideas in the classic Marxist texts and revealing the narrative structure and mode of realization of Marx's theory of human emancipation is an important intellectual approach to the extension of Marxist theoretical research. As a scientific theory of the history of society, the narrative structure of human emancipation involves three aspects: historical materialism, multi-dimensional forms of emancipation, and communist movements. It offers a comprehensive analysis of the basic way of perceiving human society, the fundamental path to human emancipation and the ultimate aim of the evolution of social forms. It reflects the thorough-going revolutionary nature of Marx's theory of human emancipation and its close relationship with the real life of society. It would thus be academically significant to reflect on Western Marxism, Soviet-type socialism and the socialist road with Chinese characteristics from the viewpoint of the narrative structure of Marx's theory of human emancipation, so as to extend the Marxist theory of human emancipation and explore its specific mode of realization

  17. ABSTRACTS

    2015-01-01

    Shortly after the People's Republic of China was founded in 1949, it wasnecessary and in its interest for China to join the socialist camp led by the SovietUnion. In 1954, China proposed the five principles of "peaceful coexistence". Atthe Bandung Conference in 1955, China, India and Myanmar jointly advocated thefive principles as a means of good governance in Asia and the whole world. Earlyin the 21st century, China proposed a new concept of "win-win cooperation" as animportant principle for international relations in the new global era.

  18. Abstract

    2012-01-01

    The Subject of Research, Methodology and Research Paradigm of ‘Das Kapital'; ‘Das Kapital' and the Scientific View of Marx on Wealth;The Way of Capitalism in the Background of Global Financial Crisis;

  19. ABSTRACTS

    2011-01-01

    Conbating Poverty and Inequality: Structural Change, Social Policy and Politics United Nations Research Institute for Social Development As UNRISD's latest reflection upon poverty alleviation and inequality, this report advocates an approach that pu

  20. ABSTRACTS

    2012-01-01

    Discussion on Geological Exploration Culture and Core Value System of Geological Exploration Industry PENG Qiming(Ministry of Land and Resources, Beijing 100812, China) Abstract: Since the convening of the Sixth Plenary Session of the Sixth Central Committee of the CPC, the function of soft power of culture construction has been attracted widespread attention. For geological industry, an important factor which restricts the development of this industry is the culture of geological prospecting, while the key point is to establish the core value system of geological exploration industry. This paper introduces the role of the core value system of geological exploration industry, these include: guiding the direction and trace of industry development; gathering strength and forming resultant force; setting up the confidence and determination of inspiration; and establishing professional and ethical standards and behaviors. This paper offers some specific methods required for developing the advanced culture of geological industry,

  1. ABSTRACTS

    2011-01-01

    Research on the Necessity of Building Intercity Transit System within Changsha-Zhuzhou-Xiangtan Metropolitan Huang Weili 4 To plan and build intercity transit network within Changsha-Zhuzhou-Xiangtan metropolitan will not only meet the rapidly increasing demand for passenger transport service and promoting the integration and urbanization of the metropolitan, but is also the necessary measures to build energy-saving and environmental-friendly society, and realize sustainable development.

  2. ABSTRACTS

    2011-01-01

    Current Situation and Prospect of Urban Transit Development in Mainland China The paper reviews the development of urban transit construction, networking operation and diversified technology systems in mainland China during the last 40 years. The paper also presents the short-term planning of urban transit in mainland China and the solutions for financing, construction period and operational cost etc.

  3. ABSTRACT

    Michelle de Stefano Sabino

    2011-12-01

    Full Text Available This paper aims to describe and to analyze the integration observed in the Sintonia project with respect to the comparison of project management processes to the model of the Stage-Gate ®. The literature addresses these issues conceptually, but lack an alignment between them that is evident in practice. As a method was used single case study. The report is as if the Sintonia project, developed by PRODESP - Data Processing Company of São Paulo. The results show the integration of project management processes with the Stage-Gate model developed during the project life cycle. The formalization of the project was defined in stages in which allowed the exploitation of economies of repetition and recombination to the development of new projects. This study contributes to the technical vision in dealing with the integration of project management processes. It was concluded that this system represents an attractive way, in terms of creating economic value and technological innovation for the organization.

