WorldWideScience

Sample records for absorptivity optical

  1. Cavity-enhanced absorption for optical refrigeration

    Seletskiy, Denis V; Sheik-Bahae, Mansoor

    2009-01-01

    A 20-fold increase over the single path optical absorption is demonstrated with a low loss medium placed in a resonant cavity. This has been applied to laser cooling of Yb:ZBLAN glass resulting in 90% absorption of the incident pump light. A coupled-cavity scheme to achieve active optical impedance matching is analyzed.

  2. Optical absorption in irradiated natural beryl

    Three species of beryl irradiated with γ-rays of 60Co were studied by optical absorption. One became yellow and the other two Maxixe's blue. The effects of heat treatments were determined by the thermal isochronal decays of the optical absorption bands. Activation energies and frequency factor were obtained through the first order process kinetic model. Discussions lend us to assign for the UV band-edge the model of absorption by a hole center stabilized by a Fe2+ (substituting Al3+) ion in a neighbour oxygen. (Author)

  3. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  4. Optical absorption spectra of Ag-11 isomers

    Martinez, Jose Ignacio; Fernandez, E. M.

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  5. Optical absorption of boron nitride nanomaterials

    Optical absorption spectra have been measured for hexagonal boron nitride (h-BN), rhombohedral BN(rh-BN), and material obtained by laser vaporization of BN target under a nitrogen atmosphere and contained single-wall BN-nanotubes. Band gap of the BN materials was found to have a value of 6.0-6.3 eV. The spectra of h -BN and vaporized material exhibited a peak at ∝5.5 eV, moreover, the latter sample showed an absorption band around 4.5 eV. The vaporized material has been fractionated to the BN-platelets and single-wall BN-nanotubes. Absorption peaks, located bellow the bottom of the conductance band, were found to be characteristics of thin BN-platelets and they could be attributed to defects in BN network. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Linear and nonlinear optical absorption coefficients of spherical dome shells

    Guo, Kangxian; Liu, Guanghui; Huang, Lu; Zheng, Xianyi

    2015-08-01

    Linear and nonlinear optical absorption coefficients of spherical dome shells are theoretically investigated within analytical wave functions and numerical quantized energy levels. Our results show that the inner radius, the outer radius and the cut-off angle of spherical dome shells have great influences on linear and nonlinear optical absorption coefficients as well as the total optical absorption coefficients. It is found that with the increase of the inner radius and the outer radius, linear and nonlinear optical absorption coefficients exhibit a blueshift and a redshift, respectively. However, with the increase of the cut-off angle, linear and nonlinear optical absorption coefficients do not shift. Besides, the resonant peaks of linear and nonlinear optical absorption coefficients climb up and then decrease with increasing the cut-off angle. The influences of the incident optical intensity on the total optical absorption coefficients are studied. It is found that the bleaching effect occurs at higher incident optical intensity.

  7. Universal Zero Conductivity Condition for Optical Absorption

    Guo, Yu; Jacob, Zubin

    2016-01-01

    Harnessing information and energy from light within a nanoscale mode volume is a fundamental challenge for nanophotonic applications ranging from solar photovoltaics to single photon detectors. Here, we show the existence of a universal condition in materials that sheds light on fundamental limits of electromagnetic to matter energy conversion (transduction). We show that the upper limit of absorption rate (transduction rate) in any nanoscale absorber converting light to matter degrees of freedom is revealed by the zero of optical conductivity at complex frequencies ($\\sigma(\\omega^\\prime + i\\omega^{\\prime\\prime})= 0$). We trace the origin of this universal zero conductivity condition to causality requirements on any passive linear response function and propose an experiment of absorption resonances using plasmonic nanoparticles to experimentally verify this universal zero conductivity condition. Our work is widely applicable to linear systems across the electromagnetic spectrum and allows for systematic opti...

  8. NOVEL SPECTRUM ABSORPTION OPTICAL FIBER METHANE SENSOR

    Wang Shutao; Che Rensheng

    2005-01-01

    Based on spectrum principle and analyzing the infrared absorption spectrum of methane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributed feedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology is used to carry out harmonic wave detecting the concentration of methane. The sensitivity can arrive at 10-5.Experiments results show that the performance targets of the sensor such as sensitivity can basically satisfy the requests of methane detection.

  9. Differential optical absorption spectroscopy principles and applications

    Platt, Ulrich; Imboden, Dieter

    2008-01-01

    Measurement techniques form the basis of our knowledge about atmospheric composition and chemistry. Presently, important questions of atmospheric chemistry center on urban pollution, free-radical chemistry, degradation of greenhouse gases and the budgets of tropospheric and stratospheric ozone. Among the many different optical spectroscopic methods that are in use, DOAS has emerged as a universal technique to measure the concentrations of atmospheric trace gases by making use of the characteristic absorption features of gas molecules along a path of known length in the open atmosphere. This bo

  10. Fluorescence and optical absorption in spodumene

    This work studied the mechanism of the isothermal decay's kinetic of the 15.600 cm-1 optical absorption band (A.O.) of irradiated spodumene, and the phosphorescence of irradiated spodumene in low temperatures. The kinetic mechanisms applying the bimolecular model to liberation, capture and recombination reactions are analysed. The coupled differential equations, resultants of this model, numerically using the Runge-Kutta method is solved, and a computer programs that allowed determine the kinetics parameters by try and error methods is developped. This work showed that the electrons are untrapped according to Arrhernios kinetic and that the parameters of the trap and recombination are proportional to a factor (√T - √To ), where To is the cutting temperature, bfore which the reactions do not occur. (author)

  11. Multi-photon Absorption in Optical Pumping of Rubidium

    Xu, Xinyi

    2015-01-01

    In optical pumping of rubidium, a new kind of absorption occurs with a higher amplitude of radio frequency current. From measurement of the corresponding magnetic field value where this absorption occurs, there is a conclusion that it is multi-photon absorption. Both the degeneracy and energy of photons contribute to the intensity.

  12. Optical absorption in semiconductor nanorings under electric and magnetic fields

    Zhang, Tong-Yi; Cao, Jun-Cheng; Zhao, Wei

    2005-01-01

    The optical absorption in semiconductor nanorings under a lateral DC field and a perpendicular magnetic field is numerically simulated by coherent wave approach. The exciton dominated optical absorption is compared with the free-carrier interband absorption to demonstrate the key role of Coulomb interaction between electron and hole. The influence of the lateral DC field and the perpendicular magnetic field on the optical absorption are discussed in detail. It shows that the lateral DC field can significantly enhance the Aharonov-Bohm effect of the neutral excitons in semiconductor nanorings.

  13. Synthesis and nonlinear optical absorption of novel chalcone derivative compounds

    Rahulan, K. Mani; Balamurugan, S.; Meena, K. S.; Yeap, G.-Y.; Kanakam, Charles C.

    2014-03-01

    3-(4-(dimethylamino)phenyl)-1-(4-(4-(hydroxymethyl)-1H-1,2,3-triazol-1-yl)phenyl)prop-2-en-1-one was synthesized and its third order nonlinear optical properties have been investigated using a z-scan technique with nanosecond laser pulses at 532 nm. The nonlinear absorption behavior of the compound in chloroform presents a distinct difference at different laser intensity. Interestingly, the compound showed a switchover from saturable absorption (SA) to reverse saturable absorption (RSA) with the increase of excitation intensity. Our studies suggest that compound could be used as a potential candidate for optical device applications such as optical limiters.

  14. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods

    Ming WEI; Jun QIAN; Qiuqiang ZHAN; Fuhong CAI; Arash GHARIBI; Sailing HE

    2009-01-01

    Plasmon-resonant gold nanorods (GNRs) are demonstrated as strong absorption contrast agents for optical coherence tomography (OCT). OCT imaging of tissue phantoms doped with GNRs of different resonant wavelengths and concentrations is studied. To utilize the high absorption property of GNRs, a differential absorp-tion OCT imaging is introduced to retrieve the absorption information of GNRs from conventional backscattered signals. It is shown that the contrast of the OCT image can be enhanced significantly when the plasmon resonant wavelength of the GNRs matches the central wavelength of the OCT source.

  15. [Study of retrieving formaldehyde with differential optical absorption spectroscopy].

    Li, Yu-Jin; Xie, Pin-Hua; Qin, Min; Qu, Xiao-Ying; Hu, Lin

    2009-01-01

    The present paper introduces the method of retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS). The authors measured ambient HCHO in Beijing region with the help of differential optical absorption spectroscopy instrument made by ourself, and discussed numerous factors in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), especially, the choice of HCHO wave band, how to avoid absorption of ambient SO2, NO2 and O3, and the influence of the Xenon lamp spectrum structure on the absorption of ambient HCHO. The authors achieved the HCHO concentration by simultaneously retrieving the concentrations of HCHO, SO2, NO2 and O3 with non-linear least square fitting method, avoiding the effect of choosing narrow wave of HCHO and the residual of SO2, NO2, O3 and the Xenon lamp spectrum structure in retrieving process to attain the concentration of HCHO, Finally the authors analyzed the origin of error in retrieving the concentration of HCHO with differential optical absorption spectroscopy (DOAS), and the total error is within 13.7% in this method. PMID:19385238

  16. Low level optical absorption measurements on organic semiconductors

    Stella, M.; Rojas, F.; Escarre, J.; Asensi, J.M.; Bertomeu, J.; Andreu, J. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona. Av. Diagonal 647, 08028 Barcelona (Spain); Voz, C.; Puigdollers, J.; Fonrodona, M. [Micro and Nano Technology Group (MNT), Dept. d' Enginyeria Electronica, Universitat Politecnica de Catalunya, C/Jordi Girona 1-3, Campus Nord - Modul C4, 08034 Barcelona (Spain)

    2006-06-15

    The optical absorption of n-type (C{sub 60} and PTCDA) and p-type (CuPc and pentacene) organic semiconductors is investigated by optical transmission and photothermal deflection spectroscopy. The usual absorption bands related to HOMO-LUMO transitions are observed in the high absorption region of transmission spectra. Photothermal deflection spectroscopy also evidences exponential absorption shoulders with characteristic energies 47meV for CuPc, 38meV for pentacene, 50 meV for PTCDA and 87meV for C{sub 60}. In addition, broad bands in the low absorption level are observed for C{sub 60} and PTCDA. These bands have been attributed to contamination due to air exposure. On the other hand, in CuPc a clear absorption peak at 1.12eV is observed with smaller features at 1.04eV, 1.20eV and 1.33eV. These peaks are attributed to transitions between the Pc levels of CuPc ions. Finally, the optical absorption expected in blends of organic semiconductors is estimated by an effective media approximation. (author)

  17. Absorption-edge calculations of inorganic nonlinear optical crystals

    Wu, Kechen; Chen, Chuangtian

    1992-03-01

    A theoretical model suitable for calculating absorption edges of inorganic nonlinear optical (NLO) crystals is introduced. This model is proved to be useful to elucidate the relationship between electronic structures of NLO-active groups and macroscopic properties of absorption edges on the UV side of most of the inorganic nonlinear optical crystals. A systematic calculation of absorption edges on the UV side for several important inorganic NLO crystals is carried out by means of DV-SCM-Xα method and all calculated results are in good agreement with experimental data. These inorganic NLO crystals include LiB3O5(LBO), β-BaB2O4(BBO), KB5, KDP, Na2SbF5, Ba2TiSi2O8, iodate and NaNO2. The calculated energy level structures of LiB3O5 and β-BaB2O4 crystals are compared with the measured XPS spectra. The unusual transparent spectra of KB5 and KDP crystals are partly explained from the microstructure point of view. The effect of lone electron pair in iodate and NaNO2 crystals on their absorption edges are discussed. All these results show that Anionic Group Theory of Nonlinear Optical Crystals is useful to evaluate the absorption edges of the inorganic nonlinear optical crystal and is a powerful tool in a Molecular Engineering approach to search for new nonlinear optical materials.

  18. Tunable optical absorption in silicene molecules

    Mokkath, Junais Habeeb

    2016-07-13

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  19. Calculated optical absorption of different perovskite phases

    Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2015-01-01

    We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...... are found in the classes of oxynitride and organometal halide perovskites with strong direct transitions....

  20. Luminescence and optical absorption determination in porous silicon

    Nogal, U.; Calderon, A.; Marin, E.; Rojas T, J. B.; Juarez, A. G., E-mail: u_nogal@hotmail.com [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Calz. Legaria No. 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico)

    2012-10-15

    We applied the photoacoustic spectroscopy technique in order to obtain the optical absorption spectrum in porous silicon samples prepared by electrochemical anodic etching on n-type, phosphorous doped, (100)-oriented crystal-line silicon wafer with thickness of 300 {mu}m and 1-5 {omega}cm resistivity. The porous layers were prepared with etching times of 13, 20, 30, 40 and 60 minutes. Also, we realized a comparison among the optical absorption spectrum with the photoluminescence and photo reflectance ones, both obtained at room temperature. Our results show that the absorption spectrum of the samples of porous silicon depends notably of the etching time an it consist of two distinguishable absorption bands, one in the Vis region and the other one in the UV region. (Author)

  1. Optical technique for broadband microwave absorption spectroscopy in aqueous media

    Precise measurements of microwave absorption over a large range of frequencies in aqueous media are difficult to obtain and can result in conflicting results as a consequences of small differences in instrumentation. Traditional methods of microwave spectroscopy that make use of time-domain spectrometers or network analyzer systems provide only indirect measurement of the microwave absorption coefficient because they measure the real and imaginary parts of the dielectric constant, ε' and ε'', separately. The absorption coefficient must then be calculated from ε' and ε'' taking into account the geometry (e.g., of the waveguide and mode) among other factors. It has been shown that direct measurement of the microwave absorption coefficient α is possible using phase fluctuation optical heterodyne spectroscopy. Taking advantage of this hybrid optical-microwave technique the authors report on a broadband spectrometer with demonstrated accurate operation from 3 to 20 GHz

  2. Electronic structure and optic absorption of phosphorene under strain

    Duan, Houjian; Yang, Mou; Wang, Ruiqiang

    2016-07-01

    We studied the electronic structure and optic absorption of phosphorene (monolayer of black phosphorus) under strain. Strain was found to be a powerful tool for the band structure engineering. The in-plane strain in armchair or zigzag direction changes the effective mass components along both directions, while the vertical strain only has significant effect on the effective mass in the armchair direction. The band gap is narrowed by compressive in-plane strain and tensile vertical strain. Under certain strain configurations, the gap is closed and the energy band evolves to the semi-Dirac type: the dispersion is linear in the armchair direction and is gapless quadratic in the zigzag direction. The band-edge optic absorption is completely polarized along the armchair direction, and the polarization rate is reduced when the photon energy increases. Strain not only changes the absorption edge (the smallest photon energy for electron transition), but also the absorption polarization.

  3. Temperature dependence of the optical absorption coefficient of microcrystalline silicon

    Poruba, A.; Špringer, J.; Mullerova, L.; Beitlerova, A.; Vaněček, M.; Wyrsch, Nicolas; Shah, Arvind

    2008-01-01

    The optical absorption coefficient of amorphous and microcrystalline silicon was determined in a spectral range 400–3100 nm and a temperature range 77–350 K. Transmittance measurement and Fourier transform photocurrent spectroscopy were used. The measured data served as an input for our optical model of amorphous/microcrystalline tandem solar cell. Differences in the current generated in the amorphous and microcrystalline parts were computed, for an operating temperature between −20 °C and +8...

  4. Optical absorption of hyperbolic metamaterial with stochastic surfaces

    Liu, Jingjing; Naik, Gururaj V.; Ishii, Satoshi;

    2014-01-01

    We investigate the absorption properties of planar hyperbolic metamaterials (HMMs) consisting of metal-dielectric multilayers, which support propagating plane waves with anomalously large wavevectors and high photonic-density-of-states over a broad bandwidth. An interface formed by depositing ind...... stochastically perturbed HMM compared to that of metal. (C) 2014 Optical Society of America...

  5. AIR MONITORING BY DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETRY IN BAYTOWN, TEXAS

    This report documents the results of a field study carried out in Baytown, Texas in August 1993. ne goal of the field study was to evaluate calibration and audit procedures for a differential optical absorption spectrometry (DOAS) system. he other major goal of the study was to c...

  6. Silver Nanoparticles with Broad Multiband Linear Optical Absorption

    Bakr, Osman M.

    2009-07-06

    A simple one-pot method produces silver nanoparticles coated with aryl thiols that show intense, broad nonplasmonic optical properties. The synthesis works with many aryl-thiol capping ligands, including water-soluble 4-mercaptobenzoic acid. The nanoparticles produced show linear absorption that is broader, stronger, and more structured than most conventional organic and inorganic dyes.

  7. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices

  8. Optical Absorption on Cubicβ-PbF2 Crystals

    任国浩; 沈定中; 王绍华; 殷之文

    2001-01-01

    The transmission spectra of cubic β-PbF2 crystals grown by the non-vacuum Bridgman method were measured with a spectrophotometer. It was found that there are several optical absorption bands peaking at 300nm,390-400nm, as well as at 460nm. According to composition analysis, doping and annealing experiments, it is suggested that the absorption at 300nm originates from the electron transition of Ce ions from 4f → 5d. The absorption at 390-400nm may result from the colour centres related to oxygen impurities. In addition, the sample recrystallized from the coloured β-PbF2 crystal exhibits a new absorption band at 460 nm, which might be caused by trace lead vacancies.

  9. Study on optical weak absorption of borate crystals

    Li, Xiaomao; Hu, Zhanggui; Yue, Yinchao; Yu, Xuesong; Lin, Zheshuai; Zhang, Guochun

    2013-10-01

    Borate crystal is an important type of nonlinear optical crystals used in frequency conversion in all-solid-state lasers. Especially, LiB3O5 (LBO), CsB3O5 (CBO) and CsLiB6O10 (CLBO) are the most advanced. Although these borate crystals are all constructed by the same anionic group-(B3O7)5-, they show different nonlinear optical properties. In this study, bulk weak absorption values of three borate crystals have been studied at 1064 nm by a photothermal common-path interferometer. The bulk weak absorption values of them along [1 0 0], [0 1 0] and [0 0 1] directions were obtained, respectively, to be approximately 17.5 ppm cm-1, 15 ppm cm-1 and 20 ppm cm-1 (LBO); 80 ppm cm-1, 100 ppm cm-1 and 40 ppm cm-1 (CBO); 600 ppm cm-1, 600 ppm cm-1 and 150 ppm cm-1 (CLBO) at 1064 nm. The results showed an obvious discrepancy of the values of these crystals along three axis directions. A correlation between the bulk weak absorption property and crystal intrinsic structure was then discussed. It is found that the bulk weak absorption values strongly depend on the interstitial area surrounded by the B-O frames. The interstitial area is larger, the bulk weak absorption value is higher.

  10. Two-Photon-Absorption Scheme for Optical Beam Tracking

    Ortiz, Gerardo G.; Farr, William H.

    2011-01-01

    A new optical beam tracking approach for free-space optical communication links using two-photon absorption (TPA) in a high-bandgap detector material was demonstrated. This tracking scheme is part of the canonical architecture described in the preceding article. TPA is used to track a long-wavelength transmit laser while direct absorption on the same sensor simultaneously tracks a shorter-wavelength beacon. The TPA responsivity was measured for silicon using a PIN photodiode at a laser beacon wavelength of 1,550 nm. As expected, the responsivity shows a linear dependence with incident power level. The responsivity slope is 4.5 x 10(exp -7) A/W2. Also, optical beam spots from the 1,550-nm laser beacon were characterized on commercial charge coupled device (CCD) and complementary metal-oxide semiconductor (CMOS) imagers with as little as 13.7 microWatts of optical power (see figure). This new tracker technology offers an innovative solution to reduce system complexity, improve transmit/receive isolation, improve optical efficiency, improve signal-to-noise ratio (SNR), and reduce cost for free-space optical communications transceivers.

  11. Optical absorption and thermoluminescence of x-irradiated KDP

    Optical absorption and thermoluminescence spectra of nominally pure x-irradiated KDP have been obtained between 13 K and room temperature. Absorption spectra and their associated thermal bleaching curves exhibit a strong dichroism. Two glow peaks are observed at 73 K and 123 K which correlate well with main decay steps on the bleaching curve. From these data the existence of two different centres with activation energies of approximately 0.042 eV and approximately 0.22 eV is concluded. Different possibilities for the structure of these centres are discussed. (author)

  12. Magneto-optical properties of gadolinium in interband absorption region

    Optical constants and magneto-optical effect of the change of reflected light intensity in equatorial magnetization for two incidence angles are measured in the range of 0.4-5 eV on polycrystalline gadolinium sample at the liquid nitrogen temperature. The frequency behaviour of diagonal and gyrotropic components of optical conductivity is calculated from the measurement data. In the framework of the Spicer indirect transition model the comparison is carried out of the conductivity frequency dispersion with the calculation of the energy dependence of the state density for the band systems with the spin projection parallel and perpendicular to magnetization, made by Harmon and Freeman. The main peculiarities of the interzone absorption in the optical and magnetooptical spectra are explained satisfactorily while the detailed correspondence between the experiment and calculation is absent. Therefore, a conclusion is made on the necessity of inclusion of vacant 4f-zones in the region of the Fermi level in the gadolinium zone spectra

  13. Segregation during crystal growth from melt and absorption cross section determination by optical absorption method

    ZHANG QingLi; YIN ShaoTang; SUN DunLu; WAN SongMing

    2008-01-01

    Segregation during crystal growth from melt under two conditions is studied by using crystal mass, which can be measured easily, as an independent variable, and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given. When the segregated solute disperses into the whole or just a part of melt homogenously, the concentration Cs in solid interface will change by different formulas. If the crystal growth interface is conical and segregated solute disperses into melt in total or part, the solute concentration at r=2/3R, where r is the distance from the growth cross section center and R the crystal radius, is independent on the shape of the crystal growth interface, and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface. With Cs variation formula in solid and absorption cross section σ for optical dopant, the absorption coefficients along the crystal growth direction can be calculated, and the corresponding experimental value can be obtained through the crystal optical absorption spectra. By minimizing the half sum, whose independent variables are k, △W or σ, of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection, k and σ, or k and △W, can be determined at the same time through the Levenberg-Marquardt iteration method. Finally, the effective segregation coefficient k, △W and absorption cross sections of Nd:GGG were determined, the results fitted by two formula gave more closed effective segregation coefficient, and the value △W also indicates that the segregated dopant had nearly dispersed into the whole melt. Experimental results show that the method to determine effective segregation coefficient k, △W and absorption cross sections σ is convenient and reliable, and the two segregation formulas can describe the segregation during the crystal growth from

  14. Remark on: the neutron spherical optical-model absorption.

    Smith, A. B.; Nuclear Engineering Division

    2007-06-30

    The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.

  15. Study on the elemental mercury absorption cross section based on differential optical absorption spectroscopy

    Zheng, Haiming; Yao, Penghui

    2015-08-01

    With the method of ultraviolet absorption spectrum, the exact absorption cross-section with the light source of the low-pressure mercury lamp was determined, during which the optimum wavelength for mercury concentrations inversion was 253.69 nm, the highest detection limit was 0.177 μg/cm3, and the lowest detection limit was 0.034 μg/cm3. Furthermore, based on the differential optical absorption spectroscopy(DOAS), the relationship between the integral parameters (IP) and the concentration as well as the signal-noise ration (SNR) under the conditions of gas flow was determined and the lowest detection limit was figured out to be 0.03524 μg/cm3, providing a method of DOAS to de-noise through the comparison between the mercury concentration values produced by DOAS and that produced by the wavelet de-noising method (db5). It turned out that the differential optical absorption spectroscopy had a strong anti-interference ability, while the wavelet de-noising method was not suitable for measuring the trace concentration change.

  16. Optical Absorptivity versus Molecular Composition of Model Organic Aerosol Matter

    Rincón, Angela G.; Guzmán, Marcelo I.; Hoffmann, Michael R.; Colussi, A. J.

    2009-01-01

    Aerosol particles affect the Earth’s energy balance by absorbing and scattering radiation according to their chemical composition, size, and shape. It is generally believed that their optical properties could be deduced from the molecular composition of the complex organic matter contained in these particles, a goal pursued by many groups via high-resolution mass spectrometry, although: (1) absorptivity is associated with structural chromophores rather than with molecular formulas, (2) compos...

  17. Multi axis differential optical absorption spectroscopy (MAX-DOAS)

    Hönninger, G.; Von Friedeburg, C.; U. Platt

    2004-01-01

    Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) in the atmosphere is a novel measurement technique that represents a significant advance on the well-established zenith scattered sunlight DOAS instruments which are mainly sensitive to stratospheric absorbers. MAX-DOAS utilizes scattered sunlight received from multiple viewing directions. The spatial distribution of various trace gases close to the instrument can be derived by combining several viewing directions. Ground...

  18. Multi axis differential optical absorption spectroscopy (MAX-DOAS)

    Hönninger, G.; Friedeburg, C.; U. Platt

    2004-01-01

    Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) in the atmosphere is a novel measurement technique that represents a significant advance on the well-established zenith scattered sunlight DOAS instruments which are mainly sensitive to stratospheric absorbers. MAX-DOAS utilizes scattered sunlight received from multiple viewing directions. The spatial distribution of various trace gases close to the instrument can be derived by combining sev...

  19. Optical absorption of nanoporous silicon: quasiparticle band gaps and absorption spectra

    Shi, Guangsha; Kioupakis, Emmanouil

    2013-03-01

    Silicon is an earth-abundant material of great importance in semiconductors electronics, but its photovoltaic applications are limited by the low absorption coefficient in the visible due to its indirect band gap. One strategy to improve the absorbance is to perforate silicon with nanoscale pores, which introduce carrier scattering that enables optical transitions across the indirect gap. We used density functional and many-body perturbation theory in the GW approximation to investigate the electronic and optical properties of porous silicon for various pore sizes, spacings, and orientations. Our calculations include up to 400 atoms in the unit cell. We will discuss the connection of the band-gap value and absorption coefficient to the underlying nanopore geometry. The absorption coefficient in the visible range is found to be optimal for appropriately chosen nanopore size, spacing, and orientation. Our work allows us to predict porous-silicon structures that may have optimal performance in photovoltaic applications. This research was supported as part of CSTEC, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Computational resources were provided by the DOE NERSC facility.

  20. TL, EPR and optical absorption in natural grossular crystal

    Yauri, J.M. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, 187, CEP 05508-900, Sao Paulo (Brazil); Department of Physics, University of San Agustin, Av. Independencia S/N, Arequipa (Peru); Cano, N.F. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, 187, CEP 05508-900, Sao Paulo (Brazil)], E-mail: nilocano@dfn.if.usp.br; Watanabe, S. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, 187, CEP 05508-900, Sao Paulo (Brazil)

    2008-10-15

    Grossular is one of six members of silicate Garnet group. Two samples GI and GII have been investigated concerning their luminescence thermally stimulated (TL). EPR and optical absorption and the measurements were carried out to find out whether or not same point defects are responsible for all three properties. Although X-rays diffraction analysis has shown that both GI and GII have practically the same crystal structure of a standard grossular crystal, they presented different behavior in many aspects. The TL glow curve shape, TL response to radiation dose, the effect of annealing at high temperatures before irradiation, the dependence of UV bleaching parameters on peak temperature, all of them differ going from GI to GII. The EPR signals around g=2.0 as well as at g=4.3 and 6.0 have much larger intensity in GI than in GII. Very high temperature (>800 deg. C) annealing causes large increase in the bulk background absorption in GI, however, only very little in GII. In the cases of EPR and optical absorption, the difference in their behavior can be attributed to Fe{sup 3+} ions; however, in the TL case one cannot and the cause was not found as yet.

  1. [Retrieval of monocyclic aromatic hydrocarbons with differential optical absorption spectroscopy].

    Xie, Pin-Hua; Fu, Qiang; Liu, Jian-Guo; Liu, Wen-Qing; Qin, Min; Li, Ang; Liu, Shi-Sheng; Wei, Qing-Nong

    2006-09-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, e. g. SO2, NO2, O3 etc. However, unlike the absorption spectra of SO2 and NO2, the analysis of aromatic compounds is difficult and strongly suffers from the cross interference of other absorbers (Herzberg bands of oxygen, ozone and sulfur dioxide), especially with relatively low concentrations of aromatic compounds in the atmosphere. In the present paper, the DOAS evaluation of aromatic compounds was performed by nonlinear least square fit with two interpolated oxygen optical density spectra at different path lengths and reference spectra of ozone at different temperature and SO2 cross section to correct the interference from absorbers of O2, O3 and SO2. The measurement of toluene, benzene, (m, p, o) xylene and phenol with a DOAS system showed that DOAS method is suitable for monocyclic aromatic compounds monitoring in the atmosphere. PMID:17112022

  2. Optical absorption and localization of eigenmodes in disordered clusters

    Results of a large-scale computational project for the calculation of the dispersion relations of eigenmodes (surface plasmons) and optical-absorption spectra of disordered clusters (fractal and uncorrelated) are reported. Fractals (cluster-cluster aggregates and the random-walk clusters, both original and diluted) and random-gas clusters consisting of 100--300 monomers are studied. High-accuracy results of Monte Carlo simulations are obtained. Transition of the eigenmodes from extremely localized to fully delocalized is found. Scaling of the dispersion relation of the eigenmodes, i.e., their localization radius or coherence length as a function of the spectral variable X, predicted earlier is quantitatively confirmed for diluted clusters. In contrast to the dispersion relations, the absorption spectra as functions of X do not show pronounced scaling in the intermediate region, but scale in the binary (spectral-wing) region. We suggest a new plot for the absorption profiles, namely absorption as a function of the coherence length of excitations. In such plots for most clusters, scaling is pronounced, but the indices differ dramatically from the predictions of the strong-localization theory. Possible reasons for the observed behavior are discussed

  3. Optical absorption of dilute solutions of metals in molten salts

    The F-centre model for the bound state and the first optical transition of an electron in a metal-molten salt solution is examined in the high dilution limit appropriate for comparison with optical absorption data. It is first argued that the model is consistent with recent neutron diffraction and computer simulation data on the structure of pure molten salts, and not incompatible with an Anderson localization model for the electronic conductivity of the solution at higher concentration of metal. A detailed evaluation of the model is presented for the case of a molten salt of equi-sized ions simulating molten KCl. The treatment of the electronic states is patterned after semicontinuum approximations previously applied to the F-centre in ionic crystals, but the equilibrium radius of the electronic cavity and its fluctuations are determined self-consistently from the free energy of the solution. The detailed analysis of this case and the agreement of the results with experiment allow the construction of a simple parametrization scheme, which is then applied to explore the trends of the optical absorption spectrum and of the volume of mixing through the whole family of M-MX solutions, where M is an alkali and X a halogen. Similarities and differences of the electronic bound state in the crystal and in the liquid are underlined. (author)

  4. Water absorption length measurement with the ANTARES optical beacon system

    ANTARES is a neutrino telescope located in the Mediterranean Sea with the aim of detecting high energy neutrinos of extra-terrestrial origin. It consists of a three dimensional array on 12 detection lines of photomultiplier tubes (PMTs) able to detect the Cherenkov light induced by muons produced in the interaction of neutrinos with the surrounding water and seabed. To reach the best angular resolution, good time and positioning calibrations are required. The propagation of Cherenkov photons strongly depends on the optical properties of the sea water, which has an impact on the reconstruction efficiency. The determination of the optical parameters, as the absorption and scattering lengths, is crucial to calculate properly the effective area and the angular resolution of the detector. The ANTARES optical beacon system consists of pulsed and fast, well controlled light sources distributed throughout the detector to carry out in situ the relative time calibration of the detector components. In this contribution we show some results on the sea water optical properties and their stability measured with the optical beacon system.

  5. Tuning nonlinear optical absorption properties of WS2 nanosheets

    Long, Hui; Tao, Lili; Tang, Chun Yin; Zhou, Bo; Zhao, Yuda; Zeng, Longhui; Yu, Siu Fung; Lau, Shu Ping; Chai, Yang; Tsang, Yuen Hong

    2015-10-01

    To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, FON, and optical limiting threshold, FOL, of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The FON and FOL show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest FON (0.01 J cm-2) and FOL (0.062 J cm-2) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties.To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, FON, and optical limiting threshold, FOL, of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The FON and FOL show a rapid decline with the decrease of size

  6. Study on Differential Optical Absorption Spectroscopy : Technique and its Applications

    Liu, Jianguo

    2002-01-01

    ln the first part of speech, with a description of the principle of DOAS (Differential Optical Absorption Spectroscopy), the design and realization of two different kinds of DOAS systems are nresented. 0ne is using a slotted disc raoid scanning device with a photomultiplier, which is suitable for ambient air quality measurement. It can measure total 16 kinds of pollutants such as SO_2, NO, N02, NH_3, O_3, C_6H_6, C_7H_8 and CH_2O etc., with detection limits of 1-2ppb. The other is using a UV ...

  7. Mathematical Model of Fiber Optic Temperature Sensor Based on Optic Absorption and Experiment Testing

    2001-01-01

    On the basis of analysis on the temperature monitoring methods for high voltage devices, a new type of fiber optic sensor structure with reference channel is given. And the operation principle of fiber optic sensor is analysed at large based on the absorption of semiconductor chip. The mathematical model of both devices and the whole system are also given. It is proved by the experiment that this mathematical model is reliable.

  8. Exciton effects on dipole-allowed optical absorptions in a two-dimensional parabolic quantum dot

    Yuan, Jian-Hui, E-mail: jianhui831110@163.com [The Department of Physics, Guangxi Medical University, Nanning, Guangxi 530021 (China); Zhang, Yan; Huang, Daizheng [The Department of Physics, Guangxi Medical University, Nanning, Guangxi 530021 (China); Zhang, Jianjun [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Xin [The 34th Institute of China Electronics and Technology Group Corporation, Guilin, Guangxi 541004 (China)

    2013-11-15

    Exciton effects on the linear and nonlinear optical absorptions (the transition from the S state (L=0) to the P state (L=1)) in two-dimensional quantum dots are theoretically studied by using the configuration-integration methods (CI) and the compact density-matrix approach. The results show that the optical absorption coefficient, which can be controlled by the confinement potential strength and the incident optical intensity, is enhanced obviously when the exciton effect is taken into account. We find that both a trapped electron–hole pair and the incident optical intensity can bleach the exciton absorption and the appearance of the new absorption may be due to biexciton. -- Highlights: • This paper investigates exciton effects on dipole-allowed optical absorptions in quantum dots. • Both a trapped electron–hole pair and the incident optical intensity can bleach the exciton absorption. • The appearance of the new biexciton absorption may be due to biexciton.

  9. Tuning nonlinear optical absorption properties of WS₂ nanosheets.

    Long, Hui; Tao, Lili; Tang, Chun Yin; Zhou, Bo; Zhao, Yuda; Zeng, Longhui; Yu, Siu Fung; Lau, Shu Ping; Chai, Yang; Tsang, Yuen Hong

    2015-11-14

    To control the optical properties of two-dimensional (2D) materials is a long-standing goal, being of both fundamental and technological significance. Tuning nonlinear optical absorption (NOA) properties of 2D transition metal dichalcogenides in a cost effective way has emerged as an important research topic because of its possibility to custom design NOA properties, implying enormous applications including optical computers, communications, bioimaging, and so on. In this study, WS2 with different size and thickness distributions was fabricated. The results demonstrate that both NOA onset threshold, F(ON), and optical limiting threshold, F(OL), of WS2 under the excitation of a nanosecond pulsed laser can be tuned over a wide range by controlling its size and thickness. The F(ON) and F(OL) show a rapid decline with the decrease of size and thickness. Due to the edge and quantum confinement effect, WS2 quantum dots (2.35 nm) exhibit the lowest F(ON) (0.01 J cm(-2)) and F(OL) (0.062 J cm(-2)) among all the samples, which are comparable to the lowest threshold achieved in graphene based materials, showing great potential as NOA materials with tunable properties. PMID:26456545

  10. Metal incorporated M-DNA: structure, magnetism, optical absorption

    Mizoguchi, Kenji

    2011-09-01

    DNA is an interesting material from the viewpoint of the materials science. This paper discusses the electronic states of the metal incorporated M-DNA complexes with several species of metal ions. M-DNA prepared by the ordinary methanol precipitation technique has been investigated with ESR, STM and optical absorption, and concluded that the metal ion hydrated with several water molecules locates in between the bases of a base pair and that the divalent metal ions are incorporated into DNA in place of two Na cations as the counter ion for PO-4in the DNA backbones. Only in Fe-DNA, it was confirmed that the Fe2+ in the FeCl2 aqueous solution reacts with DNA to form Fe-DNA complex with Fe3+, where the charge would transfer to DNA. Within 30 min, the hydrolysis of Fe2+ to form Fe3+O(OH) did not occur in the FeCl2 aqueous solution at room temperature. The optical absorption spectra of Fe-DNA is similar to that for FeCl3 with the ionic character, but definitely differs from that of Fe3+O(OH) with the covalent bonding nature, suggesting the ionic character of Fe3+ in Fe-DNA. Finally, the possible two kinds of electronic states for Zn-DNA with different bonding nature will be discussed in relation to the recent report on Zn-DNA.

  11. Reconstruction of a piecewise smooth absorption coefficient by an acousto-optic process

    Ammari, Habib; Garnier, Josselin; Nguyen, Loc Hoang; Seppecher, Laurent

    2012-01-01

    The aim of this paper is to tackle the nonlinear optical reconstruction problem. Given a set of acousto-optic measurements, we develop a mathematical framework for the reconstruction problem in the case where the optical absorption distribution is supposed to be a perturbation of a piecewise constant function. Analyzing the acousto-optic measurements, we establish a new equation in the sense of distributions for the optical absorption coefficient. For doing so, we introduce a weak Helmholtz d...

  12. Optical performance and metallic absorption in nanoplasmonic systems.

    Arnold, Matthew D; Blaber, Martin G

    2009-03-01

    Optical metrics relating to metallic absorption in representative plasmonic systems are surveyed, with a view to developing heuristics for optimizing performance over a range of applications. We use the real part of the permittivity as the independent variable; consider strengths of particle resonances, resolving power of planar lenses, and guiding lengths of planar waveguides; and compare nearly-free-electron metals including Al, Cu, Ag, Au, Li, Na, and K. Whilst the imaginary part of metal permittivity has a strong damping effect, field distribution is equally important and thus factors including geometry, real permittivity and frequency must be considered when selecting a metal. Al performs well at low permittivities (e.g. sphere resonances, superlenses) whereas Au & Ag only perform well at very negative permittivities (shell and rod resonances, LRSPP). The alkali metals perform well overall but present engineering challenges. PMID:19259225

  13. Optical re-injection in cavity-enhanced absorption spectroscopy

    Leen, J. Brian, E-mail: b.leen@lgrinc.com; O’Keefe, Anthony [Los Gatos Research, 67 E. Evelyn Avenue, Suite 3, Mountain View, California 94041 (United States)

    2014-09-15

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10{sup −10} cm{sup −1}/√(Hz;) an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features.

  14. Optical re-injection in cavity-enhanced absorption spectroscopy

    Leen, J. Brian; O’Keefe, Anthony

    2014-01-01

    Non-mode-matched cavity-enhanced absorption spectrometry (e.g., cavity ringdown spectroscopy and integrated cavity output spectroscopy) is commonly used for the ultrasensitive detection of trace gases. These techniques are attractive for their simplicity and robustness, but their performance may be limited by the reflection of light from the front mirror and the resulting low optical transmission. Although this low transmitted power can sometimes be overcome with higher power lasers and lower noise detectors (e.g., in the near-infrared), many regimes exist where the available light intensity or photodetector sensitivity limits instrument performance (e.g., in the mid-infrared). In this article, we describe a method of repeatedly re-injecting light reflected off the front mirror of the optical cavity to boost the cavity's circulating power and deliver more light to the photodetector and thus increase the signal-to-noise ratio of the absorption measurement. We model and experimentally demonstrate the method's performance using off-axis cavity ringdown spectroscopy (OA-CRDS) with a broadly tunable external cavity quantum cascade laser. The power coupled through the cavity to the detector is increased by a factor of 22.5. The cavity loss is measured with a precision of 2 × 10−10 cm−1/\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\sqrt {{\\rm Hz;}}$\\end{document} Hz ; an increase of 12 times over the standard off-axis configuration without reinjection and comparable to the best reported sensitivities in the mid-infrared. Finally, the re-injected CRDS system is used to measure the spectrum of several volatile organic compounds, demonstrating the improved ability to resolve weakly absorbing spectroscopic features. PMID:25273701

  15. Nanofluid optical property characterization: towards efficient direct absorption solar collectors

    Otanicar Todd

    2011-01-01

    Full Text Available Abstract Suspensions of nanoparticles (i.e., particles with diameters < 100 nm in liquids, termed nanofluids, show remarkable thermal and optical property changes from the base liquid at low particle loadings. Recent studies also indicate that selected nanofluids may improve the efficiency of direct absorption solar thermal collectors. To determine the effectiveness of nanofluids in solar applications, their ability to convert light energy to thermal energy must be known. That is, their absorption of the solar spectrum must be established. Accordingly, this study compares model predictions to spectroscopic measurements of extinction coefficients over wavelengths that are important for solar energy (0.25 to 2.5 μm. A simple addition of the base fluid and nanoparticle extinction coefficients is applied as an approximation of the effective nanofluid extinction coefficient. Comparisons with measured extinction coefficients reveal that the approximation works well with water-based nanofluids containing graphite nanoparticles but less well with metallic nanoparticles and/or oil-based fluids. For the materials used in this study, over 95% of incoming sunlight can be absorbed (in a nanofluid thickness ≥10 cm with extremely low nanoparticle volume fractions - less than 1 × 10-5, or 10 parts per million. Thus, nanofluids could be used to absorb sunlight with a negligible amount of viscosity and/or density (read: pumping power increase.

  16. Stable and metastable optical absorption of LiB3O5 nonlinear crystals

    Results of the study on stable and metastable optical absorption of the LBO crystals by excitation with electron pulse beam of nanosecond duration are presented. It is shown that the nature of the LBO stable and metastable optical absorption may be connected with optical transition from the local level of the hole O-centrum to the LBO B3 levels. It is of great practical importance for understanding the mechanism of the LBO radiation-optical stability

  17. Linear optical absorption spectra of mesoscopic structures in intense THz fields: Free-particle properties

    Johnsen, Kristinn; Jauho, Antti-Pekka

    1998-01-01

    We theoretically study the effect of THz radiation on the linear optical absorption spectra of semiconductor structures. A general theoretical framework, based on nonequilibrium Green functions, is formulated and applied to the calculation of linear optical absorption spectrum for several nonequi...

  18. Metastable optical absorption and luminescence of LiB3O5 lithium triborate crystals

    Metastable optical absorption and luminescence of LiB3O5 (LBO) nonlinear crystals in visible and ultraviolet ranges of spectrum were studied, the results are presented. By the method of absorption optical spectroscopy it was ascertained that short-lived optical absorption of LBO is brought about by optical transitions in hole centers. It is shown that kinetics of pulsed cathodoluminescence of LBO is controlled by recombination process involving two competing hole centers, interacting via valence zone, and small electronic centers of B2+. Radiative recombination dictates characteristic σ-polarized LBO luminescence in the range of 4.0 eV

  19. Multi axis differential optical absorption spectroscopy (MAX-DOAS

    G. Hönninger

    2004-01-01

    Full Text Available Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS in the atmosphere is a novel measurement technique that represents a significant advance on the well-established zenith scattered sunlight DOAS instruments which are mainly sensitive to stratospheric absorbers. MAX-DOAS utilizes scattered sunlight received from multiple viewing directions. The spatial distribution of various trace gases close to the instrument can be derived by combining several viewing directions. Ground based MAX-DOAS is highly sensitive to absorbers in the lowest few kilometres of the atmosphere and vertical profile information can be retrieved by combining the measurements with Radiative Transfer Model (RTM calculations. The potential of the technique for a wide variety of studies of tropospheric trace species and its (few limitations are discussed. A Monte Carlo RTM is applied to calculate Airmass Factors (AMF for the various viewing geometries of MAX-DOAS. Airmass Factors can be used to quantify the light path length within the absorber layers. The airmass factor dependencies on the viewing direction and the influence of several parameters (trace gas profile, ground albedo, aerosol profile and type, solar zenith and azimuth angles are investigated. In addition we give a brief description of the instrumental MAX-DOAS systems realised and deployed so far. The results of the RTM studies are compared to several examples of recent MAX-DOAS field experiments and an outlook for future possible applications is given.

  20. Comparative study of five varieties of spodumene through optical absorption

    A comparative study of five varieties of spodumene crystals from Brazil through optical absorption spectroscopy, classified according to the colours lylac, colourless I, colourless II, yellow and green is reported. This series shows a consistent increase of the [Fe]/[Mn] ratio. The principal bands in the yellow sample are at 7,000 and 9,000 cm-1, and in the green sample besides these bands a band at 16,000 cm-1 is observed. In lylac, colourless I and colourless II samples, the principal bands are at 18,000 cm-1 and when irradiated two new bands appears at 15,700 cm-1 (E perpendicular to c) and 11,000 cm-1 (K perpendicular to c). It is suggested that in green and yellow samples the bands are due to Fe2+ (at 7,000 cm-1 and 9,000 cm-1) and due to Fe2+ - Fe3+ charge transfer (at 16,000 cm-1). In lylac and colourless I samples the model for Mn3+ at two different sites is applied. The colourless II corresponds to the case in which Mn3+ is at one site alone, being prohibited from occupying the second site due to higher Fe concentration. (Author)

  1. Nocturnal Measurements of HONO by Differential Optical Absorption Spectroscopy

    Wojtal, P.; McLaren, R.

    2011-12-01

    Differential optical absorption spectroscopy (DOAS) was used to quantify the concentration of HONO, NO2 and SO2 in the nocturnal urban atmosphere at York University over a period of one year. These measurements form a comprehensive HONO data set, including a large range of temperatures, relative humidity, surface conditions (snow, water, dry, etc.) and NO2 concentrations. Laboratory studies and observations within the nocturnal boundary layer reported in the literature suggest heterogeneous conversion of NO2 on surface adsorbed water as the major nighttime source of HONO. HONO formation and photolysis is believed to represent a major source term in the hydroxyl radical budget in polluted continental regions. Currently, most air quality models tend to significantly underpredict HONO, caused by the lack of understanding of HONO formation processes and the parameters that affect its concentration. Recently, we reported nocturnal pseudo steady states (PSS) of HONO in an aqueous marine environment and a conceptual model for HONO formation on aqueous surfaces was proposed. The data set collected at York University is being analyzed with a view towards further understanding the nighttime HONO formation mechanism and testing several hypotheses: 1) A HONO PSS can exist during certain times at night in an urban area in which the HONO concentration is independent of NO2, given the surface contains sufficient water coverage and is saturated with nitrogen containing precursors; 2) The concentration of HONO is positively correlated with temperature during periods where a PSS exists; 3) Different conversion efficiencies of NO2 to HONO exist on dry, wet and snow surfaces; 4) HONO formation has a NO2 order dependence between 0 and 2nd order, dependant on NO2 concentration, relative humidity, etc. The data set will be presented along with statistical analysis that sheds new light on the source of HONO in urban areas at night.

  2. XANES determination of chromium oxidation states in glasses: comparison with optical absorption spectroscopy

    Villain, Olivier; Calas, Georges; Galoisy, Laurence; Cormier, Laurent; Hazemann, Jean-Louis

    2007-01-01

    The oxidation state of chromium in glasses melted in an air atmosphere with and without refining agents was investigated by Cr K-edge X-ray Absorption Near-Edge Structure (XANES) and optical absorption spectroscopy. A good agreement in the relative proportion of Cr(III) and Cr(VI) is obtained between both methods. We show that the chemical dependence of the absorption coefficient of Cr(III) is less important in XANES than in optical absorption spectroscopy. The comparison of glasses melted un...

  3. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Karthikeyan, B.; Udayabhaskar, R.; Hariharan, S.

    2016-07-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  4. Identification of inhomogenous optical absorptive response by chaotic photonic signals in Au nanoparticles

    A chaotic circuit allows us to identify with a high sensitivity the optical absorption associated with a highly transparent sample with Au nanoparticles embedded in a TiO2 thin film prepared by a sol–gel method. The measurements are based on a comparison of the correlation between a controlled optical irradiance that propagates through different zones of the sample. Nanosecond nonlinear optical measurements were obtained by monitoring the transmittance and the amplitude modification for the vectorial components of the electric fields in a two-wave mixing interaction. In addition, we theoretically study chaotic physical behavior exhibited by optical signals under nonlinear optical absorption. Our numerical results point out that small intensity fluctuations related to excitations of the absorptive nonlinearity can be described using a simple fractal model. Potential applications for developing sensors and instrumentation of the optical response of advanced materials are contemplated. (paper)

  5. Optical absorption of tetraphenylporphyrin thin films in UV-vis-NIR region

    El-Nahass, M. M.; Zeyada, H. M.; Aziz, M. S.; Makhlouf, M. M.

    2005-11-01

    The optical absorption of thermally evaporated tetraphenylporphyrin (TPP) in the UV-vis-NIR region have been studied. The absorption spectra recorded in the UV-vis region for the as deposited and annealed films showed different absorption bands, namely the Soret(B) at region 360-490 nm, Q-band region consist of four bands in the region 500-720 nm and two other bands labeled N and M in UV region. The Soret band always shows its characteristic effect splitting in all the TPP thin films and the effect of annealing on the intensities of these components have been observed. The spectra of the infrared absorption allow characterization of vibrational modes for the powder, as deposited and annealed thin films. Some of the optical absorption parameters, namely molar extinction coefficient, ɛ, half band width, Δ λ, electronic dipole strength, q2 and oscillator strength, f, of the principle optical transitions have also been evaluated.

  6. Multi-spectral optical absorption in substrate-free nanowire arrays

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  7. Studies on the optical absorption of copper-dopped myoglobin: conformational changes

    Optical absorption changes in the visible and near U.V. spectrum of myoglobin molecules are observed when copper ions are added to the macromolecule. The heme optical transitions are investigated through a theoretical simulation of the optical absorption spectrum. A study of the absorption band in the region of 700 nm associated with the copper - myoglobin complexes indicated the existence of two kinds of metal-protein complexes: one associated with the six or eitht first added copper ions and the other related with the higher concentrations. Conformational changes caused by thermal treatment are studied in myoglobin water solutions and solutions containing copper ions. The phenomenon named pre-denaturation is observed through the optical absorption at 245 nm. It is shown that interactions between myoglobin molecules occur in the pre-denaturation phenomenon. (Author)

  8. [The Establishment of the Method of the Fiber Optic Chemical Sensor Synchronous Absorption-Fluorescence].

    Zhang Li-hua; Iburaim, Arkin

    2016-03-01

    A new method of simultaneously measuring fiber-optic chemical sensor absorption spectrum and fluorescence spectrum is established. Make synchronous absorption-fluorescence cuvette, establish synchronous absorption-fluorescence spectrometry instrumentation combined by fiber optic chemical sensor technology, measure the synchronous absorption-fluorescence spectrums of solutions of rhodamine B, vitamin B2 and vitamin B6, compared by absorption spectroscopy measured by traditional UV-Visible photometric method and fluorescence spectroscopy measured by traditional fluorescence method. Synchronous absorption-fluorescence method measure absorption spectrums and fluorescence spectrums the same to traditional photometric and fluorescence spectroscopy of rhodamine B, vitamin B2 and vitamin B6. The maximum wavelength of fluorescence intensity method has high accuracy relatively compared with fluorescence, but the maximum wavelength of absorption has a slight deviation. Synchronous absorption-fluorescence method means simultaneously measure the absorption spectrums and fluorescence spectrums of the fluorescent substance, making two spectrums to one. The method measured the maximum emission wavelength with high accuracy, though in measuring maximum absorption wavelength there is a slight deviation, but it is worth further studying. PMID:27400519

  9. Discrepancy between ambient annealing and H+ implantation in optical absorption of ZnO

    Lv, Jinpeng; Li, Chundong

    2016-05-01

    The discrepancy between sub-bandgap absorption in ZnO induced by thermal annealing and H+ implantation is investigated in this study for the first time. Results indicate that nonreductive annealing-induced optical absorption is independent of annealing ambient, and can be assigned to VO, whereas the absorption centers caused by H+ implantation and H2 annealing are primarily associated with VO and ionized Zni.

  10. Optical-Feedback Cavity-Enhanced Absorption Spectroscopy with a Quantum Cascade Laser.

    Maisons, G.; Gorrotxategi Carbajo, P.; Carras, M.; Romanini, D.

    2010-01-01

    Optical{feedback cavity{enhanced absorption spectroscopy is demonstrated in the mid{IR using a quantum cascade laser (emitting at 4.46 ¹m). The laser linewidth reduction and frequency locking by selective optical feedback from the resonant cavity ¯eld turns out to be particularly important in this spectral range: It allows strong cavity transmission which compensates for low light sensitivity, especially when using room temperature detectors. We obtain a noise equivalent absorption coe±cient ...

  11. Three-photon-absorption-induced optical stabilization effects in a bifluorenylidene derivative.

    Liu, Junhui; Wang, Yuanxu

    2012-06-18

    A bifluorenylidene derivative with extended π-conjugated system has been designed and successfully synthesized. The compound displays strong three-photon absorption effect. The obtained three-photon absorption cross section is as high as 81.3 × 10(-76) cm(6)s(2). Distinguished 3PA-induced optical limiting and optical stabilization performances have been achieved. The on-axis transmitted intensity approached a constant even though the incident laser pulse fluctuation was 300%. PMID:22714521

  12. Temperature-dependent optical absorption of SrTiO3

    The optical absorption edge and near infrared absorption of SrTiO3 were measured at temperatures from 4 to 1703 K. The absorption edge decreases from 3.25 eV at 4 K to 1.8 eV at 1703 K and is extrapolated to approximately 1.2 eV at the melting point (2350 K). The transmission in the near IR decreases rapidly above 1400 K because of free carrier absorption and is about 50% of the room temperature value at 1673 K. The free carriers are generated by thermal excitation of electrons over the band gap and the formation of charged vacancies. The observed temperature-dependent infrared absorption can be well reproduced by a calculation based on simple models for the intrinsic free carrier concentration and the free carrier absorption coefficient. The measured red shift of the optical absorption edge and the rising free carrier absorption strongly narrow the spectral range of transmission and impede radiative heat transport through the crystal. These effects have to be considered in high temperature applications of SrTiO3-based devices, as the number of free carriers rises considerably, and in bulk crystal growth to avoid growth instabilities. Temperature dependent optical absorption edge of SrTiO3, measured, fitted, and extrapolated to the melting point. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. New techniques for optical absorption measurement of implanted nanoparticles in float glass

    New techniques are reported for optical absorption and waveguide loss measurement of copper, gold and silver implanted float glass. Implantations were carried out on the tin face of the float glass since this face is an optical waveguide. Specially made triangle shape masks were used during implantation to study the optical loss-implant length relation. Absorption coefficients were extracted as 2.4 and 1 cm-1 for the gold and silver implants at 633 nm, respectively. These values were found to be implant condition dependent. To analyse the shape of nanoparticles a sandwiched structure was used in an optical absorption measurement set-up in which two guiding faces were put in contact. The sandwiched structure places the colloids at the centre of the optical field distribution rather than on the boundary zone. These experiments have revealed that the copper and the gold particles may have non-spherical shapes, whereas for silver, the formation of spherical nanoparticles is more likely

  14. Optical pumping effect in absorption imaging of F=1 atomic gases

    Kim, Sooshin; Noh, Heung-Ryoul; Shin, Y

    2016-01-01

    We report our study of the optical pumping effect in absorption imaging of $^{23}$Na atoms in the $F=1$ hyperfine spin states. Solving a set of rate equations for the spin populations under a probe beam, we obtain an analytic expression for the optical signal of the $F=1$ absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of $^{23}$Na Bose-Einstein condensates prepared in various spin states with different probe beam pulse durations. The analytic result can be used in quantitative analysis of $F=1$ spinor condensate imaging and readily applied to other alkali atoms with $I=3/2$ nuclear spin such as $^{87}$Rb.

  15. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X1Σ+→a'3Σ+ transitions of the CN- molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN- concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author)

  16. Optical absorption defects created in SiO2 by Si, O and He ion irradiation

    Highlights: • Different silica irradiated with same ion and fluence show similar number of defects. • Increasing ion fluence, optical absorption spectra saturation is obtained. • Ion fluence at which optical absorption saturation was reached, depends of ion mass. • Surface cracks observed in all samples irradiated with Si or O at low ion fluence. • No cracks detected when optical absorption saturation was reached. - Abstract: Three types of fused silica with different OH and impurity content (KU1, KS-4V and Infrasil 301) have been irradiated with high energy ions: Si4+ (24.37 MeV), O4+ (13.5 MeV) and He+ (2.46 MeV), at different fluences (from 5 × 1012 to 1.6 × 1015 ions/cm2). After ion implantation the optical absorption of the samples was measured at room temperature from vacuum ultraviolet (VUV) to near infrared (NIR). A saturation of the absorption spectra was observed in the samples implanted with Si and O when fluence increases, which indicates a defect density saturation with the ion fluence. A surface cracking was observed in all samples irradiated with Si and O ions at fluences (ion beam shutdown) corresponding to energy densities of irradiation between 1023 eV/cm3 and 1024 eV/cm3. No macroscopic cracks were detected at fluences for which an optical absorption saturation was reached

  17. Absorptance measurements of transmissive optical components by the surface thermal lensing technique

    Chow, R.; Taylor, J.R.; Wu, Z.L.; Han, Y.; Tian, L.Y.

    1997-09-24

    The surface thermal lensing technique (STL) successfully resolved and measured the absorptance of transmissive optical components: near- normal angle-of-incidence anti-reflectors and beam splatters. The STL system uses an Ar ion laser to pump the components at 514.5 mn. The absorptance-induced surface deformation diffracts the HeNe probe beam into a photo-detector. The signal intensity was calibrated with a sample of known absorptance. The optical components were designed to function in a copper vapor laser (CVL) transport system, and were previously tested for absorptance with a high power CVL system at 511 rtm. To assure proper absorptance data from the STL system, the pump laser power densities were set at the operational level of the coatings, absorptance time trends were monitored, and absorptance area scans were made. Both types of transmissive optics are more stable than the CVL high reflectors that were measured in another study. Parameter studies based on Fresnel diffraction theory were also performed to optimize experimental condition. The STL system was assessed to have 10 ppb sensitivity for absorption measurement given 2 W of pump power.

