WorldWideScience

Sample records for absorption

  1. Absorption studies

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  2. D-xylose absorption

    ... this page: //medlineplus.gov/ency/article/003606.htm D-xylose absorption To use the sharing features on this page, please enable JavaScript. D-xylose absorption is a laboratory test to determine ...

  3. D-xylose absorption

    D-xylose absorption is a laboratory test to determine how well the intestines absorb a simple sugar (D-xylose). The test ... test is primarily used to determine if nutrient absorption problems are due to a disease of the ...

  4. Nutrition and magnesium absorption.

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true magnesium absorption was neither affected by soybean protein in the diet nor by supplemental phytate. The inhibitory influence of soybean protein and phytate on apparent magnesium absorption was found to be cau...

  5. Calcium absorption and achlorhydria

    Defective absorption of calcium has been thought to exist in patients with achlorhydria. The author compared absorption of calcium in its carbonate form with that in a pH-adjusted citrate form in a group of 11 fasting patients with achlorhydria and in 9 fasting normal subjects. Fractional calcium absorption was measured by a modified double-isotope procedure with 0.25 g of calcium used as the carrier. Mean calcium absorption (+/- S.D.) in the patients with achlorhydria was 0.452 +/- 0.125 for citrate and 0.042 +/- 0.021 for carbonate (P less than 0.0001). Fractional calcium absorption in the normal subjects was 0.243 +/- 0.049 for citrate and 0.225 +/- 0.108 for carbonate (not significant). Absorption of calcium from carbonate in patients with achlorhydria was significantly lower than in the normal subjects and was lower than absorption from citrate in either group; absorption from citrate in those with achlorhydria was significantly higher than in the normal subjects, as well as higher than absorption from carbonate in either group. Administration of calcium carbonate as part of a normal breakfast resulted in completely normal absorption in the achlorhydric subjects. These results indicate that calcium absorption from carbonate is impaired in achlorhydria under fasting conditions. Since achlorhydria is common in older persons, calcium carbonate may not be the ideal dietary supplement

  6. Variability of calcium absorption

    Variability in calcium absorption was estimated in three groups of normal subjects in whom Ca absorption was measured by standard isotopic-tracer methods at interstudy intervals ranging from 1 to 4 mo. Fifty absorption tests were performed in 22 subjects. Each was done in the morning after an overnight fast with an identical standard breakfast containing a Ca load of approximately 250 mg. Individual fractional absorption values were normalized to permit pooling of the data. The coefficient of variation (CVs) for absorption for the three groups ranged from 10.57 to 12.79% with the size of the CV increasing with interstudy duration. One other published study presenting replicate absorption values was analyzed in a similar fashion and was found to have a CV of absorption of 9.78%. From these data we estimate that when the standard double-isotope method is used to measure Ca absorption there is approximately 10% variability around any given absorption value within an individual human subject and that roughly two-thirds of this represents real biological variability in absorption

  7. Nutrition and magnesium absorption.

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true magnesium abs

  8. Zeeman atomic absorption spectroscopy

    A new method of background correction in atomic absorption spectroscopy has recently been introduced, based on the Zeeman splitting of spectral lines in a magnetic field. A theoretical analysis of the background correction capability observed in such instruments is presented. A Zeeman atomic absorption spectrometer utilizing a 50 Hz sine wave modulated magnetic field is described. (Auth.)

  9. Petawatt laser absorption bounded

    Levy, Matthew C; Tabak, Max; Libby, Stephen B; Baring, Matthew G

    2014-01-01

    The interaction of petawatt ($10^{15}\\ \\mathrm{W}$) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light $f$, and even the range of $f$ is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that $f$ exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials.

  10. Quasar Absorption Studies

    Mushotzky, Richard (Technical Monitor); Elvis, Martin

    2004-01-01

    The aim of the proposal is to investigate the absorption properties of a sample of inter-mediate redshift quasars. The main goals of the project are: Measure the redshift and the column density of the X-ray absorbers; test the correlation between absorption and redshift suggested by ROSAT and ASCA data; constrain the absorber ionization status and metallicity; constrain the absorber dust content and composition through the comparison between the amount of X-ray absorption and optical dust extinction. Unanticipated low energy cut-offs where discovered in ROSAT spectra of quasars and confirmed by ASCA, BeppoSAX and Chandra. In most cases it was not possible to constrain adequately the redshift of the absorber from the X-ray data alone. Two possibilities remain open: a) absorption at the quasar redshift; and b) intervening absorption. The evidences in favour of intrinsic absorption are all indirect. Sensitive XMM observations can discriminate between these different scenarios. If the absorption is at the quasar redshift we can study whether the quasar environment evolves with the Cosmic time.

  11. Zeeman atomic absorption spectrometry

    The design and development of a Zeeman atomic absorption spectrometer for trace element analysis are described. An instruction manual is included which details the operation, adjustment, and maintenance. Specifications and circuit diagrams are given

  12. Seven-effect absorption refrigeration

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  13. Vitamin A absorption

    Investigation of the absorption of vitamin A and related substances is complicated by the multiplicity of forms in which they occur in the diet and by the possibility that they may be subject to different mechanisms of absorption. Present knowledge of these mechanisms is inadequate, especially in the case of carotenoids. Numerous tests of absorption have been developed. The most common has been the biochemical measurement of the rise in plasma vitamin A after an oral dose of retinol or retinyl ester, but standardization is inadequate. Radioisotope tests based upon assay of serum or faecal activity following oral administration of tritiated vitamin A derivaties hold considerable promise, but again standardization is inadequate. From investigations hitherto performed it is known that absorption of vitamin A is influenced by several diseases, although as yet the consistency of results and the correlation with other tests of intestinal function have often been poor. However, the test of vitamin A absorption is nevertheless of clinical importance as a specialized measure of intestinal function. (author)

  14. Central cooling: absorptive chillers

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  15. Percutaneous absorption from soil.

    Andersen, Rosa Marie; Coman, Garrett; Blickenstaff, Nicholas R; Maibach, Howard I

    2014-01-01

    Abstract Some natural sites, as a result of contaminants emitted into the air and subsequently deposited in soil or accidental industrial release, have high levels of organic and non-organic chemicals in soil. In occupational and recreation settings, these could be potential sources of percutaneous exposure to humans. When investigating percutaneous absorption from soil - in vitro or vivo - soil load, particle size, layering, soil "age" time, along with the methods of performing the experiment and analyzing the results must be taken into consideration. Skin absorption from soil is generally reduced compared with uptake from water/acetone. However, the absorption of some compounds, e.g., pentachlorophenol, chlorodane and PCB 1254, are similar. Lipophilic compounds like dichlorodiphenyltrichloroethane, benzo[A]pyrene, and metals have the tendency to form reservoirs in skin. Thus, one should take caution in interpreting results directly from in vitro studies for risk assessment; in vivo validations are often required for the most relevant risk assessment. PMID:25205703

  16. Revisiting Absorptive Capacity

    de Araújo, Ana Luiza Lara; Ulhøi, John Parm; Lettl, Christopher

    Absorptive capacity has mostly been perceived as a 'passive' outcome of R&D investments. Recently, however, a growing interest into its 'proactive' potentials has emerged. This paper taps into this development and proposes a dynamic model for conceptualizing the determinants of the complementary...... learning processes of absorptive capacity, which comprise combinative and adaptive capabilities. Drawing on survey data (n=169), the study concludes that combinative capabilities primarily enhance transformative and exploratory learning processes, while adaptive capabilities strengthen all three learning...... processes, with emphasis on exploitative learning. Before concluding, the paper addresses implications for theory and practice and limitations of this study....

  17. Absorption Spectra of Astaxanthin Aggregates

    Olsina, Jan; Durchan, Milan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption...

  18. Chemical Absorption Materials

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...

  19. Two-Phonon Absorption

    Hamilton, M. W.

    2007-01-01

    A nonlinear aspect of the acousto-optic interaction that is analogous to multi-photon absorption is discussed. An experiment is described in which the second-order acousto-optically scattered intensity is measured and found to scale with the square of the acoustic intensity. This experiment using a commercially available acousto-optic modulator is…

  20. Chemical Absorption Materials

    Thomsen, Kaj

    2011-01-01

    Chemical absorption materials that potentially can be used for post combustion carbon dioxide capture are discussed. They fall into five groups, alkanolamines, alkali carbonates, ammonia, amino acid salts, and ionic liquids. The chemistry of the materials is discussed and advantages and drawbacks...... are mentioned. References to review papers, papers with experimental data, and papers describing the thermodynamic modelling of the systems are given....

  1. Absorption driven focus shift

    Harrop, N.; Wolf, S.; Maerten, O.; Dudek, K.; Ballach, S.; Kramer, R.

    2016-03-01

    Modern high brilliance near infrared lasers have seen a tremendous growth in applications throughout the world. Increased productivity has been achieved by higher laser power and increased brilliance of lasers. Positive impacts on the performance and costs of parts are opposed to threats on process stability and quality, namely shift of focus position over time. A high initial process quality will be reduced by contamination of optics, eventually leading to a focus shift or even destruction of the optics. Focus analysis at full power of multi-kilowatt high brilliance lasers is a very demanding task because of high power densities in the spot and the high power load on optical elements. With the newly developed high power projection optics, the High-Power Micro-Spot Monitor High Brilliance (HP-MSM-HB) is able to measure focus diameter as low as 20 μm at power levels up to 10 kW at very low internal focus shift. A main driving factor behind thermally induced focus shift is the absorption level of the optical element. A newly developed measuring system is designed to determine the relative absorption level in reference to a gold standard. Test results presented show a direct correlation between absorption levels and focus shift. The ability to determine the absorption level of optical elements as well as their performance at full processing power before they are put to use, enables a high level of quality assurance for optics manufacturers and processing head manufacturers alike.

  2. ZINC ABSORPTION BY INFANTS

    Zinc is a vital mineral in human nutrition, and rare cases of overt zinc deficiency are well described in term and preterm infants. A variety of methods have been developed to assess zinc absorption, retention, and balance in humans, either using mass (metabolic) balance or stable isotope-based METH...

  3. Absorptive Capacity and Diversity

    Kristinsson, Kári

    One of the most influential contributions to neo-Schumpeterian economics is Cohen and Levinthal‘s papers on absorptive capacity. Since their publication in the late 1980s and early 1990s the concept absorptive capacity has had substantial impact on research in economics and management, including...... international business, organizational economics, strategic management, technology management and last but not least neo-Schumpeterian economics. The goal of this dissertation is to examine what many consider as neglected arguments from the work by Cohen and Levinthal and thereby illuminate an otherwise...... overlooked area of research. Although research based on Cohen and Levinthal‘s work has made considerable impact, there is scarcity of research on certain fundamental points argued by Cohen and Levinthal. Among these is the importance of employee diversity as well as the type and nature of interaction between...

  4. Quantum absorption refrigerator.

    Levy, Amikam; Kosloff, Ronnie

    2012-02-17

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold, and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified; the cooling power J(c) vanishes as J(c) ∝ T(c)(α), when T(c)→0, where α=d+1 for dissipation by emission and absorption of quanta described by a linear coupling to a thermal bosonic field, where d is the dimension of the bath. PMID:22401189

  5. Converting Sabine absorption coefficients to random incidence absorption coefficients

    Jeong, Cheol-Ho

    2013-01-01

    Absorption coefficients measured by the chamber method are referred to as Sabine absorption coefficients, which sometimes exceed unity due to the finite size of a sample and non-uniform intensity in the reverberation chambers under test. In this study, conversion methods from Sabine absorption...... coefficients to random incidence absorption coefficients are proposed. The overestimations of the Sabine absorption coefficient are investigated theoretically based on Miki's model for porous absorbers backed by a rigid wall or an air cavity, resulting in conversion factors. Additionally, three optimizations...

  6. Absorption heat pumps

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  7. Pion absorption processes

    Proton and deuteron production from low-energy pion absorption in light nuclei leading to discrete and continuum states were measured. The LEP beam line at LAMPF was used with a stack of 8 intrinsic germanium crystals. The proton energy spectra are in general characterized by a broad bump at an energy approximately corresponding to π+d → pp reaction kinematics, suggestive of pion absorption on 2 nucleons. The energy-integrated cross-section for production of deuterons has an angular distribution similar to that for production of protons. The dependence of the total pion absorption cross-section on A is explained using a semi-classical model for pion transport in nuclei. The (π+,p) as well as (π+,d) reactions generally favor transitions involving larger angular momentum transfer to the residual nucleus when states of similar nuclear structure are considered. The low-energy excitation spectra from the (π+,p) reaction are similar to the spectra from (p,d) reaction on 12C and 13C. However, a calculation of the (π+,p) cross-section using the measured (p,d) reaction with the formulation of Wilkin to relate the two reactions is in moderate disagreement with the measured (π+,p) cross-sections. The excitation spectra from the (π+,p) reaction indicte the importance of two-step processes for the reaction. The (π+,d) reaction leading to the ground state of -- residual nucleus has been seen for 7Li, 12C, and 13C targets. The measured cross section for the 12C(π+,d)10C reaction to the 2+ state is much higher than that for the ground state. For the case of 18O, no counts were seen for excitation energy of +,d) reaction

  8. Absorption of selected radionuclides

    In October 1978, the Institut fuer Energie- und Umweltforschung Heidelberg e.V. published a contribution to part 26 of the model study of radio-ecology at Biblis under the title 'Estimation of the absorption of radionuclides from the gastrointestinal tract in the blood'. Using the example of this contribution, a critical analysis is made to show how a selection of the information contained in various scientific publications and other items of literature can give uncritical readers the impression that all statements made are scientifically well founded. (orig./HP)

  9. Scattering with absorptive interaction

    Cassing, W.; Stingl, M.; Weiguny, A.

    1982-07-01

    The S matrix for a wide class of complex and nonlocal potentials is studied, with special attention given to the motion of singularities in the complex k plane as a function of the imaginary coupling strength. Modifications of Levinson's theorem are obtained and discussed. Analytic approximations to the S matrix in the vicinity of narrow resonances are exhibited and compared to numerical results of resonating-group calculations. The problem of defining resonances in the case of complex interactions is discussed, making contact with the usual analysis of scattering in terms of Argand diagrams. NUCLEAR REACTIONS Scattering theory, S matrix for absorptive potentials.

  10. The Quantum Absorption Refrigerator

    Levy, Amikam

    2011-01-01

    A quantum absorption refrigerator driven by noise is studied with the purpose of determining the limitations of cooling to absolute zero. The model consists of a working medium coupled simultaneously to hot, cold and noise baths. Explicit expressions for the cooling power are obtained for Gaussian and Poisson white noise. The quantum model is consistent with the first and second laws of thermodynamics. The third law is quantified, the cooling power Jc vanishes as Jc proportional to Tc^{alpha}, when Tc approaches the absolute zero, where alpha = 2 for a bath with flat spectral density and alpha = 3 for an Ohmic spectral density.

  11. Geospatial Absorption and Regional Effects

    IOAN MAC

    2009-01-01

    Full Text Available The geospatial absorptions are characterized by a specific complexity both in content and in their phenomenological and spatial manifestation fields. Such processes are differentiated according to their specificity to pre-absorption, absorption or post-absorption. The mechanisms that contribute to absorption are extremely numerous: aggregation, extension, diffusion, substitution, resistivity (resilience, stratification, borrowings, etc. Between these mechanisms frequent relations are established determining an amplification of the process and of its regional effects. The installation of the geographic osmosis phenomenon in a given territory (a place for example leads to a homogenization of the geospatial state and to the installation of the regional homogeneity.

  12. Absorption Spectra of Astaxanthin Aggregates

    Olsina, Jan; Minofar, Babak; Polivka, Tomas; Mancal, Tomas

    2012-01-01

    Carotenoids in hydrated polar solvents form aggregates characterized by dramatic changes in their absorption spectra with respect to monomers. Here we analyze absorption spectra of aggregates of the carotenoid astaxanthin in hydrated dimethylsulfoxide. Depending on water content, two types of aggregates were produced: H-aggregates with absorption maximum around 390 nm, and J-aggregates with red-shifted absorption band peaking at wavelengths >550 nm. The large shifts with respect to absorption maximum of monomeric astaxanthin (470-495 nm depending on solvent) are caused by excitonic interaction between aggregated molecules. We applied molecular dynamics simulations to elucidate structure of astaxanthin dimer in water, and the resulting structure was used as a basis for calculations of absorption spectra. Absorption spectra of astaxanthin aggregates in hydrated dimethylsulfoxide were calculated using molecular exciton model with the resonance interaction energy between astaxanthin monomers constrained by semi-e...

  13. The HI absorption 'Zoo'

    Gereb, K; Morganti, R; Oosterloo, T A

    2014-01-01

    We present an analysis of the HI absorption in a sample of 101 flux-selected radio AGN (S_1.4 GHz > 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). HI absorption is detected in 32 galaxies, showing a broad variety of widths, shapes and kinematical properties. We characterize the HI spectra of the individual detections using the busy function (Westmeier et al. 2014). With the goal of identifying different morphological structures of HI, we study the kinematical and radio source properties of the detections as function of their width. Narrow lines (FWHM = 500 km/s). These detections are good candidates for being HI outflows. The detection rate of HI outflows is 5 percent in the total radio AGN sample. This fraction represents a lower limit, however it could suggests that, if outflows are a characteristic phenomenon of all radio sources, they would have a short depletion timescale compared to the lifetime of the AGN. Blueshifted and broad/asymmetric lines are more often present among young...

  14. Sabine absorption coefficients to random incidence absorption coefficients

    Jeong, Cheol-Ho

    2014-01-01

    Absorption coefficients measured by the chamber method are referred to as Sabine absorption coefficients, which sometimes exceed unity due to the finite size of a specimen and non-uniform intensity in the test chamber. In this study, several methods that convert Sabine absorption coefficients into...... random incidence absorption coefficients for porous absorbers are investigated. Two optimization-based conversion methods are suggested: the surface impedance estimation for locally reacting absorbers and the flow resistivity estimation for extendedly reacting absorbers. The suggested conversion methods...

  15. Diffuse interstellar absorption bands

    XIANG FuYuan; LIANG ShunLin; LI AiGen

    2009-01-01

    The diffuse interstellar bands (DIBs) are a large number of absorption bands that are superposed on the interstellar extinction curve and are of interstellar origin. Since the discovery of the first two DIBs in the 1920s, the exact nature of DIBs still remains unclear. This article reviews the history of the detec-tions of DIBs in the Milky Way and external galaxies, the major observational characteristics of DIBs, the correlations or anti-correlations among DIBs or between DIBs and other interstellar features (e.g. the prominent 2175 Angstrom extinction bump and the far-ultraviolet extinction rise), and the proposed candidate carriers. Whether they are also present in circumstellar environments is also discussed.

  16. The HI absorption "Zoo"

    Geréb, K.; Maccagni, F. M.; Morganti, R.; Oosterloo, T. A.