  4. ABSTRACTS

    2012-01-01

    The Introduction of Western Learning to the East and the Sinicization of Marxist Philosophy The introduction of western learning to the east objectively promoted the dissemination of Marxist philosophy in China, forming an important historical prerequisite for the sinicization of Marxist philosophy. Moreover, it also triggered a great transformation in the historical development of Chinese philosophy and facilitated its transition from ancient to early modern traditions, thereby establishing through sinicization a link between Marxist philosophy, which originated in the western philosophical tradition, and the Chinese tradition of philosophy, and rendering Marxist philosophy Chinese. This offered the possibility that sinicized Marxist philosophy would play a positive guiding role in the development of modern Chinese philosophy. Therefore, we may say that without the introduction of western learning to the east, there would be no sinicization of Marxist Ichilosophy; and without in-depth research on the relationship between the introduction of western learning to the east and the sinicization of Marxist philosophy, there would be no real understanding of the sinicization of Marxist philosophy. However, the close links between the sinicization of Marxist philosophy and the introduction of western learning do not indicate that the sinicization of Marxist philosophy is part of the history of the introduction of western learning to the east. The sinicization of Marxist philosophy does not itself belong to the category of the spread of western learning to the east. This is because Marxist philosophy is essentially different from all other commonly known western sciences; its sinicization differs from the eastward spread of western learning in terms of its goals, social nature, results and effects on society.

  5. ABSTRACTS

    2011-01-01

    Balance and Loss of Balance in Human Rights Law;The Socialist Legal System with Chinese Characteristics: Its Structure, Features and Trends;Historical Materialism and Contemporary Socio-historical Reality;Rousseau, Kant and Marx in the Lineage of "Moral P

  6. ABSTRACTS

    2011-01-01

    Plato on Political Rhetoric Generally, Plato was regarded as being hostile to rhetoric. However, I will show that in Plato's some important political dialogues he still verifies the significance of rhetoric or persuasion. Then, I list the attacks of Plato on his contemporary rhetoric, which is called in the essay as "politician rhetoric". On the other hand, Plato also articu- lates the characteristics of true rlhetoric, which I name as "dialectical rhetoric. " In order to elaborate "dialectical rhetoric", I take Pericles as an example to show how the dialectic rhetoric could work in the real political world. Finally, I point out that dialectical rhetoric still can give some reflection for today's political rhetoric. It contains the ideal of the good, caring the soul of the audience, speaking the truth, insisting the right thing with reason, etc.

  7. ABSTRACTS

    2012-01-01

    QUALITY MANAGEMENT AND CONTROL DURING START- UP OF THE 1.0MT/A ETHYLENE PLANT IN ZHENHAI[ 1 ] Jiang Minding, Chang Mingkun. SINOPEC Zhenhai Refining & Chemical Company, Ningbo Zhejiang, P. C. 315207 Abstract: Zhenhai ethylene project was put into operation suc- cessfully in 2010, and rich project management experiences were accumulated during the preparation process. Strict project quality management during pipeline blowing, system hydrosta- tic testing, chemicals filling and preparation before drying - out of cracking furnace can eliminate the hidden dangers, and cold tightening of flanges in cryogenic section during startup can minimize flare discharge.

  8. Abstracts

    2012-01-01

    International Norms, Group Identity and Domestic Institutional Re- form: The Case of China's Entrance to FATF Lie Xinghua Abstract: International norms are the collection of binding rules governing the international community. International norms with high levels of legitimacy result in norm groups. Such norm groups directly affect the space for and effectiveness of behavior. In order to enter a norm group and obtain membership status within the group, states must engage in domestic institu- tional reforms in order to meet standards of admission. In order to enter FATF, China studied the principles of the 40+ 9 Recommendations, and ad- vanced comprehensive domestic reforms to counter money laundering.

  9. ABSTRACTS

    2011-01-01

    GIVE FULL PLAY TO THE ADVANTAGES OF REFINING-CHEMICAL INTEGRATION FOR THE EXPANSION OF PETROCHEMICAL DOWNSTREAM INDUSTRY CHAIN [ 1] Zhao Yan. CNOOC Huizhou Refining Company, Huizhou, Guangdong, 516086 Abstract: Taking the current situation of the petrochemical industry base which has taken shape in Huizhou Daya Bay Petrochemical Industrial Park into account, this paper frames up the development assumption of refining-chemical integration brought along by large-scale refining and ethylene projects in CNOOC and Shell Petrochemicals Company with such projects as flagship. It mainly analyzes the advantages and importance of constructing industry base with refining, ethylene, chemicals and fine chemicals in Petrochemical Industrial Park which extends the industry chain, broadens the petrochemical market of Pearl River Delta and boosts the core competence of the industrial park.

