WorldWideScience

Sample records for absorption spectrometric detection

  1. Nasal absorption studies of granisetron in rats using a validated high-performance liquid chromatographic method with mass spectrometric detection.

    Woo, Jong Soo

    2007-06-01

    Granisetron is a selective 5-HT3 receptor antagonist that is used therapeutically for the prevention of vomiting and nausea associated with emetogenic cancer chemotherapy. Although forms of the drug are commercially available for intravenous and oral dosage, there is a need for intranasal delivery formulations in specific patient populations in which the use of these dosage forms may be unfeasible and/or inconvenient. A rapid and specific high-performance liq uid chromatography method with mass spectrometric detection (LC-MS) was developed and validated for the analysis of granisetron in plasma after nasal administration in rats. Granisetron was separated in a reverse-phase C-18 column without interference from other components of plasma. This method involves a rapid assay for the determination of granisetron in a small volume of plasma with a run time of 12 min using ondansetron as an internal standard. Data were acquired in the electrospray ionization (ESI) mode with positive ion detection and application of single ion recording (SIR). Granisetron and ondansetron were detected at m/z values of 313.2 and 294.2, respectively. The method described was found to be suitable for the analysis of all samples collected during preclinical pharmacokinetic investigations of granisetron in rats after nasal administration. To date, the first pharmacokinetic study after intranasal administration of granisetron was performed and some pharmacokinetic parameters were presented in this paper. Granisetron was found to be well absorbed through nasal route and the bioavailability of this drug following nasal administration was comparable with that of intravenous administration. PMID:17679558

  2. Spectrofluorimetric, Atomic Absorption Spectrometric and Spectrophotometric Determination of Some Fluoroquinolones

    Hesham Salem

    2005-01-01

    Simple, accurate, sensitive and selective spectrofluorimetric, atomic absorption spectrometric and spectrophotometric methods are described for the quantitative determination of ten fluoroquinolones (amifloxacin, ciprofloxacin hydrochloride, difloxacin hydrochloride, enoxacin, enrofloxacin, lomefloxacin hydrochloride, levofloxacin, norfloxacin, ofloxacin and pefloxacin mesylate). The first method was a spectrofluorimetric method in which samples of the studied drugs in 0.1 N H2SO4 showed nati...

  3. Determination of Cr(VI) in welding fumes by anion-exchange fast protein liquid chromatography with electrothermal atomic absorption spectrometric detection.

    Milacic, Radmila; Scancar, Janez; Tusek, Janez

    2002-02-01

    The applicability of an anion-exchange fast protein liquid chromatographic-electrothermal atomic absorption spectrometric procedure (FPLC-ETAAS) was investigated for the determination of Cr(VI) in welding fumes after alkaline extraction of aerosols loaded on filters. Gas tungsten arc welding (GTAW) of stainless steel was applied. Samples of welding fumes were collected during regular welding on polycarbonate membrane filters of 8 microm and 0.4 microm pore size (inhalable and respirable aerosols). Alkaline extraction (2% NaOH-3% Na2CO3) of filters in a heated ultrasonic bath was applied to leach Cr from the airborne particulate matter. 0.5 cm3 of sample extract was then injected onto an anion-exchange FPLC column. Tris-HCl buffer (0.005 mol dm(-3), pH 8.0) and the same buffer with NaCl (0.5 mol dm(-3)) were employed in gradient elution (15 min, flow rate 1 cm3 min(-1)). The separated Cr species were determined "off line" by ETAAS in 0.5 cm3 fractions. Cr(VI) was reproducibly and quantitatively eluted from 12.0 to 13.0 min with a maximum peak at 12.5 min. Good repeatability of measurement (+/-3.0%) of alkaline extracts was obtained for Cr(VI). The LOD (3s) was found to be 0.035 microg m(-3) Cr(VI), when 2 m3 of aerosols were collected on the filter. Validation of the procedure was performed by spiking alkaline extracts and by the analysis of standard reference material CRM 545, Cr(VI) in welding dust loaded on a filter. The technique was successfully applied for the determination of Cr(VI) in welding fumes. PMID:11939630

  4. Inclusion of riboflavin in β-cyclodextrin: A fluorimetric and absorption spectrometric study

    Roy, Dalim Kumar; Deb, Nipamanjari; Ghosh, Bankim Chandra; Mukherjee, Asok K.

    2009-07-01

    Formation of inclusion complexes between riboflavin and β-cyclodextrin (β-CD) with both 1:1 and 1:2 stoichiometry has been established by fluorimetric titration. However, in absorption spectrometric experiment, spectral change of riboflavin in the visible range could be observed only by taking β-CD at a much higher concentration (about 100 times) than riboflavin and under such condition only 1:2 complexes could be detected. Its formation constant ( K) was determined by a multiple linear regression analysis of the absorption data. The reliability of the K value was confirmed by the consistency achieved on analyzing the data at two different wavelengths.

  5. Spectrofluorimetric, Atomic Absorption Spectrometric and Spectrophotometric Determination of Some Fluoroquinolones

    Hesham Salem

    2005-01-01

    Full Text Available Simple, accurate, sensitive and selective spectrofluorimetric, atomic absorption spectrometric and spectrophotometric methods are described for the quantitative determination of ten fluoroquinolones (amifloxacin, ciprofloxacin hydrochloride, difloxacin hydrochloride, enoxacin, enrofloxacin, lomefloxacin hydrochloride, levofloxacin, norfloxacin, ofloxacin and pefloxacin mesylate. The first method was a spectrofluorimetric method in which samples of the studied drugs in 0.1 N H2SO4 showed native fluorescence at 450 nm when excitation was at 290 nm. The calibration graph was rectilinear from 0.3-1.4 μg mL-1 (method I. Cobalt sulphate was used for precipitation of the ion associates formed from the reaction with the cited drugs. The formation and solubility of the solid complexes at the optimum conditions of pH and ionic strength values have been studied. The method depends on direct determination of the ions in the precipitate or indirect determination of the ions in the filtrate by atomic absorption spectroscopy. The optimum conditions for precipitation were carefully studied. Rectilinear calibration graphs were obtained in the range of 3-30 μg mL-1 for each of the investigated drugs. The molar ratios of the formed chelats were determined by Job's method and their association constants were also calculated (method II. Ammonium vanadate was used for the spectrophotometric determination of the selected fluoroquinolones by oxidation in sulphuric acid medium resulting in the development of a greenish blue colour measured at 766 nm which was attributed to the vanadium (IV produced by reduction of vanadium (V by the selected drugs. The optimum conditions for heating time, reagent concentration and sulphuric acid concentration were carefully studied. The accuracy and precision of the proposed method was confirmed by estimating five or six replicates within Beer's law limits were obtained in the range 10-40 μg mL-1 for each of the investigated drugs

  6. Generation of volatile copper species after in situ ionic liquid formation dispersive liquid-liquid microextraction prior to atomic absorption spectrometric detection.

    Stanisz, Ewa; Zgoła-Grześkowiak, Agnieszka; Matusiewicz, Henryk

    2014-11-01

    The new procedure using in situ synthesis of ionic liquid extractant for dispersive liquid-liquid microextraction (in situ IL DLLME) combined with generation of volatile species prior to electrothermal atomic absorption spectrometry (ET AAS) for the determination of copper in soil samples was developed. Analytical signals were obtained without the back-extraction of copper from the IL phase prior to its determination. Under optimal conditions, the extraction in 10 mL of sample solution employing 8 μL of 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (HmimNTf2) (as the extraction solvent) was conducted. The ionic liquid served as two-task reagent: the efficient extractant and enhancement substance for generation step. The chemical generation of volatile species was performed by reduction of acidified copper solution (HCl 0.8 mol L(-1)) with NaBH4 (1.5%). Some essential parameters of the chemical generation such as NaBH4 and HCl concentrations, the kind and concentration of ionic liquid, carrier gas (Ar) flow rate, reaction and trapping time as well as pyrolysis and atomization temperatures were studied. For photogeneration the effect of the parameters such as the kind and concentration of low molecular weight organic acids and ionic liquid, carrier gas (Ar) flow rate, UV irradiation and ultrasonication time on the analytical signals were studied. The detection limit was found as 1.8 ng mL(-1) and the relative standard deviation (RSD) for seven replicate measurements of 100 µg mL(-1) in sample solution was 7%. The accuracy of the proposed method was evaluated by analysis of the certified reference materials. The measured copper contents in the reference materials were in satisfactory agreement with the certified values. The method was successfully applied to analysis of the soil and sediment samples. PMID:25127592

  7. Automated sequential injection-microcolumn approach with on-line flame atomic absorption spectrometric detection for implementing metal fractionation schemes of homogeneous and non-homogeneous solid samples of environmental interest

    Chomchoei, Roongrat; Miró, Manuel; Hansen, Elo Harald;

    2005-01-01

    spectrometric detection and used for the determination of Cu as a model analyte, the potentials of this novel hyphenated approach are demonstrated by the ability of handling up to 300 mg sample of a nonhomogeneous sewage amended soil (viz., CRM 483). The three steps of the endorsed Standards, Measurements, and...

  8. Atomic absorption spectrometric determination of mineral elements in mammalian bones

    The phosphorus content of the major bones of male and female selected mammals was determined using the yellow vanadomolybdate colorimetric method. For each animal, the bone with the highest phosphorus content was used as pilot sample. Varying concentrations of strontium were added to solutions of the ashed pilot samples to minimize phosphorus interference in the determination of calcium and magnesium using flame atomic absorption spectrophotometry operated on the air-acetylene mode. At least 6,000 ppm (0.6%) of strontium was required to give optimum results for calcium. The amount of magnesium obtained from the analysis was not affected by the addition of strontium. With the incorporation of strontium in the sample solution, all elements of interest can be determined in the same sample solution. Based on this, a procedure is proposed for the determination of calcium and other elements in bones. Average recoveries of spiked calcium and magnesium were 97.85% and 98.16%, respectively at the 95% confidence level. The coefficients of variation obtained for replicate determinations using one of the samples were 0.00% for calcium, lead and sodium, 2.93% for magnesium, 3.27% for iron and 3.92% for zinc at the concentration levels found in that sample. Results from the proposed procedure compared well with those from classical chemical methods at the 95% confidence level. It is evident that calcium phosphorus, magnesium and sodium which are the most abundant elements in the bones are distributed in varying amounts both in the different types of bones and different animal species, although the general trend is Ca > P > Na > Mg for each bone considered. The calcium - phosphorus ratio is generally 3:1. The work set out to propose an atomic absorption spectrometric method for the multi-element analysis of mammalian bones with a single sample preparation and to study the distribution pattern of these elements in the bones. (Author)

  9. The determination of trace amounts of heavy metals in waters by a flow-injection system including ion-exchange preconcentration and flame atomic absorption spectrometric detection

    The flow-injection system combines on-line ion-exchange preconcentration with atomic absorption spectrometry (a.a.s.) for the determination of traces (μg l-1) of heavy metals in water samples. A multifunctional rotary sampling valve which incorporated two parallel sampling columns allows sampling, exchange, elution and a.a.s. to be achieved sequentially. The increases in sensitivity for nickel, copper, lead and cadmium were 20-28-fold at a sampling rate of 40 h-1 with 5-ml samples. Relative standard deviations were 1.5-4.1%. The recoveries of these four metals added to tap, sea and polluted waters were generally satisfactory, except for cadmium in polluted water. The effects of column diameter and elution flow rates on sensitivity are discussed. Possible interferences are described. (Auth.)

  10. Optimization of the preconcentration system of cadmium with 1(2-thiazolylazo)-p-cresol using a knotted reactor and flame atomic absorption spectrometric detection

    The present paper proposes an on-line preconcentration procedure for cadmium determination in drinking water samples. It is based on the precipitation of cadmium(II) ions on a knotted reactor (KR) using 1(2-thiazolylazo)-p-cresol (TAC) as complexing reagent. The optimization step was performed using a full factorial design involving the variables: pH, eluent concentration (nitric acid) and TAC concentration. The results of this experiment demonstrated that these variables at chosen levels are not statistically significant. Under optimized experimental established conditions, analytical parameters for the preconcentration method were: a detection limit of 40.0 ng/l, precision as relative standard deviation (RSD) of 1.2 and 1.0%, for cadmium concentration of 2.5 and 20.0 μg/l, respectively. The preconcentration factor considering the slopes of the analytical curves with and without preconcentration is 23 for a sample volume of 10 ml. This system shows a sampling frequency of 25 h-1. In order to check the accuracy, the standard reference material, NIST SRM 1643d trace elements in water was analyzed. A comparison, using t-test demonstrates that there is not significant difference among the achieved results with proposed method and the certified values. The addition/recovery experiments in the samples analyzed demonstrated the accuracy and applicability of the system developed for cadmium determination in water samples

  11. Mass spectrometric detection, identification, and fragmentation of arseno-phytochelatins.

    Schmied-Tobies, Maria I H; Arroyo-Abad, Uriel; Mattusch, Jürgen; Reemtsma, Thorsten

    2014-11-01

    Phytochelatins (PC) are cystein-rich oligopeptides in plants for coordination with toxic metals and metalloids via their thiol groups. The composition, structure, and mass spectrometric fragmentation of arseno-PC (As-PC) with PC of different degree of oligomerization (PC2-PC5) in solution were studied using liquid chromatography coupled in parallel to inductively coupled plasma mass spectrometry and electrospray ionization quadrupole time-of-flight mass spectrometry. As-PC were detected from As(PC2) to As(PC5) with an increasing number of isomers that differ in the position of thiol groups bound to As. Thermodynamic modeling supported the identification process in case of these isomers. Mass spectrometric fragmentation of the As-PC does not follow the established pattern of peptides but is governed by the formation of series of As-containing annular cations, which coordinate to As via S, N, or O. Structure proposals for 30 As-PC fragment ions in the range m/z 147.92 to m/z 1290.18 are elaborated. Many of these fragment ions are characteristic to several As-PC and may be suited for a screening for As-PC in plant extracts. The mass spectrometric data offer the perspective for a future more sensitive determination of As-PC by means of liquid chromatography tandem mass spectrometry with multiple reaction monitoring. PMID:25395130

  12. Novel atomic absorption spectrometric and rapid spectrophotometric methods for the quantitation of paracetamol in saliva: Application to pharmacokinetic studies

    Issa M

    2008-01-01

    Full Text Available A novel atomic absorption spectrometric method and two highly sensitive spectrophotometric methods were developed for the determination of paracetamol. These techniques based on the oxidation of paracetamol by iron (III (method I; oxidation of p-aminophenol after the hydrolysis of paracetamol (method II. Iron (II then reacts with potassium ferricyanide to form Prussian blue color with a maximum absorbance at 700 nm. The atomic absorption method was accomplished by extracting the excess iron (III in method II and aspirates the aqueous layer into air-acetylene flame to measure the absorbance of iron (II at 302.1 nm. The reactions have been spectrometrically evaluated to attain optimum experimental conditions. Linear responses were exhibited over the ranges 1.0-10, 0.2-2.0 and 0.1-1.0 µg/ml for method I, method II and atomic absorption spectrometric method, respectively. A high sensitivity is recorded for the proposed methods I and II and atomic absorption spectrometric method value indicate: 0.05, 0.022 and 0.012 µg/ml, respectively. The limit of quantitation of paracetamol by method II and atomic absorption spectrometric method were 0.20 and 0.10 µg/ml. Method II and the atomic absorption spectrometric method were applied to demonstrate a pharmacokinetic study by means of salivary samples in normal volunteers who received 1.0 g paracetamol. Intra and inter-day precision did not exceed 6.9%.

  13. On the reliability of methods for the speciation of mercury based on chromatographic separation coupled to atomic spectrometric detection

    Qvarnström, Johanna

    2003-01-01

    This thesis deals with the reliability of methods for the speciation of mercury in environmental and biological samples. Problems with speciation methods that couple chromatography to atomic spectrometric detection and how to overcome the problems are discussed. Analytical techniques primarily studied and evaluated are high performance liquid chromatography-cold vapour-atomic absorption spectrometry (HPLC-CV-AAS), HPLC-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), capillary elec...