    2015-03-01

    We present an analysis of the H I 21 cm absorption in a sample of 101 flux-selected radio AGN (S1.4 GHz> 50 mJy) observed with the Westerbork Synthesis Radio Telescope (WSRT). We detect H I absorption in 32 objects (30% of the sample). In a previous paper, we performed a spectral stacking analysis on the radio sources, while here we characterize the absorption spectra of the individual detections using the recently presented busy function. The H I absorption spectra show a broad variety of widths, shapes, and kinematical properties. The full width half maximum (FWHM) of the busy function fits of the detected H I lines lies in the range 32 km s-1 200 km s-1). We study the kinematical and radio source properties of each group, with the goal of identifying different morphological structures of H I. Narrow lines mostly lie at the systemic velocity and are likely produced by regularly rotating H I disks or gas clouds. More H I disks can be present among galaxies with lines of intermediate widths; however, the H I in these sources is more unsettled. We study the asymmetry parameter and blueshift/redshift distribution of the lines as a function of their width. We find a trend for which narrow profiles are also symmetric, while broad lines are the most asymmetric. Among the broadest lines, more lines appear blueshifted than redshifted, similarly to what was found by previous studies. Interestingly, symmetric broad lines are absent from the sample. We argue that if a profile is broad, it is also asymmetric and shifted relative to the systemic velocity because it is tracing unsettled H I gas. In particular, besides three of the broadest (up to FW20 = 825 km s-1) detections, which are associated with gas-rich mergers, we find three new cases of profiles with blueshifted broad wings (with FW20 ≳ 500 km s-1) in high radio power AGN. These detections are good candidates for being HI outflows. Together with the known cases of outflows already included in the sample (3C 293 and

  17. Absorption intestinale des vitamines liposolubles

    Reboul Emmanuelle

    2011-03-01

    Full Text Available The molecular mechanisms of fat-soluble vitamin intestinal absorption remain partly unknown, despite the fact that a better understanding of this process would certainly allow to improve their bioavailability. If their digestion-absorption process follows the fate of lipids globally, the recent discovery of membranes proteins involved in their absorption questioned the established dogmas. These new data should be taken into account to avoid dietary or drug interactions that may limit some fatsoluble vitamin bioavailability.

  18. Absorption intestinale des vitamines liposolubles

    Reboul Emmanuelle

    2011-01-01

    The molecular mechanisms of fat-soluble vitamin intestinal absorption remain partly unknown, despite the fact that a better understanding of this process would certainly allow to improve their bioavailability. If their digestion-absorption process follows the fate of lipids globally, the recent discovery of membranes proteins involved in their absorption questioned the established dogmas. These new data should be taken into account to avoid dietary or drug interactions that may limit some fat...

  19. X-ray Absorption Spectroscopy

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  20. Absorption of volatile ruthenium

    Phase equilibrium and mass transfer measurements for the absorption of ruthenium tetroxide (RuO4) in aqueous and nitric acid solutions have been completed. Low concentration phase equilibrium measurements confirm that the system obeys Henry's law across 4 orders of magnitude in concentration. Mass transfer measurements from turbulent gas flow indicate that the diffusivity of RuO4 in air may increase slightly as its concentration is reduced by 5-6 orders of magnitude. The reaction of RuO4 with nitrous acid and nitrites in solution results in precipitated or colloidal RuO2. Initial, immediate decomposition of ∼ 50% of the RuO4 occurs at RuO4: HNO2 mole ratios between 10:1 and 1:2, and does not vary systematically with mole ratio in this range. A mathematical model of the RuO4 decontamination performance of a packed bed scrubber has been developed, and validated experimentally with a laboratory QVF system. A survey of modelling approaches for predicting the ruthenium decontamination performance of off-gas condensers has been carried out. (author)

  1. Phytases for improved iron absorption

    Nielsen, Anne Veller Friis; Meyer, Anne S.

    2016-01-01

    Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains...

  2. Multifunctional hybrids for electromagnetic absorption

    Highlights: → EM absorption requires low dielectric constant and ∼1 S/m electrical conductivity. → New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. → The EM absorption in the GHz range is superior to any known material. → A closed form model is used to guide the design of the hybrid. → The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  3. Hot tube atomic absorption spectrochemistry.

    Woodriff, R; Stone, R W

    1968-07-01

    A small, commercially available atomic absorption instrument is used with a heated graphite tube for the atomic absorption analysis of liquid and solid silver samples. Operating conditions of the furnace are described and a sensitivity of about 5 ng of silver is reported. PMID:20068797

  4. Gastrointestinal citrate absorption in nephrolithiasis

    Fegan, J.; Khan, R.; Poindexter, J.; Pak, C. Y.

    1992-01-01

    Gastrointestinal absorption of citrate was measured in stone patients with idiopathic hypocitraturia to determine if citrate malabsorption could account for low urinary citrate. Citrate absorption was measured directly from recovery of orally administered potassium citrate (40 mEq.) in the intestinal lavage fluid, using an intestinal washout technique. In 7 stone patients citrate absorption, serum citrate levels, peak citrate concentration in serum and area under the curve were not significantly different from those of 7 normal subjects. Citrate absorption was rapid and efficient in both groups, with 96 to 98% absorbed within 3 hours. The absorption of citrate was less efficient from a tablet preparation of potassium citrate than from a liquid preparation, probably due to a delayed release of citrate from wax matrix. However, citrate absorption from solid potassium citrate was still high at 91%, compared to 98% for a liquid preparation. Thus, hypocitraturia is unlikely to be due to an impaired gastrointestinal absorption of citrate in stone patients without overt bowel disease.

  5. Reproducibility of The Random Incidence Absorption Coefficient Converted From the Sabine Absorption Coefficient

    Jeong, Cheol-Ho; Chang, Ji-ho

    2015-01-01

    Absorption coefficients measured in reverberation chambers, Sabine absorption coefficients, suffer from two major problems. Firstly, they sometimes exceed unity. Secondly, the reproducibility of the Sabine absorption coefficients is quite poor, meaning that the Sabine absorption coefficients vary...

  6. EXERCISE ENHANCING CALCIUM ABSORPTION MECHANISM

    Muliani

    2013-01-01

    Calcium has important role in many biological processes therefore calcium homeostasis should be maintained. Imbalance in calcium homeostasis would affects the bone metabolism, neuromuscular function, blood coagulation, cell proliferation and signal transduction. Homeostasis of calcium is maintained by three major organs: gastrointestinal tract, bone and kidney. Intestinal calcium absorption is the sole mechanism to supply calcium to the body. Calcium absorption controlled by calcitropic hormo...

  7. Incomplete intestinal absorption of fructose.

    Kneepkens, C M; Vonk, R J; Fernandes, J.

    1984-01-01

    Intestinal D-fructose absorption in 31 children was investigated using measurements of breath hydrogen. Twenty five children had no abdominal symptoms and six had functional bowel disorders. After ingestion of fructose (2 g/kg bodyweight), 22 children (71%) showed a breath hydrogen increase of more than 10 ppm over basal values, indicating incomplete absorption: the increase averaged 53 ppm, range 12 to 250 ppm. Four of these children experienced abdominal symptoms. Three of the six children ...

  8. Absorption Of Dietary Lipid Components

    Abdulkadir Hurşit

    2015-01-01

    Although the digestion and absorption of lipids that are necessary for the survival of living organisms are well known in general terms, nevertheless how different lipids to be digested, how it is distributed into the bloodstream, and how to be used by the cells, are unknown issues by most non specialist people. In recent years, knowledge of lipid digestion and absorption has expanded considerably. More insight has been gained in the mechanism of action of H + pump as a transport system in fa...

  9. Absorption and Metabolism of Xanthophylls

    Eiichi Kotake-Nara

    2011-06-01

    Full Text Available Dietary carotenoids, especially xanthophylls, have attracted significant attention because of their characteristic biological activities, including anti-allergic, anti-cancer, and anti-obese actions. Although no less than forty carotenoids are ingested under usual dietary habits, only six carotenoids and their metabolites have been found in human tissues, suggesting selectivity in the intestinal absorption of carotenoids. Recently, facilitated diffusion in addition to simple diffusion has been reported to mediate the intestinal absorption of carotenoids in mammals. The selective absorption of carotenoids may be caused by uptake to the intestinal epithelia by the facilitated diffusion and an unknown excretion to intestinal lumen. It is well known that β-carotene can be metabolized to vitamin A after intestinal absorption of carotenoids, but little is known about the metabolic transformation of non provitamin A xanthophylls. The enzymatic oxidation of the secondary hydroxyl group leading to keto-carotenoids would occur as a common pathway of xanthophyll metabolism in mammals. This paper reviews the absorption and metabolism of xanthophylls by introducing recent advances in this field.

  10. Absorption properties of identical atoms

    Sancho, Pedro, E-mail: psanchos@aemet.es

    2013-09-15

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas. -- Highlights: •The absorption rates of a pair of identical atoms in product and (anti)symmetrized states are different. •The modifications of the optical properties are essentially determined by the overlapping between the atoms. •The absorption properties differ, in some cases, for bosons and fermions.

  11. Transdermic absorption of Melagenina II

    The transdermic absorption of Melagenina II (MII) was evaluated. MII was a labelled with 125I by the yodogen method and purified by column chromatography with Sephadex LH-20 in ethanol: water (7:3). In vitro absorption of (125I) - MII thought human skin was carried out in Keshary-Chien modified diffusion cells. Tape stripping method was applied after 24 hours to evaluate the accumulated activity in dermis and epidermis. In vivo assays were performed in Sprague Dawley rats to analyze absorption of MII until 24 hours after a single application and for five days a low penetrability of the drug while in vivo there were not found blood levels significantly greater than zero , nevertheless and important amount of radioactivity was found in feces and urine. The activity was concentrated mainly in the application site in both models

  12. Absorption characteristics of bacteriorhodopsin molecules

    H K T Kumar; K Appaji Gowda

    2000-03-01

    The bacteriorhodopsin molecule absorbs light and undergoes a series of structural transformation following a well-defined photocycle. The complex photocycle is transformed to an equivalent level diagram by considering the lifetime of the intermediate states. Assuming that only and states are appreciably populated at any instant of time, the level diagram is further simplified to two-level system. Based on the rate equations for two-level system, an analytic expression for the absorption coefficient of bacteriorhodopsin molecule is derived. It is applied to study the behaviour of absorption coefficient of bacteriorhodopsin film in the visible wavelength region of 514 nm. The dependence of absorption coefficient of bacteriorhodopsin film on the thickness of the film, total number density of active molecules and initial number density of molecules in -state is presented in the graphical form.

  13. Absorption of focused light by spherical plasmas

    For light focused on spherical plasmas, we obtain new results giving the power absorbed by inverse bremsstrahlung and resonance absorption as a function of the focusing scheme. For a given beam profile and lens, there is an optimum focus to maximize total absorption. Linearly polarized beams lead to asymmetric absorption. Good agreement with experimental absorption and scattered light data is obtained

  14. Solar powered absorption air conditioning

    Vardon, J. M.

    1980-04-01

    Artificial means of providing or removing heat from the building are discussed along with the problem of the appropriate building design and construction for a suitable heat climate inside the building. The use of a lithium bromide-water absorption chiller, powered by a hot water store heated by an array of stationary flat collectors, is analyzed. An iterative method of predicting the cooling output from a LiBr-water absorption refrigeration plant having variable heat input is described and a model allowing investigation of the performance of a solar collector and thermal storage system is developed.

  15. Absorption Efficiency of Receiving Antennas

    Andersen, Jørgen Bach; Frandsen, Aksel

    2005-01-01

    A receiving antenna with a matched load will always scatter some power. This paper sets an upper and a lower bound on the absorption efficiency (absorbed power over sum of absorbed and scattered powers), which lies between 0 and 100% depending on the directivities of the antenna and scatter...... patterns. It can approach 100% as closely as desired, although in practice this may not be an attractive solution. An example with a small endfire array of dipoles shows an efficiency of 93%. Several examples of small conical horn antennas are also given, and they all have absorption efficiencies less than...

  16. Aerosol Absorption Measurements in MILAGRO.

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  17. Exercise, Intestinal Absorption, and Rehydration

    2001-01-01

    @@ KEYPOINTS 1. The proximal small intestine (duodenum & jejunum) is the primary site of fluid absorption. It absorbs about 50% to 60% of any given fluid load. The colon or large intestine absorbs approximately 80 to 90% of the fluid it receives, but accounts for only about 15% of the total fluid load.

  18. QSO Absorption Lines from QSOs

    Bowen, D V; Ménard, B; Chelouche, D; Inada, N; Oguri, M; Richards, G T; Strauss, M A; Vanden Berk, Daniel E; York, D G; Bowen, David V.; Hennawi, Joseph F.; Menard, Brice; Chelouche, Doron; Inada, Naohisa; Oguri, Masamune; Richards, Gordon T.; Strauss, Michael A.; Berk, Daniel E. Vanden; York, Donald G.

    2006-01-01

    We present the results of a search for metal absorption lines in the spectra of background QSOs whose sightlines pass close to foreground QSOs. We detect MgII(2796,2803) absorption in Sloan Digital Sky Survey (SDSS) spectra of four z>1.5 QSOs whose lines of sight pass within 26-98 kpc of lower redshift (z~0.5-1.5) QSOs. The 100% [4/4 pairs] detection of MgII in the background QSOs is clearly at odds with the incidence of associated (z_abs ~ z_em) systems -- absorbers which exist towards only a few percent of QSOs. Although the quality of our foreground QSO spectra is not as high as the SDSS data, absorption seen towards one of the background QSOs clearly does not show up at the same strength in the spectrum of the corresponding foreground QSO. This implies that the absorbing gas is distributed inhomogeneously around the QSO, presumably as a direct consequence of the anisotropic emission from the central AGN. We discuss possible origins for the MgII lines, including: absorption by gas from the foreground QSO h...

  19. Radionuclide investigation of nutritive absorption

    The authors present the theoretical rationale, algorithm and results of verification of a new radionuclide method for the determination of nutritive absorption. The proposed method allows the determination of the amount of a labeled unabsorbed food ingredient without the collection and radiometry of feces, with a high degree of significance

  20. S matrix for absorptive Hamiltonians

    The existence of a matrix S such that SS = 1 in the presence of absorption is demonstrated. In the limit a of hermitian Hamiltonian the unitarity conditions SS = 1 is recovered. A dispersion relation for forward scattering is derived and the properties of the reactance matrices K and K are obtained. It is shown that K = K

  1. Absorptive capacity and smart companies

    Patricia Moro González

    2014-12-01

    Full Text Available Purpose: The current competitive environment is substantially modifying the organizations’ learning processes due to a global increase of available information allowing this to be transformed into knowledge. This opportunity has been exploited since the nineties by the tools of “Business Analytics” and “Business Intelligence” but, nevertheless, being integrated in the study of new organizational capacities engaged in the process of creating intelligence inside organizations is still an outstanding task. The review of the concept of absorptive capacity and a detailed study from the perspective of this new reality will be the main objective of study of this paper.Design/methodology/approach: By comparing classical absorptive capacity and absorptive capacity from the point of view of information management tools in each one of the three stages of the organizational learning cycle, some gaps of the former are overcome/fulfilled. The academic/bibliographical references provided in this paper have been obtained from ISI web of knowledge, Scopus and Dialnet data bases, supporting the state of affairs on absorptive capacity and thereafter filtering by "Business Intelligence" and "Business Analytics". Specialized websites and Business Schools` Publications there have also been included, crowning the content on information management tools used that are currently used in the strategic consulting.Findings: Our contribution to the literature is the development of "smart absorptive capacity". This is a new capacity emerging from the reformulation of the classical concept of absorptive capacity wherein some aspects of its definition that might have been omitted are emphasized. The result of this new approach is the creation of a new Theoretical Model of Organizational Intelligence, which aims to explain, within the framework of the Resources and Capabilities Theory, the competitive advantage achieved by the so-called smart companies

  2. Theory of graphene saturable absorption

    Marini, A; de Abajo, F J Garcia

    2016-01-01

    Saturable absorption is a non-perturbative nonlinear optical phenomenon that plays a pivotal role in the generation of ultrafast light pulses. Here we show that this effect emerges in graphene at unprecedentedly low light intensities, thus opening avenues to new nonlinear physics and applications in optical technology. Specifically, we theoretically investigate saturable absorption in extended graphene by developing a non-perturbative single-particle approach, describing conduction-electron dynamics in the atomically-thin material using the two-dimensional Dirac equation for massless Dirac fermions, which is recast in the form of generalized Bloch equations. By solving the electron dynamics non-perturbatively, we account for both interband and intraband contributions to the intensity-dependent saturated conductivity and conclude that the former dominates regardless of the intrinsic doping state of the material. The results are in excellent agreement with atomistic quantum-mechanical simulations including high...

  3. The intestinal absorption of folates.

    Visentin, Michele; Diop-Bove, Ndeye; Zhao, Rongbao; Goldman, I David

    2014-01-01

    The properties of intestinal folate absorption were documented decades ago. However, it was only recently that the proton-coupled folate transporter (PCFT) was identified and its critical role in folate transport across the apical brush-border membrane of the proximal small intestine established by the loss-of-function mutations identified in the PCFT gene in subjects with hereditary folate malabsorption and, more recently, by the Pcft-null mouse. This article reviews the current understanding of the properties of PCFT-mediated transport and how they differ from those of the reduced folate carrier. Other processes that contribute to the transport of folates across the enterocyte, along with the contribution of the enterohepatic circulation, are considered. Important unresolved issues are addressed, including the mechanism of intestinal folate absorption in the absence of PCFT and regulation of PCFT gene expression. The impact of a variety of ions, organic molecules, and drugs on PCFT-mediated folate transport is described. PMID:24512081

  4. Bent Electro-Absorption Modulator

    2002-01-01

    The present invention relates to a method and a device for modulating optical signals based on modulating bending losses in bend, quantum well semiconductor waveguide sections. The complex refractive index of the optical active semiconducting components of the waveguide section is modulated by...... applying a variable electric or electronmagnetic field. The modulation of the complex refractive index results in a modulation of the refractive index contrast and the absorption coefficient for the waveguide at the frequency of the light. By carefully adjusting the composition of the semiconducting...... components and the applied electric field in relation to the frequency of the modulated radiation, the bending losses (and possibly coupling losses) will provide extinction of light guided by the bent waveguide section. The refractive index contract may be modulated while keeping the absorption coefficient...

  5. Absorption properties of identical atoms

    Sancho, Pedro

    2013-01-01

    Emission rates and other optical properties of multiparticle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas.

  6. Absorption properties of identical atoms

    Sancho, Pedro

    2013-09-01

    Emission rates and other optical properties of multi-particle systems in collective and entangled states differ from those in product ones. We show the existence of similar effects in the absorption probabilities for (anti)symmetrized states of two identical atoms. The effects strongly depend on the overlapping between the atoms and differ for bosons and fermions. We propose a viable experimental verification of these ideas.