  18. RADIATION-DAMAGE IN NACL .1. OPTICAL-ABSORPTION EXPERIMENTS ON HEAVILY IRRADIATED SAMPLES

    WEERKAMP, JRW; GROOTE, JC; SEINEN, J; DENHARTOG, HW

    1994-01-01

    Results of optical-absorption experiments on heavily irradiated NaCl single crystals are presented. The dose rates were between 4 and 250 Mrad/h; the doses between 1 and 7 Grad. The irradiation temperatures were in the range of 20-150-degrees-C. Because of the intense optical bands, the thickness of

  19. Optical label switching in telecommunication using semiconductor lasers, amplifiers and electro-absorption modulators

    Chi, Nan; Christiansen, Lotte Jin; Jeppesen, Palle;

    2004-01-01

    We demonstrate all-optical label encoding and updating for an orthogonally labeled signal in combined IM/FSK modulation format utilizing semiconductor lasers, semiconductor optical amplifiers and electro-absorption modulators. Complete functionality of a network node including two-hop transmission...

  20. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×1014 ions/cm2 there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states

  1. Investigation on optical absorption properties of ion irradiated single walled carbon nanotubes

    Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya, E-mail: keya@pu.ac.in [Department of Physics, Panjab University, Chandigarh (India); Kaur, Ramneek; Raina, K. K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala (India); Avasthi, D. K. [Materials Science Group, Inter University Accelerator Centre, ArunaAsaf Ali Marg, NewDelhi (India); Jeet, Kiran [Electron Microscopy and Nanoscience laboratory, Punjab Agriculture University, Ludhiana (India)

    2015-08-28

    In the present study change in the optical absorption properties of single walled carbon nanotubes (SWCNTs) under nickel ion (60 MeV) irradiation at various fluences has been investigated. Langmuir Blodgett technique is used to deposit SWCNT thin film of uniform thickness. AFM analysis shows a network of interconnected bundles of nanotubes. UV-Vis-NIR absorption spectra indicate that the sample mainly contain SWCNTs of semiconducting nature. It has been found in absorption spectra that there is decrease in the intensity of the characteristic SWCNT peaks with increase in fluence. At fluence value 1×10{sup 14} ions/cm{sup 2} there is almost complete suppression of the characteristic SWCNTs peaks.The decrease in the optical absorption with increase in fluence is due to the increase in the disorder in the system which leads to the decrease in optically active states.

  2. Microstructure and optical absorption of Au-MgF2 nanoparticle cermet films

    Sun Zhao-Qi; Cai Qi; Song Xue-Ping

    2006-01-01

    The microstructure and optical absorption of Au-MgF2 nanoparticle cermet films with different Au contents are studied.The microstructural analysis shows that the films are mainly composed of the amorphous MgF2 matrix with embedded fcc Au nanoparticles with a mean size of 9.8-21.4nm.Spectral analysis suggests that the surface plasma resonance (SPR) absorption peak of Au particles appears at λ=492-537nm.With increasing Au content,absorption peak intensity increases,profile narrows and location redshifts.Theoretical absorption spectra are calculated based on Maxwell-Garnett theory and compared with experimental spectra.

  3. Optical absorption and fluorescence studies on imidazolium ionic liquids comprising the bis(trifluoromethanesulphonyl)imide anion

    Aniruddha Paul; Anunay Samanta

    2006-07-01

    Optical absorption and fluorescence behaviour of two rigorously purified imidazolium ionic liquids, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide are studied in the neat condition and in solution. Non-negligible absorption in the UV region with a long tail extending into the visible region is the main feature of the absorption. Excitation wavelength-dependent two-component fluorescence characterizes the emission behaviour of these liquids. That ion association gives rise to the long absorption tail and shifting fluorescence maximum, which appears to be common to most of the imidazolium ionic liquids, is evident from the effect of the conventional solvents.

  4. Absorptance behavior of optical coatings for high-average-power laser applications

    A modified photothermal deformation technique is used to measure the absorptance behaviors of optical multilayered dielectric coatings for a high-power laser system. The surface thermal-lensing modification uses an enlarged probe beam to facilitate alignment of the laser beam and data acquisition. The coatings, both reflective and transmissive types, are made by a physical vapor-deposition process. Coating absorptances are observed to depend on the laser's exposure time and power density. Time-dependent absorptance defect models are proposed. Also, micrometer-sized sites of high absorptance and an area with physical damage can be found during the spatial scans. It is proposed that absorptance values reported for coatings in high-repetition-rate or cw-laser systems include time- and power-dependent behaviors in addition to other relevant irradiation parameters. (c) 2000 Optical Society of America

  5. Properties of multilayer optical systems formed by layers with small absorption in inclined falling of radiation

    Karyaev, Konstantin V.; Zhoga, Eugene V.; Putilin, Eduard S.

    2000-10-01

    Multilayer dielectric systems find wide employment in different fields of science and engineering. Dielectric systems, formed by layers with small absorption, attract particular interest. Value of absorption, as a rule, depends on structure of the system (order and optical thickness of layers), angle of incidence and wavelength of radiation. Experiment shows that there are peaks of absorption on certain angles of incidence and wavelength, but behavior of absorption wasn't studied well. Model of a system, formed by isotropic layers settled on semiinfinite substate proved to be a good approximation for many of real optical systems. We studied pecularities in spectral dependencies of reflection, transmission and absorption coefficients in dependance on the angle of incidence and wavelength of falling radiation with flat wave front. Problem was solved on the basis of Maxwell equations and corresponding boundary conditions.

  6. Optical absorption and thermoluminescence in calcium fluoride doped with manganese and cerium

    Optical absorption curves of CaF2 singly doped with Mn or Ce, and doubly doped with both Mn and Ce, show complex arrays of absorption bands after irradiation. In the Mn-only doped samples the absorption can be clearly related to Mn, whereas various forms of Ce centre dominate the radiation-induced absorption in the Ce-doped samples. However, in the doubly doped specimens only the Ce related absorptions can be seen. From these observations, along with thermal and optical bleaching measurements, we suggest that the Mn-related centres are Mn/F centre complexes. These are believed to be the centres responsible for the TL in dosimetry grade CaF2:Mn. Possible mechanisms for the TL production process are discussed. (author)

  7. Generating Nanostructures with Multiphoton Absorption Polymerization using Optical Trap Assisted Nanopatterning

    Tsai, Yu-Cheng; Leitz, Karl-Heinz; Fardel, Romain; Schmidt, Michael; Arnold, Craig B.

    The need to generate sub 100 nm features is of interest for a variety of applications including optics, optoelectronics, and plasmonics. To address this requirement, several advanced optical lithography techniques have been developed based on either multiphoton absorption polymerization or near-field effects. In this paper, we combine strengths from multiphoton absorption and near field using optical trap assisted nanopatterning (OTAN). A Gaussian beam is used to position a microsphere in a polymer precursor fluid near a substrate. An ultrafast laser is focused by that microsphere to induce multiphoton polymerization in the near field, leading additive direct-write nanoscale processing.

  8. Population Dynamics and the Optical Absorption in Hybrid Metal Nanoparticle - Semiconductor Quantum dot Nanosystem

    Kim, Nam-Chol; Ko, Myong-Chol; So, Guang Hyok; Kim, Il-Guang

    2015-01-01

    We studied theoretically the population dynamics and the absorption spectrum of hybrid nanosystem consisted of a matal nanoparticle (MNP) and a semiconductor quantum dot(SQD). We investigated the exciton-plasmon coupling effects on the population dynamics and the absorption properties of the nanostructure. Our results show that the nonlinear optical response of the hybrid nanosystem can be greatly enhanced or depressed due to the exciton-plasmon couplings. The results obtained here may have the potential applications of nanoscale optical devices such as optical switches and quantum devices such as a single photon transistor.

  9. Optical signal processing using electro-absorption modulators

    Mørk, Jesper; Romstad, Francis Pascal; Højfeldt, Sune;

    2003-01-01

    Reverse-biased semiconductor waveguides are efficient saturable absorbers and have a number of promising all-optical signal processing applications. Results on ultrafast modulator dynamics as well as demonstrations and investigations of wavelength conversion and regeneration are presented....

  10. Optical Absorption Sensors for Evaluation of Yeast Acidification Power

    Rychtáriková, Renata; Frančič, N.; Hetflejš, Jiří; Kuncová, Gabriela; Gabriel, P.; Lobnik, A.

    Prague: Institute of Photonics and Electronics ASCR, v. v. i, 2010, 160 /P102/. ISBN 978-80-86269-20-7. [European Conference on Optical Chemical Sensors and Biosensors - Europt(r)ode X /10./. Prague (CZ), 28.03.2010-31.03.2008] Institutional research plan: CEZ:AV0Z40720504 Keywords : yeast acidification power * optical sensor * hydrogel Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  11. Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS

    J. Meinen; J. Thieser; U. Platt; T. Leisner

    2008-01-01

    Cavity enhanced methods in absorption spectroscopy have seen a considerable increase in popularity during the past decade. Especially Cavity Enhanced Absorption Spectroscopy (CEAS) established itself in atmospheric trace gas detection by providing tens of kilometers of effective light path length using a cavity as short as 1 m. In this paper we report on the construction and testing of a compact and power efficient light emitting diode based broadband Cavity Enhanced Differential Optical Abso...

  12. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm−1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol

  13. Optical absorption spectrum of highly excited direct gap semiconductors

    The effects of many body interactions on the absorption (gain) spectrum of highly excited direct gap semiconductors are investigated using two-times Green's function method. The equation of motion for an appropriate Green's function when linearized in an exchange decoupling approximation, reproduces results of some recent calculations. We also propose a frequency moment conserving decoupling approximation. The result obtained is in a form which shows the enhancement of the free particle spectrum due to electron-hole correlations. (author)

  14. BGO radiation damage effects optical absorption, thermoluminescence and thermoconductivity

    Lecoq, P; Rostaing, B

    1991-01-01

    After irradiation, the light transmission of bismuth germanate monocrystals decreases, mainly in the blue, as a consequence of the formation of colour centres. The absorption, thermoluminescence and thermoconductivity spectra were studied for different kinds of irradiation, different doses and at different temperatures. Doped samples were also tested, showing the role of impurities, mainly iron, in the process of damage. Finally a model is proposed which explains all the experimental results.

  15. Monitoring transformer oil insulation using optical absorption properties

    Rose, Benjamin P.

    As the electrical power distribution system ages, new methods of determining the quality of electrical transformer units are needed. Due to the relatively high expense of loss of service and safety hazards, a relatively cheap sensor to track the age of the insulation would aide in the progress of an intelligent power grid. The degradation of solid insulating paper releases some of the age indicating organic compounds into the oil. At present, the only available method to determine the concentration of those compounds is to perform high performance liquid chromatography (HPLC) testing in a laboratory. This is an expensive and time consuming activity that also requires transformer to be taken offline. Currently there are no sensors that can directly (on-line) measure the chemical integrity of the material. This research was focused upon one of the well known organic compounds released by paper into the transformer oil - 2-furfuraldehyde (2FAL). Previous methods of 2FAL detection were explored and expounded upon. A device was constructed to utilize light emitting diodes to optically interrogate solid discs made out of chemically active material in multiple tests. A 10 kVA distribution transformer was fitted with a special device allowing a continuous oil circulation and the optical setup. The transformer was tested while being loaded under accelerated ageing conditions. A premature failure of the distribution transformer did not allow any correlation between concentration of 2FAL and the optical signals. Previously sampled oils for a current transformer (CT) were also tested for chemical analysis in the laboratory and optical signals from the newly developed optical device were obtained. A 95% linear correlation was found between the age of the CT oil and the output of the optical device. Although the technique was validated and does seem to have merit, more tests are needed before the optical device can be recommended for use in the field.

  16. The local structure and optical absorption characteristic investigation on Fe doped TiO2 nanoparticles

    Zhao, Tianxing; Huang, Junheng; He, Jinfu; Liu, Qinghua; Pan, Zhiyun; Wu, Ziyu

    2014-01-01

    The local structures and optical absorption characteristic of Fe doped TiO2 nanoparticles synthesized by the sol-gel method were characterized by X-ray Diffraction (XRD), X-ray absorption fine structure spectroscopy (XAFS) and UV-Vis absorption spectroscopy (UV-Vis). XRD patterns show that all Fe-doped TiO2 samples have the characteristic anatase structure. Accurate Fe and Ti K-edge EXAFS analysis further reveal that all Fe atoms replace Ti atoms in the anatase lattice. The analysis of UV-Vis data shows a red shift to the visible range. According to the above results, we claim that substitutional Fe atoms lead to the formation of structural defects and new intermediate energy levels appear, narrowing the band gap and extending the optical absorption edge towards the visible region.

  17. Confined optical-phonon-assisted cyclotron resonance in quantum wells via two-photon absorption process

    Phuc, Huynh Vinh; Hien, Nguyen Dinh; Dinh, Le; Phong, Tran Cong

    2016-06-01

    The effect of confined phonons on the phonon-assisted cyclotron resonance (PACR) via both one and two photon absorption processes in a quantum well is theoretically studied. We consider cases when electrons are scattered by confined optical phonons described by the Fuchs-Kliewer slab, Ridley's guided, and Huang-Zhu models. The analytical expression of the magneto-optical absorption coefficient (MOAC) is obtained by relating it to the transition probability for the absorption of photons. It predicts resonant peaks caused by transitions between Landau levels and electric subband accompanied by confined phonons emission in the absorption spectrum. The MOAC and the full-width at half-maximum (FWHM) for the intra- and inter-subband transitions are given as functions of the magnetic field, temperature, and quantum well width. In narrow quantum wells, the phonon confinement becomes more important and should be taken into account in studying FWHM.

  18. Magnetic field control of the intraband optical absorption in two-dimensional quantum rings

    Olendski, O., E-mail: oolendski@ksu.edu.sa [King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2454, Riyadh 11451 (Saudi Arabia); Barakat, T., E-mail: tbarakat@ksu.edu.sa [Department of Physics, King Saud University, P.O. Box 2454, Riyadh 11451 (Saudi Arabia)

    2014-02-28

    Linear and nonlinear optical absorption coefficients of the two-dimensional semiconductor ring in the perpendicular magnetic field B are calculated within independent electron approximation. Characteristic feature of the energy spectrum are crossings of the levels with adjacent nonpositive magnetic quantum numbers as the intensity B changes. It is shown that the absorption coefficient of the associated optical transition is drastically decreased at the fields corresponding to the crossing. Proposed model of the Volcano disc allows to get simple mathematical analytical results, which provide clear physical interpretation. An interplay between positive linear and intensity-dependent negative cubic absorption coefficients is discussed; in particular, critical light intensity at which additional resonances appear in the total absorption dependence on the light frequency is calculated as a function of the magnetic field and levels' broadening.

  19. Evolution of optical absorption and strain in LiTaO3 crystal implanted by energetic He-ion

    Z-cut LiTaO3 single crystal wafers were implanted at room temperature by 100–500 keV He-ion, to fluences in the range from 1.0 × 1015 to 1.0 × 1017 ions/cm2. The implanted samples were characterized by UV/VIS/NIR Spectrometer, and XRD technique. Optical absorption occurred in all implanted LiTaO3, but to different extent. Optical absorption apparently depends on both the fluence and energy of ions. The damage caused by ion implantation in LiTaO3 is not the only factor for the optical absorption. XRD measurement shows that there is also a large implantation induced strain in the samples which have strong optical absorption. And the release of strain is always companied by the recovery of optical absorption. Stress might play an important role in the optical absorption

  20. Mass specific optical absorption coefficients of mineral dust components measured by a multi wavelength photoacoustic spectrometer

    N. Utry

    2014-09-01

    Full Text Available Mass specific optical absorption coefficients of various mineral dust components including silicate clays (illite, kaolin and bentonite, oxides (quartz, hematite and rutile, and carbonate (limestone were determined at wavelengths of 1064, 532, 355 and 266 nm. These values were calculated from aerosol optical absorption coefficients measured by a multi-wavelength photoacoustic (PA instrument, the mass concentration and the number size distribution of the generated aerosol samples as well as the size transfer functions of the measuring instruments. These results are expected to have considerable importance in global radiative forcing calculations. They can also serve as reference for validating calculated wavelength dependent imaginary parts (κ of complex refractive indices which up to now have been typically deduced from bulk phase measurements by using indirect measurement methods. Accordingly, the presented comparison of the measured and calculated aerosol optical absorption spectra revealed the strong need for standardized sample preparation and measurement methodology in case of bulk phase measurements.

  1. [Retrieval of tropospheric NO2 by multi axis differential optical absorption spectroscopy].

    Xu, Jin; Xie, Pin-hua; Si, Fu-qi; Dou, Ke; Li, Ang; Liu, Yu; Liu, Wen-qing

    2010-09-01

    A method of retrieving NO2 in troposphere based on multi axis differential optical absorption spectroscopy (MAX-DOAS) was introduced. The differential slant column density (dSCD) of NO2 was evaluated by differential optical absorption spectroscopy (DOAS), removing the Fraunhofer structure and Ring effect. Combining the results of different observing directions, the tropospheric NO2 differential slant column density (deltaSCD) was evaluated, and the air mass factor (AMF) was calculated with the radiative transfer model SCIATRAN and the tropospheric NO2 vertical column density (VCD) was retrieved. To ensure the accuracy of the results, it was compared with the results of long path differential optical absorption spectroscopy (LP-DOAS), a good accordance was shown with the correlation coefficients of 0.94027 and 0.96924. PMID:21105419

  2. Strain- and twist-engineered optical absorption of few-layer black phosphorus

    Jia, Qian; Kong, XiangHua; Qiao, JingSi; Ji, Wei

    2016-09-01

    Density functional and many-body perturbation theories calculations were carried out to investigate fundamental and optical bandgap, exciton binding energy and optical absorption property of normal and strain- and twist-engineered few-layer black phosphorus (BP). We found that the fundamental bandgaps of few layer BP can be engineered by layer stacking and in-plane strain, with linear relationships to their associated exciton binding energies. The strain-dependent optical absorption behaviors are also anisotropic that the position of the first absorption peak monotonically blue-shifts as the strain applies to either direction for incident light polarized along the armchair direction, but this is not the case for that along the zigzag direction. Given those striking properties, we proposed two prototype devices for building potentially more balanced light absorbers and light filter passes, which promotes further applications and investigations of BP in nanoelectronics and optoelectronics.

  3. Enhanced light absorption in graphene via a liquid-crystalline optical diode

    Pantazi, Aikaterini Iria; Yannopapas, Vassilios

    2016-09-01

    We demonstrate theoretically that light absorption in graphene can be boosted via a light-trapping mechanism based on a liquid-crystalline optical diode. The optical diode consists of twisted-nematic and nematic liquid-crystalline slabs. In particular, we show that, using a proper optical-diode setup, the absorption in a single graphene layer can be enhanced by a factor of four. By varying the pitch of the twisted-nematic liquid-crystalline slabs comprising the diode, one can tune the operating spectral region of the diode and thus enhance the absorption of graphene within a desired spectral window. Our calculations are based on Berreman's 4×4 method which treats anisotropic, isotropic and/ or inhomogeneous layered systems on equal footing.

  4. Optical absorption and emission of α-Sn nanocrystals from first principles

    We investigate the optical properties of hydrogenated α-Sn nanocrystals up to diameters of 3.6 nm in the framework of an ab initio pseudopotential method including spin–orbit interaction (SOI) and the repeated supercell approximation. The fundamental absorption and emission edges are determined including quasiparticle effects and electron–hole interaction. The atomic geometries in the ground and excited electronic states follow from total energy optimization. We discuss the oscillator strengths of the optical absorption near the fundamental gaps for the most important transitions. We demonstrate that the spectra can only be correctly described including SOI. The strongly size-dependent Stokes shifts between optical absorption and emission are shown to be mainly a consequence of the different atomic geometries. (paper)

  5. Determination of optical absorption edge in amorphous thin films of selenium and selenium dopped with sulphur

    The transmittance and the reflectance of three thin films of S-Se alloys have been determined for different wavelengths in the range 5000-11000 A. Accurate methods had been used to calculate the optical constants n and k as well as the absorption coefficient K. The determined absorption edges for S-Se alloys shifts to higher photon energies by increasing the concentration of sulphur content. (author)

  6. Enhanced absorption of thin-film photovoltaic cells using an optical cavity

    Hsu, Wei-Chun; Chen, Gang; Weinstein, Lee Adragon; Yerci, Selcuk; Boriskina, Svetlana V.

    2015-01-01

    We show via numerical simulations that the absorption and solar energy conversion efficiency of a thin-film photovoltaic (PV) cell can be significantly enhanced by embedding it into an optical cavity. A reflective hemi-ellipsoid with an aperture for sunlight placed over a tilted PV cell reflects unabsorbed photons back to the cell, allowing for multiple opportunities for absorption. Ray tracing simulations predict that with the proposed cavity a textured thin-film silicon cell can exceed the ...

  7. Ionization of hydrogen atom by X-ray absorption in the presence of optical laser field

    The absorption of X-rays in hydrogen atom considering the irradiation of the target by an intense optical laser of frequency ω is studied. It is found that the terms of the modified scattering amplitude has different dependence on polarization vectors of X-ray fields and laser fields. There is resonance in the differential cross section for absorption at different frequencies when ω (the laser frequency) becomes nearly equal to atomic transition frequency. (author). 21 refs., 2 figs

  8. Alternative method for concentration retrieval in differential optical absorption spectroscopy atmospheric gas pollutant measurements

    Videla, Fabián; Schinca, Daniel Carlos; Tocho, Jorge O.

    2003-01-01

    Differential optical absorption spectroscopy is a widely used technique for open-column atmospheric-gas pollution monitoring. The concentration retrieval is based on the fitting of the measured differential absorbance through the Lambert-Beer law. We present an alternative method for calculating the gas concentration on the basis of the proportionality between differential absorbance and differential absorption cross section of the gas under study. The method can be used on its own for single...

  9. Optical bleaching of the F+ optical absorption bands in ZnS crystals

    The optical bleaching of the 2.3 and 2.9 eV bands related to the F+ centers in the electron-irradiated and Zn-treated ZnS crystals are measured from 25 K to room temperature under illumination of light from 395 to 702 nm. It is found that the 2.9 eV band is bleached in exactly the same manner as the 2.3 eV band and that under illumination of light around 2.9 eV, these bands are bleached with a decay constant independent of temperature, while under illumination of light around 2.3 eV, they are bleached by two stages, where the first stage has a decay constant independent of temperature and the second stage has a decay constant with an activation energy of (49 ± 5) meV. These bands are confirmed to be due to the same defects. It is deduced that the 2.3 eV absorption band is due to the transition of electrons from the ground state to the lower excited state located (49 ± 5) meV below the conduction band, while the 2.9 eV band is due to the transition to the higher excited state located in or closely below the conduction band. (author)

  10. Polyethylene laser welding based on optical absorption variations

    Galtieri, G.; Visco, A.; Nocita, D.; Torrisi, L.; Ceccio, G.; Scolaro, C.

    2016-04-01

    Polymeric materials, both pure and containing nanostructures, can be prepared as thin sheets in order to produce joints with an interface between an optically transparent sheet and an optically absorbent substrate to be welded by infrared pulsed laser irradiation. The Laser Transmission Welding (LTW) technique has been successfully applied in order to join two or more thermoplastic polymeric sheets that must have a similar chemical composition. In this research work, polymeric joints of Ultra High Molecular Weight Polyethylene sheets were realized, characterized and welded. Some polymer sheets were doped, at different concentrations, with carbon nano-particles absorbent the laser radiation. A pulsed laser operating in the wavelength region 532 nm with intensity of the order of 109 Watt/cm2 was employed to be transmitted by the transparent polymer and to be absorbed by the carbon enriched surface. At the interface of the two polymers the released energy induces melting, that is assisted by pressure, producing a fast and resistant welding zone. Mechanical and optical characterizations and surface analyses are presented and discussed.

  11. Charge-transfer optical absorption mechanism of DNA:Ag-nanocluster complexes

    Longuinhos, R.; Lúcio, A. D.; Chacham, H.; Alexandre, S. S.

    2016-05-01

    Optical properties of DNA:Ag-nanoclusters complexes have been successfully applied experimentally in Chemistry, Physics, and Biology. Nevertheless, the mechanisms behind their optical activity remain unresolved. In this work, we present a time-dependent density functional study of optical absorption in DNA:Ag4. In all 23 different complexes investigated, we obtain new absorption peaks in the visible region that are not found in either the isolated Ag4 or isolated DNA base pairs. Absorption from red to green are predominantly of charge-transfer character, from the Ag4 to the DNA fragment, while absorption in the blue-violet range are mostly associated to electronic transitions of a mixed character, involving either DNA-Ag4 hybrid orbitals or intracluster orbitals. We also investigate the role of exchange-correlation functionals in the calculated optical spectra. Significant differences are observed between the calculations using the PBE functional (without exact exchange) and the CAM-B3LYP functional (which partly includes exact exchange). Specifically, we observe a tendency of charge-transfer excitations to involve purines bases, and the PBE spectra error is more pronounced in the complexes where the Ag cluster is bound to the purines. Finally, our results also highlight the importance of adding both the complementary base pair and the sugar-phosphate backbone in order to properly characterize the absorption spectrum of DNA:Ag complexes.

  12. Optical absorption and electromagnetically induced transparency in semiconductor quantum well driven by intense terahertz field

    Wu Hong-Wei; Mi Xian-Wu

    2012-01-01

    An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented. The formalism relies on the stationary single-photon Schr(o)dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three (non-resonance terahertz field) or four (resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.

  13. Absorption spectroscopy of cold caesium atoms confined in a magneto-optical trap

    Yan Shu-Bin; Liu Tao; Geng Tao; Zhang Tian-Cai; Peng Kun-Chi; Wang Jun-Min

    2004-01-01

    Absorption spectra of cold caesium atoms confined in a magneto-optical trap are measured around D2 line at 852nm with a weak probe beam. Absorption reduction dip due to electromagnetically induced transparency (EIT)effect induced by the cooling/trapping field in a V-type three-level system and a gain peak near the cycling transition are clearly observed. Several mechanisms mixed with EIT effect in a normal V-type three-level system are briefly discussed. A simple theoretical analysis based on a dressed-state model is presented for interpretation of the absorption spectra.

  14. Absorption spectroscopy of powdered materials using time-resolved diffuse optical methods.

    D'Andrea, Cosimo; Obraztsova, Ekaterina A; Farina, Andrea; Taroni, Paola; Lanzani, Guglielmo; Pifferi, Antonio

    2012-11-10

    In this paper a novel method, based on time-resolved diffuse optical spectroscopy, is proposed to measure the absorption of small amounts of nanostructured powder materials independent of scattering. Experimental validation, in the visible and near-infrared spectral range, has been carried out on India Inkparticles. The effectiveness of the technique to measure scattering-free absorption is demonstrated on carbon nanotubes. The comparison between the absorption spectra acquired by the proposed method and conventional measurements performed with a commercial spectrophotometer is discussed. PMID:23142900

  15. Enhanced absorption of thin-film photovoltaic cells using an optical cavity

    We show via numerical simulations that the absorption and solar energy conversion efficiency of a thin-film photovoltaic (PV) cell can be significantly enhanced by embedding it into an optical cavity. A reflective hemi-ellipsoid with an aperture for sunlight placed over a tilted PV cell reflects unabsorbed photons back to the cell, allowing for multiple opportunities for absorption. Ray tracing simulations predict that with the proposed cavity a textured thin-film silicon cell can exceed the Yablonovitch (Lambertian) limit for absorption across a broad wavelength range, while the performance of the cavity-embedded planar PV cell approaches that of the cell with the surface texturing. (paper)

  16. The Optical Absorption Coefficient of Bean Seeds Investigated Using Photoacoustic Spectroscopy

    Sanchez-Hernandez, G.; Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Cruz-Orea, A.; Perez-Reyes, M. C. J.; Martinez, E. Moreno

    2015-06-01

    A knowledge about seed optical parameters is of great relevance in seed technology practice. Such parameters provide information about its absorption and reflectance, which could be useful for biostimulation processes, by light sources, in early stages of seed germination. In the present research photoacoustic spectroscopy (PAS) and the Rosencwaig and Gersho model were used to determine the optical absorption coefficient () of five varieties of bean seeds ( Phaseolus vulgaris L.), of different productive cycles; the seeds were biostimulated by laser treatment to evaluate the effects of biostimulation pre-sowing. It was found that the bean varieties V1, V2, V4, and V5 were optically opaque in the visible spectrum; in the case of the V3 variety, this sample was optically transparent from 680 nm. The varieties of the studied bean seeds showed significant statistical differences in sizes and also in their optical absorption spectra. The biostimulation effects showed that the seed samples with a higher optical penetration length had a positive biostimulation, in the percentage of germination, obtaining an enhancement of 47 % compared to the control sample. The utility of PAS for the optical characterization of seeds has been demonstrated in this study of the laser biostimulation process of this kind of samples.

  17. Optical absorption and luminescence study of cobalt-doped magnesium aluminosilicate glass ceramics

    Malyarevich, A. M.; Denisov, I. A.; Yumashev, K. V.; Dymshits, O. S.; Zhilin, A. A.

    2002-08-01

    Linear and nonlinear optical properties of cobalt-doped magnesium aluminosilicate transparent glass ceramics that were prepared under different conditions have been studied. It has been shown that absorption and luminescence spectra and absorption bleaching of these glass ceramics are defined mainly by tetrahedrally coordinated Co 2+ ions located in magnesium aluminum spinel nanocrystals. The lifetimes of the 4 T 1 ( 4 F) and 4 T 2 ( 4 F) excited states of the tetrahedral Co 2+ ions were found to be in the ranges 2540 and 120450 ns, respectively, depending on the Co concentration. 2002 Optical Society of America

  18. Linear cavity optical-feedback cavity-enhanced absorption spectroscopy with a quantum cascade laser.

    Bergin, A G V; Hancock, G; Ritchie, G A D; Weidmann, D

    2013-07-15

    A cw distributed feedback quantum cascade laser (DFB-QCL) coupled to a two-mirror linear optical cavity has been used to successfully demonstrate optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) at 5.5 μm. The noise-equivalent absorption coefficient, α(min), was 2.4×10(-8) cm(-1) for 1 s averaging, limited by etalon-fringing. The temporal stability of the instrument allows NO detection down to 5 ppb in 2 s. PMID:23939085

  19. Anisotropy of optical absorption and luminescent properties of CaMoO{sub 4}

    Zakharko, Ya., E-mail: zakharko@electronics.wups.lviv.u [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo St., 79017 Lviv (Ukraine); Luchechko, A. [Faculty of Electronics, Ivan Franko National University of Lviv, 107 Tarnavskogo St., 79017 Lviv (Ukraine); Syvorotka, I.; Stryganyuk, G.; Solskii, I. [Institute for Materials, SRC ' Carat' , 202 Stryjska St., 79031 Lviv (Ukraine)

    2010-03-15

    Optical absorption, excitation and emission spectra, as well as photoluminescence decay time of CaMoO{sub 4} single crystals have been measured. It has been revealed that annealing of crystals in oxygen atmosphere leads to the disappearance of their anisotropic behavior in optical absorption, as well as in X-ray luminescence and decay time. Moreover, it has been found that annealing can significantly affect the value of the decay time. The relative intensity of the long-wavelength emission band increases under excitation in the region of indirect band-to-band transitions.

  20. Anisotropy of optical absorption and luminescent properties of CaMoO4

    Optical absorption, excitation and emission spectra, as well as photoluminescence decay time of CaMoO4 single crystals have been measured. It has been revealed that annealing of crystals in oxygen atmosphere leads to the disappearance of their anisotropic behavior in optical absorption, as well as in X-ray luminescence and decay time. Moreover, it has been found that annealing can significantly affect the value of the decay time. The relative intensity of the long-wavelength emission band increases under excitation in the region of indirect band-to-band transitions.

  1. Two- and three-dimensional models for analysis of optical absorption in tungsten disulphide single crystals

    Dhairya A Dholakia; G K Solanki; S G Patel; M K Agarwal

    2001-06-01

    The optical energy gaps of WS2 single crystal were determined from the analysis of the absorption spectrum near the fundamental absorption edge at room temperature using light parallel to -axis incident normally on the basal plane. On the basis of two- and three-dimensional models it was found that both direct and indirect band transitions took place in WS2 and the indirect transition was of the allowed type. The optical energy gaps corresponding to both transitions were determined and the phonon energies associated with the indirect transitions estimated. The implications of the results have been discussed.

  2. Optical absorption spectra of the pulse irradiated oxide glasses, 2

    Nanosecond pulse radiolysis was applied to binary sodium borate glasses. The induced spectrum was a superposition of the component peaks arising from various defect centers. After the observed spectra were resolved into Gaussian components, their decay behavior was disussed. In the binary glasses the transient spectrum around 1.6 eV, which can not be observed in the X-ray-irradiated glasses, was found to decay slowly with time. Addition of small amounts of foreign ions (Ce, Eu and Ti ions) reduced the intensity of this absorption and accelerated the decay rate. The process may be understood by a competition between scavenging reaction by the foreign ion and a recombination of the initial geminate pairs produced on irradiation. (author)

  3. Thermally induced nonlinear optical absorption in metamaterial perfect absorbers

    A metamaterial perfect absorber consisting of a tri-layer (Al/ZnS/Al) metal-dielectric-metal system with top aluminium nano-disks was fabricated by laser-interference lithography and lift-off processing. The metamaterial absorber had peak resonant absorbance at 1090 nm and showed nonlinear absorption for 600ps laser pulses at 1064 nm wavelength. A nonlinear saturation of reflectance was measured to be dependent on the average laser power incident and not the peak laser intensity. The nonlinear behaviour is shown to arise from the heating due to the absorbed radiation and photo-thermal changes in the dielectric properties of aluminium. The metamaterial absorber is seen to be damage resistant at large laser intensities of 25 MW/cm2

  4. Tailoring defect structure and optical absorption of porous anodic aluminum oxide membranes

    Defects influence the optical and electronic properties of nanostructured materials that may be relevant for applications. In self-organized anodic aluminum oxide (AAO) templates we have investigated the effect of annealing, doping and nanoscale metal deposition. Optical absorption spectroscopy has been used as a sensitive probe for the defect density in AAO templates. The electronic spectra are found to be dominated by bands which originate from oxygen-deficient color centers (F+, F and F2). In annealing studies, the integrated absorption of the bands changes non-monotonically with annealing temperature and annealing time. This demonstrates that the concentration of defects can be optimized to tailor the optical properties of the AAO. Metallic Au wires are deposited in the template to establish a plasmonic template or array. The investigations provide an interesting insight into the interplay of reactivity and diffusivity on nanoscales. - Highlights: ► Preparation of metal wire arrays in oxide templates with tailored plasmonic properties. ► Oxygen defects are characterized using optical absorption and fluorescence. ► Optical absorption spectra are assigned to energy levels of oxygen vacancies (color centers). ► Annealing and electrodeposition of Au wires minimize defects maintaining the morphology.

  5. Optical absorption enhancement of CdTe nanostructures by low-energy nitrogen ion bombardment

    Akbarnejad, E.; Ghoranneviss, M.; Mohajerzadeh, S.; Hantehzadeh, M. R.; Asl Soleimani, E.

    2016-02-01

    In this paper we present the fabrication of cadmium telluride (CdTe) nanostructures by means of RF magnetron sputtering followed by low-energy ion implantation and post-thermal treatment. We have thoroughly studied the structural, optical, and morphological properties of these nanostructures. The effects of nitrogen ion bombardment on the structural parameters of CdTe nanostructures such as crystal size, microstrain, and dislocation density have been examined. From x-ray diffractometer (XRD) analysis it could be deduced that N+ ion fluence and annealing treatment helps to form (3 0 0) orientation in the crystalline structure of cadmium-telluride films. Fluctuations in optical properties like the optical band gap and absorption coefficient as a function of N+ ion fluences have been observed. The annealing of the sample irradiated by a dose of 1018 ions cm-2 has led to great enhancement in the optical absorption over a wide range of wavelengths with a thickness of 250 nm. The enhanced absorption is significantly higher than the observed value in the original CdTe layer with a thickness of 3 μm. Surface properties such as structure, grain size and roughness are noticeably affected by varying the nitrogen fluences. It is speculated that nitrogen bombardment and post-annealing treatment results in a smaller optical band gap, which in turn leads to higher absorption. Nitrogen bombardment is found to be a promising method to increase efficiency of thin film solar cells.

  6. HAC: Band Gap, Photoluminescence, and Optical/Near-Infrared Absorption

    Witt, Adolf N.; Ryutov, Dimitri; Furton, Douglas G.

    1996-01-01

    We report results of laboratory measurements which illustrate the wide range of physical properties found among hydrogenated amorphous carbon (HAC) solids. Within this range, HAC can match quantitatively the astronomical phenomena ascribed to carbonaceous coatings on interstellar grains. We find the optical band gap of HAC to be well correlated with other physical properties of HAC of astronomical interest, and conclude that interstellar HAC must be fairly hydrogen-rich with a band gap of E(sub g) is approx. greater than 2.0 eV.

  7. Effect of Sn on the optical band gap determined using absorption spectrum fitting method

    Heera, Pawan, E-mail: sramanb70@mailcity.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Govt. College Amb, Himachal Pradesh, INDIA,177203 (India); Kumar, Anup, E-mail: kumar.anup.sml@gmail.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India); Physics Department, Govt. College, Kullu, H. P., INDIA, 175101 (India); Sharma, Raman, E-mail: pawanheera@yahoo.com [Department of Physics, Himachal Pradesh University, Shimla, INDIA, 171005 (India)

    2015-05-15

    We report the preparation and the optical studies on tellurium rich glasses thin films. The thin films of Se{sub 30}Te{sub 70-x} Sn{sub x} system for x= 0, 1.5, 2.5 and 4.5 glassy alloys prepared by melt quenching technique are deposited on the glass substrate using vacuum thermal evaporation technique. The analysis of absorption spectra in the spectral range 400nm–4000 nm at room temperature obtained from UV-VIS-NIR spectrophotometer [Perkin Elmer Lamda-750] helps us in the optical characterization of the thin films under study. The absorption spectrum fitting method is applied by using the Tauc’s model for estimating the optical band gap and the width of the band tail of the thin films. The optical band gap is calculated and is found to decrease with the Sn content.

  8. The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer

    Lee, Jung-Yong

    2010-04-29

    We analyze the enhancement in optical absorption of an absorbing medium when spherical metal nanoparticles are embedded in it. Our analysis uses generalized Mie theory to calculate the absorbed optical power as a function of the distance from the metal nanoparticle. This analysis is used to evaluate the potential of enhancing optical absorption in thin-film solar cells by embedding spherical metal nanoparticles. We consider the trade-off between maximizing overall optical absorption and ensuring that a large fraction of the incident optical power is dissipated in the absorbing host medium rather than in the metal nanoparticle. We show that enhanced optical absorption results from strong scattering by the metal nanoparticle which locally enhances the optical electric fields. We also discuss the effect of a thin dielectric encapsulation of the metal nanoparticles. ©2010 Optical Society of America.

  9. Characterizing the Absorption Properties for Remote Sensing of Three Small Optically-Diverse South African Reservoirs

    Mark William Matthews; Stewart Bernard

    2013-01-01

    Characterizing the specific inherent optical properties (SIOPs) of water constituents is fundamental to remote sensing applications. Therefore, this paper presents the absorption properties of phytoplankton, gelbstoff and tripton for three small, optically-diverse South African inland waters. The three reservoirs,  Hartbeespoort, Loskop and Theewaterskloof, are challenging for remote sensing, due to differences in phytoplankton assemblage and the considerable range of constituent concentratio...

  10. Differential Optical-absorption Spectroscopy (doas) System For Urban Atmospheric-pollution Monitoring

    Edner, H; Ragnarson, P; Spannare, S; Svanberg, Sune

    1993-01-01

    We describe a fully computer-controlled differential optical absorption spectroscopy system for atmospheric air pollution monitoring. A receiving optical telescope can sequentially tune in to light beams from a number of distant high-pressure Xe lamp light sources to cover the area of a medium-sized city. A beam-finding servosystem and automatic gain control permit unattended long-time monitoring. Using an astronomical code, we can also search and track celestial sources. Selected wavelength ...

  11. Optical absorption analysis of quaternary molybdate- and tungstate-ordered double perovskites

    Tablero, C., E-mail: ctablero@etsit.upm.es

    2015-08-05

    Highlights: • These compounds present a high optical absorption. • The absorption coefficients using different DFT + U alternatives have been compared. • The absorption coefficients have been split into different contributions. • The maximum efficiency is near the maximum efficiency for multiple-gap solar cells. - Abstract: Quaternary-ordered double perovskite A{sub 2}MM′O{sub 6} (M = Mo,W) semiconductors are a group of materials with a variety of photocatalytic and optoelectronic applications. An analysis focused on the optoelectronic properties is carried out using first-principles density-functional theory with several U orbital-dependent one-electron potentials applied to different orbital subspaces. The structural non-equivalence of the atoms resulting from the symmetry has been taken in account. In order to analyze optical absorption in these materials deeply, the absorption coefficients have been split into inter- and intra-non-equivalent species contributions. The results indicate that the effect of the A and M′ atoms on the optical properties are minimal whereas the largest contribution comes from the non-equivalent O atoms to M transitions.

  12. Gas concentration measurement by optical similitude absorption spectroscopy: methodology and experimental demonstration.

    Anselmo, Christophe; Welschinger, Jean-Yves; Cariou, Jean-Pierre; Miffre, Alain; Rairoux, Patrick

    2016-06-13

    We propose a new methodology to measure gas concentration by light-absorption spectroscopy when the light source spectrum is larger than the spectral width of one or several molecular gas absorption lines. We named it optical similitude absorption spectroscopy (OSAS), as the gas concentration is derived from a similitude between the light source and the target gas spectra. The main OSAS-novelty lies in the development of a robust inversion methodology, based on the Newton-Raphson algorithm, which allows retrieving the target gas concentration from spectrally-integrated differential light-absorption measurements. As a proof, OSAS is applied in laboratory to the 2ν3 methane absorption band at 1.66 µm with uncertainties revealed by the Allan variance. OSAS has also been applied to non-dispersive infra-red and the optical correlation spectroscopy arrangements. This all-optics gas concentration retrieval does not require the use of a gas calibration cell and opens new tracks to atmospheric gas pollution and greenhouse gases sources monitoring. PMID:27410280

  13. Optical absorption analysis of quaternary molybdate- and tungstate-ordered double perovskites

    Highlights: • These compounds present a high optical absorption. • The absorption coefficients using different DFT + U alternatives have been compared. • The absorption coefficients have been split into different contributions. • The maximum efficiency is near the maximum efficiency for multiple-gap solar cells. - Abstract: Quaternary-ordered double perovskite A2MM′O6 (M = Mo,W) semiconductors are a group of materials with a variety of photocatalytic and optoelectronic applications. An analysis focused on the optoelectronic properties is carried out using first-principles density-functional theory with several U orbital-dependent one-electron potentials applied to different orbital subspaces. The structural non-equivalence of the atoms resulting from the symmetry has been taken in account. In order to analyze optical absorption in these materials deeply, the absorption coefficients have been split into inter- and intra-non-equivalent species contributions. The results indicate that the effect of the A and M′ atoms on the optical properties are minimal whereas the largest contribution comes from the non-equivalent O atoms to M transitions

  14. Optical constants and transient absorption of solution-deposited RuO2 thin films

    Owrutsky, Jeffrey; Compton, Ryan; Long, James; Chrevin, Christopher; Bussmann, Konrad; Dunkelberger, Adam; Spann, Bryan; Palin, Irina; Rolison, Debra; Cunningham, Paul; Melinger, Joseph; Desario, Paul; Weidinger, Dan; Heilweil, Edwin

    2015-03-01

    Optical and electrical conductivity properties are determined for the promising, broadband transparent conductor material, solution-deposited RuO2 nanostructured films. The 10-30 nm thick films or nanoskins are less conductive but more optically transmissive than polycrystalline, sputtered RuO2 films which are inherently metallic. The optical constants (0.6 to 4.5 eV) determined by ellipsometry show that ɛ1 is positive for the nanoskins in the spectral region investigated so they are not plasmonic. Transient picosecond absorption with visible (400 nm) pump and various probe wavelengths (visible and THz) are performed for nanoskins calcined to different temperatures. When heated to 200°C the absorption increases in the visible and THz. After heating to 300°C, the films become more polycrystalline and there is evidence for the appearance of a new absorption. Deceased absorptions or bleaches are observed in the THz and for longer visible wavelengths (> 750 nm). The absorption is ascribed to a damped plasmon band of the crystalline nanoparticles formed in the film upon heating.

  15. Fabricating silver nanoplate/hybrid silica gel glasses and investigating their nonlinear optical absorption behavior

    Zheng, Chan; Wenzhe, Chen; Xiaoyun, Ye; Cai, Shuguang; Xiao, Xueqing

    2014-03-01

    Silver nanoplate/hybrid silica gel glasses were prepared via the sol-gel technique. Analysis of ultraviolet-visible spectroscopy extinction spectra confirmed the successful incorporation of silver nanoplates into the hybrid silica gel glasses. The silver nanoplate/hybrid silica gel glass composites are completely noncrystalline because of their low doping level compared with that of the silica matrix. The nonlinear optical absorption behavior of the silver nanoplate/hybrid silica gel glass composites was studied via open-aperture Z-scan technique with 4 ns pulse durations at 532 nm and 1064 nm. The nonlinear optical properties of silver nanoplates are maintained after they were introduced into silica gel glasses. Furthermore, the silver nanoplate/hybrid silica gel glasses exhibit intensity-dependent transformation from saturable absorption (SA) to reverse saturable absorption (RSA). The SA behavior at low excitation intensity can be attributed to the bleaching of ground-state surface plasmon resonance absorption induced by the retarded electronic relaxation process in solid-state gel glasses. By contrast, the RSA at high incident influence may have resulted from excited-state absorption and two-photon absorption.

  16. Optical absorption and X-ray photoelectron spectroscopic studies of thorium tetrabromide

    Optical absorption and X-ray photoelectron spectroscopies have been used to investigate the electronic structure of ThBr4 in relation to ThF4 and ThCl4. The same electronic process appears to be responsible for the Th 4f photoelectron 'shake-up' satellites and the valence to conduction band transition. (author)

  17. Optical absorption and luminescence in neutron-irradiated, silica-based fibers

    Cooke, D.W.; Farnum, E.H.; Clinard, F.W. [Los Alamos National Lab., CA (United States)] [and others

    1995-04-01

    The objectives of this work are to assess the effects of thermal annealing and photobleaching on the optical absorption of neutron-irradiated, silica fibers of the type proposed for use in ITER diagnostics, and to measure x-ray induced luminescence of unirradiated (virgin) and neutron-irradiated fibers.

  18. LONG PATH DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETER AND EPA-APPROVED FIXED POINT METHODS INTERCOMPARISON

    Differential optical absorption spectrometry (DOAS) has been used by a number of investigators over the past 10 years to measure a wide range of gaseous air pollutants. ecently OPSIS AB, Lund, Sweden, has developed and made commercially available DOAS instrument that has a number...

  19. AIR QUALITY MONITORING IN ATLANTA WITH THE DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETER

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. ver path 1 (1099 m) and path 2 (1824 m), ozone (O3), sulfur dioxide (SO2), nitrogen d...

  20. Neuron Mid-Infrared Absorption Study for Direct Optical Excitation of Neurons

    Guo, Dingkai; Chen, Xing; Vadala, Shilpa; Leach, Jennie; Choa, Fow-Sen

    2011-01-01

    Neuron optical excitations are important for brain-circuitry explorations and sensory-neuron-stimulation applications. To optimize the stimulation, we identify neuron mid-IR absorption peaks in this study and discuss their meanings and delivery methods of mid-IR photons.

  1. Ultrafast terahertz conductivity and transient optical absorption spectroscopy of silicon nanocrystal thin films

    Titova, Lyubov V.; Harthy, Rahma Al; Cooke, David;

    We use time-resolved THz spectroscopy and transient optical absorption spectroscopy as two complementary techniques to study ultrafast carrier dynamics in silicon nanocrystal thin films. We find that the photoconductive dynamics in these materials is dominated by interface trapping, and we observe...

  2. Electromagnetically induced absorption and transparency in an optical-rf two-photon coupling configuration

    Fu Guangsheng [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Li Xiaoli [College of Physical Science and Technology, Hebei University, Baoding 071002 (China)], E-mail: xiaolixiaoli001@yahoo.com.cn; Zhuang Zhonghong; Zhang Lianshui; Yang Lijun; Li Xiaowei; Han Li [College of Physical Science and Technology, Hebei University, Baoding 071002 (China); Manson, Neil B.; Wei Changjiang [Laser Physics Center, Research School of Physical Sciences and Engineering, Australian Nation University, Canberra, ACT 0200 (Australia)

    2008-01-07

    We study electromagnetically induced absorption (EIA) and transparency (EIT) in an optical-rf two-photon coupling configuration. It is shown that the interference effect due to interacting dark resonances results in an EIA for a resonant two-photon coupling and this EIA is observed to evolve into an EIT when there is a detuning in the two-photon coupling.

  3. Anomalous optical absorption in a random system with scale-free disorder

    Diaz, E; Rodriguez, A; Dominguez-Adame, F; Malyshev, VA

    2005-01-01

    Optical spectroscopy usually fails in detecting localization-delocalization (Anderson) transitions. We report on an anomalous behavior of the absorption spectrum in a one-dimensional lattice with long-range correlated diagonal disorder, having a power-like spectrum S(k)similar to 1/k(alpha). This ty

  4. Photo-induced effect on optical absorption coefficient in yttrium iron garnet

    Photo-induced irreversible change in an optical absorption was observed for a bulk single crystal and a thin film of yttrium-iron garnets (YIG) over the spectral range 700-2000 nm and over the temperature range 79-200 K. We explain the observation as a redistribution of oscillator strength associated with structural change by an irradiation at low temperatures. ((orig.))

  5. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  6. Laboratory atomic transition data for precise optical quasar absorption spectroscopy

    Murphy, Michael T

    2013-01-01

    Quasar spectra reveal a rich array of important astrophysical information about galaxies which intersect the quasar line of sight. They also enable tests of the variability of fundamental constants over cosmological time and distance-scales. Key to these endeavours are the laboratory frequencies, isotopic and hyperfine structures of various metal-ion transitions. Here we review and synthesize the existing information about these quantities for 43 transitions which are important for measuring possible changes in the fine-structure constant, alpha, using optical quasar spectra, i.e. those of Na, Mg, Al, Si, Ca, Cr, Mn, Fe, Ni and Zn. We also summarize the information currently missing that precludes more transitions being used. We present an up-to-date set of coefficients, q, which define the sensitivity of these transitions to variations in alpha. New calculations of isotopic structures and q coefficients are performed for SiII and TiII, including SiII 1808 and TiII 1910.6/1910.9 for the first time. Finally, s...

  7. Optical absorption of neutron-irradiated silica fibers

    Cooke, D.W.; Farnum, E.H.; Bennett, B.L. [Los Alamos National Lab., NM (United States)

    1996-10-01

    Induced-loss spectra of silica-based optical fibers exposed to high (10{sup 23} n-m{sup {minus}2}) and low (10{sup 21} n-m{sup {minus}2}) fluences of neutrons at the Los Alamos Spallation Radiation Effects Facility (LASREF) have been measured. Two types of fibers consisting of a pure fused silica core with fluorine-doped ({approximately}4 mole %) cladding were obtained from Fiberguide Industries and used in the as-received condition. Anhydroguide{trademark} and superguide{trademark} fibers contained less than 1 ppm, and 600 to 800 ppm of OH, respectively. The data suggest that presently available silica fibers can be used in plasma diagnostics, but the choice and suitability depends upon the spectral region of interest. Low-OH content fibers can be used for diagnostic purposes in the interval {approximately}800 to 1400 mn if the exposure is to high-fluence neutrons. For low-fluence neutron exposures, the low-OH content fibers are best suited for use in the interval {approximately}800 to 2000 nm, and the high-OH content fibers are the choice for the interval {approximately}400 to 800 nm.

  8. Rest-frame optical properties of luminous, radio-selected, broad absorption line quasars

    Runnoe, J. C.; R Ganguly; Brotherton, M. S.; DiPompeo, M. A.

    2013-01-01

    We have obtained IRTF/SpeX spectra of eight moderate-redshift (z=0.7-2.4), radio-selected (log R*~0.4-1.9) broad absorption line (BAL) quasars. The spectra cover the rest-frame optical band. We compare the optical properties of these quasars to those of canonically radio-quiet (log R*1) quasars. With our measurements of the optical properties, particularly the Balmer emission line widths and the continuum luminosity, we have used empirical scaling relations to estimate black hole masses and E...

  9. Observation of temperature dependence of the IR hydroxyl absorption bands in silica optical fiber

    Yu, Li; Bonnell, Elizabeth; Homa, Daniel; Pickrell, Gary; Wang, Anbo; Ohodnicki, P. R.; Woodruff, Steven; Chorpening, Benjamin; Buric, Michael

    2016-07-01

    This study reports on the temperature dependent behavior of silica based optical fibers upon exposure to high temperatures in hydrogen and ambient air. The hydroxyl absorption bands in the wavelength range of 1000-2500 nm of commercially available multimode fibers with pure silica and germanium doped cores were examined in the temperature range of 20-800 °C. Two hydroxyl-related infrared absorption bands were observed: ∼2200 nm assigned to the combination of the vibration mode of Si-OH bending and the fundamental hydroxyl stretching mode, and ∼1390 nm assigned to the first overtone of the hydroxyl stretching. The absorption in the 2200 nm band decreased in intensity, while the 1390 nm absorption band shifted to longer wavelengths with an increase in temperature. The observed phenomena were reversible with temperature and suspected to be due, in part, to the conversion of the OH spectral components into each other and structural relaxation.

  10. Long Wavelength Plasmonic Absorption Enhancement in Silicon Using Optical Lithography Compatible Core-Shell-Type Nanowires

    Mohammed Shahriar Sabuktagin

    2014-01-01

    Full Text Available Plasmonic properties of rectangular core-shell type nanowires embedded in thin film silicon solar cell structure were characterized using FDTD simulations. Plasmon resonance of these nanowires showed tunability from  nm. However this absorption was significantly smaller than the Ohmic loss in the silver shell due to very low near-bandgap absorption properties of silicon. Prospect of improving enhanced absorption in silicon to Ohmic loss ratio by utilizing dual capability of these nanowires in boosting impurity photovoltaic effect and efficient extraction of the photogenerated carriers was discussed. Our results indicate that high volume fabrication capacity of optical lithography techniques can be utilized for plasmonic absorption enhancement in thin film silicon solar cells over the entire long wavelength range of solar radiation.

  11. Media effects on the optical absorption spectra of silver clusters embedded in rara gas matrices

    The optical absorption of small mass selected Agn-clusters (n=7, 11, 15, 21) embedded in solid Ar, Kr and Xe has been measured. The absorption spectra show 1 to 3 major peaks between 3 and 4.5 eV, depending on the cluster size. Changing the matrix gas Ar→Kr→Xe induces a redshift which is comparable for all sizes studied and does not affect the main structure of the absorption spectra. We propose a scheme to estimate the gas phase value of the absorption energies which is in fair agreement with an estimation obtained by a simple model based on a Drude metal. (author). 10 refs, 2 figs

  12. Linear and nonlinear optical absorption coefficients of two-electron spherical quantum dot with parabolic potential

    Linear and nonlinear absorption coefficients of two-electron spherical quantum dot (QD) with parabolic potential are investigated in this paper. Wave functions and energy eigenvalues of the 1s2, 1s1p, 1s1d and 1s1f electronic states have been computed by using an optimization approach, which is a combination of Quantum Genetic Algorithm (QGA) and Hartree–Fock Roothaan (HFR) method. It is found that the strength of S→P transition is stronger than P→D and D→F transitions. Also the peak positions and amplitudes of the absorption coefficients are sensitive to the electron spin. It should be noted that the peak positions and amplitudes of absorption coefficients are strongly dependent on the parabolic potential. Additionally, dot radius, impurity charge, incident optical intensity and relaxation time have a great influence on the linear and nonlinear absorption coefficients

  13. Optical absorption under total internal reflection in the characterization of soot in diesel engine oils

    Optical absorption of infrared radiation under total internal reflection in a novel sensor has been utilized to investigate the soot contamination of diesel engine oil by response surface methodology in factorial experiments. Sensor response showed highly significant dependence on oil soot concentration and temperature, in which the effect of the soot was greatest. The soot contamination of the optical rod in engine oil was found to be a surface phenomenon which showed little or no dependence on bulk oil shearing displacement below 500 rpm. The quadratic effect of sensor response to soot concentration was very high due to the agglomeration of soot particles, derived from the high surface energy of carbon soot. Test results of this optical absorption technique were in conformance with those other oil analysis techniques such as UV spectrophotometry, total acid number, viscosimetry, optical microscopy and EPMA. The technique proved to be more reliable than RDE emission spectrometry which showed ambiguous results due to colloidal suspension of soot particles in oil. Optical absorption proved to be an effective criterion in characterizing the soot contamination of diesel engine oil

  14. Approximate Marginalization of Absorption and Scattering in Fluorescence Diffuse Optical Tomography

    Mozumder, Meghdoot; Arridge, Simon; Kaipio, Jari P; d'Andrea, Cosimo; Kolehmainen, Ville

    2015-01-01

    In fluorescence diffuse optical tomography (fDOT), the reconstruction of the fluorophore concentration inside the target body is usually carried out using a normalized Born approximation model where the measured fluorescent emission data is scaled by measured excitation data. One of the benefits of the model is that it can tolerate inaccuracy in the absorption and scattering distributions that are used in the construction of the forward model to some extent. In this paper, we employ the recently proposed Bayesian approximation error approach to fDOT for compensating for the modeling errors caused by the inaccurately known optical properties of the target in combination with the normalized Born approximation model. The approach is evaluated using a simulated test case with different amount of error in the optical properties. The results show that the Bayesian approximation error approach improves the tolerance of fDOT imaging against modeling errors caused by inaccurately known absorption and scattering of the...