  14. Electrothermal atomization atomic absorption spectrometric determination of trace metals in uranium-plutomium fuel materials

    Atomic absorption spectrometric methods using the electrothermal mode of atomization developed for the determination of Ag, Be, Ca, Cd, Cr, Co, Cu, Fe, Li, Mn, Na, Ni, Sn and Zn in (U, Pu) solution with 4% plutonium have been described. The carbon rod atomizer has been adapted for glove box operation to enable handling of plutonium containing solution samples. Multielement solution standards with graded concentrations of the analytes and fixed concentration of the matrix are used in the standardization process. Nanogram to sub-nanogram quantities of the analytes have been determined with a precision of better than 9% RSD using 5 μl of the sample aliquots. (orig.)

  15. Colorimetric and atomic absorption spectrometric determination of mucolytic drug ambroxol through ion-pair formation with iron and thiocyanate.

    Levent, Abdulkadir; Sentürk, Zühre

    2010-09-01

    Colorimetric and atomic absorption spectrometric methods have been developed for the determination of mucolytic drug Ambroxol. These procedures depend upon the reaction of iron(III) metal ion with the drug in the presence of thiocyanate ion to form stable ion-pair complex which extractable chloroform. The red-coloured complex was determined either colorimetrically at 510 nm or by indirect atomic absorption spectrometry (AAS) via the determination of the iron content in the formed complex. The optimum experimental conditions for pH, concentrations of Fe(3+) and SCN(-), shaking time, phase ratio, and the number of extractions were determined. Under the proposed conditions, linearity was obeyed in the concentration ranges 4.1x10(-6) - 5.7x10(-5) M (1.7-23.6 µg mL(-1)) using both methods, with detection limits of 4.6x10(-7) M (0.19 µg mL(-1)) for colorimetry and 1.1x10(-6) M (0.46 µg mL(-1)) for AAS. The proposed methods were applied for the determination of Ambroxol in tablet dosage forms. The results obtained were statistically analyzed and compared with those obtained by applying the high-performance liquid chromatographic method with diode-array detection. PMID:20426742

  16. Highly selective micro-sequential injection lab-on-valve (μSI-LOV) method for determination of ultra trace concentrations of nickel in saline matrices using detection by electrothermal atomic absorption spectrometr

    Long, Xiangbao; Miró, Manuel; Jensen, Rikard;

    2006-01-01

    electrothermal atomic absorption spectrometry (ETAAS). Based on the dimethylglyoxime (DMG) gravimetric procedure used for nickel analysis, the sample, as contained in pH 9.0 buffer, is, after on-line merging with the chelating reagent, transported to a reaction coil attached to one of the external ports of the...

  17. Determination of trace metal ions via on-line separation and preconcentration by means of chelating Sepharose beads in a sequential injection lab-on-valve (SI-LOV) system coupled to electrothermal atomic absorption spectrometric detection

    Long, Xiangbao; Hansen, Elo Harald; Miró, Manuel

    2005-01-01

    The analytical performance of an on-line sequential injection lab-on-valve (SI-LOV) system using chelating Sepharose beads as sorbent material for the determination of ultra trace levels of Cd(II), Pb(II) and Ni(II) by electrothermal atomic absorption spectrometry (ETAAS) is described and discussed...

  18. Automated sequential injection-microcolumn approach with on-line flame atomic absorption spectrometric detection for implementing metal fractionation schemes of homogeneous and non-homogeneous solid samples of environmental interest

    Chomchoei, Roongrat; Miró, Manuel; Hansen, Elo Harald; Shiowatana, Juwadee

    2005-01-01

    An automated sequential injection (SI) system incorporating a dual-conical microcolumn is proposed as a versatile approach for the accommodation of both single and sequential extraction schemes for metal fractionation of solid samples of environmental concern. Coupled to flame atomic absorption...... Testing sequential extraction method have been also performed in a dynamic fashion and critically compared with the conventional batch-wise protocols. The ecotoxicological relevance of the data provided by both methods with different operationally defined conditions is thoroughly discussed. As compared to...... traditional batch systems, the developed SI assembly offers minimum risks of sample contamination, absence of metal re-distribution/re-adsorption, and dramatic saving of operational times (from 16 h to 40-80 min per partitioning step). It readily facilitates the accurate manipulation of the extracting...

  19. Separation of trace antimony and arsenic prior to hydride generation atomic absorption spectrometric determination

    A separation method utilizing a synthetic zeolite (mordenite) was developed in order to eliminate the gas phase interference of Sb(III) on As(III) during quartz furnace hydride generation atomic absorption spectrometric (HGAAS) determination. The efficiency of the proposed separation method in the reduction of suppression effects of transition metal ions on As(III) signal was also investigated. Among the volatile hydride-forming elements and their different oxidation states tested (Sb(III), Sb(V), Se(IV), Se(VI), Te(IV), and Te(VI)), only Sb(III) was found to have a signal depression effect even at low (μg l-1) concentrations under the experimental conditions employed. It has been shown that mordenite adsorbs Sb(III) quantitatively, even at a concentration of 1000 μg l-1, at pHs greater than two, and also, it reduces the initial concentrations of the transition metal ions to lower levels which can be tolerated in many studies. The adsorption of Sb(III) on mordenite follows the Freundlich isotherm and is endothermic in nature

  20. Mass spectrometric detection of radiocarbon for dating applications

    Synal, H.-A., E-mail: synal@phys.ethz.ch [ETH Zurich, Laboratory of Ion Beam Physics, Building HPK, 8093 Zurich (Switzerland); Schulze-Koenig, T.; Seiler, M.; Suter, M.; Wacker, L. [ETH Zurich, Laboratory of Ion Beam Physics, Building HPK, 8093 Zurich (Switzerland)

    2013-01-15

    Radiocarbon is still the most important nuclide measured by accelerator mass spectrometry (AMS). The related capabilities for dating and tracer studies are eminent not only in archaeology but also drive important applications in the earth and environmental sciences as well as in biomedical research. So far, standard mass spectrometric systems have not been capable of radiocarbon dating because of interfering molecular isobars which, however, can be completely eliminated in charge changing processes at high ion beam energies (MeV) [1,2]. Here, we present a novel type mass spectrometry system for radiocarbon analyses. Radiocarbon dating was performed using 45 keV {sup 14}C ions from the ion source and a molecule dissociation unit kept at ground potential. This proof-of-principle experiment demonstrates for the first time the feasibility of mass spectrometric radiocarbon dating without an accelerator. The results obtained will be the basis of an optimized design for a radiocarbon dating instrument comparable in size, complexity and cost to standard mass spectrometers.

  1. Atomic-absorption spectrometric determination of trace metals in zirconium and zircaloy by discrete sample nebulization

    A discrete sample nebulization technique was employed to determine trace metals in nuclear grade zirconium and Zircaloy by flame atomic-absorption spectrometry. With 10% (w/v) sample solutions, detection limits for Cd, Cu, Mn, Ni and Pb were 0.6, 2, 1, 3, and 10 μg/g. Micro standard-addition procedures and background correction were employed to minimize matrix interferences produced by the high salt content of the aspirated solutions. (author)

  2. Speciation and detection of arsenic in aqueous samples: A review of recent progress in non-atomic spectrometric methods

    Highlights: • Compilation of principal official documents and major review articles, including the toxicology and chemistry of As. • Review of non-atomic spectrometric methods for speciation and detection of arsenic in aqueous samples (2005–2013) of the performance of field-usable methods. - Abstract: Inorganic arsenic (As) displays extreme toxicity and is a class A human carcinogen. It is of interest to both analytical chemists and environmental scientists. Facile and sensitive determination of As and knowledge of the speciation of forms of As in aqueous samples are vitally important. Nearly every nation has relevant official regulations on permissible limits of drinking water As content. The size of the literature on As is therefore formidable. The heart of this review consists of two tables: one is a compilation of principal official documents and major review articles, including the toxicology and chemistry of As. This includes comprehensive official compendia on As speciation, sample treatment, recommended procedures for the determination of As in specific sample matrices with specific analytical instrument(s), procedures for multi-element (including As) speciation and analysis, and prior comprehensive reviews on arsenic analysis. The second table focuses on the recent literature (2005–2013, the coverage for 2013 is incomplete) on As measurement in aqueous matrices. Recent As speciation and analysis methods based on spectrometric and electrochemical methods, inductively coupled plasma-mass spectrometry, neutron activation analysis and biosensors are summarized. We have deliberately excluded atomic optical spectrometric techniques (atomic absorption, atomic fluorescence, inductively coupled plasma-optical emission spectrometry) not because they are not important (in fact the majority of arsenic determinations are possibly carried out by one of these techniques) but because these methods are sufficiently mature and little meaningful innovation has been

  3. Quantification of salsolinol enantiomers by stable isotope dilution liquid chromatography with tandem mass spectrometric detection

    Cai, Min; Liu, Yi-Ming

    2008-01-01

    Salsolinol, 1-methyl-6,7-dihydroxy-2,3,4,5-tetrahydroisoquinoline (SAL), is a precursor of a Parkinsonian neurotoxin, N-methysalsolinol (N-methyl-SAL). Previous studies have shown that individual enantiomers of N-methyl-SAL possess distinct neurotoxicological properties. In this work, a chiral high-performance liquid chromatography (HPLC) method with electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the quantification of (R/S)-SAL enantiomers. Enantiose...

  4. Mass Spectrometric Detection of Nanoparticle Host–Guest Interactions in Cells

    Yan, Bo; Yesilbag Tonga, Gulen; Hou, Singyuk; Fedick, Patrick W.; Yeh, Yi-Cheun; Alfonso, Felix S.; Mizuhara, Tsukasa; Vachet, Richard W.; Rotello, Vincent M.

    2014-01-01

    Synthetic host–guest chemistry is a versatile tool for biomedical applications. Characterization and detection of host–guest complexes in biological systems, however, is challenging due to the complexity of the biological milieu. Here, we describe and apply a mass spectrometric method to monitor the association and dissociation of nanoparticle (NP)-based host–guest interactions that integrates NP-assisted laser desorption/ionization (LDI) and matrix assisted laser desoption/ionization (MALDI)...

  5. Novel absorption detection techniques for capillary electrophoresis

    Xue, Y.

    1994-07-27

    Capillary electrophoresis (CE) has emerged as one of the most versatile separation methods. However, efficient separation is not sufficient unless coupled to adequate detection. The narrow inner diameter (I.D.) of the capillary column raises a big challenge to detection methods. For UV-vis absorption detection, the concentration sensitivity is only at the {mu}M level. Most commercial CE instruments are equipped with incoherent UV-vis lamps. Low-brightness, instability and inefficient coupling of the light source with the capillary limit the further improvement of UV-vis absorption detection in CE. The goals of this research have been to show the utility of laser-based absorption detection. The approaches involve: on-column double-beam laser absorption detection and its application to the detection of small ions and proteins, and absorption detection with the bubble-shaped flow cell.

  6. Spectrometric scintillation units for gamma detection based on oxide scintillators with great atomic number

    Gamma-radiation detecting scintillation spectrometric units based on monocrystals of bismuth germanate (BGO) and cadmium tungstate (CWO) were developed to carry out express control of the environment migration of radionuclides. Detecting unit includes a BGO or CWO detector, FEU-176, supply voltage high-volt converter, amplifier-oscillator and differential discriminator to separate radionuclides. BGO base scintillation detecting unit with 40 x 40 mm dimensions has following parameters as to 137 Cs: amplitude resolution - 12.4%; recording efficiency - 45%; sensitivity - 0.004 pulse/Bq x s. The level of specific background with passive protection - 0.55 pulse/s

  7. Mass spectrometric approaches to detecting prions and protein conformers

    Transmissible spongiform encephalopathies (TSEs) can cause substantial economic damage to agriculture. These diseases have characteristically long incubation periods, comparatively short symptomatic intervals, and are invariably fatal. Early detection is important in controlling these diseases. Howe...

  8. Atomic-absorption spectrometric determination of cobalt, nickel, and copper in geological materials with matrix masking and chelation-extraction

    Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.

    1979-01-01

    An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.

  9. Graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples stabilized as microemulsion using conventional and permanent modifiers

    A procedure for the graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples was developed. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization was observed by mixing different organic solvents with propan-1-ol and 50% vol/vol HNO3 at a 3.3:6.5:1 volume ratio. For Pb, efficient thermal stabilization was obtained using aqueous Pd-Mg modifier as well as for Ir as permanent modifier. The drying temperature and ramp rate influenced the sensitivity obtained for Ni, and had to be carefully optimized. Taking this into account, the same sensitivity was attained in all investigated organic media stabilized as microemulsion. Thus, calibration with microemulsions prepared with a single organic solvent was possible, using aqueous or organic stock solutions. Commercial gasoline and diesel samples were directly analyzed after stabilization as microemulsion and by comparative UOP procedures. n-Hexane microemulsions were used for calibration, and good agreement was obtained between the results using the proposed and comparative procedures. Typical coefficients of variation (n = 6) ranged from 1% to 4%, and from 1% to 3% for Ni and Pb, respectively. Detection limits (k = 3) in the original gasoline or diesel samples, derived from 10 blank measurements, were 4.5 and 3.6 μg l-1 for Ni and Pb, respectively, comfortably below the values found in the analyzed samples

  10. Flame atomic absorption spectrometric determination of cadmium(II) and lead(II) after their solid phase extraction as dibenzyldithiocarbamate chelates on Dowex Optipore V-493

    An enrichment procedure for cadmium and lead after their solid phase extraction as dibenzyldithiocarbamate chelates on Dowex Optipore V-493 has been established prior to their flame atomic absorption spectrometric determinations. The analytical parameters including pH, amounts of dibenzyldithiocarbamate, sample volume, etc., were investigated. The effects of alkaline and earth alkaline ions and some metal ions on the retentions of analytes on Dowex Optipore V-493 resin were examined. Under the optimized conditions, the detection limits (3s, n = 21) for cadmium and lead were 0.43 μg L-1 and 0.65 μg L-1, respectively. The relative standard deviation (R.S.D.), and the recoveries of standard addition for this method were lower than 5% (n = 11) and 95-102%, respectively. Three standard reference samples (LGC 6010 Hard drinking water, NIST SRM 2711 Montana soil and GBW 07605 Tea) were introduced for accuracy and precision of analytical data. The proposed solid phase extraction system was successfully applied to the analysis of environmental samples

  11. Graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples stabilized as microemulsion using conventional and permanent modifiers

    Reyes, Mariela N. Matos; Campos, Reinaldo C.

    2005-06-01

    A procedure for the graphite furnace atomic absorption spectrometric determination of Ni and Pb in diesel and gasoline samples was developed. Sample stabilization was necessary because of evident analyte losses that occurred immediately after sampling. Excellent long-term sample stabilization was observed by mixing different organic solvents with propan-1-ol and 50% vol/vol HNO 3 at a 3.3:6.5:1 volume ratio. For Pb, efficient thermal stabilization was obtained using aqueous Pd-Mg modifier as well as for Ir as permanent modifier. The drying temperature and ramp rate influenced the sensitivity obtained for Ni, and had to be carefully optimized. Taking this into account, the same sensitivity was attained in all investigated organic media stabilized as microemulsion. Thus, calibration with microemulsions prepared with a single organic solvent was possible, using aqueous or organic stock solutions. Commercial gasoline and diesel samples were directly analyzed after stabilization as microemulsion and by comparative UOP procedures. n-Hexane microemulsions were used for calibration, and good agreement was obtained between the results using the proposed and comparative procedures. Typical coefficients of variation ( n = 6) ranged from 1% to 4%, and from 1% to 3% for Ni and Pb, respectively. Detection limits ( k = 3) in the original gasoline or diesel samples, derived from 10 blank measurements, were 4.5 and 3.6 μg l - 1 for Ni and Pb, respectively, comfortably below the values found in the analyzed samples.