  7. Maximum-likelihood absorption tomography

    Maximum-likelihood methods are applied to the problem of absorption tomography. The reconstruction is done with the help of an iterative algorithm. We show how the statistics of the illuminating beam can be incorporated into the reconstruction. The proposed reconstruction method can be considered as a useful alternative in the extreme cases where the standard ill-posed direct-inversion methods fail. (authors)

  8. Slowing down with resonance absorption

    The presence of heavy nuclei in nuclear reactors, in significant concentrations, facilitates the appearance of absorption resonances. For the moderation in the presence of absorbers an exact solution of the integral equations is possible by numerical methods. Approximated solutions for separated resonances in function of the practical width, (NR and NRIM approximations) are discussed in this paper. The method is generalized, presenting the solution by an intermediate approximation, in the definition of the resonance integral. (Author)

  9. Chaos and multiple photon absorption

    An anharmonic vibrational mode of a molecule, driven by an intense infrared laser and coupled to a quasi-continuum of background modes, is found to undergo chaotic oscillations. This chaos leads to predominantly fluence-dependent rather than intensity-dependent multiple-photon absorption, as is found experimentally. The loss of coherence is associated with the decay of temporal correlation of background-mode oscillations

  10. QED-driven laser absorption

    Levy, M C; Ratan, N; Sadler, J; Ridgers, C P; Kasim, M; Ceurvorst, L; Holloway, J; Baring, M G; Bell, A R; Glenzer, S H; Gregori, G; Ilderton, A; Marklund, M; Tabak, M; Wilks, S C; Norreys, P A

    2016-01-01

    Absorption covers the physical processes which convert intense photon flux into energetic particles when a high-power laser illuminates optically-thick matter. It underpins important petawatt-scale applications today, e.g., medical-quality proton beam production. However, development of ultra-high-field applications has been hindered since no study so far has described absorption throughout the entire transition from the classical to the quantum electrodynamical (QED) regime of plasma physics. Here we present a model of absorption that holds over an unprecedented six orders-of-magnitude in optical intensity and lays the groundwork for QED applications of laser-driven particle beams. We demonstrate 58% efficient \\gamma-ray production at $1.8\\times 10^{25}~\\mathrm{W~ cm^{-2}}$ and the creation of an anti-matter source achieving $4\\times 10^{24}\\ \\mathrm{positrons}\\ \\mathrm{cm^{-3}}$, $10^{6}~\\times$ denser than of any known photonic scheme. These results will find applications in scaled laboratory probes of bla...

  11. Evolution of absorption machines; Evolution des machines a absorption

    Soide, I.; Klemsdal, E. [Gaz de France (GDF), 75 - Paris (France); Le Goff, P.; Hornut, J.M. [LSGC-ENSIC, 54 - Nancy (France)

    1997-12-31

    Most of todays absorption air-conditioning machineries use the lithium bromide-water pair. The most performing can operate at a 150-160 deg. C, the temperature being limited by the corrosion resistance of metals with respect to LiBr solutions. Also, there is a revival of interest for water-ammonia systems. These systems require the use of a rectification column which reduces the coefficient of performance. Higher thermal performances are reached with hydrocarbon pairs and ternary mixtures (water-methanol-LiBr etc..). This paper presents different schemes of refrigerating heat pumps based on these different systems. (J.S.)

  12. Free carrier absorption in quantum cascade structures

    Carosella, F.; Ndebeka-Bandou, C.; Ferreira, R.; Dupont, E; K. Unterrainer; Strasser, G.; Wacker, Andreas; Bastard, G.

    2011-01-01

    We show that the free carrier absorption in Quantum Cascade Lasers is very small and radically different from the classical Drude result on account of the orthogonality between the direction of the carrier free motion and the electric field of the laser emission. A quantum mechanical calculation of the free carrier absorption and inter-subband oblique absorption induced by interface defects, coulombic impurities and optical phonon absorption/emission is presented for QCL's with a double quant...

  13. Drug recovery following buccal absorption of propranolol.

    Henry, J A; Ohashi, K.; Wadsworth, J.; Turner, P.,

    1980-01-01

    1 Buccal absorption of propranolol in two volunteers was followed by repeated rinsing of the mouth with buffer solutions for twelve 2 min periods. Values for absorption, recovery and asymptotic recovery were calculated. 2 Large amounts of propranolol were recoverable from the buccal mucosa; recovery was biexponential and the amount recovered depended on the time allowed for absorption and on the pH of buffers used for recovery. 3 In the case of the drug studied, the buccal absorption test was...

  14. Plasmonically enhanced light absorption in graphene nanoribbons

    Woessner, Achim

    2012-01-01

    [ANGLÈS] Light absorption plays a crucial role in both optical detectors and photovoltaics. In order to improve the light absorption properties of materials different measures can be taken. This thesis considers light absorption of graphene in the mid infrared region of the electromagnetic spectrum. A numerical study of light absorption and of localized plasmons in nanostructured graphene is presented and discussed. We show that for nanostructured graphene in the mid infrared region of the sp...

  15. Structural sound absorption in liquid metals

    Present article is devoted to structural sound absorption in liquid metals. The study of sound absorption in liquid metals shown that in all studied objects the structural absorption of sound was observed. The mechanism of structural relaxation in molten metal was revealed.

  16. Lactulose stimulates calcium absorption in postmenopausal women

    Heuvel, E.G.H.M. van den; Muijs, T.; Dokkum, W. van; Schaafsma, G.

    1999-01-01

    Animal studies have indicated that calcium absorption is increased by lactulose, a synthetic disaccharide. Therefore, the influence of lactulose on calcium absorption was measured in postmenopausal women who may benefit from the possible enhancing effect of lactulose on calcium absorption. Twelve po

  17. Phytases for Improved Iron Absorption

    Nielsen, Anne Veller Friis; Nyffenegger, Christian; Meyer, Anne S.

    2014-01-01

    Microbial phytases (EC 3.1.3.8) catalyse dephosphorylation of phytic acid, which is the primary storage compound for phosphorous in cereal kernels. The negatively charged phosphates in phytic acid chelate iron (Fe3+) and thus retards iron bioavailability in humans 1. Supplementation of microbial...... phytase can improve iron absorption from cereal-based diets 2. In order for phytase to catalyse iron release in vivo the phytase must be robust to low pH and proteolysis in the gastric ventricle. Our work has compared the robustness of five different microbial phytases, evaluating thermal stability...

  18. Water dimer absorption of visible light

    Hargrove, J

    2007-01-01

    International audience Laboratory measurements of water vapor absorption using cavity ring-down spectroscopy revealed a broad absorption at 405 nm with a quadratic dependence on water monomer concentration, a similar absorption with a linear component at 532 nm, and only linear absorption at 570 nm in the vicinity of water monomer peaks. D2O absorption is weaker and linear at 405 nm. Van't Hoff plots constructed at 405.26 nm suggest that for dimerization, Keq=0.056±0.02 atm?1, ?H°301 K=?16...

  19. Kinetics of gastro-intestinal absorption

    Knowledge of the kinetics of gastrointestinal absorption is required for reliable dose estimates for ingested radionuclides. A method is described by which absorption rates as a function of time as well as the total fraction absorbed (f1 value) can be determined by analysis of tracer concentrations in blood after oral and intravenous administration. The method was applied to study the absorption dynamics of Ca, Fe, and Mo in humans and is adapted to Ru, Zr, Sr and lanthanides. Radioactive or stable isotopes of the respective elements were used as tracers. The absorption kinetics and the total fractional absorption differ considerably for different elements. For a particular element, the absorption rates as well as the f1 values vary considerably with respect to the chemical form and the amount administered. Absorption patterns are characteristically different for uptake from solutions or from whole meals. This information may be used to improve the dosimetric model for the gastrointestinal tract. (author)

  20. Iron Absorption in Drosophila melanogaster

    Fanis Missirlis

    2013-05-01

    Full Text Available The way in which Drosophila melanogaster acquires iron from the diet remains poorly understood despite iron absorption being of vital significance for larval growth. To describe the process of organismal iron absorption, consideration needs to be given to cellular iron import, storage, export and how intestinal epithelial cells sense and respond to iron availability. Here we review studies on the Divalent Metal Transporter-1 homolog Malvolio (iron import, the recent discovery that Multicopper Oxidase-1 has ferroxidase activity (iron export and the role of ferritin in the process of iron acquisition (iron storage. We also describe what is known about iron regulation in insect cells. We then draw upon knowledge from mammalian iron homeostasis to identify candidate genes in flies. Questions arise from the lack of conservation in Drosophila for key mammalian players, such as ferroportin, hepcidin and all the components of the hemochromatosis-related pathway. Drosophila and other insects also lack erythropoiesis. Thus, systemic iron regulation is likely to be conveyed by different signaling pathways and tissue requirements. The significance of regulating intestinal iron uptake is inferred from reports linking Drosophila developmental, immune, heat-shock and behavioral responses to iron sequestration.

  1. Five-Photon Absorption and Selective Enhancement of Multiphoton Absorption Processes

    Friese, Daniel Henrik; Bast, Radovan; Ruud, Kenneth

    2015-01-01

    We study one-, two-, three-, four-, and five-photon absorption of three centrosymmetric molecules using density functional theory. These calculations are the first ab initio calculations of five-photon absorption. Even- and odd-order absorption processes show different trends in the absorption cross sections. The behavior of all even- and odd-photon absorption properties shows a semiquantitative similarity, which can be explained using few-state models. This analysis shows that odd-photon abs...

  2. Graphene intracavity spaser absorption spectroscopy

    Lozovik, Yu. E.; Nechepurenko, I. A.; Dorofeenko, A. V.

    2016-09-01

    We propose an intracavity plasmon absorption spectroscopy method based on graphene active plasmonics. It is shown that the plasmonic cavity contribution to the sensitivity is proportional to the quality factor Q of the graphene plasmonic cavity and reaches two orders of magnitude. The addition of gain medium into the cavity increases the sensitivity of method. Maximum sensitivity is reached in the vicinity of the plasmon generation threshold. The gain contribution to the sensitivity is proportional to Q1/2. The giant amplification of sensitivity in the graphene plasmon generator is associated with a huge path length, limited only by the decoherence processes. An analytical estimation of the sensitivity to loss caused by analyzed particles (molecules, nanoparticles, etc.) normalized by the single pass plasmon scheme is derived. Usage of graphene nanoflakes as plasmonic cavity allows a high spatial resolution to be reached, in addition to high sensitivity.

  3. Computer programs for absorption spectrophotometry.

    Jones, R N

    1969-03-01

    Brief descriptions are given of twenty-two modular computer programs for performing the basic numerical computations of absorption spectrophotometry. The programs, written in Fortran IV for card input and output, are available from the National Research Council of Canada. The input and output formats are standardized to permit easy interfacing to yield more complex data processing systems. Though these programs were developed for ir spectrophotometry, they are readily modified for use with digitized visual and uv spectrophotometers. The operations covered include ordinate and abscissal unit and scale interconversions, ordinate addition and subtraction, location of band maxima and minima, smoothing and differentiation, slit function convolution and deconvolution, band profile analysis and asymmetry quantification, Fourier transformation to time correlation curves, multiple overlapping band separation in terms of Cauchy (Lorentz), Gauss, Cauchy-Gauss product, and Cauchy-Gauss sum functions and cell path length determination from fringe spacing analysis. PMID:20072266

  4. Quantum-enhanced absorption refrigerators.

    Correa, Luis A; Palao, José P; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  5. HI Absorption in Merger Remnants

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.

    2012-01-01

    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  6. Acoustic Absorption in Porous Materials

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  7. Quantum-enhanced absorption refrigerators

    Correa, Luis A; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step t...

  8. Infrared absorption modeling of VOx microbolometer

    Aggoun, Mehdi; Jiang, Jianliang; Khan, M. K.

    2015-08-01

    The absorption model plays an important role in the design of the microbolometer structure regarding the determination of the optimum thickness of the structure layers. Moreover, the infrared absorption depends on the wavelength of the radiation and the material properties. In this paper, we presented an Infrared absorption model with absorption coefficient of 96% at maximum absorption wavelength of 9.89μm which is very close to the expected value 10μm. This model was established by using MATLAB so that the simulation of the infrared absorption of the VOx microbolometer could be accomplished. In order to confirm the role of this modeling in the design of the device structure, comparison with other structures is also studied in this paper.

  9. Absorption boundary conditions for geomertical acoustics

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  10. Absorptive capacity and regional patterns of innovation

    Abreu, Maria; Grinevich, Vadim; Kitson, Michael; Savona, Maria

    2008-01-01

    Executive Summary This paper considers whether differences in absorptive capacity at the firm-level are determinants of regional variations in innovation performance. Differences in firms’ absorptive capacity are also due to sectoral and technological specificities. Both firms’ absorptive capacity and sectoral structure differ widely across regions: this analysis focuses on the former while controlling for the latter aspect in order to evaluate regional differences in firms’ propensity to...

  11. Absorption events associated with solar flares

    2001-01-01

    During the upward period of solar cycle 23, the imaging riometer at Zhongshan, Antarctica (geomag. lat. 74.5°S) was used to study the solar proton events and the X-ray solar flares which are associated with the absorption events. In our study, the relationship between the absorption intensity and X-ray flux is found in a power form which is consistent with the theoretical result. The imaging riometer absorption data at Ny-?lesund, Svalbard reconfirm the above relationship. We also argue that only M-class flares can generate a significant daytime absorption.

  12. Emission and Absorption Entropy Generation in Semiconductors

    Reck, Kasper; Varpula, Aapo; Prunnila, Mika;

    2013-01-01

    While emission and absorption entropy generation is well known in black bodies, it has not previously been studied in semiconductors, even though semiconductors are widely used for solar light absorption in modern solar cells [1]. We present an analysis of the entropy generation in semiconductor...... materials due to emission and absorption of electromagnetic radiation. It is shown that the emission and absorption entropy generation reduces the fundamental limit on the efficiency of any semiconductor solar cell even further than the Landsberg limit. The results are derived from purely thermodynamical...

  13. Differential Photoacoustic Particle Absorption Monitor Project

    National Aeronautics and Space Administration — We developed a highly sensitive and compact instrument to directly measure particulate matter (PM) optical absorption. This device is based on differential...

  14. Infrared multiphoton absorption and decomposition

    The discovery of infrared laser induced multiphoton absorption (IRMPA) and decomposition (IRMPD) by Isenor and Richardson in 1971 generated a great deal of interest in these phenomena. This interest was increased with the discovery by Ambartzumian, Letokhov, Ryadbov and Chekalin that isotopically selective IRMPD was possible. One of the first speculations about these phenomena was that it might be possible to excite a particular mode of a molecule with the intense infrared laser beam and cause decomposition or chemical reaction by channels which do not predominate thermally, thus providing new synthetic routes for complex chemicals. The potential applications to isotope separation and novel chemistry stimulated efforts to understand the underlying physics and chemistry of these processes. At ICOMP I, in 1977 and at ICOMP II in 1980, several authors reviewed the current understandings of IRMPA and IRMPD as well as the particular aspect of isotope separation. There continues to be a great deal of effort into understanding IRMPA and IRMPD and we will briefly review some aspects of these efforts with particular emphasis on progress since ICOMP II. 31 references

  15. Fluid absorption solar energy receiver

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  16. Ultrafast THz Saturable Absorption in Semiconductors

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate THz saturable absorption in n-doped semiconductors GaAs, GaP, and Ge in a nonlinear THz time-domain spectroscopy experiment. Saturable absorption is caused by sample conductivity modulation due to electron heating and satellite valley scattering in the field of a strong THz pulse....

  17. Fostering Technology Absorption in Southern African Enterprises

    World Bank

    2011-01-01

    This book seeks to understand how firms in southern Africa absorb technology and how policy makers can hurry the process along. It identifies channels of technology transfer and absorption through trade and foreign direct investment (FDI) and constraints to greater technology absorption, and it discusses policy options open to the government and the private sector in light of relevant inte...

  18. Enriching Absorptive Capacity through Social Interaction

    Hotho, Jasper J.; Becker-Ritterspach, Florian; Saka-Helmhout, Ayse

    2012-01-01

    Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within multinational enterprises. But how individual behaviour translates into absorptive capacity at the subsidiary level, and how this is contingent on subsidiaries' social context, remains under-addressed. Th

  19. Cavity-enhanced absorption for optical refrigeration

    Seletskiy, Denis V; Sheik-Bahae, Mansoor

    2009-01-01

    A 20-fold increase over the single path optical absorption is demonstrated with a low loss medium placed in a resonant cavity. This has been applied to laser cooling of Yb:ZBLAN glass resulting in 90% absorption of the incident pump light. A coupled-cavity scheme to achieve active optical impedance matching is analyzed.

  20. Determination of spectrophotometric absorptivity by analytical ultracentrifugation

    M Senthilraja

    2011-01-01

    Full Text Available Rapid determination of the absorptivity for a recombinant IgG monoclonal antibody using the Beckman equipped with both Raleigh interference and UV absorbance optical systems. The analytical ultracentrifuge data for determining spectrophotometric absorptivities is compared to experimental data from quantitative amino acid analysis and an enzymatic digestion method.

  1. VAPID: Voigt Absorption-Profile [Interstellar] Dabbler

    Howarth, Ian D.

    2015-06-01

    VAPID (Voigt Absorption Profile [Interstellar] Dabbler) models interstellar absorption lines. It predicts profiles and optimizes model parameters by least-squares fitting to observed spectra. VAPID allows cloud parameters to be optimized with respect to several different data set simultaneously; those data sets may include observations of different transitions of a given species, and may have different S/N ratios and resolutions.

  2. Iron absorption from intrinsically-labeled lentils

    Low iron (Fe) absorption from important staple foods may contribute to Fe deficiency in developing countries. To date, there are few studies examining the Fe bioavailability of pulse crops as commonly prepared and consumed by humans. The objectives of this study were to characterize the Fe absorpt...