  15. Theory of Linear Optical Absorption in B_12 Clusters: Role of the geometry

    Sahu, Sridhar

    2009-01-01

    Boron clusters have been widely studied theoretically for their geometrical properties and electronic structure using a variety of methodologies. An important cluster of boron is the B$_{12}$ cluster whose two main isomers have distinct geometries, namely, icosahedral ($I_{h}$) and quasi planar ($C_{3v}$). In this paper we investigate the linear optical absorption spectrum of these two B$_{12}$ structures with the aim of examining the role of geometry on the optical properties of clusters. The optical absorption calculations are performed using both the semi-empirical and the ab initio approaches. The semi-empirical approach uses a wave function methodology employing the INDO model Hamiltonian, coupled with large-scale configuration interaction (CI) calculations, to account for the electron-correlation effects. The \\emph{ab initio} calculations are performed within a time-dependent-density-functional-theory (TDDFT) methodology. The results for the two approaches are in very good qualitative agreement with eac...

  16. Investigation on optical absorption properties of electrochemically formed porous InP using photoelectric conversion devices

    We investigated the optical absorption properties of InP porous structures formed by the electrochemical process using photoelectric conversion (PC) devices formed on p–n junction substrates. The photocurrent measurements revealed that the current from PC devices changed in response to the incident light power and the thickness of the top layer on the p–n interface. Since the photocarriers contributing to the observed photocurrents are excited by the photons reaching the p–n interface through the top layer, the photocurrents give us information on the optical absorption properties of the top layer. The photocurrents observed on a porous device with a porous structure in the top layer were lower than that of a non-porous device, indicating that the absorption properties of InP were enhanced after the formation of porous structures. This phenomenon can be explained in terms of absorption coefficient, α, increased by the light scattering and the sub-bandgap absorption in the porous layer.

  17. Nonlinear optical absorption and refraction in a strained anisotropic multi-level quantum dot system

    Negi, C. M. S.; Gupta, Saral K.; Kumar, Dharmendra; Kumar, Jitendra

    2013-08-01

    Linear and nonlinear optical properties of disc shaped anisotropic multi-level quantum dot (QD) system has been theoretically investigated. The effect of dot size, shape anisotropy, strain and incident optical intensity on linear absorption, nonlinear absorption and nonlinear refractive index has been explored. The QD is modeled by in-plane anisotropic parabolic potential along x-y plane and by finite well potential along growth direction (z-axis). The contribution of strain is incorporated through various deformation potentials. The energy and wave function calculations are performed by multi-band envelope function approach based on k.p theory. The formulation is applied to the CdSe/CdS QD system. The numerical results show that, dot size, anisotropy and optical intensity have important effect on linear and nonlinear optical properties. The effect of strain is simultaneous red and blue shift of heavy hole (hh) and light hole (lh) transitions, respectively, which is clearly visible in terms of well resolved optical spectra. The theoretical results obtained are compared with the available experimental data and the results are in good agreement. Large blue shift and enhancement in magnitude of linear and nonlinear optical spectra of QD with size, anisotropy and strain make QD a promising candidate for application in tunable Nano-optoelectronic devices.

  18. Recent Progress Towards Quantum Dot Solar Cells with Enhanced Optical Absorption.

    Zheng, Zerui; Ji, Haining; Yu, Peng; Wang, Zhiming

    2016-12-01

    Quantum dot solar cells, as a promising candidate for the next generation solar cell technology, have received tremendous attention in the last 10 years. Some recent developments in epitaxy growth and device structures have opened up new avenues for practical quantum dot solar cells. Unfortunately, the performance of quantum dot solar cells is often plagued by marginal photon absorption. In this review, we focus on the recent progress made in enhancing optical absorption in quantum dot solar cells, including optimization of quantum dot growth, improving the solar cells structure, and engineering light trapping techniques. PMID:27216604

  19. Comparison of liposome entrapment parameters by optical and atomic absorption spectrophotometry.

    Yoss, N L; Popescu, O; Pop, V I; Porutiu, D; Kummerow, F A; Benga, G

    1985-01-01

    Methods for the complete characterization of liposomes prepared by ether-injection are described in detail. The validity of atomic absorption spectrophotometry for measuring markers of trapped volume was checked by comparative determinations of markers with established optical spectrophotometrical methods. The favorable results using atomic absorption spectrophotometry to quantitate the marker Mn2+ are of particular relevance as manganese ion is also the paramagnetic probe in n.m.r. measurements of water permeability of liposomes; our results indicate that in such measurements no other marker need be incorporated. PMID:3986305

  20. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    Chan, K. L.; Pöhler, D.; G. Kuhlmann; Hartl, A.; Platt, U.; M. O. Wenig

    2012-01-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into t...

  1. [Research on the preparation and optical absorption properties of two-dimensional ZnO array].

    Qiao, Lu; Zhu, Ya-bin; Xu, Hao

    2014-08-01

    The present paper's main work is firstly preparing a single layer and a large area polystyrene microspheres mask, with 117, 350 and 500 nm in diameter, and then depositing a layer of zinc oxide thin film on the mask board by RF magnetron sputtering technique, using nanospheres lithography technique to remove the polystyrene spheres by soaking with tetrahydrofuran, and two-dimensional zinc oxide nano-array samples were obtained at last. The samples were characterized on the morphology and composition by scanning electron microscopy and energy dispersive X-ray spectrometer. The results showed that the samples are zinc oxide nanocluster formed by ordered cellular reticular structures. By measuring with absorption spectroscopy in the range from 300 to 800 nm at room temperature, the absorption peak turns up with broadening and red shift with the increase in the diameter of polystyrene colloidal spheres, namely the nano-particles diameters. As the sputtering time increases, that is, the increase in the zinc oxide film thickness, the light absorption rate increases. In addition, theoretical calculation based on the theory of discrete dipole approximation was performed to simulate the optical absorption properties of the zinc oxide nanocluster arrays between 300 and 800 nm. Dipole approximation theory can be used to calculate the absorption of the particles of any shape and size. Currently, the theoretical calculation results of various shapes of nanostructured metals such as gold and silver are consist ent with the experimental results. But the application of the theory of discrete dipole approximation calculation of ZnO nanoparticles was rarely reported. In this paper, this theory has been used to calculate the optical absorption properties of triangle-shaped ZnO nanoparticles array. Light absorption characteristics were simulated according to changes in the dielectric constant and thickness of zinc oxide films, and the results can be used to explain the experimental

  2. Optical absorption in asymmetric double quantum wells driven by two intense terahertz fields

    Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field, both polarized along the growth direction. Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors, such as the frequency of the varied terahertz field and the strength of the resonant terahertz field. Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field, the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands. When a varied terahertz field is added into the resonant system, the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states. When the strength of the resonant terahertz field is increased, the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states. The presented results have potential applications in electro-optical devices

  3. Optical absorption in asymmetric double quantum wells driven by two intense terahertz fields

    Wu Hong-Wei; Mi Xian-Wu

    2013-01-01

    Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.Wben the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.

  4. EPR, optical absorption and luminescence studies of Cr3+-doped antimony phosphate glasses

    De Vicente, F. S.; Santos, F. A.; Simões, B. S.; Dias, S. T.; Siu Li, M.

    2014-12-01

    Antimony phosphate glasses (SbPO) doped with 3 and 6 mol% of Cr3+ were studied by Electron Paramagnetic Resonance (EPR), UV-VIS optical absorption and luminescence spectroscopy. The EPR spectra of Cr3+-doped glasses showed two principal resonance signals with effective g values at g = 5.11 and g = 1.97. UV-VIS optical absorption spectra of SbPO:Cr3+ presented four characteristics bands at 457, 641, 675, and 705 nm related to the transitions from 4A2(F) to 4T1(F), 4T2(F), 2T1(G), and 2E(G), respectively, of Cr3+ ions in octahedral symmetry. Optical absorption spectra of SbPO:Cr3+ allowed evaluating the crystalline field Dq, Racah parameters (B and C) and Dq/B. The calculated value of Dq/B = 2.48 indicates that Cr3+ ions in SbPO glasses are in strong ligand field sites. The optical band gap for SbPO and SbPO:Cr3+ were evaluated from the UV optical absorption edges. Luminescence measurements of pure and Cr3+-doped glasses excited with 350 nm revealed weak emission bands from 400 to 600 nm due to the 3P1 → 1S0 electronic transition from Sb3+ ions. Cr3+-doped glasses excited with 415 nm presented Cr3+ characteristic luminescence spectra composed by two broad bands, one band centered at 645 nm (2E → 4A2) and another intense band from 700 to 850 nm (4T2 → 4A2).

  5. Cadmium sulfide and lead sulfide quantum dots in glass: Processing, growth, and optical absorption

    Rao, Pratima Gattu Naga

    Glasses containing cadmium sulfide and lead sulfide particles were prepared, and their properties were studied. These particles exhibit quantum confinement behavior when they are smaller than their Bohr exciton radii. Quantum confinement leads to size dependence in the optical absorption of particles. This size dependence can tune the optical absorption of the material to a particular wavelength or energy and possibly enhances the nonlinear optical absorption of the particles. These properties have potential applications in photonic devices. To control the growth of these semiconductor particles in glass, the glass processing conditions were studied. CdS-doped glasses were initially prepared with CdO and ZnS. The sublimation temperature for ZnS is at 1185°C; whereas, CdO sublimes at 1559°C, and CdS at 980°C. Loss of both cadmium and sulfur was observed in open crucible melts, even when CdO and ZnS were used. Improvements in glass processing were made by use of preheat and a cover during the glass melting, resulting in better retention of both dopants. Direct CdS addition to the glasses was possible with these improvements, thus eliminating complications of zinc incorporation during the growth of the semiconductor particles. These methods were successfully applied to the synthesis of PbS-doped glasses. CdS and PbS particles were grown in alkali borosilicate glasses, and their optical absorption spectra were measured as a function of heat treatment temperature and time. The position of the absorption peak and edge shifted to longer wave-lengths, or lower energies, with longer heat treatments at a constant temperature. Both CdS and PbS particles exhibited quantum confinement. These measurements were used to calculate particle sizes from quantum confinement models. Comparisons with transmission electron microscopy (TEM) demonstrated that the 1-term effective-mass approximation was appropriate for estimating CdS particle sizes. A sophisticated four-band envelope

  6. Optical absorption and radiative heat transport in olivine at high temperature

    The optical absorption spectra of natural single-crystal and polycrystalline olivine (mg/sub 1.84/Fe/sub 0.16/SiO4) have been measured in the wavelength range 300--8000 nm at temperatures ranging from 300 to 1700 K and under oxygen fugacity well within the sample stability field. The absorption significantly increases with increasing temperature due to a regular broadening of both crystal field and multiphonon lattice vibrational absorption bands; these are the principal absorption bands in the spectral region involved in radiative heat transfer. In the 'window' region between these bands the absorption coefficient increases from near zero at 300 K to about 10--15 cm-1 at 1700 K. Under mantle conditions the radiative thermal conductivity (K/sub R/) calculated from the olivine single-crystal spectra increases from near zero at 300 K to about 5 x 10-3 cal/cm s K (2W/m K) at 1700 K and is only weakly dependent on temperature above 800 K. Our determination of K/sub R/ is 10--20% lower than previous estimates based on absorption measurements under different experimental conditions. In polycrystalline (dunite) samples the transmission decreased substantially with temperature cycling due to scattering at intergranular interfaces created by differential thermal expansion

  7. The tuning of light-matter coupling and dichroism in graphene for enhanced absorption: Implications for graphene-based optical absorption devices

    Rakheja, Shaloo; Sengupta, Parijat

    2016-03-01

    The inter-band optical absorption in graphene characterized by its fine-structure constant has a universal value of 2.3% independent of the material parameters. However, for several graphene-based photonic applications, enhanced optical absorption is highly desired. In this work, we quantify the tunability of optical absorption in graphene via the Fermi level, angle of incidence of the incident polarized light, and the dielectric constants of the surrounding dielectric media in which graphene is embedded. The influence of impurities adsorbed on the surface of graphene on the Lorentzian broadening of the spectral function of the density of states is analytically evaluated within the equilibrium Green’s function formalism. In all the cases, we find that absorption of light graphene embedded in dielectric medium is significantly higher than 2.3%. We also compute the differential absorption of right and left circularly-polarized light in graphene that is uniaxially and optically strained. The preferential absorption or circular dichroism is investigated for armchair and zigzag strain and the interplay of k-space and velocity anisotropy is examined. Finally, we relate circular dichroism to the Berry curvature of gapped graphene and explain the connection to parameters that define the underlying Hamiltonian.

  8. Management of light absorption in extraordinary optical transmission based ultra-thin-film tandem solar cells

    Mashooq, Kishwar; Talukder, Muhammad Anisuzzaman

    2016-05-01

    Although ultra-thin-film solar cells can be attractive in reducing the cost, they suffer from low absorption as the thickness of the active layer is usually much smaller than the wavelength of incident light. Different nano-photonic techniques, including plasmonic structures, are being explored to increase the light absorption in ultra-thin-film solar cells. More than one layer of active materials with different energy bandgaps can be used in tandem to increase the light absorption as well. However, due to different amount of light absorption in different active layers, photo-generated currents in different active layers will not be the same. The current mismatch between the tandem layers makes them ineffective in increasing the efficiency. In this work, we investigate the light absorption properties of tandem solar cells with two ultra-thin active layers working as two subcells and a metal layer with periodically perforated holes in-between the two subcells. While the metal layer helps to overcome the current mismatch, the periodic holes increase the absorption of incident light by helping extraordinary optical transmission of the incident light from the top to the bottom subcell, and by coupling the incident light to plasmonic and photonic modes within ultra-thin active layers. We extensively study the effects of the geometry of holes in the intermediate metal layer on the light absorption properties of tandem solar cells with ultra-thin active layers. We also study how different metals in the intermediate layer affect the light absorption; how the geometry of holes in the intermediate layer affects the absorption when the active layer materials are changed; and how the intermediate metal layer affects the collection of photo-generated electron-hole pairs at the terminals. We find that in a solar cell with 6,6-phenyl C61-butyric acid methyl ester top subcell and copper indium gallium selenide bottom subcell, if the periodic holes in the metal layer are square or

  9. Thermoluminescence and optical absorption comparative studies with TLD-100 and pure LiF

    Optical absorption (OA) studies were carried out with LiF: Mg, Ti (TLD-100) and pure LiF exposed to X radiation, 77.4 C.kg-1 (3 x 105 R) with the aim of relating the thermoluminescent (TL) peaks presented by TLD-100 to its intrinsic and irradiation defects. After a 2800C thermal treatment for 15 minutes, an absorption band at 225 nm is observed in the TLD-100 OA spectrum. This band is not observed in the case of pure LiF. A correlation between TL peak 5 and the absorption band at 310 nm is established for TLD-100. These results agree with other publications and are explained. (author)

  10. The impurity optical absorption and structure of conduction band in 6H-SiC

    The investigation of absorption spectra in n-type nitrogen doped 6H-SiC crystals from the near infrared up to fundamental band region at polarization of electric field (E) of the light wave relatively the optical axis (C) for E parallel to C and E perpendicular to C has been carried out. It is for the first time that at E parallel to C a slight absorption band with maximum at 2.85 eV has been investigated. All absorption bands observed were caused by photoionization of donors (nitrogen) with electron transition in to above-lying minima of the conduction band situated at different critical points of the Brillouin zone. The analysis of data obtained and experimental data available on the photoionization of nitrogen, alongside with theoretical data on the structure of the conduction band make it possible to propose the structure and symmetry of additional extrema in Brillouin zone for 6H-SiC

  11. Synchrotron radiation study of the optical absorption of F+-center in corundum

    Optical absorption 6.3 and 7 eV bands of naminally pure corundum (α-Al2O3) monocrystal irradiated with 50 MeV energy electrons are detected using a high degree of synchrotron variation (SR) polarization. A strong anisotropy for 6.3 eV absorption band is observed. It is ascertained that under the parallel orientation of SR electric vector E relative to the crystal C3 axis 6.3 eV absorption band intensity is higher than under orthogonal orientation. It is detected that under the crystal irradiation a more distinct 7 eV band occurs in 7-7.3 eV region instead of structureless wide band. A conclusion is drawn that 6.3 and 7 eV bands are conditioned by electron transitions inside F+-center

  12. Investigation of Third Order Optical Nonlinearity and Reverse Saturable Absorption of Octa-alkoxy Metallophthalocyanines

    Sanghadasa, Mohan; Shin, In-Seek; Barr, Thomas A.; Clark, Ronald D.; Guo, Huai-Song; Martinez, Angela; Penn, Benjamin G.

    1998-01-01

    In recent years, there has been a growing interest in the development of passive optical power limiters for the protection of the human eye and solid-state sensors from damage caused by energetic light pulses and also for other switching applications. One of the key issues involved is the search for appropriate materials that show effective reverse saturable absorption. Phthalocyanines seem to be good candidates for such applications because of their higher third order nonlinearity and the unique electronic absorption characteristics. A series of 1,4,8,11,15, 18,22,25-octa-alkoxy metallophthalocyanines containing various central metal atoms such as zinc, copper, palladium, cobalt and nickel were characterized for their third order nonlinearity and for their nonlinear absorptive properties to evaluate their suitability to function as reverse saturable absorbers.

  13. Effective optical path length for tandem diffuse cubic cavities as gas absorption cell

    Tandem diffuse cubic cavities designed by connecting two single diffuse cubic-shaped cavities, A and B, with an aperture (port fraction fap) in the middle of the connecting baffle was developed as a gas absorption cell. The effective optical path length (EOPL) was evaluated by comparing the oxygen absorption signal in the cavity and in air based on tunable diode laser absorption spectroscopy (TDLAS). Experimental results manifested an enhancement of EOPL for the tandem diffuse cubic cavities as the decrease of fap and can be expressed as the sum of EOPL of two single cubic cavities at fap < 0.01, which coincided well with theoretical analysis. The simulating EOPL was smaller than experimental results at fap > 0.01, which indicated that back scattering light from cavity B to cavity A cannot be ignored at this condition. (paper)

  14. Performance of All-Optical XNOR Gate Based on Two-Photon Absorption in Semiconductor Optical Amplifiers

    Amer Kotb

    2014-01-01

    Full Text Available All-optical logic XNOR gate is realized by a series combination of XOR and INVERT gates. This Boolean function is realized by using Mach-Zehnder interferometers (MZIs and exploiting the nonlinear effect of two-photon absorption (TPA in semiconductor optical amplifiers (SOAs. The employed model takes into account the impact of amplified spontaneous emission (ASE, input pulse energy, pulsewidth, SOAs carrier lifetime, and linewidth enhancement factor (α-factor on the gate’s output quality factor (Q-factor. The outcome of this study shows that the all-optical XNOR gate is indeed feasible with the proposed scheme at 250 Gb/s with both logical correctness and acceptable quality.

  15. Simultaneous measurement of thermal diffusivity and optical absorption coefficient using photothermal radiometry. II Multilayered solids

    Salazar, Agustín; Fuente, Raquel; Apiñaniz, Estibaliz; Mendioroz, Arantza; Celorrio, R.

    2011-08-01

    The aim of this work is to analyze the ability of modulated photothermal radiometry to retrieve the thermal diffusivity and the optical absorption coefficient of layered materials simultaneously. First, we extend the thermal quadrupole method to calculate the surface temperature of semitransparent multilayered materials. Then, this matrix method is used to evaluate the influence of heat losses by convection and radiation, the influence of the use of thin paint layers on the accuracy of thermal diffusivity measurements, and the effect of lateral heat diffusion due to the use of Gaussian laser beams. Finally, we apply the quadrupole method to retrieve (a) the thermal contact resistance in glass stacks and (b) the thermal diffusivity and optical absorption coefficient depth profiles in heterogeneous materials with continuously varying physical properties, as is the case of functionally graded materials and partially cured dental resins.

  16. Optical absorption properties of Ag/SiO sub 2 composite films induced by gamma irradiation

    Pan, A L; Yang, Z P; Liu, F X; Ding, Z J; Qian, Y T

    2003-01-01

    Mesoporous SiO sub 2 composite films with small Ag particles or clusters dispersed in them were prepared by a new method: first the matrix SiO sub 2 films were prepared by the sol-gel process combined with the dip-coating technique; then they were soaked in AgNO sub 3 solutions; this was followed by irradiation with gamma-rays at room temperature and ambient pressure. The structure of these films was examined by high-resolution transmission electron microscopy, and their optical absorption spectra were examined. It has been shown that the Ag particles grown within the porous SiO sub 2 films are very small and are highly dispersed. On increasing the soaking concentration and subjecting the samples to an additional annealing, a different peak-shift effect for the surface plasmon resonance was observed in the optical absorption measurement. Possible mechanisms of this behaviour are discussed in this paper.

  17. Short optical pulse generation at 40 GHz with a bulk electro-absorption modulator packaged device

    Langlois, Patrick; Moore, Ronald; Prosyk, Kelvin; O'Keefe, Sean; Oosterom, Jill A.; Betty, Ian; Foster, Robert; Greenspan, Jonathan; Singh, Priti

    2003-12-01

    Short optical pulse generation at 40GHz and 1540nm wavelength is achieved using fully packaged bulk quaternary electro-absorption modulator modules. Experimental results obtained with broadband and narrowband optimized packaged modules are presented and compared against empirical model predictions. Pulse duty cycle, extinction ratio and chirp are studied as a function of sinusoidal drive voltage and detuning between operating wavelength and modulator absorption band edge. Design rules and performance trade-offs are discussed. Low-chirp pulses with a FWHM of ~12ps and sub-4ps at a rate of 40GHz are demonstrated. Optical time-domain demultiplexing of a 40GHz to a 10GHz pulse train is also demonstrated with better than 20dB extinction ratio.

  18. Optical bleaching of 540-nm absorption band in neutron- and electron-irradiated ZnS

    A study was made on the optical bleaching of the 540-nm absorption band produced in ZnS by irradiation with fast neutrons in a reactor and with 8-MeV electrons. It is estimated that the optical absorption cross section at 540 nm is equal to or greater than 6x10-17 and 3x10-17 cm2 for neutron- and electron-irradiated samples, respectively, and that the production rate of the defect centers responsible for the 540-nm band per unit volume per unit fluence is equal to or less than 0.8 and 0.6 cm-1 for neutron and electron irradiation, respectively. (auth.)

  19. Coherent control of the optical absorption in a plasmonic lattice coupled to a luminescent layer

    Pirruccio, Giuseppe; Rodriguez, Said Rahimzadeh-Kalaleh; Rivas, Jaime Gomez

    2016-01-01

    We experimentally demonstrate the coherent control, i.e., phase-dependent enhancement and suppression, of the optical absorption in an array of metallic nanoantennas covered by a thin lu- minescent layer. The coherent control is achieved by using two collinear, counter-propagating and phase-controlled incident waves with wavelength matching the absorption spectrum of dye molecules coupled to the array. Symmetry arguments shed light on the relation between the relative phase of the incident waves and the excitation efficiency of the optical resonances of the system. This coherent control is associated with a phase-dependent distribution of the electromagnetic near-fields in the structure which enables a significant reduction of the unwanted dissipation in the metallic structures.

  20. First principles electron-correlated calculations of optical absorption in magnesium clusters

    Shinde, Ravindra

    2015-01-01

    In this paper we report the calculations of linear optical absorption spectra of various isomers of magnesium clusters Mg$_{n}$ (n=2--5) involving valence transitions, performed using the large-scale all-electron configuration interaction (CI) methodology. First, geometries of several low-lying isomers of each cluster were optimized at the coupled-cluster singles doubles (CCSD) level of theory. These geometries were subsequently employed to perform ground and excited state calculations on these systems using the multi-reference singles-doubles configuration-interaction (MRSDCI) approach, which includes electron correlation effects at a sophisticated level. Resultant CI wave functions were used to compute the optical absorption spectra within the electric-dipole approximation. Our results on magnesium dimer (Mg$_{2}$) isomer are in excellent agreement with the experiments as far as oscillator strengths, and excitation energies are concerned. Owing to a better description of electron-correlation effects, these ...

  1. Tunable Optical Limiting Action due to Non-linear Absorption in ZnO/Ag Nanocomposites

    Radhu, S.; Vijayan, C.; Sandeep, Suchand; Philip, Reji

    2011-07-01

    ZnO/Ag nanocomposites with different silver concentration are successfully synthesized by solvothermal method. The characterization of the as- synthesized samples is done using XRD, UV-visible spectroscopy and HRTEM and the results indicate that the composites consist of silver nanoparticles attached to the ZnO nanoparticles. The optical non-linearity in these samples is studied using open aperture Z-scan technique and the experimental results agree well with a theoretical model involving two- photon absorption. It is found that the parameters of optical limiting can be tuned in a broad band by varying the silver concentration in the samples.

  2. Ultrafast all-optical shutter based on two-photon absorption

    Versteegh, Marijn A M

    2016-01-01

    An ultrafast all-optical shutter is presented, based on a simple two-color two-photon absorption technique. For time-resolved luminescence measurements this shutter is an interesting alternative to the optical Kerr gate. The rejection efficiency is 99%, the switching-off and switching-on speeds are limited by the pulse length only, the rejection time is determined by the crystal slab thickness, and the bandwidth spans the entire visible spectrum. We show that our shutter can also be used for accurate measurement of group velocity inside a transparent material.

  3. 'Diamondlike' carbon films - Optical absorption, dielectric properties, and hardness dependence on deposition parameters

    Natarajan, V.; Lamb, J. D.; Woollam, J. A.; Liu, D. C.; Gulino, D. A.

    1985-01-01

    An RF plasma deposition system was used to prepare amorphous 'diamondlike' carbon films. The source gases for the RF system include methane, ethylene, propane, and propylene, and the parameters varied were power, dc substrate bias, and postdeposition anneal temperature. Films were deposited on various substrates. The main diagnostics were optical absorption in the visible and in the infrared, admittance as a function of frequency, hardness, and Auger and ESCA spectroscopy. Band gap is found to depend strongly on RF power level and band gaps up to 2.7 eV and hardness up to 7 Mohs were found. There appears to be an inverse relationship between hardness and optical band gap.

  4. Measurement of small light absorption in microparticles by means of optically induced rotation

    Angelsky, O. V.; Bekshaev, A. Ya; Maksimyak, P. P.;

    2015-01-01

    The absorption parameters of micro-particles have been associated with the induced spin exerted upon the particle, when embedded in a circularly polarized coherent field. The induced rotational speed is theoretically analyzed, showing the influence of the beam parameters, the parameters of the pa...... particle and the tribological parameters of the surrounding fluid. The theoretical findings have been adequately confirmed in experiments. (C)2015 Optical Society of America...

  5. Self-absorption influence on the optical spectroscopy of zinc oxide laser produced plasma

    De Posada, E; Arronte, M A; Ponce, L; Rodriguez, E; Flores, T [Centro de Investigacion en Ciencia Aplicada y TecnologIa Avanzada-Unidad Altamira, Tamaulipas (Mexico); Lunney, J G, E-mail: edeposada@ipn.mx [School of Physics, Trinity College Dublin (Ireland)

    2011-01-01

    Optical spectroscopy is used to study the laser ablation process of ZnO targets. It is demonstrated that even if Partial Local Thermal Equilibrium is present, self absorption process leads to a decrease of recorded lines emission intensities and have to be taken into account to obtain correct values of such parameters. It is presented a method that combines results of both Langmuir probe technique and Anisimov model to obtain correct values of plasma parameters.

  6. Self-absorption influence on the optical spectroscopy of zinc oxide laser produced plasma

    Optical spectroscopy is used to study the laser ablation process of ZnO targets. It is demonstrated that even if Partial Local Thermal Equilibrium is present, self absorption process leads to a decrease of recorded lines emission intensities and have to be taken into account to obtain correct values of such parameters. It is presented a method that combines results of both Langmuir probe technique and Anisimov model to obtain correct values of plasma parameters.

  7. Optical absorption and photoluminescent studies of cerium-doped cobalt tungstate nanomaterials

    This paper deals with optical absorption and photoluminescence properties of nanorange (22-65 nm) luminescent materials Co1-xCexWO4 (where x = 0.01, 0.015, 0.02, 0.025 and 0.03) sintered in air at various temperatures. These compounds were prepared by the solution-based co-precipitation method and characterized by x-ray powder diffraction and thermal analysis. Optimum conditions for high luminescence emission were obtained.

  8. Characterizing trace metal impurities in optical waveguide materials using x-ray absorption

    X-ray absorption measurements are described for identifying metal impurities in silica preforms, the rod-like starting materials from which hair-like optical fibers are drawn. The results demonstrate the effectiveness of this approach as a non-destructive, quantitative, element-selective, position-sensitive, and chemical-state-specific means for characterizing transition metals in the concentration regime of parts per billion

  9. Optical absorption spectra of mercury centres in KCl and NaCl

    Optical absorption spectra of KCl and NaCl monocrystals doped with Hg2Cl2 were recorded at room temperature before and after 60Co #betta#-irradiation and F-light bleaching. It is concluded that gamma irradiation produces all types of Hg centres, that the Hg0 centres grow linearly with time of F-light bleaching, and that F-light bleaching enhances all the bands due to Hg centres

  10. Third order nonlinear optical susceptibility of fluorescein-containing polymers determined by electro-absorption spectroscopy

    Gomez-Sosa, Gustavo; Beristain, Miriam F.; Ortega, Alejandra; Martínez-Viramontes, Jaquelin; Ogawa, Takeshi; Fernández-Hernández, Roberto C.; Tamayo-Rivera, Lis; Reyes-Esqueda, Jorge-Alejandro; Isoshima, Takashi; Hara, Masahiko

    2012-03-01

    Novel polymers containing xanthene groups with high dye concentrations were prepared, and their third order nonlinear optical properties were studied by electroabsorption spectroscopy technique. The polymers were amorphous with refractive indices above 1.6 in the non-resonant region. The UV-Visible absorption spectra indicate the fluoresceins molecules in the polymers are H-aggregated. They showed third order nonlinear susceptibility, χ(3) (-ω:ω, 0, 0), of 2.5-3.5 × 10-12 esu.

  11. Some questions of remote control of gas emissions to atmosphere by using differential optical absorption spectrometers

    Full Text: In the article the possibility for increasing of measurement accuracy of emissive gases arising during open waste burning on garbage dumps has been considered. For this purpose it is suggested to combine Differential Optical Absorption Spectrometers (DOAS) method with three wavelength method. It is shown, that such combination of two methods allows taking into account separately the influence of fine and coarse components of atmosphere aerosol on measurement results of investigated gases

  12. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-01

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor. PMID:26938713

  13. Optical standing-wave artifacts in reflection-absorption FTIR microspectroscopy of biological materials

    Reflection-absorption spectra obtained with an infrared microscope should yield the same absorption coefficients as direct micro-transmission measurements as long as the correct effective sample thickness is used, but in practice, severe optical artifacts can complicate the spectra. Using deposited protein gel fdms as a homogenous model for biological cell-like samples, we demonstrate the effect of standing-wave interference of the IR beam at the reflective substrate surface which dramatically and systematically alters the absorbance intensity across the spectrum as a function of sample thickness. To explain the observed spectral artifacts, we simulate the optical standing-wave for the focussed IR beam, and insert the parameters into an existing standing-wave absorption theory. By introducing an additional term to the theory representing a component of the standing-wave resonant with the film thickness, the data are accurately reproduced, and the relative band intensities can be corrected to the direct transmission values. This approach may be generally applicable in reflection-absorption experiments to obtain reliable absorbance spectra of homogenous samples even when the sample thickness is larger than the IR wavelength.

  14. Doubling absorption in nanowire solar cells with dielectric shell optical antennas.

    Kim, Sun-Kyung; Zhang, Xing; Hill, David J; Song, Kyung-Deok; Park, Jin-Sung; Park, Hong-Gyu; Cahoon, James F

    2015-01-14

    Semiconductor nanowires (NWs) often exhibit efficient, broadband light absorption despite their relatively small size. This characteristic originates from the subwavelength dimensions and high refractive indices of the NWs, which cause a light-trapping optical antenna effect. As a result, NWs could enable high-efficiency but low-cost solar cells using small volumes of expensive semiconductor material. Nevertheless, the extent to which the antenna effect can be leveraged in devices will largely determine the economic viability of NW-based solar cells. Here, we demonstrate a simple, low-cost, and scalable route to dramatically enhance the optical antenna effect in NW photovoltaic devices by coating the wires with conformal dielectric shells. Scattering and absorption measurements on Si NWs coated with shells of SiN(x) or SiO(x) exhibit a broadband enhancement of light absorption by ∼ 50-200% and light scattering by ∼ 200-1000%. The increased light-matter interaction leads to a ∼ 80% increase in short-circuit current density in Si photovoltaic devices under 1 sun illumination. Optical simulations reproduce the experimental results and indicate the dielectric-shell effect to be a general phenomenon for groups IV, II-VI, and III-V semiconductor NWs in both lateral and vertical orientations, providing a simple route to approximately double the efficiency of NW-based solar cells. PMID:25546325

  15. Color centers in KCN: ferro-elastic alignment and free optical absorption of phonons

    Some color centers in KCN pure and KCL or KOH doped are studied. The used tecniques for detection of these color centers were optical absorption and electron paramagnetic resonance (EPR). To obtain this color centers crystals were always exposed to X-rays. With an optical absorption technique, one color center was analysed after X-ray irradiation followed by a suitable photochemical process. Throught the EPR technique the F center and three other centers produced by radiation damage were observed through several KCN solid phases. As in the orthorhombic and ferroelastic phase (temperatures between 168K and 83K), the crystals of KCN present one multidomain structure responsable for strong light scattering on the optical absorption spectra and EPR spectra that does not present the resolved lines formed above 168K, one system of aligned domains was obtained through mechanical stress built specifically to be capable of reducing the number of distinct domain, and this allowed us to observe of partially resolved EPR lines. (Auhtor)

  16. Initial Results of Optical Vortex Laser Absorption Spectroscopy in the HYPER-I Device

    Yoshimura, Shinji; Asai, Shoma; Aramaki, Mitsutoshi; Terasaka, Kenichiro; Ozawa, Naoya; Tanaka, Masayoshi; Morisaki, Tomohiro

    2015-11-01

    Optical vortex beams have a potential to make a new Doppler measurement, because not only parallel but perpendicular movement of atoms against the beam axis causes the Doppler shift of their resonant absorption frequency. As the first step of a proof-of-principle experiment, we have performed the optical vortex laser absorption spectroscopy for metastable argon neutrals in an ECR plasma produced in the HYPER-I device at the National Institute for Fusion Science, Japan. An external cavity diode laser (TOPTICA, DL100) of which center wavelength was 696.735 nm in vacuum was used for the light source. The Hermite-Gaussian (HG) beam was converted into the Laguerre-Gaussian (LG) beam (optical vortex) by a computer-generated hologram displayed on the spatial light modulator (Hamamatsu, LCOS-SLM X10468-07). In order to make fast neutral flow across the LG beam, a high speed solenoid valve system was installed on the HYPER-I device. Initial results including the comparison of absorption spectra for HG and LG beams will be presented. This study was supported by NINS young scientists collaboration program for cross-disciplinary study, NIFS collaboration research program (NIFS13KOAP026), and JSPS KAKENHI grant number 15K05365.

  17. Block matching 3D random noise filtering for absorption optical projection tomography

    Fumene Feruglio, P; Vinegoni, C; Weissleder, R [Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114 (United States); Gros, J [Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston MA 02115 (United States); Sbarbati, A, E-mail: cvinegoni@mgh.harvard.ed [Department of Morphological and Biomedical Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona (Italy)

    2010-09-21

    Absorption and emission optical projection tomography (OPT), alternatively referred to as optical computed tomography (optical-CT) and optical-emission computed tomography (optical-ECT), are recently developed three-dimensional imaging techniques with value for developmental biology and ex vivo gene expression studies. The techniques' principles are similar to the ones used for x-ray computed tomography and are based on the approximation of negligible light scattering in optically cleared samples. The optical clearing is achieved by a chemical procedure which aims at substituting the cellular fluids within the sample with a cell membranes' index matching solution. Once cleared the sample presents very low scattering and is then illuminated with a light collimated beam whose intensity is captured in transillumination mode by a CCD camera. Different projection images of the sample are subsequently obtained over a 360{sup 0} full rotation, and a standard backprojection algorithm can be used in a similar fashion as for x-ray tomography in order to obtain absorption maps. Because not all biological samples present significant absorption contrast, it is not always possible to obtain projections with a good signal-to-noise ratio, a condition necessary to achieve high-quality tomographic reconstructions. Such is the case for example, for early stage's embryos. In this work we demonstrate how, through the use of a random noise removal algorithm, the image quality of the reconstructions can be considerably improved even when the noise is strongly present in the acquired projections. Specifically, we implemented a block matching 3D (BM3D) filter applying it separately on each acquired transillumination projection before performing a complete three-dimensional tomographical reconstruction. To test the efficiency of the adopted filtering scheme, a phantom and a real biological sample were processed. In both cases, the BM3D filter led to a signal-to-noise ratio

  18. Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS – applicability and corrections

    D. Pöhler

    2009-11-01

    Full Text Available Atmospheric trace gas measurements by cavity assisted long-path absorption spectroscopy are an emerging technology. An interesting approach is the combination of CEAS with broadband light sources, the broadband CEAS (BB-CEAS. BB-CEAS lends itself to the application of the DOAS technique to analyse the derived absorption spectra. While the DOAS approach has enormous advantages in terms of sensitivity and specificity of the measurement, an important implication is the reduction of the light path by the trace gas absorption, since cavity losses due to absorption by gases reduce the quality (Q of the cavity. In fact, at wavelength, where the quality of the BB-CEAS cavity is dominated by the trace gas absorption (especially at very high mirror reflectivity, the average light path will vary nearly inversely with the trace gas concentration and the strength of the band will become only weakly dependent on the trace gas concentration c in the cavity, (the differential optical density being proportional to the logarithm of the trace gas concentration. Only in the limiting case where the mirror reflectivity determines Q at all wavelength, the strength of the band as seen by the CE-DOAS instrument becomes directly proportional to the concentration c. We investigate these relationships in detail and present methods to correct for the cases between the two above extremes, which are of course the important ones in practice.

  19. [Study on removing the lamp spectrum structure in differential optical absorption spectroscopy].

    Qu, Xiao-ying; Li, Yu-jin

    2010-11-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range, and nowadays this technique has been widely utilized to measure trace polluted gases in the atmosphere e.g. SO2, NO2, O3, HCHO, etc. However, there exists lamp (xenon lamp or deuteriumlamp) spectrum structure in the measured band (300-700 nm) of the absorption spectra of atmosphere, which badly impacts on precision of retrieving the concentration of trace gases in the atmosphere. People home and abroad generally employ two ways to handle this problem, one is segmenting band retrieving method, another is remedial retrieving method. In the present paper, a new retrieving method to deal with this trouble is introduced. The authors used moving-window average smoothing method to obtain the slow part of the absorption spectra of atmosphere, then achieved the lamp (xenon lamp in the paper) spectrum structure in the measured band of the absorption spectra of atmosphere. The authors analyzed and retrieved the measured spectrum of the atmosphere, and the result is better than the forenamed ways. Chi-square of residuum is 2.995 x 10(-4), and this method was proved to be able to avoid shortcoming of choosing narrowband and disadvantage of discovering the new component of atmosphere in retrieving the concentration of air pollutants and measuring the air pollutants. PMID:21284148

  20. Optical hydrogen absorption consistent with a thin bow shock leading the hot Jupiter HD 189733b

    Cauley, P Wilson; Jensen, Adam G; Barman, Travis; Endl, Michael; Cochran, William D

    2015-01-01

    Bow shocks are ubiquitous astrophysical phenomena resulting from the supersonic passage of an object through a gas. Recently, pre-transit absorption in UV metal transitions of the hot Jupiter exoplanets HD 189733b and WASP12-b have been interpreted as being caused by material compressed in a planetary bow shock. Here we present a robust detection of a time-resolved pre-transit, as well as in-transit, absorption signature around the hot Jupiter exoplanet HD 189733b using high spectral resolution observations of several hydrogen Balmer lines. The line shape of the pre-transit feature and the shape of the time series absorption provide the strongest constraints on the morphology and physical characteristics of extended structures around an exoplanet. The in-transit measurements confirm the previous exospheric H-alpha detection although the absorption depth measured here is ~50% lower. The pre-transit absorption feature occurs 125 minutes before the predicted optical transit, a projected linear distance from the ...

  1. All-Optical Switching in Bacteriorhodopsin Based on Excited-State Absorption

    Roy, Sukhdev

    2008-03-01

    Switching light with light is of tremendous importance for both fundamental and applied science. The advent of nano-bio-photonics has led to the design, synthesis and characterization of novel biomolecules that exhibit an efficient nonlinear optical response, which can be utilized for designing all-optical biomolecular switches. Bacteriorhodopsin (bR) protein found in the purple membrane of Halobacterium halobium has been the focus of intense research due to its unique properties that can also be tailored by physical, chemical and genetic engineering techniques to suit desired applications. The talk would focus on our recent results on all-optical switching in bR and its mutants, based on excited-state absorption, using the pump-probe technique. We would discuss the all-optical control of various features of the switching characteristics such as switching contrast, switching time, switching pump intensity, switched probe profile and phase, and relative phase-shift. Optimized conditions for all-optical switching that include optimized values of the small-signal absorption coefficient (for cw case), the pump pulse width and concentration for maximum switching contrast (for pulsed case), would be presented. We would discuss the desired optimal spectral and kinetic properties for device applications. We would also discuss the application of all-optical switching to design low power all-optical computing devices, such as, spatial light modulators, logic gates and multiplexers and compare their performance with other natural photoreceptors such as pharaonis phoborhodopsin, proteorhodopsin, photoactive yellow protein and the blue light plant photoreceptor phototropin.

  2. Photo-induced changes of silicate glasses optical parameters at multi-photon laser radiation absorption

    In this paper the results of investigations of the mechanisms of photo-induced changes of alkali-silicate (crown) and lead-silicate (flint) glasses optical parameters upon the exposure to the intense laser radiation, and the basic regularities of these processes are reported. These investigations were performed in Research Center open-quotes S. I. Vavilov State Optical Instituteclose quotes during last 15 years. The kinetics of stable and unstable CC formation and decay, the effect of widely spread impurity ions on these processes, the characteristics of fundamental and impure luminescence, the kinetics of refractive index change under conditions of multi-photon glass matrix excitation, and other properties are considered. On the basis of analysis of received regularities it was shown that the nonlinear coloration of alkali-silicate glasses (the fundamental absorption edge is nearly 6 eV) takes place only as a result of two-photon absorption. Important efforts were aimed at the detection of three- or more photon matrix ionization of these glasses, but they were failed. However it was established that in the lead silicate glasses the long-wave carriers mobility boundary (> 5.6 eV) is placed considerably higher the fundamental absorption edge (∼ 3.5 eV) of material matrix. This results in that the linear color centers formation in the lead silicate glasses is not observed. The coloration of these glasses arises only from the two- or three-photon matrix ionization, and the excitation occurs through virtual states that are placed in the fundamental absorption region. In the report the available mechanisms of photo-induced changes of glasses optical parameters, and some applied aspects of this problem are discussed

  3. Optical absorption engineering in stacked plasmonic Au-SiO₂-Pd nanoantennas.

    Wadell, Carl; Antosiewicz, Tomasz J; Langhammer, Christoph

    2012-09-12

    The nonradiative decay of a localized surface plasmon through absorption of a captured photon and excitation of an energetic electron-hole pair is a potentially very effective way to enhance chemical reactions on metal nanoparticle surfaces, so far limited to Ag (and Au). Here we explore the possibility of efficient and spectrally widely tunable optical absorption engineering based on heterometallic optical nanoantennas. They consist of an optimized antenna element made of Au (or Ag) and a catalytically active second metallic element separated by a thin SiO(2) layer. Specifically, we find that stacked Au-SiO(2)-Pd nanodisk antennas exhibit pronounced local absorption enhancement in the catalytic Pd particle. The effect is caused by efficient power transfer from the Au disk, exhibiting a narrow low-loss resonance and acting as an antenna collecting photons, to the Pd disk due to strong coupling between the two. The Pd element thus acts as receiver that efficiently dissipates energy into electron-hole pairs owing to efficient coupling to intra and interband transitions. In fact, the energy transfer is found to be so effective that the absorption efficiency at a given wavelength can be enhanced up to 6 to 9 times, and the total absorption integrated over a wide spectral range (400-900 nm) up to 2-fold, depending on the antenna dimensions. This finding suggests a novel route toward highly efficient plasmon-enhanced catalysis on widely selectable catalytic metal particle surfaces not limited to the "classic" plasmonic metals Au and Ag. PMID:22916998

  4. Absorptive and dispersive optical profiles in fluctuating environments: A stochastic model

    In this study, we determined the absorptive and dispersive optical profiles of a molecular system coupled with a thermal bath. Solvent effects were explicitly considered by modelling the non-radiative interaction with the solute as a random variable. The optical stochastical Bloch equations (OSBE) were solved using a time-ordered cumulant expansion with white noise as a correlation function. We found a solution for the Fourier component of coherence at the third order of perturbation for the nonlinear Four-wave mixing signal and produced analytical expressions for the optical responses of the system. Finally, we examined the behaviour of these properties with respect to the noise parameter, frequency detuning of the dynamic perturbation, and relaxation times.

  5. Structures and optical absorption of Bi2OS2 and LaOBiS2

    Miura, Akira; Mizuguchi, Yoshikazu; Takei, Takahiro; Kumada, Nobuhiro; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Tadanaga, Kiyoharu

    2016-02-01

    The band gaps of isostructural Bi2OS2 and LaOBiS2 were examined using optical absorption and discussed with the band structures calculated based on the crystal structures determined using synchrotron X-ray diffraction. The Bi 6p and S 3p orbitals in the Bi-S plane were computationally predicted to constitute the bands near the Fermi level. The optical reflectance spectra of Bi2OS2 and LaOBiS2 showed optical band gaps of ~1.0 eV, which were close to the computationally calculated direct band gaps of ~0.8 eV. Our results show that Bi2OS2 and LaOBiS2 are semiconductors containing direct band gaps of 0.8-1.0 eV, and they are suggested to be candidates for optoelectronic materials in the near-infrared region without highly toxic elements.

  6. Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber

    Nazemosadat, Elham

    2013-01-01

    We present a detailed investigation of the nonlinear multimodal interference in a short graded-index multimode optical fiber. The analysis is performed for a specific device geometry, where the light is coupled in and out of the multimode fiber via single-mode fibers. The same device geometry was recently used to obtain ultra-low-loss coupling between two single-mode optical fibers with very different mode-field diameters. Our results indicate the potential application of this simple geometry for nonlinear devices, such as in nonlinear switching, optical signal processing, or as saturable absorbers in mode-locked fiber lasers. We present a detailed discussion on the saturable absorption in this all-fiber configuration and show that it provides attractive properties that can potentially be used in high pulse energy mode-locked fiber lasers.

  7. Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage

    Darby, Brendan L; Meyer, Matthias; Pantoja, Andres E; Ru, Eric C Le

    2015-01-01

    Enhanced optical absorption of molecules in the vicinity of metallic nanostructures is key to a number of surface-enhanced spectroscopies and of great general interest to the fields of plasmonics and nano-optics. Yet, experimental access to this absorbance has long proven elusive. We here present direct measurements of the intrinsic absorbance of dye-molecules adsorbed onto silver nanospheres, and crucially, at sub-monolayer concentrations where dye--dye interactions become negligible. With a large detuning from the plasmon resonance, distinct shifts and broadening of the molecular resonances reveal the intrinsic properties of the dye in contact with the metal colloid, in contrast to the often studied strong-coupling regime where the optical properties of the dye-molecules cannot be isolated. The observation of these shifts together with the ability to routinely measure them has broad implications in the interpretation of experiments involving resonant molecules on metallic surfaces, such as surface-enhanced ...

  8. Hydrogen sensing via anomalous optical absorption of palladium-based metamaterials

    Hierro-Rodriguez, A.; Leite, I. T.; Rocha-Rodrigues, P.; Fernandes, P.; Araujo, J. P.; Jorge, P. A. S.; Santos, J. L.; Teixeira, J. M.; Guerreiro, A.

    2016-05-01

    A palladium (Pd)-based optical metamaterial has been designed, fabricated and characterized for its application in hydrogen sensing. The metamaterial can replace Pd thin films in optical transmission schemes for sensing with performances far superior to those of conventional sensors. This artificial material consists of a palladium-alumina metamaterial fabricated using inexpensive and industrial-friendly bottom-up techniques. During the exposure to hydrogen, the system exhibits anomalous optical absorption when compared to the well-known response of Pd thin films, this phenomenon being the key factor for the sensor sensitivity. The exposure to hydrogen produces a large variation in the light transmission through the metamembrane (more than 30% with 4% in volume hydrogen-nitrogen gas mixture at room temperature and atmospheric pressure), thus avoiding the need for sophisticated optical detection systems. An optical homogenization model is proposed to explain the metamaterial response. These results contribute to the development of reliable and low-cost hydrogen sensors with potential applications in the hydrogen economy and industrial processes to name a few, and also open the door to optically study the hydrogen diffusion processes in Pd nanostructures.

  9. Quasi-Resonant Nonlinear Absorption for Optical Power Limiting: solgel-Processed Er(3+)-Doped Multicomponent Silica Glass.

    Maciel, G S; Biswas, A; Friend, C S; Prasad, P N

    2000-05-20

    We demonstrate optical power limiting by what we believe to be a new mechanism of nonlinear absorption, which involves a quasi-resonant ground-state absorption that is either phonon assisted or assisted by the presence of defect sites (tail absorption). Such a mechanism provides high transmittance at low intensity yet optical limiting under cw conditions. The sample used was a novel solgel-processed Er(3+)-doped multicomponent silica glass. In this system the nonlinear absorption process is achieved because the resonant excited-state ((4)I(13/2) ? (4)S(3/2)) absorption cross section is larger than the quasi-resonant ground-state ((4)I(15/2) ? (4)I(9/2)) absorption cross section. PMID:18345156

  10. The effect of metal nano particle on optical absorption coefficient of multi-layer spherical quantum dot

    Zamani, N.; Keshavarz, A.; Nadgaran, H.

    2016-06-01

    In this paper, we investigate the optical absorption coefficient of hybrid structure consisting of metal nano particle (MNP) coupled to multi-layer spherical quantum dot (MSQD). Energy eigenvalues and eigenfunctions of Schrödinger equation in this structure are obtained by using numerical solution (by the fourth-order Runge-Kutta method). The effect of MNP in the vicinity of MSQD is calculated by considering local field theory. Then the variation of optical absorption coefficient hybrid structure is calculated. The results show that the presence of MNP near MSQD enhances the optical absorption coefficient. Also, by changing the distance between MNP and MSQD and radius of MNP, variation of optical absorption coefficient and refractive index changes are introduced.

  11. Linear and Nonlinear Optical Absorptions of a Hydrogenic Donor in a Quantum Dot Under a Magnetic Field

    XIE Wen-Fang

    2009-01-01

    The linear and nonlinear optical properties of a hydrogenic donor in a disc-like parabolic quantum dot in the presence of an external magnetic field are studied. The calculations were performed within the effective mass approximation, using the matrix diagonalization method and the compact density-matrix approach. The linear and nonlinear optical absorption coefficients between the ground (L = 0) and the first excited state (L = 1) have been examined based on the computed energies and wave functions. We find that the linear, nonlinear third-order, and total optical absorption coefficients are strongly affected by the confinement strength of QDs, the external magnetic field, and the incident optical intensity.

  12. Characterizing the Absorption Properties for Remote Sensing of Three Small Optically-Diverse South African Reservoirs

    Mark William Matthews

    2013-09-01

    Full Text Available Characterizing the specific inherent optical properties (SIOPs of water constituents is fundamental to remote sensing applications. Therefore, this paper presents the absorption properties of phytoplankton, gelbstoff and tripton for three small, optically-diverse South African inland waters. The three reservoirs,  Hartbeespoort, Loskop and Theewaterskloof, are challenging for remote sensing, due to differences in phytoplankton assemblage and the considerable range of constituent concentrations. Relationships between the absorption properties and biogeophysical parameters, chlorophyll-a (chl-a, TChl (chl-a plus  phaeopigments,  seston,  minerals  and  tripton, are established. The value determined for the mass-specific tripton absorption coefficient at 442 nm, a∗ (442, ranges from 0.024 to 0.263 m2·g−1. The value of the TChl-specific phytoplankton absorption coefficient (a∗ was strongly influenced by phytoplankton species, size, accessory pigmentation and biomass. a∗ (440 ranged from 0.056 to 0.018 m2·mg−1 in oligotrophic to hypertrophic waters. The positive relationship between cell size and trophic state observed in open ocean waters was violated by significant small cyanobacterial populations. The phycocyanin-specific phytoplankton  absorption  at  620  nm,  a∗ (620, was determined as 0.007 m2·g−1 in a M. aeruginosa bloom. Chl-a was a better indicator of phytoplankton biomass than phycocyanin (PC in surface scums, due to reduced accessory pigment production. Absorption budgets demonstrate that monospecific blooms of M. aeruginosa and C. hirundinella may be treated as “cultures”, removing some complexities for remote sensing applications.   These results contribute toward a better understanding of IOPs and remote sensing applications in hypertrophic inland waters. However, the majority of the water is optically complex, requiring the usage of all the SIOPs derived here for remote sensing applications. The

  13. Optical absorption and electron paramagnetic resonance studies of natural spessartite-almandine

    The sample investigated, according to X rays fluorescence analysis, has a chemical composition given by 38,6% SiO2, 18,0% Al2O3, 18,5% MnO 23,1% Fe32+ O, 0,52% MgO and other oxides each one in percentagewise less than 0,30. Therefore, this sample is practically a mixture of 54,8% Almandine, 43,9% Spessartite and 1,23% Pyrope. The optical absorption spectrum shows several absorption bands at 410, 500, 568, 685, 1300, 1700, 2380 nm. 500 and 525 nm absorption produces reddish-brown coloration of the sample, 575 nm band is weak, but 1260 nm band is very broad and intense, its width at half-intensity is about 200 nm. This band is due to Fe2+. These bands do not change width annealing above 850 deg C, but the background absorption increases by a factor of two or slightly larger and the crystal becomes almost black. The EPR spectrum of natural sample is just a straight line making an angle of approximately 103 degree with positive horizontal X-axis and cutting this axis at 3445 gauss. This straight line is the first derivative of absorption line, which was calculated assuming that it has Gaussian shape. We assumed that this absorption, or else the EPR spectrum is due to small magnetic domain as in ferromagnetic materials. The annealing of the sample at higher temperature above 800 deg C the domains are destroyed and individual Fe3+ ions come into action. These ions, however, due to high concentration present strong magnetic dipoles interaction. (author)

  14. A microfluidic chemical/biological sensing system based on membrane dissolution and optical absorption

    Sridharamurthy, Sudheer S.; Dong, Liang; Jiang, Hongrui

    2007-01-01

    A microfluidic system to sense chemical and biological analytes using membranes dissolvable by the analyte is demonstrated. The scheme to detect the dissolution of the membrane is based on the difference in optical absorption of the membrane and the fluidic sample being assayed. The presence of the analyte in the sample chemically cleaves the membrane and causes the sample to flow into the membrane area. This causes a change in the optical absorption of the path between the light source and detector. A device comprising the microfluidic channels and the membrane is microfabricated using liquid-phase photopolymerization. A light emitting diode (LED) and a detector with an integrated amplifier are positioned and aligned on either side of the device. The state of the membrane is continuously monitored after introducing the sample. The temporal dissolution characteristics of the membrane are extracted in terms of the output voltage of the detector as a function of time. This is used to determine the concentration of the analyte. The absorption spectra of the membrane and fluidic sample are studied to determine the optimal wavelength that provides the maximum difference in absorbance between the membrane and the sample. In this work, the dissolution of a poly(acrylamide) hydrogel membrane in the presence of a reducing agent (dithiothreitol—DTT) is used as a model system. For this system, with 1 M DTT, complete membrane dissolution occurred after 65 min.

  15. Optical absorption and fluorescence studies of praseodymium ion in chloroborophosphate glasses

    Full text: The interest in optical absorption and fluorescence studies of rare earth ions in glassy materials is increasing continuously in connection with laser research and related application. The absorption and fluorescence spectra of praseodymium ion in chloroborophosphate glasses have been recorded at room temperature. The chloroborophosphate glass specimens having composition in mob.% Na20 (26.08), B203 (14.57), P205(44.85), ZnCl2(14.50), Pr6011(R) [R= 0.0,0.1 and 0.2 moi.%] have been prepared by melt quenching technique. The spectra consists of seven absorption bands and three fluorescence bands. The observed optical spectra are discussed in terms of energy state and the intensity of the transitions. The various energy interaction parameters like Slater-Condon, Lande', Racah and bonding parameters have been computed. Judd-Ofeit intensity parameters and laser parameters have also been computed. These results shows that praseodymium doped chloroborophosphate glass specimen can be considered as good hosts for laser applications

  16. VO2+ ions in zinc lead borate glasses studied by EPR and optical absorption techniques.

    Prakash, P Giri; Rao, J Lakshmana

    2005-09-01

    Electron paramagnetic resonance (EPR) and optical absorption spectra of vanadyl ions in zinc lead borate (ZnO-PbO-B2O3) glass system have been studied. EPR spectra of all the glass samples exhibit resonance signals characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in zinc lead borate glasses were present in octahedral sites with tetragonal compression and belong to C4V symmetry. The spin-Hamiltonian parameters g and A are found to be independent of V2O5 content and temperature but changing with ZnO content. The decrease in Deltag( parallel)/Deltag( perpendicular) value with increase in ZnO content indicates that the symmetry around VO2+ ions is more octahedral. The decrease in intensity of EPR signal above 10 mol% of V2O5 is attributed to a fall in the ratio of the number of V4+ ions (N4) to the number of V5+ ions (N5). The number of spins (N) participating in resonance was calculated as a function of temperature for VO2+ doped zinc lead borate glass sample and the activation energy was calculated. From the EPR data, the paramagnetic susceptibility was calculated at various temperatures and the Curie constant was evaluated from the 1/chi-T graph. The optical absorption spectra show single absorption band due to VO2+ ions in tetragonally distorted octahedral sites. PMID:16043053

  17. Effect of hydrogenic impurity on linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot

    The analytical expressions of linear and nonlinear optical absorption coefficients and refractive index changes in a quantum dot with a hydrogenic impurity are obtained by using the compact-density-matrix approach and iterative method. The wave functions and the energy levels are obtained by using the variational method. Numerical results show that the optical absorption coefficients and refractive index changes are strongly affected by the hydrogenic impurity. (paper)

  18. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    Silant’ev, A. V., E-mail: kvvant@rambler.ru [Mari State University (Russian Federation)

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  19. Optical limiting and dynamical two-photon absorption of porphyrin with ruthenium outlying complexes for a picosecond pulse train

    Zhang, Yu-Jin; Sun, Yu-Ping; Wang, Chuan-Kui

    2016-01-01

    Propagation and nonlinear optical absorption of a picosecond pulse train in strong reverse saturable absorption (RSA) materials (free-based tetrapyridyl porphyrin H2TPyP with ruthenium (Ru) outlying complexes) are investigated by solving coupled rate equations and field intensity equation. Influence of outlying Ru groups on optical limiting (OL) properties is studied. Propagation of the front subpulses is mainly affected by linear transition between the ground state and the first excited singlet state, while intensity of the latter subpulses is attenuated by the excited state absorption (ESA). These two different absorption mechanisms result in asymmetric distribution of the transmitted pulse. It is shown that effective population transfer time from the ground state to the lowest triplet state and RSA play important roles in the OL performance and pulse shaping. Moreover, our results indicate that the porphyrins studied are ideal optical limiters because of their large ESA cross section and long lifetime of the lowest triplet state. Compounds with the presence of Ru group possess preferable power limiting ability. Ligand group attached to Ru also influences the nonlinear optical absorption of compounds. Special attention has been paid on dynamical two-photon absorption (TPA) cross section which depends crucially on the duration of the subpulse as well as time interval between subpulses. The present study provides a way to modulate nonlinear optical absorption properties of the medium by changing parameters of the pulse train.