  12. A simple method for determination of formaldehyde in seafood sample using spectrometric detection

    Complete text of publication follows. A simple method for determination of formaldehyde using spectrometric detection was developed. The reaction was based on the oxidation of methylene blue with hydrogen peroxide in acidic media. The decreased in absorbance of the reaction mixture was measured at 664 nm. The optimum reaction conditions were 1 x 10-6 M methylene blue, 0.01 M sulfuric acid and 0.02 M hydrogen peroxide. The linearity was 0-20 mg/l with the limit of determination 1.60 μg/g of sample. Extraction of formaldehyde in seafood samples were investigated by ultrasonic method. The percentage recovery in spiking sample was 98% with 30 min ultrasonic extraction. This proposed method was applied to determination of formaldehyde in seafood samples. The researcher gratefully acknowledge the support from Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education.

  13. Atomic Absorption Spectrometric Method for Estimation of Diclofenac sodium and Mefenamic acid in Pharmaceutical Formulations

    Sunil Jawla

    2010-01-01

    Full Text Available Diclofenac sodium and Mefenamic acid have been quantified in tablet dosage form by atomic absorption spectrometry (AAS. These methods are based on formation of the metal complexes of Diclofenac sodium and Mefenamic acid with cupric chloride and cobaltous chloride. The first method is based on reaction of both the drugs with cupric chloride to give light blue colored metal complexes, which are then extracted with dichloromethane and digested with 0.1 M nitric acid. Both the drugs are indirectly estimated via determination of copper content in the formed complexes by AAS. The second method is based on the formation of pink colored complexes of both the drugs with cobaltous chloride. These metal complexes are extracted with dichloromethane and estimated via determination of cobalt content in the formed complexes after digestion with 0.1 M nitric acid by AAS.

  14. Systematic development of an enzymatic phosphorylation assay compatible with mass spectrometric detection.

    de Boer, A R; Letzel, T; Lingeman, H; Irth, H

    2005-02-01

    The enzymatic peptide phosphorylation by cAMP-dependent protein kinase A (PKA) was optimized and monitored by means of electrospray ionization mass spectrometry (ESI-MS). The direct detection of phosphorylated peptides by MS renders labeling unnecessary, reduces time and labor, due to less initial sample pretreatment. In this study the phosphorylation of the peptide malantide by PKA was performed in batch and reaction compounds were detected by ESI-MS after the incubation time. The subsequent product quantitation was accomplished by using one-point normalization. Applying this set-up, optimum solvent conditions (such as salt and modifier content), concentrations of essential reaction compounds (such as cAMP, Mg2+ and ATP), and the influence of reaction properties (such as pH and reaction time) were determined. The reaction milieu has to be suitable for both, the enzymatic reaction and the mass spectrometric detection. We found that the modifier content and the pH value had to be changed after the enzymatic reaction occurred. Through the addition of methanol and acetic acid, the reaction stopped immediately and a more sensitive mass spectrometric detection could be obtained simultaneously. Furthermore, an inhibitor study was performed, testing the inhibition potency of three protein kinase A inhibitors (PKIs). IC50 values were determined and used to calculate the Ki values, that were 7.4, 19.0 and 340.0 nmol/L for PKI(6-22)amide, PKI(5-24)amide, and PKI(14-24)amide, respectively. These data vary between factor 4.4 (for PKI(6-22)amide) and 8.3 (for PKI(5-24)amide) compared to the Ki values described in literature. However, the Ki values are in good agreement with the data mainly obtained by fluorescence- or radioactivity-based methods. Nevertheless, our results indicate that ESI-MS is a realistic alternative to radioactivity and fluorescence detection in determining enzymatic activity. Furthermore we were able to illustrate its high potential as a quantitative

  15. Mass spectrometric immunoassay

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  16. An indirect atomic absorption spectrometric determination of ciprofloxacin, amoxycillin and diclofenac sodium in pharmaceutical formulations

    MAHMOUD MOHAMED ISSA

    2008-05-01

    Full Text Available A highly sensitive indirect atomic absorption spectrophotometric (AAS method has been developed for the determination of very low concentrations of ciprofloxacin, amoxycillin and diclofenac sodium. The method is based on the oxidation of these drugs with iron(III. The excess of iron(III was extracted into diethyl ether and then the iron(II in the aqueous layer was aspirated into an air–acetylene flame and determined by AAS. The linear concentration ranges were 25–400, 50–500 and 60–600 ng ml-1 for ciprofloxacin, amoxycillin and diclofenac sodium, respectively. The results were statistically compared with the official method using t- and f-test at p < 0.05. There were insignificant interferences from most of the excipients present. The intra- and inter-day assay coefficients of variation were less than 6.1 % and the recoveries ranged from 95 to 103 %. The method was applied for the analysis of these drug substances in their commercial pharmaceutical formulations.

  17. Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection

    Svetlana Hrouzková

    2012-09-01

    Full Text Available Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC and fast CGC with mass spectrometric detection (MS has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important.

  18. Electrothermal atomic absorption spectrometric determination of total and hexavalent chromium in atmospheric aerosols

    A method was developed which allow separate determination of Cr(VI) and total Cr from the same minute sample of atmospheric aerosols. Cr(VI) was leached was with 0.1 M Na2CO3 and the total Cr concentrations were determined after acid digestion. The method was validated by the analysis of certified reference materials, CRM 545, Mess-3 and Pacs-2 with good agreement between certified and found values. Cr concentrations in air samples taken around the chromium smelter show concentrations that exceed the maximum allowed levels in 8 h with higher values closer to the smelter. The limit of detection (LOD) of the method for Cr(VI) determination in air samples was found to be 0.2 ng m-3, i.e. lower than offered by the commonly preferred spectrophotometric and colorimetric techniques

  19. Ultraviolet absorption detection of DNA in gels

    A method and apparatus for the detection and quantification of large fragments of unlabelled deoxyribonucleic acid (DNA) in agarose gels is presented. The technique is based on ultra-violet (UV) absorption by nucleotides. A deuterium lamp was used to illuminate regions of an electrophoresis gel. As DNA bands passed through the illuminated region of the gel the amount of UV light transmitted was reduced due to DNA absorption. Two detection systems were investigated. In the first system, synthetic chemical vapour deposition (CVD) diamond strip detectors were used to locate regions of DNA in the gels by detecting the transmitted light. CVD diamond has a high indirect band gap of 5.45 eV and is therefore sensitive to UV photons of wavelengths < 224 nm. A number of CVD diamond samples were characterised to investigate their suitability as detectors for this application. The detectors' quantum efficiency, UV response and time response were measured. DNA bands containing as little as 20 ng were detected by the diamond. In a second system, a deuterium lamp was used to illuminate individual sample lanes of an electrophoresis gel via an array of optical fibres. During electrophoresis the regions of DNA were detected with illumination at 260 nm, using a UV-sensitive charge coupled device (CCD). As the absorption coefficient of a DNA sample is approximately proportional to its mass, the technique is inherently quantitative. This system had a detection limit of 0.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. Using this detection technique, the DNA sample remains in its native state. The removal of carcinogenic dyes from the detection procedure greatly reduces associated biological hazards. (author)

  20. Metabolism of boldione in humans by mass spectrometric techniques: detection of pseudoendogenous metabolites.

    de la Torre, Xavier; Curcio, Davide; Colamonici, Cristiana; Molaioni, Francesco; Botrè, Francesco

    2013-01-01

    Boldione is an anabolic androgenic steroid (AAS) related to boldenone, androstenedione, and testosterone bearing two double bonds in C1 and C4 positions. Boldione is rapidly transformed to the well-known AAS boldenone, being both compounds included in the list of prohibited substances and methods published yearly by the World Anti-Doping Agency (WADA). After the administration of boldione to a male volunteer, the already described urinary metabolites of boldenone produced after reduction in C4, oxydoreduction in C3 and C17, and hydroxylation have been detected. In addition, minor new metabolites have been detected and their structure postulated after mass spectrometric analyses. Finally, the reduction of the double bound in C1 produces metabolites identical to the endogenously produced ones. A method based on gas chromatography coupled to isotope ratio mass spectrometry (GC/C/IRMS) after a urine sample purification by high performance liquid chromatography (HPLC) permitted to confirm the main synthetic like boldione/boldenone metabolite (17β-hydroxy-5β-androst-1-en-3-one) and boldenone at trace levels (synthetic or endogenous origin, and to determine the exogenous origin of metabolites with the same chemical structure of the endogenous ones. The detection of pseudoendogenous androgens of synthetic origin partially overlapped boldenone and its main metabolite detection, being an additional proof of synthetic steroids misuse. By the use of IRMS, the correct evaluation of the modifications of the steroid profile after the administration of synthetic AAS that could be converted into endogenous like ones is possible. PMID:24259377

  1. Determination of ractopamine in pig hair using liquid chromatography with tandem mass spectrometric detection.

    Wu, Junlin; Liu, Xiaoyun; Peng, Yunping

    2014-01-01

    A quantitative analytical procedure for the determination of ractopamine in pig hair has been developed and validated. The hair samples were washed and incubated at 75°C with isoxuprine and hair extraction buffer. The drug present was quantified using mixed solid-phase extraction and liquid chromatography with tandem mass spectrometric detection. The limit of quantization (LOQ) was 10pg/mg and the intra-day precision at 25pg/mg and 750pg/mg was 0.49% and 2.8% respectively. Inter-day precision was 0.88% and 3.52% at the same concentrations. The hair extraction percentage recovery at 25pg/mg and 50ng/mL was 99.47% and 103.83% respectively. The extraction percentage recovery at 25pg/mg and 50ng/mg was 93.52% and 100.26% respectively. Our results showed that ractopamine residues persist in hair in 24days of withdrawal and also showed the possibility to test ractopamine from pig hair samples. PMID:24548851

  2. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27041659

  3. Microemulsion electrokinetic chromatography with on-line atmospheric pressure photoionization-mass spectrometric detection of medium polarity compounds.

    Himmelsbach, Markus; Haunschmidt, Manuela; Buchberger, Wolfgang; Klampfl, Christian W

    2007-08-01

    In this paper, we present the determination of pharmaceuticals employing microemulsion electrokinetic chromatography (MEEKC) with atmospheric pressure photoionization-mass spectrometric (APPI-MS) detection. This recent hyphenated technique allows to overcome some disadvantages of MEEKC, namely its inherent incompatibility with MS detection. Important parameters like microemulsion (ME) composition, the composition of the sheath liquid and APPI-MS detection parameters have been investigated. Using the optimized set of parameters, the eight selected substances could be detected down to concentrations between 3 mg L(-1) (phenacetin) and 41 mg L(-1) (diltiazem). Switching to the MS2 mode, the use of specific transitions for the detection of each analyte provided improved detection limits in the range of 0.6 mg L(-1) (carbamazepine) to 6 mg L(-1) (metoprolol). Calibration curves were linear over one to two orders of magnitude with correlation coefficients better than 0.98. PMID:17416381

  4. Development of a cloud point extraction and preconcentration method for Cd and Ni prior to flame atomic absorption spectrometric determination

    Manzoori, Jamshid L. [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)]. E-mail: manzoori@tabrizu.ac.ir; Karim-Nezhad, Ghasem [Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2004-09-13

    In this work a new cloud point extraction (CPE) methodology was developed for the separation and preconcentration of cadmium and nickel. The analyte in the initial aqueous solution was complexed with dithizone and Triton X-114 was added as surfactant. After phase separation, based on the cloud point of the mixture, and dilution of the surfactant-rich phase with tetrahydrofuran (THF), the enriched analytes were determined by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions and preconcentration of only 10 ml of sample in the presence of 0.05% Triton X-114, the enhancement factors of 52 and 39 and the detection limits of 0.31 {mu}g l{sup -1} and 1.2 {mu}g l{sup -1} were obtained for cadmium and nickel respectively. The proposed method was applied satisfactorily to the determination of cadmium and nickel in water samples.

  5. Mass spectrometric methods for studying nutrient mineral and trace element absorption and metabolism in humans using stable isotopes: a review

    Mass spectrometric methods for determining stable isotopes of nutrient minerals and trace elements in human metabolic studies are described and discussed. The advantages and disadvantages of the techniques of electron ionization, fast atom bombardment, thermal ionization, and inductively coupled plasma and gas chromatography mass spectrometry are evaluated with reference to their accuracy, precision, sensitivity, and convenience, and the demands of human nutrition research. Examples of specific applications are described and the significance of current developments in mass spectrometry are discussed with reference to present and probable future research needs. (Author)

  6. Determination of trace elements in Egyptian cane sugar (Deshna Factories) by neutron activation, atomic absorption spectrophotometric and inductively coupled plasma-atomic emission spectrometric analysis

    Multielement instrumental neutron activation (INAA), inductively coupled plasma-atomic emission spectrometric (ICP-AES) and atomic absorption spectrophotometric (AAS) analyses were utilized for the determination of Ag, Al, As, Au, Ba, Be, Br, Ca, Cd, Ce, Cl, Co, Cr, Cu, Eu, Fe, Ga, Hf, K, La, Li, Lu, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Ti, U, V, W and Zn in sugar cane plant, raw juice, juice in different stages, syrup, deposits, molasses, A, B and C sugar, refinery 1 and 2 sugar, and in soil samples picked up from the immediate vicinity of the cane plant roots at surface, 30 and 60 cm depth, respectively. (author)

  7. Mass spectrometric detection of proteins in non-aqueous media : the case of prion proteins in biodiesel

    Douma, M.D.; Kerr, G.M.; Brown, R.S.; Keller, B.O.; Oleschuk, R.D. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2008-08-15

    This paper presented a filtration method for detecting protein traces in non-aqueous media. The extraction technique used a mixture of acetonitrile, non-ionic detergent and water along with filter disks with embedded C{sub 8}-modified silica particles to capture the proteins from non-aqueous samples. The extraction process was then followed by an elution of the protein from the filter disk and direct mass spectrometric detection and tryptic digestion with peptide mapping and MS/MS fragmentation of protein-specific peptides. The method was used to detect prion proteins in spiked biodiesel samples. A tryptic peptide with the sequence YGQGSPGGNR was used for unambiguous identification. Results of the study showed that the method is suitable for the large-scale testing of protein impurities in tallow-based biodiesel production processes. 33 refs., 6 figs.

  8. Atomic emission and atomic absorption spectrometric analysis of high-purity powders for the production of ceramics

    Direct analysis methods and multistage combined analytical procedures for the determination of impurities at the μg/g level and the upper ng/g level in high-purity powders of Al2O3, AlN, Si3N4 and SiC are described. Results obtained with a novel direct slurry-atomization technique using a Babington nebulizer and inductively coupled plasma optical emission spectrometry (ICP-OES) are presented. A comparison of analysis results of combined analytical procedures including wet chemical decomposition and determinations with graphite furnace atomic absorption spectrometry (ETAAS) or ICP-OES with those of slurry-atomization ICP-OES show the capabilities of this technique for routine analysis in production control. Detection limits for Al, B, Ca, Co, Cu, Fe, Mg, Mn, Si, Ti, W, V, and Zn in the matrices mentioned are between 0.03 and 2.5 μg/g. For elemental concentrations ≥10 μg/g relative standard deviations of the measurements are generally below 10%. The technique is shown to be a powerful tool for trace determinations in powder samples. This is shown by its use for analysis of a series of the ceramic powders mentioned and comparative results of other direct techniques such as total reflection X-ray fluorescence spectrometry and instrumental neutron activation analysis. (orig.)