  3. On the absorption of alendronate in rats.

    Lin, J H; Chen, I W; deLuna, F A

    1994-12-01

    Alendronate is an antiosteolytic agent under investigation for the treatment of a number of bone disorders. Since the compound is a zwitterion with five pKa values and is completely ionized in the intestine at the physiological pH, absorption is poor; less than 1% of an oral dose is available systemically in rats. In the present studies, absorption was found to be predominantly in the upper part of the small intestine. Administration of buffered solutions of alendronate (pH 2-11) did not improve absorption. Whereas food markedly impaired the absorption of alendronate, EDTA enhanced absorption in a dose-dependent manner. Pretreatment of rats with ulcerogenic agents, mepirizole, acetylsalicylic acid, or indomethacin, resulted in a 3-7-fold increase in the oral absorption of alendronate. The absorption of phenol red, added as an indicator of intestinal tissue damage, was also increased in rats with experimental peptic ulcers. The enhanced absorption of alendronate observed in rats with experimental peptic ulcers was attributed to the alteration of the integrity of the intestinal membrane. PMID:7891304

  4. UV/VUV high sensitivity absorption spectroscopy

    High sensitivity absorption spectroscopy is a powerful diagnostic technique for reactive glow discharges plasmas. Absolute column densities of many chemical radicals have been measured in both deposition and etching plasmas. Modern photodiode or charge-coupled device (CCD) detector arrays vastly increase the sensitivity of traditional absorption experiments enabling one to observe fractional absorptions of ultraviolet (UV) and vacuum ultraviolet (VUV) radiation less than 0.0001. Stable arc lamps provide a continuum source in some experiments, but experiments at very high spectral resolution or at VUV wavelengths require the greater spectral radiance of synchrotron radiation. High sensitivity absorption spectroscopy has been applied to intense glow discharges used for lighting, for diamond film deposition, and for both depositing and etching Si films. Absorption spectroscopy provides absolute column densities, is useful for transitions that do not fluoresce, and approaches the sensitivity of laser-induced fluorescence (LIF) in glow discharges under some conditions

  5. Novel absorption detection techniques for capillary electrophoresis

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  6. Creating semiconductor metafilms with designer absorption spectra

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2015-07-01

    The optical properties of semiconductors are typically considered intrinsic and fixed. Here we leverage the rapid developments in the field of optical metamaterials to create ultrathin semiconductor metafilms with designer absorption spectra. We show how such metafilms can be constructed by placing one or more types of high-index semiconductor antennas into a dense array with subwavelength spacings. It is argued that the large absorption cross-section of semiconductor antennas and their weak near-field coupling open a unique opportunity to create strongly absorbing metafilms whose spectral absorption properties directly reflect those of the individual antennas. Using experiments and simulations, we demonstrate that near-unity absorption at one or more target wavelengths of interest can be achieved in a sub-50-nm-thick metafilm using judiciously sized and spaced Ge nanobeams. The ability to create semiconductor metafilms with custom absorption spectra opens up new design strategies for planar optoelectronic devices and solar cells.

  7. Dust Sensitivity of Absorption-Line Indices

    MacArthur, L A

    2004-01-01

    We investigate the effects of dust extinction on integrated absorption-line indices that are widely used to derive constraints on the ages and metallicities of composite stellar systems. Typically, absorption-line studies have been performed on globular clusters or elliptical galaxies, which are mostly dust-free systems. However, many recent studies of integrated stellar populations have focused on spiral galaxies which may contain significant amounts of dust. It is almost universally assumed that the effects of dust extinction on absorption-line measurements are entirely negligible given the narrow baseline of the spectral features, but no rigorous study has yet been performed to verify this conjecture. In this analysis, we explore the sensitivity of the standard set of Lick absorption-line indices, the higher-order Balmer line indices, the 4000 A break, the near-IR calcium triplet indices, and the Rose indices to dust absorption according to population synthesis models that incorporate a multi-component mod...

  8. Absorption of controlled-release iron

    A multiple-dose double radioiron technic was used to compare absorption of iron administered as a controlled release (CR) capsule and as an elixir; both formulations contained 50 mg elemental iron as ferrous sulfate. When taken by normal subjects in the fasting state, mean absorption from the elixir and CR capsule averaged 4.92% and 4.38%, which gave a CR capsule:elixir ratio of 0.89. This difference was not significant, but when taken with meals that inhibit absorption of dietary iron by different degrees, absorption of the CR formulation was superior. CR capsule:elixir absorption ratios averaged 1.70 from a meal that is mildly inhibitory and 3.13 from a meal that causes more marked inhibition. It is concluded that CR iron formulations may offer a therapeutic advantage to patients who take oral iron with meals to avoid gastrointestinal side effects

  9. Time-dependent oral absorption models

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  10. Calcification-related absorption in thyroid scintigraphy

    The enhanced absorption of X-rays in calcified structures is a basic prerequisite for performing conventional bone radiography. On the other hand, nothing has been reported on possible absorption effects of 'calcifications' as frequent findings in thyroid nodules or in the sternal bone / sternoclavicular joints. This may be caused by the general opinion, that the high energy of 99mTc-photons (140 keV) do not make visible absorptions effects very likely. Patients, methods: To prove possible absorption effects of calcifications on thyroid scintigraphy experimentally, effects of calcium absorbers were tested on a technetium flood phantom. Furthermore, absorption effects of various calcifications (discs of calcium sulphate and calcium carbonate with varying thickness) on normal thyroid tissue and autonomous nodules were simulated in a thyroid phantom. CT 130 kV-images of 46 consecutive patients were checked for presence of retrosternal or retroclavicular growth of the thyroid gland and to measure the extent and density of the sternal bone and calcified intrathyroidal nodules. In addition, clinical cases are presented in which a possible absorption by calcifications seems to be likely. Results: Bony structures in front of the thyroid gland or calcified intrathyroidal nodules could be seen on CT in 24/46 patients. The mean averaged density was 219 Houndsfield units (SD: 89 HU). The quantitative measurements using a 99mTc-flood source showed a mean absorption of 4.9%. In a thyroid phantom, absorption effects were visible only in 3/20 positions of the calcium discs over the thyroid phantom. Focal effects could be better detected in situations of only moderate uptake of the surrounding tissue. A dependence of absorption and chemistry (sulphate, carbonate) could not be found. Conclusion: Visible absorption effects caused by sternal bone or thyroid calcifications are seldom but potentially able to diminish the visible uptake and should be taken into account when interpreting

  11. Water dimer absorption of visible light

    J. Hargrove

    2007-07-01

    Full Text Available Laboratory measurements of water vapor absorption using cavity ring-down spectroscopy revealed a broad absorption at 405 nm with a quadratic dependence on water monomer concentration, a similar absorption with a linear component at 532 nm, and only linear absorption at 570 nm in the vicinity of water monomer peaks. D2O absorption is weaker and linear at 405 nm. Van't Hoff plots constructed at 405.26 nm suggest that for dimerization, Keq=0.056±0.02 atm−1, ΔH°301 K=−16.6±2 kJ mol−1 and ΔS°301 K=−80±10 J mol−1 K−1. This transition peaks at 409.5 nm, could be attributed to the 8th overtone of water dimer and the 532 nm absorption to the 6th overtone. It is possible that some lower overtones previously searched for are less enhanced. These absorptions could increase water vapor feed back calculations leading to higher global temperature projections with currently projected greenhouse gas levels or greater cooling from greenhouse gas reductions.

  12. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (Petroleo (IMP) and CENICA.

  13. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  14. Modulation of intestinal absorption of calcium

    Absorption of ingested calcium (2ml of a 10mM CaCl2 solution + 45Ca) by the adult rat was shown to be facilitated by the simultaneous ingestion of an active carbohydrate, L-arabinose. As the carbohydrate concentration is increased from 10 to 200mM, the absorption of calcium is maximised at a level corresponding to about twice the control absorption level. A similar doubling of calcium absorption is obtained when a 100mM concentration of any one of a number of other carbohydrates is ingested simultaneously with a 10mM CaCl2 solution. Conversely, the simultaneous ingestion of increasing doses (10 to 100mM) of phosphate (NaH2PO4) with a 10mM CaCl2 solution results in decreased 45Ca absorption and retention by the adult rat. The maximum inhibition of calcium absorption by phosphate is independent of the concentration of the ingested calcium solution (from 5 to 50mM CaCl2). The simultaneous ingestion of CaCl2 (10mM) with lactose and sodium phosphate (50 and 10mM respectively) shows that the activation effect of lactose upon 45Ca absorption may be partly dissimulated by the presence of phosphate. These various observations indicate that, within a large concentration range (2 to 50mM CaCl2) calcium absorption appears to be a precisely modulated diffusion process. Calcium absorption varies (between minimum and maximum levels) as a function of the state of saturation by the activators (carbohydrates) and inhibitors (phosphate) of the calcium transport system

  15. Photon energy absorption parameters for some polymers

    Singh, Tejbir; Rajni [Physics Department, M.M. University, Mullana-133 203 Haryana (India); Kaur, Updesh [Physics Department, P.K.R.J.S.S. School, Ambala City, Haryana (India); Singh, Parjit S., E-mail: dr_parjit@hotmail.co [Physics Department, Punjabi University, Patiala-147 002 Punjab (India)

    2010-03-15

    Some photon energy absorption parameters viz. mass energy absorption coefficient (mu/rho){sub en}, photon energy absorption effective atomic number (Z{sub PEA}), electron density (N{sub e}) and KERMA relative to air has been computed in the energy range from 1 keV to 20 MeV for some polymers such as nylon, poly-acrylo-nitrile, poly-methyl-acrylate, poly-vinyl-chloride, poly-styrene, synthetic rubber and poly-tetra-fluro-ethylene. The dependence of different parameters on incident photon energy and chemical composition of the selected polymers has been studied .

  16. Absorption imaging of a single atom

    Streed, E. W.; Jechow, A.; Norton, B. G.; Kielpinski, D.

    2012-01-01

    Absorption imaging has played a key role in the advancement of science from van Leeuwenhoek's discovery of red blood cells to modern observations of dust clouds in stellar nebulas and Bose-Einstein condensates. Here we show the first absorption imaging of a single atom isolated in vacuum. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the limits of absorption imaging. A single atomic ion was confined in an RF Paul trap and the absorp...

  17. A cylindrical furnace for absorption spectral studies

    R Venkatasubramanian

    2001-06-01

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material being heated can be prevented from depositing on the windows of the absorption cell by maintaining a higher temperature at both the ends of the absorption cell.

  18. Gastrointestinal absorption of uranium in man

    A method has been established for determining the fractional absorption of uranium directly in man. Measurements are made of the urinary excretion rates of uranium for individuals whose drinking water has a high 234U to 238U activity ratio and is the primary source of 234U in their diets. For two individuals, the values obtained for the fractional absorption of 234U were 0.004 and 0.006. The values obtained for the fractional absorption of 238U, using a literature value for the 238U intake from food, were 0.008 and 0.015. The present ICRP value is 0.20. 7 references, 1 table

  19. Absorption of light dark matter in semiconductors

    Hochberg, Yonit; Lin, Tongyan; Zurek, Kathryn M.

    2016-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multi-phonon excitations enable absorption of dark matter in the 0.01 eV to e...

  20. Effect of oils on drug absorption

    Palin, K.J.

    1981-01-01

    Oil and emulsion vehicles have been shown to alter the oral absorption of many drugs. This may be due to enhanced lymph flow and/or altered gastro-intestinal motility in the presence of the oils. The oral absorption of a model compound (DOT) in the presence of three chemically different oils, arachis oil, Miglyol 812 and liquid paraffin was investigated in rats, the influence of lymphatic absorption and gastro-intestinal motility being determined. The findings were applied to the for.mulat...

  1. Gas treating absorption theory and practice

    Eimer, Dag

    2014-01-01

    Gas Treating: Absorption Theory and Practice provides an introduction to the treatment of natural gas, synthesis gas and flue gas, addressing why it is necessary and the challenges involved.  The book concentrates in particular on the absorption-desorption process and mass transfer coupled with chemical reaction. Following a general introduction to gas treatment, the chemistry of CO2, H2S and amine systems is described, and selected topics from physical chemistry with relevance to gas treating are presented. Thereafter the absorption process is discussed in detail, column hardware is explain

  2. Coherent absorption of N00N states

    Roger, Thomas; Lyons, Ashley; Giovannini, Daniel; Romero, Jacquiline; Jeffers, John; Padgett, Miles; Faccio, Daniele

    2016-01-01

    Recent results in deeply subwavelength thickness films demonstrated coherent control and logical gate operations with both classical and single photon light sources. However, quantum processing and devices typically involve more than one photon and non-trivial input quantum states. Here we experimentally investigate two-photon N00N state coherent absorption in a multilayer graphene film. Depending on the N00N state input phase, it is possible to selectively choose between single or two photon absorption of the input state in the graphene film. These results demonstrate that coherent absorption in the quantum regime exhibits unique features opening up applications in multiphoton spectroscopy and imaging.

  3. Selective coherent perfect absorption in metamaterials

    We show multi-band coherent perfect absorption (CPA) in simple bilayered asymmetrically split ring metamaterials. The selectivity of absorption can be accomplished by separately excited electric and magnetic modes in a standing wave formed by two coherent counterpropagating beams. In particular, each CPA can be completely switched on/off by the phase of a second coherent wave. We propose a practical scheme for realizing multi-band coherent perfect absorption of 100% that is allowed to work from microwave to optical frequency

  4. Optical absorption in irradiated natural beryl

    Three species of beryl irradiated with γ-rays of 60Co were studied by optical absorption. One became yellow and the other two Maxixe's blue. The effects of heat treatments were determined by the thermal isochronal decays of the optical absorption bands. Activation energies and frequency factor were obtained through the first order process kinetic model. Discussions lend us to assign for the UV band-edge the model of absorption by a hole center stabilized by a Fe2+ (substituting Al3+) ion in a neighbour oxygen. (Author)

  5. Fishnet metamaterials with incorporated titanium absorption layer

    Some metamaterial applications require the use of high-power lasers, but the incoming radiation may damage the metamaterials. In addition to that, the presence of an absorptive material placed close to metamaterial surface can lead to quick heating of the surrounding area, resulting in serious thermal damage or melting of the fabricated pattern. We study the impact of a titanium absorptive layer on top of a conventional fishnet structure and we show that due to increased absorption the melting power is reduced by nearly 50% and thermal damage leads to the formation of microbumps on the exposed surface. (paper)

  6. Enriching Absorptive Capacity Through Social Interaction

    Hotho, Jasper Jaap; Becker-Ritterspach, Florian; Saka-Helmhout, Ayse

    Absorptive capacity is frequently highlighted as a key determinant of knowledge transfer within MNEs. But how individual behaviour translates to absorptive capacity at the subsidiary level, and exactly how this is contingent on subsidiaries’ social context, remains under-addressed. This not only...... limits our understanding of the causal linkage between individual and organizational level absorptive capacity, it also hampers further research on potentially relevant managerial and organizational antecedents, and limits the implications we can draw for practitioners in the field seeking to increase...

  7. Extending Organizational Antecedents Of Absorptive Capacity

    Burcharth, Ana Luiza de Araújo; Lettl, Christopher; Ulhøi, John Parm

    2015-01-01

    on organizational characteristics that encourage experimentation. Specifically, we argue that characteristics such as slack resources, tolerance for failure, willingness to cannibalize and external openness are important organizational antecedents for knowledge absorption activities as they prevent...

  8. (EXAFS) X-ray absorption spectroscopy

    The technique EXAFS (Extended X-Ray Absorption Fine Structure) is presented and its applications using the synchrotron radiation as an incidente beam in Science of Materials and Biophysics are shown. (L.C.)

  9. Differential Photoacoustic Particle Absorption Monitor Project

    National Aeronautics and Space Administration — We propose to develop a highly sensitive and compact monitor to measure light absorption from particulate matters. The fundamental of the proposed device is based...

  10. Molecular absorption in transition region spectral lines

    Schmit, Donald; Ayres, Thomas; Peter, Hardi; Curdt, Werner; Jaeggli, Sarah

    2014-01-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary . The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales...

  11. Nonlinear absorption in wave driven plasmas

    We study the saturation of the wave absorption in a radio frequency driven plasma. A critical energy above which it is useless to work is introduced. The influence of an electric field and practical consequences are then considered

  12. Absorption chillers: Part of the solution

    Acid rain, ozone depletion, global warming, and implementation economics are considered as they relate to the advisability of expanding the application of absorption chillers. Introductory and background information are provided to put the discussion in the proper context. Then all four issues are discussed separately as they relate to absorption chillers. Acid rain and ozone depletion concerns, and implementation economics, are found to support the expanded use of absorption chillers. The global warming concern is found to be more of a gray area, but the areas of benefit correspond well with the conditions of greatest economic advantage. All things considered, absorption chillers are believed to be part of the environmental and economic solution. It is further believed that integrated resource planning (IRP) processes that consider electric and gas technologies on an equal footing would come to the same conclusion for many regions of the United States. 9 refs., 3 tabs

  13. Absorption of light dark matter in semiconductors

    Hochberg, Yonit; Zurek, Kathryn M

    2016-01-01

    Semiconductors are by now well-established targets for direct detection of MeV to GeV dark matter via scattering off electrons. We show that semiconductor targets can also detect significantly lighter dark matter via an absorption process. When the dark matter mass is above the band gap of the semiconductor (around an eV), absorption proceeds by excitation of an electron into the conduction band. Below the band gap, multi-phonon excitations enable absorption of dark matter in the 0.01 eV to eV mass range. Energetic dark matter particles emitted from the sun can also be probed for masses below an eV. We show that the reach for absorption of a relic kinetically mixed dark photon or pseudoscalar in semiconductors such as germanium or silicon can exceed current astrophysical and terrestrial constraints, with only a moderate exposure.

  14. Absorption enhancement in graphene photonic crystal structures.

    Khaleque, Abdul; Hattori, Haroldo T

    2016-04-10

    Graphene, a single layer of carbon atoms arranged in a honeycomb lattice, is attracting significant interest because of its potential applications in electronic and optoelectronic devices. Although graphene exhibits almost uniform absorption within a large wavelength range, its interaction with light is weak. In this paper, the enhancement of the optical absorption in graphene photonic crystal structures is studied: the structure is modified by introducing scatterers and mirrors. It is shown that the absorption of the graphene photonic crystal structure can be enhanced about four times (nearly 40%) with respect to initial reference absorption of 9.8%. The study can be a useful tool for investigating graphene physics in different optical settings. PMID:27139857

  15. Broadband absorption engineering of hyperbolic metafilm patterns

    Ji, Dengxin; Song, Haomin; Zeng, Xie; Hu, Haifeng; Liu, Kai; Zhang, Nan; Gan, Qiaoqiang

    2014-01-01

    Perfect absorbers are important optical/thermal components required by a variety of applications, including photon/thermal-harvesting, thermal energy recycling, and vacuum heat liberation. While there is great interest in achieving highly absorptive materials exhibiting large broadband absorption using optically thick, micro-structured materials, it is still challenging to realize ultra-compact subwavelength absorber for on-chip optical/thermal energy applications. Here we report the experime...

  16. Systemic Absorption of Nanomaterials by Oral Exposure

    Binderup, Mona-Lise; Bredsdorff, Lea; Beltoft, Vibe Meister;

    This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches.......This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches....

  17. Ultrafast THz Saturable Absorption in Doped Semiconductors

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  18. Fluctuation sound absorption in quark matter

    Kerbikov, B O

    2016-01-01

    We investigate the sound absorption in quark matter due to the interaction of the sound wave with the precritical fluctuations of the diquark-pair field above $T_c$. The soft collective mode of the pair field is derived using the time dependent Ginzburg-Landau functional with random Langevin forces. The strong absorption near the phase transition line may be viewed as a manifestation of the Mandelshtam-Leontovich slow relaxation time theory.