  20. Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication

    Cai, D. K.; Neyer, A.; Kuckuk, R.; Heise, H. M.

    2008-03-01

    The optical properties of transparent PDMS polymer materials, which can be integrated into general printed circuit board (PCB) for data communication, are of great interest due to the substantial market expectations for the near future. For the present paper, it was found that the absorption loss in polydimethylsiloxane (PDMS) is mainly caused by the vibrational overtone and combination bands of the CH 3-groups of the polymer in the spectral datacom region of 600-900 nm. Based on observed positions of fundamental, overtone and combination bands of the methyl-group, as recorded within the mid- and near-infrared spectra, anharmonicity constants and normal vibration frequencies were determined. Thus, an empirical equation for estimating the wavelengths with the most significant intrinsic absorption loss due to the corresponding band positions was formulated, which was found to agree well with the experimental data. In addition, PDMS multimode waveguides were fabricated and the respective optical insertion loss was measured at 850 nm, which is commercially used for optical datacom transmission and finally the thermal stability of PDMS multimode waveguides was verified as well.

  1. EPR and optical absorption studies of VO2+ ions in alkaline earth aluminoborate glasses

    Electron paramagnetic resonance (EPR) and optical absorption studies have been carried out for VO2+ ions in calcium aluminoborate glasses. The EPR spectra of all the glass samples exhibit resonance signals, characteristic of VO2+ ions. The values of spin-Hamiltonian parameters indicate that the VO2+ ions in calcium aluminoborate glasses were present in octahedral co-ordination with a tetragonal compression and belong to C4v symmetry. The number of spins (N) participating in resonance was calculated as a function of concentration as well as temperature. It is observed that variation of N with temperature obeys the Boltzmann law. From the EPR data, the paramagnetic susceptibility (χ) is calculated at various temperatures and the Curie constant (C) was evaluated from the 1/χ-T graph. The Fermi contact interaction parameter (k), dipolar hyperfine coupling parameter (P) have been calculated and these values are found to be independent of V2O5 content and temperature. The optical absorption spectrum exhibits two bands corresponding to the d-d transition 2B2g → 2Eg and 2B2g → 2A1g in the order of increasing energy. The theoretical values of optical basicity (Λth) of the glasses have also been evaluated

  2. Photochromism induced nonlinear optical absorption enhancement and ultrafast responses of several dithienylethene compounds

    Wang, Yaochuan; Yan, Yongli; Liu, Dajun; Wang, Guiqiu; Pu, Shouzhi

    2015-11-01

    The nonlinear optical properties and ultrafast dynamics of three dithienylethene photochromic derivatives (i.e., P1, P2, and P3) were investigated by two-photon fluorescence, open-aperture Z-scan, and femtosecond pump-probe experiments. Photoinduced ring-closure and ring-opening phenomena, as well as a photochromism induced nonlinear optical property enhancement, were observed. For both the ring-opening and ring-closure state, the curve exhibited an ultrafast absorption peak approximately 200 fs followed by a fast decay process (i.e., ˜1 ps) and a long decay process that had a duration longer than 5 ps. The ultrafast peak followed by a fast decay process and the long decay process were attributable to a special two-photon absorption process, the formation of a charge separation state, and the relaxation of the charge separation state, respectively. However, the magnitude of the signal under the ring-closure state is approximately fivefold greater than that of the ring-opening state, which is in good agreement with nonlinear optical results. Intramolecular charge transfer processes were observed in the dynamics curves of the P2' and P3' isomers with D- π-A and D- π-D structures.

  3. Spectral interferometric microscopy reveals absorption by individual optical nanoantennas from extinction phase.

    Gennaro, Sylvain D; Sonnefraud, Yannick; Verellen, Niels; Van Dorpe, Pol; Moshchalkov, Victor V; Maier, Stefan A; Oulton, Rupert F

    2014-01-01

    Optical antennas transform light from freely propagating waves into highly localized excitations that interact strongly with matter. Unlike their radio frequency counterparts, optical antennas are nanoscopic and high frequency, making amplitude and phase measurements challenging and leaving some information hidden. Here we report a novel spectral interferometric microscopy technique to expose the amplitude and phase response of individual optical antennas across an octave of the visible to near-infrared spectrum. Although it is a far-field technique, we show that knowledge of the extinction phase allows quantitative estimation of nanoantenna absorption, which is a near-field quantity. To verify our method we characterize gold ring-disk dimers exhibiting Fano interference. Our results reveal that Fano interference only cancels a bright mode's scattering, leaving residual extinction dominated by absorption. Spectral interference microscopy has the potential for real-time and single-shot phase and amplitude investigations of isolated quantum and classical antennas with applications across the physical and life sciences. PMID:24781663

  4. Optical Parameters and Absorption of Azo Dye and Its Metal-Substituted Compound Thin Films

    魏斌; 吴谊群; 顾冬红; 干福熹

    2003-01-01

    We determine the complex refractive indices N ( N = n - ik), dielectric constants ε(ε = ε1 - iε2), and absorption coefficients α of a new azo dye [2-(6-methyl-2-benzothiazolyazo)-5-diethylaminophenol(MBADP)]-doped polymer and its nickel- and zinc-substituted compounds(Ni-MBADP and Zn-MBADP) spin-coated thin films from a scanning ellipsometer in the wavelength 400-700 nm region. Metal chelation strongly (about one times) enhances the optical and dielectric parameters at the peaks and results in a large bathochromic shift (50-60nm) of absorption band. Bathochromic shift of Ni-MBADP is about 10nm larger than that of Zn-MBADP due to different spatial configurations formed in the metal-azo complexes.

  5. [Measurement of OH radicals in flame with high resolution differential optical absorption spectroscopy].

    Liu, Yu; Liu, Wen-Qing; Kan, Rui-Feng; Si, Fu-Qi; Xu, Zhen-Yu; Hu, Ren-Zhi; Xie, Pin-Hua

    2011-10-01

    The present paper describes a new developed high resolution differential optical absorption spectroscopy instrument used for the measurement of OH radicals in flame. The instrument consists of a Xenon lamp for light source; a double pass high resolution echelle spectrometer with a resolution of 3.3 pm; a multiple-reflection cell of 20 meter base length, in which the light reflects in the cell for 176 times, so the whole path length of light can achieve 3 520 meters. The OH radicals'6 absorption lines around 308 nm were simultaneously observed in the experiment. By using high resolution DOAS technology, the OH radicals in candles, kerosene lamp, and alcohol burner flames were monitored, and their concentrations were also inverted. PMID:22250529

  6. Strongly correlated quasi-one-dimensional bands: Ground states, optical absorption, and phonons

    Using the Lanczos method for exact diagonalization on systems up to 14 sites, combined with a novel ''phase randomization'' technique for extracting more information from these small systems, we investigate several aspects of the one-dimensional Peierls-Hubbard Hamiltonian, in the context of trans-polyacetylene: the dependence of the ground state dimerization on the strength of the electron-electron interactions, including the effects of ''off-diagonal'' Coulomb terms generally ignored in the Hubbard model; the phonon vibrational frequencies and dispersion relations, and the optical absorption properties, including the spectrum of absorptions as a function of photon energy. These three different observables provide considerable insight into the effects of electron-electron interactions on the properties of real materials and thus into the nature of strongly correlated electron systems. 29 refs., 11 figs

  7. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy.

    Lang, N; Macherius, U; Wiese, M; Zimmermann, H; Röpcke, J; van Helden, J H

    2016-03-21

    We report on sensitive detection of atmospheric methane employing quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS). An instrument has been built utilizing a continuous-wave distributed feedback quantum cascade laser (cw-QCL) with a V-shaped cavity, a common arrangement that reduces feedback to the laser from non-resonant reflections. The spectrometer has a noise equivalent absorption coefficient of 3.6 × 10-9 cm-1 Hz-1/2 for a spectral scan of CH4 at 7.39 μm. From an Allan-Werle analysis a detection limit of 39 parts per trillion of CH4 at atmospheric pressure within 50 s acquisition time was found. PMID:27136874

  8. Optical absorption and fluorescence properties of Er3+ in sodium borate glass

    Y C Ratnakaram; J Lakshmi; R P S Chakradhar

    2005-08-01

    Spectroscopic properties of Er3+ ions in sodium borate glass have been studied. The indirect and direct optical band gaps (opt) and energy level parameters (Racah (1, 2 and 3), spin-orbit (4f) and configurational interaction ()) are evaluated. Spectral intensities for various absorption bands of Er3+ doped sodium borate glass are calculated. Using Judd–Ofelt intensity parameters (2, 4, 6), radiative transition probabilities (), branching ratios () and integrated absorption cross sections ( ) are reported for certain transitions. The radiative lifetimes (R) for different excited states are estimated. From the fluorescence spectra, the emission cross section (p) for the transition, ${}^{4}I_{13/2} \\rightarrow {}^{4}I_{15/2}$ is reported.

  9. Design of Optical Metamaterial Mirror with Metallic Nanoparticles for Broadband Light Absorption in Graphene Optoelectronic Devices

    Lee, Seungwoo

    2015-01-01

    A general metallic mirror (i.e., a flat metallic surface) has been a popular optical component that can contribute broadband light absorption to thin-film optoelectronic devices; nonetheless, such electric mirror with a reversal of reflection phase inevitably causes the problem of minimized electric field near at the mirror surface (maximized electric field at one quarter of wavelength from mirror). This problem becomes more elucidated, when the deep-subwavelength-scaled two-dimensional (2D) material (e.g., graphene and molybdenum disulfide) is implemented into optoelectronic device as an active channel layer. The purpose of this work was to conceive the idea for using a charge storage layer (spherical Au nanoparticles (AuNPs), embedded into dielectric matrix) of the floating-gate graphene photodetector as a magnetic mirror, which allows the device to harness the increase in broadband light absorption. In particular, we systematically examined whether the versatile assembly of spherical AuNP monolayer within ...

  10. Ground-based imaging differential optical absorption spectroscopy of atmospheric gases.

    Lohberger, Falko; Hönninger, Gerd; Platt, Ulrich

    2004-08-20

    We describe a compact remote-sensing instrument that permits spatially resolved mapping of atmospheric trace gases by passive differential optical absorption spectroscopy (DOAS) and present our first applications of imaging of the nitrogen dioxide contents of the exhaust plumes of two industrial emitters. DOAS permits the identification and quantification of various gases, e.g., NO2, SO2, and CH2O, from their specific narrowband (differential) absorption structures with high selectivity and sensitivity. With scattered sunlight as the light source, DOAS is used with an imaging spectrometer that is simultaneously acquiring spectral information on the incident light in one spatial dimension (column). The second spatial dimension is scanned by a moving mirror. PMID:15352396

  11. [Measurement and retrieval of indicators for fast VOCs atmospheric photochemistry with differential optical absorption spectroscopy].

    Peng, Fu-Min; Xie, Pin-Hua; Shao, Shi-Yong; Li, Yu-Jin; Lin, Yi-Hui; Li, Su-Wen; Qin, Min; Liu, Wen-Qing

    2008-03-01

    Featuring excellent response characteristics and detection sensitivity and with much lower operational cost, differential optical absorption spectroscopy (DOAS) can be a powerful tool to trace concentration variation of trace indicators -O3, Ox (O3 + NO2) and HCHO for fast VOCs atmospheric photochemistry. But it's difficult to measure those gases accurately because of trace concentration. Here using a self-made DOAS system, the accurate measurement of those indicators was achieved through improving the ratio of signal to noise ratio and correcting the background scattering light; the retrieving method of those indicators was developed through eliminating the temperature effect of absorption cross section, accurately removing the intrinsic structure and lamp structure of spectrum. The preference of different spectral windows that could be used for the concentration retrieval of those indicators was analyzed and compared including interfering factors, results retrieved and the accuracy. PMID:18536400

  12. Effect of radiation-induced color centers absorption in optical fibers on fiber optic gyroscope for space application

    Jin, Jing; Li, Ya; Zhang, Zu-Chen; Wu, Chun-Xiao; Song, Ning-Fang

    2016-08-01

    The effects of color centers’ absorption on fibers and interferometric fiber optical gyroscopes (IFOGs) are studied in the paper. The irradiation induced attenuation (RIA) spectra of three types of polarization-maintaining fibers (PMFs), i.e., P-doped, Ge-doped, and pure silica, irradiated at 100 Gy and 1000 Gy are measured in a wavelength range from 1100 nm to 1600 nm and decomposed according to the Gaussian model. The relationship of the color centers absorption intensity with radiation dose is investigated based on a power model. Furthermore, the effects of all color centers’ absorption on RIA and mean wavelength shifts (MWS) at 1300 nm and 1550 nm are discussed respectively. Finally, the random walk coefficient (RWC) degradation induced from RIA and the scale factor error induced by MWS of the IFOG are simulated and tested at a wavelength of 1300 nm. This research will contribute to the applications of the fibers in radiation environments. Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China.

  13. Local optical absorption spectra of h-BN–MoS2 van der Waals heterostructure revealed by scanning near-field optical microscopy

    Nozaki, Junji; Kobayashi, Yu; Miyata, Yasumitsu; Maniwa, Yutaka; Watanabe, Kenji; Taniguchi, Takashi; Yanagi, Kazuhiro

    2016-06-01

    Van der Waals (vdW) heterostructures, in which different two-dimensional layered materials are stacked, can exhibit unprecedented optical properties. Development of a technique to clarify local optical properties of vdW heterostructures is of great importance for the correct understanding of their backgrounds. Here, we examined local optical absorption spectra of h-BN–MoS2 vdW heterostructures by scanning near-field microscopy measurements with a spatial resolution of 100 nm. In an as-grown sample, there was almost no site dependence of their optical absorption spectra. However, in a degraded sample where defects and deformations were artificially induced, a significant site-dependence of optical absorption spectra was observed.

  14. On the relation of optical obscuration and X-ray absorption in Seyfert galaxies

    Burtscher, L; Gracia-Carpio, J; Koss, M J; Lin, M -Y; Lutz, D; Nandra, P; Netzer, H; de Xivry, G Orban; Ricci, C; Rosario, D J; Veilleux, S; Contursi, A; Genzel, R; Schnorr-Mueller, A; Sternberg, A; Sturm, E; Tacconi, L J

    2016-01-01

    The optical classification of a Seyfert galaxy and whether it is considered X-ray absorbed are often used interchangeably. But there are many borderline cases and also numerous examples where the optical and X-ray classifications appear to be in conflict. In this article we re-visit the relation between optical obscuration and X-ray absorption in AGNs. We make use of our "dust color" method (Burtscher et al. 2015) to derive the optical obscuration A_V and consistently estimated X-ray absorbing columns using 0.3--150 keV spectral energy distributions. We also take into account the variable nature of the neutral gas column N_H and derive the Seyfert sub-classes of all our objects in a consistent way. We show in a sample of 25 local, hard-X-ray detected Seyfert galaxies (log L_X / (erg/s) ~ 41.5 - 43.5) that there can actually be a good agreement between optical and X-ray classification. If Seyfert types 1.8 and 1.9 are considered unobscured, the threshold between X-ray unabsorbed and absorbed should be chosen a...

  15. Optical absorption spectra of semiconductors and insulators: ab initio calculation of many-body effects

    A method for the inclusion of self-energy and excitonic effects in first-principle calculations of absorption spectra, within the state-of-the-art plane wave pseudopotential approach, is presented. Starting from a ground state calculation, using density functional theory (DFT) in the local density approximation (LDA), we correct the exchange-correlation potential of DFT-LDA with the self-energy applying Hedin's GW approximation to obtain the physical quasiparticles states. The electron-hole interaction is treated solving an effective two-particle equation, which we derive from Hedin's coupled integral equations, leading to the fundamental Bethe-Salpeter equation in an intermediate step. The interaction kernel contains the screened electron-hole Coulomb interaction and the electron-hole exchange effects, which reflect the microscopic structure of the system and are thus also called local-field effects. We obtain the excitonic eigenstates through diagonalization. This allows us a detailed analysis of the optical properties. The application of symmetry properties enables us to reduce the size of the two-particle Hamiltonian matrix, thus minimizing the computational effort. We apply our method to silicon, diamond, lithium oxide and the sodium tetramer. Good agreement with experiment is obtained for the absorption spectra of Si and diamond, the static dielectric constant of diamond, and for the onset of optical absorption of Li2O due to discrete bound excitons. We discuss various approximations of our method and show the strong mixing of independent particle transitions to a bound excitonic state in the Na4 cluster. The influence of ground state calculations on optical spectra is investigated under particular consideration of the pseudopotential generation and we discuss the use of different Brillouin zone point sampling schemes for spectral calculations. (author)

  16. Three-photon-absorption resonance for all-optical atomic clocks

    We report an experimental study of an all-optical three-photon-absorption resonance (known as an 'N resonance') and discuss its potential application as an alternative to atomic clocks based on coherent population trapping. We present measurements of the N-resonance contrast, width and light shift for the D1 line of 87Rb with varying buffer gases, and find good agreement with an analytical model of this resonance. The results suggest that N resonances are promising for atomic clock applications

  17. Fiber-optic differential absorption sensor for accurately monitoring biomass in a photobioreactor.

    Zhong, Nianbing; Liao, Qiang; Zhu, Xun; Zhao, Mingfu

    2015-01-10

    A fiber-optic differential absorption sensor was developed to accurately monitor biomass growth in a photobioreactor. The prepared sensor consists of two probes: the sensor and the reference. The sensor probe was employed to monitor the biomass and changes in the liquid-phase concentration in a culture. To separate the liquids from photosynthetic bacteria CQK 01 and measure the liquid-phase concentration, a proposed polyimide-silica hybrid membrane was coated on the sensing region of the reference probe. A linear relationship was observed between the sensor output signal and the biomass from the lag phase to the decline phase. PMID:25967621

  18. Optical Absorption and Raman Spectroscopy Study of the Fluorinated Double-Wall Carbon Nanotubes

    Gevko, Pavel N.; Bulusheva, Lyubov Gennadievna; Okotrub, Alexander Vladimirovich; Yudanov, Nikolay Fedorovich; Yushina, I. V.; Grachev, K. A.; Pugachev, A. M.; Surovtsev, N. V.; Flahaut, Emmanuel

    2006-01-01

    Double-wall carbon nanotube (DWNT) samples have been fluorinated at room temperature with varied concentration of a fluorinating agent BrF3. Content of the products estimated from X-ray photoelectron data was equal to CF0.20 and CF0.29 in the case of deficit and excess of BrF3. Raman spectroscopy showed considerable decrease of carbon nanotube amount in the fluorinated samples. Analysis of optical absorption spectra measured for pristine and fluorinated DWNT samples revealed a selectivity of ...

  19. A furnace and temperature controller for optical absorption studies with a spectrophotometer

    The design and main features of a furnace with a temperature controller and programmer are shown. This system allows to measure the optical absorption spectrum of a sample from room temperature to 400 deg C, in a double beam spectrophotometer Perkin Elmer 350. The sample temperature can be linearly increased at different heating rates between 4 and 38 deg C/min. The temperature ramp can be stopped at any desired point and the sample temperature shall be stabilized in less than one minute. This temperature shall be kept constant within 0.5 deg C for hours. The sample is heated in vacuum. (author)

  20. Damping effect of the inner band electrons on the optical absorption and bandwidth of metal nanoparticles

    Conflicts and discrepancies around nanoparticle (NP) size effect on the optical properties of metal NPs of sizes below the mean free path of electron can be traced to the internal damping effect of the hybrid resonance of the inner band (IB) and the conduction band (CB) electrons of the noble metals. We present a scheme to show how alternative mathematical formulation of the physics of interaction between the CB and the IB electrons of NP sizes <50 nm justifies this and resolves the conflicts. While a number of controversies exist between classical and quantum theories over the phenomenological factors to attribute to the NP size effect on the absorption bandwidth, this article shows that the bandwidth behavior can be well predicted from a different treatment of the IB damping effect, without invoking any of the controversial phenomenological factors. It finds that the IB damping effect is mainly frequency dependent and only partly size dependent and shows how its influence on the surface plasmon resonance can be modeled to show the influence of NP size on the absorption properties. Through the model, it is revealed that strong coupling of IB and CB electrons drastically alters the absorption spectra, splitting it into distinctive dipole and quadrupole modes and even introduce a behavioral switch. It finds a strong overlap between the IB and the CB absorptions for Au and Cu but not Ag, which is sensitive to the NP environment. The CB modes shift with the changing refractive index of the medium in a way that can allow their independent excitation, free of influence of the IB electrons. Through a hybrid of parameters, the model further finds that metal NP sizes can be established not only by their spectral absorption peak locations but also from a proper correlation of the peak location and the bandwidth (FWHM).

  1. Damping effect of the inner band electrons on the optical absorption and bandwidth of metal nanoparticles

    Ochoo, Lawrence, E-mail: lawijapuonj@yahoo.com; Migwi, Charles; Okumu, John [Kenyatta University, Physics Department (Kenya)

    2012-12-15

    Conflicts and discrepancies around nanoparticle (NP) size effect on the optical properties of metal NPs of sizes below the mean free path of electron can be traced to the internal damping effect of the hybrid resonance of the inner band (IB) and the conduction band (CB) electrons of the noble metals. We present a scheme to show how alternative mathematical formulation of the physics of interaction between the CB and the IB electrons of NP sizes <50 nm justifies this and resolves the conflicts. While a number of controversies exist between classical and quantum theories over the phenomenological factors to attribute to the NP size effect on the absorption bandwidth, this article shows that the bandwidth behavior can be well predicted from a different treatment of the IB damping effect, without invoking any of the controversial phenomenological factors. It finds that the IB damping effect is mainly frequency dependent and only partly size dependent and shows how its influence on the surface plasmon resonance can be modeled to show the influence of NP size on the absorption properties. Through the model, it is revealed that strong coupling of IB and CB electrons drastically alters the absorption spectra, splitting it into distinctive dipole and quadrupole modes and even introduce a behavioral switch. It finds a strong overlap between the IB and the CB absorptions for Au and Cu but not Ag, which is sensitive to the NP environment. The CB modes shift with the changing refractive index of the medium in a way that can allow their independent excitation, free of influence of the IB electrons. Through a hybrid of parameters, the model further finds that metal NP sizes can be established not only by their spectral absorption peak locations but also from a proper correlation of the peak location and the bandwidth (FWHM).

  2. Anomalous effective charges and far-IR optical absorption of Al2Ru from first principles

    For the orthorhombic intermetallic semiconductor Al2Ru, the band structure, valence charge density, zone-center optical-phonon frequencies, and Born effective-charge and electronic dielectric tensors are calculated using variational density-functional perturbation theory with ab initio pseudopotentials and a plane-wave basis set. Good agreement is obtained with recent measurements on polycrystalline samples, which showed anomalously strong far-IR absorption by optical phonons, while analysis of the valence charge density shows that the static ionic charges of Al and Ru are negligible. Hybridization is proposed as the single origin both of the semiconducting gap and the anomalous Born effective charges. Analogous behavior is expected in related compounds such as NiSnZr, PbTe, skutterudites, and Al-transition-metal quasicrystals. copyright 1996 The American Physical Society

  3. Plasmon enhanced broadband optical absorption in ultrathin silicon nanobowl array for photoactive devices applications

    Sun, Rui-Nan; Peng, Kui-Qing, E-mail: kq-peng@bnu.edu.cn; Hu, Bo; Hu, Ya; Zhang, Fu-Qiang [Department of Physics and Beijing Key Laboratory of Energy Conversion and Storage Materials, Beijing Normal University, Beijing 100875 (China); Lee, Shuit-Tong [Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123 (China)

    2015-07-06

    Both photonic and plasmonic nanostructures are key optical components of photoactive devices for light harvesting, enabling solar cells with significant thickness reduction, and light detectors capable of detecting photons with sub-band gap energies. In this work, we study the plasmon enhanced broadband light absorption and electrical properties of silicon nanobowl (SiNB) arrays. The SiNB-metal photonic-plasmonic nanostructure-based devices exhibited superior light-harvesting ability across a wide range of wavelengths up to the infrared regime well below the band edge of Si due to effective optical coupling between the SiNB array and incident sunlight, as well as electric field intensity enhancement around metal nanoparticles due to localized surface plasmon resonance. The photonic-plasmonic nanostructure is expected to result in infrared-light detectors and high-efficiency solar cells by extending light-harvesting to infrared frequencies.

  4. Theoretical and experimental investigation of optical absorption anisotropy in β-Ga2O3.

    Ricci, F; Boschi, F; Baraldi, A; Filippetti, A; Higashiwaki, M; Kuramata, A; Fiorentini, V; Fornari, R

    2016-06-01

    The question of optical bandgap anisotropy in the monoclinic semiconductor β-Ga2O3 was revisited by combining accurate optical absorption measurements with theoretical analysis, performed using different advanced computation methods. As expected, the bandgap edge of bulk β-Ga2O3 was found to be a function of light polarization and crystal orientation, with the lowest onset occurring at polarization in the ac crystal plane around 4.5-4.6 eV; polarization along b unambiguously shifts the onset up by 0.2 eV. The theoretical analysis clearly indicates that the shift in the b onset is due to a suppression of the transition matrix elements of the three top valence bands at Γ point. PMID:26952789

  5. Theoretical and experimental investigation of optical absorption anisotropy in β-Ga2O3

    Ricci, F.; Boschi, F.; Baraldi, A.; Filippetti, A.; Higashiwaki, M.; Kuramata, A.; Fiorentini, V.; Fornari, R.

    2016-06-01

    The question of optical bandgap anisotropy in the monoclinic semiconductor β-Ga2O3 was revisited by combining accurate optical absorption measurements with theoretical analysis, performed using different advanced computation methods. As expected, the bandgap edge of bulk β-Ga2O3 was found to be a function of light polarization and crystal orientation, with the lowest onset occurring at polarization in the ac crystal plane around 4.5-4.6 eV polarization along b unambiguously shifts the onset up by 0.2 eV. The theoretical analysis clearly indicates that the shift in the b onset is due to a suppression of the transition matrix elements of the three top valence bands at Γ point.

  6. Determination Of Refractive Index And Reflectivity Of Thin Layer With Optical Absorption Method

    . The refractive index and reflectivity of ASi:H and Si Ox thin layer have been observed by optical absorption methods. Measurement has been done after the preparation of optical system which consists of a halogen lamp light source, monochromator, sample and light detector. The Monochromator output showed that measured halogen lamp spectrum light is between 470 nm -750 nm. The maximum voltage of halogen lamp is 220 Volt, the output light increases in intensity while the wave length increases. The inclination of intensity decrease at the wave length of 725 nm. The result of the calculation of refractive index varies in accordance with the wave length. The average refractive index of ASi:H is nf a = 1.753. The total reflectivity of air-thin layer-substrate is Rt a = 0.315. The refractive index of Si Ox sample is nf b2.182 and the total reflectivity is Rt b=O,514

  7. Two-photon Absorption and Nonlinear Optical Properties of A New Organic Dye DEASPI

    Guangyong ZHOU; Xiaomei WANG; Dong WANG; Chun WANG; Xian ZHAO; Zongshu SHAO; Minhua JIANG

    2001-01-01

    A new organic dye trans-4- [p-(N,N-diethylamino) styryl ]-N-methylpyridinium iodide (abbreviatedas DEASPI thereafter) with large two-photon absorption (TPA) cross section and excellent upconverted lasing properties was synthesized. The melting point and decompound point were measured to be 230℃ and 264.7℃ respectively. The molecular TPA cross section was meaThe linear and nonlinear optical properties of this dye were systematically studied. The highest net upconversion efficiency from the absorbed pump energy to the output upconverted lasing energy is as high as 18.6% at the pump energy of 2.17 mJ from a mode-locked Nd:YAG ps laser.The nonlinear transmittance at the wavelengths from 720 to 1100 nm was measured. The dye solution also shows a clear optical power limiting effect.

  8. Time-resolved absorption spectroscopy of optically pumped Si by using fs-laser plasma x-ray

    Femtosecond laser-produced plasmas emit ultrashort x-ray pulse that is synchronized to a femtosecond laser pulse. By utilizing this feature, we demonstrated time-resolved soft x-ray absorption measurements of optically pumped silicon near its LII,III absorption edge by means of pump-probe spectroscopy. As a result, we observed more than 10% increase in the absorption near absorption edge caused by laser pulse irradiation, which means that the transition of core-electrons was rapidly modified by excitation of valence electrons. The recovery time constant of this change was measure to be about 20 ps. (author)

  9. Summary of radiation-induced transient absorption and recovery in fiber optic waveguides. [Pulsed electrons and x-rays

    Skoog, C.D.

    1976-11-01

    The absorption induced in fiber optic waveguides by pulsed electron and X-ray radiation has been measured as a function of optical wavelength from 450 to 950 nm, irradiation temperature from -54 to 71/sup 0/C, and dose from 1 to 500 krads. The fibers studied are Ge-doped silica core fibers (Corning Low Loss), ''pure'' vitreous silica core fibers (Schott, Bell Laboratories, Fiberoptic Cable Corp., and Valtec Fiberoptics), polymethyl-methacrylate core fibers (DuPont CROFON and PFX), and polystyrene core fibers (International Fiber Optics and Polyoptics). Models that have been developed to account for the observed absorption recovery are also summarized.

  10. Silicon rib waveguide electro-absorption optical modulator using transparent conductive oxide bilayer

    Ayata, Masafumi; Nakano, Yoshiaki; Tanemura, Takuo

    2016-04-01

    We propose a novel ultra compact electro-absorption optical modulator based on a silicon rib waveguide and numerically demonstrate its performance. The proposed design employs two types of transparent conductive oxide (TCO) layers with different carrier densities to achieve both high modulation efficiency and low optical insertion loss. The thin TCO layer with high carrier density enables efficient modulation through the metal-oxide-semiconductor structure. On the other hand, the upper TCO layer with low carrier density allows low-resistance electrical contact for the top electrode without large optical loss. Using an indium tin oxide bilayer with optimized carrier densities, we numerically demonstrate a 4.3 dB extinction ratio and a 2.6 dB optical insertion loss with 1 µm device length. We estimate that the modulator operates under a low driving voltage of 1.3 V, exhibiting an ultra low energy consumption of 22.5 fJ/bit and a broad RC modulation bandwidth of over 40 GHz.

  11. Double tungsten coil atomic absorption spectrometer based on an acousto-optic tunable filter

    Jora, M. Z.; Nóbrega, J. A.; Rohwedder, J. J. R.; Pasquini, C.

    2015-01-01

    An atomic absorption spectrometer based on a quartz acousto-optic tunable filter (AOTF) monochromator operating in the 271-453 nm range, is described. The instrument was tailored to study the formation and evolution of electrothermal atomic cloud induced either by one or two tungsten coils. The spectrometer also includes a fast response programmable photomultiplier module for data acquisition, and a power supply capable of driving two parallel tungsten coils independently. The atomization cell herein described was manufactured in PTFE and presents a new design with reduced size. Synchronization between the instant of power delivering to start the atomization process and the detection was achieved, allowing for monitoring the atomization and thermal events synchronously and in real time. Absorption signals can be sampled at a rate of a few milliseconds, compatible with the fast phenomena that occur with electrothermal metallic atomizers. The instrument performance was preliminarily evaluated by monitoring the absorption of radiation of atomic clouds produced by standard solutions containing chromium or lead. Its quantitative performance was evaluated by using Cr aqueous solutions, resulting in detection limits as low as 0.24 μg L- 1, and a relative standard deviation of 3%.

  12. Optical Absorption and Photo-Thermal Conversion Properties of CuO/H2O Nanofluids.

    Wang, Liangang; Wu, Mingyan; Wu, Daxiong; Zhang, Canying; Zhu, Qunzhi; Zhu, Haitao

    2015-04-01

    Stable CuO/H2O nanofluids were synthesized in a wet chemical method. Optical absorption property of CuO/H2O nanofluids was investigated with hemispheric transmission spectrum in the wavelength range from 200 nm to 2500 nm. Photo-thermal conversion property of the CuO/H2O nanofluids was studied with an evaluation system equipped with an AUT-FSL semiconductor/solid state laser. The results indicate that CuO/H2O nanofluids have strong absorption in visible light region where water has little absorption. Under the irradiation of laser beam with a wavelength of 635 nm and a power of 0.015 W, the temperature of CuO/H2O nanofluids with 1.0% mass fraction increased by 5.6 °C within 40 seconds. Furthermore, the temperature elevation of CuO/H2O nanofluids was proved to increase with increasing mass fractions. On the contrast, water showed little temperature elevation under the identical conditions. The present work shows that the CuO/H2O nanofluids have high potential in the application as working fluids for solar utilization purpose. PMID:26353558

  13. Ultrashort coherence times in partially polarized stationary optical beams measured by two-photon absorption.

    Shevchenko, Andriy; Roussey, Matthieu; Friberg, Ari T; Setälä, Tero

    2015-11-30

    We measure the recently introduced electromagnetic temporal degree of coherence of a stationary, partially polarized, classical optical beam. Instead of recording the visibility of intensity fringes, the spectrum, or the polarization characteristics, we introduce a novel technique based on two-photon absorption. Using a Michelson interferometer equipped with polarizers and a specific GaAs photocount tube, we obtain the two fundamental quantities pertaining to the fluctuations of light: the degree of coherence and the degree of polarization. We also show that the electromagnetic intensity-correlation measurements with two-photon absorption require that the polarization dynamics, i.e., the time evolution of the instantaneous polarization state, is properly taken into account. We apply the technique to unpolarized and polarized sources of amplified spontaneous emission (Gaussian statistics) and to a superposition of two independent, narrow-band laser beams of different mid frequencies (non-Gaussian statistics). For these two sources femtosecond-range coherence times are found that are in good agreement with the traditional spectral measurements. Although previously employed for laser pulses, two-photon absorption provides a new physical principle to study electromagnetic coherence phenomena in classical and quantum continuous-wave light at extremely short time scales. PMID:26698754

  14. Laser induced deflection (LID) method for absolute absorption measurements of optical materials and thin films

    Mühlig, Christian; Bublitz, Simon; Paa, Wolfgang

    2011-05-01

    We use optimized concepts to measure directly low absorption in optical materials and thin films at various laser wavelengths by the laser induced deflection (LID) technique. An independent absolute calibration, using electrical heaters, is applied to obtain absolute absorption data without the actual knowledge of the photo-thermal material properties. Verification of the absolute calibration is obtained by measuring different silicon samples at 633 nm where all laser light, apart from the measured reflection/scattering, is absorbed. Various experimental results for bulk materials and thin films are presented including measurements of fused silica and CaF2 at 193 nm, nonlinear crystals (LBO) for frequency conversion and AR coated fused silica for high power material processing at 1030 nm and Yb-doped silica raw materials for high power fiber lasers at 1550 nm. In particular for LBO the need of an independent calibration is demonstrated since thermal lens generation is dominated by stress-induced refractive index change which is in contrast to most of the common optical materials. The measured results are proven by numerical simulations and their influence on the measurement strategy and the obtained accuracy are shown.

  15. Optimization of optical limiting devices based on excited-state absorption.

    Xia, T; Hagan, D J; Dogariu, A; Said, A A; Van Stryland, E W

    1997-06-20

    Limiting devices protect sensitive optical elements from laser-induced damage (LID). Passive devices use focusing optics to concentrate the light through a nonlinear optical (NLO) element (or elements) to reduce the limiting threshold. Unfortunately, these NLO elements may themselves undergo LID for high inputs, restricting the useful dynamic range (DR). Recently, efforts at optimizing this DR have focused on distributing the NLO material along the propagation path z of a focused beam, resulting in different portions of the device (in z) exhibiting NLO response at different inputs. For example, nonlinear absorbers closer to the lens, i.e., upstream, protect device elements downstream near the focal plane. This results in an undesirable increase in the threshold, although the lowest threshold is always obtained with the final element at focus. Thus there is a compromise between DR and threshold. This compromise is determined by the material. We concentrate on reverse saturable absorber (RSA) materials (molecules exhibiting larger excited-state than ground-state absorption). We look at both tandem devices and devices in which the concentration of the NLO material is allowed to spatially vary in z. These latter devices require solid-state hosts. The damage threshold of currently available solid-state hosts is too low to allow known RSA materials to reach their maximum absorption, which occurs when all molecules are in their excited state. This is demonstrated by approximate analytical methods as well as by a full numerical solution of the nonlinear wave propagation equation over extremely large distances in z (up to 10(3)Z(0), where Z(0) is the Rayleigh range of the focused beam). The numerical calculations, based on a one-dimensional fast Fourier transform, indicate that proper inclusion of diffraction reduces the effectiveness of reverse saturable absorption for limiting, sometimes by more than a factor of 10. Liquid-based devices have higher damage thresholds

  16. Double tungsten coil atomic absorption spectrometer based on an acousto-optic tunable filter

    An atomic absorption spectrometer based on a quartz acousto-optic tunable filter (AOTF) monochromator operating in the 271–453 nm range, is described. The instrument was tailored to study the formation and evolution of electrothermal atomic cloud induced either by one or two tungsten coils. The spectrometer also includes a fast response programmable photomultiplier module for data acquisition, and a power supply capable of driving two parallel tungsten coils independently. The atomization cell herein described was manufactured in PTFE and presents a new design with reduced size. Synchronization between the instant of power delivering to start the atomization process and the detection was achieved, allowing for monitoring the atomization and thermal events synchronously and in real time. Absorption signals can be sampled at a rate of a few milliseconds, compatible with the fast phenomena that occur with electrothermal metallic atomizers. The instrument performance was preliminarily evaluated by monitoring the absorption of radiation of atomic clouds produced by standard solutions containing chromium or lead. Its quantitative performance was evaluated by using Cr aqueous solutions, resulting in detection limits as low as 0.24 μg L−1, and a relative standard deviation of 3%. - Highlights: • The use of an Acousto-Optic Tunable Filter (AOTF) as monochromator element in WC AAS is presented for the first time. • The system includes the possibility of using one or two parallel coils. • We propose a new atomization cell design, manufactured on PTFE with reduced size. • The temperature of the coils and the atomic clouds of Pb and Cr were observed synchronously with high temporal resolution

  17. Double tungsten coil atomic absorption spectrometer based on an acousto-optic tunable filter

    Jora, M.Z. [Chemistry Institute, State University of Campinas, 13083-970, Campinas, SP (Brazil); Nóbrega, J.A. [Chemistry Department, Federal University of São Carlos, 13565-905, São Carlos, SP (Brazil); Rohwedder, J.J.R. [Chemistry Institute, State University of Campinas, 13083-970, Campinas, SP (Brazil); Pasquini, C., E-mail: manasses.jora@gmail.com [Chemistry Institute, State University of Campinas, 13083-970, Campinas, SP (Brazil)

    2015-01-01

    An atomic absorption spectrometer based on a quartz acousto-optic tunable filter (AOTF) monochromator operating in the 271–453 nm range, is described. The instrument was tailored to study the formation and evolution of electrothermal atomic cloud induced either by one or two tungsten coils. The spectrometer also includes a fast response programmable photomultiplier module for data acquisition, and a power supply capable of driving two parallel tungsten coils independently. The atomization cell herein described was manufactured in PTFE and presents a new design with reduced size. Synchronization between the instant of power delivering to start the atomization process and the detection was achieved, allowing for monitoring the atomization and thermal events synchronously and in real time. Absorption signals can be sampled at a rate of a few milliseconds, compatible with the fast phenomena that occur with electrothermal metallic atomizers. The instrument performance was preliminarily evaluated by monitoring the absorption of radiation of atomic clouds produced by standard solutions containing chromium or lead. Its quantitative performance was evaluated by using Cr aqueous solutions, resulting in detection limits as low as 0.24 μg L{sup −1}, and a relative standard deviation of 3%. - Highlights: • The use of an Acousto-Optic Tunable Filter (AOTF) as monochromator element in WC AAS is presented for the first time. • The system includes the possibility of using one or two parallel coils. • We propose a new atomization cell design, manufactured on PTFE with reduced size. • The temperature of the coils and the atomic clouds of Pb and Cr were observed synchronously with high temporal resolution.

  18. Visible to deep ultraviolet range optical absorption of electron irradiated borosilicate glass

    Wang, Tie-Shan; Duan, Bing-Huang; Tian, Feng; Peng, Hai-Bo; Chen, Liang; Zhang, Li-Min; Yuan, Wei

    2015-07-01

    To study the room-temperature stable defects induced by electron irradiation, commercial borosilicate glasses were irradiated by 1.2 MeV electrons and then ultraviolet (UV) optical absorption (OA) spectra were measured. Two characteristic bands were revealed before irradiation, and they were attributed to silicon dangling bond (E’-center) and Fe3+ species, respectively. The existence of Fe3+ was confirmed by electron paramagnetic resonance (EPR) measurements. After irradiation, the absorption spectra revealed irradiation-induced changes, while the content of E’-center did not change in the deep ultraviolet (DUV) region. The slightly reduced OA spectra at 4.9 eV was supposed to transform Fe3+ species to Fe2+ species and this transformation leads to the appearance of 4.3 eV OA band. By calculating intensity variation, the transformation of Fe was estimated to be about 5% and the optical absorption cross section of Fe2+ species is calculated to be 2.2 times larger than that of Fe3+ species. Peroxy linkage (POL, ≡Si-O-O-Si≡), which results in a 3.7 eV OA band, is speculated not to be from Si-O bond break but from Si-O-B bond, Si-O-Al bond, or Si-O-Na bond break. The co-presence defect with POL is probably responsible for 2.9-eV OA band. Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2014-16).

  19. Optical absorption and thermoluminescence of MgAl2O4 spinel crystals implanted with Xe++ ions

    We have studied changes in optical absorption of MgAl2O4 spinel crystals implanted with 340 keV Xe++ ions at about 120 K, to fluences ranging from 1015-1021 ions/m2. With increasing ion fluence, we observe an increase in optical absorption, especially in the vicinity of two absorption bands: one centered at 5.3 eV, the other at 6.9 eV. The absorption band at 5.3 eV, caused by F-centers, saturates at a fluence between 1·1018 and 1·1019 ions/m2. This is the same dose range in which formation of a metastable phase of spinel has been reported previously. The band at 6.9 eV grows with increasing dose and saturates at 1·1020-3·1020 ions/m2. Previous studies have shown that spinel is amorphized by Xe ion irradiation in this dose range. Annealing studies were also conducted on the Xe ion implanted spinel crystals. By optical absorption, F-centers were found to anneal at 500 deg. C. Thermoluminescence measurements revealed a temperature dependence of luminescence that correlates well with the optical absorption

  20. Optical absorption and thermoluminescence of MgAl 2O 4 spinel crystals implanted with Xe ++ ions

    Afanasyev-Charkin, I. V.; Gritsyna, V. T.; Cooke, D. W.; Bennett, B. L.; Evans, C. R.; Hollander, M. G.; Sickafus, K. E.

    1999-01-01

    We have studied changes in optical absorption of MgAl 2O 4 spinel crystals implanted with 340 keV Xe ++ ions at about 120 K, to fluences ranging from 10 15-10 21 ions/m 2. With increasing ion fluence, we observe an increase in optical absorption, especially in the vicinity of two absorption bands: one centered at 5.3 eV, the other at 6.9 eV. The absorption band at 5.3 eV, caused by F-centers, saturates at a fluence between 1·10 18 and 1·10 19 ions/m 2. This is the same dose range in which formation of a metastable phase of spinel has been reported previously. The band at 6.9 eV grows with increasing dose and saturates at 1·10 20-3·10 20 ions/m 2. Previous studies have shown that spinel is amorphized by Xe ion irradiation in this dose range. Annealing studies were also conducted on the Xe ion implanted spinel crystals. By optical absorption, F-centers were found to anneal at 500°C. Thermoluminescence measurements revealed a temperature dependence of luminescence that correlates well with the optical absorption.

  1. Noise-driven optical absorption coefficients of impurity doped quantum dots

    Ganguly, Jayanta; Saha, Surajit; Pal, Suvajit; Ghosh, Manas

    2016-01-01

    We make an extensive investigation of linear, third-order nonlinear, and total optical absorption coefficients (ACs) of impurity doped quantum dots (QDs) in presence and absence of noise. The noise invoked in the present study is a Gaussian white noise. The quantum dot is doped with repulsive Gaussian impurity. Noise has been introduced to the system additively and multiplicatively. A perpendicular magnetic field acts as a source of confinement and a static external electric field has been applied. The AC profiles have been studied as a function of incident photon energy when several important parameters such as optical intensity, electric field strength, magnetic field strength, confinement energy, dopant location, relaxation time, Al concentration, dopant potential, and noise strength take on different values. In addition, the role of mode of application of noise (additive/multiplicative) on the AC profiles has also been analyzed meticulously. The AC profiles often consist of a number of interesting observations such as one photon resonance enhancement, shift of AC peak position, variation of AC peak intensity, and bleaching of AC peak. However, presence of noise alters the features of AC profiles and leads to some interesting manifestations. Multiplicative noise brings about more complexity in the AC profiles than its additive counterpart. The observations indeed illuminate several useful aspects in the study of linear and nonlinear optical properties of doped QD systems, specially in presence of noise. The findings are expected to be quite relevant from a technological perspective.

  2. Ultra Narrowband Optical Filters for Water Vapor Differential Absorption Lidar (DIAL) Atmospheric Measurements

    Stenholm, Ingrid; DeYoung, Russell J.

    2001-01-01

    Differential absorption lidar (DIAL) systems are being deployed to make vertical profile measurements of atmospheric water vapor from ground and airborne platforms. One goal of this work is to improve the technology of such DIAL systems that they could be deployed on space-based platforms. Since background radiation reduces system performance, it is important to reduce it. One way to reduce it is to narrow the bandwidth of the optical receiver system. However, since the DIAL technique uses two or more wavelengths, in this case separated by 0.1 nm, a fixed-wavelength narrowband filter that would encompass both wavelengths would be broader than required for each line, approximately 0.02 nm. The approach employed in this project is to use a pair of tunable narrowband reflective fiber Bragg gratings. The Bragg gratings are germanium-doped silica core fiber that is exposed to ultraviolet radiation to produce index-of-refraction changes along the length of the fiber. The gratings can be tuned by stretching. The backscattered laser radiation is transmitted through an optical circulator to the gratings, reflected back to the optical circulator by one of the gratings, and then sent to a photodiode. The filter reflectivities were >90 percent, and the overall system efficiency was 30 percent.

  3. Irradiation-induced defects in silica glass studied by positron annihilation, ESR and optical absorption

    Fused and Synthetic silica glass samples were irradiated with fast neutrons up to a dose of 8.6 x 1018 n/cm2. Before and after irradiation, positron lifetime, angular correlation of positron annihilation radiation (ACAR), electron spin resonance (ESR) and optical absorption with photon energy ranging from 2 to 6.6 eV were measured. Positron lifetime spectra were decomposed into three components with the time constant τi (i=1,2,3) and their relative intensities Ii (I1+I2+I3=1). After irradiation, two kinds of defects which trap positrons were suggested by positron lifetime spectra: the type-1 defect gives a positron lifetime of about 0.3 ns for the τ1 component, while the type 2 gives about 0.5 ns of the τ2 lifetime. In ESR spectra of the irradiated samples, three kinds of paramagnetic defects were observed.: E' centers, peroxy radicals (POR) and non-bridging oxygen hole center (NBOHC). In optical absorption spectra, absorption bands around 4.8, 5.0, 5.4 and 5.8 eV were resolved. Photo-bleaching effects of ultraviolet rays with energy of 4.9 eV on E' center and POR in ESR spectra and on the 5.0, 5.4 and 5.8 absorption bands were observed, but no change was detected in the 4.8 band. No photo-bleaching effect, however, was obtained in the positron lifetime spectra. Positron lifetime and ESR measurements were also made after post-irradiation isochronal annealing. Detailed results from the photo-bleaching and the annealing experiments strongly suggest that the type 2 defect is not detected by ESR and hence a diamagnetic defect, while that the type 1 defect is a paramagnetic defect, possibly NBOHC. Both kinds of the defects, however, gave nearly the same ACAR momentum distribution, which reveals that the two kind defects are associated with the same valence electrons of oxygen related centers. (author)

  4. Emission, optical--optical double resonance, and excited state absorption spectroscopy of matrix isolated chromium and molybdenum atoms

    Making use of a combination of time-resolved emission, optical--optical double resonance, and excited state absorption spectroscopy, it has been possible to assign virtually all spectral features with energies below the z7P0 state of matrix isolated Cr atoms. The a5S state located at 7593 cm-1 in the free gaseous Cr atom has lifetimes of 6.32 and 5.1 s in Ar and Kr matrices, respectively. Matrix perturbations on Cr emission lines are small (-1). The dependence of nonradiative decay rates on the local density of states is elucidated. The magnitude of matrix shifts for a particular transition is correlated with the electronic configurations of ground and excited states and it is pointed out that states having only ''s'' electrons in addition to ''d'' electrons maintain their gas phase energy relationships in the matrix environment. Direct fluorescence is observed from the z7P0 level of Mo to the 7s ground state. The spin-orbit splitting of the ''relaxed'' z7P0 state is 690 cm-1, slightly lower than the 707 cm-1 splitting of the free gaseous Mo atom

  5. Redox ratio and optical absorption of polyvalent ions in industrial glasses

    W Thiemsorn; K Keowkamnerd; P Suwannathada; H Hessenkemper; S Phanichaphant

    2007-10-01

    The changes in glass structure and redox ratio, (reduced ion to oxidized ion) of Mn2+–Mn3+, Cu+–Cu2+, Cr3+–Cr6+, Ni2+–Ni3+ and Co2+–Co3+ couples and optical absorption due to Mn3+, Cu2+, Cr3+, Ni2+ and Co2+ ions in industrial soda–lime–silica glass were investigated as a function of Na2O concentration in the range 11–19 mol%. With increasing Na2O concentration in the experimental glasses, the basicity, expressed as calculated basicity, cal, increased. 29Si NMR and X-ray diffraction were used to investigate the structural change in glasses. The NMR spectra showed high non-bridging oxygens (NBOs) when the basicity of glass was increased. The results were interpreted to be due to the tetrahedral networks; 4 species were depolymerized by replacing the bridging oxygens (BOs) with NBOs to 3 species. These results confirmed the shift of broadening peaks of XRD patterns. The redox reactions of the Mn2+–Mn3+, Cu+–Cu2+ and Cr3+–Cr6+ couples shifted more toward their oxidized ions due to the oxygen partial pressure, (2), during melting and the oxide ion activity, O2–, increased with increasing glass basicity. These changes caused the redox ratio of these ion couples to decrease. The Ni2+–Ni3+ and Co2+–Co3+ couples were assumed to be present only in the Ni2+ and Co2+ ions in these glasses, respectively. The optical absorption bands due to Mn3+, Cu2+, Cr3+, Ni2+ and Co2+ ions were also investigated. Their spectra occurred at constant wavelengths with different optical densities or intensities as a function of glass basicity. The increase in the intensities of the absorption bands of these absorbing ions, except for Cr3+ ion, at the maximum wavelength, depends not only on the ion concentration but also on the increase of polarizability of oxide (–II) species, oxide(–II), surrounding the ions. This value affected directly the extinction coefficients of the ions, ion. The increase of ion caused the colour of glasses appearing in high intensity. In

  6. Bethe-Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3

    Varley, Joel B.; Schleife, André

    2015-02-01

    Transparent conducting oxides keep attracting strong scientific interest not only due to their promising potential for ‘transparent electronics’ applications but also due to their intriguing optical absorption characteristics. Materials such as In2O3 and Ga2O3 have complicated unit cells and, consequently, are interesting systems for studying the physics of excitons and anisotropy of optical absorption. Since currently no experimental data is available, for instance, for their dielectric functions across a large photon-energy range, we employ modern first-principles computational approaches based on many-body perturbation theory to provide theoretical-spectroscopy results. Using the Bethe-Salpeter framework, we compute dielectric functions and we compare to spectra computed without excitonic effects. We find that the electron-hole interaction strongly modifies the spectra and we discuss the anisotropy of optical absorption that we find for Ga2O3 in relation to existing theoretical and experimental data.

  7. Bethe–Salpeter calculation of optical-absorption spectra of In2O3 and Ga2O3

    Transparent conducting oxides keep attracting strong scientific interest not only due to their promising potential for ‘transparent electronics’ applications but also due to their intriguing optical absorption characteristics. Materials such as In2O3 and Ga2O3 have complicated unit cells and, consequently, are interesting systems for studying the physics of excitons and anisotropy of optical absorption. Since currently no experimental data is available, for instance, for their dielectric functions across a large photon-energy range, we employ modern first-principles computational approaches based on many-body perturbation theory to provide theoretical-spectroscopy results. Using the Bethe–Salpeter framework, we compute dielectric functions and we compare to spectra computed without excitonic effects. We find that the electron–hole interaction strongly modifies the spectra and we discuss the anisotropy of optical absorption that we find for Ga2O3 in relation to existing theoretical and experimental data. (invited article)

  8. EPR and optical absorption studies of VO2+ doped L-alanine (C3H7NO2) single crystals

    VO2+ doped L-alanine (C3H7NO2) single crystals and powders are examined by electron paramagnetic resonance (EPR) and optical absorption spectroscopy. Three magnetically different sites are resolved from angular variations of L-alanine single crystal EPR spectra. In some specific orientations each VO2+ line splits into three superhyperfine lines with intensities of 1:2:1 and maximum splitting value of 2.23 mT. The local symmetries of VO2+ complex sites are nearly axial. The optical absorption spectra show three bands. Spin Hamiltonian parameters are measured and molecular orbital coefficients are calculated by correlating EPR and optical absorption data for the central vanadyl ion.

  9. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  10. Spectral Studies of Ocean Water with Space-borne Sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS).

    M. Vountas; Dinter, T.; Bracher, A.; Burrows, J.P.; Sierk, B.

    2007-01-01

    Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY) using Differential Optical Absorption Spectroscopy (DOAS) are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm). The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS) in...

  11. Optical Path Length Calibration: A Standard Approach for Use in Absorption Cell-Based IR-Spectrometric Gas Analysis

    Javis Anyangwe Nwaboh; Oliver Witzel; Andrea Pogány; Olav Werhahn; Volker Ebert

    2014-01-01

    We employed a comparison method to determine the optical path length of gas cells which can be used in spectroscopic setup based on laser absorption spectroscopy or FTIR. The method is based on absorption spectroscopy itself. A reference gas cell, whose length is a priori known and desirably traceable to the international system of units (SI), and a gas mixture are used to calibrate the path length of a cell under test. By comparing spectra derived from pressure-dependent measurements on the ...

  12. Technical Note: Using a high finesse optical resonator to provide a long light path for differential optical absorption spectroscopy: CE-DOAS

    J. Meinen; J. Thieser; U. Platt; T. Leisner

    2010-01-01

    Cavity enhanced methods in absorption spectroscopy have seen a considerable increase in popularity during the past decade. Especially Cavity Enhanced Absorption Spectroscopy (CEAS) established itself in atmospheric trace gas detection by providing tens of kilometers of effective light path length using a cavity as short as 1 m. In this paper we report on the construction and testing of a compact and power efficient light emitting diode based broadband Cavity Enhanced Differential Optical Abso...

  13. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    Franta, Benjamin, E-mail: bafranta@gmail.com; Pastor, David; Gandhi, Hemi H.; Aziz, Michael J.; Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Rekemeyer, Paul H.; Gradečak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-14

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon.