  9. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations

    A preconcentration-separation technique for lead(II), cadmium(II), chromium(III), nickel(II) and manganese(II) ions has been established. The procedure is based on coprecipitation of these ions by the aid of Cu(II)-dibenzyldithiocarbamate precipitate. The precipitate was dissolved in 0.5 mL of concentrated HNO3, and made up to 5 mL with distilled water. The heavy metals were determined by flame atomic absorption spectrometer. The effects of analytical parameters like pH, amounts of reagents, sample volume, etc. on the recoveries of heavy metals were investigated. The influences of matrix ions were also examined. The detection limits for the heavy metals based on 3 sigma (N = 21) were found in the range of 0.34-0.87 μg L-1. In order to validate the proposed method, two certified reference materials of NIST SRM 2711 Montana soil and NIST SRM 1515 Apple leaves were analyzed with satisfactory results. The proposed method was applied for the determination of lead, cadmium, chromium, nickel and manganese in environmental samples

  10. Cloud Point Extraction and Flame Atomic Absorption Spectrometric Determination of Lead, Cadmium and Palladium in Some Food and Biological Samples

    M. Soylak

    2011-12-01

    Full Text Available The proposed method is based on the complexation of the Pb2+, Cd2+ and Pd2+ ions with 3-(1-(1-H-Indol-3-Yl-3-phenylallyl-1H-indole (IPAI at pH 8.0 in the presence of Triton X-114. The phase separation occured when micellar solution was heated at 55 ◦C. The surfactant-rich phase, diluted to 0.5 mL via 1.0 mol L−1 nitric acid in methanol was directly introduced into the nebulizer of the flame atomic absorption spectrometry (FAAS. Influence of variables such as pH, amount of ligand and Triton X-114, heating time and temperature were evaluated and optimized. The optimized enhancement factors for Pb2+, Cd2+ and Pd2+ ions were 22, 33 and 23, respectively and the detection limit (DLs was between of 1.6–2.6 µgL−1. The relative standard deviation (RSD of each ion was found to be less than 4.6% at 100 µgL−1. In addition, the calibration graphs were linear in the range of 0.01-0.22 μg mL−1 for Cd2+ ion, 0.018-0.26 μg mL−1 for Pb2+ ion and 0.02-0.27 μg mL−1 for Pd2+ ion with the correlation coefficients in the range of 0.995–0.999.

  11. Flame atomic absorption spectrometric determination of trace cadmium in alloys and biological samples after solid-liquid extraction and preconcentration with use of nitroso-S

    Cadmium is quantitatively retained by 2-nitroso-1-naphthol-4-sulfonic acid (nitroso-S) and tetradecyldimethylbenzylammonium chloride (TDBA) on microcrystalline naphthalene in the pH range 5.7-10.5 from a large volumes of aqueous solutions of various samples. After filtration, the solid mass consisting of cadmium complex and naphthalene is dissolved with 5 mL of dimethylformamide and the metal was determined by flame atomic absorption spectrometric. Cadmium complex can alternatively be quantitatively adsorbed on tetradecyldimethylbenzylammonium-naphthalene adsorbent packed in a column and determined similarly. About 25 ng of cadmium can be concentrated in a column from 500 mL of aqueous sample, where its concentration is as low as 0.05 ng/mL. Eight replicate determinations of 0.1 μg/mL of cadmium in final DMF solution gave a mean absorbance of 0.060 with a relative standard deviation of 1.8 %. The sensitivity for 1 % absorption was 7.3 ng/mL. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of cadmium in various alloys and biological samples. (author)

  12. Optical Path Length Calibration: A Standard Approach for Use in Absorption Cell-Based IR-Spectrometric Gas Analysis

    Javis Anyangwe Nwaboh; Oliver Witzel; Andrea Pogány; Olav Werhahn; Volker Ebert

    2014-01-01

    We employed a comparison method to determine the optical path length of gas cells which can be used in spectroscopic setup based on laser absorption spectroscopy or FTIR. The method is based on absorption spectroscopy itself. A reference gas cell, whose length is a priori known and desirably traceable to the international system of units (SI), and a gas mixture are used to calibrate the path length of a cell under test. By comparing spectra derived from pressure-dependent measurements on the ...

  13. Design of Optoelectric Detection Circuit for Difference Absorption Gas Sensor

    2006-01-01

    Since the gas infrared absorption spectrum linewidth is only several nanometers occupying the source intensity of several in a thousand, it is even less than the noise of light source. The signal of gas absorption is submerged in the noise, so it is impossible to measure the concentration of gas with spectrum absorption directly. According to the principle and parameters of difference absorption system of CH4 gas, a detection circuit consisted of the lock-in amplifier is designed. The experiment results indicated that the detection circuit can satisfy the demand of the whole system, and the limit concentration is 150×10-6.

  14. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection

    Justesen, U.; Knuthsen, Pia; Leth, Torben

    A high-performance liquid chromatographic (HPLC) separation method viith photo-diode array (PDA) and mass spectrometric (MS) detection was developed to determine and quantify flavonols, flavones, and flavanones in fruits, vegetables and beverages. The compounds were analysed as aglycones, obtained...

  15. Enrichment of trace amounts of copper(II) ions in water samples using octadecyl silica disks modified by a Schiff base ionophore prior to flame atomic absorption spectrometric determination

    Fathi, S.A.M. [Department of Chemistry, Faculty of Science, Zanjan University, PO Box 45195-313 Zanjan (Iran, Islamic Republic of); Yaftian, M.R. [Department of Chemistry, Faculty of Science, Zanjan University, PO Box 45195-313 Zanjan (Iran, Islamic Republic of)], E-mail: yaftian@znu.ac.ir

    2009-05-15

    Bis(5-bromo-2-hydroxybenzaldehyde)-1,2-propanediimine is synthesized by the reaction of 5-bromo-2-hydroxybenzaldehyde and 1,2-diaminopropane in ethanol. This ligand is used as a modifier of octadecyl silica disks for preconcentration of trace amounts of copper(II) ions, followed by nitric acid elution and flame atomic absorption spectrometric (FAAS) determination. The effect of parameters influencing the extraction efficiency, i.e. pH of the sample solutions, amount of the Schiff base, type and volume of stripping reagent, sample and eluent flow rates were evaluated. Under optimum experimental conditions, the capacity of the membrane disks modified by 4 mg of the ligand was found to be 247.7 ({+-}2.1) {mu}g of copper. The detection limit and the concentration factor of the presented method are 2.4 ng/l and greater than 400, respectively. The method was applied to the extraction, recovery and detection of copper in different synthetic and water samples.

  16. Quantitative analysis of sodium di-uranate for Al, Ca, Fe, Mg, Mn, Na by flame-atomic absorption spectrometric method

    Nuclear Fuel Complex (NFC) receives Sodium Di-Uranate (SDU) from Uranium Corporation of India Limited (UCIL) for producing sinterable UO2 pellets for manufacturing fuel sub assemblies. Several impurities present in ore find their way into SDU during its conversion. Stringent specification have been laid down by the reactor designs for achieving the optimum performance of the fuel and several impurity element like Al, Ca, Fe, Mg, Mn, Na among others affects severely performance of UO2 fuel. Most of the impurity including the above mentioned elements are generally analysed by ICP-OES method. However, determination of Al, Ca, Fe, Mg, Mn and Na by ICP-OES requires lot of dilution as they are present at high levels in SDU. Apart from introducing dilution error, dilution process is very tedious and time consuming work and not a preferred choice in an industrial lab like control lab where large analytical load exists and time bound analysis is a requirement. To avoid these difficulties a simple and reliable Flame Atomic absorption spectrometric technique has been developed for regular analysis. Present method involves dissolution of SDU sample in Conc. HNO3 and after the complete dissolution the sample solution has been evaporated to near dryness on a hot plate. Subsequently sample solution has been brought into 4N HNO3 medium

  17. A new detection of LYα absorption from the heliotail

    We present new Hubble Space Telescope observations of H I Lyα absorption toward the F8 V star HD 35296. This line of sight is only a few degrees from the downwind direction of the local interstellar medium flow vector. As a consequence, Lyα absorption from the heliotail is detected in the spectrum, consistent with three previous downwind detections of heliotail absorption. The clustering of the heliotail absorption detections around the downwind direction demonstrates that the heliotail is pointed close to that direction, limiting the extent to which the interstellar magnetic field might be distorting and deflecting the heliotail. We explore this issue further using three-dimensional MHD models of the global heliosphere. The three computed models represent the first three-dimensional MHD models with both a kinetic treatment of neutrals and an extended grid in the tail direction, both of which are necessary to model Lyα absorption downwind. The models indicate only modest heliotail asymmetries and deflections, which are not large enough to be inconsistent with the clustering of heliotail absorption detections around the downwind direction. The models are reasonably successful at reproducing the observed absorption, but they do overpredict the Lyα opacity by a factor of 2-3. We discuss implications of these results in light of observations of the heliotail region from the Interstellar Boundary Explorer mission.

  18. Detection of sodium absorption in WASP-17b with Magellan

    Zhou, G

    2012-01-01

    We present the detection of sodium absorption in the atmosphere of the extrasolar planet WASP-17b, an inflated 'hot-Jupiter' in a tight orbit around an F6 dwarf. In-transit observations of WASP-17 made with the MIKE spectrograph on the 6.5-m Magellan Telescope were analysed for excess planetary atmospheric absorption in the sodium I 'D' doublet spectral region. Using the interstellar sodium absorption lines as reference, we detect an excess 0.58 \\pm 0.13 per cent transit signal, with 4.5{\\sigma} confidence, at 1.5 {\\AA} bandwidth around the stellar sodium absorption feature. This result is consistent with the previous VLT detection of sodium in WASP-17b, confirming that the planet has a highly inflated atmosphere.

  19. Standard test method for graphite furnace atomic absorption spectrometric determination of lead and cadmium extracted from ceramic foodware

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This test method covers procedures for using graphite furnace atomic absorption spectroscopy (GFAAS) to quantitatively determine lead and cadmium extracted by acetic acid at room temperature from the food-contact surface of foodware. The method is applicable to food-contact surfaces composed of silicate-based materials (earthenware, glazed ceramicware, decorated ceramicware, decorated glass, and lead crystal glass) and is capable of determining lead concentrations greater than 0.005 to 0.020 g/mL and cadmium concentrations greater than 0.0005 to 0.002 g/mL, depending on instrument design. 1.2 This test method also describes quality control procedures to check for contamination and matrix interference during GFAAS analyses and a specific sequence of analytical measurements that demonstrates proper instrument operation during the time period in which sample solutions are analyzed. 1.3 Cleaning and other contamination control procedures are described in this test method. Users may modify contamination cont...

  20. Laser-based ultraviolet absorption detection in capillary electrophoresis

    Laser-based UV absorption in capillary electrophoresis is demonstrated. The use of vacuum photodiodes and an all-electronic noise canceller provides adequate baseline stability despite the large inherent intensity noise in UV lasers. A 4-fold improvement in the detection limit is achieved in comparison to that of commercial instruments. The main advantage here is the better optical coupling with small capillary tubes, maximizing the available optical pathlength for absorption

  1. A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS).

    Unwin, Richard D; Griffiths, John R; Whetton, Anthony D

    2009-01-01

    The application of a targeted mass spectrometric workflow to the sensitive identification of post-translational modifications is described. This protocol employs multiple reaction monitoring (MRM) to search for all putative peptides specifically modified in a target protein. Positive MRMs trigger an MS/MS experiment to confirm the nature and site of the modification. This approach, termed MIDAS (MRM-initiated detection and sequencing), is more sensitive than approaches using neutral loss scanning or precursor ion scanning methodologies, due to a more efficient use of duty cycle along with a decreased background signal associated with MRM. We describe the use of MIDAS for the identification of phosphorylation, with a typical experiment taking just a couple of hours from obtaining a peptide sample. With minor modifications, the MIDAS method can be applied to other protein modifications or unmodified peptides can be used as a MIDAS target. PMID:19444244

  2. Simultaneous Preconcentration of Copper, Nickel, Cobalt and Lead Ions Prior to Their Flame Atomic Absorption Spectrometric Determination

    A sensitive and simple method for the simultaneous preconcentration of nutritionally important minerals in real samples has been reported. The method is based on the adsorption of Cu2+, Ni2+, Co2+ and Pb2+ on 4-propyl-2-thiouracil (PUT) loaded on activated carbon. The metals on the complexes are eluted using 5 mL 3 M HNO3 in acetone. The influences of the analytical parameters including pH and sample volume were investigated. The effects of matrix ions on the retentions of the analytes were also examined. The recoveries of analytes were generally higher than 95 %. The detection limits for Cu2+, Ni2+, Co2+ and Pb2+ were 1.6, 1.3, 1.2, 2.3 ng ml-1, respectively. The method has been successfully applied for these metals content evaluation in some real samples including natural water samples

  3. A Mass Spectrometric Analysis Method Based on PPCA and SVM for Early Detection of Ovarian Cancer

    Jiang Wu

    2016-01-01

    Full Text Available Background. Surfaced-enhanced laser desorption-ionization-time of flight mass spectrometry (SELDI-TOF-MS technology plays an important role in the early diagnosis of ovarian cancer. However, the raw MS data is highly dimensional and redundant. Therefore, it is necessary to study rapid and accurate detection methods from the massive MS data. Methods. The clinical data set used in the experiments for early cancer detection consisted of 216 SELDI-TOF-MS samples. An MS analysis method based on probabilistic principal components analysis (PPCA and support vector machine (SVM was proposed and applied to the ovarian cancer early classification in the data set. Additionally, by the same data set, we also established a traditional PCA-SVM model. Finally we compared the two models in detection accuracy, specificity, and sensitivity. Results. Using independent training and testing experiments 10 times to evaluate the ovarian cancer detection models, the average prediction accuracy, sensitivity, and specificity of the PCA-SVM model were 83.34%, 82.70%, and 83.88%, respectively. In contrast, those of the PPCA-SVM model were 90.80%, 92.98%, and 88.97%, respectively. Conclusions. The PPCA-SVM model had better detection performance. And the model combined with the SELDI-TOF-MS technology had a prospect in early clinical detection and diagnosis of ovarian cancer.

  4. During air cool process aerosol absorption detection with photothermal interferometry

    Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang

    2014-11-01

    This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.

  5. Cloud point extraction and flame atomic absorption spectrometric determination of trace lead in freshwater fish%浊点萃取-火焰原子吸收光谱法测定淡水鱼中痕量铅

    王秀峰; 李龙; 张春丽; 林朋; 崔书亚

    2012-01-01

    采用以双硫腙为络合剂、Triton X- 100为表面活性剂的新型浊点萃取体系富集淡水鱼中的痕量铅,并用火焰原子吸收光谱法对其进行测定.探讨了溶液pH、表面活性剂浓度、络合剂用量、平衡温度、平衡时间等对浊点萃取及测定灵敏度的影响,优化了实验条件.在最佳条件下测得铅的检出限为0.090μg/L,校准曲线相关系数为0.9999.该方法已用于淡水鱼中痕量铅的测定.%A new cloud point extraction-flame atomic absorption spectrometric method has been developed to determine trace lead. Dithizone was selected as the complex reagent and Triton X - 100 as the surfactant. Effects of pH, concentrations of surfactant and complex reagent, equilibrium temperature and time on the efficiency and sensitivity of cloud point extraction were investigated. Under optimal conditions, the calibration curve was linear over the concentration range of 0. 1 - 60μg/L with correlation coefficient of 0. 9999 and detection limit of 0. 090 μg/L. The present method was applied to the determination of trace lead in freshwater fish samples with satisfactory results.

  6. Determination of rare earth elements by liquid chromatographic separation using inductively coupled plasma mass spectrometric detection

    High-performance liquid chromatography (HPLC) is used to separate the rare earth elements (REEs) prior to detection by inductively coupled plasma mass spectrometry (ICP-MS). The use of HPLC-ICP-MS in series combines the separation power and speed of HPLC with the sensitivity, isotopic selectivity and speed of ICP-MS. The detection limits for the REEs are in the sub-ng ml-1 range and the response is linear over four orders of magnitude. A preliminary comparison of isotope dilution and external standard results for the determination of REEs in National Institute of Standards and Technology (NIST) Standard Reference Material (SRM 1633a) Fly Ash is presented. (author)

  7. A small azide-modified thiazole-based reporter molecule for fluorescence and mass spectrometric detection

    Stefanie Wolfram

    2014-10-01

    Full Text Available Molecular probes are widely used tools in chemical biology that allow tracing of bioactive metabolites and selective labeling of proteins and other biomacromolecules. A common structural motif for such probes consists of a reporter that can be attached by copper(I-catalyzed 1,2,3-triazole formation between terminal alkynes and azides to a reactive headgroup. Here we introduce the synthesis and application of the new thiazole-based, azide-tagged reporter 4-(3-azidopropoxy-5-(4-bromophenyl-2-(pyridin-2-ylthiazole for fluorescence, UV and mass spectrometry (MS detection. This small fluorescent reporter bears a bromine functionalization facilitating the automated data mining of electrospray ionization MS runs by monitoring for its characteristic isotope signature. We demonstrate the universal utility of the reporter for the detection of an alkyne-modified small molecule by LC–MS and for the visualization of a model protein by in-gel fluorescence. The novel probe advantageously compares with commercially available azide-modified fluorophores and a brominated one. The ease of synthesis, small size, stability, and the universal detection possibilities make it an ideal reporter for activity-based protein profiling and functional metabolic profiling.