  10. Abstract

    2012-01-01

    Concept Construction and Empirical Analysis of Social Integration for Rural-Urban Migrants in China; Under the Dual Structure of the Triple Migration Model: A Shortage of Migrant Workers, a New Research Framework;Cultural Meanings of Chinese Guanxi: A Viewpoint of Management Scholars;Determinants of Banking Efficiency: Cross-Country Evidence;

  11. ABSTRACTS

    2012-01-01

    Be Independent from Autocracy: a Comparison Between Wang Yuanhua and Gong Zizhen Also on the Depth of Wang Yuanhua's Thinking on the Eve of the Ideological Emancipation Movement Xia Zhongyi In 1977 ,Wang Yuanhua began to appreciate Gong Zizhen, not only because they were similar in temperament, context and situation, but also because Wang Yuanhua had found out the element of personal liberation in Gong zizhen's saying Be Independent from Autocracy, which shows that Wang Yuanhua's realization of the personal value was earlier than Li Zehou ( who established the Subjectivity Outline in a Kant's Way in 1979 ) and Wang Ruoshui (who proposed that personal value is the basis of Marxism in 1981 ) , and Wang Yuanhua's contribution in study Chinese by Chinese experience.

  12. ABSTRACTS

    2011-01-01

    Energy transformation is the only way of the transformation of the world economy Describing and explaining from different view of the world from the angle of political, economic, cultural and environmental development, the presentation of the transformation, change, adjustment, conversion and a series of concept reflects that the current world situation is undergoing profound changes, multi-polarization and globalization. The global problems such as financial crisis, recession, climate change, energy transformation and the environment change,

  13. ABSTRACTS

    2012-01-01

    The wisdom of practice exists in its conceptual form as an inherent part of man and functions in the process of practice. It coheres as the quality of virtue expressed in value orientation and contains cognitive experience of the world and of man himself. The two permeate man's actual capacities or powers. Aiming at completion of the self and of things, the wisdom of practice integrates theoretical and practical reason and reflects the unity of understandinl~ the world and transforming the world.

  14. ABSTRACTS

    2011-01-01

    Critique of Contemporary Anti-Marxism Ideologies --Based on Thoughts of the "Four Major Boundaries";The Conflict on Public Ownership: A Comparison between the Socialist Market Economic Theory and the Theory of Market Socialism of British Labour Party;On The Germination of Marxist Theory of Property;Aesthetic Transformation of Mass Media for Socialist Core Value System;

  15. ABSTRACTS

    2012-01-01

    He Xinyin as a Confucian Reformer and His Worship of Confucius Abstract:This paper regards He Xinyin, a member of Taizhou School, as a reformer of Confucianism. The reform means to transforming traditional Confucianism which is inti- mately linked with political institution into an independently religious one. The conflicts between Confucian orthodoxy and politics in reality intensified after the Jia.-jing Period in the Ming Dynasty. He Xinyin carries forward his predecessor Wang Xinzhai's theory of "political involvement or retiring from political life", and constructs a set of Confucian in- stitutions, which is independent of politics. On the basis of respects and honors of Confu- cius, He Xinyin~s Confucian institutions enables people to respect and love each other, and makes Confucius~s benevolence and righteousness come true.

  16. ABSTRACTS

    2011-01-01

    The Relational Capital, the Institutional Environment and the Validity of the Payment by Fiscal Transfers;The Framing of the Clauses of the Company Regulations, the Protection of the Law for the Right of Investors, and the Company Governance: Evidences f

  17. ABSTRACTS

    2011-01-01

    Look in the Mirror of Personality Left by Liang Qichao The New Preface to His Reflecting Moral This article is my new foreword of Reflecting Moral, which had been edited and written by Liang Qichao in 1905, and has just been recommended as one of the moral readers of Tsinghua Academy of Chinese Learning. I point that the exhortation of our univer- sity proposed by Liang Qichao has its original determination in his mind himself, which had already been compiled in Reflecting Moral more than a century ago.