  19. Percutaneous absorption in diseased skin: an overview.

    Chiang, Audris; Tudela, Emilie; Maibach, Howard I

    2012-08-01

    The stratum corneum's (SC) functions include protection from external hazardous environments, prevention of water loss and regulation of body temperature. While intact skin absorption studies are abundant, studies on compromised skin permeability are less common, although products are often used to treat affected skin. We reviewed literature on percutaneous absorption through abnormal skin models. Tape stripping is used to disrupt water barrier function. Studies demonstrated that physicochemical properties influence the stripping effect: water-soluble drugs are more affected. Abrasion did not affect absorption as much. Freezing is commonly used to preserve skin. It does not seem to modify water absorption, but still increases the penetration of compounds. Comparatively, heating the skin consistently increased percutaneous absorption. Removing SC lipids may increase percutaneous absorption of drugs. Many organic solvents are employed to delipidize. Delipidization with chloroform-methanol increased hydrophilic compound permeability, but not lipophilic. Acetone pre-treatment enhanced hydrophilic compound penetration. More data is needed to determine influence on highly lipophilic compound penetration. Sodium lauryl sulfate (SLS) induces irritant dermatitis and is frequently used as a model. Studies revealed that SLS increases hydrophilic compound absorption, but not lipophilic. However, skin irritation with other chemicals increases lipophilic penetration as much as hydrophilic. Animal studies show that UV exposure increases percutaneous absorption whereas human studies do not. Human studies show increased penetration in psoriatic and atopic dermatitis skin. The data summarized here begin to characterize flux alteration associated with damaged skin. Understanding the degree of alteration requires interpretation of involved conditions and the enlarging of our database to a more complete physicochemical spectrum. PMID:22912973

  20. Seasonal Solar Thermal Absorption Energy Storage Development.

    Daguenet-Frick, Xavier; Gantenbein, Paul; Rommel, Mathias; Fumey, Benjamin; Weber, Robert; Gooneseker, Kanishka; Williamson, Tommy

    2015-01-01

    This article describes a thermochemical seasonal storage with emphasis on the development of a reaction zone for an absorption/desorption unit. The heat and mass exchanges are modelled and the design of a suitable reaction zone is explained. A tube bundle concept is retained for the heat and mass exchangers and the units are manufactured and commissioned. Furthermore, experimental results of both absorption and desorption processes are presented and the exchanged power is compared to the results of the simulations. PMID:26842331

  1. Super-Resonant Intracavity Coherent Absorption

    P. Malara; Campanella, C. E.; Giorgini, A.; Avino, S.; Natale, P.; Gagliardi, G.

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption. We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot-ring cavity structure. At the FP resonant wavelengths, the described phenom...

  2. High temperature measurement of water vapor absorption

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  3. Spectral Absorption Properties of Atmospheric Aerosols

    Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.

    2007-01-01

    We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.

  4. Further advancement of differential optical absorption spectroscopy: theory of orthogonal optical absorption spectroscopy.

    Liudchik, Alexander M

    2014-08-10

    A modified version of the differential optical absorption spectroscopy (DOAS) method is presented. The technique is called orthogonal optical absorption spectroscopy (OOAS). A widespread variant of DOAS with smoothing of the registered spectrum and absorption cross sections being made employing a polynomial regression is a particular case of OOAS. The concept of OOAS provides a variety of new possibilities for constructing computational schemes and analyzing the influence of different error sources on calculated concentrations. PMID:25320931

  5. Two-wavelength absorption modulation spectroscopy of bandtail absorption in GaAs quantum wells

    We have discovered that below-band-gap photoexcitation produces large bleaching of the exciton absorption in GaAs quantum well heterostructures. We have used this effect to perform the first investigation of room-temperature bandtail absorption in these structures. We find that the below-band-gap absorption follows a spectral Urbach's rule. In addition, proton-bombarded samples show an Urbach energy correlated with bombardment-induced defects. This sensitive technique has enabled us to study samples as thin as 1 μm at energies where the absorption coefficient is approx.10 cm-1

  6. Differential absorption optical coherence tomography with strong absorption contrast agents of gold nanorods

    Ming WEI; Jun QIAN; Qiuqiang ZHAN; Fuhong CAI; Arash GHARIBI; Sailing HE

    2009-01-01

    Plasmon-resonant gold nanorods (GNRs) are demonstrated as strong absorption contrast agents for optical coherence tomography (OCT). OCT imaging of tissue phantoms doped with GNRs of different resonant wavelengths and concentrations is studied. To utilize the high absorption property of GNRs, a differential absorp-tion OCT imaging is introduced to retrieve the absorption information of GNRs from conventional backscattered signals. It is shown that the contrast of the OCT image can be enhanced significantly when the plasmon resonant wavelength of the GNRs matches the central wavelength of the OCT source.

  7. Conceptual design of an advanced absorption cycle: the double-effect regenerative absorption refrigeration cycle

    Dao, K.

    1978-09-01

    An advanced absorption refrigeration cycle was proposed as a heat-activated refrigeration system. Referred to as the double-effect regenerative absorption cycle of cycle 2R, it improves the performance of the conventional single-effect absorption cycle at high heat source temperatures. The performance of cycle 2R continually improves as input temperatures rise, in contrast to the conventional double-effect absorption cycle that has a sharp cut-off temperature below which it ceases to operate. Cycle 2R operates with two subcycles, the first-effect and the second-effect subcycles.

  8. Molecular hydrogen absorption systems in SDSS

    Balashev, S A; Ivanchik, A V; Varshalovich, D A; Petitjean, P; Noterdaeme, P

    2014-01-01

    We present a systematic search for molecular hydrogen absorption systems at high redshift in quasar spectra from the Sloan Digital Sky Survey (SDSS) II Data Release 7 and SDSS-III Data Release 9. We have selected candidates using a modified profile fitting technique taking into account that the Ly$\\alpha$ forest can effectively mimic H$_2$ absorption systems at the resolution of SDSS data. To estimate the confidence level of the detections, we use two methods: a Monte-Carlo sampling and an analysis of control samples. The analysis of control samples allows us to define regions of the spectral quality parameter space where H$_2$ absorption systems can be confidently identified. We find that H$_2$ absorption systems with column densities $\\log {\\rm N_{H_2}} > 19$ can be detected in only less than 3% of SDSS quasar spectra. We estimate the upper limit on the detection rate of saturated H$_2$ absorption systems ($\\log {\\rm N_{H_2}} > 19$) in Damped Ly-$\\alpha$ (DLA) systems to be about 7%. We provide a sample of ...

  9. Resonance absorption of nuclear gamma radiation

    Recoilless emission and absorption of nuclear radiation, as demonstrated by Moessbauer, provides a simple means of studying the interaction of nuclei with electromagnetic radiation and, of greater importance, provides an extremely sensitive tool for the investigation of a large number of physical problems. A very favourable situation arises with the Fe57 nucleus where resonance absorption may be used as a very sensitive detector of the frequency change of electromagnetic radiation. Resonance absorption in Fe57 has been studied in detail. The strength of the absorption, the line shape, and line shift have all been observed as a function of temperature. The polarization of the radiation has been examined by means of experiments with magnetized sources and absorbers. The hyperfine spectrum of the resonance radiation has been analysed with and without polarization. These studies have led to an interpretation of the hyperfine structure in terms of the properties of the nuclear states and the hyperfine interaction in iron. The effect of an external magnetic field on the hyperfine structure has also been investigated. The resonance absorption in Fe57 has been used to study the connexion between the time development of the decay of a nuclear state and the spectrum of the observed radiation. Detailed observations are made of the time spectrum of filtered resonance radiation for a variety of conditions. (author)

  10. Uranium GI absorption coefficients for young children

    Uranium is ubiquitously found in drinking water and food. The absorption fraction (f1) is an important parameter in risk assessment of uranium burdens from ingestion. Although absorption of uranium from the gastrointestinal tract (GI) has been studied extensively in both animals and humans in the past, human data among young children are rare. In a previous study based on measurements of uranium concentration in only 11 bone-ash samples collected by Health Canada, the GI absorption coefficient for uranium ingestion by infants, about 3 months of age were determined. The result was 0.256 which was much higher than the ICRP recommended f1 values of 0.04 for infants and 0.02 for anyone more than 1 year of age. To extend the study, a total of 73 bone-ash samples were selected for children ranging in age from 0 to 7 years. The estimated absorption coefficients were 0.093±0.113 for infants, and 0.050±0.032 for 1 - 7 years of age. This study provides human absorption coefficients of ingested uranium for young children of two age groups. (author)

  11. Iron absorption from adequate Filipinos meals

    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas, and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 +- 1.26%. Central Visayas, 6.3 +- 1.15% and Southern Mindanao, 6.4 +- 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P>0.01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry; and inhibitors: phytic acid and tannic acid, did not give significant results. The overall average of 6.4 +- 1.20% may be used as the iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976. (Auth.). 21 refs.; 3 tabs.; 3 annexes

  12. Iron absorption from adequate Filipino meals

    Iron absorption from adequate Filipino meals representing the three major island groups of the Philippines (Luzon, Visayas and Mindanao) was studied using double isotope extrinsic tag method. Mean iron absorption of the one-day meal for Metro Manila was 6.6 ± 1.26%, Central Visayas, 6.3 ± 1.15% and Southern Mindanao, 6.4 ± 1.19%. Comparison between meals (breakfast, lunch, dinner) for each region as well as one-day meal for the three regions showed no significant differences (P > .01). Correlation tests done between iron absorption and the following iron enhancers: ascorbic acid, amount of fish, meat or poultry and inhibitors: phytic acid and tannic acid did not give significant results. The overall bar x of 6.4 ± 1.20% may be used as the non-heme iron absorption level from an adequate Filipino meal. This value can be considered as one of the bases for arriving at recommended dietary allowances for iron among Filipinos instead of the 10% iron absorption assumed in 1976

  13. Absorption effects in diffusing wave spectroscopy.

    Sarmiento-Gomez, Erick; Morales-Cruzado, Beatriz; Castillo, Rolando

    2014-07-20

    The effect of absorption in diffusing wave spectroscopy (DWS) was studied using an absorption-dependent diffusive equation for describing the light propagation within a turbid liquid where dielectric microspheres have been embedded. Here, we propose an expression for the time-averaged light intensity autocorrelation function that correctly describes the time fluctuations for the scattered light, in the regime where the diffusion approximation accurately describes the light propagation. This correction was suspected previously, but it was not formally derived from a light diffusive equation. As in the case of no absorption, we obtained that time fluctuations of the scattered light can be related to the mean square displacement of the embedded particles. However, if a correction for absorption is not taken into account, the colloidal dynamics can be misinterpreted. Experimental results show that this new formulation correctly describes the time fluctuations of scattered light. This new procedure extends the applicability of DWS, and it opens the possibility of doing microrheology with this optical method in systems where absorption cannot be avoided. PMID:25090203

  14. Biotin absorption by distal rat intestine

    We used the in vivo intestinal loop approach, with short (10-min) and long (3-h) incubations, to examine biotin absorption in proximal jejunum, distal ileum, cecum and proximal colon. In short-term studies, luminal biotin disappearance from rat ileum was about half that observed in the jejunum, whereas absorption by proximal colon was about 12% of that in the jejunum. In 3-h closed-loop studies, the absorption of 1.0 microM biotin varied regionally. Biotin absorption was nearly complete in the small intestine after 3 h; however, only about 15% of the dose had been absorbed in the cecum and 27% in the proximal colon after 3 h. Independent of site of administration, the major fraction of absorbed biotin was recovered in the liver; measurable amounts of radioactive biotin were also present in kidney and plasma. The results support the potential nutritional significance for the rat of biotin synthesized by bacteria in the distal intestine, by demonstrating directly an absorptive capability of mammalian large bowel for this vitamin

  15. Absorption and metabolism of the absorption enhancer didecanoylphosphatidylcholine in rabbit nasal epithelium in vivo

    Vermehren, C.; Johansen, P.B.; Hansen, Harald S.

    1997-01-01

    The absorption enhancer, didecanoylphosphatidylcholine (DDPC), improves the nasal absorption of human growth hormone in rabbits. We elucidated the uptake and the metabolism of 1,2-di[1-C]decanoyl-L-3-phosphatidylcholine and 1,2-didecanoyl-L-3-phosphatidyl[N-methyl-H]choline in rabbit nasal mucosa...

  16. Broadband absorption engineering of hyperbolic metafilm patterns

    Ji, Dengxin; Song, Haomin; Zeng, Xie; Hu, Haifeng; Liu, Kai; Zhang, Nan; Gan, Qiaoqiang

    2014-03-01

    Perfect absorbers are important optical/thermal components required by a variety of applications, including photon/thermal-harvesting, thermal energy recycling, and vacuum heat liberation. While there is great interest in achieving highly absorptive materials exhibiting large broadband absorption using optically thick, micro-structured materials, it is still challenging to realize ultra-compact subwavelength absorber for on-chip optical/thermal energy applications. Here we report the experimental realization of an on-chip broadband super absorber structure based on hyperbolic metamaterial waveguide taper array with strong and tunable absorption profile from near-infrared to mid-infrared spectral region. The ability to efficiently produce broadband, highly confined and localized optical fields on a chip is expected to create new regimes of optical/thermal physics, which holds promise for impacting a broad range of energy technologies ranging from photovoltaics, to thin-film thermal absorbers/emitters, to optical-chemical energy harvesting.

  17. Demonstration of differential backscatter absorption gas imaging

    Backscatter absorption gas imaging (BAGI) is a technique that uses infrared active imaging to generate real-time video imagery of gas plumes. We describe a method that employs imaging at two wavelengths (absorbed and not absorbed by the gas to be detected) to allow wavelength-differential BAGI. From the frames collected at each wavelength, an absorbance image is created that displays the differential absorbance of the atmosphere between the imager and the backscatter surface. This is analogous to a two-dimensional topographic differential absorption lidar or differential optical absorption spectroscopy measurement. Gas plumes are displayed, but the topographic scene image is removed. This allows a more effective display of the plume image, thus ensuring detection under a wide variety of conditions. The instrument used to generate differential BAGI is described. Data generated by the instrument are presented and analyzed to estimate sensitivity. (c) 2000 Optical Society of America

  18. Selective gas absorption by ionic liquids

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes;

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  19. Gold analysis by the gamma absorption technique.

    Kurtoglu, Arzu; Tugrul, A Beril

    2003-01-01

    Gold (Au) analyses are generally performed using destructive techniques. In this study, the Gamma Absorption Technique has been employed for gold analysis. A series of different gold alloys of known gold content were analysed and a calibration curve was obtained. This curve was then used for the analysis of unknown samples. Gold analyses can be made non-destructively, easily and quickly by the gamma absorption technique. The mass attenuation coefficients of the alloys were measured around the K-shell absorption edge of Au. Theoretical mass attenuation coefficient values were obtained using the WinXCom program and comparison of the experimental results with the theoretical values showed generally good and acceptable agreement. PMID:12485656

  20. Absorption and fluorescence spectroscopy on a smartphone

    Hossain, Md. Arafat; Canning, John; Cook, Kevin; Ast, Sandra; Rutledge, Peter J.; Jamalipour, Abbas

    2015-07-01

    A self-powered smartphone-based field-portable "dual" spectrometer has been developed for both absorption and fluorescence measurements. The smartphone's existing flash LED has sufficient optical irradiance to undertake absorption measurements within a 3D-printed case containing a low cost nano-imprinted polymer diffraction grating. A UV (λex ~ 370 nm) and VIS (λex ~ 450 nm) LED are wired into the circuit of the flash LED to provide an excitation source for fluorescence measurements. Using a customized app on the smartphone, measurements of absorption and fluorescence spectra are demonstrated using pH-sensitive and Zn2+-responsive probes. Detection over a 300 nm span with 0.42 nm/pixel spectral resolution is demonstrated. Despite the low cost and small size of the portable spectrometer, the results compare well with bench top instruments.

  1. Optical absorption of boron nitride nanomaterials

    Optical absorption spectra have been measured for hexagonal boron nitride (h-BN), rhombohedral BN(rh-BN), and material obtained by laser vaporization of BN target under a nitrogen atmosphere and contained single-wall BN-nanotubes. Band gap of the BN materials was found to have a value of 6.0-6.3 eV. The spectra of h -BN and vaporized material exhibited a peak at ∝5.5 eV, moreover, the latter sample showed an absorption band around 4.5 eV. The vaporized material has been fractionated to the BN-platelets and single-wall BN-nanotubes. Absorption peaks, located bellow the bottom of the conductance band, were found to be characteristics of thin BN-platelets and they could be attributed to defects in BN network. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Absorption of carbon dioxide in waste tanks

    Air flow rates and carbon dioxide concentrations of air entering and exiting eight H-Area waste tanks were monitored for a period of one year. The average instanteous concentration of carbon dioxide in air is within the range reported offsite, and therefore is not affect by operation of the coal-fired power plant adjacent to the tank farm. Waste solutions in each of the tanks were observed to be continuously absorbing carbon dioxide. The rate of absorption of carbon dioxide decreased linearly with the pH of the solution. Personnel exposure associated with the routine sampling and analysis of radioactive wastes stored at SRP to determine the levels of corrosion inhibitors in solution could be reduced by monitoring the absorption of carbon dioxide and using the relationship between pH and carbon dioxide absorption to determine the free hydroxide concentration in solution

  3. Super-Resonant Intracavity Coherent Absorption

    Malara, P; Giorgini, A; Avino, S; De Natale, P; Gagliardi, G

    2016-01-01

    The capability of optical resonators to extend the effective radiation-matter interaction length originates from a multipass effect, hence is intrinsically limited by the resonator quality factor. Here, we show that this constraint can be overcome by combining the concepts of resonant interaction and coherent perfect absorption. We demonstrate and investigate super-resonant coherent absorption in a coupled Fabry-Perot-ring cavity structure. At the FP resonant wavelengths, the described phenomenon gives rise to split modes with a nearly-transparent peak and a peak whose transmission is exceptionally sensitive to the intracavity loss. For small losses, the effective interaction pathlength of these modes is proportional respectively to the ratio and the product of the individual finesse coefficients of the two resonators. The results presented extend the conventional definition of resonant absorption and point to a way of circumventing the technological limitations of ultrahigh-quality resonators in spectroscopy...

  4. Absorption of Soluble Gases by Atmospheric Nanoaerosols

    Elperin, Tov; Krasovitov, Boris; Lushnikov, Alexey

    2012-01-01

    We investigate mass transfer during absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3) and chlorine (Cl2) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols the kinetic effects play significant role, and neglecting kinetic effects leads to significant overestimation of the soluble gas flux into a...

  5. Terahertz Saturable Absorption in Superconducting Metamaterials

    Keiser, George R; Zhao, Xiaoguang; Zhang, Xin; Averitt, Richard D

    2016-01-01

    We present a superconducting metamaterial saturable absorber at terahertz frequencies. The absorber consists of an array of split ring resonators (SRRs) etched from a 100nm YBaCu3O7 (YBCO) film. A polyimide spacer layer and gold ground plane are deposited above the SRRs, creating a reflecting perfect absorber. Increasing either the temperature or incident electric field (E) decreases the superconducting condensate density and corresponding kinetic inductance of the SRRs. This alters the impedance matching in the metamaterial, reducing the peak absorption. At low electric fields, the absorption was optimized near 80% at T=10K and decreased to 20% at T=70K. For E=40kV/cm and T=10K, the peak absorption was 70% decreasing to 40% at 200kV/cm, corresponding to a modulation of 43%.