  14. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing

    Hyperdoped black silicon fabricated with femtosecond laser irradiation has attracted interest for applications in infrared photodetectors and intermediate band photovoltaics due to its sub-bandgap optical absorptance and light-trapping surface. However, hyperdoped black silicon typically has an amorphous and polyphasic polycrystalline surface that can interfere with carrier transport, electrical rectification, and intermediate band formation. Past studies have used thermal annealing to obtain high crystallinity in hyperdoped black silicon, but thermal annealing causes a deactivation of the sub-bandgap optical absorptance. In this study, nanosecond laser annealing is used to obtain high crystallinity and remove pressure-induced phases in hyperdoped black silicon while maintaining high sub-bandgap optical absorptance and a light-trapping surface morphology. Furthermore, it is shown that nanosecond laser annealing reactivates the sub-bandgap optical absorptance of hyperdoped black silicon after deactivation by thermal annealing. Thermal annealing and nanosecond laser annealing can be combined in sequence to fabricate hyperdoped black silicon that simultaneously shows high crystallinity, high above-bandgap and sub-bandgap absorptance, and a rectifying electrical homojunction. Such nanosecond laser annealing could potentially be applied to non-equilibrium material systems beyond hyperdoped black silicon

  15. Optical absorption and photoluminescence studies of gold nanoparticles deposited on porous silicon

    Amran, Tengku Sarah Tengku; Hashim, Md Roslan; Al-Obaidi, Nihad K. Ali; Yazid, Hanani; Adnan, Rohana

    2013-01-01

    We present an investigation on a coupled system consists of gold nanoparticles and silicon nanocrystals. Gold nanoparticles (AuNPs) embedded into porous silicon (PSi) were prepared using the electrochemical deposition method. Scanning electron microscope images and energy-dispersive X-ray results indicated that the growth of AuNPs on PSi varies with current density. X-ray diffraction analysis showed the presence of cubic gold phases with crystallite sizes around 40 to 58 nm. Size dependence on the plasmon absorption was studied from nanoparticles with various sizes. Comparison with the reference sample, PSi without AuNP deposition, showed a significant blueshift with decreasing AuNP size which was explained in terms of optical coupling between PSi and AuNPs within the pores featuring localized plasmon resonances.

  16. Optical absorption spectroscopy on a metal-halide high intensity discharge arc lamp using synchrotron radiation

    Bonvallet, G A; Lawler, J E [Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706 (United States)

    2003-07-07

    A sensitive, spatially resolved optical absorption spectroscopy experiment using synchrotron radiation on metal-halide high intensity discharge (MH-HID) lamps was performed. This experiment was used to measure the absolute column densities of ground and excited level Sc atoms, ground level Sc{sup +} ions, and ground level Na atoms in a 250 W MH-HID lamp during operation. The column densities were Abel inverted and used to determine the arc temperature as a function of radius and the absolute electron density as a function of radius. Although most of these measurements were made using a one-dimensional spectrally-multiplexed experiment, a two-dimensional spatially and spectrally multiplexed experiment has also been demonstrated. The absolute density and temperature maps from this experiment were used to determine the absolute near-infrared output power from the MH-HID lamp as described in the companion paper (Smith et al 2003)

  17. Concurrent multiaxis differential optical absorption spectroscopy system for the measurement of tropospheric nitrogen dioxide.

    Leigh, Roland J; Corlett, Gary K; Friess, Udo; Monks, Paul S

    2006-10-01

    The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62 degrees N, 1.12 degrees W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2. PMID:16983440

  18. Active differential optical absorption spectroscopy for NO2 gas pollution using blue light emitting diodes

    Aljalal, Abdulaziz; Gasmi, Khaled; Al-Basheer, Watheq

    2015-05-01

    Availability of high intensity light emitting diodes in the blue region offer excellent opportunity for using them in active Differential Optical Absorption Spectroscopy (DOAS) to detect air pollution. Their smooth and relatively broad spectral emissions as well as their long life make them almost ideal light sources for active DOAS. In this study, we report the usage of a blue light emitting diode in an active DOAS setup to measure traces of NO2 gas and achieving few parts per billion detection limit for a path length of 300 m. Details of the setup will be presented along with the effects on measurement accuracy due to shifts in the measured spectra calibration and due to using theoretical instrument Gaussian function instead of the measured instrument function.

  19. [Air pollutants study by differential optical absorption spectroscopy with transmit-receive fibers].

    Wei, Yong-Jie; Geng, Xiao-Juan; Chen, Bo; Liu, Cui-Cui; Chen, Wen-Liang

    2013-10-01

    The differential optical absorption spectroscopy system is presented to monitor air pollutants, such as SO2, NO2, etc. The system employs a reflective telescope to collimate light source and focus absorbed light. A combined transmitting and receiving fiber bundle is set to the focus of a concave mirror. A Xenon lamp works as the light source. The light is coupled into the transmitting fiber, and then collimated by the reflective telescope system. After absorbed by the pollutants, the light is reflected by a pyramid mirror far away the telescope. Then the absorbed light is incident on the concave mirror the second time, and focused on the focal plane again. The receiving fiber induces the light which carries the information of the measured gas into a spectrometer. We can get the concentration of the pollutants by DOAS algorithm. Experimental results show that the proposed method can be adopted to measure some pollutants in air quality monitoring. PMID:24409736

  20. Formation and Optical Absorption of Photo-reduced Gold Nanoparticles Inside Pores of Mesoporous Silica

    SHI Hua-Zhong; YAO Bao-Dian; ZHANG Li-De; BI Hui-Juan; CAI Wei-Ping; WU Yu-Cheng

    2000-01-01

    Mesoporous silica with gold nanoparticles inside its pores was synthesized by soaking and photo-reduction method. This new material was characterized by transmission electron microscopy, x-ray photoelectron spectroscopy and Brunauer-Emmett-Teller techniques. The results showed that gold nanoparticles were isolated from each other and uniformly dispersed inside the pores of silica, most of which were less than 4 nm in diameter. It was found that in optical absorption spectrum, surface plasma resonance peak of nanosized gold particles assumed a significant redshift (about 55nm) with respect to that predicted by Mie theory. This can be explained in terms of interface interaction (boundary coupling) between gold particles and pore walls of porous silica.

  1. Three Photon Absorption in Optical Parametric Oscillators Based on OP-GaAs

    Heckl, Oliver H; Winkler, Georg; Changala, P Bryan; Spaun, Ben; Porat, 1 Gil; Bui, Thinh Q; Lee, Kevin F; Jiang, Jie; Fermann, Martin; Schunemann, Peter G; Ye, Jun

    2016-01-01

    We report on the first singly-resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 ${\\mu}$m within ~3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs. We discovered strong three photon absorption with a coefficient of 0.35 ${\\pm}$ 0.06 cm${^3}$/GW${^2}$ for our OP-GaAs sample, which limits the output power of these OPOs as mid-IR light sources. We present a detailed study of the three photon loss on the performance of both the SR and DR-OPOs, and compare them to those without this loss mechanism.

  2. Femtosecond optical absorption studies of nonequilibrium electronic processes in high T(c) superconductors

    Chwalek, J. M.; Uher, C.; Whitaker, J. F.; Mourou, G. A.; Agostinelli, J.

    1990-01-01

    The results are reported of femtosecond optical transient absorption experiments performed on the superconducting compounds YBa2Cu3O(7-x) (x about 0) and Bi2Sr2Ca2Cu3O(10+delta) (delta about 0) and nonsuperconducting YBa2Cu3O(6+y) (y less than 0.4) for sample temperatures ranging from about 7 K to room temperature. Nonequilibrium heating was found to occur on a subpicosecond time scale. A distinct, dramatic increase in the relaxation time was observed for the superconducting samples as the sample temperature was lowered below the critical temperatures of the respective films. Accompanying the increase in relaxation time was an increase in the peak fractional transmissivity change. No such changes were observed for the nonsuperconducting YBCO sample.

  3. [Retrieval of NO2 total vertical columns by direct-sun differential optical absorption spectroscopy].

    Wang, Yang; Xie, Pin-hua; Li, Ang; Xu, Jin; Zeng, Yi; Si, Fu-qi; Wu, Feng-cheng

    2012-04-01

    An appropriate reference spectrum is essential for the direct-sun differential optical absorption spectroscopy (DS-DOAS). It depends on the real reference spectrum to retrieve the total vertical column density (VCD). The spectrum detected at the time with minimum sun zenith angle under the relative clear atmospheric condition in the measurement period was conventionally selected as the reference spectrum. Because there is still untracked NO2 absorption structure in the reference spectrum, the VCD retrieved based on the above spectrum is actually relative VCD, which results in larger error. To solve this problem, a new method was investigated. A convolution of extraterrestrial high-precision solar Fraunhofer spectrum and the instrumental function of the spectrometer was computed and chosen as the reference spectrum. The error induced by NO2 absorption structure in the reference spectrum was removed. Then the fitting error of slant column density (SCD) retrieved by this method was analyzed. The correlation between the absolute SCD and the differential slant column density (dSCD) was calculated. The result shows that the error of SCD retrieved by this new method is below 1.6 x 10(16) molecules x cm(-2) on March 7, 2011, while the error generated by the normal method is about 4.25 x 10(16) molecules x cm(-2). The new method decreased more than 62% error. In addition, the results throughout the day were compared to the troposphere VCD from MAX-DOAS and they are in good agreement. It indicates that the new method could effectively reduce the VCD error of the common way. PMID:22715747

  4. [Study on determination of plume velocity by passive differential optical absorption spectroscopy].

    Li, Ang; Xie, Pin-hua; Liu, Wen-qing; Liu, Jian-guo; Dou, Ke; Lin, Yi-hui

    2008-10-01

    Differential optical absorption spectroscopy (DOAS) technique has been used to measure various trace gases in the atmosphere by their strongly structured absorption of radiation in the UV and visible spectral range. Passive DOAS using the zenith scattered sunlight as the light source can obtain the continuous column density distribution of air pollutants (such as SO2 and NO2) by scanning the plume emitted from sources on a mobile platform, then with the plume velocity information the total emission value can be ultimately estimated. In practice it is hard to calculate the total emission because there is no efficient way to accurately get the plume velocity which is the most important parameter. Usually the wind speed near ground is used as the actual plume speed, which constitutes the greatest source of uncertainty in the passive DOAS measurements for the total emission calculation. A passive DOAS method for the determination of plume velocity of pollution source was studied in the present paper. Two passive DOAS systems were placed under the plume along the plume transmission direction to observed the scattered sunlight at one fixed sepasation angle, and then the plume velocity was derived from the time delay resulting from the plume moving a certain distance, and also the plume height needed in the plume velocity calculation was measured by the same two passive DOAS systems. Measurement of the plume emitted from a certain power plant was carried out by the two passive DOAS systems and the plume velocities of 3.6 and 5.4 m x s(-1) at two separate moments were derived. The comparison with the wind speed measured at the same time by the single theodolite wind observation method indicates that this optical remote sensing method based on passive DOAS can be used to determine the plume velocity by monitoring the total emission from sources. PMID:19123375

  5. Optical analysis of trapped Gas—Gas in Scattering Media Absorption Spectroscopy

    Svanberg, S.

    2010-01-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. The technique investigates sharp gas spectral signatures, typically 10000 times sharper than those of the host material, in which the gas is trapped in pores or cavities. The presence of pores causes strong multiple scattering. GASMAS combines narrow-band diode-laser spectroscopy, developed for atmospheric gas monitoring, with diffuse media optical propagation, well-known from biomedical optics. Several applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, and this is also true for haemoglobin, making propagation possible in many natural materials. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities (frontal, maxillary and mastoideal) have been studied, demonstrating new possibilities for characterization and diagnostics. Transport of gas in porous media (diffusion) can be studied by first subjecting the material to, e.g., pure nitrogen, and then observing the rate at which normal, oxygen-containing air, reinvades the material. The conductance of the passages connecting a sinus with the nasal cavity can be objectively assessed by observing the oxygen gas dynamics when flushing the nose with nitrogen. Drying of materials, when liquid water is replaced by air and water vapour, is another example of dynamic processes which can be studied. The technique has also been extended to remote-sensing applications (LIDAR-GASMAS or Multiple-Scattering LIDAR).

  6. Chiral photochromic compounds as optical molecular sensors. An absorption, fluorescence and CD-spectroscopic study

    Complete text of publication follows. Spiropyrans are photochromic compounds investigated widely for their potential applications in molecular sensors, switches and 3D-memories. Their photochromism is essentially an equilibrium between a colored and a colorless isomer, which can be shifted by irradiation with UV or visible light. The crowned chiral conjugates CSP1, CSP2 and CSP3 were synthesized in our laboratory. In order to characterize these hosts as potential molecular optical sensors, their photochromism and complex formation with metal ions and chiral amino guests were studied by absorption, fluorescence and CD-spectroscopy. Irradiation by UV light induces a ring-opening reaction in the spiropyrane moieties of CSP1-3. The addition of metal ions and chiral amino guests shifts the equilibrium towards the open-ring form under dark conditions. The analysis of the absorption, fluorescence and CD spectra shows large equilibrium constants for complexations of Li+, Ca2+, Ba2+ and Mg2+ ions. In the reactions with chiral guests moderate enantioselectivities were observed.

  7. NO2 measurements in Hong Kong using LED based long path differential optical absorption spectroscopy

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2012-05-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 levels in the Kowloon Tong and Mongkok district of Hong Kong and we compare the measurement results to mixing ratios reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time (13:30-14:30 LT - local time).

  8. [Study on Differential Optical Absorption Spectroscopy Data Processing Based on Chirp-Z Transformation].

    Zheng, Hai-ming; Li, Guang-jie; Wu, Hao

    2015-06-01

    Differential optical absorption spectroscopy (DOAS) is a commonly used atmospheric pollution monitoring method. Denoising of monitoring spectral data will improve the inversion accuracy. Fourier transform filtering method is effectively capable of filtering out the noise in the spectral data. But the algorithm itself can introduce errors. In this paper, a chirp-z transform method is put forward. By means of the local thinning of Fourier transform spectrum, it can retain the denoising effect of Fourier transform and compensate the error of the algorithm, which will further improve the inversion accuracy. The paper study on the concentration retrieving of SO2 and NO2. The results show that simple division causes bigger error and is not very stable. Chirp-z transform is proved to be more accurate than Fourier transform. Results of the frequency spectrum analysis show that Fourier transform cannot solve the distortion and weakening problems of characteristic absorption spectrum. Chirp-z transform shows ability in fine refactoring of specific frequency spectrum. PMID:26601381

  9. Tight binding model of conformational disorder effects on the optical absorption spectrum of polythiophenes.

    Bombile, Joel H; Janik, Michael J; Milner, Scott T

    2016-05-14

    Semiconducting polymers are soft materials with many conformational degrees of freedom. The limited understanding of how conformational disorder affects their optoelectronic properties is a key source of difficulties that limits their widespread usage in electronic devices. We develop a coarse-grained approach based on the tight binding approximation to model the electronic degrees of freedom of polythiophene chains, taking into account conformational degrees of freedom. Particularly important is dihedral disorder, which disrupts extended electronic states. Our tight binding model is parameterized using density functional theory (DFT) calculations of the one-dimensional band structures for chains with imposed periodic variations in dihedral angles. The model predicts valence and conduction bands for these chain conformations that compare well to DFT results. As an initial application of our model, we compute the optical absorption spectrum of poly(3-hexylthiophene) chains in solution. We observe a broadening of the absorption edge resulting from dihedral disorder, just shy of the experimental broadening. We conclude that the effects of molecular disorder on the optoelectronic properties of conjugated polymer single chains can be mostly accounted for by torsional disorder alone. PMID:27087455

  10. Electron spin resonance and optical absorption spectroscopic studies of Cu2+ ions in aluminium lead borate glasses

    Highlights: ► It is for the first time to study optical absorption and EPR in these glasses. ► The thermal properties are new and interesting in this glass system. ► It is for the first time to report three optical bands for Cu2+ in oxide glasses. ► The interesting optical results are due to excellent sample preparation. - Abstract: Electron Spin Resonance and optical absorption spectral studies of Cu2+ ions in 5 Al2O3 + 75 B2O3 + (20-z) PbO + z CuO (where z = 0.1–1.5 mol.% of CuO) glasses have been reported. The EPR spectra of all the glasses show resonance signals characteristic of Cu2+ ions at both room and low temperatures. The number of spins and Gibbs energy were calculated at different concentrations and temperatures. From the plot of the ratio of logarithmic number of spins and absolute temperature and the reciprocal of absolute temperature, the entropy and enthalpy have been evaluated. The optical absorption spectra of all the glasses exhibit three bands and these bands have been assigned to 2B1g → 2Eg, 2B1g → 2B2g, and 2B1g → 2A1g transitions in the decreasing order of energy. It is for the first time to observe three optical absorption bands for Cu2+ ions in oxide glasses. Such type of results is due to excellent sample preparation. From the EPR and optical absorption spectroscopies data, the molecular orbital coefficients have been evaluated.

  11. Study of nonlinear optical absorption properties of Sb2Se3 nanoparticles in the nanosecond and femtosecond excitation regime

    Molli, Muralikrishna; Pradhan, Prabin; Dutta, Devarun; Jayaraman, Aditya; Bhat Kademane, Abhijit; Muthukumar, V. Sai; Kamisetti, Venkataramaniah; Philip, Reji

    2016-05-01

    In this work, we report for the first time, the nonlinear optical absorption properties of antimony selenide (Sb2Se3) nanoparticles synthesized through solvothermal route. X-ray diffraction results revealed the crystalline nature of the nanoparticles. Electron microscopy studies revealed that the nanoparticles are in the range of 10-40 nm. Elemental analysis was performed using EDAX. The nanosecond optical limiting effect was characterized by using fluence-dependent transmittance measurements with 15-ns laser pulses at 532 and 1064 nm excitation wavelengths. Mechanistically, effective two-photon (2PA) absorption and nonlinear scattering processes were the dominant nonlinear processes at both the wavelengths. At 800 nm excitation in the femtosecond regime (100 fs), the nonlinear optical absorption was found to be a three-photon (3PA) process. Both 2PA and 3PA processes were explained using the band structure and density of states of Sb2Se3 obtained using density functional theory. These nanoparticles exhibit strong intensity-dependent nonlinear optical absorption and hence could be considered to have optical power-limiting applications in the visible range.

  12. Properties of the 4.45 eV optical absorption band in LiF:Mg, Ti

    The optical absorption (OA) and thermoluminescence (TL) of dosimetric LiF:Mg,Ti (TLD-100) as well as nominally pure LiF single crystal have been studied as a function of irradiation dose, thermal and optical bleaching in order to investigate the role of the 4.45 eV OA band in low temperature TL. Computerised deconvolution was used to resolve the absorption spectrum into individual gaussian bands and the TL glow curve into glow peaks. Although the 4.45 eV OA band shows thermal decay characteristics similar to the 4.0 eV band its dose filling constant and optical bleaching properties suggest that it cannot be associated with the TL of composite peaks 4 or 5. Its presence in optical grade single crystal LiF further suggests that it is an intrinsic defect or possibly associated with chance impurities other than Mg, Ti. (authors)

  13. Coordinated UV-optical observations of quasars the evolution of the Lyman absorption

    Cristiani, S; Buson, L M; Gouiffes, C; La Franca, F

    1992-01-01

    The average flux decrement shortward the Ly$_{\\alpha}$ emission, due to the well-known ``forest'' of absorptions, has been measured in the spectra of 8 quasars. Quasi-simultaneous optical and IUE observations of the two low redshift quasars PKS 0637--75 (z=0.654) and MC 1104+16 (z=0.632) have been carried out, obtaining relatively high S/N, spectrophotometrically calibrated data on their energy distribution from the rest frame H$_{\\beta}$ to the Lyman continuum. Six more quasars in the redshift range 2.5-3.4 have been observed in the optical domain. For all the quasars the ``intrinsic'' continuum slope and normalization have been estimated longward the Ly$_{\\alpha}$ emission and extrapolated towards the Lyman continuum to measure the average depressions, which have been compared with the model statistics of the Ly$_{\\alpha}$ clouds. When all the known classes of absorbers are taken into account with plausible values for their equivalent width distribution and evolution, a good agreement is obtained with the o...

  14. A low-cost portable fibre-optic spectrometer for atmospheric absorption studies

    J. Bailey

    2013-01-01

    Full Text Available A compact and portable solar absorption spectrometer based on fibre-optic Fabry–Perot technology has been built and tested. The instrument weighs only 4.2 kg and operates from 5 W of power from internal batteries. It provides spectroscopy over the range from 5980–6580 cm−1 (1.52–1.67 μm at a resolution of 0.16 cm−1. The input to the spectrometer is via single-mode optical fibre from a solar tracking system. Spectral scanning is carried out with a piezoelectrically scanned fibre Fabry–Perot tunable filter. Software has been developed to calibrate the spectra in wavelength and relative flux. The signal to noise ratio in solar spectra is about 700 for a spectrum scanned at 200 milliseconds per spectral point. The techniques used should be capable of being adapted to a range of wavelengths and to higher or lower resolutions.

  15. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    Whyte, C.; Leigh, R. J.; Lobb, D.; Williams, T.; Remedios, J. J.; Cutter, M.; Monks, P. S.

    2009-12-01

    A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.

  16. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    C. Whyte

    2009-08-01

    Full Text Available A breadboard demonstrator of a novel UV/VIS grating spectrometer for atmospheric research has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS applications particularly from space (LEO, GEO orbits and from HAPs or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at better than 0.5 nm resolution, suitable for a number of typical DOAS applications.

  17. Assessment of the performance of a compact concentric spectrometer system for Atmospheric Differential Optical Absorption Spectroscopy

    C. Whyte

    2009-12-01

    Full Text Available A breadboard demonstrator of a novel UV/VIS grating spectrometer has been developed based upon a concentric arrangement of a spherical meniscus lens, concave spherical mirror and curved diffraction grating suitable for a range of atmospheric remote sensing applications from the ground or space. The spectrometer is compact and provides high optical efficiency and performance benefits over traditional instruments. The concentric design is capable of handling high relative apertures, owing to spherical aberration and comma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called "smile", the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. This form of spectrometer design offers the potential for exceptionally compact instrument for differential optical absorption spectroscopy (DOAS applications from LEO, GEO, HAP or ground-based platforms. The breadboard demonstrator has been shown to offer high throughput and a stable Gaussian line shape with a spectral range from 300 to 450 nm at 0.5 nm resolution, suitable for a number of typical DOAS applications.

  18. Retrieval interval mapping, a tool to optimize the spectral retrieval range in differential optical absorption spectroscopy

    Vogel, L.; Sihler, H.; Lampel, J.; Wagner, T.; Platt, U.

    2012-06-01

    Remote sensing via differential optical absorption spectroscopy (DOAS) has become a standard technique to identify and quantify trace gases in the atmosphere. The technique is applied in a variety of configurations, commonly classified into active and passive instruments using artificial and natural light sources, respectively. Platforms range from ground based to satellite instruments and trace-gases are studied in all kinds of different environments. Due to the wide range of measurement conditions, atmospheric compositions and instruments used, a specific challenge of a DOAS retrieval is to optimize the parameters for each specific case and particular trace gas of interest. This becomes especially important when measuring close to the detection limit. A well chosen evaluation wavelength range is crucial to the DOAS technique. It should encompass strong absorption bands of the trace gas of interest in order to maximize the sensitivity of the retrieval, while at the same time minimizing absorption structures of other trace gases and thus potential interferences. Also, instrumental limitations and wavelength depending sources of errors (e.g. insufficient corrections for the Ring effect and cross correlations between trace gas cross sections) need to be taken into account. Most often, not all of these requirements can be fulfilled simultaneously and a compromise needs to be found depending on the conditions at hand. Although for many trace gases the overall dependence of common DOAS retrieval on the evaluation wavelength interval is known, a systematic approach to find the optimal retrieval wavelength range and qualitative assessment is missing. Here we present a novel tool to determine the optimal evaluation wavelength range. It is based on mapping retrieved values in the retrieval wavelength space and thus visualize the consequence of different choices of retrieval spectral ranges, e.g. caused by slightly erroneous absorption cross sections, cross correlations and

  19. Spectral studies of ocean water with space-borne sensor SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS

    M. Vountas

    2007-09-01

    Full Text Available Methods enabling the retrieval of oceanic parameter from the space borne instrumentation Scanning Imaging Absorption Spectrometer for Atmospheric ChartographY (SCIAMACHY using Differential Optical Absorption Spectroscopy (DOAS are presented. SCIAMACHY onboard ENVISAT measures back scattered solar radiation at a spectral resolution (0.2 to 1.5 nm. The DOAS method was used for the first time to fit modelled Vibrational Raman Scattering (VRS in liquid water and in situ measured phytoplankton absorption reference spectra to optical depths measured by SCIAMACHY. Spectral structures of VRS and phytoplankton absorption were clearly found in these optical depths. Both fitting approaches lead to consistent results. DOAS fits correlate with estimates of chlorophyll concentrations: low fit factors for VRS retrievals correspond to large chlorophyll concentrations and vice versa; large fit factors for phytoplankton absorption correspond with high chlorophyll concentrations and vice versa. From these results a simple retrieval technique taking advantage of both measurements is shown. First maps of global chlorophyll concentrations were compared to the corresponding MODIS measurements with very promising results. In addition, results from this study will be used to improve atmospheric trace gas DOAS-retrievals from visible wavelengths by including these oceanographic signatures.

  20. Characterization of ion-assisted induced absorption in A-Si thin-films used for multivariate optical computing

    Nayak, Aditya B.; Price, James M.; Dai, Bin; Perkins, David; Chen, Ding Ding; Jones, Christopher M.

    2015-06-01

    Multivariate optical computing (MOC), an optical sensing technique for analog calculation, allows direct and robust measurement of chemical and physical properties of complex fluid samples in high-pressure/high-temperature (HP/HT) downhole environments. The core of this MOC technology is the integrated computational element (ICE), an optical element with a wavelength-dependent transmission spectrum designed to allow the detector to respond sensitively and specifically to the analytes of interest. A key differentiator of this technology is it uses all of the information present in the broadband optical spectrum to determine the proportion of the analyte present in a complex fluid mixture. The detection methodology is photometric in nature; therefore, this technology does not require a spectrometer to measure and record a spectrum or a computer to perform calculations on the recorded optical spectrum. The integrated computational element is a thin-film optical element with a specific optical response function designed for each analyte. The optical response function is achieved by fabricating alternating layers of high-index (a-Si) and low-index (SiO2) thin films onto a transparent substrate (BK7 glass) using traditional thin-film manufacturing processes (e.g., ion-assisted e-beam vacuum deposition). A proprietary software and process are used to control the thickness and material properties, including the optical constants of the materials during deposition to achieve the desired optical response function. The ion-assisted deposition is useful for controlling the densification of the film, stoichiometry, and material optical constants as well as to achieve high deposition growth rates and moisture-stable films. However, the ion-source can induce undesirable absorption in the film; and subsequently, modify the optical constants of the material during the ramp-up and stabilization period of the e-gun and ion-source, respectively. This paper characterizes the unwanted

  1. Structural, thermal, linear and nonlinear optical studies of an organic optical limiter based on reverse saturable absorption

    Menezes, Anthoni Praveen; Raghavendra, S.; Jayarama, A.; Sarveshwara, H. P.; Dharmaprakash, S. M.

    2016-09-01

    A new derivative of chalcone, 3-(4-bromophenyl)-1-(pyridin-4-yl) prop-2-en-1-one (4BP4AP), crystallizing in centrosymmetric structure has been synthesized using the Claisen-Schmidt condensation reaction method. The FTIR and FT-Raman spectral studies were carried out on 4BP4AP for structural conformation. The single crystals were grown using slow evaporation solution growth technique. The single crystal XRD of the crystal shows that the crystal system of 4BP4AP is triclinic with space group P-1. Scanning electron microscope images enunciate the surface smoothness and the two dimensional growth mechanisms in the crystal. The crystal is transparent in the entire visible region as indicated by the UV-VIS-NIR spectrum. The thermal stability and phase transition of the compound was studied by thermogravimetric and differential scanning calorimetric analysis and found to be stable up to 200 °C. By performing the open aperture z-scan experiment, nonlinear absorption and optical limiting behavior of the crystal were studied. The crystal can be used for optoelectronic application due to its excellent photo-physical properties.

  2. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    Volten, H.; Bergwerff, J.B.; Haaima, M.; Lolkema, D.E.; Berkhout, A.J.C.; Hoff, G.R.; Potma, C.J.M.; Wichink Kruit, R.J.; Pul, van W.A.J.; Swart, D.P.J.

    2012-01-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet

  3. Optical absorption in SiGe thin films and its dependency on film thickness and annealing temperature

    Silicon germanium (SiGe) thin films were grown on glass substrate by a thermal diffusion method, and some of the optical properties were investigated. In general, the optical absorption was found to be as functions of films thickness and annealing temperature. From Bardeen's equations and the various (αℎν)1/2 - ℎν plots, the resulting optical band gaps were between 0.71-1.05 eV which corresponded to indirect allowed transition. The results were in a good agreement with those reported earlier. (Author)

  4. Third-order nonlinear optical properties of spin-coating films containing benzo[α]phenoxazinium: from reverse saturated to saturated absorptions

    Zhang, Fei [College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren' Ai Road, Suzhou 215123 (China); Fang, Yu [School of Physical Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006 (China); Sun, Ru; Guo, Xiao-Zhi [College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren' Ai Road, Suzhou 215123 (China); Song, Ying-Lin [School of Physical Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006 (China); Ge, Jian-Feng, E-mail: ge_jianfeng@hotmail.com [College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren' Ai Road, Suzhou 215123 (China); Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163 (China)

    2015-08-31

    The optical films based on poly(4-vinylphenol) and benzo[α]phenoxazinium dye with a long alkyl chain were obtained by spin-coating, and their optical properties are reported in this paper. UV–vis absorptions of the optical films showed that the absorption maxima were shifted about 40 nm by the influence of dye aggregation with increasing dye ratio. The third-order nonlinear optical properties of films were tested by Z-scan technique with a picosecond laser beam at 532 nm. The third-order nonlinear optical susceptibilities and second hyperpolarizabilities were up to 10{sup −10} and 10{sup −32} esu respectively. Meanwhile, the third-order nonlinear absorptions transformed from reverse saturated absorptions to saturated absorptions with increasing ratios of dye in doped films. The result of aggregation induced adjustable third-order nonlinear absorption can be confirmed from their TEM images. - Highlights: • Benzo[α]phenoxazinium containing optical films with poly(4-vinylphenol). • Optical property was influenced by dye aggregation. • The third-order nonlinear absorptions transformed from reverse saturated absorptions to saturated absorptions with increasing ratios of dye.

  5. Third-order nonlinear optical properties of spin-coating films containing benzo[α]phenoxazinium: from reverse saturated to saturated absorptions

    The optical films based on poly(4-vinylphenol) and benzo[α]phenoxazinium dye with a long alkyl chain were obtained by spin-coating, and their optical properties are reported in this paper. UV–vis absorptions of the optical films showed that the absorption maxima were shifted about 40 nm by the influence of dye aggregation with increasing dye ratio. The third-order nonlinear optical properties of films were tested by Z-scan technique with a picosecond laser beam at 532 nm. The third-order nonlinear optical susceptibilities and second hyperpolarizabilities were up to 10−10 and 10−32 esu respectively. Meanwhile, the third-order nonlinear absorptions transformed from reverse saturated absorptions to saturated absorptions with increasing ratios of dye in doped films. The result of aggregation induced adjustable third-order nonlinear absorption can be confirmed from their TEM images. - Highlights: • Benzo[α]phenoxazinium containing optical films with poly(4-vinylphenol). • Optical property was influenced by dye aggregation. • The third-order nonlinear absorptions transformed from reverse saturated absorptions to saturated absorptions with increasing ratios of dye

  6. Enhanced performance of graphene-based electro-absorption waveguide modulators by engineered optical modes

    Electro-absorption modulators based on electrically contacted double-layer graphene optimally incorporated in plasmonic and photonic waveguide configurations were simulated and analyzed in terms of the device performance at telecom wavelengths. It is shown that increasing the mode electric field strength on the graphene layers enhances absorption of graphene and, in consequence, improves the electro-optic performances. The ratio of the change in extinction ratio and the waveguide loss (Δα/α) is used as a figure of merit. A plasmonic waveguide configuration with a silicon ridge has a simulated 3 dB modulation depth for a device length of ∼140 nm and Δα/α ∼ 20. The calculated energy consumption per bit is as low as ∼240 aJ bit−1 and ∼1.8 aJ bit−1 for plasmonic modulators with polymer and silicon ridge waveguides respectively. Much higher figures of merit were obtained for modulators based on photonic waveguides with Δα/α exceeding 220 for a waveguide with a TM-supported mode. This comes at the cost of the modulator length, which increases to over 500 nm, and the calculated energy per bit of 1.93 fJ bit−1 for polymer and ∼10.3 aJ bit−1 for silicon waveguides. The photonic waveguides were designed to support both TM and TE modes. The TE mode requires a much longer modulation length of ∼10 µm to achieve a 3 dB modulation depth and shows a lower figure of merit of ∼12 compared to the TM mode, but has a low energy per bit of ∼44.0 aJ bit−1. The TE mode is in the OFF state at low applied voltage. (paper)

  7. Built-in electric field effect on optical absorption spectra of strained (In,Ga)N–GaN nanostructures

    Based on the effective-mass and the one band parabolic approximations, first order linear, third-order nonlinear and total optical properties related to 1s–1p intra-conduction band transition in wurtzite strained (In,Ga)N–GaN spherical QDs are calculated. The built-in electric field effect, due to the spontaneous and piezoelectric components, is investigated variationally under finite confinement potential. The results reveal that size and internal composition of the dot have a great influence on in-built electric field which affects strongly the optical absorption spectra. It is also found that the modulation of the absorption coefficient, which is suitable for the better performance of optical device applications, can be easily obtained by adjusting geometrical size and internal composition

  8. Control of optical bandgap energy and optical absorption coefficient by geometric parameters in sub-10 nm silicon-nanodisc array structure

    A sub-10 nm, high-density, periodic silicon-nanodisc (Si-ND) array has been fabricated using a new top-down process, which involves a 2D array bio-template etching mask made of Listeria-Dps with a 4.5 nm diameter iron oxide core and damage-free neutral-beam etching (Si-ND diameter: 6.4 nm). An Si-ND array with an SiO2 matrix demonstrated more controllable optical bandgap energy due to the fine tunability of the Si-ND thickness and diameter. Unlike the case of shrinking Si-ND thickness, the case of shrinking Si-ND diameter simultaneously increased the optical absorption coefficient and the optical bandgap energy. The optical absorption coefficient became higher due to the decrease in the center-to-center distance of NDs to enhance wavefunction coupling. This means that our 6 nm diameter Si-ND structure can satisfy the strict requirements of optical bandgap energy control and high absorption coefficient for achieving realistic Si quantum dot solar cells. (paper)

  9. HST hot Jupiter Transmission Spectral Survey: A detection of Na and strong optical absorption in HAT-P-1b

    Nikolov, N; Pont, F; Burrows, A S; Fortney, J J; Ballester, G E; Evans, T M; Huitson, C M; Wakeford, H R; Wilson, P A; Aigrain, S; Deming, D; Gibson, N P; Henry, G W; Knutson, H; Etangs, A Lecavelier des; Showman, A P; Vidal-Madjar, A; Zahnle, K

    2013-01-01

    We present an optical to near-infrared transmission spectrum of the hot Jupiter HAT-P-1b, based on HST observations, covering the spectral regime from 0.29 to 1.027{\\mu}m with STIS, which is coupled with a recent WFC3 transit (1.087 to 1.687{\\mu}m). We derive refined physical parameters of the HAT-P-1 system, including an improved orbital ephemeris. The transmission spectrum shows a strong absorption signature shortward of 0.55{\\mu}m, with a strong blueward slope into the near-ultraviolet. We detect atmospheric sodium absorption at a 3.3{\\sigma} significance level, but find no evidence for the potassium feature. The red data implies a marginally flat spectrum with a tentative absorption enhancement at wavelength longer than ~0.85{\\mu}m. The STIS and WFC3 spectra differ significantly in absolute radius level (4.3 +/- 1.6 pressure scale heights), implying strong optical absorption in the atmosphere of HAT-P-1b. The optical to near-infrared difference cannot be explained by stellar activity, as simulta- neous st...

  10. Effects of crossed electric and magnetic fields on the interband optical absorption spectra of variably spaced semiconductor superlattices

    Zuleta, J. N.; Reyes-Gómez, E.

    2016-05-01

    The interband optical absorption spectra of a GaAs-Ga1-xAlxAs variably spaced semiconductor superlattice under crossed in-plane magnetic and growth-direction applied electric fields are theoretically investigated. The electronic structure, transition strengths and interband absorption coefficients are analyzed within the weak and strong magnetic-field regimes. A dramatic quenching of the absorption coefficient is observed, in the weak magnetic-field regime, as the applied electric field is increased, in good agreement with previous experimental measurements performed in a similar system under growth-direction applied electric fields. A decrease of the resonant tunneling in the superlattice is also theoretically obtained in the strong magnetic-field regime. Moreover, in this case, we found an interband absorption coefficient weakly dependent on the applied electric field. Present theoretical results suggest that an in-plane magnetic field may be used to tune the optical properties of variably spaced semiconductor superlattices, with possible future applications in solar cells and magneto-optical devices.

  11. Speciation model selection by Monte Carlo analysis of optical absorption spectra: Plutonium(IV) nitrate complexes

    Standard modeling approaches can produce the most likely values of the formation constants of metal-ligand complexes if a particular set of species containing the metal ion is known or assumed to exist in solution equilibrium with complexing ligands. Identifying the most likely set of species when more than one set is plausible is a more difficult problem to address quantitatively. A Monte Carlo method of data analysis is described that measures the relative abilities of different speciation models to fit optical spectra of open-shell actinide ions. The best model(s) can be identified from among a larger group of models initially judged to be plausible. The method is demonstrated by analyzing the absorption spectra of aqueous Pu(IV) titrated with nitrate ion at constant 2 molal ionic strength in aqueous perchloric acid. The best speciation model supported by the data is shown to include three Pu(IV) species with nitrate coordination numbers 0, 1, and 2. Formation constants are β1=3.2±0.5 and β2=11.2±1.2, where the uncertainties are 95% confidence limits estimated by propagating raw data uncertainties using Monte Carlo methods. Principal component analysis independently indicates three Pu(IV) complexes in equilibrium. (c) 2000 Society for Applied Spectroscopy

  12. Optical absorption and fluorescent behaviour of titanium ions in silicate glasses

    Manoj Kumar; Aman Uniyal; A P S Chauhan; S P Singh

    2003-04-01

    Titanium in normal melting conditions in air atmosphere present as Ti4+ ion in basic silicate glasses exhibited an ultra-violet cut-off in silicate glasses, viz. soda–magnesia–silica, soda–magnesia–lime–silica and soda–lime–silica glasses. This indicates that Ti4+ ion can be a good replacement for Ce4+ ion in producing UV-absorbing silicate glasses for commercial applications. The wavelength maxima at which the infinite absorption takes place in glasses was found to be around 310 nm against Ti-free blank glass in UV-region. The mechanism of electronic transition from O2- ligands to Ti4+ ion was suggested as L $\\rightarrow$ M charge transfer. The low energy tails of the ultra-violet cut-off were found to obey Urbach’s rule in the optical range 360–500 nm. The fluorescence spectra of these glasses were also studied and based on the radiative fluorescent properties it was suggested that the soda–lime–silica glass containing Ti4+ ion with greater emission crosssection would emit a better fluorescence than the corresponding soda–magnesia–lime–silica and soda–magnesia–silica glasses. The shift of emission wavelengths maxima towards longer wavelength in titania introduced silicate glasses was observed on replacement of MgO by CaO which may be attributed due to an increase in basicity of the glass system.

  13. Dose response of F center optical absorption in LiF:Mg,Ti (TLD-100)

    Optical absorption (OA) of nominally pure single crystal LiF following beta irradiation was measured in order to estimate, the energy and width of the dominant F-band with minimum interference from dopant-related bands. The OA dose response of LiF:Mg,Ti was measured to 30,000 Gy, a level of dose sufficiently high to observe total saturation of the F band, which, we believe, reduces uncertainty in the estimation of the dose filling constant. The dose filling constants for the OA bands associated with the trapping center (4 eV) and competitive center (5.45 eV) responsible for the major dosimetric TL glow peak 5 were also determined. The results of these studies will be used in the framework of a kinetic model which includes the effects of radiation created defects and which will aid in the investigation of the capability of Track Structure Theory to predict OA heavy charged particle (HCP) relative efficiencies. - Highlights: • The energy and width of the F-band in LiF are estimated. • OA dose response was extended to high levels of dose including deconvolution. • Dose filling constants of the major OA bands were determined

  14. Ozone monitoring using differential optical absorption spectroscopy (DOAS) and UV photometry instruments in Sohar, Oman.

    Nawahda, Amin

    2015-08-01

    Ground level ozone (O3) concentrations were measured across Sohar highway in Oman during a four-month period from September to December 2014 by using an open-path deferential optical absorption spectroscopy (DOAS) instrument. The monthly average concentrations of O3 varied from 19.6 to 29.4 ppb. The measurements of O3 are compared with the measurements of a non-open-path UV photometry analyzer (UVP). The percent difference (PD) concept and linear regression methods were used to compare the readings of the two instruments. The findings show high correlation coefficients between the measurements of the DOAS and UVP instruments. The DOAS measurements of O3 are found to be less than those measured by the UVP instrument; the correlation coefficients between absolute PD values and meteorological parameters and PM2.5 were very low indicating a minor effect; therefore, titrations of O3 by traffic emissions and difference in elevation could be the reason for the difference in the measurements of the two instruments. PMID:26138853

  15. A Semi-Blind Source Separation Method for Differential Optical Absorption Spectroscopy of Atmospheric Gas Mixtures

    Sun, Y; Finlayson-Pitts, B J; Xin, J

    2011-01-01

    Differential optical absorption spectroscopy (DOAS) is a powerful tool for detecting and quantifying trace gases in atmospheric chemistry \\cite{Platt_Stutz08}. DOAS spectra consist of a linear combination of complex multi-peak multi-scale structures. Most DOAS analysis routines in use today are based on least squares techniques, for example, the approach developed in the 1970s uses polynomial fits to remove a slowly varying background, and known reference spectra to retrieve the identity and concentrations of reference gases. An open problem is to identify unknown gases in the fitting residuals for complex atmospheric mixtures. In this work, we develop a novel three step semi-blind source separation method. The first step uses a multi-resolution analysis to remove the slow-varying and fast-varying components in the DOAS spectral data matrix $X$. The second step decomposes the preprocessed data $\\hat{X}$ in the first step into a linear combination of the reference spectra plus a remainder, or $\\hat{X} = A\\,S +...

  16. Au nanorings for enhancing absorption and backscattering monitored with optical coherence tomography

    Tseng, Hung-Yu; Lee, Cheng-Kuang; Wu, Shou-Yen; Chi, Ting-Ta; Yang, Kai-Min; Wang, Jyh-Yang; Kiang, Yean-Woei; Yang, C C [Institute of Photonics and Optoelectronics, and Department of Electrical Engineering, National Taiwan University, No 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan, Republic of China (China); Tsai, Meng-Tsan [Department of Electrical Engineering, Chang Gung University, No 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, 33302 Taiwan (China); Wu, Yang-Che [Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, No 1 Changde St, Taipei, 10002 Taiwan (China); Chou, Han-Yi E; Chiang, Chun-Pin, E-mail: ywkiang@ntu.edu.tw, E-mail: ccy@cc.ee.ntu.edu.tw [Graduate Institute of Oral Biology, School of Dentistry, National Taiwan University, No 1 Changde St, Taipei, 10002 Taiwan (China)

    2010-07-23

    Preparation of a high-concentration Au nanoring (NR) water solution and its applications to the enhancement of image contrast in optical coherence tomography (OCT) and the generation of the photothermal effect in a bio-sample through localized surface plasmon (LSP) resonance are demonstrated. Au NRs are first fabricated on a sapphire substrate with colloidal lithography and secondary sputtering of Au, and then transferred into a water solution through a liftoff process. By controlling the NR geometry, the LSP dipole resonance wavelength in tissue can cover a spectral range of 1300 nm for OCT scanning of deep tissue penetration. The extinction cross sections of the fabricated Au NRs in water are estimated to give levels of 10{sup -10}-10{sup -9} cm{sup 2} near their LSP resonance wavelengths. The fabricated Au NRs are then delivered into pig adipose samples for OCT scanning. It is observed that, when resonant Au NRs are delivered into such a sample, LSP resonance-induced Au NR absorption results in a photothermal effect, making the opaque pig adipose cells transparent. Also, the delivered Au NRs in the intercellular substance enhance the image contrast of OCT scanning through LSP resonance-enhanced scattering. By continuously OCT scanning a sample, both photothermal and image contrast enhancement effects are observed. However, by continually scanning a sample with a low scan frequency, only the image contrast enhancement effect is observed.

  17. Summertime measurements of benzene and toluene in Athens using a differential optical absorption spectroscopy system.

    Petrakis, Michael; Psiloglou, Basil; Kassomenos, Pavlos A; Cartalis, Costas

    2003-09-01

    In this paper, measurements of benzene, toluene, p,m-xylene, ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2) made using the differential optical absorption spectroscopy (DOAS) technique during a 4-month period of summer 2000 (June-September) in Athens, Greece, are presented. An assessment of benzene mean value concentrations during this 4-month period exceeded 10 microg/m3, which is 2 times greater than the average yearly limit proposed by European authorities. Toluene measurements present mean values of approximately 33 microg/m3. Benzene and especially toluene measurements are highly correlated with NO2 and anticorrelated with O3. High values of benzene, NO2, and toluene are also correlated with winds from the southeast section, an area of industrial activity where emissions of volatile organic compounds (VOCs) have been recorded in previous studies. O3 is correlated with winds from the south-southwest section affected by the sea breeze circulation. Diurnal variations of O3, NO2, and SO2 concentrations are compatible with measurements from the stations of the Ministry of Environment's network. Outliers are combined with weak winds from the south-southwest. As far as p,m-xylene measurements are concerned, there is a poor correlation between gas chromatography (GC) and DOAS Opsis measurements, also observed in previous relevant campaigns and eventually a criticism in the use of the DOAS Opsis model for the measurement of p,m-xylene. PMID:13678363

  18. Applicability of light-emitting diodes as light sources for active differential optical absorption spectroscopy measurements.

    Kern, Christoph; Trick, Sebastian; Rippel, Bernhard; Platt, Ulrich

    2006-03-20

    We present what is to our knowledge the first use of light-emitting diodes (LEDs) as light sources for long-path differential optical absorption spectroscopy (LP-DOAS) measurements of trace gases in the open atmosphere. Modern LEDs represent a potentially advantageous alternative to thermal light sources, in particular to xenon arc lamps, which are the most common active DOAS light sources. The radiative properties of a variety of LEDs were characterized, and parameters such as spectral shape, spectral range, spectral stability, and ways in which they can be influenced by environmental factors were analyzed. The spectra of several LEDs were found to contain Fabry-Perot etalon-induced spectral structures that interfered with the DOAS evaluation, in particular when a constant temperature was not maintained. It was shown that LEDs can be used successfully as light sources in active DOAS experiments that measure NO2 and NO3 near 450 and 630 nm, respectively. Average detection limits of 0.3 parts in 10(9) and 16 parts in 10(12) respectively, were obtained by use of a 6 km light path in the open atmosphere. PMID:16579579

  19. Many-body effects in the optical absorption of lithium azide (LiN3)

    Gordienko, A. B.; Filippov, S. I.

    2016-07-01

    Until recently most of the understanding achieved for solid explosives has been obtained using various semi-empirical approaches due to a major role of excitonic effects in the mechanisms of decomposition. Nevertheless, during the last two decades, thanks to the ongoing progress in iterative computational methods, the inclusion of the electron-hole interaction in ab initio calculations has become a standard approach in solid-state theory. In this paper, the electronic structure and optical properties of bulk lithium azide are investigated, taking into account the electron-hole interaction via the Bethe-Salpeter equation (BSE). Here, we employ the kernel polynomial method (KPM), which significantly reduces the computational cost compared to direct diagonalization methods. The calculations of the imaginary part of the polarization dependent dielectric function including excitonic effects are reported for the first time. Then, we show a density map of the two-particle wave function and propose an alternative interpretation of the initial stages of the externally triggered chemical decomposition, based on the analysis of two-particle states near the absorption edge.

  20. Optical Absorption Property and Photo-catalytic Activity of Tin Dioxide-doped Titanium Dioxides

    LI,Huai-Xiang; XIA,Rong-Hua; JIANG,Zheng-Wei; CHEN,Shan-Shan; CHEN,De-Zhan

    2008-01-01

    SnO2-doped TiO2 films and composite oxide powders have been prepared by a sol-gel method. Ti(OC4H9)4 and SnCl4·5H2O were used as precursors and C2H5OH was used as solvent. The optical absorption measurements indicate that the composite oxide SnO2-TiO2 thin films exhibit smaller optical energy band gaps than pure TiO2 thin films and the optical energy band gap decreases as calcining temperature increases. X-ray diffraction was used to characterize the phase transition for the composite oxide powders at different calcining temperatures. Aanatase phase is the main crystal structure in both pure TiO2 and Sn0.05Ti0.95O2 samples if calcining temperature is below 500℃. The rutile phase has appeared and coexisted with the anatase crystal phase for both pure TiO2 and Sn0.05Ti0.95O2 composite oxides when calcining was at 600℃ . Transmission electron microscopy analysis shows a smaller grain size in Sn0.05Ti0.95O2 powders than TiO2 powders calcined at 600℃. When calcining temperature is 700℃ , there is only rutile phase in Sn0.05Ti0.95O2 samples, but there are still two crystal phases, anatase and rutile, coexisting in the pure TiO2 samples. Assuming the grain growth obeys the first order kinetics, Arrhenius empirical relation has been used to estimate the activation energy of 47.486 and 33.103 kJ·mol-1 for the grain growth of TiO2 and Sn0.05Ti0.95O2, respectively. The photo-catalytic activity of the powder samples has been examined by measuring the degradation of methylene blue solution under ultra-violet irradiation. Two effective factors of photo-catalytic activity namely, the content of SnO2 in the TiO2 samples and the calcining temperature, have been optimized based on the photo-catalytic degradation of methylene blue solution.

  1. Tomographic multiaxis-differential optical absorption spectroscopy observations of Sun-illuminated targets: a technique providing well-defined absorption paths in the boundary layer.

    Frins, Erna; Bobrowski, Nicole; Platt, Ulrich; Wagner, Thomas

    2006-08-20

    A novel experimental procedure to measure the near-surface distribution of atmospheric trace gases by using passive multiaxis differential absorption optical spectroscopy (MAX-DOAS) is proposed. The procedure consists of pointing the receiving telescope of the spectrometer to nonreflecting surfaces or to bright targets placed at known distances from the measuring device, which are illuminated by sunlight. We show that the partial trace gas absorptions between the top of the atmosphere and the target can be easily removed from the measured total absorption. Thus it is possible to derive the average concentration of trace gases such as NO(2), HCHO, SO(2), H(2)O, Glyoxal, BrO, and others along the line of sight between the instrument and the target similar to the well-known long-path DOAS observations (but with much less expense). If tomographic arrangements are used, even two- or three-dimensional trace gas distributions can be retrieved. The basic assumptions of the proposed method are confirmed by test measurements taken across the city of Heidelberg. PMID:16892129

  2. Theoretical and experimental study on the electronic structure and optical absorption properties of P-doped TiO2

    Phosphorus-doped nanosized TiO2 powders were prepared by a sol-gel technology. The optical absorption studies revealed that the spectral responses of phosphorus-doped (P-doped) TiO2 powders shift to the visible light region. The optimum phosphorus (P) content in our experiments is 16.7% (mol), and the corresponding absorption edge shifts to 450 nm. Furthermore, our ab initio calculations support the conclusion that the doping of phosphorus can reduce the band gap by mixing the P 3p states with O 2p states. The theoretical lattice parameters and optimum phosphorus content are in agreement with the experimental results.

  3. Theoretical Studies on the Third-order Nonlinear Optical Properties and Two-photon Absorption of Stilbene Derivatives

    REN, Ai-Min(任爱民); FENG, Ji-Kang(封继康); LIU, Xiao-Juan(刘孝娟)

    2004-01-01

    Different types of stilbene derivatives (D-π-D, A-π-A, D-π-A) were investigated with AM1, and specially, equilibrium geometries of symmetrical stilbene derivatives (D-π-D) were studied using of PM3. With the same method INDO/CI, the UV-vis spectra were explored and the position and strength of the two-photon absorption were predicated by Sum-Over-States expression. The relationships of the structures, spectra and nonlinear optical properties have been examined. The influence of various substituents on two photon absorption cross-sections was discussed micromechanically.

  4. Impurity-modulated Aharonov-Bohm oscillations and intraband optical absorption in quantum dot-ring nanostructures

    Barseghyan, M. G.; Manaselyan, A. Kh.; Laroze, D.; Kirakosyan, A. A.

    2016-07-01

    In this work we study the electronic states in quantum dot-ring complex nanostructures with an on-center hydrogenic impurity. The influence of the impurity on Aharonov-Bohm energy spectra oscillations and intraband optical absorption is investigated. It is shown that in the presence of a hydrogenic donor impurity the Aharonov-Bohm oscillations in quantum dot-ring structures become highly tunable. Furthermore, the presence of the impurity drastically changes the intraband absorption spectra due to the strong controllability of the electron localization type.

  5. A method for segregating the optical absorption properties and the mass concentration of winter time urban aerosol

    Ajtai, T.; Utry, N.; Pintér, M.; Major, B.; Bozóki, Z.; Szabó, G.

    2015-12-01

    A novel in-situ, real time method for the determination of inherent absorption properties of light absorbing carbonaceous particulate matter and its possible application for source apportionment are introduced here. The method is deduced from a two-week campaign under wintry urban conditions during which strong correlation was found between aerosol number size distribution and wavelength dependent optical absorption coefficient (AOC(λ)), measured by a Single Mobility Particle Sizer (SMPS) and a multi-wavelength photoacoustic absorption spectrometer, respectively, while wood burning and traffic (i.e. fossil fuel burning) activity were identified to be the dominant sources of carbonaceous particulate. Indeed, during the whole campaign, regardless of the actual emission strength of the aerosol sources, the measured number size distributions were always dominated by two unimodal modes with Count Mean Diameter (CMD) of 20 and 100 nm, which could be correlated to traffic and wood burning activities, respectively. AAEff, AAEwb (i.e. the Aerosol Angström Exponent of traffic and wood burning aerosol, respectively), σff(266 nm), σff(1064 nm), σwb(266 nm) and σff(1064 nm) (i.e. the segregated mass specific optical absorption coefficients at two of the measurement wavelengths) were found to be 1.17 ± 0.18, 2.6 ± 0.14, 7.3 ± 0.3 m2g-1, 1.7 ± 0.1 m2g-1 3.4 ± 0.3 m2g-1 and 0.31 ± 0.08 m2g-1, respectively. Furthermore the introduced methodology can also disentangle and quantify the temporal variation of both the segregated optical absorptions and the segregated mass concentrations of traffic and wood burning aerosol. Accordingly, the contribution of wood burning to optical absorption of PM was found to be negligible at 1064 nm but increased gradually towards the shorter wavelengths and became commensurable with the optical absorption of traffic at 266 nm during the whole measurement period. Furthermore, the contribution of wood burning mass to CM (mass of carbonaceous

  6. Optical imaging of absorption and distribution of RITC-SiO2 nanoparticles after oral administration

    Lee CM

    2014-12-01

    Full Text Available Chang-Moon Lee,1 Tai Kyoung Lee,2–5 Dae-Ik Kim,1,6 Yu-Ri Kim,7 Meyoung-Kon Kim,7 Hwan-Jeong Jeong,2–5 Myung-Hee Sohn,2–5 Seok Tae Lim2–5 1Department of Biomedical Engineering, Chonnam National University, Yeosu, Jeollanam-Do, Republic of Korea; 2Department of Nuclear Medicine, Chonbuk National University Medical School and Hospital, Jeonju, Jeollabuk-Do, Republic of Korea; 3Cyclotron Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeollabuk-Do, Republic of Korea; 4Biomedical Research Institute, Chonbuk National University Medical School and Hospital, Jeonju, Jeollabuk-Do, Republic of Korea; 5Molecular Imaging and Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, Jeollabuk-Do, Republic of Korea; 6School of Electrical, Electronic Communication, and Computer Engineering, Chonnam National University, Yeosu, Jeollanam-Do, Republic of Korea; 7Department of Biochemistry and Molecular Biology, Korea University Medical School and College, Seounbuk-Gu, Seoul, Republic of Korea Purpose: In this study, we investigated the absorption and distribution of rhodamine B isothiocyanate (RITC-incorporated silica oxide nanoparticles(SiNPs (RITC-SiNPs after oral exposure, by conducting optical imaging, with a focus on tracking the movement of RITC-SiNPs of different particle size and surface charge. Methods: RITC-SiNPs (20 or 100 nm; positively or negatively charged were used to avoid the dissociation of a fluorescent dye from nanoparticles via spontaneous or enzyme-catalyzed reactions in vivo. The changes in the nanoparticle sizes and shapes were investigated in an HCl solution for 6 hours. RITC-SiNPs were orally administered to healthy nude mice at a dose of 100 mg/kg. Optical imaging studies were performed at 2, 4, and 6 hours after oral administration. The mice were sacrificed at 2, 4, 6, and 10 hours post-administration, and ex vivo imaging studies were performed

  7. Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot

    Kouhi, Mohammad; Vahedi, Ali; Akbarzadeh, Abolfazl; Hanifehpour, Younes; Joo, Sang Woo

    2014-01-01

    Quadratic electro-optic effects (QEOEs) and electro-absorption (EA) process in a GaN/AlGaN spherical quantum dot are theoretically investigated. It is found that the magnitude and resonant position of third-order nonlinear optical susceptibility depend on the nanostructure size and aluminum mole fraction. With increase of the well width and barrier potential, quadratic electro-optic effect and electro-absorption process nonlinear susceptibilities are decreased and blueshifted. The results sho...