  8. Transient C IV Broad Absorption Lines in radio detected QSOs

    Vivek, M; Gupta, N

    2015-01-01

    We study the transient (i.e. emerging or disappearing) C IV broad absorption line (BAL) components in 50 radio detected QSOs using multi-epoch spectra available in Sloan Digital Sky Survey DR10. We report the detectionof 6 BALQSOs having at least one distinct transient C IV absorption component. Based on the structure function analysis of optical light curves, we suggest that the transient absorption is unlikely to be triggered by continuum variations. Transient absorption components usually have low C IV equivalent widths ( 10000 \\kms) and typically occur over rest-frame timescales > 800 days. The detection rate of transient C IV absorption seen in our sample is higher than that reported in the literature. Using a control sample of QSOs, we show that this difference is most likely due to the longer monitoring time-scale of sources in our sample while the effect of small number statistics cannot be ignored. Thus, in order to establish the role played by radio jets in driving the BAL outflows, we need a larger...

  9. Determination of suvorexant in human plasma using 96-well liquid-liquid extraction and HPLC with tandem mass spectrometric detection.

    Breidinger, S A; Simpson, R C; Mangin, E; Woolf, E J

    2015-10-01

    A method, using liquid chromatography with tandem mass spectrometric detection (LC-MS/MS), was developed for the determination of suvorexant (MK-4305, Belsomra(®)), a selective dual orexin receptor antagonist for the treatment insomnia, in human plasma over the concentration range of 1-1000ng/mL. Stable isotope labeled (13)C(2)H3-suvorexant was used as an internal standard. The sample preparation procedure utilized liquid-liquid extraction, in the 96-well format, of a 100μL plasma sample with methyl t-butyl ether. The compounds were chromatographed under isocratic conditions on a Waters dC18 (50×2.1mm, 3μm) column with a mobile phase consisting of 30/70 (v/v %) 10mM ammonium formate, pH3/acetonitrile at a flow rate of 0.3mL/min. Multiple reaction monitoring of the precursor-to-product ion pairs for suvorexant (m/z 451→186) and (13)C(2)H3-suvorexant (m/z 455→190) on an Applied Biosystems API 4000 tandem mass spectrometer was used for quantitation. Intraday assay precision, assessed in six different lots of control plasma, was within 10% CV at all concentrations, while assay accuracy ranged from 95.6 to 105.0% of nominal. Quality control (QC) samples in plasma were stored at -20°C. Initial within day analysis of QCs after one freeze-thaw cycle showed accuracy within 9.5% of nominal with precision (CV) of 6.7% or less. The plasma QC samples were demonstrated to be stable for up to 25 months at -20°C. The method described has been used to support clinical studies during Phase I through III of clinical development. PMID:26343269

  10. MALDI-TOF mass spectrometric detection of multiplex single base extended primers

    Mengel-From, Jonas; Sanchez Sanchez, Juan Jose; Børsting, Claus;

    2004-01-01

    One of the most promising techniques for typing of multiple single-nucleotide polymorphism (SNP) is detection of single base extension primers (SBE) by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). We present a new MALDI-TOF MS protocol for typing of...... triethylamine purification. The biotin-labeled ddNTPs contained linkers with different masses ensuring a clear separation of the alleles even for SBE primers with a mass of 10 300 Da. Furthermore, only 25-350 fmol of SBE primers were necessary in order to obtain reproducible MALDI-TOF spectra. Similar signal...... intensities were obtained in the 5500-10 300 m/z mass range by increasing the concentration of the longer SBE primers in the reaction. To validate the technique, 17 Y-chromosome SNPs were analyzed in 200 males. The precision and accuracy of the mass determination were analyzed by parametric statistic, and the...

  11. Simulation for photon detection in spectrometric system of high purity (HPGe) using MCNPX code

    The Brazilian National Commission of Nuclear Energy defines parameters for classification and management of radioactive waste in accordance with the activity of materials. The efficiency of a detection system is crucial to determine the real activity of a radioactive source. When it's possible, the system's calibration should be performed using a standard source. Unfortunately, there are only a few cases that it can be done this way, considering the difficulty of obtaining appropriate standard sources for each type of measurement. So, computer simulations can be performed to assist in calculating of the efficiency of the system and, consequently, also auxiliary the classification of radioactive waste. This study aims to model a high purity germanium (HPGe) detector with MCNPX code, approaching the spectral values computationally obtained of the values experimentally obtained for the photopeak of 137Cs. The approach will be made through changes in outer dead layer of the germanium crystal modeled. (author)

  12. Application of a Mass Spectrometric Approach to Detect the Presence of Fatty Acid Biosynthetic Phosphopeptides.

    Lau, Benjamin Yii Chung; Clerens, Stefan; Morton, James D; Dyer, Jolon M; Deb-Choudhury, Santanu; Ramli, Umi Salamah

    2016-04-01

    The details of plant lipid metabolism are relatively well known but the regulation of fatty acid production at the protein level is still not understood. Hence this study explores the importance of phosphorylation as a mechanism to control the activity of fatty acid biosynthetic enzymes using low and high oleic acid mesocarps of oil palm fruit (Elaeis guineensis variety of Tenera). Adaptation of neutral loss-triggered tandem mass spectrometry and selected reaction monitoring to detect the neutral loss of phosphoric acid successfully found several phosphoamino acid-containing peptides. These peptides corresponded to the peptides from acetyl-CoA carboxylase and 3-enoyl-acyl carrier protein reductase as identified by their precursor ion masses. These findings suggest that these enzymes were phosphorylated at 20th week after anthesis. Phosphorylation could have reduce their activities towards the end of fatty acid biosynthesis at ripening stage. Implication of phosphorylation in the regulation of fatty acid biosynthesis at protein level has never been reported. PMID:26993480

  13. Graphite furnace and hydride generation atomic absorption spectrometric determination of cadmium, lead, and tin traces in natural surface waters: Study of preconcentration technique performance

    In this study three major types of preconcentration methods based upon different principles (cation exchange, physical absorption and hydrophobic extraction) were evaluated and optimized for the extraction and determination of three highly toxic heavy metals namely Cd, Pb and Sn by graphite furnace and hybrid generation atomic absorption spectrometry in real samples. The optimum analytical conditions were examined and the analytical features of each method were revealed and compared. Detection limits as low as 0.003-0.025 μg L-1 for Cd2+, 0.05-0.10 μg L-1 for Pb2+ and 0.1-0.25 μg L-1 for Sn4+ depending on the extraction method were obtained with RSD values between 3.08% and 6.11%. A preliminary assessment of the pollution status of three important natural ecosystems in Epirus region (NW Greece) was performed and some early conclusions were drawn and discussed

  14. Searching for Dark Absorption with Direct Detection Experiments

    Bloch, Itay M.; Essig, Rouven(C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY, 11794, U.S.A.); Tobioka, Kohsaku; Volansky, Tomer; Yu, Tien-Tien

    2016-01-01

    We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experi...

  15. Novel CE-MS technique for detection of high explosives using perfluorooctanoic acid as a MEKC and mass spectrometric complexation reagent.

    Brensinger, Karen; Rollman, Christopher; Copper, Christine; Genzman, Ashton; Rine, Jacqueline; Lurie, Ira; Moini, Mehdi

    2016-01-01

    To address the need for the forensic analysis of high explosives, a novel capillary electrophoresis mass spectrometry (CE-MS) technique has been developed for high resolution, sensitivity, and mass accuracy detection of these compounds. The technique uses perfluorooctanoic acid (PFOA) as both a micellar electrokinetic chromatography (MEKC) reagent for separation of neutral explosives and as the complexation reagent for mass spectrometric detection of PFOA-explosive complexes in the negative ion mode. High explosives that formed complexes with PFOA included RDX, HMX, tetryl, and PETN. Some nitroaromatics were detected as molecular ions. Detection limits in the high parts per billion range and linear calibration responses over two orders of magnitude were obtained. For proof of concept, the technique was applied to the quantitative analysis of high explosives in sand samples. PMID:26666592

  16. Anti-aggregation-based spectrometric detection of Hg(II) at physiological pH using gold nanorods.

    Rajeshwari, A; Karthiga, D; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2016-10-01

    An efficient detection method for Hg (II) ions at physiological pH (pH7.4) was developed using tween 20-modified gold nanorods (NRs) in the presence of dithiothreitol (DTT). Thiol groups (-SH) at the end of DTT have a higher affinity towards gold atoms, and they can covalently interact with gold NRs and leads to their aggregation. The addition of Hg(II) ions prevents the aggregation of gold NRs due to the covalent bond formation between the -SH group of DTT and Hg(II) ions in the buffer system. The changes in the longitudinal surface plasmon resonance peak of gold NRs were characterized using a UV-visible spectrophotometer. The absorption intensity peak of gold NRs at 679nm was observed to reduce after interaction with DTT, and the absorption intensity was noted to increase by increasing the concentration of Hg(II) ions. The TEM analysis confirms the morphological changes of gold NRs before and after addition of Hg(II) ions in the presence of DTT. Further, the aggregation and disaggregation of gold NRs were confirmed by particle size and zeta potential analysis. The developed method shows an excellent linearity (y=0.001x+0.794) for the graph plotted between the absorption ratio and Hg(II) concentration (1 to 100pM) under the optimized conditions. The limit of detection was noted to be 0.42pM in the buffer system. The developed method was tested in simulated body fluid, and it was found to have a good recovery rate. PMID:27287171

  17. Detecting Ultralight Bosonic Dark Matter via Absorption in Superconductors

    Hochberg, Yonit; Zurek, Kathryn M

    2016-01-01

    Superconducting targets have recently been proposed for the direct detection of dark matter as light as a keV, via elastic scattering off conduction electrons in Cooper pairs. Detecting such light dark matter requires sensitivity to energies as small as the superconducting gap of O(meV). Here we show that these same superconducting devices can detect much lighter DM, of meV to eV mass, via dark matter absorption on a conduction electron, followed by emission of an athermal phonon. We demonstrate the power of this setup for relic kinetically mixed hidden photons, pseudoscalars, and scalars, showing the reach can exceed current astrophysical and terrestrial constraints with only a moderate exposure.

  18. Remote Detection of Iodine By using Differential Absorption Lidar

    Differential absorption lidar (DIAL) is frequently used for atmospheric gas monitoring to detect impurities such as nitrogen dioxide, sulfur dioxide, iodine, and ozone. In this paper, DIAL technique of using remote sensing experiment is performed in the previous step. Radioactive iodine emitted by nuclear plants, however, is not frequently measured using DIAL because of the difficulty in preparing samples and its dangerous characteristics. In this paper, we configurated the DIAL system in our laboratory. A head detect the iodine gas of air and detect the iodine gas of cell in the distance of 90m. To lock the frequency of Nd:YAG laser, the iodine cell was used for discriminator. We acquired the signals from iodine cell by various frequency locking ratio that were from 0.1 to 0.9 by steps of 0.1. In the paper, we confirmed that the signals from the iodine target cell was proportional to the frequency locking ratio of the laser. For the iodine measurement, the transmission ratio using the injection-seeded laser is locked to 0.9 (off line) and 0.1 (on line) on the edges of the iodine absorption line to stabilize the frequency. The DIAL measurements were performed using a target iodine cell in the laboratory. We confirmed that the on- to off-line ratio decreased after the laser passed through the iodine cell

  19. First Detection of HCO$^+$ Absorption in the Magellanic System

    Murray, Claire E; McClure-Griffiths, N M; Putman, M E; Liszt, H S; Wong, Tony; Richter, P; Dawson, J R; Dickey, John M; Lindner, Robert R; Babler, Brian L; Allison, J R

    2015-01-01

    We present the first detection of HCO$^+$ absorption in the Magellanic System. Using the Australia Telescope Compact Array (ATCA), we observed 9 extragalactic radio continuum sources behind the Magellanic System and detected HCO$^+$ absorption towards one source located behind the leading edge of the Magellanic Bridge. The detection is located at LSR velocity of $v=214.0 \\pm 0.4\\rm\\,km\\,s^{-1}$, with a full width at half maximum of $\\Delta v=4.5\\pm 1.0\\rm\\,km\\,s^{-1}$ and optical depth of $\\tau(\\rm HCO^+)=0.10\\pm 0.02$. Although there is abundant neutral hydrogen (HI) surrounding the sightline in position-velocity space, at the exact location of the absorber the HI column density is low, $<10^{20}\\rm\\,cm^{-2}$, and there is little evidence for dust or CO emission from Planck observations. While the origin and survival of molecules in such a diffuse environment remains unclear, dynamical events such as HI flows and cloud collisions in this interacting system likely play an important role.

  20. First Detection of HCO+ Absorption in the Magellanic System

    Murray, Claire E.; Stanimir´, Snežana; McClure-Griffiths, N. M.; Putman, M. E.; Liszt, H. S.; Wong, Tony; Richter, P.; Dawson, J. R.; Dickey, John M.; Lindner, Robert R.; Babler, Brian L.; Allison, J. R.

    2015-07-01

    We present the first detection of HCO+ absorption in the Magellanic System. Using the ATCA, we observed nine extragalactic radio continuum sources behind the Magellanic System and detected HCO+ absorption toward one source located behind the leading edge of the Magellanic Bridge. The detection is located at an LSR velocity of v=214.0+/- 0.4 {km} {{{s}}}-1, with an FWHM of {{Δ }}v=4.5+/- 1.0 {km} {{{s}}}-1, and an optical depth of τ ({{HCO}}+)=0.10+/- 0.02. Although there is abundant neutral hydrogen (H i) surrounding the sight line in position-velocity space, at the exact location of the absorber the H i column density is low, \\lt {10}20 {{cm}}-2, and there is little evidence for dust or CO emission from Planck observations. While the origin and survival of molecules in such a diffuse environment remain unclear, dynamical events such as H i flows and cloud collisions in this interacting system likely play an important role.

  1. Atomic absorption spectrometric determination of some metal ions after preconcentration by solid phase extraction using amberlite XAD 16 resin loaded with thenoyltrifluoroacetone

    Complete text of publication follows. The direct determination of extremely low concentrations of trace elements by modern atomic spectroscopic methods, such as atomic absorption spectrometry and inductively coupled plasma atomic emission spectrometry is often difficult because of insufficient sensitivity and selectivity of the methods used. For this reason, the preliminary separation and preconcentration of trace elements from the matrix are often required. Solid phase extraction shows several major advantages such as simplicity, rapidity and high enrichment factor, the ability of combination with different detection techniques in the form of on-line or off-line mode and finally cost saving (Tokalioglu et al., Microchim Acta 164 (2009) 471-477.). A new solid phase extraction method for the separation and preconcentration of Cu(II), Pb(II), Ni(II), Co(II), Mn(II) and Fe(III) ions was developed. As solid phase material, Amberlite XAD-16 resin loaded with thenoyltrifluoroacetone (TTA) was used. For this purpose, 0.5 g of the resin was saturated with 10 mL of 0.5% (w/v) TTA solution. After preconcentrating, the metals retained on the resin were eluted with 10 mL of 2 mol L-1 HCl and then determined by flame atomic absorption spectrometry. The effect of some parameters for the preconcentration of the metal ions was investigated. The optimum pH was found as 6. Eluent for quantitative elution was 10 mL of 2 mol L-1 HCl.

  2. Geração eletroquímica do hidreto de selênio em sistema de injeção em fluxo com detecção por espectrometria de absorção atômica com chama Ar-Glp Electrochemical hydride generation for selenium determination in a flow injection system with Air-GLP flame atomic absorption spectrometric detection

    Luís Fernando Rebel Machado; Antonio Octavio Jacintho; Maria Fernanda Giné

    2000-01-01

    This paper presents a system for electrochemical hydride generation using flow-injection and atomic absorption spectrometry to determine selenium in biological materials. The electrolytic cell was constructed by assembling two reservoirs, one for the sample and the other for the electrolytic solution separated by a Nafion membrane. Each compartment had a Pt electrode. The sample and electrolyte flow-rates, acidic media, and applied current were adjusted to attain the best analytical performan...