  6. Impact of carriers in oral absorption

    Gram, Luise Kvisgaard; Rist, Gerda Marie; Lennernäs, Hans; Steffansen, Bente

    Carriers may mediate the permeation across enterocytes for drug substances being organic anions. Carrier mediated permeation for the organic anions estrone-3-sulfate (ES) and glipizide across Caco-2 cells were investigated kinetically, and interactions on involved carriers evaluated. Initial...... with K(m) 44microM and 38microM, respectively. BCRP inhibition affected both absorptive an exsorptive P(EPA) and P(APP) for ES. Glipizide apical P(UP) and absorptive P(APP) were not inhibitable. Basolateral P(UP) for glipizide was inhibitable, its P(EPA) prevented, and P(UP) was saturable with K(m) 56......microM, but exsorptive P(APP) was not affected. Carrier mediated exsorption kinetics for ES are seen at both apical and basolateral membranes, resulting in predominant exsorption despite presence of absorptive carrier(s). Carrier mediated basolateral P(UP) for glipizide was observed, but glipizide P...

  7. Ultrasonic absorption in polymethylmethacrylate at low temperatures

    This chapter reports on a study of the absorption of longitudinal sound waves at frequencies between 15 and 195 MHz and temperatures between 0.4K and 300K using commercial PMMA. It demonstrates that the acoustic absorption of PMMA does not steadily decrease on cooling. Below 1K the absorption varies linearly with temperature and can be explained after a small modification of the so-called ''tunnelling model'' which is well-known in the description of inorganic glasses. This is an unexpected maximum at 12K which has a frequency independent position. This behavior is explained by assuming a high density of tunnelling states with well-defined asymmetries and tunnel splittings. It is pointed out that these states couple weakly to the amorphous network and are most probably due to rotational tunnelling of the ester methyl group

  8. EMPLOYMENT ABSORPTION IN MANUFACTURING INDUSTRY: YOGYAKARTA CASE

    Aurora Indra Putri

    2011-09-01

    Full Text Available Unemployment has been a main problem in economic development, especially in developing countries. Unemployment stems from the inability of the economy to absorb the growing labor force. This paper investigates factors influencing absorbtion of labor in Yogyakarta manufacturing industries. Variables hypothesized to affect the absorbtion are wage, labor productivity, non-wage spending, and output of production. It collects data from Indonesia Centre Bureau of Statistics, and uses panel data regression, namely common effect approach, to estimate the model. Employing Eviews software package, it finds that wage, labor productivity, and output production significantly influence labor absorption. However, non-wage spending does not significantly influence the absorption.Keywords: Labor absorption, wage, labor productivity, non-wage spendingJEL classification numbers: J01, J23, J24

  9. Anomalous water absorption in porous materials

    Lockington, D A

    2003-01-01

    The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuentz and Lavallee (2001) discuss the anomalous b...

  10. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy

    Piletic, Ivan R.; Matthews, Thomas E.; Warren, Warren S.

    2009-11-01

    Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain ˜46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.

  11. Investigation of two-photon absorption induced excited state absorption in a fluorenyl-based chromophore.

    Li, Changwei; Yang, Kun; Feng, Yan; Su, Xinyan; Yang, Junyi; Jin, Xiao; Shui, Min; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin; Xu, Hongyao

    2009-12-01

    Two-photon absorption induced excited state absorption in the solution of a new fluorenyl-based chromophore is investigated by a time-resolved pump-probe technique using femtosecond pulses. With the help of an additional femtosecond open-aperture Z-scan technique, numerical simulations based on a three-energy level model are used to interpret the experimental results, and we determine the nonlinear optical parameters of this new chromophore uniquely. Large two-photon absorption cross section and excited state absorption cross section for singlet excited state are obtained, indicating a good candidate for optical limiting devices. Moreover, the influence of two-beam coupling induced energy transfer in neat N,N'-dimethylformamide solvent is also considered, although this effect is strongly restrained by the instantaneous two-photon absorption. PMID:19894682

  12. Review on absorption technology with emphasis on small capacity absorption machines

    Labus Jerko M.

    2013-01-01

    Full Text Available The aim of this paper is to review the past achievements in the field of absorption systems, their potential and possible directions for future development. Various types of absorption systems and research on working fluids are discussed in detail. Among various applications, solar cooling and combined cooling, heating and power (CCHP are identified as two most promising applications for further development of absorption machines. Under the same framework, special attention is given to the small capacity absorption machines and their current status at the market. Although this technology looks promising, it is still in development and many issues are open. With respect to that fact, this paper covers all the relevant aspects for further development of small capacity absorption machines.

  13. Potassium emission absorption system. Topical report 12

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  14. Light-induced changes in subband absorption in a-Si:H using photoluminescence absorption spectroscopy

    Gu, S. Q.; Taylor, P. C.; Nitta, S.

    1991-08-01

    We have used the photoluminescence (PL) generated in a thin-film sample of a-Si:H to probe low absorption levels by measuring the absorption of the PL as it travels down the length of the film in a waveguide mode. This technique, which we have called PL absorption spectroscopy of PLAS, allows the measurement of values of the absorption coefficient α down to about 0.1 cm-1. Because this technique probes the top and bottom surfaces of the a-Si:H sample, it is important to separate surface from bulk absorption mechanisms. An improved sample geometry has been employed to facilitate this separation. One sample consisted of an a-Si1-xNix:H/a-Si:H/ a-Si1-xNx:H/NiCr layered structure where the silicon nitride layers served as the cladding layers for the waveguide. In a second sample the a-Si:H layer was interrupted near the middle for two separate, thin (100 Å) layers of a-Si1-xNx:H in order to check for the importance of the absorption at the silicon/silicon nitride interfaces in these PLAS measurements. Changes in the below-gap absorption on light soaking were examined using irradiation from an Ar+ laser (5145 Å, ˜200 mW/cm2 for 5.5 hours at 300 K). The silicon/silicon nitride interface is responsible for an absorption which has a shoulder near 1.2 eV while the bulk a-Si:H absorption exhibits no such shoulder. The metastable, optically-induced increase in the below gap absorption appears to come entirely from the bulk of the a-Si:H. These low temperature PLAS measurements are compared with those obtained at 300 K by photothermal deflection spectroscopy.

  15. Pion absorption in flight on 3He

    Pion absorption in flight on 3He has been measured in a kinematically complete manner. The experiment was done in the πE1-channel at the Swiss Institute for Nuclear Research, SIN, using π+- and π--beams of 120 and 165 MeV kinetic energy. Two of the emitted particles were measured in coincidence and identified by their time-of-flight/pulseheight relation. The obtained two-dimensional energy representation enabled a separation of the different kinematical regions and exhibited a clear enhancement in the region of quasifree absorption, QFA. (orig./WL)

  16. Hexagonal absorption cask for nuclear power

    A hexagonal absorption cask for compact spent fuel storage is designed. The cask is made of austenitic stainless steel with a high boron content. One of the two sides of each of the six wall plates is longitudinally chamfered and attached to the inner face of the next wall plate in the hexagonal arrangement. The whole is welded together. This design secures that the absorption of the neutron flux in the radial direction will not be deteriorated if the boron content of the weld metal is reduced. (Z.S.). 2 figs

  17. Cooperating firms in inventive and absorptive research

    Ben Youssef, Slim; Breton, Michèle; Zaccour, Georges

    2011-01-01

    We consider a duopoly competing in quantity, where firms can invest in both innovative and absorptive R&D to reduce their unit production cost, and where they benefit from free R&D spillovers between them. We analyze the case where firms act non cooperatively and the case where they cooperate by forming a research joint venture. We show that, in both modes of play, there exists a unique symmetric solution. We find that the investment in innovative R&D is always higher than in absorptive R&D. ...

  18. Porosity and liquid absorption of cement paste

    Krus, M.; Hansen, Kurt Kielsgaard; Kunzel, H. M.

    1997-01-01

    slowing-down effect which is related to water because the absorption of organic liquids, such as hexane, is quite normal. Measurements of the porosity of hardened cement paste determined by helium pycnometry and water saturation show that water molecules can enter spaces in the microstructure which are...... not accessible to the smaller helium atoms. Considering the results of dilatation tests both before and after water and hexane saturation, it seems possible that a contraction of capillary pores due to moisture-related swelling of the cement gel leads to the non-linear water absorption over the square...

  19. On resonance absorption and continuum damping

    The absorption of power is studied with fluid and gyrokinetic plasma models, when two Alfven or ion-ion hybrid resonances provide for a weak damping in a partially standing wave-field. Examples chosen in slab and toroidal geometry show that the fluid predictions based on resonance absorption are generally very different from the Landau damping of mode-converted slow down. They in particular suggest that the continuum damping of toroidal Alfven eigenmodes (TAE) and the power deposition profiles obtained in the ion-cyclotron range of frequencies (ICRF) using fluid plasma models are very misleading. (author) 2 figs., 1 tab., 18 refs

  20. Achromatic THz absorption of conductive nanofilms

    Qiang Yin

    2015-10-01

    Full Text Available According to the theory, an ultrathin conductive film can achromatically dissipate electromagnetic waves with frequency ranging from radio to terahertz. A moderate absorption effect, which gives rise to a maximal absorbance of 50%, can be found if an impedance matching condition is satisfied. We have experimentally demonstrated the frequency-irrelevant, maximal absorption by employing a conductive nanofilm and launching terahertz waves at Brewster angle when the sheet (square resistance of the film meets the impedance matching condition. In the entire terahertz spectral range covered by our experiments, the frequency-independent optical properties were consistent with the theoretical calculations.

  1. No absorption in de Sitter space

    Myung, Y S

    2003-01-01

    We study the wave equation for a minimally coupled massive scalar in D-dimensional de Sitter space. We compute the absorption cross section to investigate its cosmological horizon in the southern diamond. By analogy of the quantum mechanics, it is found that there is no absorption in de Sitter space. This means that de Sitter space is usually in thermal equilibrium, like the black hole in anti de Sitter space. It confirms that the cosmological horizon not only emits radiation but also absorbs that previously emitted by itself at the same rate, keeping the curvature radius of de Sitter space fixed.

  2. Optical absorption spectra of Ag-11 isomers

    Martinez, Jose Ignacio; Fernandez, E. M.

    The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground-stale confi......The optical absorption spectra of the three most; stable structural isomers of the Ag-11 cluster were calculated using the time-dependent, density functional theory within the Casida formalism. The slightly different, spectra, of the isomers may permit the identification of the ground...

  3. No absorption in de Sitter space

    Myung, Y. S.; H. W. Lee

    2003-01-01

    We study the wave equation for a minimally coupled massive scalar in D-dimensional de Sitter space. We compute the absorption cross section to investigate its cosmological horizon in the southern diamond. By analogy of the quantum mechanics, it is found that there is no absorption in de Sitter space. This means that de Sitter space is usually in thermal equilibrium, like the black hole in anti de Sitter space. It confirms that the cosmological horizon not only emits radiation but also absorbs...

  4. Intestinal absorption of specific structured triacylglycerols

    Mu, Huiling; Høy, Carl-Erik

    2001-01-01

    To clarify the intestinal absorption pathway of medium-chain fatty acids from MMM-type structured triaclyglycerols containing both medium- and long-chain fatty acids, we studied the lymphatic transport of 1,3-dioctanoyl-2-linoleoyl-sn- glycerol (8:0/18:2/8:0), 1,3-didecanoyl-2-linoleoyl...... activated into CoA, and reacylated into triacylglycerols in the enterocyte, The hydrolysis of MLM-type STAG is predominantly partial hydrolysis, whereas part of the STAG can also be hydrolyzed to free glycerol and free fatty acids. - Mu, H., and CE. Hoy. Intestinal absorption of specific structured...

  5. A transient absorption study of allophycocyanin

    Y J Shiu; J M Zhang; M Hayashi; V Gulbinas; C M Yang; S H Lin

    2002-12-01

    Transient dynamics of allophycocyanin trimers and monomers are observed by using the pump-probe, transient absorption technique. The origin of spectral components of the transient absorption spectra is discussed in terms of both kinetics and spectroscopy. We find that the energy gap between the ground and excited states of the unexcited subunit of allophycocyanin monomer decreases via an interaction with another excited subunit. For allophycocyanin trimer, we find that the fast dynamics results from the fast internal conversion and the first excited state is the only one electronic state which can trap the final population.

  6. Use of Atomic Absorption Technique in Environmental Studies

    This chapter consists of some points including the process of atomic absorption, historical hint, key basics, the atom ionization and formation of plasma, applications in the device of atomic absorption, quantum analysis with atomic absorption, components of the device of atomic absorption, standardization of this device, atomic absorption in the the graphite furnace, supervising the analytical interventions, spectral interventions, non-spectral interventions, the utmost electric energy for atomization, preparation of standards and samples, the system of acidic digestion, similar analytical techniques.

  7. Study on Performance and Mechanism of Oil Absorption Materials

    韩梅; 吴兵; 李发生; 何绪文; 谷庆宝

    2001-01-01

    Both the commonly used and the PHBV based oil absorption materials were studied and the absorption mechanism was analyzed. The results show that the oil pick-up ratios and the absorption rates of molded PHBV are almost the same as that of oil absorption polypropylene felt. In addition, the oil-keeping ability of molded PHBV is superior to the latter. So the PHBV is a valuable and bio-degradable oil absorption material.

  8. Temperature Dependence of Light Absorption by Water

    Cumming, J. B.

    2013-01-01

    A model is described that relates the temperature coefficient of the optical absorption spectrum of pure water to the frequency derivative of that spectrum and two parameters that quantify the dependence of a peak's amplitude and its position on temperature. When applied to experimental temperature coefficients, it provides a better understanding of the process than the analysis currently in use.

  9. Acoustic absorption of geopolymer/sand mixture

    Perná, Ivana; Hanzlíček, Tomáš; Straka, Pavel; Steinerová, Michaela

    2009-01-01

    Roč. 53, č. 1 (2009), s. 48-51. ISSN 0862-5468 Institutional research plan: CEZ:AV0Z30460519 Keywords : acoustic absorption coefficient * geopolymer Subject RIV: JI - Composite Materials Impact factor: 0.649, year: 2009 www.ceramics-silikaty.cz/2009/pdf/2009_01_48.pdf

  10. Experimental methodology for obtaining sound absorption coefficients

    Carlos A. Macía M

    2011-07-01

    Full Text Available Objective: the authors propose a new methodology for estimating sound absorption coefficients using genetic algorithms. Methodology: sound waves are generated and conducted along a rectangular silencer. The waves are then attenuated by the absorbing material covering the silencer’s walls. The attenuated sound pressure level is used in a genetic algorithm-based search to find the parameters of the proposed attenuation expressions that include geometric factors, the wavelength and the absorption coefficient. Results: a variety of adjusted mathematical models were found that make it possible to estimate the absorption coefficients based on the characteristics of a rectangular silencer used for measuring the attenuation of the noise that passes through it. Conclusions: this methodology makes it possible to obtain the absorption coefficients of new materials in a cheap and simple manner. Although these coefficients might be slightly different from those obtained through other methodologies, they provide solutions within the engineering accuracy ranges that are used for designing noise control systems.

  11. The Absorption Refrigerator as a Thermal Transformer

    Herrmann, F.

    2009-01-01

    The absorption refrigerator can be considered a thermal transformer, that is, a device that is analogous to the electric transformer. The analogy is based on the correspondence between the extensive quantities, entropy and electric charge and the intensive variables, temperature and electric potential. (Contains 1 footnote and 6 figures.)

  12. Regularity of the Interband Light Absorption Coefficient

    M Krishna

    2010-06-01

    In this paper we consider the interband light absorption coefficient (ILAC), in a symmetric form, in the case of random operators on the -dimensional lattice. We show that the symmetrized version of ILAC is either continuous or has a component which has the same modulus of continuity as the density of states.

  13. Energietransport und optische Absorption in Nanostrukturen

    Supritz, Christoph

    2007-01-01

    Die vorliegende Dissertation besteht aus drei verschiedenen Teilen. Im ersten Teil wird zunächst auf detaillierte Weise der dichotomische stochastische Prozess (dichotomisches Rauschen) beschrieben. Anschließend wird ein Formalismus entwickelt, der die Beschreibung der Zeitentwicklung eines quantenmechanischen Systems unter dem Einfluss dichotomischen Rauschens mit zeitabhängigen Parametern erlaubt. Als Anwendungsbeispiele folgen die Beschreibung der optischen Absorption eines quantenmech...

  14. Dietary factors affecting calcium and zinc absorption

    Rickets is common in Nigerian children and responds better to calcium (Ca) than to vitamin D supplementation. We reported in previous studies in which oral isotopes were given with maize pap that Ca intakes are similarly low and Ca absorption (abs) similarly high in rachitic and non-rachitic Nigeria...

  15. The absorption refrigerator as a thermal transformer

    Herrmann, F [Abteilung fuer Didaktik der Physik, Universitaet Karlsruhe (Germany)

    2009-03-15

    The absorption refrigerator can be considered a thermal transformer, that is, a device that is analogous to the electric transformer. The analogy is based on the correspondence between the extensive quantities, entropy and electric charge and the intensive variables, temperature and electric potential.

  16. The Driving Forces of Subsidiary Absorptive Capacity

    Schleimer, Stephanie C.; Pedersen, Torben

    2013-01-01

    The study investigates how a multinational corporation (MNC) can promote the absorptive capacity of its subsidiaries. The focus is on what drives the MNC subsidiary's ability to absorb marketing strategies that are initiated by the MNC parent, as well as how the subsidiary enacts on this absorpti...

  17. Enriching Absorptive Capacity through Social Interaction

    Hotho, Jasper J.; Saka-Helmhout, Ayse; Becker-Ritterspach, Florian

    2012-01-01

    -addressed. This not only limits our understanding of the relationship between individual- and organizational-level absorptive capacity, but also hampers further research on potentially relevant managerial and organizational antecedents, and limits the implications we can draw for practitioners who seek to...

  18. Radiation Absorption Mechanism in Nonvolatile MNOS Structure

    2002-01-01

    The γ-ray radiation will speed up the discharge of the stored charge in nonvolatile MNOS structure. The radiation absorption mechanism to enhance the discharge is discussed. A direct radiation emission model from the interface traps distributing both in energy level and in space is given. The theoretical results based on this model are in good agreement with experimental measurement.

  19. Resonant Light Absorption by Semiconductor Quantum Dots

    I. G. Lang

    2009-01-01

    calculated in the case of a resonance with an exciton Γ6×Γ7 in cubical crystals of class. The interference of stimulating and induced electric and magnetic fields is taken into account. The cross-section of light absorption is proportional to the exciton nonradiative damping .