  8. Observation of phycoerythrin-containing cyanobacteria and other phytoplankton groups from space using Differential Optical Absorption Spectroscopy on SCIAMACHY data

    Bracher, Astrid; Dinter, Tilman; Burrows, John P.; Vountas, Marco; Röttgers, Rüdiger; Peeken, Ilka

    In order to understand the marine phytoplankton's role in the global marine ecosystem and biogeochemical cycles it is necessary to derive global information on the distribution of major functional phytoplankton types (PFT) in the world oceans. In our study we use instead of the common ocean color sensors such as CZCS, SeaWiFS, MODIS, MERIS, with rather low spectral resolution, the Differential Optical Absorption Spectroscopy (DOAS) to study the retrieval of phytoplankton distribution and absorption with the satellite sensor Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). SCIAMACHY measures back scattered solar radiation in the UV-Vis-NIR spectral region with a high spectral resolution (0.2 to 1.5 nm). We used in-situ measured phytoplankton absorption spectra from two different RV Polarstern expeditions where different phytoplankton groups were representing or dominating the phytoplankton composition in order to identify these characteristic absorption spectra in SCIAMACHY data in the range of 430 to 500 nm and also to identify absorption from cyanobacterial photosynthetic pigment phycoerythrin. Our results show clearly these absorptions in the SCIAMACHY data. The conversion of these differential absorptions by including the information of the light penetration depth (according to Vountas et al., Ocean Science, 2007) globally distributed pigment concentrations for these characteristic phytoplankton groups for two monthly periods (Feb-March 2004, Oct-Nov 2005 and Oct-Nov 2007) are derived. The satellite retrieved information on cyanobacteria (Synechococcus sp. and Prochlorococcus sp.) and diatoms distribution matches well with the concentration measured from collocated water samples with HPLC technique and also to global model analysis with the NASA Ocean Biogeochemical Model (NOBM from http://reason.gsfc.nasa.gov/OPS/Giovanni/) according to Gregg and Casey 2006 and Gregg 2006. Results are of great importance for global modelling of

  9. The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field

    Yuan, Jian-Hui; Zhang, Yan; Guo, Xinxia; Zhang, Jinjin; Mo, Hua

    2015-04-01

    Using the configuration-integration method, we investigated theoretically the low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field. The low-lying states and optical absorption properties depend sensitively on the electric field F and the strength of the parabolic confinement ℏω0 . We discuss the linear and third-order nonlinear optical absorption coefficients of the dot (i) with the impurity ion and (ii) without the impurity ion. In the first case, the increase of the parabolic confinement ℏω0 (or the electric field F) can induce the blueshift (or redshift) of the peak of the absorption coefficient. Also the optical intensity can induce the increase of the third-order nonlinear optical absorption coefficients to weaken and even bleach the total optical absorption coefficients. Similar behavior has also been observed in the second case, but there is no redshift of the peak positions of the absorption coefficient with the increase of the electric field F. Compared with the second case, it is easily seen that there are the blueshifts of the peak of the absorption coefficients, which can be used as a technical means for detecting impurities.

  10. Impurity optical absorption and energy structure of donor 1s states in 4H-SiC

    Optical absorption spectra of 4H-SiC monocrystals of n-type in polarization E perpendicular C have been investigated. The measurements were carried out in the temperature range from 300 to 4.5 K. Monocrystals were alloyed by nitrogen with a different degree of point defect compensation, the latter being controled by changing the crystal growth rate. Analysis of absorption spectra at low temperatures permitted to conclude that the absorption band at E perpendicular C caused by photoionization of neutral nitrogen in two nonequivalent positions into the overlying minimum of the conductivity zone. Ionization energy for nitrogen in the ''cubic'' nonequivalent position is 113 ± 2 MeV, the value of orbital-valley splitting - ΔOvh ≤ 10 and ΔOvk=57 MeV for 1 s-states of two nonequivalent donors in 4H-SiC

  11. Effects of heat treatment on optical absorption properties of Ni-P/AAO nano-array composite structure

    Liu, Yi-Fan; Wang, Feng-Hua; Guo, Dong-Lai; Huang, Sheng-You; Zou, Xian-Wu [Wuhan University, Department of Physics, Wuhan (China); Sang, Jian-Ping [Wuhan University, Department of Physics, Wuhan (China); Jianghan University, Department of Physics, Wuhan (China)

    2009-11-15

    Ni-P/AAO nano-array composite structure assemblies with Ni and P grown in the pores of anodic aluminum oxide (AAO) membranes were prepared by electroless deposition. The results of SEM, TEM and SAED show that as-deposited Ni-P nanowires have an amorphous structure and a few nanocrystallites form after annealing. The optical absorption spectra reveal that, as the annealing temperature increases, the absorption band edge of the Ni-P/AAO composite structure is obviously blue shifted, which is attributed to a decrease of the internal pressure after heat treatment. Meanwhile, the annealed Ni-P/AAO nano-array composite structure exhibits the absorption behavior of a direct band gap semiconductor. Details of this behavior are discussed together with the implications for potential device applications. (orig.)

  12. Gradient-based quantitative reconstruction of optical absorption and scattering coefficients in ultrasound-modulated optical tomography: first harmonic measurement type

    Powell, Samuel; Leung, Terence S

    2014-01-01

    Ultrasound-modulated optical tomography is an emerging biomedical imaging modality which uses the spatially localised acoustically-driven modulation of coherent light as a probe of the structure and optical properties of biological tissues. In this work we pose the inverse problem of simultaneously recovering the optical absorption and scattering coefficients in a given domain from measurement of the power-spectral density of the optical field modulated to the acoustic frequency. As part of this exposition we provide an overview of forward modelling techniques, and derive an efficient linearised diffusion-style model. To ameliorate the computational burden and memory requirements of a traditional Newton-based optimisation approach, we develop an adjoint-assisted gradient based method. We validate our reconstruction in two- and three-dimensions using simulated measurements with 1% proportional Gaussian noise, and demonstrate the successful recovery of the parameters to within +/-5% of their true values when th...

  13. γ-irradiation effect on the optical absorption in band-edge region of dicalcium lead propionate single crystals

    Crystals of Dicalcium lead propionate (DLP) irradiated with different doses of gamma radiation were used to investigate gamma radiation effect on some optical parameters. The absorption coefficient of unirradiated and irradiated DLP crystals were calculated. Values of the allowed indirect optical energy gap (Ε) of DLP were calculated as a function of gamma-dose. decreases from 4.12 eV to 3.94 eV with increasing gamma-doses from 0 up to 10 kGy. This decrease was attributed to point defects created in DLP crystals during gamma-irradiation. The exponential dependence of the absorption coefficient as a function of the incident photon energy suggests that the Urbach rule is obeyed, and indicated the formation of a band tail. It was found that the band tail exhibits the opposite Ε behaviour

  14. Very high finesse optical-feedback cavity-enhanced absorption spectrometer for low concentration water vapor isotope analyses.

    Landsberg, J; Romanini, D; Kerstel, E

    2014-04-01

    So far, cavity-enhanced absorption spectroscopy (CEAS) has been based on optical cavities with a high finesse F that, however, has been limited by mirror reflectivity and by cavity transmission considerations to a few times 10,000. Here, we demonstrate a compact near-infrared optical-feedback CEAS instrument for water vapor isotope ratio measurements, with F>140,000. We show that this very high finesse can be effectively exploited to improve the detection sensitivity to the full extent predicted by the increased effective path length to reach a noise equivalent absorption sensitivity of 5.7×10(-11)  cm(-1) Hz(-1/2) for a full spectrum registration (including possible effects of interference fringes and fit model inadequacies). PMID:24686607

  15. Electron paramagnetic resonance and optical absorption study of V4+ centres in YVO4 crystals

    Garces, N. Y.; Stevens, K. T.; Foundos, G. K.; Halliburton, L. E.

    2004-10-01

    Electron paramagnetic resonance (EPR) has been used to characterize three distinct V4+ centres in undoped Czochralski-grown yttrium orthovanadate (YVO4) crystals. These EPR signals are observed at low temperatures, and their average c-axis splittings between adjacent 51V hyperfine lines are 40 G, 123 G, and 140 G. We refer to these centres as [V4+]A, [V4+]B, and [V4+]C, respectively. The [V4+]A and [V4+]B centres are present in as-grown crystals. Exposure at 77 K to ionizing radiation (x-rays or an ultraviolet laser beam) destroys these centres and creates the [V4+]C centres. The as-grown state of the crystal is restored upon returning to room temperature. Angular dependence data are used to determine the principal values and principal directions of the g tensor and the 51V hyperfine tensor for each of the centres. We suggest that the [V4+]A centre is a V4+ ion adjacent to an oxygen vacancy and that the [V4+]B centre is a V4+ ion substituting for a Y3+ ion (i.e. a vanadium antisite defect). The [V4+]C centre is assigned to a V4+ ion at a regular vanadium site with a nearby stabilizing defect, possibly a Zr4+ on a Y3+ site. In as-grown crystals, there is a correlation between the number of [V4+]A centres and the intensity (at 380 nm) of a broad near-edge optical absorption band. This band, now associated with oxygen vacancies, gives YVO4 a 'yellow' appearance.

  16. Optical absorption enhancement in submicrometre crystalline silicon films with nanotexturing arrays for solar photovoltaic applications

    Optical absorption enhancement in submicrometre silicon films with three types of nanotexturing arrays, i.e. a column-shaped nanohole (CLNH), and a cone-shaped nanohole (CNNH) and an inverted cone-shaped nanohole (I-CNNH) array, is studied via simulation. The ultimate efficiency, which is a function of the type of array, film thickness, array period and filling fraction, is optimized. We find that in all the CNNH (or I-CNNH) arrays with the same film thickness and the same period, the ones having a filling fraction equal to the critical value of 1 − π/12 correspond to the highest ultimate efficiencies. For a given type of array and film thickness, the ultimate efficiency is optimized over the array period and filling fraction, which is defined as the optimized ultimate efficiency (OUE). In the three types of nanotextured silicon films with the same thickness in the range 250–2000 nm, the CNNH arrays show the highest optimized ultimate efficiency (OUE); however, the CLNH arrays show the highest OUEs when the film thickness is equal to 125 and 62.5 nm, and when the film thickness is in the range 500–2000 nm, the I-CNNH arrays show the lowest OUEs. The OUEs of 250 nm, 500 nm, 1000 nm and 2000 nm thick CNNH array textured silicon films are 19.88%, 28.51%, 34.06% and 39.53%, respectively. For the CNNH array, when the film thickness is reduced from 2000 nm to one-eighth, the OUE is only reduced to half its value. (paper)

  17. Fine structures in the optical absorption spectra of photochemical silver in silver halides? A call for further research

    Georgiev, Mladen

    2007-01-01

    A survey is presented of the work done so far to check earlier claims that a fine structure may be observed to occur under certain circumstances in the impurity spectral range of the optical absorption spectra of silver halides following photostimulation in the intrinsic range. This structure, associated with the photochemical formation of silver specks, has been questioned over the years. We now weigh carefully the experimental evidence on the silver halides against a background of similar d...

  18. Development of a portable active long-path differential optical absorption spectroscopy system for volcanic gas measurements

    Vita, F.; C. Kern; Inguaggiato, S

    2014-01-01

    Active long-path differential optical absorption spectroscopy (LP-DOAS) has been an effective tool for measuring atmospheric trace gases for several decades. However, instruments were large, heavy and power-inefficient, making their application to remote environments extremely challenging. Recent developments in fibre-coupling telescope technology and the availability of ultraviolet light emitting diodes (UV-LEDS) have now allowed us to design and construct a lightweight, po...

  19. The determination of kinetic parameters of LiF : Mg,Ti from thermal decaying curves of optical absorption bands

    Yazici, A N

    2003-01-01

    In this paper, the thermal bleaching curves (TBCs) of specific optical absorption bands of LiF : Mg,Ti were measured as a function of temperature. The TBCs obtained were analysed to extract the kinetic parameters (the thermal activation energy (E) and the frequency factor (s)) of some TL glow peaks of LiF : Mg,Ti on the basis of the developed first-order kinetic model over a specified temperature region.

  20. Retrieval of trace gases vertical profile in the lower atmosphere combining. Differential Optical Absorption Spectroscopy with radiative transfer models

    Palazzi, Elisa

    2008-01-01

    The motivation for the work presented in this thesis is to retrieve profile information for the atmospheric trace constituents nitrogen dioxide (NO2) and ozone (O3) in the lower troposphere from remote sensing measurements. The remote sensing technique used, referred to as Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS), is a recent technique that represents a significant advance on the well-established DOAS, especially for what it concerns the study of...

  1. Retrieval of Atmospheric Aerosol and Trace Gas Vertical Profiles using Multi-Axis Differential Optical Absorption Spectroscopy

    Yilmaz, Selami

    2012-01-01

    In this thesis, the vertical distribution of atmospheric trace gases and aerosols were retrieved using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS). Various inversion methods were used to retrieve the profiles from the MAX-DOAS measurements. A new MAX-DOAS instrument optimized for the measurement of aerosol and trace gas profiles was developed. The retrieval methods were tested and advanced in the scope of the EUSAAR (European Supersites for Atmospheric Aerosol Research)...

  2. Differential optical absorption spectroscopy (DOAS) and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    Rozanov, V.V.; Rozanov, A.V.

    2010-01-01

    The Differential Optical Absorption Spectroscopy (DOAS) technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical...

  3. Two instruments based on differential optical absorption spectroscopy (DOAS) to measure accurate ammonia concentrations in the atmosphere

    H. Volten; Bergwerff, J.B.; M. Haaima; Lolkema, D. E.; A. J. C. Berkhout; G. R. van der Hoff; C. J. M. Potma; R. J. Wichink Kruit; W. A. J. van Pul; D. P. J. Swart

    2011-01-01

    We present two Differential Optical Absorption Spectroscopy (DOAS) instruments built at RIVM: the RIVM DOAS and the miniDOAS. Both instruments provide virtually interference-free measurements of NH3 concentrations in the atmosphere, since they measure over an open path, without suffering from inlet problems or interference problems by ammonium aerosols dissociating on tubes or filters. They measure concentrations up to at least 200 μg m−3, have a ...

  4. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Buchard, V.; A. M. Silva; P. R. Colarco; Darmenov, A.; C. A. Randles; Govindaraju, R.; O. Torres; Campbell, J.; R. Spurr

    2015-01-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on...

  5. An edge of the optical absorption in Ba2NaNb5O15 crystals

    The effect of the Seignette-elastic phase transformations in Ba2NaNb5O15 crystals on the polarized edge absorption spectra (AS) in the temperature range from 5 to 600 K is investigated. AS is described by the exponential dependence of the energy absorption coefficient. Violation of laws, being characteristic for the Urbach absorption tail caused by the Franz-Keldysh effect related to orthorhombic lattice distortion is detected in the orthorhombic crystal phase (110-573 K)

  6. A model for the spectral dependence of optically induced absorption in amorphous silicon

    Lawandy, N. M.

    1990-01-01

    A model based on transitions from localized band tail states to states above the mobility edge is used to explain the broad band induced absorptions observed in recent pump-probe experiments. The model gives the observed decrease of absorption with frequency at subband gap photo energies and high carrier densities (of about 10 to the 20th/cu cm). At lower carrier densities, the absorption has a maximun which is sensitive to the spatial extent of the band tail states.

  7. Optical absorption, 31P NMR, and photoluminescence spectroscopy study of copper and tin co-doped barium–phosphate glasses

    The optical and structural properties of 50P2O5:50BaO glasses prepared by melting have been investigated for additive concentrations of 10 and 1 mol% of CuO and SnO dopants. Absorption and photoluminescence spectroscopies were employed in the optical characterization, whereas structural properties were assessed by 31P nuclear magnetic resonance (NMR) spectroscopy. Residual Cu2+ was detectable by absorption spectroscopy for the highest concentration of CuO and SnO. More prominently, the optical data suggests contributions from both twofold-coordinated Sn centers and Cu+ ions to light absorption and emission in the glasses. The luminescence depends strongly on excitation wavelength for the highest concentration of dopants where a blue–white emission is observed under short-wavelength excitation (e.g., 260 nm) largely due to tin, while an orange luminescence is exhibited for longer excitation wavelengths (e.g., 360 nm) essentially due to Cu+ ions. On the other hand, dissimilar luminescent properties were observed in connection to Cu+ ions for the lowest concentration studied, as the copper ions were preferentially excited in a narrower range at shorter wavelengths near tin centers absorption. The structural analyses revealed the glass matrix to be composed essentially of Q2 (two bridging oxygens) and Q1 (one bridging oxygen) phosphate tetrahedra. A slight increase in the Q1/Q2 ratio reflected upon SnO doping alone suggests a major incorporation of tin into the glass network via P–O–Sn bonds, compatible with the 2-coordinated state attributed to the luminescent Sn centers. However, a significant increase in the Q1/Q2 ratio was indicated with the incorporation of copper at the highest concentration, consistent with a key role of the metal ions as network modifiers. Thus, the change in Cu+ optical properties concurs with different distributions of local environments around the ions induced by variation in metal ion concentration. Luminescence decay curve

  8. The vacuum thermal treatment effect on the optical absorption spectra of the TiO2 coated by Ni-B nano-clasters photocatalyst powders

    Nadareishvili, M. M.; Kvavadze, K. A.; Mamniashvili, G. I.; Khoperia, T. N.; Zedgenidze, T. I.

    2009-01-01

    The thermal vacuum treatment effect on the optical absorption spectra of the TiO2 nanopowders, both pure and coated by the Ni-B clasters with the original electroless method was investigated. It was observed that the thermal treatment of pure TiO2 nanopowders does not change their optical absorption spectrum while after the coating of these powder particles by the Ni-B clasters the thermal treatment results in the increase of the optical light absorption in the visual region of spectrum. This...

  9. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes: I. C60, C59N+ and C48N12

    Xie, R; Bryant, G W; Sun, G; C.Nicklaus, M; Heringer, D; Frauenheim, T; Manaa, M R; Smith, Jr., V H; Araki, Y; Ito, O

    2003-10-02

    Low-energy excitations and optical absorption spectrum of C{sub 60} are computed by using time-dependent (TD) Hartree-Fock (HF), TD-density functional theory (TD-DFT), TD-DFT-based tight-binding (TD-DFT-TB) and a semiempirical ZINDO method. A detailed comparison of experiment and theory for the excitation energies, optical gap and absorption spectrum of C{sub 60} is presented. It is found that electron correlations and collective effects of exciton pairs play important roles in assigning accurately the spectral features of C{sub 60} and the TD-DFT method with non-hybrid functionals or a local spin density approximation leads to more accurate excitation energies than with hybrid functionals. The level of agreement between theory and experiment for C{sub 60} justifies similar calculations of the excitations and optical absorption spectrum of a monomeric azafullerene cation C{sub 59}N{sup +} exhibits distinguishing spectral features different from C{sub 60}: (1) the first singlet is dipole-allowed and the optical gap is redshifted by 1.44 eV; (2) several weaker absorption maxima occur in the visible region; (3) the transient triplet-triplet absorption at 1.60 eV (775 nm) is much broader and the decay of the triplet state is much faster. The calculated spectra of C{sub 59}N{sup +} characterize and explain well our measured ultraviolet-visible (UV-vis) and transient absorption spectra of the carborane anion salt [C{sub 59}N][Ag(CB{sub 11}H{sub 6}Cl{sub 6}){sub 2}]. For the most stable isomer of C{sub 48}N{sub 12}, we predict that the first singlet is dipole-allowed, the optical gap is redshifted by 1.22 eV relative to that of C{sub 60}, and optical absorption maxima occur at 585, 528, 443, 363, 340, 314 and 303 nm. We point out that the characterization of the UV-vis and transient absorption spectra of C{sub 48}N{sub 12} isomers is helpful in distinguishing the isomer structures required for applications in molecular electronics. For C{sub 59}N{sup +} and C{sub 48}N

  10. Direct and absolute absorption measurements in optical materials and coatings by laser induced deflection (LID) technique

    Mühlig, Ch.

    2012-01-01

    Different strategies of the laser induced deflection (LID) technique for direct and absolute absorption measurements are presented. Besides selected strategies for bulk and coating absorption measurements, respectively, a new strategy is introduced allowing the transfer of the LID technique to very small samples and to significantly increase the sensitivity for materials with a very weak photo-thermal response. Additionally, an emphasis is placed on the importance of the calibration procedure. The electrical calibration of the LID setup is compared to two other approaches that use either doped samples or highly absorptive reference samples in combination with numerical simulations. Applying the LID technique, we report on the characterization of AR coated LBO crystals used in high power NIR/VIS laser applications. The comparison of different LBO crystals shows that there are significant differences in both, the AR coating and the LBO bulk absorption. These differences are much larger at 515 nm than at 1030 nm. Absorption spectroscopy measurements combining LID technique with a high power OPO laser system indicate that the coating process affects the LBO bulk absorption properties. Furthermore, the change of the absorption upon 1030 nm laser irradiation of a Nd:YVO4 laser crystal is investigated and compared to recent results. Finally, Ytterbium doped silica raw materials for high power fiber lasers are characterized with respect to the absorption induced attenuation at 1550 nm in order to compare these data with the total attenuation obtained for the subsequently manufactured laser active fibers.

  11. An organic dye-polymer (phenol red-poly (vinyl alcohol)) composite architecture towards tunable -optical and -saturable absorption characteristics

    Sreedhar, Sreeja; Illyaskutty, Navas; Sreedhanya, S.; Philip, Reji; Muneera, C. I.

    2016-05-01

    Herein, we demonstrate that blending an organic dye (guest/filler), with a vinyl polymer (host template), is an inexpensive and simple approach for the fabrication of multifunctional photonic materials which could display an enhancement in the desirable properties of the constituent materials and, at the same time provide novel synergistic properties for the guest-host system. A new guest-host nanocomposite system comprising Phenol Red dye and poly (vinyl alcohol) as guest and host template, respectively, which exhibits tunable optical characteristics and saturable absorption behavior, is introduced. The dependence of local electronic environment provided by the polymer template and the interactions of the polymer molecules with the encapsulated guest molecules on the observed optical/nonlinear absorption behavior is discussed. An understanding of the tunability of the optical/ photophysical processes, with respect to the filler content, as discussed herein could help in the design of improved optical materials for several photonic device applications like organic light emitting diodes and saturable absorbers.

  12. Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study

    Laidani, N [Fondazione Bruno Kessler-Ricerca Scientifica e Tecnologica, Via Sommarive, 18, 38050 Povo, Trento (Italy); Bartali, R [Fondazione Bruno Kessler-Ricerca Scientifica e Tecnologica, Via Sommarive, 18, 38050 Povo, Trento (Italy); Gottardi, G [Fondazione Bruno Kessler-Ricerca Scientifica e Tecnologica, Via Sommarive, 18, 38050 Povo, Trento (Italy); Anderle, M [Fondazione Bruno Kessler-Ricerca Scientifica e Tecnologica, Via Sommarive, 18, 38050 Povo, Trento (Italy); Cheyssac, P [Laboratoire de Physique de la Matiere Condensee (UMR CNRS 6622), Universite de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice cedex 2 (France)

    2008-01-09

    Parametrization models of optical constants, namely Tauc-Lorentz (TL), Forouhi-Bloomer (FB) and modified FB models, were applied to the interband absorption of amorphous carbon films. The optical constants were determined by means of transmittance and reflectance measurements in the visible range. The studied films were prepared by rf sputtering and characterized for their chemical properties. The analytical models were also applied to other optical data published in the literature pertaining to films produced by various deposition techniques. The different approaches used to determine important physical parameters of the interband transition yielded different results. A figure-of-merit was introduced to check the applicability of the models and the results showed that FB modified for an energy dependence of the dipole matrix element adequately represents the interband transition in the amorphous carbons. Further, the modified FB model shows a relative superiority over the TL ones for concerning the determination of the band gap energy, as it is the only one to be validated by an independent, though indirect, gap measurement by x-ray photoelectron spectroscopy. Finally, the application of the modified FB model allowed us to establish some important correlations between film structure and optical absorption properties.

  13. Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study

    Parametrization models of optical constants, namely Tauc-Lorentz (TL), Forouhi-Bloomer (FB) and modified FB models, were applied to the interband absorption of amorphous carbon films. The optical constants were determined by means of transmittance and reflectance measurements in the visible range. The studied films were prepared by rf sputtering and characterized for their chemical properties. The analytical models were also applied to other optical data published in the literature pertaining to films produced by various deposition techniques. The different approaches used to determine important physical parameters of the interband transition yielded different results. A figure-of-merit was introduced to check the applicability of the models and the results showed that FB modified for an energy dependence of the dipole matrix element adequately represents the interband transition in the amorphous carbons. Further, the modified FB model shows a relative superiority over the TL ones for concerning the determination of the band gap energy, as it is the only one to be validated by an independent, though indirect, gap measurement by x-ray photoelectron spectroscopy. Finally, the application of the modified FB model allowed us to establish some important correlations between film structure and optical absorption properties

  14. The effect of V 2O 5 on alkaline earth zinc borate glasses studied by EPR and optical absorption

    Sumalatha, B.; Omkaram, I.; Rajavardhana Rao, T.; Linga Raju, Ch.

    2011-12-01

    10 wt% SrO:30 wt% ZnO:60 wt% B 2O 3 incorporated with different vanadyl concentrations were studied by means of electron paramagnetic resonance (EPR) and optical absorption techniques. The spin-Hamiltonian parameters ( g and A), bonding parameters ( α2 and β2∗2) and Fermi contact interaction parameter K have been calculated. The values of spin-Hamiltonian parameters indicate that the VO 2+ ions in strontium zinc borate glasses were present in octahedral sites with tetragonal compression. The spin concentration ( N) participating in resonance was calculated as a function of temperature (93-273 K) for strontium zinc borate glass sample containing 0.9 wt% of VO 2+ ions and the activation energy ( Ea) was calculated. From the EPR data, the paramagnetic susceptibility ( χ) was calculated at various temperatures and the Curie constant ( C) was evaluated from the 1/ χ- T graph. The optical absorption spectra of VO 2+ ions in these glasses show two bands corresponding to the transitions 2B 2g → 2B 1g and 2B 2g → 2E g in the order of decreasing energy respectively. The optical band gap energies ( Eopt) and Urbach energy (Δ E) have been determined from their ultraviolet edges. The theoretical values of optical basicity ( Λth) of these glasses have also been evaluated.

  15. Optical absorption, fluorescence and thermoluminescence of CaF2 single crystals doped with lanthanide rare earth ions

    Optical Absorption (OA) , Fluorescence (FL) and Thermoluminescence (TL) experiments were carried out in X-irradiated CaF2 crystals doped with most of the Lanthanide Rare Earth (RE) ions, Yttrium, and with both RE ions Dysprosium and Terbium. All optical Absorption and Fluorescence measurements as well as optical bleaching and X-irradiation were performed at RT while the TL measurements were done i n the RT- 800K range. Every RE-doped specimen has been fully characterized by its OA and FL bands due to the RE ion-electronic transitions. Most of the RE ions which substitutes for a Ca2+ ion in the CaF2 lattice is in the trivial state, being reduced to the divalent state by X-irradiation. The TL results for X-irradiated CaF2:Tb , CaF2:Dy and CaF2:Ho specimens show that the mechanism proposed f o r the 4K-300K TL processing these crystals is also valid for the 300K - 800K temperature range. The photochromic (PC) effect in X-irradiated Tb-doped CaF2 crystals upon thermal and optical bleaching has been detected. Optical experiments in CaF2:Tb,Dy show that the observed PC effect is due to photo switched reversibility of an electron between two states, the thermally stable original state and the ionized stat PC - e- -> PC+, Tb3+ e- -. Tb2+. The regeneration of the OA bands is achieved thermally (-100 deg C) and optically (λVis>400nm) with further UV blenching. A detailed analysis of the OA spectra of CaF2:Tb crystals X=irradiated and thermally as well as optically bleached show that besides the photo switching, electron-hole recombination occurs leading to a decrease in the overall OA spectrum. The OA bands due to PC-, PC+ and Tb2+ - transitions have been identified by means of Optical Absorption Differential Analysis. Further studies of Photochromic color centers in CaF2:Tb crystals show that some of the OA bands detected i the 15Kcm-1 - 20Kcm-1 spectral region are due to hole centers. The TL emissions peaks resulting from the thermal destruction of the PC and PC+ centers

  16. Photoluminescence and Optical Absorption of Pure NanocrystallineTiO2 Anatase and Rutile at Room Temperature

    L. Kernazhitsky

    2013-10-01

    Full Text Available The optical absorption and photoluminescence of nanocrystalline TiO2 samples of anatase and rutile were investigated at room temperature. Nanocrystalline TiO2 samples were synthesized in the form of pure anatase or rutile and studied by X-ray diffraction, X-ray fluorescence, Raman spectroscopy, optical absorption and photoluminescence (PL. PL was studied at room temperature when excited by intense UV (3.68 eV by a nitrogen laser. For the first time for nanocrystalline TiO2 a features in the high-resolution PL spectra, including the exciton band and interband transitions were registered. It is concluded that the processes of absorption and emission of light near the edge of the forbidden zone occur with the participation of the same electronic transitions. PL bands, including the peaks at 2.71-2.81 eV in the anatase and rutile arise due to exciton recombination in the TiO2 lattice oxygen vacancies. The exciton peak at 2.91 eV is attributed to the recombination of self-trapped excitons in anatase or to the free exciton in rutile, respectively. PL bands within 3.0-3.3 eV attributed to indirect and direct allowed transitions due to electron-hole recombination. PL bands at 3.03 eV and 3.26 eV, attributed to the emission of free excitons near the fundamental absorption edge of rutile and anatase, respectively. The influence of TiO2 crystal structure and calcination temperature of the samples on the PL spectra and optical absorbtion is discussed.

  17. Observation of Rb Two-Photon Absorption Directly Excited by an Erbium-Fiber-Laser-Based Optical Frequency Comb via Spectral Control

    Wu, Jiutao; Hou, Dong; Dai, Xiaoliang; Qin, Zhengyu; Zhang, Zhigang; Zhao, Jianye

    2013-01-01

    We demonstrated the observation of Rb two-photon absorption directly excided by an optical frequency comb at fiber communication bands. A chain of comb spectral control is elaborately implemented to increase the power of the second harmonic optical frequency comb generation and the two-photon transition strength. A two-photon transition spectrum is obtained with clearly resolved transition lines. It provides a potential approach to realize the optical frequency comb or optical clock at ~1.5{\\...

  18. Optical two-photon absorption in GaAs measured by optical-pump terahertz-probe spectroscopy

    Kadlec, Filip; Němec, Hynek; Kužel, Petr

    2004-01-01

    Roč. 70, č. 12 (2004), 125205/1-125205/6. ISSN 1098-0121 R&D Projects: GA MŠk(CZ) LN00A032 Institutional research plan: CEZ:AV0Z1010914 Keywords : optical photon * optical pump * terahertz * spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.075, year: 2004

  19. Influences of hydrogen dilution on microstructure and optical absorption characteristics of nc-SiOx:H film

    Zhao, Wei; Du, Lin-Yuan; Jiang, Zhao-Yi; Yin, Chen-Chen; Yu, Wei; Fu, Guang-Sheng

    2015-10-01

    By using the plasma enhanced chemical vapor deposition (PECVD) technique, amorphous silicon oxide films containing nanocrystalline silicon grain (nc-SiOx:H) are deposited, and the bonding configurations and optical absorption properties of the films are investigated. The grain size can be well controlled by varying the hydrogen and oxygen content, and the largest size is obtained when the hydrogen dilution ratio R is 33. The results show that the crystallinity and the grain size of the film first increased and then decreased as R increased. The highest degree of crystallinity is obtained at R = 30. The analyses of bonding characteristics and light absorption characteristics show that the incorporation of hydrogen leads to an increase of overall bonding oxygen content in the film, and the film porosity first increases and then decreases. When R = 30, the film can be more compact, the optical absorption edge of the film is blue shifted, and the film has a lower activation energy. Project supported by the Key Basic Research Project of Hebei Province, China (Grant No. 12963930D) and the Natural Science Foundation of Hebei Province, China (Grant Nos. F2013201250 and B2012402011).

  20. [Research on the NO2 mean concentration measurement with target differential optical absorption spectroscopy technology].

    Liu, Jin; Si, Fu-Qi; Zhou, Hai-Jin; Zhao, Min-Jie; Dou, Ke; Liu, Wen-Qing

    2013-04-01

    A new monitoring method of NO2 concentration near ground with the target difference absorption spectrum technology (Target DOAS) is introduced in the present paper. This method is based on the passive difference absorption spectrum technology. The instrument collects solar reflection spectrum of remote objectives, such as wall of building and mountain, and a specific reference spectrum is chosen to subtract the influence of trace gases from the target to atmospheric top, then integrated concentration of NO2 along the path between the target and instrument can be calculated through the differential absorption spectra inversion algorithm. Since the distance between the instrument and target is given, the mean concentration of NO2 can be derived. With developed Target DOAS instrument, NO2 concentration measurement was carried out in Hefei. And comparison was made between the target DOAS and long path difference absorption spectrometer. Good consistency was presented, proving the feasibility of this method. PMID:23841393

  1. Edge-promoting reconstruction of absorption and diffusivity in optical tomography

    Hannukainen, A.; Harhanen, Lauri Oskari; Hyvönen, N.;

    2015-01-01

    object is composed of an approximately homogeneous background with clearly distinguishable embedded inhomogeneities. An algorithm for finding the maximum a posteriori estimate for the absorption and diffusion coefficients is introduced assuming an edge-preferring prior and an additive Gaussian...

  2. Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS) – applicability and corrections

    U. Platt; J. Meinen; D. Pöhler; T. Leisner

    2008-01-01

    Atmospheric trace gas measurements by cavity assisted long-path absorption spectroscopy are an emerging technology. An interesting approach is the combination of CEAS with broadband light sources, the broadband CEAS (BB-CEAS). BB-CEAS lends itself to the application of the DOAS technique to analyse the derived absorption spectra. While the DOAS approach has enormous advantages in terms of sensitivity and specificity of the measurement, an important implication is the reduction of the light pa...

  3. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes) – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing) the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding) the size of the quantum dots: resulting into a blue (red) shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower) magneto-optical transitions survive even in the extreme instances. However, the intra-Landau level

  4. Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field

    Manvir S. Kushwaha

    2014-12-01

    Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra

  5. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS in the red spectral range

    T. Wagner

    2007-01-01

    Full Text Available A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm reflectance structures (i.e. "fingerprint" structures of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS, which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms. The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  6. Optical Absorption Spectra and Excitons of Dye-Substrate Interfaces: Catechol on TiO2(110).

    Mowbray, Duncan John; Migani, Annapaola

    2016-06-14

    Optimizing the photovoltaic efficiency of dye-sensitized solar cells (DSSC) based on staggered gap heterojunctions requires a detailed understanding of sub-band gap transitions in the visible from the dye directly to the substrate's conduction band (CB) (type-II DSSCs). Here, we calculate the optical absorption spectra and spatial distribution of bright excitons in the visible region for a prototypical DSSC, catechol on rutile TiO2(110), as a function of coverage and deprotonation of the OH anchoring groups. This is accomplished by solving the Bethe-Salpeter equation (BSE) based on hybrid range-separated exchange and correlation functional (HSE06) density functional theory (DFT) calculations. Such a treatment is necessary to accurately describe the interfacial level alignment and the weakly bound charge transfer transitions that are the dominant absorption mechanism in type-II DSSCs. Our HSE06 BSE spectra agree semiquantitatively with spectra measured for catechol on anatase TiO2 nanoparticles. Our results suggest deprotonation of catechol's OH anchoring groups, while being nearly isoenergetic at high coverages, shifts the onset of the absorption spectra to lower energies, with a concomitant increase in photovoltaic efficiency. Further, the most relevant bright excitons in the visible region are rather intense charge transfer transitions with the electron and hole spatially separated in both the [110] and [001] directions. Such detailed information on the absorption spectra and excitons is only accessible via periodic models of the combined dye-substrate interface. PMID:27183273

  7. Optical absorption and photoluminescence spectra of the ordered defect compound CuIn{sub 3}Te{sub 5}

    Rincon, C [Centro de Estudios de Semiconductores, Departamento de Fisica Facultad de Ciencias, Universidad de Los Andes, Apartado, Postal No 1, La Hechicera Merida 5101 (Venezuela); Wasim, S M [Centro de Estudios de Semiconductores, Departamento de Fisica Facultad de Ciencias, Universidad de Los Andes, Apartado, Postal No 1, La Hechicera Merida 5101 (Venezuela); Marin, G [Centro de Estudios de Semiconductores, Departamento de Fisica Facultad de Ciencias, Universidad de Los Andes, Apartado, Postal No 1, La Hechicera Merida 5101 (Venezuela); Delgado, J M [Centro Nacional de Difraccion de Rayos-X, Facultad de Ciencias, Universidad de Los Andes, Apartado, Postal No 40, La Hechicera, Merida 5101 (Venezuela); Petroff, P M [Materials Department, University of California, Santa Barbara, CA 93106 (United States)

    2003-05-21

    The optical properties of the ordered defect compound CuIn{sub 3}Te{sub 5} which crystallizes in a chalcopyrite-related structure have been studied by absorption and photoluminescence (PL) techniques. Optical absorption measurements show that the band gap energy E{sub G} varies from 1.078 to 1.040 eV between 10 and 300 K. It is found that the variation of E{sub G} with temperature is mainly due to the contribution of optical phonons with a characteristic energy of about 16 meV. The PL measurements, carried out between 4 and 100 K with laser excitation intensities in the range from 1 to 400 mW, reveal that the main PL band is due to a donor-acceptor recombination between donor and acceptor defect levels that have activation energies of 60 and 30 meV, respectively. These donor and acceptor states are tentatively assigned as originating from indium atoms on copper sites and copper vacancies, respectively.

  8. [Research on the influence of LED temperature shifts on differential optical absorption spectroscopy for measuring NO2].

    Ling, Liu-Yi; Xie, Pin-Hua; Qin, Min; Zheng, Ni-Na; Ye, Cong-Lei; Li, Ang; Hu, Ren-Zhi

    2012-11-01

    Influences of LEDs (without etalon structure and center wavelengths are respectively 370 nm (near-UV), 452 nm (blue) and 660 nm(red)) temperature shifts on differential optical absorption spectroscopy(DOAS) for measuring NO2 were studied. NO2 absorption spectra were formed using LED emitting spectra at 10 degrees C. The measured LED spectra at other temperatures were used as reference spectra of DOAS. Thus, NO2 differential optical densities under different LED temperature shifts were acquired and then NO2 differential cross-sections were fitted to the acquired differential optical densities. From fitting results, the linear relations of 0.995, 0.945 and 0.989 correlation between delta of fitting residual and near-UV, blue and red LEDs temperature shifts were found and their slopes are respectively 1.12 x 10(-3), 5.25 x 10(-5) and 7.45 x 10(-4) degrees C(-1). The fitting results show that the influence of temperature shifts of blue LED on DOAS retrieval is negligible and the temperature shifts of near-UV and red LED are impressible to DOAS measurement resulting in degradation of detection sensitivity. The retrieval results of blue LED with and without etalon with similar temperature properties were compared and showed that etalon of LED will greatly increase the influence of temperature shifts of LED on DOAS retrieval. PMID:23387143

  9. Optical feedback cavity-enhanced absorption spectroscopy with a 3.24 μm interband cascade laser

    Manfred, K. M.; Ritchie, G. A. D. [Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Rd, Oxford OX1 3QZ (United Kingdom); Lang, N.; Röpcke, J.; Helden, J. H. van, E-mail: jean-pierre.vanhelden@inp-greifswald.de [Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2015-06-01

    The development of interband cascade lasers (ICLs) has made the strong C-H transitions in the 3 μm spectral region increasingly accessible. We present the demonstration of a single mode distributed feedback ICL coupled to a V-shaped optical cavity in an optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS) experiment. We achieved a minimum detectable absorption coefficient, α{sub min}, of (7.1±0.2)×10{sup −8} cm{sup −1} for a spectrum of CH{sub 4} at 3.24 μm with a two second acquisition time (100 scans averaged). This corresponds to a detection limit of 3 ppb CH{sub 4} at atmospheric pressure, which is comparable to previously reported OF-CEAS instruments with diode lasers or quantum cascade lasers. The ability to frequency lock an ICL source in the important 3 μm region to an optical cavity holds great promise for future spectroscopic applications.

  10. Thermoluminescence and optical absorption studies of Z1-centres in NaCl crystals doped with samarium

    Thermal annealing of X-irradiation induced point defects in samarium doped NaCl crystals is investigated by thermoluminescence and optical absorption methods. The results of the influence of pre-heat treatment and optical bleaching on the glow curves and the production of Z1-centres are discussed. The glow curve of a NaCl crystal containing 1 mol% samarium shows four peaks around 60, 90, 130, and 180 0C (T1, T2, T3, and T4 peaks, respectively). Quenching the crystal from higher temperatures results in the enhancement of the T3 and T4 peaks and suppression of T2 peak. Bleaching of X-irradiated crystal with F-light shows that the T3 peak is enhanced whereas the T1 and T4 peaks get suppressed and the T2 peak is completely suppressed. Optical absorption studies of the crystal before and after F-bleaching shows that the F-band decreases and the decrease is accompanied by a broadening towards longer wavelengths. Annealing studies of the X-irradiated crystal at room temperature show that the T1 and T2 peaks correspond to shallow traps. The T3 peak is attributed to Z1 centres and T4 peak to F-centres. These studies confirm the formation of Z1-centres in samarium doped NaCl crystals and the dependence of glow curves on the state of dispersion of the impurity. (author)

  11. [The retrieval of ozone column densities by passive differential optical absorption spectroscopy during summer at Zhongshan Station, Antarctic].

    Luo, Yu-Han; Liu, Wen-Qing; Bian, Lin-Gen; Lu, Chang-Gui; Xie, Pin-Hua; Si, Fu-Qi; Sun, Li-Guang

    2011-02-01

    Daily ozone column densities were monitored by Passive DOAS (differential optical absorption spectroscopy) from December 10th, 2008 to Feb 19th, 2009 at Zhongshan Station, Antarctic (69 degrees 22'24" S, 76 degrees 22'14" E). Considering the absorption of O3, OClO, NO2, O4, BrO and the Ring effect, ozone slant column densities were retrieved using the zenith scattered sunlight as the light source. The results showed that there was no obvious "ozone hole" during the monitoring period, but ozone VCD (vertical column density) had greatly changed within short time scale, especially in middle December and early February. The analysis of passive DOAS and Brewer measurements of ozone VCD showed good agreement with the correlative coefficient of 0.863, while satellite board OMI measurements with the correlative coefficient of 0.840, which confirmed the validity of the monitoring of Passive DOAS. PMID:21510403

  12. Compact optical cell system for vacuum ultraviolet absorption and circular dichroism spectroscopy and its application to aqueous solution sample.

    Tanaka, Masahito; Yagi-Watanabe, Kazutoshi; Kaneko, Fusae; Nakagawa, Kazumichi

    2008-09-01

    We have designed a compact optical cell for studying the absorption and circular dichroism (CD) of a solution sample in the vacuum ultraviolet (VUV) region using a temperature control unit. The cell size was 34 mm in diameter and 14 mm in length. Such compactness was obtained by coating the VUV scintillator onto the outside of the back window. Because this scintillator converts the transmitted VUV light to visible light, the outside of this cell is operated under atmospheric pressure. The temperature of the sample solution was maintained in the range of 5 degrees C to 80 degrees C using a temperature control unit with a Peltier thermoelectric element. Changes in the sample temperature were observed by monitoring the absorption intensity of water. Through the study of VUV-CD spectra of ammonium camphor-10-sulfonate aqueous solutions and the transmitted spectrum of an empty cell, it was concluded that this cell unit has sufficient performance for use in VUV spectroscopy. PMID:18473342

  13. Effective medium theories for composite optical materials in spectral ranges of weak absorption: the case of Nb2O5-SiO2 mixtures

    The validity of effective medium theories (EMTs) for mixtures of dielectric materials in weak absorption regions is studied. Based on the Bergman spectral representation, it is possible to show that for any EMT the absorption properties of a mixture consist basically of scaling of the absorption properties of the material with highest absorption. The real part of the dielectric function remains unaffected by the absorption properties. Thin films consisting of Nb2O5-SiO2 mixtures are characterized using optical measurements and the results are compared with the calculations of EMTs. The large discrepancies between the absorption properties observed experimentally and those calculated using EMTs are justified by the failure of these theories to predict a compositional dependence of relevant structural parameters, such as the band-gap energy or the width of localized states. This failure, however, affects the calculation of the refractive index in the weak absorption regions to a less significant degree.

  14. Optical absorption and luminescence characteristics of Dy3+ doped Zinc Alumino Bismuth Borate glasses for lasing materials and white LEDs

    Good optical quality Dy3+ doped Zinc Alumino Bismuth Borate (ZnAlBiB) glasses were prepared by the conventional melt quenching technique and characterized by optical absorption and luminescence studies. The glassy nature of these materials has been confirmed through XRD measurements. From the absorption spectra, the three phenomenological JO parameters Ωλ (λ=2,4 and 6) have been determined from the absorption spectral intensities by using the JO theory. Luminescence spectra were measured for different concentrations of Dy3+ ions doped glasses by exciting the glasses at 387 nm. The intensity of Dy3+ emission spectra increases from 0.5 mol% to 1 mol % and beyond 1 mol % the concentration quenching is observed. The suitable concentration of Dy3+ ions for ZnAlBiB glassy material to act as good lasing material has been discussed by measuring the branching ratios and emission cross-sections for two strong emission transitions such as 4F9/2→6H15/2 and 4F9/2→6H13/2 observed in visible region. By exciting these glassy materials at various excitation wavelengths in n-UV region, the CIE chromaticity coordinates were evaluated for the two sharp emissions observed in blue (4F9/2→6H15/2) and yellow (4F9/2→6H13/2) regions to understand the suitability of these materials for white light generation. -- Highlights: ► Successfully synthesized the transparent Zinc Alumino Bismuth Borate glasses. ► Measured the absorption and luminescence properties. ► Discussed the spectroscopic properties by using Judd–Ofelt analysis for ZnAlBiB glasses. ► Finally, suitability of these glasses for lasers and white LEDs has been discussed

  15. Photochromic polymers as a versatile tool for devices based on switchable absorption and other optical properties

    Bertarelli, Chiara; Castagna, Rossella; Pariani, Giorgio; Bianco, Andrea

    2011-10-01

    Photochromic polymer materials with large modulation of properties enable the production of functional optical devices. The light-triggered change in color has been exploited to develop multi-object focal plane masks for astronomical instrumentation and holographic optical elements for interferometric optical testing. Modulation of properties other than color (i.e. refractive index, light emission or Raman scattering) opens the way to many other applications into technology, such as rewritable optical memories, switchable organic lasers, etc. In this background, examples from molecular design to devices are highlighted.

  16. Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS – applicability and corrections

    D. Pöhler

    2008-12-01

    Full Text Available Atmospheric trace gas measurements by cavity assisted long-path absorption spectroscopy are an emerging technology. An interesting approach is the combination of CEAS with broad band light sources, the broad-band CEAS (BB-CEAS. BB-CEAS lends itself to the application of the DOAS technique to analyse the derived absorption spectra. While the DOAS approach has enormous advantages in terms of sensitivity and specificity of the measurement, an important implication is the reduction of the light path by the trace gas absorption, since cavity losses due to absorption by gases reduce the quality (Q of the cavity. In fact, at wavelength, where the quality of the BB-CEAS cavity is dominated by the trace gas absorption (esp. at very high mirror reflectivity, the light path will vary inversely with the trace gas concentration and the strength of the band will become nearly independent of the trace gas concentration c in the cavity, rendering the CEAS Method useless for trace gas measurements. Only in the limiting case where the mirror reflectivity determines Q at all wavelength, the strength of the band as seen by the BB-CEAS instrument becomes proportional to the concentration c. We investigate these relationships in detail and present methods to correct for the cases between the two above extremes, which are of course the important ones in practice.

  17. Optical self-injection mode-locking of semiconductor optical amplifier fiber ring with electro-absorption modulation—fundamentals and applications

    The optical self-injection mode-locking of a semiconductor optical amplifier incorporated fiber ring laser (SOAFL) with spectrally sliced multi-channel carriers is demonstrated for applications. The synthesizer-free SOAFL pulse-train is delivered by optical injection mode-locking with a 10 GHz self-pulsed electro-absorption modulator (EAM). Such a coupled optical and electronic resonator architecture facilitates a self-feedback oscillation with a higher Q-factor and lower phase/intensity noises when compared with conventional approaches. The theoretical model of such an injection-mode-locking SOAFL is derived to improve the self-pulsating performance of the optical return-to-zero (RZ) carrier, thus providing optimized pulsewidth, pulse extinction ratio, effective Q-factor, frequency variation and timing jitter of 11.4 ps, 9.1 dB, 4 × 105, −1 bi-directional WDM transmission network with down-stream RZ binary phase-shift keying (RZ-BPSK) and up-stream re-modulated RZ on–off-keying (RZ-OOK) formats. Under BPSK/OOK bi-directional data transmission, the self-pulsed harmonic mode-locking SOAFL simultaneously provides four to six WDM channels for down-stream RZ-BPSK and up-stream RZ-OOK formats with receiving sensitivities of −17 and −15.2 dBm at a bit error rate of 10−9, respectively. (paper)

  18. EXPLORING THE ORIGIN AND FATE OF THE MAGELLANIC STREAM WITH ULTRAVIOLET AND OPTICAL ABSORPTION

    We present an analysis of ionization and metal enrichment in the Magellanic Stream (MS), the nearest gaseous tidal stream, using Hubble Space Telescope/STIS and FUSE ultraviolet spectroscopy of two background active galactic nuclei. The targets are NGC 7469, lying directly behind the MS with log N(H I)MS = 18.63 ± 0.03(stat) ± 0.08(syst), and Mrk 335, lying 24.07 away with log N(H I)MS = 16.67 ± 0.05. For NGC 7469, we include optical spectroscopy from VLT/UVES. In both sight lines, the MS is detected in low-ion (O I, C II, C III, Si II, Si III, Al II, Ca II) and high-ion (O VI, C IV, Si IV) absorption. Toward NGC 7469, we measure an MS oxygen abundance [O/H]MS = [O I/H I] = -1.00 ± 0.05(stat) ± 0.08(syst), supporting the view that the Stream originates in the Small Magellanic Cloud rather than the Large Magellanic Cloud. We use CLOUDY to model the low-ion phase of the Stream as a photoionized plasma using the observed Si III/Si II and C III/C II ratios. Toward Mrk 335, this yields an ionization parameter between log U = -3.45 and -3.15, a gas density log (n H/cm-3) between -2.51 and -2.21, and a hydrogen ionization fraction of 98.9%-99.5%. Toward NGC 7469, we derive sub-solar abundance ratios for [Si/O], [Fe/O], and [Al/O], indicating the presence of dust in the MS. The high-ion column densities are too large to be explained by photoionization, but also cannot be explained by a single-temperature collisional ionization model (equilibrium or non-equilibrium). This suggests that the high-ion plasma is multi-phase, with an Si IV region, a hotter O VI region, and C IV potentially contributing to each. Summing over the low-ion and high-ion phases, we derive conservative lower limits on the ratio N(total H II)/N(H I) of ∼>19 toward NGC 7469 and ∼>330 toward Mrk 335, showing that along these two directions the vast majority of the Stream has been ionized. The presence of warm-hot plasma together with the small-scale structure observed at 21 cm provides evidence

  19. A Scanning Multi-Axis Differential Optical Absorption Spectroscopy System for Measurement of Tropospheric NO2 in Beijing

    LI Ang; XIE Pin-Hua; LIU Cheng; LIU Jian-Guo; LIU Wen-Qing

    2007-01-01

    A scanning multi-axis differential optical absorption spectroscopy (DOAS) system is developed for monitoring tropospheric NO2 abundance. Measurements at different viewing angles near the horizon can be performed sequentially with one telescope collecting scattered sunlight reflected by a moving mirror. Tropospheric NO2 diurnal variations can be derived from slant column densities (SCDs) of different elevation angles. The result from a field campaign in Beijing in summer of 2005 reveals potential possibility for the monitoring of tropospheric NO2 by multi-axis DOAS technique.

  20. Bandgap widening in thermochromic Mg-doped VO2 thin films : Quantitative data based on optical absorption

    Li, Shuyi; Mlyuka, Nuru R; Primetzhofer, Daniel; Hallén, Anders; Possnert, Göran; Niklasson, Gunnar A.; Granqvist, Claes G.

    2013-01-01

    Thermochromic Mg-doped VO2 films were deposited by reactive direct current magnetronsputtering onto heated glass and carbon substrates. Elemental compositions were inferred fromRutherford backscattering. Optical bandgaps were obtained from spectral transmittance and reflectance measurements—from both the film side and the back side of the samples—and ensuing determination of absorption coefficients. The bandgap of Mg-doped films was found to increase by 3.9 ± 0.5 eV per unit of atom ratio Mg/...

  1. EPR and optical absorption studies of Cu2+ doped L-histidinium dihydrogen phosphate–phosphoric acid single crystal

    The EPR spectra of Cu2+ in L-histidinium dihydrogen phosphate phosphoric acid at room temperature reveal the presence of two magnetically inequivalent Cu2+ sites in the lattice. The principal values of the g- and A-tensors indicate existence of rhombic symmetry around the Cu2+ ion. From the direction cosines of the principal values of the g- and A-tensors, the locations of Cu2+ in the lattice have been identified as substitutional sites. Optical absorption study shows four bands confirm the rhombic symmetry. Photoluminescence study also confirms the rhombic symmetry around the ions

  2. Doppler-free two-photon absorption spectroscopy of rovibronic transition of naphthalene calibrated with an optical frequency comb

    Nishiyama, A.; Nakashima, K.; Matsuba, A.; Misono, M.

    2015-12-01

    We performed Doppler-free two-photon absorption spectroscopy of naphthalene using an optical frequency comb as a frequency reference. Rotationally resolved rovibronic spectra were observed, and absolute frequencies of the rovibronic transitions were determined with an uncertainty of several tens of kHz. The resolution and precision of our system are finer than the natural width of naphthalene. We assigned 1466 lines of the Q (Ka) Q (J) transition and calculated molecular constants. We attribute systematic spectral line shifts to the Coriolis interaction, and discuss the origin of the spectral linewidths.

  3. Optical properties of Mg-doped VO{sub 2}: Absorption measurements and hybrid functional calculations

    Hu Shuanglin [Department of Chemistry, Angstroem Laboratory, Uppsala University, P.O. Box 538, SE-75121 Uppsala (Sweden); Li, S.-Y.; Granqvist, C. G.; Niklasson, G. A. [Department of Engineering Sciences, Angstroem Laboratory, Uppsala University, P.O. Box 534, SE-75121 Uppsala (Sweden); Ahuja, R.; Scheicher, R. H. [Department of Physics and Astronomy, Angstroem Laboratory, Uppsala University, P.O. Box 516, SE-75120 Uppsala (Sweden); Hermansson, K. [Department of Chemistry, Angstroem Laboratory, Uppsala University, P.O. Box 538, SE-75121 Uppsala (Sweden); Department of Theoretical Chemistry, Royal Institute of Technology (KTH), Roslagstullsbacken 15, SE-10691 Stockholm (Sweden)

    2012-11-12

    Mg-doped VO{sub 2} thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < h{omega} < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be reconciled with spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically, the calculated luminous absorptance decreased when the Mg/(V + Mg) ratio was increased from 0.125 to 0.250.

  4. Optical properties of Mg-doped VO2: Absorption measurements and hybrid functional calculations

    Mg-doped VO2 thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < ħω < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be reconciled with spin-polarized density functional theory calculations using the Heyd-Scuseria-Ernzerhof [Heyd et al., J. Chem. Phys. 118, 8207 (2003); ibid. 124, 219906 (2006)] hybrid functional. Specifically, the calculated luminous absorptance decreased when the Mg/(V + Mg) ratio was increased from 0.125 to 0.250.

  5. Optical properties of Mg-doped VO2 : Absorption measurements and hybrid functional calculations

    Hu, Shuanglin; Li, Shuyi; Ahuja, Rajeev; Granqvist, Claes-Göran; Hermansson, Kersti; Niklasson, Gunnar A.; Scheicher, Ralph H.

    2012-01-01

    Mg-doped VO2 thin films with thermochromic properties were made by reactive DC magnetron co-sputtering onto heated substrates, and spectral absorption was recorded at room temperature in the 0.5 < <(h)over bar>omega < 3.5 eV energy range. Clear evidence was found for a widening of the main band gap from 1.67 to 2.32 eV as the Mg/(V + Mg) atomic ratio went from zero to 0.19, thereby significantly lowering the luminous absorption. This technologically important effect could be recon...

  6. Theoretical study of band gap engineering and optical absorption in InGaN/GaN superlattices with short periodicity

    Laref, A. [King Saud University, Department of Physics and Astronomy, Science Faculty, Riyadh (Saudi Arabia); National Taiwan University, Department of Physics, Taipei (China); Altujar, A. [King Saud University, Department of Physics and Astronomy, Science Faculty, Riyadh (Saudi Arabia); Luo, S.J. [Hubei Automotive Industries Institute, Department of Basic Sciences, Shiyan, Hubei (China)

    2014-11-15

    We have carried out a theoretical study for calculating the electronic and optical properties of In{sub x}Ga{sub 1-x}N/GaN(001) superlattices with short periodicity, while In composition is altered from 0 to 100 %. These appealing systems have been simulated using ab initio method in the framework of full-potential linearized augmented plane wave scheme. In this respect, a modified Becke-Johnson for the exchange and correlation potential term is included for describing adequately the energy gap of these promising low-dimensional materials. Exclusively, we computed the density of states, imaginary part of dielectric function, refractive index and absorption coefficient. However, it is viable to control the optical properties of these superlattices which may be useful for optoelectronic devices application. (orig.)

  7. Fiber-optic temperature sensor based on interaction of temperature-dependent refractive index and absorption of germanium film.

    Li, Min; Li, Yulin

    2011-01-10

    The interaction of a large temperature-dependent refractive index and a temperature-dependent absorption of semiconductor materials at 1550 nm can be used to build a very sensitive, film coated fiber-optic temperature probe. We developed a sensor model for the optical fiber-germanium film sensor. A temperature sensitivity of reflectivity change of 0.0012/°C, corresponding to 0.1°C considering a moderate signal processing system, over 100°C within the temperature regime of -20°C to 120°C, has been demonstrated by experimental tests of the novel sensor. The potential sensitivity and further applications of the sensor are discussed. PMID:21221150

  8. [Measurement of atmospheric NO3 radical with long path differential optical absorption spectroscopy based on red light emitting diodes].