  3. Selective cloud point extraction and preconcentration of trace amounts of silver as a dithizone complex prior to flame atomic absorption spectrometric determination

    Manzoori, Jamshid L.; Karim-Nezhad, Ghasem

    2003-05-19

    Dithizone (diphenylthiocarbazone) was used as a complexing agent in cloud point extraction for the first time and applied for selective preconcentration of trace amounts of silver. The analyte in the initial aqueous solution was acidified with sulfuric acid (pH<1) and Triton X-114 was added as a surfactant. After phase separation, based on the cloud point separation of the mixture, the surfactant rich phase was diluted with tetrahydrofuran (THF) and the analyte determined in the enriched solution by flame atomic absorption spectrometry. After optimization of the complexation and extraction conditions, a preconcentration factor of 43 was obtained for only 10 ml of sample. The analytical curve was linear in the range of 3-200 ng ml{sup -1} and the limit of detection was 0.56 ng ml{sup -1}. The proposed method was applied to the determination of silver in water samples.

  4. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    Hanley, Traci A.; Saadawi, Ryan; Zhang, Peng; Caruso, Joseph A.; Landero-Figueroa, Julio

    2014-10-01

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV-VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag+) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg- 1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm.

  5. Separation of silver ions and starch modified silver nanoparticles using high performance liquid chromatography with ultraviolet and inductively coupled mass spectrometric detection

    The production of commercially available products marketed to contain silver nanoparticles is rapidly increasing. Species-specific toxicity is a phenomenon associated with many elements, including silver, making it imperative to develop a method to identify and quantify the various forms of silver (namely, silver ions vs. silver nanoparticles) possibly present in these products. In this study a method was developed using high performance liquid chromatography (HPLC) with ultraviolet (UV–VIS) and inductively coupled mass spectrometric (ICP-MS) detection to separate starch stabilized silver nanoparticles (AgNPs) and silver ions (Ag+) by cation exchange chromatography with 0.5 M nitric acid mobile phase. The silver nanoparticles and ions were baseline resolved with an ICP-MS response linear over four orders of magnitude, 0.04 mg kg−1 detection limit, and 90% chromatographic recovery for silver solutions containing ions and starch stabilized silver nanoparticles smaller than 100 nm

  6. Determination of Palladium in Resin by Lead Fire Assaying-Flame Atomic Absorption Spectrometric Method%铅试金富集-火焰原子吸收光谱法测定树脂中钯

    王芳; 陈小兰; 林海山; 李小玲; 肖红新

    2013-01-01

    通过铅试金富集树脂中的钯并用银作钯灰吹保护,得到的银钯合粒用王水溶解,在5%的盐酸介质中,采用原子吸收光谱法测定钯,该法测钯的相对标准偏差RSD为0.53%,加标回收率在99.04%~100.10%之间。%Palladium in resin was enriched by lead assaying, using silver as a protective agent to produce silver-palladium alloy, and then the alloy was dissolved in aqua regia. Air acetylene flame atomic absorption spectrometric method was used to determinate palladium in 5%hydrochloric acid solution. The relative standard deviation (RSD) in determination of palladium is 0.53%and the recovery rate is between 99.04%~100.10%.

  7. Searching for Dark Absorption with Direct Detection Experiments

    Bloch, Itay M; Tobioka, Kohsaku; Volansky, Tomer; Yu, Tien-Tien

    2016-01-01

    We consider the absorption by bound electrons of dark matter in the form of dark photons and axion-like particles, as well as of dark photons from the Sun, in current and next-generation direct detection experiments. Experiments sensitive to electron recoils can detect such particles with masses between a few eV to more than 10 keV. For dark photon dark matter, we update a previous bound based on XENON10 data and derive new bounds based on data from XENON100 and CDMSlite. We find these experiments to disfavor previously allowed parameter space. Moreover, we derive sensitivity projections for SuperCDMS at SNOLAB for silicon and germanium targets, as well as for various possible experiments with scintillating targets (cesium iodide, sodium iodide, and gallium arsenide). The projected sensitivity can probe large new regions of parameter space. For axion-like particles, the same current direction detection data improves on previously known direct-detection constraints but does not bound new parameter space beyond...

  8. Detection of electron paramagnetic resonance absorption using frequency modulation

    Hirata, Hiroshi; Kuyama, Toshifumi; Ono, Mitsuhiro; Shimoyama, Yuhei

    2003-10-01

    A frequency modulation (FM) method was developed to measure electron paramagnetic resonance (EPR) absorption. The first-derivative spectrum of 1,1-diphenyl-2-picrylhydrazyl (DPPH) powder was measured with this FM method. Frequency modulation of up to 1.6 MHz (peak-to-peak) was achieved at a microwave carrier frequency of 1.1 GHz. This corresponds to a magnetic field modulation of 57 μT (peak-to-peak) at 40.3 mT. By using a tunable microwave resonator and automatic control systems, we achieved a practical continuous-wave (CW) EPR spectrometer that incorporates the FM method. In the present experiments, the EPR signal intensity was proportional to the magnitude of frequency modulation. The background signal at the modulation frequency (1 kHz) for EPR detection was also proportional to the magnitude of frequency modulation. An automatic matching control (AMC) system reduced the amplitude of noise in microwave detection and improved the baseline stability. Distortion of the spectral lineshape was seen when the spectrometer settings were not appropriate, e.g., with a lack of the open-loop gain in automatic tuning control (ATC). FM is an alternative to field modulation when the side-effect of field modulation is detrimental for EPR detection. The present spectroscopic technique based on the FM scheme is useful for measuring the first derivative with respect to the microwave frequency in investigations of electron-spin-related phenomena.

  9. Validation of a method to the addition the multiple standard in the analysis of Pb in reservoir waters for atomic absorption spectrometric

    The evaluation of a method is presented for the analysis of Pb in reservoir waters for atomic spectrometric with direct aspiration. For the validation of the analytic method a level of concentration of 0.05 mg/L was evaluated. The precision of the method was of 9.97% and the bias was 0.6% 8 samples of surface waters they were collected and of bottom of the tributaries of the reservoir Scorpions and the stocking of the concentrations in the tributaries was from 0,052 +- 0.026 inferior mg/L to the established one in the Cuban norm of evaluation of the hydirc objects of fishing use

  10. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Shokrollahi, Ardeshir [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Niknam, Khodabakhsh [Chemistry Department, Persian Gulf University, Bushehr (Iran, Islamic Republic of); Niknam, Ebrahim; Najibi, Asma [Chemistry Department, Yasouj University, Yasouj 75914-353 (Iran, Islamic Republic of); Soylak, Mustafa [Chemistry Department, University of Erciyes, 38039 Kayseri (Turkey)

    2009-09-15

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L{sup -1} HNO{sub 3} was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL{sup -1} for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +} along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd{sup 2+}, Pb{sup 2+}, Pd{sup 2+} and Ag{sup +}, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  11. Ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometric for selenium speciation in foods and beverages.

    Tuzen, Mustafa; Pekiner, Ozlem Zeynep

    2015-12-01

    A rapid and environmentally friendly ultrasound assisted ionic liquid dispersive liquid liquid microextraction (USA-IL-DLLME) was developed for the speciation of inorganic selenium in beverages and total selenium in food samples by using graphite furnace atomic absorption spectrometry. Some analytical parameters including pH, amount of complexing agent, extraction time, volume of ionic liquid, sample volume, etc. were optimized. Matrix effects were also investigated. Enhancement factor (EF) and limit of detection (LOD) for Se(IV) were found to be 150 and 12 ng L(-1), respectively. The relative standard deviation (RSD) was found 4.2%. The accuracy of the method was confirmed with analysis of LGC 6010 Hard drinking water and NIST SRM 1573a Tomato leaves standard reference materials. Optimized method was applied to ice tea, soda and mineral water for the speciation of Se(IV) and Se(VI) and some food samples including beer, cow's milk, red wine, mixed fruit juice, date, apple, orange, grapefruit, egg and honey for the determination of total selenium. PMID:26041239

  12. Cloud point extraction and flame atomic absorption spectrometric determination of cadmium(II), lead(II), palladium(II) and silver(I) in environmental samples

    The phase-separation phenomenon of non-ionic surfactants occurring in aqueous solution was used for the extraction of cadmium(II), lead(II), palladium(II) and silver(I). The analytical procedure involved the formation of understudy metals complex with bis((1H-benzo [d] imidazol-2yl)ethyl) sulfane (BIES), and quantitatively extracted to the phase rich in octylphenoxypolyethoxyethanol (Triton X-114) after centrifugation. Methanol acidified with 1 mol L-1 HNO3 was added to the surfactant-rich phase prior to its analysis by flame atomic absorption spectrometry (FAAS). The concentration of BIES, pH and amount of surfactant (Triton X-114) was optimized. At optimum conditions, the detection limits of (3 sdb/m) of 1.4, 2.8, 1.6 and 1.4 ng mL-1 for Cd2+, Pb2+, Pd2+ and Ag+ along with preconcentration factors of 30 and enrichment factors of 48, 39, 32 and 42 for Cd2+, Pb2+, Pd2+ and Ag+, respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as radiology waste, vegetable, blood and urine samples.

  13. A biosorption system for metal ions on Penicillium italicum - loaded on Sepabeads SP 70 prior to flame atomic absorption spectrometric determinations

    A solid phase extraction (SPE) preconcentration system, coupled to a flame atomic absorption spectrometer (FAAS), was developed for the determination of copper(II), cadmium(II), lead(II), manganese(II), iron(III), nickel(II) and cobalt(II) ions at the μg L-1 levels on Penicillium italicum - loaded on Sepabeads SP 70. The analytes were adsorbed on biosorbent at the pH range of 8.5-9.5. The adsorbed metals were eluted with 1 mol L-1 HCl. The influences of the various analytical parameters including pH of the aqueous solutions, sample volume, flow rates were investigated for the retentions of the analyte ions. The recovery values are ranged from 95-102%. The influences of alkaline, earth alkaline and some transition metal ions were also discussed. Under the optimized conditions, the detection limits (3 s, n = 21) for analytes were in the range of 0.41 μg L-1 (cadmium) and 1.60 μg L-1 (iron). The standard reference materials (IAEA 336 Lichen, NIST SRM 1573a Tomato leaves) were analyzed to verify the proposed method. The method was successfully applied for the determinations of analytes in natural water, cultivated mushroom, lichen (Bryum capilare Hedw), moss (Homalothecium sericeum) and refined table salt samples

  14. Flame atomic absorption spectrometric determination of μg amounts of Fe (III) ions after solid phase extraction using modified octadecyl silica membrane disks

    A simple, rapid and reliable method has been developed to selectively separate and concentrate ultra trace amounts of Fe (III) ions from aqueous samples for the measurement by flame atomic absorption spectrometry (FAAS). By the passage of aqueous samples through an octadecyl silica membrane disk modified by a recently synthesized Schiff base (Bis-(4-nitro phenyl azo) salisilidine-1,3-diamino propane), Fe(III) ions adsorb quantitatively and most of matrix elements will pass through the disk to drain. The retained iron ions are then stripped from the disk by minimal amount of 0.1 mol l-1 sulfuric acid as eluent. Extraction efficiency and the influence of pH, flow rates, amount of ligand, type and least amount of stripping acid as eluent were evaluated. The recovery of the iron from aqueous solution on the membrane disk modified with 3 mg Schiff's base was quantitative over pH 2-4.5. The linear dynamic range of the proposed method for Fe (III) ions was found in a wide concentration range of 0.20 (± 0.05)-680 (± 2) μg l-1. The detection limit and preconcentration factor of this solid phase extraction method were found 20.0 (± 0.7) ng l-1 and 100 respectively. The reproducibility of the procedure is at the most 1.5%

  15. Development of on-line single-drop micro-extraction sequential injection system for electrothermal atomic absorption spectrometric determination of trace metals

    A novel automatic sequential injection (SI) single-drop micro-extraction (SDME) system is proposed as versatile approach for on-line metal preconcentration and/or separation. Coupled to electrothermal atomic absorption spectrometry (ETAAS) the potentials of this SI scheme are demonstrated for trace cadmium determination in water samples. A non-charged complex of cadmium with ammonium diethyldithiophosphate (DDPA) was produced and extracted on-line into a 60 μL micro-drop of di-isobutyl ketone (DIBK). The extraction procedure was performed into a newly designed flow-through extraction cell coupled on a sequential injection manifold. As the complex Cd(II)-DDPA flowed continuously around the micro-droplet, the analyte was extracting into the solvent micro-drop. All the critical parameters were optimized and offered good performance characteristics and high preconcentration ratios. For 600 s micro-extraction time, the enhancement factor was 10 and the sampling frequency was 6 h-1. The detection limit was 0.01 μg L-1 and the precision (RSD at 0.1 μg L-1 of cadmium) was 3.9%. The proposed method was evaluated by analyzing certified reference material

  16. Quantitative analysis of flavonols, flavones, and flavanones in fruits, vegetables and beverages by high-performance liquid chromatography with photo-diode array and mass spectrometric detection

    Justesen, U.; Knuthsen, Pia; Leth, Torben

    1998-01-01

    A high-performance liquid chromatographic (HPLC) separation method viith photo-diode array (PDA) and mass spectrometric (MS) detection was developed to determine and quantify flavonols, flavones, and flavanones in fruits, vegetables and beverages. The compounds were analysed as aglycones, obtained...... after acid hydrolysis of freeze-dried food material. Identification was based on retention time, UV and mass spectra by comparison with commercial standards, and the UV peak areas were used for quantitation of the flavonoid contents. Examples of HPLC-MS analyses of orange pulp, tomato, and apple are...... presented. The method has been used to screen foods on the Danish market, and the contents of flavones, flavonols, and flavanones were measured. (C) 1998 Elsevier Science B.V....

  17. Electrothermal atomic absorption spectrometric determination of cadmium and lead in traces in aquatic systems following flotation by two chromium(III) collectors.

    Kormusoska, Natasa Bakreska; Cundeva, Katarina; Stafilov, Trajce

    2009-10-01

    A fast flotation method for determination of cadmium and lead in aquatic systems by two chromium(III) collectors is described. The first collector is a colloid precipitate of hydrated chromium(III) oxide, Cr2O3 x xH2O, while the second is a bulk chromium(III) pentamethylenedithiocarbamate, Cr(PMDTC)3. Cadmium and lead present in water are incorporated into the collector mass at pH 7.5 by addition of 20 mg of Cr(III) and 0.4 mmol of pentamethyleneammonium pentamethylenedithiocarbamate, PMA-PMDTC, to 0.5 L water sample. A solid precipitate was separated from the processed water system by air bubbles. After dissolving with strong acid, the solution is tested by electrothermal atomic absorption spectrometry (ETAAS). The limit of detection for Cd by flotation/ETAAS method is 0.002 microg L(-1), while for Pb is 0.04 microg L(-1). The precision of the method is expressed as relative standard deviations ranging of 5.0% for Cd (concentration range from 0.1 to 0.5 microg L(-1)) and 4.25% for Pb (concentration range from 0.5 to 5 microg L(-1)). The characteristic mass (mass that gives an integrated absorbance of 0.0044 s) of 1.06 pg for Cd and 16.7 pg for Pb were obtained. The method was validated by the standard additions and by its application to the reference materials (Surface water-SPS-SW-1, River Thames Water-LGC-6019). PMID:19847715

  18. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.