  20. Hydrogen absorption by grade-2 titanium

    Galvanostatic experiments in 0.1 mol/dm3 HC1 + 0.27 mol/dm3 NaCl at 25 and 95oC and crevice corrosion experiments in neutral 0.27 mol/dm3 NaC1 at 100 and 150oC have been performed to determine the hydrogen absorption characteristics of Grade-2 titanium. The amount of hydrogen absorbed was found to depend on the amount of cathodic charge passed and little, if at all, on the current density, time or temperature over the range of conditions tested. Hydrogen absorption efficiencies were found to decrease from values of 20 to 70% at small cathodic charges to values of 2 to 3% after more than 1000 C/cm2 of cathodic charge had been passed. A threshold potential for hydrogen absorption of about -0.6 V versus SCE was found at 95oC. At potentials positive of this threshold no hydrogen absorption was observed. No such threshold was found at 25oC. (author)

  1. Plasma Sprayed Coatings for RF Wave Absorption

    Nanobashvili, S.; Matějíček, Jiří; Žáček, František; Stöckel, Jan; Chráska, Pavel; Brožek, Vlastimil

    307-311, - (2002), s. 1334-1338. ISSN 0022-3115 Grant ostatní: COST(XE) Euratom DV4/04(TWO) Institutional research plan: CEZ:AV0Z2043910 Keywords : boron carbide, thermal spray coatings, fusion materials, RF wave absorption Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.730, year: 2002

  2. Absorptive coating for aluminum solar panels

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  3. Sustainable Absorption Panels from Agricultural Wastes

    Ismail F.Z.

    2014-01-01

    Full Text Available Noise has become a serious environmental problem and there are demands for alternative sustainable materials which capable to reduce the noise level at various frequency ranges. Therefore, the aim of this research is to study the potential of turning the agricultural waste and waste paper into a sound absorption panel. For the purpose of this study, combination of two materials was under studied; coconut coir fibre from agriculture waste and shredded waste paper from the office. There were two main objective of the research; first is to develop absorption panels from coconut coir powder that available locally with a combination of shredded paper at different percentage of mixture. Second objective is to identify the absorption rate of the panels. The study encompasses the fabrication of the particle board using the coconut husk powder mix with shredded waste paper and using the gypsum powder as the binder for the two materials. Four acoustic panels of size 0.5m x 0.5m and 0.012 m thick were fabricated with different mix ratio; 25% of coconut coir powder mixed with 75% of shredded waste papers for sample 1, 50% both of the material for sample 2, 75% of coconut coir powder mixed with 25% of shredded waste paper for sample 3, and lastly 100% of coconut coir powder for sample 4. The absorption coefficient of the panels was tested in a reverberation chamber and in accordance with ISO 354:1985 standards. Based on the results, sample 1 gave the highest absorption coefficient compared to sample 2, 3 and 4. It can be concluded that the acoustic panel made from a mixture of 25% coconut coir powder with 75% shredded waste paper provided higher absorption coefficient compared to the performance of the other samples. This might be caused by the size of the coir powder which is very small, creating less void space in between the panel and thus causing it to absorb less sound. Since sound absorption is very much affected by the availability of void space of

  4. Quantum Entanglement Molecular Absorption Spectrum Simulator

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  5. Diode laser absorption sensors for combustion control

    Xin, Zhou

    Combustion is the most widely used energy conversion technique in the world. Diode-laser absorption sensors offer significant opportunities and advantages for in situ measurements of multiple combustion parameters such as temperature and species concentration due to their high sensitivity, high spectral resolution, fast time response, robustness and non-intrusive character. The overall objective of this thesis is to design and develop time-resolved and real-time tunable diode laser sensors with the potential for combustion control. A crucial element in the design of a tunable-diode-laser optical-absorption-based sensor is the selection of optimum transitions. The strategy and spectroscopic criteria for selecting optimum wavelength regions and absorption line combinations are developed. The development of this design-rule approach establishes a new paradigm to optimize tunable diode laser sensors for target applications. The water vapor spectrum in the 1-2 mum near-infrared region is systematically analyzed to find the best absorption transition pairs for sensitive measurement of temperature in the target combustion environment using a single tunable diode laser. Two sensors are developed in this work. The first sensor is a 1.8 mum, single-laser temperature sensor based on direct absorption scans. Successful time-resolved measurements in a variety of laboratory and practical devices are presented and used to identify potential improvements, and design rules for a second-generation sensor are developed based on the lessons learned. The second generation sensor is a 1.4 mum, single-laser temperature sensor using water vapor absorption detected by wavelength-modulation spectroscopy (WMS), which facilitates rapid data analysis and a 2 kHz real-time data rate in the combustion experiments reported here. Demonstration experiments in a heated cell and a forced Hencken burner confirm the sensitivity and accuracy of the sensors. The first application of TDL thermometry to a

  6. Differential absorption radar techniques: surface pressure

    L. Millán

    2014-11-01

    Full Text Available Two radar pulses sent at different frequencies near the 60 GHz O2 absorption band can be used to determine surface pressure by measuring the differential absorption on and off the band. Results of inverting synthetic data assuming an airborne radar are presented. The analysis includes the effects of temperature, water vapor, and hydrometeors, as well as particle size distributions and surface backscatter uncertainties. Results show that an airborne radar (with sensitivity of −20 and 0.05 dBZ speckle and relative calibration uncertainties can estimate surface pressure with a precision of ~ 1.0 hPa and accuracy better than 1.0 hPa for clear-sky and cloudy conditions and better than 3.5 hPa for precipitating conditions. Generally, accuracy would be around 0.5 and 2 hPa for non-precipitating and precipitating conditions, respectively.

  7. Absorption of hypoiodous acid by plant leaves

    Deposition of hypoiodous acid to leaves of sunflower (Helianthus annuus L.) was measured in a laboratory exposure chamber, under well-defined conditions of humidity, temperature and illumination. Transpiration measurements were done using a dew-point hygrometer and were used to deduce stomatal opening. For comparison, deposition of molecular iodine and methyl iodide were also investigated. The results showed that, at relative humidities of 80-95 per cent, the stomatal resistance controlled the rate of absorption of hypoiodous acid and that the cuticular absorption was negligible. The rate of deposition is about ten times smaller than that of molecular iodine and much greater than that of methyl iodide which is very poorly taken up by leaves. Because hypoiodous acid does not deposit on external tissues, as elemental iodine does, it may be inaccessible to removal by rain and may have a longer biological half-life. (author)

  8. Universal Zero Conductivity Condition for Optical Absorption

    Guo, Yu; Jacob, Zubin

    2016-01-01

    Harnessing information and energy from light within a nanoscale mode volume is a fundamental challenge for nanophotonic applications ranging from solar photovoltaics to single photon detectors. Here, we show the existence of a universal condition in materials that sheds light on fundamental limits of electromagnetic to matter energy conversion (transduction). We show that the upper limit of absorption rate (transduction rate) in any nanoscale absorber converting light to matter degrees of freedom is revealed by the zero of optical conductivity at complex frequencies ($\\sigma(\\omega^\\prime + i\\omega^{\\prime\\prime})= 0$). We trace the origin of this universal zero conductivity condition to causality requirements on any passive linear response function and propose an experiment of absorption resonances using plasmonic nanoparticles to experimentally verify this universal zero conductivity condition. Our work is widely applicable to linear systems across the electromagnetic spectrum and allows for systematic opti...

  9. Gamma ray auto absorption correction evaluation methodology

    Neutron activation analysis (NAA) is a well established nuclear technique, suited to investigate the microstructural or elemental composition and can be applied to studies of a large variety of samples. The work with large samples involves, beside the development of large irradiation devices with well know neutron field characteristics, the knowledge of perturbing phenomena and adequate evaluation of correction factors like: neutron self shielding, extended source correction, gamma ray auto absorption. The objective of the works presented in this paper is to validate an appropriate methodology for gamma ray auto absorption correction evaluation for large inhomogeneous samples. For this purpose a benchmark experiment has been defined - a simple gamma ray transmission experiment, easy to be reproduced. The gamma ray attenuation in pottery samples has been measured and computed using MCNP5 code. The results show a good agreement between the computed and measured values, proving that the proposed methodology is able to evaluate the correction factors. (authors)

  10. Intestinal absorption of specific structured triacylglycerols

    Mu, Huiling; Høy, Carl-Erik

    2001-01-01

    -sn-glycerol (10:0/18:2/10:0), and 1,3-didodecanoyl-2-linoleoyl-sn-glycerol (12:0/18:2/12:0) in a rat model. Safflower oil was used in the absorption study in order to compare the absorption of medium- chain fatty acids and long-chain fatty acids, The triacylglycerol species of lymph Lipids were separated on a...... lymph lipids after administration of the specific structured triacylglycerols (STAG), The recoveries of 8:0/18:2/8:0, 10:0/18:2/10:0, and 12:0/18:2/12:0 were 0.6%, 12%, and 5%, respectively, Several new triacylglycerol species were detected in the lymph Lipids, including MLL-, LLL-, and MMM...

  11. Wavelength mismatch effect in electromagnetically induced absorption

    Bharti, Vineet; Natarajan, Vasant

    2016-01-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch---near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers.

  12. The colon: Absorptive, seccretory and metabolic functions.

    Cummings, J G

    1975-01-01

    The role which the human colon fulfils in digestion and metabolism remains largely undocumented. Its capacity to conserve water and electrolytes is well known although how this is controlled is uncertain. In the animal kingdom, calcium and magnesium absorption from the colon are improtant as are absorption and synthesis of vitamins. The abundant microflora of the human colon gives it unique properties. Dietary residue is metabolised forming short-chain fatty acids, hydrogen, carbon dioxide and methane; whilst 20% of urea synthesised in man is broken down in the colon to ammonia, which is reabsorbed, and carbonic acid. The microflora also degrades a wide variety of organic compounds including food additives, drugs, bile salts, and cholesterol which may be relevant to the development of colon cancer. Regional differences in colonic function also exist making interpretation of data from this relatively inaccessible organ more difficult. PMID:1205009

  13. Narrow UV Absorption Line Outflows from Quasars

    Hamann, Fred; Hidalgo, Paola Rodriguez; Capellupo, Daniel

    2012-01-01

    Narrow absorption line (NAL) outflows are an important yet poorly understood part of the quasar outflow phenomenon. We discuss one particular NAL outflow that has high speeds, time variability, and moderate ionizations like typical BAL flows, at an estimated location just ~5 pc from the quasar. It also has a total column density and line widths (internal velocity dispersions) ~100 times smaller than BALs, with no substantial X-ray absorption. We argue that radiative shielding (in the form of an X-ray/warm absorber) is not critical for the outflow acceleration and that the moderate ionizations occur in dense substructures that have an overall small volume filling factor in the flow. We also present new estimates of the overall incidence of quasar outflow lines; e.g., ~43% of bright quasars have a C IV NAL outflow while ~68% have a C IV outflow line of any variety (NAL, BAL, or mini-BAL).

  14. Wavelength mismatch effect in electromagnetically induced absorption

    Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

    2016-07-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch-near-perfect match where all three wavelengths are approximately equal; partial mismatch where the wavelength of one control field is less than the other fields; and complete mismatch where all three wavelengths are unequal. We present probe absorption profiles with Doppler averaging at room temperature to account for experiments in a room temperature Rb vapor cell. Our analysis shows that EIA resonances can be studied using Rydberg states excited with diode lasers.

  15. No absorption in de Sitter space

    We study the wave equation for a minimally coupled massive scalar in D-dimensional de Sitter space. We compute the absorption cross section to investigate the property of the cosmological horizon in the southern diamond of de Sitter space. It is found that there is no absorption of radiation by the cosmological horizon of de Sitter space at the classical level. This means that the de Sitter space is usually in thermal equilibrium with the external scalar perturbation. It confirms that the cosmological horizon not only absorbs radiation of the scalar but also emits that previously absorbed by itself at the same rate, keeping the curvature radius of de Sitter space fixed. Finally, we discuss the dS/CFT correspondence in the context of the wave equation approach

  16. Integrated vacuum absorption steam cycle gas separation

    Chen, Shiaguo; Lu, Yonggi; Rostam-Abadi, Massoud

    2011-11-22

    Methods and systems for separating a targeted gas from a gas stream emitted from a power plant. The gas stream is brought into contact with an absorption solution to preferentially absorb the targeted gas to be separated from the gas stream so that an absorbed gas is present within the absorption solution. This provides a gas-rich solution, which is introduced into a stripper. Low pressure exhaust steam from a low pressure steam turbine of the power plant is injected into the stripper with the gas-rich solution. The absorbed gas from the gas-rich solution is stripped in the stripper using the injected low pressure steam to provide a gas stream containing the targeted gas. The stripper is at or near vacuum. Water vapor in a gas stream from the stripper is condensed in a condenser operating at a pressure lower than the stripper to concentrate the targeted gas. Condensed water is separated from the concentrated targeted gas.

  17. Dissolution and absorption of caffeine from guarana.

    Bempong, D K; Houghton, P J

    1992-09-01

    The rate of release of caffeine from capsules of guarana was compared with that from capsules containing an equivalent amount of caffeine using the British Pharmacopoeia dissolution test apparatus. Determinations were carried out in media of pH 2 and 6.8 and caffeine concentrations in the dissolution fluid were determined by HPLC. No significant differences in release rates were found between the two preparations at either pH. The rate of absorption of caffeine across rat intestine using the everted gut was also compared for a guarana suspension and a solution containing an equivalent amount of caffeine. Experiments were carried out using fluids of pH 4.0 and 7.4. No significant differences in absorption between the two preparations were observed. These results show that the release and uptake of caffeine from guarana is the same as for preparations containing free caffeine. PMID:1360532

  18. Absorption lineshapes of molecular aggregates revisited

    Linear absorption is the most basic optical spectroscopy technique that provides information about the electronic and vibrational degrees of freedom of molecular systems. In simulations of absorption lineshapes, often diagonal fluctuations are included using the cumulant expansion, and the off-diagonal fluctuations are accounted for either perturbatively, or phenomenologically. The accuracy of these methods is limited and their range of validity is still questionable. In this work, a systematic study of several such methods is presented by comparing the lineshapes with exact results. It is demonstrated that a non-Markovian theory for off-diagonal fluctuations, termed complex time dependent Redfield theory, gives good agreement with exact lineshapes over a wide parameter range. This theory is also computationally efficient. On the other hand, accounting for the off-diagonal fluctuations using the modified Redfield lifetimes was found to be inaccurate

  19. Prominence plasma diagnostics through EUV absorption

    Landi, E

    2012-01-01

    In this paper we introduce a new diagnostic technique that uses prominence EUV and UV absorption to determine the prominence plasma electron temperature and column emission measure, as well as He/H relative abundance; if a realistic assumption on the geometry of the absorbing plasma can be made, this technique can also yield the absorbing plasma electron density. This technique capitalizes on the absorption properties of Hydrogen and Helium at different wavelength ranges and temperature regimes. Several cases where this technique can be successfully applied are described. This technique works best when prominence plasmas are hotter than 15,000 K and thus it is ideally suited for rapidly heating erupting prominences observed during the initial phases of coronal mass ejections. An example is made using simulated intensities of 4 channels of the SDO/AIA instrument. This technique can be easily applied to existing observations from almost all space missions devoted to the study of the solar atmosphere, which we l...

  20. Overview-absorption/Rankine solar cooling program

    Wahlig, M.; Heitz, A.; Boyce, B.

    1980-03-01

    The tasks being performed in the absorption and Rankine program areas run the gamut from basic work on fluids to development of chillers and chiller components, to field and reliability testing of complete cooling systems. In the absorption program, there are six current and five essentially completed projects. In the Rankine program, there are five current projects directly supported by DOE, and three projects funded through and managed by NASA/MSFC (Manned Space Flight Center, Huntsville, Alabama). The basic features of these projects are discussed. The systems under development in five of these current projects were selected for field testing in the SOLERAS program, a joint US-Saudi Arabian enterprise. Some technical highlights of the program are presented.

  1. Graphite filter atomizer in atomic absorption spectrometry

    Katskov, Dmitri A.

    2007-09-01

    Graphite filter atomizers (GFA) for electrothermal atomic absorption spectrometry (ETAAS) show substantial advantages over commonly employed electrothermal vaporizers and atomizers, tube and platform furnaces, for direct determination of high and medium volatility elements in matrices associated with strong spectral and chemical interferences. Two factors provide lower limits of detection and shorter determination cycles with the GFA: the vaporization area in the GFA is separated from the absorption volume by a porous graphite partition; the sample is distributed over a large surface of a collector in the vaporization area. These factors convert the GFA into an efficient chemical reactor. The research concerning the GFA concept, technique and analytical methodology, carried out mainly in the author's laboratory in Russia and South Africa, is reviewed. Examples of analytical applications of the GFA in AAS for analysis of organic liquids and slurries, bio-samples and food products are given. Future prospects for the GFA are discussed in connection with analyses by fast multi-element AAS.

  2. Digestion and absorption of olive oil

    Bermúdez, Beatriz; Pacheco, Yolanda M.; López, Sergio; Abia, Rocío; Muriana, Francisco J. G.

    2004-01-01

    Olive oil is a monounsaturated (oleic acid)-rich fat, mainly constituted by triglycerides (>98%) and minor compounds. As other macronutrients, dietary triglyceride digestion and absorption are a complex processes involving enzyme activities and physicochemical changes. In humans, hydrolysis of olive oil triglycerides begins in the stomach where it is catalyzed by an acid-stable gastric lipase. Triglyceride hydrolysis continues in the duodenum, by the synergetic actions of gastric and...

  3. Digestion and absorption of olive oil

    Muriana, Francisco J. G.; Abia, Rocío; López, Sergio; Pacheco, Yolanda M.; Bermúdez, Beatriz

    2004-01-01

    Olive oil is a monounsaturated (oleic acid)-rich fat, mainly constituted by triglycerides (>98 %) and minor compounds. As other macronutrients, dietary triglyceride digestion and absorption are a complex processes involving enzyme activities and physicochemical changes. In humans, hydrolysis of olive oil triglycerides begins in the stomach where it is catalyzed by an acid-stable gastric lipase. Triglyceride hydrolysis continues in the duodenum, by the synergetic actions of gastric and colipas...

  4. Determination of phytoplankton composition using absorption spectra

    Martínez Guijarro, Mª Remedios; Romero Gil, Inmaculada; Paches Giner, Maria Aguas Vivas; González del Rio Rams, Julio; Martí Insa, Carmen Mª; GIL SEGUÍ, GERMA; Ferrer, Alberto; FERRER, J.

    2009-01-01

    Characterisation of phytoplankton communities in aquatic ecosystems is a costly task in terms of time, material and human resources. The general objective of this paper is not to replace microscopic counts but to complement them, by fine-tuning a technique using absorption spectra measurements that reduces the above-mentioned costs. Therefore, the objective proposed in this paper is to assess the possibility of achieving a qualitative determination of phytoplankton communities by ...