    Li, Su-Wen; Liu, Wen-Qing; Wang, Jiang-Tao; Xie, Pin-Hua; Wang, Xu-De

    2013-02-01

    Nitrate radical (NO3) is the most important oxidant in the tropospheric nighttime chemistry. Due to its high reactivity and low atmospheric concentrations, modern red light emitting diodes (LEDs) was proposed as light source in long path differential optical absorption spectroscopy (LP-DOAS) to measure NO3 radical in the atmosphere. The spectral properties of Luxeon LXHL-MD1D LEDs were analyzed in the present paper. The principle of LEDs-DOAS system to measure nitrate radical was studied in this paper. The experimental setup and retrieval method of NO3 radical were discussed in this paper. The retrieved example of NO3 was given and the time series of NO3 concentrations was performed for a week. The results showed that the detection limits of LEDs-DOAS system were 12 ppt for atmospheric NO3 radical when the optical path of LEDs-DOAS system was 2.8 km. PMID:23697129

  9. Effect of light incidence angle on optical absorption characteristics of low bandgap polymer-based bulk heterojunction organic solar cells

    Lee, Kwan-Yong; Park, Sun-Joo; Kim, Do-Hyun; Kim, Young-Joo

    2014-08-01

    The bulk heterojunction organic solar cell based on thieno[3,4-b]thiophene/benzodithiophene (PTB7) is one of an alternative candidate for traditional silicon-based solar cells owing to its advantages of ease of manufacture, low cost, and flexibility. Currently, many research studies of these devices focus on power conversion efficiency (PCE) enhancement with only normal sunlight incidence. In this study, we have experimentally verified that PCE markedly decreased from 5.51 to 3.47% as incidence angle was changed from 0 to 60°. Using the finite-difference time-domain method, we found that the degeneration of optical absorption is caused by the decreased electrical field intensity in the photoactive layer over the entire wavelength range due to the optical interference profile change. In addition, we confirmed that a higher incidence angle also results in unbalanced charge carrier transport characteristics, resulting in further decrease in solar cell efficiency.

  10. Laboratory-based recording of holographic fine structure in X-ray absorption anisotropy using polycapillary optics

    Dabrowski, K.M. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Korecki, P., E-mail: pawel.korecki@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Holographic fine structures in X-ray absorption recorded using a tabletop setup. Black-Right-Pointing-Pointer Setup based on polycapillary collimating optics and an HOPG crystal. Black-Right-Pointing-Pointer Demonstration of element sensitivity by detection of X-ray fluorescence. Black-Right-Pointing-Pointer Potential of laboratory-based experiments for heavily doped crystals and thin films. - Abstract: A tabletop setup composed of a collimating polycapillary optics and a highly oriented pyrolytic graphite monochromator (HOPG) was characterized and used for recording two-dimensional maps of X-ray absorption anisotropy (XAA). XAA originates from interference of X-rays directly inside the sample. Depending on experimental conditions, fine structures in XAA can be interpreted in terms of X-ray holograms or X-ray standing waves and can be used for an element selective atomic-resolved structural analysis. The implementation of polycapillary optics resulted in a two-order of magnitude gain in the radiant intensity (photons/s/solid angle) as compared to a system without optics and enabled efficient recording of XAA with a resolution of 0.15 Degree-Sign for Mo K{alpha} radiation. Element sensitivity was demonstrated by acquisition of distinct XAA signals for Ga and As atoms in a GaAs (1 1 1) wafer by using X-ray fluorescence as a secondary signal. These results indicate the possibility of performing laboratory-based XAA experiments for heavily doped single crystals or thin films. So far, because of the weak holographic modulation of XAA, such experiments could be only performed using synchrotron radiation.

  11. Probing variations in fundamental constants with radio and optical quasar absorption-line observations

    Tzanavaris, P; Webb, J K; Flambaum, V V; Curran, S J

    2006-01-01

    Nine quasar absorption spectra at 21-cm and UV rest-wavelengths are used to estimate possible variations in x=alpha^2 g_p mu, (alpha is the fine structure constant, g_p the proton g-factor and mu=me/mp the electron-to-proton mass ratio). We find ^weighted_total(=Dxxwt)=(0.63+-0.99) 10^-5 over 0.23~absorption redshifts, (on average Delta_vlos~6km/s), with random sign and magnitude in each absorption system, limit our precision. Combining our Delta x/x measurement with absorption-line constraints on alpha-variation yields strong limits on the variation of mu. Our most conservative estimate, obtained by assuming no variations in alpha or g_p is Delta mu/mu(=Dmm)=Dxxwt. If we use only the four high-redshift absorbers in our sample, we obtain Dmm=(0.58+-...

  12. External electric and magnetic field effects on the optical absorption coefficients and refractive index changes of a hydrogenic impurity confined in a cylindrical quantum wire with convex bottom

    In this paper, we have studied the simultaneous effects of external electric and magnetic fields on the optical absorption coefficients and refractive index changes of a hydrogenic impurity confined in a cylindrical quantum wire with convex bottom. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical properties are obtained using the compact density matrix approach. Our results indicate that, the wire radius, convexity parameter, hydrogenic impurity and external electric and magnetic fields have a great influence on the linear and the third-order nonlinear optical absorption coefficients as well as the refractive index changes of the system

  13. Nonlinear multimodal interference and saturable absorption using a short graded-index multimode optical fiber

    Nazemosadat, Elham; Mafi, Arash

    2013-01-01

    A detailed investigation of the nonlinear multimodal interference in a short graded-index multimode optical fiber is presented. The analysis is performed for a specific device geometry, where the light is coupled in and out of the multimode fiber via single-mode fibers. The same device geometry was recently used to obtain ultra-low-loss coupling between two single-mode optical fibers with very different mode-field diameters. Our results indicate the potential application of this simple geomet...

  14. Interfacial engineering of optical absorption in epitaxial LaCrO3-SrTiO3 superlattices

    Comes, Ryan; Kaspar, Tiffany; Heald, Steve; Bowden, Mark; Chambers, Scott

    2015-03-01

    SrTiO3 (STO) is a wide-gap semiconductor well suited for photocatalytic H2 production due to the alignment of its band edges with the half-cell energies of the H2O redox reactions. However, the wide optical gap of STO (3.3 eV) makes the material an inefficient light absorber in the visible spectrum, preventing formation of electron-hole pairs needed for photocatalysis. Superlattice films comprised of alternating layers of band insulator SrTiO3 and Mott insulator LaCrO3 (LCO) have been theoretically predicted to offer intriguing optical properties due to the broken symmetry between the unoccupied Ti dxy and Ti dxz and dyz orbitals. In this work, we examine the properties of LCO-STO superlattices grown with various periodicities on (La,Sr)(Al,Ta)O3 (LSAT) (001) substrates using oxide molecular beam epitaxy. Films were characterized via in situ x-ray photoelectron spectroscopy to measure valence band structure and interfacial band bending. Polarized Ti and Cr K-edge x-ray absorption near edge spectroscopy was used to examine the bonding anisotropy. Spectroscopic ellipsometry measurements show the presence of interfacially-induced visible light absorption not found in either STO or LCO.

  15. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Lee, Geon Joon; Sim, Geon Bo; Choi, Eun Ha; Kwon, Young-Wan; Kim, Jun Young; Jang, Siun; Kim, Seong Hwan

    2015-01-01

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  16. Optical and structural properties of plasma-treated Cordyceps bassiana spores as studied by circular dichroism, absorption, and fluorescence spectroscopy

    Lee, Geon Joon, E-mail: gjlee@kw.ac.kr; Sim, Geon Bo; Choi, Eun Ha [Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jun Young; Jang, Siun; Kim, Seong Hwan, E-mail: piceae@naver.com [Department of Microbiology and Institute of Basic Sciences, Dankook University, Cheonan 330-714 (Korea, Republic of)

    2015-01-14

    To understand the killing mechanism of fungal spores by plasma treatment, the optical, structural, and biological properties of the insect pathogenic fungus Cordyceps bassiana spores were studied. A nonthermal atmospheric-pressure plasma jet (APPJ) was used to treat the spores in aqueous solution. Optical emission spectra of the APPJ acquired in air indicated emission peaks corresponding to hydroxyl radicals and atomic oxygen. When the APPJ entered the aqueous solution, additional reactive species were derived from the interaction of plasma radicals with the aqueous solution. Fluorescence and absorption spectroscopy confirmed the generation of hydroxyl radicals and hydrogen peroxide in the plasma-activated water (PAW). Spore counting showed that plasma treatment significantly reduced spore viability. Absorption spectroscopy, circular dichroism (CD) spectroscopy, and agarose gel electrophoresis of the DNA extracted from plasma-treated spores showed a reduction in spore DNA content. The magnitude of the dip in the CD spectrum was lower in the plasma-treated spores than in the control, indicating that plasma treatment causes structural modifications and/or damage to cellular components. Tryptophan fluorescence intensity was lower in the plasma-treated spores than in the control, suggesting that plasma treatment modified cell wall proteins. Changes in spore viability and DNA content were attributed to structural modification of the cell wall by reactive species coming from the APPJ and the PAW. Our results provided evidence that the plasma radicals and the derived reactive species play critical roles in fungal spore inactivation.

  17. Rapid fabrication and trimming of nanostructured backside reflectors for enhanced optical absorption in a-Si:H solar cells

    Tsao, Yao-Chung; Søndergaard, Thomas; Kristensen, Peter Kjær; Rizzoli, Rita; Pedersen, Kjeld; Pedersen, Thomas Garm

    2015-08-01

    Nanostructured metallic backside reflectors (BSRs) are crucial for enhanced optical absorption in thin-film amorphous silicon solar cells. The structural fabrication based on rapid aluminum (Al) anodization has a potential for roll-to-roll processes, which are promising for low-cost and large-scale fabrication of BSRs. In this regard, the short fabrication time via appropriate choice of acid, acid concentration, temperature, and time-dependent voltage control is very important. In addition, we first demonstrate the trimming of structural height by using conventional Al anodization, so the best pore size of BSRs with the same structural height can be determined. According to integrated external quantum efficiency (IEQE) calculations, the nanostructured BSR with 430-nm pore size shows 51.6 % IEQE improvement compared with the value of the flat BSR. Moreover, it is interesting that the absorption spectra of a-Si:H on nanostructured Al BSRs with and without the 100-nm Ag coating are highly similar even if the optical properties of Al and Ag are different.

  18. Thermoluminescence and optical absorption studies of Z1-centres in NaCl crystals doped with terbium

    The formation of Z1-centres in NaCl:Tb single crystals as well as crystals quenched from 550 0C is studied with the help of optical absorption and thermoluminescence (TL) measurements. The glow curve of NaCl:Tb shows four glow peaks around 60, 90, 140, and 190 0C (T1, T2, T3, and T4, respectively). Bleaching of X-irradiated crystals with F-light shows that the T3-peak is enhanced whereas the T1- and T4-peaks get suppressed. Optical absorption studies of the crystal before and after F-bleaching show that the F-band decreases and the decrease is accompanied by the broadening towards the longer wavelengths. Annealing studies of X-irradiated crystals at room temperature show that the T1- and T2-peaks correspond to shallow traps. The T3-peak is attributed to Z1-centres and the T4-peak to F-centres. It is concluded that Kleefstra's model for the Z1-centre is a more probable model. (author)

  19. Femtosecond excited-state absorption dynamics and optical limiting in fullerene solutions, sol-gel glasses, and thin films

    McBranch, D.; Klimov, V.; Smilowitz, L. [Los Alamos National Lab., NM (United States); Wang, H.; Wudl, F. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1996-11-01

    We compare detailed dynamics of the excited-state absorption for C{sub 60} in solution, thin films, and entrapped in an inorganic sol-gel glass matrix. Our results demonstrate that the microscopic morphology of the C{sub 60} molecule plays a crucial role in determining the relaxation dynamics. This is a key factor for applications in optical limiting for nanosecond pulses using reverse saturable absorption. We find that the dynamics of the C{sub 60}-glass composite occur on long (ns) timescales, comparable to that in solution; thin film samples, by contrast, show rapid decay (<20 picoseconds). These results demonstrate that the C{sub 60}-sol-gel glass composites contain C{sub 60} in a molecular dispersion, and are suitable candidates for solid-state optical limiting. Multispectral analysis of the decay dynamics in solution allows accurate determination of both the intersystem crossing time (600 {+-}100 ps) and the relative strengths of the singlet and triplet excited-state cross sections as a function of wavelength from 450-950 nm. The triplet excited-state cross section is greater than that for the singlet excited-state over the range from 620-810 nm.

  20. [Ammonia gas concentration and velocity measurement using tunable diode laser absorption spectroscopy and optical signal cross-correlation method].

    Zhang, Chun-Xiao; Wang, Fei; Li, Ning; Yan, Jian-Hua; Chi, Yong; Cen, Ke-Fa

    2009-10-01

    Simultaneous online measurement of gas concentration and velocity can be realized by tunable diode laser absorption spectroscopy (TDLAS) technique and optical signal cross-correlation method. The fundamental and relative factors of gas concentration and velocity measurement are described in the present paper. The spectral lines of NH3 used for gas sensing at communication band in near infrared range were selected and analyzed by the calculation based on the HITRAN database. In the verification experiment, NH3 and N2 were mixed by two mass flow meters and sent to flow through the quartz tube 0. 016 m in inner diameter and 1 m in length at normal temperature and pressure. The spectral line located at 6,548.7 cm(-1) was scanned at high frequency by the diode laser of 15 MHz linewidth and 1 cm' tunable range with no mode hoppings. The instantaneous NH3 absorbance was obtained using direct absorption method and the gas concentration was calculated. At the same time, the non-intrusive optical absorption signal cross-correlation method was utilized to obtain two concentration signals from two adjacent detectors mounted along the gas tube. The corresponding transit time of gas passing through the detectors was calculated by cross-correlation algorithm, and the average gas velocity was inferred according to the distance between the two detectors and the transit time. The relative errors were less than 7% for the gas concentration measurement, and less than 10% for the gas velocity measurement. Experimental results were proved to be of high precision and good repeatability in the lab. The feature of fast response and capacity immune to the in situ disturbance would lead to a potential in industry application for the real time measurement and control of gas pollutant emission in the future. PMID:20038016

  1. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  2. Optical reflectance of pyrheliometer absorption cavities: progress toward SI-traceable measurements of solar irradiance.

    Patrick, Heather J; Germer, Thomas A; Zarobila, Clarence J; Cooksey, Catherine C; Yoon, Howard W

    2016-08-10

    We have accurately determined the absorptance of three pyrheliometer cavities at 532 nm by measuring the residual reflectance using an angle-resolved bidirectional reflectometer. Measurements were performed at a normal incidence as a function of the viewing angle and position on the cavity cone. By numerically integrating the measured angle-resolved scatter over both the direction and position and accounting for an obstructed view of the cavity, we determined that the effective cavity reflectance was between 8×10-4 and 9×10-4. Thus, the absorptance of the three cavities ranged from 0.99909±0.00014 to 0.99922±0.00012 (k=2 combined expanded uncertainties). These measurements, when extended over the spectral range of operation of the pyrheliometer, are required to establish SI traceability for absolute solar irradiance measurements. PMID:27534478

  3. Absorption enhancement in silicon nanowire-optical nanoantenna system for photovoltaic applications

    Robak, Elżbieta; Grześkiewicz, Bartłomiej; Kotkowiak, Michał

    2014-11-01

    The rapidly growing green energy sector has prompted the search for new solutions to increase the performance of solar cells. In this area there is still room for the silicon-based photovoltaic, although the main problem is to find a way to increase the efficiency of the silicon solar cells, at the lowest possible cost. In this work we investigate the influence of a gold bowtie nanoantenna on the absorption profile of silicon nanowire. Because of the energy band gap and low effective absorption cross section, bulk silicon absorbs rather poorly in longer wavelengths of visible light and near-infrared range. Our calculations with frequency domain solver show the absorption boost in nanowire at long-wavelengths due to the coupling of the large local near-field of metallic bowtie nanoantenna to the semiconductor layer. The enhancement was observed at various levels although it was correlated with the shift of localized surface plasmon resonance thus making it dependent on the bowtie geometry. The results suggest that by incorporating metallic nanostructures as well as nanoparticles to the nanowire system, the performance of photovoltaic device can be improved thanks to greater generation of a electron-hole pairs.

  4. The effect of aggregation on the nonlinear optical absorption performance of indium and gallium phthalocyanines in a solution and co-polymer host

    The nonlinear optical properties (NLO) of Pcs can be modified by substituting different metal atoms into the ring or altering peripheral and axial functionalities. In this study, nonlinear optical absorption properties of tetra-substituted gallium and indium phthalocyanine complexes both in solution and polymeric film have been investigated by open aperture Z-scan measurements with nanosecond pulses at 532 nm. All investigated compounds exhibited reverse saturable absorption for both solution and film experiments. The investigated compounds in the solution showed better nonlinear optical absorption properties than polymeric films. The observed nonlinear optical absorption differences depending on the aggregation are discussed using the ultrafast dynamics and decay processes of excited states found from femtosecond pump-probe spectroscopy with white light continuum experiments. Highlights: ► The effect of aggregation on the nonlinear absorption and the excited state lifetimes were studied. ► UV–Vis absorption spectra revealed that organization of investigated molecules in PMMA films show H-aggregation. ► Fast transitions (intermolecular energy transfers) in PMMA films were observed. ► Intermolecular energy transfer due to aggregation reduces transition to triplet levels. ► Aggregation reduces RSA signal observed in OA Z-scan experiments for the samples in a host PMMA polymer matrix

  5. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material

  6. Management of OH absorption in tellurite optical fibers and related supercontinuum generation

    Savelii, Inna; Desevedavy, Frederic; Jules, Jean-Charles; Gadret, Gregory; Fatome, Julien; Kibler, Bertrand; Kawashima, Hiroyasu; Ohishi, Yasutake; Smektala, Frederic

    2013-06-01

    We report the fabrication and the characterization of low OH content and low loss tellurite optical fibers. The influence of different methods of glass fabrication on fiber losses has been investigated. The use of the purest commercial raw materials can reduce the losses below 0.1 dB/m at 1.55 μm. Incorporation of fluoride ions into the tellurite glass matrix makes the optical fibers transparent up to 4 μm. A suspended core microstructured fiber has been fabricated and pumped by nanojoule-level femtosecond pulses, thus resulting in more than 2000-nm bandwidth supercontinuum after a few centimeters of propagation.

  7. Electronic absorption spectra and nonlinear optical properties of CO2 molecular aggregates: A quantum chemical study

    Tarun K Mandal; Sudipta Dutta; Swapan K Pati

    2009-09-01

    We have investigated the structural aspects of several carbon dioxide molecular aggregates and their spectroscopic and nonlinear optical properties within the quantum chemical theory framework. We find that, although the single carbon dioxide molecule prefers to be in a linear geometry, the puckering of angles occur in oligomers because of the intermolecular interactions. The resulting dipole moments reflect in the electronic excitation spectra of the molecular assemblies. The observation of significant nonlinear optical properties suggests the potential application of the dense carbon dioxide phases in opto-electronic devices.

  8. Application of the Z-scan technique to determine the optical Kerr coefficient and two-photon absorption coefficient of magnetite nanoparticles colloidal suspension

    Vivacqua, Marco; Espinosa, Daniel; Martins Figueiredo Neto, Antônio

    2012-06-01

    We investigate the occurrence of the optical Kerr effect and two-photon absorption when an oil-based magnetic Fe3O4 nanoparticles colloidal suspension is illuminated with high intensity femtosecond laser pulses. The frequency of the pulses is controlled and the Z-scan technique is employed in our measurements of the nonlinear optical Kerr coefficient (n2) and two-photon absorption coefficient (β). From these values it was possible to calculate the real and imaginary parts of the third-order susceptibility. We observed that increasing the pulse frequency, additional physical processes take place, increasing artificially the absolute values of n2 and β. The experimental conditions are discussed to assure the obtention of reliable values of these nonlinear optical parameters, which may be useful in all-optical switching and optical power limiting applications.

  9. [Studies on the remote measurement of the distribution of city gaseous pollutant by mobile passive differential optical absorption spectroscopy].

    Wu, Feng-cheng; Li, Ang; Xie, Pin-hua; Xu, Jin; Shi, Peng; Qin, Min; Wang, Man-hua; Wang, Jie; Zhang, Yong

    2011-03-01

    An optical remote sensing method based on passive differential optical absorption spectroscopy for the measurement of the distribution of city gaseous pollutant was studied. The passive DOAS system, which was installed in a car, successively measures the interested area (such as city, industrial area) and the column density was obtained by DOAS fitting process using the zenith scattered sunlight. The mobile DOAS was applied to measurement in Shenzhen City during the continuous six days and got the distribution of SO2, NO2 in this paper. It showed that the pollution in the west is higher than in the east. The average concentration in the west is 2.0 times higher than the eastern for SO2 and 3.6 times for NO2. And comparison of the values between mobile DOAS and the point instrument was carried out in Baguang site. There was an agreement between the two instruments, the correlation coefficient was 0.86 for SO2, while 0.57 for NO2. The results indicate that this optical remote sensing method based on passive DOAS is an effective means of rapidly determining the distribution of city gaseous pollutant. PMID:21595196

  10. Optical absorption and thermoluminescence of Tb 3+ -doped phosphate scintillating glasses

    Vedda, A.; Martini, M.; Nikl, Martin; Mihóková, Eva; Nitsch, Karel; Solovieva, Natalia

    2002-01-01

    Roč. 14, - (2002), s. 7417-7426. ISSN 0953-8984 Grant ostatní: NATO SfP(XX) 973510 Institutional research plan: CEZ:AV0Z1010914 Keywords : Tb 3+ -doped phosphate glasses * scintillation * optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2002

  11. Time-resolved transient optical absorption study of constitutional-dynamic conjugated polymers

    Pfleger, Jiří; Rais, David; Vitvarová, T.; Vohlídal, J.; Svoboda, J.

    Pisa : European Polymer Federation, 2013. O7-3. [European Polymer Congress - EPF 2013. 16.06.2013-21.06.2013, Pisa] R&D Projects: GA ČR GAP108/12/1143; GA TA ČR TE01020022 Institutional support: RVO:61389013 Keywords : time-resolved optical spectroscopy * conjugated polymers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  12. Optical reflection, transmission and absorption properties of single-layer black phosphorus from a model calculation

    Margulis, Vl A.; Muryumin, E. E.; Gaiduk, E. A.

    2016-05-01

    An effective anisotropic tight-binding model is developed to analytically describe the low-energy electronic structure and optical response of phosphorene (a black phosphorus (BP) monolayer). Within the framework of the model, we derive explicit closed-form expressions, in terms of elementary functions, for the elements of the optical conductivity tensor of phosphorene. These relations provide a convenient parametrization of the highly anisotropic optical response of phosphorene, which allows the reflectance, transmittance, and absorbance of this material to be easily calculated as a function of the frequency of the incident radiation at arbitrary angles of incidence. The results of such a calculation are presented for both a free-standing phosphorene layer and the phosphorene layer deposited on a {{SiO}}2 substrate, and for the two principal cases of polarization of the incident radiation either parallel to or normal to the plane of incidence. Our findings (e.g., a ‘quasi-Brewster’ effect in the reflectance of the phosphorene/{{SiO}}2 overlayer system) pave the way for developing a new, purely optical method of distinguishing BP monolayers.

  13. Optical Absorption, Stability and Structure of NpO2+ Complexes with Dicarboxylic Acids

    Complexation of NpO2+ with oxalic acid (OX),2,2'-oxydiacetic acid (ODA), 2,2'-iminodiacetic acid (IDA) and 2,2'-thiodiacetic acid (TDA), has been studied using spectrophotometry in1 M NaClO4. Both the position and the intensity of the absorption band of NpO2+ at 980 nm are affected by the formation of NpO2+/dicarboxylate complexes, providing useful information on the complexation strength, the coordination mode and the structure of the complexes

  14. The WO3/WS2 nanostructures: Preparation, characterization and optical absorption properties

    Cao, Shixiu; Zhao, Cong; Han, Tao; Peng, Lingling

    2016-07-01

    The WO3/WS2 nanostructures were successfully prepared using a two-step hydrothermal/gas phase method. The physical properties of the nanostructures were characterized using XRD, SEM, TEM, UV-visible spectroscopy. The WO3/WS2 nanostructures obtained were coexistence of WO3 and WS2 in the same particle. The WO3/WS2 nanostructures contained a wide and intensive absorption in the UV-visible light region of 245-750 nm, which showed that the WO3/WS2 nanostructures may have a potential application as an UV-visible photocatalyst.

  15. EPR and optical absorption studies of VO{sup 2+} doped L-alanine (C{sub 3}H{sub 7}NO{sub 2}) single crystals

    Biyik, Recep, E-mail: recep.biyik@taek.gov.t [Ondokuz Mayis University, Faculty of Arts and Sciences, Department of Physics, 55139 Samsun (Turkey)

    2009-11-01

    VO{sup 2+} doped L-alanine (C{sub 3}H{sub 7}NO{sub 2}) single crystals and powders are examined by electron paramagnetic resonance (EPR) and optical absorption spectroscopy. Three magnetically different sites are resolved from angular variations of L-alanine single crystal EPR spectra. In some specific orientations each VO{sup 2+} line splits into three superhyperfine lines with intensities of 1:2:1 and maximum splitting value of 2.23 mT. The local symmetries of VO{sup 2+} complex sites are nearly axial. The optical absorption spectra show three bands. Spin Hamiltonian parameters are measured and molecular orbital coefficients are calculated by correlating EPR and optical absorption data for the central vanadyl ion.

  16. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  17. Observation of Rb Two-Photon Absorption Directly Excited by an Erbium-Fiber-Laser-Based Optical Frequency Comb via Spectral Control

    Wu, Jiutao; Dai, Xiaoliang; Qin, Zhengyu; Zhang, Zhigang; Zhao, Jianye

    2013-01-01

    We demonstrated the observation of Rb two-photon absorption directly excided by an optical frequency comb at fiber communication bands. A chain of comb spectral control is elaborately implemented to increase the power of the second harmonic optical frequency comb generation and the two-photon transition strength. A two-photon transition spectrum is obtained with clearly resolved transition lines. It provides a potential approach to realize the optical frequency comb or optical clock at ~1.5{\\mu}m with high stability and accuracy.

  18. High Kerr nonlinearity hydrogenated amorphous silicon nanowires with low two photon absorption and high optical stability

    Grillet, C; Monat, C; Grosse, P; Bakir, B Ben; Menezo, S; Fedeli, J M; Moss, David J

    2014-01-01

    We demonstrate optically stable amorphous silicon nanowires with both high nonlinear figure of merit (FOM) of ~5 and high nonlinearity Re({\\gamma}) = 1200W-1m-1. We observe no degradation in these parameters over the entire course of our experiments including systematic study under operation at 2 W coupled peak power (i.e. ~2GW/cm2) over timescales of at least an hour.

  19. Observation of the subgap optical absorption in polymer-fullerene blend solar cells

    Goris, L.; Poruba, Aleš; Hoďáková, Lenka; Vaněček, Milan; Haenen, K.; Nesladek, M.; Wagner, P.; Vanderzande, D.; De Schepper, L.; Manca, J.V.

    2006-01-01

    Roč. 88, č. 5 (2006), 052113/1-052113/3. ISSN 0003-6951 Grant ostatní: BIL Cooperation Flanders-Czech Republic(BE) BOF04B03 Institutional research plan: CEZ:AV0Z10100521 Keywords : solar cells * optical spectroscopy * polymer- fulleren e bulk heterojunctions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  20. Thiophene-fluorene derivatives with high three-photon absorption activities and their applicatlon to optical power limiting

    Ma Wen-Bo; Wu Yi-Qun; Han Jun-He; Liu Jun-Hui; Gu Dong-Hong; Gan Fu-Xi

    2006-01-01

    The three-photon absorption (3PA) properties of two thiophene-fluorene derivatives (abbreviated as MOTFTBr and ATFTBr) have been determined by using a Q-switched Nd:YAG laser pumped with 38ps pulses at 1064nm in DMF.The measured 3PA cross-sections are 152×10-78cm6s2 and 139×10-78cm6S2,respectively.The optimized structures were obtained by AM1 calculations and the results indicate that these two molecules show nonplanar structures,and attaching different donors has different effects on the molecular structure.The charge density distributions during the excitation were also systematically studied by using AM1 method.In addition,an obvious optical power limiting effect induced by 3PA has been demonstrated for both derivatives.

  1. Fine structures in the optical absorption spectra of photochemical silver in silver halides? A call for further research

    Georgiev, Mladen

    2007-01-01

    A survey is presented of the work done so far to check earlier claims that a fine structure may be observed to occur under certain circumstances in the impurity spectral range of the optical absorption spectra of silver halides following photostimulation in the intrinsic range. This structure, associated with the photochemical formation of silver specks, has been questioned over the years. We now weigh carefully the experimental evidence on the silver halides against a background of similar data on the alkali halides, where competing processes run slower. We come to the conclusion that present day advances in experimental techniques may be quite adequate for providing a solid experimental basis to solve the problem unambiguously.

  2. FTIR spectrometer with 30 m optical cell and its applications to the sensitive measurements of selective and nonselective absorption spectra

    Ponomarev, Yu. N.; Solodov, A. A.; Solodov, A. M.; Petrova, T. M.; Naumenko, O. V.

    2016-07-01

    A description of the spectroscopic complex at V.E. Zuev Institute of Atmospheric Optics, SB RAS, operating in a wide spectral range with high threshold sensitivity to the absorption coefficient is presented. Measurements of weak lines and nonselective spectra of CO2 and H2O were performed based on the built setup. As new application of this setup, positions and intensities of 152 weak lines of H2O were measured between 2400 and 2560 cm-1 with threshold sensitivity of 8.6×10-10 cm-1, and compared with available calculated and experimental data. Essential deviations between the new intensity measurements and calculated data accepted in HITRAN 2012 and GEISA 2015 forthcoming release are found.

  3. Bandgap widening in thermochromic Mg-doped VO{sub 2} thin films: Quantitative data based on optical absorption

    Li, Shu-Yi; Niklasson, Gunnar A.; Granqvist, Claes G. [Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-75121 Uppsala (Sweden); Mlyuka, Nuru R. [Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-75121 Uppsala (Sweden); Department of Physics, University of Dar es Salaam, P.O. Box 35063, Dar es Salaam (Tanzania, United Republic of); Primetzhofer, Daniel; Possnert, Göran [Department of Physics and Astronomy, The Ångström Laboratory, Uppsala University, P.O. Box 516, SE-75120 Uppsala (Sweden); Hallén, Anders [KTH-ICT, Royal Institute of Technology, Electrum 229, SE-164 40 Kista-Stockholm (Sweden)

    2013-10-14

    Thermochromic Mg-doped VO{sub 2} films were deposited by reactive direct current magnetron sputtering onto heated glass and carbon substrates. Elemental compositions were inferred from Rutherford backscattering. Optical bandgaps were obtained from spectral transmittance and reflectance measurements—from both the film side and the back side of the samples—and ensuing determination of absorption coefficients. The bandgap of Mg-doped films was found to increase by 3.9 ± 0.5 eV per unit of atom ratio Mg/(Mg + V) for 0 < Mg/(Mg + V) < 0.21. The presence of ∼0.45 at. % Si enhanced the bandgap even more.

  4. Nanostructuring for enhanced absorption and carrier collection in CZTS-based solar cells: Coupled optical and electrical modeling

    Abdelraouf, Omar A. M.; Allam, Nageh K.

    2016-04-01

    Earth-abundant Cu2ZnSnS4 (CZTS) is being considered as a potential photon-absorbing layer for low cost thin film solar cells. Nanostructured light trapping is recently investigated as a technique for enhancing the efficiency of CZTS solar cells. Herein, we used coupled electrical and optical modeling for different combinations of nanostructured CZTS solar cells to guide optimization of such nanostructures. The model is validated by a comparison of simulated I-V curves with previously reported experimental data. A very good agreement is achieved. Simulations are used to demonstrate that nanostructures can be tailored to maximize the absorption, carrier generation, carrier collection, and efficiency in CZTS solar cells. All proposed nanostructured solar cells showed enhancement in the overall conversion efficiency.

  5. Spatially resolved measurements of nitrogen dioxide in an urban environment using concurrent multi-axis differential optical absorption spectroscopy

    R. J. Leigh

    2006-12-01

    Full Text Available A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O4, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through, the application of several simplifying assumptions a tropospheric concentration of NO2 is derived and compared with an urban background in-situ chemiluminescence detector. The remote sensing and in-situ techniques show good agreement. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO2 concentrations on a city-wide scale.

  6. Multibeam long-path differential optical absorption spectroscopy instrument: a device for simultaneous measurements along multiple light paths.

    Pundt, Irene; Mettendorf, Kai Uwe

    2005-08-10

    A novel long-path differential optical absorption spectroscopy (DOAS) apparatus for measuring tropospheric trace gases and the first results from its use are presented: We call it the multibeam instrument. It is the first active DOAS device that emits several light beams simultaneously through only one telescope and with only one lamp as a light source, allowing simultaneous measurement along multiple light paths. In contrast to conventional DOAS instruments, several small mirrors are positioned near the lamp, creating multiple virtual light sources that emit one light beam each in one specific direction. The possibility of error due to scattering between the light beams is negligible. The trace-gas detection limits of NO2, SO2, O3, and H2CO are similar to those of the traditional long-path DOAS instrument. PMID:16114540

  7. Optical control of cardiac cell excitability based on two-photon infrared absorption of AzoTAB

    Shcherbakov, D; Erofeev, I; Astafiev, A

    2014-01-01

    Recent studies of AzoTAB activity in excitable cell cultures have shown that this substance is able to control excitability depending on isomer, cis or trans, predominating in the cellular membrane. Control of isomerization can be performed noninvasively by UV-visual radiation. At the same time it is well-known that azobenezenes can be effectively transformed from one isomer into another by two-photon absorption. Current work is devoted to the study of trans-AzoTAB two-photon transformation in aqueous solution and inside primal neonatal contractive rat cardiomyocytes. In accordance with results obtained Azo-TAB can be used as a probe for two-photon optical control of cardiac excitability.

  8. Optical reading of field-effect transistors by phase-space absorption quenching in a single InGaAs quantum well conducting channel

    Chemla, D. S.; Bar-Joseph, I.; Klingshirn, C.; Miller, D. A. B.; Kuo, J. M.

    1987-03-01

    Absorption switching in a semiconductor quantum well by electrically varying the charge density in the quantum well conducting channel of a selectively doped heterostructure transistor is reported for the first time. The phase-space absorption quenching (PAQ) is observed at room temperature in an InGaAs/InAlAs grown on InP FET, and it shows large absorption coefficient changes with relatively broad spectral bandwidth. This PAQ is large enough to be used for direct optical determination of the logic state of the FET.

  9. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption

    in, Sungjun; Park, Namkyoo

    2016-02-01

    We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3-7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs.

  10. Optical Absorption Measurement at 1550 nm on a Highly-Reflective Si/SiO$_2$ Coating Stack

    Steinlechner, Jessica; Schnabel, Roman

    2014-01-01

    Future laser-interferometric gravitational wave detectors (GWDs) will potentially employ test mass mirrors from crystalline silicon and a laser wavelength of $1550\\,\\rm{nm}$, which corresponds to a photon energy below the silicon bandgap. Silicon might also be an attractive high-refractive index material for the dielectric mirror coatings. Films of amorphous silicon (a-Si), however, have been found to be significantly more absorptive at $1550\\,\\rm{nm}$ than crystalline silicon (c-Si). Here, we investigate the optical absorption of a Si/SiO$_2$ dielectric coating produced with the ion plating technique. The ion plating technique is distinct from the standard state-of-the-art ion beam sputtering technique since it uses a higher processing temperature of about 250$^\\circ$C, higher particle energies, and generally results in higher refractive indices of the deposited films. Our coating stack was fabricated for a reflectivity of $R=99.95\\,\\%$ for s-polarized light at $1550\\,\\rm{nm}$ and for an angle of incidence o...

  11. Long term NO2 measurements in Hong Kong using LED based Long Path Differential Optical Absorption Spectroscopy

    Chan, K. L.; Pöhler, D.; Kuhlmann, G.; Hartl, A.; Platt, U.; Wenig, M. O.

    2011-11-01

    In this study we present the first long term measurements of atmospheric nitrogen dioxide (NO2) using a LED based Long Path Differential Optical Absorption Spectroscopy (LP-DOAS) instrument. This instrument is measuring continuously in Hong Kong since December 2009, first in a setup with a 550 m absorption path and then with a 3820 m path at about 30 m to 50 m above street level. The instrument is using a high power blue light LED with peak intensity at 450 nm coupled into the telescope using a Y-fibre bundle. The LP-DOAS instrument measures NO2 concentrations in the Kowloon Tong and Mong Kok district of Hong Kong and we compare the measurement results to concentrations reported by monitoring stations operated by the Hong Kong Environmental Protection Department in that area. Hourly averages of coinciding measurements are in reasonable agreement (R = 0.74). Furthermore, we used the long-term data set to validate the Ozone Monitoring Instrument (OMI) NO2 data product. Monthly averaged LP-DOAS and OMI measurements correlate well (R = 0.84) when comparing the data for the OMI overpass time. We analyzed weekly patterns in both data sets and found that the LP-DOAS detects a clear weekly cycle with a reduction on weekends during rush hour peaks, whereas OMI is not able to observe this weekly cycle due to its fix overpass time.

  12. Aqueous glucose measurement using differential absorption-based frequency domain optical coherence tomography at wavelengths of 1310 nm and 1625 nm

    John, Pauline; Manoj, Murali; Sujatha, N.; Vasa, Nilesh J.; Rao, Suresh R.

    2015-07-01

    This work presents a combination of differential absorption technique and frequency domain optical coherence tomography for detection of glucose, which is an important analyte in medical diagnosis of diabetes. Differential absorption technique is used to detect glucose selectively in the presence of interfering species especially water and frequency domain optical coherence tomography (FDOCT) helps to obtain faster acquisition of depth information. Two broadband super-luminescent diode (SLED) sources with centre wavelengths 1586 nm (wavelength range of 1540 to 1640 nm) and 1312 nm (wavelength range of 1240 to 1380 nm) and a spectral width of ≍ 60 nm (FWHM) are used. Preliminary studies on absorption spectroscopy using various concentrations of aqueous glucose solution gave promising results to distinguish the absorption characteristics of glucose at two wavelengths 1310 nm (outside the absorption band of glucose) and 1625 nm (within the absorption band of glucose). In order to mimic the optical properties of biological skin tissue, 2% and 10% of 20% intralipid with various concentrations of glucose (0 to 4000 mg/dL) was prepared and used as sample. Using OCT technique, interference spectra were obtained using an optical spectrum analyzer with a resolution of 0.5 nm. Further processing of the interference spectra provided information on reflections from the surfaces of the cuvette containing the aqueous glucose sample. Due to the absorption of glucose in the wavelength range of 1540 nm to 1640 nm, a trend of reduction in the intensity of the back reflected light was observed with increase in the concentration of glucose.

  13. Retrieval of aerosol profiles using multi axis differential optical absorption spectroscopy (MAX-DOAS)

    Yilmaz, S.; Friess, U.; Platt, U. [IUP, University of Heidelberg (Germany); Apituley, A. [RIVM, Bilthoven (Netherlands); Leeuw, G. de [FMI, Helsinki (Finland); Department of Physics, University of Helsinki (Finland); TNO, Utrecht (Netherlands); Henzing, B. [TNO, Utrecht (Netherlands); Baars, H.; Heese, B.; Althausen, D. [IFT, Leipzig (Germany); Dell' Acqua, A.; Adam, M.; Putaud, J.P. [JRC-IES, Ispra (Italy)

    2010-07-01

    Combining MAX-DOAS measurements of the oxygen-dimer O{sub 4} with inverse modelling methods, it is possible to retrieve information on atmospheric aerosols. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw, Melpitz, Ispra and Leipzig, where simultaneous DOAS, lidar and Sun photometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical development of the boundary layer is reproduced with a smaller resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties are discussed as well.

  14. Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs

    ZnO nanocombs and nanorods with different morphologies have been successfully synthesized through a simple metal vapour deposition route at 600-750 0C using pure zinc powder or zinc and graphite powders as source materials. The structures and morphologies of the products were characterized in detail by using x-ray diffraction, scanning electron microscopy, transmission electron microscopy and laser Raman spectrometer. The morphologies of the products can be easily controlled by tuning the following four factors: reaction temperature, the distance between the source and the substrates, the kinds of substrates and the kinds of precursors. Possible growth mechanisms for the formation of ZnO nanostructures with different morphologies are discussed. Photoluminescence studies show that there are sharp UV and broad defect-related green emissions for all products. Relative intensity of the UV to defect-related green emissions decreases from ZnO nanorods to nanocombs. Microwave absorption properties of these nanocombs are also investigated. The value of the minimum reflection loss is -12 dB at 11 GHz for the ZnO nanocomb composite with a thickness of 2.5 mm

  15. Optical absorption spectra of the uranium (4+) ion in the thorium germanate matrix

    Gajek, Z; Antic-Fidancev, E

    1997-01-01

    Visible and infrared absorption measurements on the U sup 4 sup + ion in tetragonal zircon-type matrix beta-ThGeO sub 4 are reported and analysed in terms of the standard parametrization scheme. The observed 17 main peaks and a number of less intense lines have been assigned and fitted to most of the 32 allowed electric dipole transitions with the root mean square error equal to 65 cm sup - sup 1. The free-ion parameters obtained for the model Hamiltonian, zeta 5f = 1809 cm sup - sup 1 , F sup 2 =43 065 cm sup - sup 1 , F sup 4 =38 977 cm sup - sup 1 and F sup 6 =24 391 cm sup - sup 1 , as well as the corresponding crystal-field parameters, B sub 0 sup 2 =-1790 cm sup - sup 1 , B sub 0 sup 4 =1200 cm sup - sup 1 , B sub 4 sup 4 =3260 cm sup - sup 1 , B sub 0 sup 6 =-3170 cm sup - sup 1 and B sub 4 sup 6 =990 cm sup - sup 1 , agree fairly well with the initial theoretical estimations. The results are discussed in relation to the previous spectroscopic study on the scheelite-type matrix UGeO sub 4. (author)

  16. [Studies on the determination of the flux of gaseous pollutant from an area by passive differential optical absorption spectroscopy].

    Li, Ang; Xie, Pin-Hua; Liu, Wen-Qing; Liu, Jian-Guo; Dou, Ke

    2009-01-01

    An optical remote sensing method based on passive differential optical absorption spectroscopy (DOAS) for the determination of the flux of SO2 or other gaseous pollutants from an area (such as industrial area, city) which includes many different atmospheric pollution sources was studied in the present paper. Passive DOAS using the zenith scattered sunlight as the light source provides the column density (the integrated concentration of atmospheric absorbers along the light path) and has been successfully applied to the determination of the flux of gaseous pollutants emitted from the volcano or point source. Passive DOAS instrument installed in a car scanned the plume emitted from an area by circling around the area in this paper. Column density of each selected gaseous pollutant was retrieved from zenith scattered sunlight spectra collected by the instrument by spectral analysis method of passive DOAS in their particular absorption spectral range respectively. Combined with the meteorological (wind field) information during the period of measurement, the net flux value of gaseous pollutant from this area during the measurement could be estimated. DOAS method used to obtain the column density of gaseous pollutant in the section plane of the plume emitted from source and the method of net flux calculation of gaseous pollutant from a certain area are described. Also a passive DOAS instrument was developed and installed in a car to scan the gaseous pollutants from the area surrounded by the 5th Ring Road in Beijing city during a field campaign in the summer of 2005. The SO2 net flux 1.13 x 10(4) kg x h(-1) and NO2 net flux 9.3 x 10(3) kg x h(-1) from this area were derived separately after the passive DOAS measured the entire ring road and the wind data were roughly estimated from wind profile radar. The results indicate that this optical remote sensing method based on passive DOAS can be used to rapidly determine the flux of gaseous pollutant (such as SO2, NO2

  17. Optical absorption and thermoluminescence of Gd- and Sm-doped CaF2 single crystals irradiated with X-rays

    Optical absorption measurements carried out on CaF2: Gd (0.2 mol%) show that it exhibits an absorption band at 272 nm. X-ray irradiation seems to remove this band but produces two absorption bands at 370 and 540 nm, the absorption in these bands increasing with X-ray dosage. CaF2:Sm (0.2 mol%) shows absorption bands at 240, 300, 412 and 630 nm. X-ray irradiation increases the absorption in these bands except in 412 nm which decreases with X-ray dosage. Partial thermal bleaching experiments bring out interesting changes in the absorption bands; when the X-ray-irradiated CaF2:Gd and CaF2:Sm are heated to 3000C, these crystals seem to attein their original absorption characteristics. Thermoluminescence light output of these samples irradiated with X-rays shows peaks at 107, 177, and 277 degC for CaF2:Gd and at 100, 152 and 244 degC for CaF2:Sm. An attempt is made to explain these results. (author)

  18. [Measurement of Trace C2H6 Based on Optical-Feedback Cavity-Enhanced Absorption Spectroscopy].

    Wan, Fu; Chen, Wei-gen; Gu, Zhao-liang; Zou, Jing-xin; DU, Ling-Ling; Qi, Wei; Zhou, Qu

    2015-10-01

    Ethane is one of major fault characteristic gases dissolved in power transformer, the detection of Ethane with high accuracy and sensitivity is the key of dissolved gas analysis. In this paper, based on optical feedback theory and cavity-enhanced absorption spectroscopy, combined with quantum cascade laser, a detection system for dissolved gas C2 H6 in transformer oil was built up. Based on the symmetry of the individual cavity modes, the phase matching of returning light in resonance with the cavity was achieved through LabVIEW codes. The optical feedback effect that the emitted light return to the laser cavity after a small delay time and lock to the resonance frequency of cavity, even and odd modes effect that the higher modes and lower modes structure will build up alternatively, and threshold current lowering effect of about 1.2 mA were studied and achieved. By cavity ring-down spectroscopy, the effective reflectivity of 99.978% and cavity finesse of 7 138.4 is obtained respectively. The frequency selectivity is 0.005 2 cm(-1). With an acquisition time of 1s, this optical system allows detection for the PQ3 band of C2 H6 with high accuracy of 95.72% ± 0.17% and detection limit of (1.97 ± 0.06) x 10(-3) μL x L(-1) at atmospheric pressure and temperature of 20 degrees C, which lays a foundation for fault diagnose from dissolved gas analysis. PMID:26904820

  19. Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application

    Highlights: ► Present glasses have high thermal stability. ► The glass sample C has the effective emission cross section bandwidth (64 nm). It has large stimulated emission cross-section (0.89 × 10−20 cm2). ► The optical gain coefficient to the population inversion of the 4I13/2 level is 8.87 cm−1. -- Abstract: Three samples of tellurite glasses within system 46TeO2⋅15ZnO⋅9.0P2O5⋅30LiNbO3 doped with xEr2O3 ions (where x = 4000, 8000 and 10,000 ppm) have been prepared by using the conventional melt-quenching method. These glasses have high thermal stability proved by using differential thermal analysis (DTA) measurements. Elastic properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap technique at 5 MHz. Elastic moduli such as: longitudinal (λ), shear (μ), Bulk (B) and Young’s (Y) increased with the Er3+ concentration in the prepared glasses matrix. The optical properties of the glasses were estimated by measuring UV–vis-NIR spectroscopy. The Judd–Ofelt parameters, Ωt (t = 2, 4, 6) of Er3+ were evaluated from optical absorption spectra. The oscillator strength type transition probabilities, spectroscopic quality factors, branching ratio and radiative lifetimes of several excited states of Er3+ have been predicted using intensity Judd–Ofelt parameters. Gain cross-section for the Er3+ laser transition 4I13/2 → 4I15/2 was obtained. The results show 46TeO2⋅15ZnO⋅9.0P2O5⋅30LiNbO3⋅10,000 ppm Er2O3 glass has the effective emission cross section bandwidth (64 nm) and large stimulated emission cross-section (0.89 × 10−20 cm2). The thermal stability, elastic and spectroscopic properties indicate that this glass doped with Er3+ is a promising candidate for optical applications and may be suitable for optical fiber lasers and amplifiers

  20. Optical design of an x-ray absorption spectroscopy beamline at Indus-2 synchrotron radiation source

    Details of optical design of EXAFS beamline at Indus-2 SRS, under development at CAT, Indore, have been discussed in this report. This beamline will cover the photon energy range of 5 keV to 20 keV and will use a bent crystal of Si(111) having 2d value equal to 6.2709 A. It will accept a horizontal divergence of 1.5 mrad. The heart of the beamline is the bent crystal polychromator which will disperse and focus the synchrotron beam at the experimental sample position. The transmitted radiation from the sample will be, subsequently, detected by a position sensitive detector (CCD type). The detector length is 25 mm. Assuming a suitable value for the distance between the source and the crystal, we have computed several geometrical parameters of the beamline, such as, Bragg angle, crystal length, crystal radius, crystal to sample distance, sample to detector distance, etc. for three different photon energies, namely, 5 keV, 10 keV, and 20 keV. The band passes around these photon energies are 0.3 keV, 1 keV and 2 keV respectively. It has been found that computed geometrical parameters are well within acceptable limits. An extensive ray tracing work was done using the software program SHADOW to evaluate the imaging properties of the beamline. It was established that the image spot size at the sample position improved substantially when the crystal is changed from spherical cylinder shape to elliptic cylinder shape. From the ray intensity plots, the average resolution of the crystal bender was estimated to be 1 eV per channel. Finally based on the optical layout of the beamline, a schematic mechanical layout of the beamline has been prepared. (author)

  1. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on

  2. Optical absorption and fluorescence properties of Dy{sup 3+}: SFB glasses

    Maheswari, D Uma; Kumar, J Suresh; Sasikala, T; Babu, A Mohan; Pavani, K; Moorthy, L Rama [Department of Physics, Sri Venkateswara University, Tirupati - 517 502 (India); Jang, Kiwan, E-mail: lrmphysics@yahoo.co.in [Department of Physics, Changwon National University, Changwon (Korea, Republic of)

    2009-07-15

    This paper presents the preparation and spectroscopic characterization of Dy{sup 3+}-doped sodium fluoroborate (SFB) glasses of the type (50-x) B{sub 2}O{sub 3} + 25 Na{sub 2}O + 10 CaF{sub 2} + 10 AlF{sub 3} + 5 LaF{sub 3} + x DyF{sub 3} (x = 0.01, 0.1, 0.5,1.0, 2.0 and 4.0 mol%). By measuring the area under absorption bands, the experimental oscillator strengths are determined. The Judd-Ofelt (J-O) intensity parameters {Omega}{sub {lambda}} ({lambda} = 2, 4, 6) are evaluated by the least square fit method. These phenomenological parameters are used to predict luminescence properties of the lanthanide ions in SFB glasses. Photoluminescence spectra and lifetimes of {sup 4}F{sub 9/2} level of Dy{sup 3+} ions in these glasses have been measured by exciting with 348 nm line of xenon flash lamp. The measured decay curves exhibit single exponential at lower concentrations of 0.01, 0.1, 0.5 and 1.0 mol% and non-exponential at higher concentrations of 2.0 and 4.0 mol%. The predicted {tau}{sub R} and ({beta}{sub R} values of {sup 4}F{sub 9/2} transition are compared with the experimentally measured values. From the magnitude of stimulated emission cross sections ({sigma}{sub e}), branching ratios ({beta}{sub m}), multiphonon relaxation rates (W{sub MP}), the most potential laser transitions are identified and the utility of these glasses as laser active material is discussed.

  3. Optical absorption spectra and energy levels of Er.sup.3+./sup. ions in KTaO.sub.3./sub. crystals

    Skvortsov, A. P.; Trepakov, V. A.; Krivolapchuk, V.V.; Poletaev, N.K.; Kapphan, S.; Dejneka, Alexandr; Jastrabík, Lubomír

    2009-01-01

    Roč. 354, č. 6 (2009), s. 566-568. ISSN 1063-7850 R&D Projects: GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : optical absorption spectra * energy levels of Er 3+ ions * KTaO 3 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.580, year: 2009

  4. Measurement of uranium concentration by molecular absorption spectrophotometry by means optical fibers; Medicion continua de concentracion de uranio por espectrofotometria de absorcion molecular mediante fibras opticas

    Gauna, Alberto C.; Pascale, Ariel A. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Centro Atomico Ezeiza. Agencia Minipost

    1996-07-01

    An on-line method for measuring the concentration of uranium in uranyl nitrate-nitric acid aqueous solutions is described. The method is based on molecular absorption spectrophotometry with transmission of light by means of optical fibers. It is ideally suited for control and processes development applications. (author)

  5. Infrared Optical Absorption in Low-spin Fe2+-doped SrTiO3

    Comes, Ryan B.; Kaspar, Tiffany C.; Heald, Steve M.; Bowden, Mark E.; Chambers, Scott A.

    2016-01-06

    Band gap engineering in SrTiO3 and related titanate perovskites has long been explored due to the intriguing properties of the materials for photocatalysis and photovoltaic applications. A popular approach in the materials chemistry community is to substitutionally dope aliovalent transition metal ions onto the B site in the lattice to alter the valence band. However, in such a scheme there is limited control over the dopant valence, and compensating defects often form. Here we demonstrate a novel technique to controllably synthesize Fe2+- and Fe3+-doped SrTiO3 thin films without formation of compensating defects by co-doping with La3+ ions on the A site. We stabilize Fe2+-doped films by doping with two La ions for every Fe dopant, and find that the Fe ions exhibit a low-spin electronic configuration, producing optical transitions in the near infrared regime and degenerate doping. The novel electronic states observed here offer a new avenue for band gap engineering in perovskites for photocatalytic and photovoltaic applications.

  6. Infrared optical absorption in low-spin Fe2+-doped SrTiO3

    Band gap engineering in SrTiO3 and related titanate perovskites has long been explored due to the intriguing properties of the materials for photocatalysis and photovoltaic applications. A popular approach in the materials chemistry community is to substitutionally dope aliovalent transition metal ions onto the B site in the lattice to alter the valence band. However, in such a scheme there is limited control over the dopant valence, and compensating defects often form. Here we demonstrate a novel technique to controllably synthesize Fe2+- and Fe3+-doped SrTiO3 thin films without formation of compensating defects by co-doping with La3+ ions on the A site. We stabilize Fe2+-doped films by doping with two La ions for every Fe dopant, and find that the Fe ions exhibit a low-spin electronic configuration, producing optical transitions in the near infrared regime and degenerate doping. The novel electronic states observed here offer a new avenue for band gap engineering in perovskites for photocatalytic and photovoltaic applications. (paper)

  7. Differential optical absorption spectroscopy (DOAS and air mass factor concept for a multiply scattering vertically inhomogeneous medium: theoretical consideration

    V. V. Rozanov

    2010-06-01

    Full Text Available The Differential Optical Absorption Spectroscopy (DOAS technique is widely used to retrieve amounts of atmospheric species from measurements of the direct solar light transmitted through the Earth's atmosphere as well as of the solar light scattered in the atmosphere or reflected from the Earth's surface. For the transmitted direct solar light the theoretical basis of the DOAS technique represented by the Beer-Lambert law is well studied. In contrast, scarcely investigated is the theoretical basis and validity range of the DOAS method for those cases where the contribution of the multiple scattering processes is not negligible. Our study is intended to fill this gap by means of a theoretical investigation of the applicability of the DOAS technique for the retrieval of amounts of atmospheric species from observations of the scattered solar light with a non-negligible contribution of the multiple scattering.

    Starting from the expansion of the intensity logarithm in the functional Taylor series we formulate the general form of the DOAS equation. The thereby introduced variational derivative of the intensity logarithm with respect to the variation of the gaseous absorption coefficient, which is often referred to as the weighting function, is demonstrated to be closely related to the air mass factor. Employing some approximations we show that the general DOAS equation can be rewritten in the form of the weighting function (WFDOAS, the modified (MDOAS, and the standard DOAS equations. For each of these forms a specific equation for the air mass factor follows which, in general, is not suitable for other forms of the DOAS equation. Furthermore, the validity range of the standard DOAS equation is quantitatively investigated using a suggested criterion of a weak absorption.

    The results presented in this study are intended to provide a basis for a better understanding of the applicability range of different forms of the DOAS equation as

  8. Optical absorption characteristics in the assessment of powder phosphor-based x-ray detectors: from nano- to micro-scale

    Liaparinos, P. F.

    2015-11-01

    X-ray phosphor-based detectors have enormously improved the quality of medical imaging examinations through the optimization of optical diffusion. In recent years, with the development of science and technology in the field of materials, improved powder phosphors require structural and optical properties that contribute to better optical signal propagation. The purpose of this paper was to provide a quantitative and qualitative understanding of the optical absorption characteristics in the assessment of powder phosphor-based detectors (from nano- scale up to micro-scale). Variations on the optical absorption parameters (i.e. the light extinction coefficient {{m}\\text{ext}} and the percentage probability of light absorption p%) were evaluated based on Mie calculations examining a wide range of light wavelengths, particle refractive indices and sizes. To model and assess the effects of the aforementioned parameters on optical diffusion, Monte Carlo simulation techniques were employed considering: (i) phosphors of different layer thickness, 100 μm (thin layer) and 300 μm (thick layer), respectively, (ii) light extinction coefficient values, 1, 3 and 6 μm-1, and (iii) percentage probability of light absorption p% in the range 10-4-10-2. Results showed that the {{m}\\text{ext}} coefficient is high for phosphor grains in the submicron scale and for low light wavelengths. At higher wavelengths (above 650 nm), optical quanta follow approximately similar depths until interaction for grain diameter 500 nm and 1 μm. Regarding the variability of the refractive index, high variations of the {{m}\\text{ext}} coefficient occurred above 1.6. Furthermore, results derived from Monte Carlo modeling showed that high spatial resolution phosphors can be accomplished by increasing the {{m}\\text{ext}} parameter. More specifically, the FWHM was found to decrease (i.e. higher resolution): (i) 4.8% at 100 μm and (ii) 9.5%, at 300 μm layer thickness. This study attempted to

  9. Plasmonic enhancement of the optical absorption and catalytic efficiency of BiVO₄ photoanodes decorated with Ag@SiO₂ core-shell nanoparticles.