    Anthemidis, Aristidis N; Ioannou, Kallirroy-Ioanna G

    2009-06-30

    A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 microL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 microg L(-1) and 2.1% at 2.0 microg L(-1) Cu(II), respectively, while for lead were 0.54 microg L(-1) and 1.9% at 30.0 microg L(-1) Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples. PMID:19376348

  19. HAB detection based on absorption and backscattering properties of phytoplankton

    Lei, Hui; Pan, Delu; Bai, Yan; Chen, Xiaoyan; Zhou, Yan; Zhu, Qiankun

    2011-11-01

    The coastal area of East China Sea (ECS) suffers from the harmful algal blooms (HAB) frequently every year in the warm season. The most common causative phytoplankton algal species of HAB in the ECS in recent years are Prorocentrum donghaiense (dinoflagellates), Karenia mikimotoi (dinoflagellates which could produce hemolytic and ichthyotoxins) and Skeletonema costatum (diatom). The discrimination between the dinoflagellates and diatom HAB through ocean color remote sensing approach can add the knowledge of HAB events in ECS and help to the precaution. A series of in-situ measurement consisted of absorption coefficient, total scattering and particulate backscattering coefficient was conducted in the southern coast of Zhejiang Province in May 2009, and the estuary of Changjiang River in August 2009 and December 2010, which encountered two HAB events and a moderate bloom. The Inherent Optical Properties (IOPs) of the bloom waters have significant difference between phytoplankton species in absorption and backscattering properties. The chlorophyll a specific absorption coefficient (a*phy(λ)) for the bloom patches (chlorophyll a concentration >6mg m-3) differ greatly from the adjacent normal seawater, with the a*phy(λ) of bloom water lower than 0.03 m2 mg-1 while the a*phy(λ) of the adjacent normal seawater is much higher (even up to 0.06 m2 mg-1). Meanwhile, the backscattering coefficients at 6 wavebands (420, 442, 470, 510, 590 and 700nm) are also remarkably lower for bloom waters ( 0.02 m-1). The backscattering coefficient ratio (Rbp(λ)) is much lower for diatom bloom waters than for dinoflagellates types (0.01079 vs. 0.01227). A discrimination model based on IOPs is established, and several typical dinoflagellates and diatom bloom events including Prorocentrum donghaiense, Karenia mikimotoi and Skeletonema costatum in the ECS are picked out for testing with the MODIS-L2 and L3 ocean color remote sensing products from NASA website. The result proves that the

  20. Application of comprehensive two-dimensional gas chromatography with mass spectrometric detection for the analysis of selected drug residues in wastewater and surface water

    Petr Lacina; Ludmila Mravcová; Milada Vávrová

    2013-01-01

    Pharmaceutical residues have become tightly controlled environmental contaminants in recent years,due to their increasing concentration in environmental components.This is mainly caused by their high level of production and everyday consumption.Therefore there is a need to apply new and sufficiently sensitive analytical methods,which can detect the presence of these contaminants even in very low concentrations.This study is focused on the application of a reliable analytical method for the analysis of 10 selected drug residues,mainly from the group of non-steroidal anti-iaffammatory drugs (salicylic acid,acetylsalicylic acid,clofibric acid,ibuprofen,acetaminophen,caffeine,naproxen,mefenamic acid,ketoprofen,and dicofenac),in wastewaters and surface waters.This analytical method is based on solid phase extraction,derivatization by N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) and finally analysis by comprehensive two-dimensional gas chromatography with Time-of-Flight mass spectrometric detection (GCxGC-TOF MS).Detection limits ranged from 0.18 to 5 ng/L depending on the compound and selected matrix.The method was successfully applied for detection of the presence of selected pharmaceuticals in the Svratka River and in wastewater from the wastewater treatment plant in Brno-Modrice,Czech Republic.The concentration of pharmaceuticals varied from one to several hundreds of ng/L in surface water and from one to several tens of μg/L in wastewater.

  1. Inventory of metal complexes circulating in plant fluids: a reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection.

    Flis, Paulina; Ouerdane, Laurent; Grillet, Louis; Curie, Catherine; Mari, Stéphane; Lobinski, Ryszard

    2016-08-01

    Description of metal species in plant fluids such as xylem, phloem or related saps remains a complex challenge usually addressed either by liquid chromatography-mass spectrometry, X-ray analysis or computational prediction. To date, none of these techniques has achieved a complete and true picture of metal-containing species in plant fluids, especially for the least concentrated complexes. Here, we present a generic analytical methodology for a large-scale (> 10 metals, > 50 metal complexes) detection, identification and semiquantitative determination of metal complexes in the xylem and embryo sac liquid of the green pea, Pisum sativum. The procedure is based on direct injection using hydrophilic interaction chromatography with dual detection by elemental (inductively coupled plasma mass spectrometry) and molecular (high-resolution electrospray mass spectrometry) mass spectrometric detection. Numerous and novel complexes of iron(II), iron(III), copper(II), zinc, manganese, cobalt(II), cobalt(III), magnesium, calcium, nickel and molybdenum(IV) with several ligands including nicotianamine, citrate, malate, histidine, glutamine, aspartic acid, asparagine, phenylalanine and others are observed in pea fluids and discussed. This methodology provides a large inventory of various types of metal complexes, which is a significant asset for future biochemical and genetic studies into metal transport/homeostasis. PMID:27111838

  2. A method of test for residual isophorone diisocyanate trimer in new polyester-polyurethane coatings on light metal packaging using liquid chromatography with tandem mass spectrometric detection.

    Driffield, Malcolm; Bradley, Emma L; Castle, Laurence

    2007-02-01

    A method of test for residual isophorone diisocyanate (IPDI) trimer in experimental formulation polyester-polyurethane (PEPU) thermoset coatings on metal food packaging is described. The method involves extraction of coated panels using acetonitrile containing dibutylamine for concurrent derivatisation, and then high performance liquid chromatography with electrospray ionisation tandem mass spectrometric detection (LC-MS/MS). Single laboratory validation was carried out using three different experimental PEPU-based coatings. The calibrations were linear, the analytical recovery was good, no interferences were seen, and substance identification criteria were met. The detection limit of the method is around 0.02 micro g/100 cm(2) of coating, which for a typical sized can and assuming complete migration of any residual IPDI trimer, corresponds to about 0.2 micro g/kg food or beverage. Separate studies indicated that, even if migration occurred at such low levels, the IPDI trimer would not be expected to persist in canned aqueous or fatty foodstuffs as it would hydrolyse to the corresponding aliphatic amine or react with food components to destroy the isocyanate moiety. The method of test developed here for residual IPDI trimer in thermoset polyester-polyurethane coatings should prove to be a valuable tool for investigating the cure kinetics of these novel coatings and help to guide the development of enhanced formulations. PMID:17178416

  3. Identification of Polish cochineal (Porphyrophora polonica L.) in historical textiles by high-performance liquid chromatography coupled with spectrophotometric and tandem mass spectrometric detection.

    Lech, Katarzyna; Jarosz, Maciej

    2016-05-01

    The present work reports a method for identification of Polish cochineal (Porphyrophora polonica L.) in historical fabrics by the use of high-performance liquid chromatography coupled with diode array and tandem mass spectrometric detection with electrospray ionization (HPLC-DAD-ESI MS/MS). This hyphened technique allows detection and identification of 16 new minor colorants present in the discussed scale insect (including two previously observed by Wouters and Verhecken (Ann Soc Entomol Fr. 1989;25:393-410), but specified only as compounds of unknown structures) that do not occur (e.g., in American cochineal). The MS/MS experiments, complemented with UV-VIS data, enable identification of mono- and di-, C- and O-hexosides of kermesic and flavokermesic acids or their derivatives. The present paper introduces a fingerprint of color compounds present in Polish cochineal and defines them, particularly pp6 (ppI, O-hexoside of flavokermesic acid), as its markers allow distinguishing of Polish-cochineal reds from the American ones. Usefulness of the selected set of markers for identification of Polish cochineal has been demonstrated in the examination of textiles from the collection of the National Museum in Warsaw using the multiple reaction monitoring (MRM) method, originally elaborated on the basis of this study. PMID:26935929

  4. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection

    Steffen, S.; Otto, M.; Niewoehner, L.; Barth, M.; Bro¿żek-Mucha, Z.; Biegstraaten, J.; Horváth, R.

    2007-09-01

    A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.

  5. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection

    Steffen, S. [Bundeskriminalamt (BKA), Forensic Science Institute KT23, Thaerstr. 11, D - 65193 Wiesbaden (Germany); Otto, M. [TU Bergakademie Freiberg (TU BAF), Institute for Analytical Chemistry, Leipziger Str. 29, D - 09599 Freiberg (Germany)], E-mail: matthias.otto@chemie.tu-freiberg.de; Niewoehner, L.; Barth, M. [Bundeskriminalamt (BKA), Forensic Science Institute KT23, Thaerstr. 11, D - 65193 Wiesbaden (Germany); Brozek-Mucha, Z. [Instytut Ekspertyz Sadowych (IES), Westerplatte St. 9, PL - 31-033 Krakow (Poland); Biegstraaten, J. [Nederlands Forensisch Instituut (NFI), Fysische Technologie, Laan van Ypenburg 6, NL-2497 GB Den Haag (Netherlands); Horvath, R. [Kriminalisticky a Expertizny Ustav (KEU PZ), Institute of Forensic Science, Sklabinska 1, SK - 812 72 Bratislava (Slovakia)

    2007-09-15

    A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification.

  6. Chemometric classification of gunshot residues based on energy dispersive X-ray microanalysis and inductively coupled plasma analysis with mass-spectrometric detection

    A gunshot residue sample that was collected from an object or a suspected person is automatically searched for gunshot residue relevant particles. Particle data (such as size, morphology, position on the sample for manual relocation, etc.) as well as the corresponding X-ray spectra and images are stored. According to these data, particles are classified by the analysis-software into different groups: 'gunshot residue characteristic', 'consistent with gunshot residue' and environmental particles, respectively. Potential gunshot residue particles are manually checked and - if necessary - confirmed by the operating forensic scientist. As there are continuing developments on the ammunition market worldwide, it becomes more and more difficult to assign a detected particle to a particular ammunition brand. As well, the differentiation towards environmental particles similar to gunshot residue is getting more complex. To keep external conditions unchanged, gunshot residue particles were collected using a specially designed shooting device for the test shots revealing defined shooting distances between the weapon's muzzle and the target. The data obtained as X-ray spectra of a number of particles (3000 per ammunition brand) were reduced by Fast Fourier Transformation and subjected to a chemometric evaluation by means of regularized discriminant analysis. In addition to the scanning electron microscopy in combination with energy dispersive X-ray microanalysis results, isotope ratio measurements based on inductively coupled plasma analysis with mass-spectrometric detection were carried out to provide a supplementary feature for an even lower risk of misclassification

  7. Spectrometric techniques 4

    Vanasse, George A

    2013-01-01

    Spectrometric Techniques, Volume IV discusses three widely diversified areas of spectrometric techniques. The book focuses on three spectrometric methods. Chapter 1 discusses the phenomenology and applications of Coherent Anti-Stokes Raman Spectroscopy (CARS), the most commonly used optical technique that exploit the Raman effect. The second chapter is concerned with diffraction gratings and mountings for the Vacuum Ultraviolet Spectral Region. Chapter 3 accounts the uses of mass spectrometry, detectors, types of spectrometers, and ion sources. Physicists and chemists will find the book a go

  8. Investigation of trialkoxysilane hydrolysis kinetics using liquid chromatography with inductively coupled plasma atomic emission spectrometric detection and non-linear regression modeling

    A novel approach is demonstrated for measuring rates of the consecutive acid-base catalyzed hydrolysis reactions of (3-glycidoxypropyl)trimethoxysilane (GPTMS) and (3-aminopropyl)triethoxysilane (APTES) in dilute aqueous solution using liquid chromatography with inductively coupled plasma atomic emission spectrometric (ICP-AES) detection. The hydrolysis reactions are monitored by sampling kinetic solutions in a timewise manner and performing liquid chromatographic separations of the parent silane and organosilicon hydrolysis products. The column effluent is fed into the ICP through a direct injection nebulizer for online monitoring of silicon atomic emission at 251.611 nm, producing a series of silicon chromatograms for each kinetic run. Reversed phase separations are effected using acetonitrile-water gradients and are complete in 6 min or less. The systematic changes in peak areas provide information from which the rate constants of the consecutive hydrolysis reactions (k1, k2, and k3) are obtained by non-linear regression modeling. Using a quenching scheme, hydrolysis half-lives as brief as 3 min for the parent silane can be monitored. For each compound, a series of rate constants are obtained over a range of pH and buffer concentration, permitting estimation of the catalytic constants kH3O+ and kOH- for the consecutive acid-base catalyzed hydrolysis reactions by multiple regression analysis

  9. A solid liquid extraction and preconcentration method for the atomic absorption spectrometric determination of trace cobalt in various alloys and biological samples

    Cobalt is quantitatively retained as cobalt-2-nitroso-4-sulfonic acid (nitros-S)-tetradecyldimethylbenzylammonium (TDBA+) ion-pair complex on microcrystalline naphthalene in the pH range 6.2-9.0 from a large volume of its aqueous solution of various complex samples. After filtration, the solid mass consisting of cobalt complex and naphthalene is dissolved in 5 ml of dimethylformamide (DMF) and the metal is determined by flame atomic absorption spectrometry (FAAS). Cobalt complex can alternatively be quantitatively adsorbed on tetradecyldimethylbenzylammonium chloride-naphthalene adsorbent packed in a column and determined similarly. The calibration curve is linear over the concentration range 0.2-11.5 μg of cobalt in 5 ml of the final DMF solution. In this case, 0.2 μg of cobalt may be concentrated in a column from 250 ml of aqueous sample where its concentration is as low as 0.8 ng/ml. Eight replicate determinations of 3.0 μg of cobalt in the final DMF solution give a mean absorbance of 0.045 with a relative standard deviation of 1.8%. The sensitivity for 1% absorption is 59 ng/ml. The interference of a large number of anions and cations on the determination of cobalt has been studied and the optimum conditions developed utilized for its trace determination in various alloys and biological samples. The method may also be used for the determination of cobalt in some environmental samples

  10. Atomic-absorption spectrometric, neutron-activation and radioanalytical techniques for the determination of trace metals in environmental, biochemical and toxicological research

    Radioanalytical techniques and atomic-absorption spectrometry have been used for the micro-determination of vanadium in biological specimens such as human tissues and body fluids in environmental, biochemical and toxicological research. The use of 48V as a radiotracer permitted investigations on the vaporisation and retention mechanisms of vanadium. Higher vanadium oxides are probably converted into lower oxides, decomposing to VO in gaseous form, followed by the dissociation to 'free vanadium' and oxygen. It was found that about 20% of the 48V radioactivity was consistently retained in the graphite tube after 10 repeated introductions and firings of 50 μl of 50 ng ml-148V-labelled vanadium solution. However, the amount retained, probably in the form of carbide, does not vaporise under the conditions used for the analysis. Determinations of vanadium at the parts per billion level in 10 urine samples by neutron-activation analysis and by graphite furnace atomic-absorption spectrometry showed agreement that can be considered satisfactory for practical purposes. (author)

  11. Sensitive detection of tunable diode laser absorption by polarization rotation

    Results are presented demonstrating that diode laser absorption sensitivity can be increased by using the Faraday or Kerr effect to rotate the polarization of the source so that crossed polarizers can be used to reduce source noise. The Faraday effect is demonstrated using nitric oxide in a magnetic field, and the Kerr effect is demonstrated using methyl fluoride in an electric field. Some description of how absorption in an external field causes polarization rotation is presented as well as some conclusions on the types of molecules for which this technique is best suited

  12. A mid-infrared absorption diagnostic for acetylene detection

    KC, Utsav; Nasir, Ehson F.; Farooq, Aamir

    2015-08-01

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm-1 over a wide range of temperatures (1000-2200 K) and pressures (1-5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene.

  13. In-house validation of a method for determination of silver nanoparticles in chicken meat based on asymmetric flow field-flow fractionation and inductively coupled plasma mass spectrometric detection

    Löschner, Katrin; Navratilova, Jana; Grombe, Ringo;

    2015-01-01

    spectrometric detection (AF4-ICP-MS) was applied for quantitative analysis of silver nanoparticles (AgNPs) in a chicken meat matrix following enzymatic sample preparation. For the first time an analytical validation of nanoparticle detection in a food matrix by AF4-ICP-MS has been carried out and the results......Nanomaterials are increasingly used in food production and packaging, and validated methods for detection of nanoparticles (NPs) in foodstuffs need to be developed both for regulatory purposes and product development. Asymmetric flow field-flow fractionation with inductively coupled plasma mass...