  5. Impedance Matched Absorptive Thermal Blocking Filters

    Wollack, E J; Rostem, K; U-Yen, K

    2014-01-01

    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match $50\\,\\Omega$ and its response has been validated from 0-to-50\\,GHz. The observed return loss in the 0-to-20\\,GHz design band is greater than $20\\,$dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications.

  6. Gastrointestinal absorption of plutonium in the dog

    The gastrointestinal absorption of plutonium in the beagle has been determined to be 0.066 +- 0.014% of the amount administered. This result is quite comparable with the results reported for the dog by other workers, and a factor of 3 smaller than that observed by us for mice. On the average, the retained plutonium was found to be almost equally divided between the liver and the skeleton

  7. Absorption spectroscopy with quantum cascade lasers

    Kosterev, A. A.; Curl, R. F.; Tittel, F. K.; Gmachl, C.; Capasso, F.; Sivco, D. L.; Baillargeon, J. N.; Hutchinson, A. L.; Cho, A. Y.

    2001-01-01

    Novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers operating near lambda=8 micrometers were used for detection and quantification of trace gases in ambient air by means of sensitive absorption spectroscopy. N2O, 12CH4, 13CH4, and different isotopic species of H2O were detected. Also, a highly selective detection of ethanol vapor in air with a sensitivity of 125 parts per billion by volume (ppb) was demonstrated.

  8. Transfer path based tyre absorption tests

    Tijs, E.; Makwana, B.K.; Peksel, O.; Amarnath, S.K.P.; Bekke, D.A.; Krishnan, K. S.

    2013-01-01

    The development process of a tyre usually involves a combination of simulation and testing techniques focused on characterizing acoustic/aerodynamic and vibrational phenomena. One of the acoustic phenomenon of interest is the absorption of the tyre, which affects the sound radiated. This properties is mainly related to local resonant effects, which can be changed by modifying the geometry of the tyre tread. A procedure is presented to determine the attenuation achieved due to a change in tyre...

  9. Identifying the Absorption Bump with Deep Learning

    Li, Min; Gaddam, Sudeep; Li, Xiaolin; Zhao, Yinan; Ma, Jingzhe; Ge, Jian

    2015-01-01

    The pervasive interstellar dust grains provide significant insights to understand the formation and evolution of the stars, planetary systems, and the galaxies, and may harbor the building blocks of life. One of the most effective way to analyze the dust is via their interaction with the light from background sources. The observed extinction curves and spectral features carry the size and composition information of dust. The broad absorption bump at 2175 Angstrom is the most prominent feature...

  10. Wavelength mismatch effect in electromagnetically induced absorption

    Bharti, Vineet; Wasan, Ajay; Natarajan, Vasant

    2016-01-01

    We present a theoretical investigation of the phenomenon of electromagnetically induced absorption (EIA) in a 4-level system consisting of vee and ladder subsystems. The four levels are coupled using one weak probe field, and two strong control fields. We consider an experimental realization using energy levels of Rb. This necessitates dealing with different conditions of wavelength mismatch---near-perfect match where all three wavelengths are approximately equal; partial mismatch where the w...

  11. Dermal absorption of phthalate diesters in rats

    This study examined the extent of dermal absorption of a series of phthalate diesters in the rat. Those tested were dimethyl, diethyl, dibutyl, diisobutyl, dihexyl, di(2-ethylhexyl), diisodecyl, and benzyl butyl phthalate. Hair from a skin area (1.3 cm in diameter) on the back of male F344 rats was clipped, the [14C]phthalate diester was applied in a dose of 157 mumol/kg, and the area of application was covered with a perforated cap. The rat was restrained and housed for 7 days in a metabolic cage that allowed separate collection of urine and feces. Urine and feces were collected every 24 hr, and the amount of 14C excreted was taken as an index of the percutaneous absorption. At 24 hr, diethyl phthalate showed the greatest excretion (26%). As the length of the alkyl side chain increased, the amount of 14C excreted in the first 24 hr decreased significantly. The cumulative percentage dose excreted in 7 days was greatest for diethyl, dibutyl, and diisobutyl phthalate, about 50-60% of the applied 14C; and intermediate (20-40%) for dimethyl, benzyl butyl, and dihexyl phthalate. Urine was the major route of excretion of all phthalate diesters except for diisodecyl phthalate. This compound was poorly absorbed and showed almost no urinary excretion. After 7 days, the percentage dose for each phthalate that remained in the body was minimal and showed no specific tissue distribution. Most of the unexcreted dose remained in the area of application. These data show that the structure of the phthalate diester determines the degree of dermal absorption. Absorption maximized with diethyl phthalate and then decreased significantly as the alkyl side chain length increased

  12. Photothermal Absorption Spectroscopy of Individual Semiconductor Nanocrystals

    Berciaud, Stéphane; Cognet, Laurent; Lounis, Brahim

    2007-01-01

    Photothermal heterodyne detection is used to record the first room-temperature absorption spectra of single CdSe/ZnS semiconductor nanocrystals. These spectra are recorded in the high cw excitation regime, and the observed bands are assigned to transitions involving biexciton and trion states. Comparison with the single nanocrystals photoluminescence spectra leads to the measurement of spectral Stokes shifts free from ensemble averaging.

  13. Radiation absorption properties of different plaster samples

    Although the plaster is one of the oldest known synthetic building materials, nowadays, it is used as interior coating of walls and ceilings of buildings. Thus measuring its radiation shielding properties is vital. For this purpose, radiation absorption properties of different plaster samples in this study. The measurements have been performed using gamma spectrometer system which connected to 3'' × 3''NaI (TI) detector.

  14. Dietary Phospholipids and Intestinal Cholesterol Absorption

    Sally Tandy; Chung, Rosanna W. S.; Elaine Wat; Alvin Kamili; Cohn, Jeffrey S.

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the abili...

  15. Solar heating and cooling with absorption refrigeration

    Montlló Casabayó, Gerard

    2010-01-01

    This project is focused on solar heating and cooling installations that use solar thermal energy to produce heat for domestic hot water or space heating, and cooling for air conditioning through absorption refrigeration cycle. The first part of the project is a literature review of said technology. The main components of such installations are described and results and conclusions from existing installations are reviewed. The second part is focused on designing, modelling and simula...

  16. Effect of food on absorption of lomefloxacin.

    Hooper, W. D.; Dickinson, R G; Eadie, M. J.

    1990-01-01

    Twelve subjects participated in an open-label, single-dose, balanced three-way crossover study in which the absorptions of lomefloxacin were compared following (i) an overnight fast, (ii) a carbohydrate meal, and (iii) a high-fat meal. The time to peak concentration of lomefloxacin was delayed, but peak concentration in plasma and amount of drug absorbed were unchanged following both meals.

  17. Liquid for absorption of solar heat

    Nakamura, T.; Iwamoto, Y.; Kadotani, K.; Marui, T.

    1984-11-13

    A liquid for the absorption of solar heat, useful as an heat-absorbing medium in water heaters and heat collectors comprises: a dispersing medium selected from the group consisting of propylene glycol, mixture of propylene glycol with water, mixture of propylene glycol with water and glycerin, and mixture of glycerin with water, a dispersant selected from the group consisting of polyvinylpyrrolidone, caramel, and mixture of polyvinylpyrrolidone with caramel, and a powdered activated carbon as a black coloring material.

  18. Circadian regulators of intestinal lipid absorption

    Hussain, M. Mahmood; Pan, Xiaoyue

    2015-01-01

    Among all the metabolites present in the plasma, lipids, mainly triacylglycerol and diacylglycerol, show extensive circadian rhythms. These lipids are transported in the plasma as part of lipoproteins. Lipoproteins are synthesized primarily in the liver and intestine and their production exhibits circadian rhythmicity. Studies have shown that various proteins involved in lipid absorption and lipoprotein biosynthesis show circadian expression. Further, intestinal epithelial cells express circa...

  19. Coherent perfect absorption in photonic structures

    Baldacci, Lorenzo; Tredicucci, Alessandro

    2016-01-01

    The ability to drive a system with an external input is a fundamental aspect of light-matter interaction. The coherent perfect absorption (CPA) phenomenon extends to the general multibeam interference phenomenology the well known critical coupling concepts. This interferometric control of absorption can be employed to reach full delivery of optical energy to nanoscale systems such as plasmonic nanoparticles, and multi-port interference can be used to enhance the absorption of a nanoscale device when it is embedded in a strongly scattering system, with potential applications to nanoscale sensing. Here we review the two-port CPA in reference to photonic structures which can resonantly couple to the external fields. A revised two-port theory of CPA is illustrated, which relies on the Scattering Matrix formalism and is valid for all linear two-port systems with reciprocity. Through a semiclassical approach, treating two-port critical coupling conditions in a non-perturbative regime, it is demonstrated that the st...

  20. Atomic absorption analysis of serial titanium alloys

    Atom-absorption technique is described, which makes it possible to rapidly and precisely determine the following alloying elements and admixtures in titanium alloys: Al (2.0 - 8.5%); Mo (0.5 - 8%); Cr (0.5 - 12%); Si (0.2 - 0.5%); Mn(0.2 - 2.5%); V(0.5 - 6%); Sn(2.0 - 3.0%); Fe(0.1 - 1.0%); Zr(2.0 - 12.0%). The atom absorption method with flame atomization of the sample provides for best results if the alloy is dissolved in a mixture HCl + HBF4 in the ratio 2:1. In order to obtain correct results the standard solutions must contain titanium in concentrations corresponding to the weight of the sample being analyzed. Sensitivity of zirconium determination may be increased approximately twofold by adding 10 mg/ml of FeCl3 into the solution. Being as precise, as the classic analytical methods, the atom absorption technique is about 5 times more efficient

  1. Carbon isotope separation by absorptive distillation

    The feasibility of separating carbon isotopes by absorptive distillation has been studied for CO absorption by cryogenic solvents. Phase equilibrium, isotopic separation, and mass transfer data were taken between 77.4 and 114.3 K for the following solvents: propane, propylene, 1:1 propane-propylene, 1-butene, isobutane and nitrogen. Carbon monoxide solubility followed Henry's Law, with a maximum experimental solubility of 6.5 mole per cent. Isotopic separation between CO in the gas and liquid phases using hydrocarbon solvents was several times that for pure CO vapor-liquid equilibrium. The maximum observed isotopic separation factor was 1.029 at 77.4 K with the propane-propylene solvent mixture. Mass transfer measurements yielded calculated HTU's of 2 to 5 cm for a possible separation system. An attempt has been made to correlate isotopic separation data using Hildebrand's theory of solutions. The differential absorption of isotopic CO species is expressed as a difference in solubility of the isotopic CO molecules. Data for propane, propylene, and 1-butene show approximately the same behavior at varying temperatures

  2. Carbon isotope separation by absorptive distillation

    The feasibility of separating carbon isotopes by absorptive distillation has been studied for CO absorption by cryogenic solvents. Phase equilibrium, isotopic separation, and mass transfer data were taken between 77.4 and 114.3 K for the following solvents: propane, propylene, 1:1 propane-propylene, 1-butene, isobutane and nitrogen. Carbon monoxide solubility followed Henry's Law, with a maximum experimental solubility of 6.5 mole percent. Isotopic separation between CO in the gas and liquid phases using hydrocarbon solvents was several times that for pure CO vapor-liquid equilibrium. The maximum observed isotopic separation factor was 1.029 at 77.4 K with the propane-propylene solvent mixture. Mass transfer measurements yielded calculated HETP's of 2 to 5 cm for a possible separation system. An attempt has been made to correlate isotopic separation data using Hildebrand's theory of solutions. The differential absorption of isotopic CO species is expressed as a difference in solubility of the isotopic CO molecules. Data for propane, propylene, and 1-butene show approximately the same behavior at varying temperatures

  3. Intestinal absorption of biotin in the rat

    We examined the absorption of biotin using the in vivo intestinal loop technique. Jejunal segments from male rats were filled with solutions containing [3H]biotin and [14C]inulin in Krebs-Ringer phosphate buffer, pH 6.5. Absorption was determined on the basis of luminal tritium disappearance after correction for inulin recovery. At biotin concentrations of 0.1 and 5.0 microM, luminal biotin disappearance was linear for at least 10 min. At biotin concentrations ranging from 2.3 nM to 75 microM, 10-28% of the administered dose was absorbed in 10 min. The concentration dependence of luminal biotin disappearance is consistent with the presence of both saturable and nonsaturable (linear) components of biotin uptake, with estimated Km = 9.6 microM and Jmax = 75.2 pmol/(2.5 cm loop X min). The rate constant for nonsaturable uptake is 3.1 pmol/(2.5 cm loop X min X microM). We conclude that at biotin concentrations less than 5 microM, biotin absorption proceeds largely by the saturable process, whereas at concentrations above 25 microM, nonsaturable uptake predominates. Additional studies demonstrated significantly less biotin uptake in the ileum than in the jejunum, a finding in agreement with previous in vitro studies

  4. Absorption Features in Soil Spectra Assessment.

    Vašát, Radim; Kodešová, Radka; Borůvka, Luboš; Jakšík, Ondřej; Klement, Aleš; Drábek, Ondřej

    2015-12-01

    From a wide range of techniques appropriate to relate spectra measurements with soil properties, partial least squares (PLS) regression and support vector machines (SVM) are most commonly used. This is due to their predictive power and the availability of software tools. Both represent exclusively statistically based approaches and, as such, benefit from multiple responses of soil material in the spectrum. However, physical-based approaches that focus only on a single spectral feature, such as simple linear regression using selected continuum-removed spectra values as a predictor variable, often provide accurate estimates. Furthermore, if this approach extends to multiple cases by taking into account three basic absorption feature parameters (area, width, and depth) of all occurring features as predictors and subjecting them to best subset selection, one can achieve even higher prediction accuracy compared with PLS regression. Here, we attempt to further extend this approach by adding two additional absorption feature parameters (left and right side area), as they can be important diagnostic markers, too. As a result, we achieved higher prediction accuracy compared with PLS regression and SVM for exchangeable soil pH, slightly higher or comparable for dithionite-citrate and ammonium oxalate extractable Fe and Mn forms, but slightly worse for oxidizable carbon content. Therefore, we suggest incorporating the multiple linear regression approach based on absorption feature parameters into existing working practices. PMID:26555184

  5. Gas in scattering media absorption spectroscopy - GASMAS

    Svanberg, Sune

    2008-09-01

    An overview of the new field of Gas in Scattering Media Absorption Spectroscopy (GASMAS) is presented. GASMAS combines narrow-band diode-laser spectroscopy with diffuse media optical propagation. While solids and liquids have broad absorption features, free gas in pores and cavities in the material is characterized by sharp spectral signatures, typically 10,000 times sharper than those of the host material. Many applications in materials science, food packaging, pharmaceutics and medicine have been demonstrated. So far molecular oxygen and water vapour have been studied around 760 and 935 nm, respectively. Liquid water, an important constituent in many natural materials, such as tissue, has a low absorption at such wavelengths, allowing propagation. Polystyrene foam, wood, fruits, food-stuffs, pharmaceutical tablets, and human sinus cavities have been studied. Transport of gas in porous media can readily be studied by first immersing the material in, e.g., pure nitrogen, and then observing the rate at which normal air, containing oxygen, reinvades the material. The conductance of the sinus connective passages can be measured in this way by flushing the nasal cavity with nitrogen. Also other dynamic processes such as drying of materials can be studied. The techniques have also been extended to remote-sensing applications (LIDAR-GASMAS).

  6. Breaking temporal symmetries for emission and absorption

    Hadad, Yakir; Soric, Jason C.; Alu, Andrea

    2016-03-01

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium, e(ω,θ)=a(ω,θ), with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies.

  7. Breaking temporal symmetries for emission and absorption.

    Hadad, Yakir; Soric, Jason C; Alu, Andrea

    2016-03-29

    Time-reversal symmetries impose stringent constraints on emission and absorption. Antennas, from radiofrequencies to optics, are bound to transmit and receive signals equally well from the same direction, making a directive antenna prone to receive echoes and reflections. Similarly, in thermodynamics Kirchhoff's law dictates that the absorptivity and emissivity are bound to be equal in reciprocal systems at equilibrium,[Formula: see text], with important consequences for thermal management and energy applications. This bound requires that a good absorber emits a portion of the absorbed energy back to the source, limiting its overall efficiency. Recent works have shown that weak time modulation or mechanical motion in suitably designed structures may largely break reciprocity and time-reversal symmetry. Here we show theoretically and experimentally that a spatiotemporally modulated device can be designed to have drastically different emission and absorption properties. The proposed concept may provide significant advances for compact and efficient radiofrequency communication systems, as well as for energy harvesting and thermal management when translated to infrared frequencies. PMID:26984502

  8. HI absorption towards nearby compact radio sources

    Chandola, Yogesh; Saikia, D J

    2011-01-01

    We present the results of HI absorption measurements towards a sample of nearby Compact Steep-Spectrum (CSS) and Giga-Hertz Peaked Spectrum (GPS) radio sources, the CORALZ sample, using the Giant Metrewave Radio Telescope (GMRT). We observed a sample of 18 sources and find 7 new detections. These sources are of lower luminosity than earlier studies of CSS and GPS objects and we investigate any dependence of HI absorption features on radio luminosity. Within the uncertainties, the detection rates and column densities are similar to the more luminous objects, with the GPS objects exhibiting a higher detection rate than for the CSS objects. The relative velocity of the blueshifted absorption features, which may be due to jet-cloud interactions, are within $\\sim$$-$250 km s$^{-1}$ and do not appear to extend to values over 1000 km s$^{-1}$ seen for the more luminous objects. This could be due to the weaker jets in these objects, but requires confirmation from observations of a larger sample of sources. There appe...

  9. Correction method for self-absorption effects of fluorescence x-ray absorption near-edge structure on multilayer samples

    It is well known that fluorescence x-ray absorption spectroscopy suffers from the self-absorption effects for thick and concentrated samples. In this study, a simple correction method is provided for correcting the self-absorption effects of fluorescence x-ray absorption near edge structure (XANES) spectrum for multilayer samples. This method is validated by application on fluorescence XANES spectra for a Cr/C multilayer measured at different incidence angles. The errors produced by the self-absorption effects for the measured fluorescence x-ray absorption spectra without corrections are also estimated and discussed. (paper)

  10. Research on the Elements of Firm's IS Absorptive Capacity%Research on the Elements of Firm' s IS Absorptive Capacity

    CAO Yong; NING Dong-ling

    2009-01-01

    In this paper, we explore the capacity during the process of a firm's information system adoption and implementation from knowledge management perspective, based on a firm's level construct. According to the di- mensions of absorptive capacity proposed by Zahra and George, we point out that the concept of IS absorptive ca- pacity, analyze and summarize the elements of potential absorptive capacity and realized absorptive capacity. We use data from two manufacturing organizations, analyze two firm's realities of IS absorptive capacity. The study indicates differing antecedents may have differing effects on potential absorptive capacity and realized ab- sorptive capacity.