    Abdi, Fatwa F; Dabirian, Ali; Dam, Bernard; van de Krol, Roel

    2014-08-01

    Recent progress in the development of bismuth vanadate (BiVO4) photoanodes has firmly established it as a promising material for solar water splitting applications. Performance limitations due to intrinsically poor catalytic activity and slow electron transport have been successfully addressed through the application of water oxidation co-catalysts and novel doping strategies. The next bottleneck to tackle is the modest optical absorption in BiVO4, particularly close to its absorption edge of 2.4 eV. Here, we explore the modification of the BiVO4 surface with Ag@SiO2 core-shell plasmonic nanoparticles. A photocurrent enhancement by a factor of ~2.5 is found under 1 sun illumination (AM1.5). We show that this enhancement consists of two contributions: optical absorption and catalysis. The optical absorption enhancement is induced by the excitation of localized surface plasmon resonances in the Ag nanoparticles, and agrees well with our full-field electromagnetic simulations. Far-field effects (scattering) are found to be dominant, with a smaller contribution from near-field plasmonic enhancement. In addition, a significant catalytic enhancement is observed, which is tentatively attributed to the electrocatalytic activity of the Ag@SiO2 nanoparticles. PMID:24942363

  10. Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot

    Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed

    2016-05-01

    Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).

  11. Optical absorption and thermoluminescence in Mg O, Mg O:Ni and Mg O:Li irradiated at room temperature

    Optical absorption and thermoluminescence (TL) studies in Mg O, Mg O:Ni and Mg O:Li irradiated at room temperature are presented. In pure Mg O the thermal annihilation of Fe3+ by recombination with thermally released electrons at ∼ 90 and 175 degree centigree and the V center annealing by hole release up to 100 degree centigree cause the observed glow peaks at these temperatures. The TL excitation spectrum shows two maxima at 245 nm (electron center) and 288 nm (Fe3+). In Mg O:Ni X irradiation induces Fe2+ →- Fe3+ and Ni2+ → Ni3+ oxidations. Two TL emission bands centered at 110 degree centigree (red) and 80 oC (green) are assigned to electron release and their recombination at Fe3+ and Ni3+ respectively. In Mg O:Li two TL emission bands, one blue (430 nm) and the other red (730 nm) with excitation maxima at 245 nm (electron center) and 200 nm (hole center) respectively are observed. No V-center formation was detected in both Ni and Li doped samples. (Author) 42 refs

  12. Perturbed angular correlation associated with optical absorption for the study of high dose In implanted LiF

    LiF crystals implanted at room temperature with 2.1016 stable indium ions/cm2 and subsequently in the same conditions with 7.1010 radioactive 111In ions/cm2 have been used to study the metallic aggregate formation. After implantation and after thermal treatments up to 6500C, the optical absorption measurements combined with time differential perturbed angular correlation measurements have been performed. The metallic aggregates formation takes place between room temperature and 3500C. Above 3500C their dissolution in the matrix is observed. The maximum fraction of implanted ions aggregated in metallic clusters reachs 37% at 3500C. The other fraction of implanted indium is distributed into four parts exposed to different interactions and showing different evolutions during the annealing procedure. The first part is composed with ions in sites perturbed by defects at long distances. The three other sites experiences well defined interactions with quadrupole frequencies at about 90, 150 and 200 M Hsub(z). Indium in unperturbed cubic sites at any step of the thermal treatment is not observed

  13. Spatial and temporal variations in NO(2) distributions over Beijing, China measured by imaging differential optical absorption spectroscopy.

    Lee, Hanlim; Kim, Young J; Jung, Jinsang; Lee, Chulkyu; Heue, Klaus-Peter; Platt, Ulrich; Hu, Min; Zhu, Tong

    2009-04-01

    During the CAREBEIJING campaign in 2006, imaging differential optical absorption spectroscopy (I-DOAS) measurements were made from 08:00 to 16:00 on September 9 and 10 over Beijing, China. Detailed images of the near-surface NO(2) differential slant column density (DSCD) distribution over Beijing were obtained. Images with less than a 30-min temporal resolution showed both horizontal and vertical variations in NO(2) distributions. For DSCD to mixing ratio conversion, path length along the lines of I-DOAS lines of sight was estimated using the light-extinction coefficient and Angstrom exponent data obtained by a transmissometer and a sunphotometer, respectively. Mixing ratios measured by an in-situ NO(2) analyzer were compared with those estimated by the I-DOAS instrument. The obtained temporal and spatial variations in NO(2) distributions measured by I-DOAS for the two days are interpreted with consideration of the locations of the major NO(x) sources and local wind conditions. I-DOAS measurements have been applied in this study for estimating NO(2) distribution over an urban area with multiple and distributed emission sources. Results are obtained for estimated temporal and spatial NO(2) distributions over the urban atmosphere; demonstrating the capability of the I-DOAS technique. We discuss in this paper the use of I-DOAS measurements to estimate the NO(2) distribution over an urban area with multiple distributed emission sources. PMID:19111964

  14. Infrared Photodetection Based on Colloidal Quantum-Dot Films with High Mobility and Optical Absorption up to THz.

    Lhuillier, Emmanuel; Scarafagio, Marion; Hease, Patrick; Nadal, Brice; Aubin, Hervé; Xu, Xiang Zhen; Lequeux, Nicolas; Patriarche, Gilles; Ithurria, Sandrine; Dubertret, Benoit

    2016-02-10

    Infrared thermal imaging devices rely on narrow band gap semiconductors grown by physical methods such as molecular beam epitaxy and chemical vapor deposition. These technologies are expensive, and infrared detectors remain limited to defense and scientific applications. Colloidal quantum dots (QDs) offer a low cost alternative to infrared detector by combining inexpensive synthesis and an ease of processing, but their performances are so far limited, in terms of both wavelength and sensitivity. Herein we propose a new generation of colloidal QD-based photodetectors, which demonstrate detectivity improved by 2 orders of magnitude, and optical absorption that can be continuously tuned between 3 and 20 μm. These photodetectors are based on the novel synthesis of n-doped HgSe colloidal QDs whose size can be tuned continuously between 5 and 40 nm, and on their assembly into solid nanocrystal films with mobilities that can reach up to 100 cm(2) V(-1) s(-1). These devices can be operated at room temperature with the same level of performance as the previous generation of devices when operated at liquid nitrogen temperature. HgSe QDs can be synthesized in large scale (>10 g per batch), and we show that HgSe films can be processed to form a large scale array of pixels. Taken together, these results pave the way for the development of the next generation mid- and far-infrared low-cost detectors and camera. PMID:26753599

  15. Measurement of atmospheric ammonia at a dairy using differential optical absorption spectroscopy in the mid-ultraviolet

    Mount, George H.; Rumburg, Brian; Havig, Jeff; Lamb, Brian; Westberg, Hal; Yonge, David; Johnson, Kristen; Kincaid, Ronald

    Ammonia is the most abundant basic gas in the atmosphere, and after N 2 and N 2O is the most abundant nitrogen-containing specie (Seinfeld and Pandis, 1998. Atmospheric Chemistry and Physics: from air pollution to climate changes. Wiley, New York). Typical concentrations of ammonia in the boundary layer range from Dairy farms constitute a large fraction of the livestock inventory. Current estimates of ammonia emissions to the atmosphere are characterized by a high degree of uncertainty, and so it is very important to obtain better estimates of ammonia emissions. We are working at the Washington State University research dairy to quantify ammonia emissions and investigate the effects of various mitigation strategies on those emissions. We describe here a new instrument utilizing the differential optical absorption spectroscopy (DOAS) technique to measure ammonia in the mid-ultraviolet with a detectability limit of about 1 ppb. DOAS avoids many of the problems that have thwarted past ammonia concentration measurements. Initial results show concentrations in the barn/concrete yard areas in the tens of parts per million range, over the slurry lagoons of hundreds of parts per billion to low parts per million, and low parts per million levels after initial slurry applications onto pastureland. Future papers will report on emission fluxes from the various parts of the dairy and the results of mitigation strategies; we show here initial data results. For a recent review of ammonia volatilization from dairy farms, see Bussink and Oenema (Nutrient Cycling in Agroecosystems 51(1998) 19).

  16. Optical time of flight studies of lithium plasma in double pulse laser ablation: Evidence of inverse Bremsstrahlung absorption

    The early stage of formation of lithium plasma in a collinear—double pulse laser ablation mode has been studied using optical time of flight (OTOF) spectroscopy as a function of inter-pulse delay time, the distance from the target surface and the fluence of the ablation lasers. The experimental TOF measurements were carried out for lithium neutral (670.8 nm and 610.3 nm), and ionic (548.4 nm and 478.8 nm) lines. These experimental observations have been compared with that for single pulse laser ablation mode. It is found that depending on the fluence and laser pulse shape of the first pre-ablation laser and the second main ablation laser, the plasma plume formation and its characteristic features can be described in terms of plume-plume or laser-plume interaction processes. Moreover, the enhancement in the intensity of Li neutral and ionic lines is observed when the laser-plume interaction is the dominant process. Here, we see the evidence of the role of inverse Bremsstrahlung absorption process in the initial stage of formation of lithium plasma in this case

  17. The Global Ozone and Aerosol Profiles and Aerosol Hygroscopic Effect and Absorption Optical Depth (GOA2HEAD) Network Initiative

    Gao, R. S.; Elkins, J. W.; Frost, G. J.; McComiskey, A. C.; Murphy, D. M.; Ogren, J. A.; Petropavlovskikh, I. V.; Rosenlof, K. H.

    2014-12-01

    Inverse modeling using measurements of ozone (O3) and aerosol is a powerful tool for deriving pollutant emissions. Because they have relatively long lifetimes, O3 and aerosol are transported over large distances. Frequent and globally spaced vertical profiles rather than ground-based measurements alone are therefore highly desired. Three requirements necessary for a successful global monitoring program are: Low equipment cost, low operation cost, and reliable measurements of known uncertainty. Conventional profiling using aircraft provides excellent data, but is cost prohibitive on a large scale. Here we describe a new platform and instruments meeting all three global monitoring requirements. The platform consists of a small balloon and an auto-homing glider. The glider is released from the balloon at about 5 km altitude, returning the light instrument package to the launch location, and allowing for consistent recovery of the payload. Atmospheric profiling can be performed either during ascent or descent (or both) depending on measurement requirements. We will present the specifications for two instrument packages currently under development. The first measures O3, RH, p, T, dry aerosol particle number and size distribution, and aerosol optical depth. The second measures dry aerosol particle number and size distribution, and aerosol absorption coefficient. Other potential instrument packages and the desired spatial/temporal resolution for the GOA2HEAD monitoring initiative will also be discussed.

  18. Spatially resolved measurements of nitrogen dioxide in an urban environment using concurrent multi-axis differential optical absorption spectroscopy

    R. J. Leigh

    2007-09-01

    Full Text Available A novel system using the technique of concurrent multi-axis differential optical absorption spectroscopy system has been developed and applied to the measurement of nitrogen dioxide in an urban environment. Using five fixed telescopes, slant columns of nitrogen dioxide, ozone, water vapour, and the oxygen dimer, O4, are simultaneously retrieved in five vertically separated viewing directions. The application of this remote sensing technique in the urban environment is explored. Through the application of several simplifying assumptions a tropospheric concentration of NO2 is derived and compared with an urban background in-situ chemiluminescence detector. Trends derived from remote sensing and in-situ techniques show agreement to within 15 to 40% depending on conditions. Owing to the high time resolution of the measurements, the ability to image and quantify plumes within the urban environment is demonstrated. The CMAX-DOAS measurements provide a useful measure of overall NO2 concentrations on a city-wide scale.

  19. Measurements of NO2, SO2, O3, benzene and toluene using differential optical absorption spectroscopy (DOAS) in Shanghai, China.

    Hao, Nan; Zhou, Bin; Chen, Dan; Sun, Yi; Gao, Song; Chen, Limin

    2006-01-01

    NO2, SO2, O3, benzene, and toluene were measured in Taopu industry park of Shanghai during the period June to August 2003 by differential optical absorption spectroscopy (DOAS) technique. The daily average concentrations of SO2, NO2, and O3 ranged from 5.7 ppb to 40 ppb, 22 ppb to 123 ppb, and 10.6 ppb to 23 ppb respectively. SO2 and NO2 concentrations were found to depend on wind direction. The diurnal variation of NO2 concentrations had two peaks due to traffic emission. Our DOAS measurements of NO2, SO2 and O3 were compared with the conventional measurement instruments (API automatic monitoring instrument). The concept of a percent difference (PD) and linear regression methods were employed to study the difference between DOAS and API instruments. The correlation analysis between PD values and meteorological parameters and analysis of abnormal higher absolute PD values indicated that the lower visibility induced the bad compatibility between the two systems. The results showed that both systems exhibited strong compatibility with good correlation, therefore the DOAS system is able to provide reliable information on distribution patterns of major air pollutants. Average benzene and toluene concentrations were 1.4 and 8.0 ppb respectively. PMID:16948427

  20. 1-[4-(methylsulfanyl) phenyl]-3-(4-nitropshenyl) prop-2-en-1-one: A reverse saturable absorption based optical limiter

    Raghavendra, Subrayachar, E-mail: raghuphotonics@gmail.com [Department of Studies in Physics, Mangalore University, Mangalore, 574199 (India); Chidankumar, Chandraju Sadolalu [X-ray Crystallography Unit, School of Physics, 11800 USM, Universiti Sains Malaysia Penang (Malaysia); Jayarama, Arasalike [Department of Physics, Sadguru Swami Nithyananda Institute of Technology (SSNIT), Kanhangad, 671315 (India); Dharmaprakash, Sampyady Medappa [Department of Studies in Physics, Mangalore University, Mangalore, 574199 (India)

    2015-01-15

    An organic nonlinear optical material “1-[4-(methylsulfanyl) phenyl]-3-(4-nitrophenyl) prop-2-en-1-one” (4MPNP) has been synthesized by Claisen–Schmidt condensation and crystallized by slow evaporation technique at ambient temperature. The functional groups present in 4MPNP molecule were identified by FTIR spectroscopy. TGA-DSC analysis in the temperature range 30{sup o}C–650 °C showed absence of phase transition before melting point. The crystal structure of 4MPNP was determined using X-ray single crystal diffraction technique. UV–Vis absorption studies were carried out in the wavelength range 190–800 nm. Beyond the cut off wavelength 4MPNP is optically transparent in the entire visible region of the spectrum. Open aperture Z-Scan experimental curve showed that the 4MPNP molecule exhibits minimum transmittance at the focus and maximum nonlinear absorptionat532 nm wavelength. The variation of normalized transmittance with laser power density indicates good optical limiting behavior of the molecule. Nonlinear optical absorption coefficient (β), excited state absorption cross-section (σ{sub ex}) and ground state absorption cross-section (σ{sub g}) are estimated and found to be 4.5 cm/GW, 5.17 × 10{sup −18} cm{sup 2} and 5.68 × 10{sup −21} cm{sup 2} respectively. The values σ{sub ex}>>σ{sub g} indicate that 4MPNP crystal has the property of reverse saturable absorption. The studies recommend that 4MPNPcan be considered as a potential material for third order nonlinear optical device applications such as optical limiters. - Highlights: • Beyond the cut off wavelength 4MPNP is transparent in entire visible region. • Potential material for nonlinear optical device applications such as optical limiters. • TGA curve indicates that 4MPNP is almost stable up to melting point. • Band gap of 4MPNP is found to be 3.06 eV.

  1. Facile synthesis of CuSe nanoparticles and high-quality single-crystal two-dimensional hexagonal nanoplatelets with tunable near-infrared optical absorption

    Wu, Yimin; Korolkov, Ilia; Qiao, Xvsheng; Zhang, Xianghua; Wan, Jun; Fan, Xianping

    2016-06-01

    A rapid injection approach is used to synthesize the copper selenide nanoparticles and two-dimensional single crystal nanoplates. This technique excludes the use of toxic or expensive materials, increasing the availability of two-dimensional binary chalcogenide semiconductors. The structure of the nanocrystals has been studied and the possible formation mechanism of the nanoplates has been proposed. The optical absorption showed that the nanoplates demonstrated wide and tuneable absorption band in the visible and near infrared region. These nanoplates could be interesting for converting solar energy and for nanophotonic devices operating in the near infrared.

  2. Aerosol optical absorption by dust and black carbon in Taklimakan Desert, during no-dust and dust-storm conditions

    Hui Lu; Wenshou Wei; Mingzhe Liu; Weidong Gao; Xi Han

    2012-01-01

    Aerosol absorption coefficient σap involves the additive contribution of both black carbon aerosol (BC) and dust aerosol.The linear statistical regression analysis approach introduced by Fialho et al.(2005) is used to estimate the absorption exponents of BC and dust aerosol absorption coefficients,and further to separate the contributions of these two types of aerosols from the total light absorption coefficient measured in the hinterland of Taklimakan Desert in the spring of 2006.Absorption coefficients are measured by means of a 7-wavelength Aethalometer from 1 March to 31 May and from 1 November to 28 December,2006.The absorption exponent of BC absorption coefficient α is estimated as (-0.95 ±0.002) under background weather (supposing the observed absorption coefficient is due only to BC); the estimated absorption exponent of dust aerosol absorption coefficient β during the 6 dust storm periods (strong dust storm) is (-2.55 ± 0.009).Decoupling analysis of the measured light absorption coefficients demonstrates that,on average,the light absorptions caused by dust aerosol and BC make up about 50.5% and 49.5% respectively of the total light absorption at 520 nm; during dust weather process periods (dust storm,floating dust,blowing dust),the contribution of dust aerosol to absorption extinction is 60.6% on average; in the hinterland of desert in spring,dust aerosol is also the major contributor to the total aerosol light absorption,more than that of black carbon aerosol.

  3. First principles calculations of the density of states and the optical absorption coefficients of W-doped SnS2

    First principles calculations of the electronic density of state (DOS) and the optical absorption coefficient of SnS2, Sn0.875W0.125S2 and Sn0.75W0.25S2 are presented using the PBE-GGA formalism and the TBmBJ potential. The band gap of SnS2 is found to be 2.1 eV when the TBmBJ potential is used. This value is in excellent agreement with reported experiments. Doping the parent tin disulfide (SnS2) by W atoms is found to produce intermediate bands (IB) in the vicinity of the Fermi level. The calculated optical absorption coefficient is seen to enhance and cover a wide range of energy extending from the infrared red region up to the ultraviolet region irrespective of the type of exchange functional or potential. From the DOS results, the role of the TBmBJ potential is found to correct the values of the band gap and place the IB in the correct position. Consequently, this affects the dependence of the optical absorption coefficient on the energy. Furthermore, it reveals the occurrence of additional optical processes. Our findings support the use of the W-doped SnS2 compounds as intermediate band materials in solar cells applications. (paper)

  4. Optical absorption of selenite single crystals subjected to high electric fields and irradiated with X-rays or γ-rays

    Measurements of the optical absorption coefficient of selenite single crystals show two peaks at 236 and 400 nm when plotted as a function of wavelength. These peaks decrease with increasing irradiation time for both γ and X-rays. Subsequent thermal bleaching increases the absorption coefficient at all wavelengths and flattens out the peaks at 1400C and 3300C respectively. The imposition of an a.c. or d.c. field prior to irradiation preserves the thermal bleaching characteristics with an overall increase in absorption coefficient. These effects are attributed to two different types of bond formed by water of crystallization giving rise to the two absorption peaks. Irradiation may destroy some of the bands of loosely bound water molecules near defect regions leading to a decrease in absorption. Thermal bleaching removes water molecules reducing the transparency of the samples, the more strongly bound molecules being removed at the higher temperature. Irradiation after a.c. or d.c. field treatment may introduce more defect regions enabling the removal of more water molecules by bleaching and hence increasing the absorption. (U.K.)

  5. Nonlinear optical rectification and optical absorption in GaAs-Ga1-xAlxAs asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure

    The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga1-xAlxAs asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: → Maxima of the NOA correspond to zero in the NOR. → Electric fields can couple the double quantum wells. → Hydrostatic pressure can couple the double quantum wells. → NOA can increase/decrease with hydrostatic pressure. → Overlap between wave functions depends on the magnetic field.

  6. Nonlinear optical rectification and optical absorption in GaAs-Ga{sub 1-x}Al{sub x}As asymmetric double quantum wells: Combined effects of applied electric and magnetic fields and hydrostatic pressure

    Karabulut, I. [Department of Physics, Selcuk University, Konya 42075 (Turkey); Mora-Ramos, M.E. [Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Ave. Universidad 1001, CP 62209, Cuernavaca, Morelos (Mexico); Duque, C.A., E-mail: cduque_echeverri@yahoo.e [Instituto de Fisica, Universidad de Antioquia, AA 1226, Medellin (Colombia)

    2011-07-15

    The intersubband electron-related nonlinear optical absorption and nonlinear optical rectification in GaAs-Ga{sub 1-x}Al{sub x}As asymmetric double quantum wells are studied, under the influence of combined or independent applied electric and magnetic fields as well as hydrostatic pressure. The outcome of the density matrix formalism and the effective mass, and parabolic-band approximations have been considered as main theoretical tools for the description. It is obtained that under particular geometrical conditions, with or without electric and/or magnetic field strength, the optical rectification is null and, simultaneously, in such circumstances the optical absorption has a relative maximum. It is also detected that the influence of the hydrostatic pressure leads to increasing or decreasing behaviors of the nonlinear optical absorption in dependence of the particular regime of pressure values considered, with significant distinction of the cases of opposite electric field orientations. - Highlights: {yields} Maxima of the NOA correspond to zero in the NOR. {yields} Electric fields can couple the double quantum wells. {yields} Hydrostatic pressure can couple the double quantum wells. {yields} NOA can increase/decrease with hydrostatic pressure. {yields} Overlap between wave functions depends on the magnetic field.

  7. Coupled optical absorption, charge carrier separation, and surface electrochemistry in surface disordered/hydrogenated TiO2 for enhanced PEC water splitting reaction.

    Behara, Dilip Kumar; Ummireddi, Ashok Kumar; Aragonda, Vidyasagar; Gupta, Prashant Kumar; Pala, Raj Ganesh S; Sivakumar, Sri

    2016-03-28

    The central governing factors that influence the efficiency of photoelectrochemical (PEC) water splitting reaction are photon absorption, effective charge-carrier separation, and surface electrochemistry. Attempts to improve one of the three factors may debilitate other factors and we explore such issues in hydrogenated TiO2, wherein a significant increase in optical absorption has not resulted in a significant increase in PEC performance, which we attribute to the enhanced recombination rate due to the formation of amorphization/disorderness in the bulk during the hydrogenation process. To this end, we report a methodology to increase the charge-carrier separation with enhanced optical absorption of hydrogenated TiO2. Current methodology involves hydrogenation of non-metal (N and S) doped TiO2 which comprises (1) lowering of the band gap through shifting of the valence band via less electronegative non-metal N, S-doping, (2) lowering of the conduction band level and the band gap via formation of the Ti(3+) state and oxygen vacancies by hydrogenation, and (3) material processing to obtain a disordered surface structure which favors higher electrocatalytic (EC) activity. This design strategy yields enhanced PEC activity (%ABPE = 0.38) for the N-S co-doped TiO2 sample hydrogenated at 800 °C for 24 h over possible combinations of N-S co-doped TiO2 samples hydrogenated at 500 °C/24 h, 650 °C/24 h and 800 °C/72 h. This suggests that hydrogenation at lower temperatures does not result in much increase in optical absorption and prolonged hydrogenation results in an increase in optical absorption but a decrease in charge carrier separation by forming disorderness/oxygen vacancies in the bulk. Furthermore, the difference in double layer capacitance (C(dl)) calculated from electrochemical impedance spectroscopy (EIS) measurements of these samples reflects the change in the electrochemical surface area (ECSA) and facilitates assessing the key role of surface

  8. Concentration distribution of Nd{sup 3+} In Nd:Gd{sub 3}Ga{sub 5}O{sub 12} crystals studied by optical absorption method

    Sun, Dunlu; Zhang, Qingli; Wang, Zhaobing; Su, Jing; Gu, Changjiang; Wang, Aihua; Yin, Shaotang [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, HeFei 230031 (China)

    2005-07-01

    Nd:Gd{sub 3}Ga{sub 5}O{sub 12} crystals with different concentrations of Nd{sup 3+} were grown by Czochralski method, their absorption spectra were measured at room temperature. By using the optical absorption method, the effective distribution coefficient k{sub eff} for Nd{sup 3+} in GGG was fitted to be 0.40{+-}0.01, which is higher than that of Nd{sup 3+} in YAG. The 808nm absorption cross-section was calculated to be 4.0{+-}0.2 x 10{sup -20} cm{sup -2}. The lengthways and radial concentration distribution of Nd{sup 3+} in the crystals were also analyzed and discussed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Enhancement of optical absorption by modulation of the oxygen flow of TiO{sub 2} films deposited by reactive sputtering

    Pereira, Andre L. J. [Universidade Estadual Paulista, UNESP, Bauru SP (Brazil); Universitat Jaume I, Castellon (Spain); Lisboa Filho, Paulo N.; Dias da Silva, Jose H. [Universidade Estadual Paulista, UNESP, Bauru SP (Brazil); Acuna, Javier; Brandt, Iuri S.; Pasa, Andre A. [Universidade Federal de Santa Catarina, UFSC, Florianopolis SC (Brazil); Zanatta, Antonio R. [Universidade de Sao Paulo, USP, Sao Carlos SP (Brazil); Vilcarromero, Johnny [Universidade Federal de Sao Carlos, UFSCar, Sorocaba SP (Brazil); Beltran, Armando [Universitat Jaume I, Castellon (Spain)

    2012-06-01

    Oxygen-deficient TiO{sub 2} films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O{sub 2} gas supply is periodically interrupted rather than by a decrease of the partial O{sub 2} gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 Multiplication-Sign 10{sup 2} cm{sup -1} to more than 4 Multiplication-Sign 10{sup 3} cm{sup -1} as a result of the gas flow discontinuity. A red-shift of {approx}0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40 nm. Moreover, the interruptions of the O{sub 2} gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO{sub 2} anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O{sub 2} gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO{sub 2} films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO{sub 2} thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the

  10. The origin of enhanced optical absorption of the BiFeO3/ZnO heterojunction in the visible and terahertz regions.

    Feng, Hong-Jian; Yang, Kang; Deng, Wan; Li, Mengmeng; Wang, Mingzi; Duan, Bi; Liu, Feng; Tian, Jinshou; Guo, Xiaohui

    2015-10-28

    Optical absorption is improved for the BiFeO3/ZnO heterostructure prepared by a sol-gel process, especially, in the terahertz energy region. A dipole-corrected slab model is used to describe the bilayer film, and first-principles calculations agree with the experiments which present unambiguous explanation for the enhancement of the optical properties. Two-dimensional electrons in the ZnO side of the heterostructure are found to play an essential role in forming the photoinduced carriers and the enhancement of the absorption. The conducting layers tend to penetrate into the interface and decrease the band gap, leading to the transport of carriers through the interface to the BiFeO3 side. The photoinduced carriers can be separated by the ferroelectric domains in BiFeO3, and this mechanism makes the heterostructure an ideal candidate for BiFeO3-based ferroelectric photovoltaic cells. PMID:26403497

  11. Exciton-related nonlinear optical absorption and refractive index change in GaAs-Ga{sub 1-x}Al{sub x}As double quantum wells

    Miranda, Guillermo L. [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Mora-Ramos, Miguel E., E-mail: memora@uaem.mx [Fisica Teorica y Aplicada, Escuela de Ingenieria de Antioquia, A.A. 7516 Medellin (Colombia); Facultad de Ciencias, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, C.P. 62209 Cuernavaca, Morelos (Mexico); Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Duque, Carlos A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia)

    2013-01-15

    In this work the variations of the exciton-related optical absorption and the change of the refractive index in a GaAs-(Ga,Al)As double quantum well as functions of the geometric parameters of the heterostructure are investigated. The variational method is applied within the framework of the parabolic band and effective mass approximations, in order to obtain the 1s-like exciton energy spectrum. The outcome for the related optical coefficients shows a quenched and redshifted light absorption as a result of the increment in the inner barrier and right-hand well widths, with the possibility of an enhancement of the excitonic contribution to the relative change in the refractive index.

  12. Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study

    Metal nanocluster composite glasses are formed by the ion-exchange technique of dipping the host matrix in the respective metal salt bath of interest. These ion-exchanged glasses are then annealed in air for 1 h at different temperatures. The optical absorption spectra of the ion-exchanged and annealed samples confirmed the presence of nano sized metal clusters embedded inside the glass matrix. With increase of the annealing temperature, the absorption peak of the Cu and Ag nanoparticles showed a blue shift which can be attributed to the change in particle size and volume fraction. Annealing of the sequential Cu and Ag ion-exchanged soda-lime glass resulted in the formation of complex metal nanocluster composite glass, with the optical spectra exhibiting two peaks corresponding to the surface plasmon resonance of both metals

  13. Direct observation of the terahertz optical free induction decay of molecular rotation absorption lines in the sub-nanosecond time scale

    Optical free induction decay (FID) in the region of 60-75 cm-1 was detected using 120 ps pulses of free electron laser. Signals were detected in real time using ultra-fast Schottky diode detectors. The oscillations corresponding to the splitting of absorption lines in deuterated water vapor (Δf = 0.15 cm-1) and hydrogen bromide (Δf = 0.02 cm-1) were detected. At high optical density, we observed the oscillations arising from “top-hat” shape of absorption lines. Free induction decay signals could be detected in a single shot. This observation allowed obtaining a spectrum in one laser pulse, which facilitates studies of very fast processes.

  14. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe2+and Fe3+. •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe3+. -- Abstract: Natural silicate mineral of pumpellyite, Ca2MgAl2(SiO4)(Si2O7)(OH)2·(H2O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe2+ and Fe3+. The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe2+ → e− + Fe3+. On the other hand, EPR measurements reveal six lines of Mn2+, and satellites due to hyperfine interaction, superimposed on the signal of Fe3+ around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe3+ hides all Mn2+ lines. The strong growth of this signal indicates that the transitions are due to Fe3+ dipole–dipole interactions

  15. Effects of pre-irradiation annealing at high temperature on optical absorption and electron paramagnetic resonance of natural pumpellyite mineral

    Javier-Ccallata, Henry, E-mail: henrysjc@gmail.com [Escuela de Ingeniería Electrónica y Telecomunicaciones, Universidad Alas Peruanas Filial Arequipa, Urb. D. A. Carrión G-14, J. L. Bustamante y Rivero, Arequipa (Peru); Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Filho, Luiz Tomaz [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil); Faculdade de Tecnologia e Ciências Exatas, Universidade São Judas Tadeu, Rua Taquari 546, São Paulo, SP (Brazil); Sartorelli, Maria L. [Laboratório de Sistemas Nanoestruturados, Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina (Brazil); Watanabe, Shigueo [Departamento de Física Nuclear, Instituto de Física, Universidade de São Paulo, Rua do Matão, travessa R, 187, CEP 05508-900 São Paulo, SP (Brazil)

    2013-09-15

    Highlights: •Natural pumpellyite mineral presents superposition bands around 900 and 1060 nm due Fe{sup 2+}and Fe{sup 3+}. •High temperature annealing influences the EPR and OA spectra. •The behavior of EPR line for 800 and 900 °C can be attributed to forbidden dd transitions due the Fe{sup 3+}. -- Abstract: Natural silicate mineral of pumpellyite, Ca{sub 2}MgAl{sub 2}(SiO{sub 4})(Si{sub 2}O{sub 7})(OH){sub 2}·(H{sub 2}O), point group A2/m, has been studied concerning high temperature annealing and γ-radiation effects on Optical Absorption (OA) and Electron Paramagnetic Resonance (EPR) properties. Chemical analysis revealed that besides Si, Al, Ca and Mg, other oxides i.e., Fe, Mn, Na, K, Ti and P are present in the structure as impurities. OA measurements of natural and annealed pumpellyite revealed several bands in the visible region due to spin forbidden transitions of Fe{sup 2+} and Fe{sup 3+}. The behaviour of bands around 900 and 1060 nm, with pre-annealing and γ radiation dose, indicating a transition Fe{sup 2+} → e{sup −} + Fe{sup 3+}. On the other hand, EPR measurements reveal six lines of Mn{sup 2+}, and satellites due to hyperfine interaction, superimposed on the signal of Fe{sup 3+} around of g = 2. For heat treatment from 800 °C the signal grows significantly and for 900 °C a strong signal of Fe{sup 3+} hides all Mn{sup 2+} lines. The strong growth of this signal indicates that the transitions are due to Fe{sup 3+} dipole–dipole interactions.

  16. Investigation of the optical absorption characteristics of slow-cooled LiF:Mg,Ti (TLD-100)

    The optical absorption (OA) spectrum of LiF:Mg,Ti has been studied as a function of dose at two different cooling rates following the 400 oC pre-irradiation anneal in order to further investigate the role of cooling rate in the thermoluminescence (TL) mechanisms of this material. 'Slow-cooling' following the pre-irradiation 400 oC anneal substantially decreases the OA bands at 3.25 eV and 4.0 eV, in agreement with the overall loss in TL peaks 2-5 intensity using slow-cooling routines. Slow-cooling appears to shift the maximum intensity of peak 5 to lower temperatures (a behaviour which has been attributed to an enhanced intensity of peak 5a), however, no difference in the shape of the 4.0 eV OA band is detected following 'slow-cooling'. Apparently the OA band related to peak 5a is too close in energy to the peak 5 OA band to be observed due to lack of sufficient resolution and spectral deconvolution process or it is not present at room temperature (RT) and formed during heating of the sample. The intensity of the 4.0 eV OA band does not change if the sample (prior to irradiation to a standard dose of 200 Gy) is irradiated to 4 kGy followed by a 500 oC/1 h post-irradiation anneal. This result demonstrates that the loss of intensity at high levels of dose (so-called radiation damage) of TL glow peak 5 results from alteration of the LCs or to the creation of additional competitive centers and is not correlated with the dose behaviour of the TCs.

  17. Electron paramagnetic resonance and optical absorption study of V{sup 4+} centres in YVO{sub 4} crystals

    Garces, N Y [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States); Stevens, K T [Northrop Grumman Space Technology, Synoptics, Charlotte, NC 28273 (United States); Foundos, G K [Northrop Grumman Space Technology, Synoptics, Charlotte, NC 28273 (United States); Halliburton, L E [Department of Physics, West Virginia University, Morgantown, WV 26506 (United States)

    2004-10-06

    Electron paramagnetic resonance (EPR) has been used to characterize three distinct V{sup 4+} centres in undoped Czochralski-grown yttrium orthovanadate (YVO{sub 4}) crystals. These EPR signals are observed at low temperatures, and their average c-axis splittings between adjacent {sup 51}V hyperfine lines are 40 G, 123 G, and 140 G. We refer to these centres as [V{sup 4+}]{sub A}, [V{sup 4+}]{sub B}, and [V{sup 4+}]{sub C}, respectively. The [V{sup 4+}]{sub A} and [V{sup 4+}]{sub B} centres are present in as-grown crystals. Exposure at 77 K to ionizing radiation (x-rays or an ultraviolet laser beam) destroys these centres and creates the [V{sup 4+}]{sub C} centres. The as-grown state of the crystal is restored upon returning to room temperature. Angular dependence data are used to determine the principal values and principal directions of the g tensor and the {sup 51}V hyperfine tensor for each of the centres. We suggest that the [V{sup 4+}]{sub A} centre is a V{sup 4+} ion adjacent to an oxygen vacancy and that the [V{sup 4+}]{sub B} centre is a V{sup 4+} ion substituting for a Y{sup 3+} ion (i.e. a vanadium antisite defect). The [V{sup 4+}]{sub C} centre is assigned to a V{sup 4+} ion at a regular vanadium site with a nearby stabilizing defect, possibly a Zr{sup 4+} on a Y{sup 3+} site. In as-grown crystals, there is a correlation between the number of [V{sup 4+}]{sub A} centres and the intensity (at 380 nm) of a broad near-edge optical absorption band. This band, now associated with oxygen vacancies, gives YVO{sub 4} a 'yellow' appearance.

  18. Observation of different phytoplankton groups and biomass using Differential Optical Absorption Spectroscopy on SCIAMACHY data and comparisons to in-situ, NASA biogeochemical Model and MERIS

    Bracher, Astrid; Taylor, Bettina; M. Vountas; Dinter, Tilman; J. P. Burrows; R. Röttgers; Peeken, Ilka

    2008-01-01

    In order to understand the marine phytoplanktons role in the global marine ecosystem and biogeochemical cycles it is necessary to derive global information on the distribution of major functional phytoplankton types (PFT) in the world oceans. In our study we use instead of the common ocean color sensors such as CZCS, SeaWiFS, MODIS, MERIS, with rather low spectral resolution, the Differential Optical Absorption Spectroscopy (DOAS) to study the retrieval of phytoplankton distribution and absor...

  19. Transmission Electron Microscopy of the Textured Silver Back Reflector of a Thin Film Silicon Solar Cell: From Crystallography to Optical Absorption

    Duchamp, Martial; Söderström, K.; Jeangros, Q.;

    2011-01-01

    The study of light trapping in amorphous, microcrystalline and micromorph thin-film Si solar cells is an important and active field of investigation. It has been demonstrated that the use of a rough Ag back-reflector lead to an increase of short circuit current but also to losses through the...... the origin of optical absorption losses previously measured in Ag back-reflector of thin-film Si solar cells....

  20. An interferometric determination of the refractive part of optical constants for carbon and silver across soft X-ray absorption edges

    Joyeux, Denis; Polack, François; Phalippou, Daniel

    1999-01-01

    International audience Interferometric, direct determinations of the f 1 scattering factor near absorption edges in the soft x-ray range is demonstrated. The interferometric system, which is based on wave front division (no beam splitter) with plane mirrors only, produces a linear fringe pattern. The principle consists in direct measuring of the fringe shift occurring upon insertion of a sample into one interferometer arm, by means of a dedicated detection system. This provides the optical...

  1. High spatial resolution measurements of NO2 applying Topographic Target Light scattering-Differential Optical Absorption Spectroscopy (ToTaL-DOAS)

    Wagner, T; U. Platt; Frins, E.

    2008-01-01

    International audience Tomographic Target Light scattering ? Differential Optical Absorption Spectroscopy (ToTaL-DOAS), also called Target-DOAS, is a novel experimental procedure to retrieve trace gas concentrations present in the low atmosphere. Scattered sunlight (partially or totally) reflected from natural or artificial targets of similar albedo located at different distances is analyzed to retrieve the concentration of different trace gases like NO2, SO2 and others. We report high spa...

  2. High spatial resolution measurements of NO2 applying Topographic Target Light scattering-Differential Optical Absorption Spectroscopy (ToTaL-DOAS)

    Frins, E.; U. Platt; Wagner, T

    2008-01-01

    Topographic Target Light scattering – Differential Optical Absorption Spectroscopy (ToTaL-DOAS), also called Target-DOAS, is a novel experimental procedure to retrieve trace gas concentrations present in the low atmosphere. Scattered sunlight (diffuse or specular) reflected from natural or artificial targets located at different distances are analyzed to retrieve the spatial distribution of the concentration of different trace gases like NO2, SO2 and others. We report high s...

  3. Comment on "Linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field"

    Yuan, Jian-Hui; Zhang, Zhi-Hai

    2015-12-01

    Guo and Du (2013) reported theirs result for the linear and nonlinear optical absorption coefficients and refractive index changes in asymmetrical Gaussian potential quantum wells with applied electric field. We find both the energy and the corresponding wavefunction for the low-lying state are wrong to applied in their works. For the same set of parameters studied by Guo and Du, we obtain new and reliable results via the differential method.

  4. The role of scattering and absorption on the optical properties of birefringent polycrystalline ceramics: Modeling and experiments on ruby (Cr:Al2O3)

    Penilla, E. H.; Hardin, C. L.; Kodera, Y.; Basun, S. A.; Evans, D. R.; Garay, J. E.

    2016-01-01

    Light scattering due to birefringence has prevented the use of polycrystalline ceramics with anisotropic optical properties in applications such as laser gain media. However, continued development of processing technology has allowed for very low porosity and fine grains, significantly improving transparency and is paving the way for polycrystalline ceramics to be used in demanding optical applications. We present a method for producing highly transparent Cr3+ doped Al2O3 (ruby) using current activated pressure assisted densification. The one-step doping/densification process produces fine grained ceramics with well integrated (doped) Cr, resulting in good absorption and emission. In order to explain the light transmission properties, we extend the analytical model based on the Rayleigh-Gans-Debye approximation that has been previously used for undoped alumina to include absorption. The model presented captures reflection, scattering, and absorption phenomena in the ceramics. Comparison with measured transmission confirms that the model adequately describes the properties of polycrystalline ruby. In addition the measured emission spectra and emission lifetime are found to be similar to single crystals, confirming the high optical quality of the ceramics.

  5. The influence of chemical post-etching and UV irradiation on the optical absorption and thermal diffusivity of porous silicon studied by photoacoustic technique

    We applied a photoacoustic (PA) technique to study the optical absorption and thermal diffusivity of porous silicon (PSi) samples. The PSi layers were formed on p-type Si wafers in an HF electrolyte. Three kinds of PSi samples that had undergone chemical post-etching were studied before and after UV irradiation for 2 h. We observed that a strong confinement effect occurred in all of the PSi samples from the blue shift of the band gap energy compared with that of crystalline Si, while the effective thermal diffusivities were almost two orders of the magnitude smaller than that of conventional Si crystals. The band gap shifted to higher energy and the effective thermal diffusivity decreased as the post-etching time increased. In the case of a PSi sample that was not chemically post-etched, the optical absorption and effective thermal diffusivity before and after UV irradiation were almost unchanged. However, for the PSi samples that were chemically post-etched, the optical absorption decreased and the effective thermal diffusivity increased after UV irradiation. This indicates that PSi samples that are post-etched are more readily affected by UV irradiation, i.e., oxidized by replacing Si-H x bonds by Si-O x, than those that do not undergo post-etching

  6. Nonlinear optical absorption tuning in Bi{sub 3.15}Nd{sub 0.85}Ti{sub 3}O{sub 12} ferroelectric thin films by thickness

    Li, S.; Zhong, X. L., E-mail: xlzhong@xtu.edu.cn, E-mail: jbwang@xtu.edu.cn; Zhang, Y.; Wang, J. B., E-mail: xlzhong@xtu.edu.cn, E-mail: jbwang@xtu.edu.cn; Song, H. J.; Tan, C. B.; Li, B. [Key Laboratory of Materials Design and Preparation Technology of Hunan Province, School of Materials Science and Engineering, Xiangtan University, Hunan, Xiangtan 411105 (China); Hunan Provincial National Defense Key Laboratory of Key Film Materials and Application for Equipment, School of Materials Science and Engineering, Xiangtan University, Hunan, Xiangtan 411105 (China); Cheng, G. H.; Liu, X. [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, CAS, Shanxi, Xi' an 710119 (China)

    2015-04-06

    The tunability of nonlinear optical (NLO) absorption in Bi{sub 3.15}Nd{sub 0.85}Ti{sub 3}O{sub 12} (BNT) ferroelectric thin films was investigated through the open aperture Z-scan method with femtosecond laser pulses at the wavelength of 800 nm. NLO absorption responses of the BNT films were observed to be highly sensitive to the film thickness. As the film thickness increases from 106.8 to 139.7 nm, the NLO absorption changes from saturable absorption (SA) to reverse saturable absorption (RSA). When the film thickness further increases to 312.9 nm, the RSA effect is enhanced. A band-gap-related competition between the ground-state excitation and the two-photon absorption is responsible for the absorption switching behavior. Such a tunable NLO absorption can widen the photonic application of the BNT thin films.

  7. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies.

    El-Shishtawy, Reda M; Elroby, Shaaban A; Asiri, Abdullah M; Müllen, Klaus

    2016-01-01

    The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1-SQD4) were investigated using density functional theory (DFT) and time-dependent (TD-DFT) density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0)), and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh) with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO) were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (-4.26 eV) of the conduction band of TiO₂ nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO₂ in dye-sensitized solar cells (DSSCs). Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices. PMID:27043556

  8. Optical Absorption Spectra and Electronic Properties of Symmetric and Asymmetric Squaraine Dyes for Use in DSSC Solar Cells: DFT and TD-DFT Studies

    Reda M. El-Shishtawy

    2016-04-01

    Full Text Available The electronic absorption spectra, ground-state geometries and electronic structures of symmetric and asymmetric squaraine dyes (SQD1–SQD4 were investigated using density functional theory (DFT and time-dependent (TD-DFT density functional theory at the B3LYP/6-311++G** level. The calculated ground-state geometries reveal pronounced conjugation in these dyes. Long-range corrected time dependent density functionals Perdew, Burke and Ernzerhof (PBE, PBE1PBE (PBE0, and the exchange functional of Tao, Perdew, Staroverov, and Scuseria (TPSSh with 6-311++G** basis set were employed to examine optical absorption properties. In an extensive comparison between the optical data and DFT benchmark calculations, the BEP functional with 6-311++G** basis set was found to be the most appropriate in describing the electronic absorption spectra. The calculated energy values of lowest unoccupied molecular orbitals (LUMO were 3.41, 3.19, 3.38 and 3.23 eV for SQD1, SQD2, SQD3, and SQD4, respectively. These values lie above the LUMO energy (−4.26 eV of the conduction band of TiO2 nanoparticles indicating possible electron injection from the excited dyes to the conduction band of the TiO2 in dye-sensitized solar cells (DSSCs. Also, aromaticity computation for these dyes are in good agreement with the data obtained optically and geometrically with SQD4 as the highest aromatic structure. Based on the optimized molecular geometries, relative positions of the frontier orbitals, and the absorption maxima, we propose that these dyes are suitable components of photovoltaic DSSC devices.

  9. Kinetics of the transient optical absorption in Li2B4O7 and LiB3O5 lithium borate crystals

    Ogorodnikov, I. N.; Kiseleva, M. S.

    2012-04-01

    This paper reports on a study of the kinetics of electron tunneling transport between electron and hole centers in Li2B4O7 and LiB3O5 lithium borate crystals under the conditions where the mobility of one of the partners in the recombination process is thermally stimulated. A mathematical model has been proposed to describe all specific features in the relaxation kinetics of the induced optical density observed in Li2B4O7 (LTB) and LiB3O5 (LBO) nonlinear optical crystals within a broad time interval of 10-8-1 s after a radiation pulse. The results of calculations have been compared with experimental data on transient optical absorption (TOA) of LTB and LBO crystals in the visible and ultraviolet spectral regions. The nature of the radiation defects responsible for TOA and the dependence of the TOA decay kinetics on temperature, excitation power, and other experimental conditions have been discussed.

  10. Measurements of NO2 mixing ratios with topographic target light scattering-differential optical absorption spectroscopy system and comparisons to point monitoring technique

    Wang Yang; Li Ang; Xie Pin-Hua; Zeng Yi; Wang Rui-Bin; Chen Hao; Pei Xian; Liu Jian-Guo; Liu Wen-Qing

    2012-01-01

    A topographic target light scattering-differential optical absorption spectroscopy (ToTaL-DOAS) system is developed for measuring average concentrations along a known optical path and studying surface-near distributions of atmospheric trace gases.The telescope of the ToTaL-DOAS system points to targets which are located at known distances from the measurement device and illuminated by sunlight.Average concentrations with high spatial resolution can be retrieved by receiving sunlight reflected from the targets.A filed measurement of NO2 concentration is performed with the ToTaL-DOAS system in Shijiazhuang in the autumn of 2011.The measurement data are compared with concentrations measured by the point monitoring technique at the same site.The results show that the ToTaL-DOAS system is sensitive to the variation of NO2 concentrations along the optical path.

  11. Core-shell interaction and its impact on the optical absorption of pure and doped core-shell CdSe/ZnSe nanoclusters

    Wang, Xinqin; Cui, Yingqi; Yu, Shengping; Zeng, Qun; Yang, Mingli

    2016-04-01

    The structural, electronic, and optical properties of core-shell nanoclusters, (CdSe)x@(CdSe)y and their Zn-substituted complexes of x = 2-4 and y = 16-28, were studied with density functional theory calculations. The substitution was applied in the cores, the shells, and/or the whole clusters. All these clusters are characterized by their core-shell structures in which the core-shell interaction was found different from those in core or in shell, as reflected by their bondlengths, volumes, and binding energies. Moreover, the core and shell combine together to compose a new cluster with electronic and optical properties different from those of separated individuals, as reflected by their HOMO-LUMO gaps and optical absorptions. With the substitution of Cd by Zn, the structural, electronic, and optical properties of clusters change regularly. The binding energy increases with Zn content, attributed to the strong Zn-Se bonding. For the same core/shell, the structure with a CdSe shell/core has a narrower gap than that with a ZnSe shell/core. The optical absorption spectra also change accordingly with Zn substitution. The peaks blueshift with increasing Zn concentration, accompanying with shape variations in case large number of Cd atoms are substituted. Our calculations reveal the core-shell interaction and its influence on the electronic and optical properties of the core-shell clusters, suggesting a composition-structure-property relationship for the design of core-shell CdSe and ZnSe nanoclusters.

  12. Two-Phonon Absorption

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  13. A comparative study of optical absorption and photocatalytic properties of nanocrystalline single-phase anatase and rutile TiO{sub 2} doped with transition metal cations

    Kernazhitsky, L., E-mail: kern@iop.kiev.ua [Department of Photoactivity, Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03650 (Ukraine); Shymanovska, V.; Gavrilko, T.; Naumov, V. [Department of Photoactivity, Institute of Physics, National Academy of Sciences of Ukraine, Prospect Nauki 46, Kiev 03650 (Ukraine); Kshnyakin, V. [Department of Physics, Sumy State University, Rymsky-Korsakov Str. 2, Sumy 40007 (Ukraine); Khalyavka, T. [Laboratory of Photochemistry of Disperse Materials, Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, Gen. Naumov Str. 13, Kiev 03164 (Ukraine)

    2013-02-15

    The effect of nanocrystalline TiO{sub 2} doping with transition metal cations (Cu{sup 2+}, Fe{sup 3+}, Co{sup 2+}, Cr{sup 3+}) on their optical absorption and photocatalytic properties was investigated. The obtained metal-doped TiO{sub 2} samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-vis absorption spectroscopy. It is shown that doping effect on anatase (A) and rutile (R) properties is quite different, being much stronger and complicated on A than on R. Contrary to doped R, doped A revealed a significant red shift of the absorption edge along with the band gap narrowing. Photocatalytic activity of anatase increases upon doping in the order: AR/Co>R/Cu>R/Fe>R/Cr, indicating the inhibitory effect of impurity cations. This fact correlates with the decrease in the UV absorption of the doped rutile in the region of the Hg-lamp irradiation at 4.88 eV. - Graphical abstract: A red shift of the absorption edge of nanocrystalline single-phase anatase after doping with transition metal cations. Highlights: Black-Right-Pointing-Pointer Single-phase anatase and rutile powders surface-doped with transition metal cations. Black-Right-Pointing-Pointer Absorption edge and band gap of rutile do not change with surface doping. Black-Right-Pointing-Pointer Band gap of surface-doped anatase reduces being the lowest for A/Fe. Black-Right-Pointing-Pointer The surface-doping improves photocatalytic activity of anatase. Black-Right-Pointing-Pointer The surface-doping inhibits photocatalytic activity of rutile.

  14. Method of Gaussian quadrature in the calculation of optical absorption and magnetic circular dichroism spectra of s2 ions in alkali halide crystals: application to KBr:In+

    The problem of calculating the lineshape functon for optical absorption and magnetic circular dichroism due to ionic impurities with the ns2 outer electron configuraton, incorporated substitutionally in alkali halide crystals, has been reformulated. The complete energy matrix has been diagonalized directly. Integration over the interaction mode coordinates of E sub(g) and T sub(2g) symmetry has been carried out numerically using Gaussian quadrature formulae; the interaction with the A sub(1g) mode has been taken into account by the usual convolution procedure. The method has been applied to KBr:In+. The calculated lineshape functions for optical absorption at temperatures ranging from 4 to 300 K and, for MCD at 5 K, are in good agreement with the experimentally determined lineshapes. Moreover, the theory accounts very well for the observed variation of the effective g tensor for the A band with temperature. The calculated values for the moments of the absorption and MCD lineshape functions are in reasonably satisfactory agreement with those deduced from the observed spectra. (author)

  15. Testing and optical modeling of novel concentrating solar receiver geometries to increase light trapping and effective solar absorptance

    Yellowhair, Julius; Ho, Clifford K.; Ortega, Jesus D.; Christian, Joshua M.; Andraka, Charles E.

    2015-09-01

    Concentrating solar power receivers are comprised of panels of tubes arranged in a cylindrical or cubical shape on top of a tower. The tubes contain heat-transfer fluid that absorbs energy from the concentrated sunlight incident on the tubes. To increase the solar absorptance, black paint or a solar selective coating is applied to the surface of the tubes. However, these coatings degrade over time and must be reapplied, which reduces the system performance and increases costs. This paper presents an evaluation of novel receiver shapes and geometries that create a light-trapping effect, thereby increasing the effective solar absorptance and efficiency of the solar receiver. Several prototype shapes were fabricated from Inconel 718 and tested in Sandia's solar furnace at an irradiance of ~30 W/cm2. Photographic methods were used to capture the irradiance distribution on the receiver surfaces. The irradiance profiles were compared to results from raytracing models. The effective solar absorptance was also evaluated using the ray-tracing models. Results showed that relative to a flat plate, the new geometries could increase the effective solar absorptance from 86% to 92% for an intrinsic material absorptance of 86%, and from 60% to 73% for an intrinsic material absorptance of 60%.

  16. Optical and mechanical design of the extended x-ray absorption fine structure (EXAFS) beam-line at Indus-II synchrotron source

    An extended x-ray absorption fine structure (EXAFS) beam line for x-ray absorption studies using energy dispersive geometry and position sensitive detector is being designed for the INDUS-II Synchrotron source. The beam line would be used for doing x-ray absorption experiments involving measurements of fme structures above the absorption edge of different species of atoms in a material The results of the above experiments would lead to the determination of different important structural parameters of materials viz.. inter-atomic distance. co-ordination number, degree of disorder and radial distribution function etc. The optical design of the beam line has been completed based on the working principle that a single crystal bent in the shape of an ellipse by a crystal bender would act as a dispersing as well as focusing element. The mechanical design of the beam line including the crystal bender has also been completed and discussed here. Calculations have been done to detennine the temperature profile on the different components of the beam line under exposure to synchrotron radiation and proper cooling channels have been designed to bring down the heat load on the components. (author)

  17. Lowest excited states and optical absorption spectra of donor–acceptor copolymers for organic photovoltaics: a new picture emerging from tuned long-range corrected density functionals

    Pandey, Laxman

    2012-01-01

    Polymers with low optical gaps are of importance to the organic photovoltaics community due to their potential for harnessing a large portion of the solar energy spectrum. The combination along their backbones of electron-rich and electron-deficient fragments contributes to the presence of low-lying excited states that are expected to display significant charge-transfer character. While conventional hybrid functionals are known to provide unsatisfactory results for charge-transfer excitations at the time-dependent DFT level, long-range corrected (LRC) functionals have been reported to give improved descriptions in a number of systems. Here, we use such LRC functionals, considering both tuned and default range-separation parameters, to characterize the absorption spectra of low-optical-gap systems of interest. Our results indicate that tuned LRC functionals lead to simulated optical-absorption properties in good agreement with experimental data. Importantly, the lowest-lying excited states (excitons) are shown to present a much more localized nature than initially anticipated. © 2012 the Owner Societies.

  18. Anionic or Cationic S-Doping in Bulk Anatase TiO 2 : Insights on Optical Absorption from First Principles Calculations

    Harb, M.

    2013-05-02

    Using first principles calculations, we investigate the structural, electronic, optical, and energetic properties of S-doped anatase TiO2 bulk systems. To ensure accurate band gap predictions, we use the HSE06 exchange correlation functional, and the absorption spectra are obtained with density functional perturbation (DFPT) theory by employing HSE06. Various oxidation states (anionic and cationic) of sulfur are considered depending on the location in bulk TiO2: in interstitial position or in substitution for either oxygen or titanium atoms. Among the explored structures, two anionic and one cationic configurations induce an improved optical absorption response in the visible region as observed experimentally. Moreover, we undertake a thermodynamic analysis as a function of the chemical potential of oxygen and considering three relevant sulfur chemical doping agents (S 2, H2S, and thiourea). It highlights that cationic configurations (S4+ and S6+) are strongly stabilized in a wide range of oxygen chemical potential (including standard conditions), whereas anionic species are stabilized only at very low chemical potential of oxygen. The metastable cationic Ti(1-2x)O2S2x system involving the presence of S4+ species in substitution for Ti 4+, with the formation of SO2 units, should offer the best compromise between the thermodynamic conditions and the expected optical properties. © 2013 American Chemical Society.

  19. Complexation of Lactate with Nd(III) and Eu(III) at Variable Temperatures: Studies by Potentiometry, Microcalorimetry, Optical Absorption and Luminescence Spectroscopy

    Complexation of neodymium(III) and europium(III) with lactate was studied at variable temperatures by potentiometry, absorption spectrophotometry, luminescence spectroscopy and microcalorimetry. Stability constants of three successive lactate complexes (ML2+, ML2+ and ML3(aq), where M stands for Nd and Eu, and L stands for lactate) at 10, 25, 40, 55 and 70 C were determined. The enthalpies of complexation at 25 C were determined by microcalorimetry. Thermodynamic data show that the complexation of trivalent lanthanides (Nd3+ and Eu3+) with lactate is exothermic, and the complexation becomes weaker at higher temperatures. Results from optical absorption and luminescence spectroscopy suggest that the complexes are inner-sphere chelate complexes in which the protonated α-hydroxyl group of lactate participates in the complexation.

  20. Temperature dependence of the optical energy gap in the absorption edge of the ZrS{sub x}Se{sub 2-x} layered semiconductor

    Moustafa, Mohamed; Wasnick, Anke; Janowitz, Christoph; Manzke, Recardo [Institut fuer Physik, Humboldt-Universitaet zu Berlin (Germany)

    2010-07-01

    The energy band gap values E{sub g} of single crystals of layered transition metal dichalcogenide semiconductors of ZrS{sub x}Se{sub 2-x} (where 0{<=}x{<=}2) have been determined from the optical absorption measurements at different temperatures. The samples were prepared by the chemical vapour transport technique and characterized with help of different methods such as LEED and EDX. The band gap values showed an approximate linear dependence with the composition parameter x. The temperature dependence of E{sub g} is presented and compared to the semi-empirical model proposed by Mannogian and Woolley. Additionally, the observed exponential behaviour of the absorption coefficient tail near the fundamental edge is analysed and interpreted based on the Urbach rule.