  18. Abstract

    2012-01-01

    The Characteristics of Modern Tianjin Salt Merchants Culture As a new commercial culture in modern China, Tianjin salt merchants culture has its own different characteristics, such as luxury consumption culture, political culture, religious scholar culture and moral culture. In these cultures behind embodies the Salter group's behavior pattern and psychological structure.

  19. ABSTRACTS

    2012-01-01

    Mao Zedong' s "Three World Theory" underwent three stages of development: the "One Intermediate Zone" thought, the embryonic form of the theory, was put forward in the 1940s-50s; the "Two Intermediate Zones" thought, taking shape in the 1960s, was the rudimentary form; and the early 1970s witnessed the perfection of the theory. Mao Zedong developed the "Three World Theory" with sovereignty and national interests as the logical starting point, the theory of unity of opposites as the philosophical foundation, the Cold War as the historical background, and fighting against hegemonism as the major diplomatic strategy.

  20. ABSTRACTS

    2011-01-01

    Wu Jie and Duan Yanchao. The current line drawing of Laterolog and its application. PI, 2011, 25(4) : 1 - 4 The current line plays an important role in the directly understanding the characteristics of Laterolog tool. A method of drawing current lines for the discrete potential data based on the Finite Element calculation is studied. It solves a series of key problems, including the selection of step length, the identification of direction, treatment of nmtation point and the control of stop. A drawing program is written by MATLAB software. Taking the current line drawing of the dual Laterolog logging as an example, we analyze the tool's investigation characteristics in the several formations such as homogeneous, low or high invasion, and invasion with shoulder. These results verify the effectiveness of the new method. The method can be applied to the other kinds of Laterolog tools to draw their current lines and analyze their investigation characteristics.

  1. Abstracts

    2012-01-01

    1.Lessons Normalization the Past. Inspirations for the Present-- omatic Relations between China and Ja the 40th Annive by Wang Taiping, President of China-Korea Economic Development Association, a council member of China-Japan Friendship Association and an executive member of China Society for the History of China-Japanese Relationship. Since the normalization of diplomatic relations between China and Japan 40 years ago, interactions and cooperation between the two sides in various areas have reached to a level never seen before, while at the same time serious cases full of reversals and zigzags occurred from time to time in quite a few areas. How China-Japanese relations can be promoted?

  2. Abstracts

    2012-01-01

    Sino-Japanese Relations Entering into a New Transitional Period: Discussion on the Choice of Path to Strengthen Mutual Strategic Trusts WU Jinan China and Japan have celebrated the 40th anniversary of the normalization of diplomatic relations with apparently growing discordance. Noticeably, the great progress the two countries achieved in their exchanges and cooperation in all realms in recent years came along with highlighting structural contradictions and antagonism. Lack of mutual strategic confidence between the two countries has become the largest obstacle to the otherwise sound and stable development of the bilateral relations. China and Japan must read and grasp the overall situation of the bilateral relations from a strategic point of view, expand the convergences of their common strategic interests and overcome the estrangement and suspicion between each other, before they will advance Sino-Japanese relations into a new stage.

  3. Abstracts

    2012-01-01

    1.Changes Come from Turmoils, Hopes Reside in Stagnancy,by Zhu Feng a professor at the Schobl ofInternational t/elations, t'eklng University, anu a member oi ecutorlai Doaro oi Peaceand Development and a gust researcher of CDPS. In 2011, "the Arab Spring" changed the geopolitical ecology of the Middle East and North Africa. The U.S. stepped up readjustment to its global strategy with a high-sounding voice proclaimed its "return to Asia Pacific". A great surge was felt in the political trend of thoughts in the world, and the world was still faced with various terrorist threats.

  4. ABSTRACTS

    2012-01-01

    COSCO Shipping semi-sub veseis POOL achieving new progress On August 8, 2012, the second member China Zhejiang Xiazhiyuan Ship Management Co., Ltd. joined the semi-submersible vessels POOL created by COSCO Shipping Co., Ltd. (COSCOL) earlier this year. The new member comes after the Guangzhou Salvage Bureau of the Ministry of Communications, who joined the semi-submersible vessels POOL in February. The capacity structure of the COSCO Shipping's semi-submersible vessel POOL can be further optimized in 20000, 30000, 40000 and 50000 DWT and achieved universal coverage, which powerfully promoting the brand of appeal. COSCO Shipping Co., Ltd. owns and operates nearly 100 ships including semi-submersible, heavy lift, multi-purpose, ro-ro/Io-lo, general cargo ships and pure car carriers. Among them, semi-submersible vessels are the leading.P18

  5. ABSTRACTS

    2011-01-01

    Development status of domestic and foreign hydraulic transmissions;Effect of advance angle of fuel supply on exhaust emissions for a diesel engine with EGR technology;Effect on noise of diesel engine under different atmospheric preessure and biodiesel blends;Application of digital governing system to V280/285 series marine diesel engine;

  6. Abstracts

    2013-01-01

    Sandrine Dubel Université Blaise-Pascal de Clermont-Ferrand The ecphraseis embedded in the epic poems of the Hellenistic period involve numerous intertextual allusions to the many passages in which Archaic epic poetry describes precious objects or the lavish shades of metals and other materials: these intertextual allusions are for instance based on etymological wordplay or on transpositions from one art to the other. This paper focusses on several case-studies. An ecphrasis found in Apolloni...

  7. ABSTRACTS

    2015-01-01

    "Strategic communication" refers to practices involving the widespreaddissemination of information as well as contact activities for the purpose of nationalstrategic interest and objectives. Though people currently do not have a clearcomprehension of its definition, they are deepening their understanding. There is stillroom for its development in terms of theoretical research and practice. We shouldactively carry out research on mechanism building, communication targets and strategiccommunication content in order to serve our national strategies.

  8. Abstract

    2012-01-01

    Philosophical Analysis of the Essential Characteristics of Transgenic Technology: Based on the Comparative Studies of Different Breeding Ways (p.1);Public Recognition of the Issue of Technology Ethics of GM Corn in Contemporary China (p.7);Uncertainty of Commercializing GM Crops in China (p.13);Analysis of the Public's Perception of and Attitude to GM Rice and Guidance to Their Behavior: Based on the Data from Social Survey in Hubei Province (p.18)

  9. Abstracts

    2012-01-01

    1.Influence of Formulating Code of Conduct in the South China Sea on China" s Defending, of its Rights and How to Deal with It,by Dr. Jiang Guoxue, a research fellow at the Center for Development Studies of the Asia Pacific Region in Guangzhou, Guangdong Province, and Dr. Lin Lanzhao, an associate researcher at the same center. In recent years, some countries concerned in the ASEAN, for the sake of restricting ChinaI s action and ensuring their vested interests, have made every effort to push forward with the formulation and signing of code of conduct as soon as possible. To sign and pass the Code of Conduct in the South China Sea is not conductive to China to protect its rights and interests in the South China Sea at present, however, it can win China time and space for the final solution of the issue. We should actively participate in and play a leading role in the process of the formulation of that code of conduct. In the meantime, we should speed up our resources development and tighten controls over those islands, reefs and adjacent waters in the South China Sea, and endeavor to enhance our comprehensive national strength, thus laying a solid foundation for the comprehensive and thorough settlement of the South China Sea issue.

  10. Abstracts

    2012-01-01

    Post-Western International System and the Rise of the East;Hegemonlc Dependence and the Logic in the Declining Asceudance of Leading Powers;Constructive Leadership and China's Diplomatic Transformation;The Bargaining Model of International Mediation Onset:A Quantitative Test;The Imnact of Gender Differences on National Military Expenditure

  11. Abstracts

    2009-01-01

    How talk about a social workers' culture ? Michel Chauvière The author first aims at specifying and problematising the notion of professional culture in éducateurs (french social workers specialised in youth work and/or care work) and uses for that purpose an open definition of culture, dynamised by the notion of « social world ». Two dialectically involved aspects of culture are then approached : on one side, what gathers, what is shared, and also what is used to protect the ingroup of profe...

  12. ABSTRACTS

    2012-01-01

    A Discussion on Theme Slogan and Logo of Tourism Image Beautiful Hubei also on Hubei Tourist Attractions and Branding :Cao Shitu Han Guowei (2) Abstract: The paper analyzes the deficiencies of the existing theme slogan and logo of tounsm, image Beaufil Hube by using the methodology of tourism image-building, and then puts forward new theme slogan and logo Magnincent Huoei Door to Magical Landscape and Romantic Culture"as well as the idea of b uildingtouri"brand "Magical and Romantic Tour".

  13. ABSTRACT

    2012-01-01

    An Exploration of the Origin of the Yue People in Lingnan (by BAI Bing) Abstract: Investigations into the origin of the Yue people in Lingnan based on reliable archaeological data, literature, and data concerning nationalities, and by means of periodation, backward inference, and paleographic knowledge show that the Maba people living 129,000 years ago were probably the main body of the ~ue people. From their ancient ancestry to the Warring States period, the ~ue people underwent continuous evolution. They were probably aboriginals of local origin. There were continuous exchanges between the various tribes of the Yue people and they incorporated each other. Key words: Lingnan; the Yue people; origin

  14. ABSTRACTS

    2012-01-01

    Zhang Xionghui, You Chang, Tang Jie, Zhou Qizhi, Xu Feng, Li Ganghan and Ma Yan. Development of a series of logging tool long-time working under high temperature and high pressure condition. PI, 2012,26 (3) : 1-3

  15. ABSTRACTS

    2012-01-01

    The present situation and development countermeasures of Chinese mud logging operations. Liu Yingzhong, Li Yichao and Liu Zhenjiang. Mud Logging Engineering, 2012, 23 (2):1-7 From mud logging data interpretation and evaluation, acquisition, data processing, equipment, software and mud logging information etc. , the authors summarized the development status of Chinese mud logging techniques, and the contributions that mud logging technology made in speeding up drilling, regional geological research, well location optimization etc. with timely detection and accurate evaluation of oil, gas and water layers, a comprehensive analysis was made to the challenges faced by mud logging technology in aspects of the complex hydrocarbon reservoirs evaluation,

  16. Abstracts

    2012-01-01

    Beliefs and Establishment of Their Orders —— From Sociological Theory Perspectives of Chinese Beliefs LI Xiang-ping Abstract: To understand the "harmonious" phenomena of China's history and culture and their concepts, the key is to understand and recognize its beliefs. Chinese beliefs and their social practice are closely related to establishment of harmonious social, historical and cultural orders in China. In fact, Harmony can refer to either a value target or a social reality, and it is also a kind of belief. The establishment of harmony based on certain beliefs, moral orders, political orders and power orders are basic components of social and cultural harmony. This article, from a sociological theory perspective of beliefs, discusses the positions and roles of different beliefs in building harmonious cultural orders in China, and it then aims to find out some rules of dual changes in Chinese society and Chinese beliefs. Key words: belief; order; harmony; sociological perspectives of belief

  17. ABSTRACTS

    2011-01-01

    Severe Damage of Absorbing Foreign Capital Must Be Correctly Observed Accelerating Transformation of Economic Development;Lenin Had Never Set Forth a "National Syndicate" Pattern;Talent Allocation for Undertaking Service Outsourcing of China;Preliminary Management for "Urban Disease" during British Industrialization;Comprehensive Review on Review on Risk Management of Sports Tourism in China;

  18. ABSTRACTS

    2015-01-01

    When discussing the maturation of Chinese sociology, one has to reconsider the relationsbetween Western sociology and Chinese sociology and distinguish the flows from their sources ifone wants to find a way forward for Chinese sociology. Chinese sociology should view theresources of homegrown sociological tradition as a "source, " which is represented by "qunxue"(literally the study of groups).

  19. ABSTRACTS

    2012-01-01

    Comment on "State-owned Economy Retreating from Competitive Field";Analysis of Real Effects of State-owned Enterprise Discussing with Research Group of Tianze Institute of Economics;Treating the Nature of Social Labor with a Developing and Opening Sight And Basic Principles to Judge the Nature of Social Labour

  20. ABSTRACTS

    2012-01-01

    Chinese foreign trade enterprises enter the crucial period of transformation and upgrade The global economy is likely into a long-term downturn and recovery is difficult. For a long time, the foreign trade development environment is difficult to be improved obviously. Many negative factors are overlaid and will bring the foreign trade greater challenge. Impacted by the dual factors of intemational market fluctuation, domestic economic environment tightening,