  14. Preconcentration and atomic absorption spectrometric determination of cadmium, cobalt, copper, iron, lead, manganese, nickel and zinc in water samples using 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone

    The reagent 6-methyl-2-pyridinecarboxaldehyde-4-phenyl-3-thiosemicarbazone (MPAPT) has been examined for the pre-concentration of metal ions and determination using air acetylene flame atomic absorption spectrometer. The method is based on the complexation and extraction of cadmium (II), cobalt(III), copper(II), lead(II), nickel(II), iron(II), iron(II), manganese(II) and zinc(II) in chloroform. The metal iron are back extracted in nitric acid (1:1) or after evaporation of solvent the residue is digested in nitric acid. After necessary adjustment of volume the metal ions were determined in aqueous solution. Pre-concentration is obtained 10-25 times. Metal ions recovery was 95.4-100.8% with coefficient of variation 0.2-7.5%. The method used for the determination of metals in canal and sewerage waters, within 2-6433 mu g/L with C. V 0.-5.2%. (author)

  15. Application of high-performance liquid chromatography combined with ultra-sensitive thermal lens spectrometric detection for simultaneous biliverdin and bilirubin assessment at trace levels in human serum.

    Martelanc, Mitja; Žiberna, Lovro; Passamonti, Sabina; Franko, Mladen

    2016-07-01

    We present the applicability of a new ultra-sensitive analytical method for the simultaneous determination of biliverdin and bilirubin in human serum. The method comprises isocratic reversed-phase (RP) C18 high-performance liquid chromatography (HPLC) and thermal lens spectrometric detection (TLS) based on excitation by a krypton laser emission line at 407nm. This method enables the separation of IX-α biliverdin and IX-α bilirubin in 11min with limit of detection (LOD) and limit of quantitation (LOQ) for biliverdin of 1.2nM and 3nM, and 1nM and 2.8nM for bilirubin, respectively. In addition, a step-gradient elution was set up, by changing the mobile phase composition, in order to further enhance the sensitivity for bilirubin determination with LOD and LOQ of 0.5nM and 1.5nM, respectively. In parallel, an isocratic HPLC-DAD method was developed for benchmarking against HPLC-TLS methods. The LOD and LOQ for biliverdin were 6nM and 18nM, and 2.5nM and 8nM for bilirubin, respectively. Additionally, both isocratic methods were applied for measuring biliverdin and free bilirubin in human serum samples (from 2 male and 2 female healthy donors). Combining isocratic HPLC method with TLS detector was crucial for first ever biliverdin determination in serum together with simultaneous free bilirubin determination. We showed for the first time the concentration ratio of free bilirubin versus unbound biliverdin in human serum samples. PMID:27154653

  16. New Detections of Galactic Molecular Absorption Systems toward ALMA Calibrator Sources

    Ando, Ryo; Tamura, Yoichi; Izumi, Takuma; Umehata, Hideki; Nagai, Hiroshi

    2015-01-01

    We report on Atacama Large Millimeter/submillimeter Array (ALMA) detections of molecular absorption lines in Bands 3, 6 and 7 toward four radio-loud quasars, which were observed as the bandpass and complex gain calibrators. The absorption systems, three of which are newly detected, are found to be Galactic origin. Moreover, HCO absorption lines toward two objects are detected, which almost doubles the number of HCO absorption samples in the Galactic diffuse medium. In addition, high HCO to H13CO+ column density ratios are found, suggesting that the interstellar media (ISM) observed toward the two calibrators are in photodissociation regions, which observationally illustrates the chemistry of diffuse ISM driven by ultraviolet (UV) radiation. These results demonstrate that calibrators in the ALMA Archive are potential sources for the quest for new absorption systems and for detailed investigation of the nature of the ISM.

  17. New detections of Galactic molecular absorption systems toward ALMA calibrator sources

    Ando, Ryo; Kohno, Kotaro; Tamura, Yoichi; Izumi, Takuma; Umehata, Hideki; Nagai, Hiroshi

    2016-02-01

    We report on Atacama Large Millimeter/submillimeter Array (ALMA) detections of molecular absorption lines in Bands 3, 6, and 7 toward four radio-loud quasars, which were observed as the bandpass and complex gain calibrators. The absorption systems, three of which are newly detected, are found to be Galactic origin. Moreover, HCO absorption lines toward two objects are detected, which almost doubles the number of HCO absorption samples in the Galactic diffuse medium. In addition, high HCO-to-H13CO+ column density ratios are found, suggesting that the interstellar media (ISM) observed toward the two calibrators are in photodissociation regions, which observationally illustrates the chemistry of diffuse ISM driven by ultraviolet (UV) radiation. These results demonstrate that calibrators in the ALMA Archive are potential sources for the quest for new absorption systems and for detailed investigation of the nature of the ISM.

  18. A mid-infrared absorption diagnostic for acetylene detection

    KC, Utsav

    2015-05-14

    Acetylene is an important combustion intermediate and plays a critical role in soot formation. Accurate measurements of trace concentrations of acetylene can be very useful in validating hydrocarbon oxidation and soot formation mechanisms. Strongest vibrational band of acetylene near 13.7 μm is probed here to develop a highly sensitive absorption diagnostic. Experiments are carried out behind reflected shock waves to measure absorption cross sections of acetylene near 730 cm−1 over a wide range of temperatures (1000–2200 K) and pressures (1–5 bar). The diagnostic is demonstrated by measuring acetylene formation during the shock-heated pyrolysis and oxidation of propene. © 2015 Springer-Verlag Berlin Heidelberg

  19. Flame atomic absorption spectrometric determination of trace amounts of heavy metal ions after solid phase extraction using modified sodium dodecyl sulfate coated on alumina

    A sensitive and selective solid phase extraction procedure for the determination of traces of Cu(II), Zn(II), Pb(II) and Fe(III) has been developed. An alumina-sodium dodecyl sulfate (SDS) coated on with meso-phenyl bis(indolyl) methane (MPBIM) was used for preconcentration and determination of Cu(II), Zn(II), Pb(II) and Fe(III) ions by flame atomic absorption spectrometry. The analyte ions were adsorbed quantitatively on adsorbent due to their complexation with MPBIM. Adsorbed metals were quantitatively eluted using 6 mL of 4 mol L-1 nitric acid. The effects of parameters such as pH, amount of alumina, amount of MBITP, flow rate, type and concentration of eluting agent were examined. The effects of interfering ions on the separation-preconcentration of analytes were also investigated. The relative standard deviation of the method was found to be less than 3.0%. The presented procedure was successfully applied for determination of analytes in real samples

  20. A liquid chromatography-mass spectrometric method for the detection of cyclic β-amino fatty acid lipopeptides.

    Urajová, Petra; Hájek, Jan; Wahlsten, Matti; Jokela, Jouni; Galica, Tomáš; Fewer, David P; Kust, Andreja; Zapomělová-Kozlíková, Eliška; Delawská, Kateřina; Sivonen, Kaarina; Kopecký, Jiří; Hrouzek, Pavel

    2016-03-18

    Bacterial lipopeptides, which contain β-amino fatty acids, are an abundant group of bacterial secondary metabolites exhibiting antifungal and/or cytotoxic properties. Here we have developed an LC-HRMS/MS method for the selective detection of β-amino fatty acid containing cyclic lipopeptides. The method was optimized using the lipopeptides iturin A and puwainaphycin F, which contain fatty acids of similar length but differ in the amino acid composition of the peptide cycle. Fragmentation energies of 10-55eV were used to obtain the amino acid composition of the peptide macrocycle. However, fragmentation energies of 90-130eV were used to obtain an intense fragment specific for the β-amino fatty acid (CnH2n+2N(+)). The method allowed the number of carbons and consequently the length of the β-amino fatty acid to be estimated. We identified 21 puwainaphycin variants differing in fatty acid chain in the crude extract of cyanobacterium Cylindrospermum alatosporum using this method. Analogously 11 iturin A variants were detected. The retention time of the lipopeptide variants showed a near perfect linear dependence (R(2)=0.9995) on the length of the fatty acid chain in linear separation gradient which simplified the detection of minor variants. We used the method to screen 240 cyanobacterial strains and identified lipopeptides from 8 strains. The HPLC-HRMS/MS method developed here provides a rapid and easy way to detecting novel variants of cyclic lipopeptides. PMID:26893022

  1. Selective solid phase extraction of platinum on an ion imprinted polymers for its electrothermal atomic absorption spectrometric determination in environmental samples

    An ion-imprinted polymer (IIP) was obtained by copolymerization of methacrylic acid (as a functional monomer) and ethylene glycol dimethacrylate (as a crosslinking agent) in the presence of various chelators for Pt(II) ion and using 2,2'-azo-bis-isobutyronitrile as the initiator. Specifically, acetaldehyde thiosemicarbazone (AcTSn) and benzaldehyde thiosemicarbazone (BnTSn) were used as chelators. The IIPs were applied as sorbents for solid-phase extraction of Pt(II) and Pt(IV) ions from aqueous solutions. The effects of acidity and flow rate of the sample, of elution conditions and of potentially interfering ions were investigated. The imprinting effect of analyte is clearly demonstrated by the fact that only the IIP is capable of quantitative retention of Pt(II) and Pt(IV) ions. The method works best in the pH range from 0.5 to 1 and from 3.5 to 9.5. The ions can be recovered with an acidic solution of thiourea. The Pt-AcTSn polymer displays better sorption properties for the separation of analytes. The selectivity coefficients of the Pt-AcTSn and control polymers for Pt(IV) in the presence Pd(II), Rh(III), Ru(III), Al(III) and Cu(II) were calculated, and the sorbent capacity for Pt(IV) was found to be 4.56 μg g-1. The method was successfully applied to the determination of Pt(IV) by electrothermal atomic absorption spectrometry in tap water, tunnel dust and anode slime samples. (author)

  2. Qualitative analysis of some carboxylic acids by ion-exclusion chromatography with atmospheric pressure chemical ionization mass spectrometric detection.

    Helale, Murad I H; Tanaka, Kazuhiko; Taoda, Hiroshi; Hu, Wenzhi; Hasebe, Kiyoshi; Haddad, Paul R

    2002-05-17

    A simple, selective and sensitive method for the determination of carboxylic acids has been developed. A mixture of formic, acetic, propionic, valeric, isovaleric, isobutyric, and isocaproic acids has been separated on a polymethacrylate-based weak acidic cation-exchange resin (TSK gel OA pak-A) based on an ion-exclusion chromatographic mechanism with detection using UV-photodiode array, conductivity and atmospheric pressure chemical ionization mass spectrometry (APCI-MS). A mobile phase consisting of 0.85 mM benzoic acid in 10% aqueous methanol (pH 3.89) was used to separate the above carboxylic acids in about 40 min. For LC-MS, the APCI interface was used in the negative ionization mode. Linear plots of peak area versus concentration were obtained over the range 1-30 mM (r2=0.9982) and 1-30 mM (r2=0.9958) for conductimetric and MS detection, respectively. The detection limits of the target carboxylic acids calculated at S/N=3 ranged from 0.078 to 2.3 microM for conductimetric and photometric detection and from 0.66 to 3.82 microM for ion-exclusion chromatography-APCI-MS. The reproducibility of retention times was 0.12-0.16% relative standard deviation for ion-exclusion chromatography and 1.21-2.5% for ion-exclusion chromatography-APCI-MS. The method was applied to the determination of carboxylic acids in red wine, white wine, apple vinegar, and Japanese rice wine. PMID:12108651

  3. Filtering absorption and visual detection of methylene blue by nitrated cellulose acetate membrane

    He, Shengbin; Fang, He; Xu, Xiaoping [College of Chemistry, Fuzhou University, Fuzhou (China)

    2016-04-15

    Wastewater-containing industrial dyes are quite harmful since most dyes are stable and toxic to humans. Detection and removing of those dyes from wastewater is necessary to ensure water supply safety. In present work, a nitrated cellulose acetate (NCA) microfiltration membrane was developed for specific absorption and visible detection of methylene blue (MB). The NCA microfiltration membrane overcomes the defect of high driven pressure in nanofiltration or ultrafiltration process. By absorption effect, the NCA membrane also overcomes the defect of low retention rate of traditional microfiltration membrane to dyes. The residual MB can be removed quickly and thoroughly by microfiltration absorption. The microfiltration membrane can also be used for visual detection of MB by concentrating the MB on membrane. The limit of detection is as low as 0.001 mg/L. The detection method is simple and free of large-scale instrument, and can be used as a portable device for spot detection of dye-contaminated water.

  4. Flame Atomic Absorption Spectrometric Determination of Gold After Solid-Phase Extraction of Its 2-Aminobenzothiazole Complex on Diaion SP-207.

    Unsal, Yunus Emre; Tuzen, Mustafa; Soylak, Mustafa

    2016-03-01

    An SPE of Au (III) on a 2-aminobenzothiazole-coated Diaion SP 207-column system has been developed. The parameters, including pH of solution, amount of 2-aminobenzothiazole, eluent type, sample volume, and flow rates, were examined. The effects of alkali, alkali earth, and some metals were also studied. The recovery values at optimal conditions and detection limits for Au (III) were found as >95% and 3.8 μg L(-1), respectively. The factor of preconcentration was 250. The RSD value was determination of gold was applied to water, mine, soil, and anodic slime samples. PMID:26964845

  5. A Sensitive and Robust Ultra HPLC Assay with Tandem Mass Spectrometric Detection for the Quantitation of the PARP Inhibitor Olaparib (AZD2281 in Human Plasma for Pharmacokinetic Application

    Jeffrey Roth

    2014-06-01

    Full Text Available Olaparib (AZD2281 is an orally active PARP-1 inhibitor, primarily effective against cancers with BRCA1/2 mutations. It is currently in Phase III development and has previously been investigated in numerous clinical trials, both as a single agent and in combination with chemotherapy. Despite this widespread testing, there is only one published method that provides assay details and stability studies for olaparib alone. A more sensitive uHPLC-MS/MS method for the quantification of olaparib in human plasma was developed, increasing the range of quantification at both ends (0.5–50,000 ng/mL compared to previously published methods (10–5,000 ng/mL. The wider range encompasses CMAX levels produced by typical olaparib doses and permits better pharmacokinetic modeling of olaparib elimination. This assay also utilizes a shorter analytical runtime, allowing for more rapid quantification and reduced use of reagents. A liquid-liquid extraction was followed by chromatographic separation on a Waters UPLC® BEH C18 column (2.1 × 50 mm, 1.7 µm and mass spectrometric detection. The mass transitions m/z 435.4→281.1 and m/z 443.2→281.1 were used for olaparib and the internal standard [2H8]-olaparib, respectively. The assay proved to be accurate (<9% deviation and precise (CV < 11%. Stability studies showed that olaparib is stable at room temperature for 24 h. in whole blood, at 4 °C for 24 h post-extraction, at −80 °C in plasma for at least 19 months, and through three freeze-thaw cycles. This method proved to be robust for measuring olaparib levels in clinical samples from a Phase I trial.

  6. Separation and flame atomic absorption spectrometric determination of total chromium and chromium (III) in phosphate rock used for production of fertilizer.

    El-Sheikh, Amjad H; Al-Degs, Yahya S; Sweileh, Jamal A; Said, Adi J

    2013-11-15

    Due to the commercial value of phosphate rock (PR) as a fertilizer precursor, it is necessary to investigate its heavy metals content. Chromium (Cr) may present as Cr(III) or Cr(VI) in PR; but quantitative differentiation between them is not an easy task. This is due to possible interconversion of Cr species during the digestion/leaching process. In this work, ultrasound digestion (USD) of PR was optimized (300 mg PR, 4.0 mL of 4.0 mol L(-1) nitric acid, 15 min sonication) for the sake of leaching Cr species prior to their determination by flame atomic absorption spectroscopy. Using multi-walled carbon nanotube (MWCNT) as adsorbent, solid phase extraction (SPE) was used to separate Cr(III) from the digestate at pH 9, while total Cr was estimated after reducing Cr(VI) into Cr(III). The optimum USD/SPE method gave LOQ and LOD of Cr(III) of 0.96 mg kg(-1) and 0.288 mg kg(-1), respectively. The method sensitivity was 1.44×10(-3) AU kg mg(-1) within the studied Cr concentration range (5-400 mg kg(-1)). The USD/SPE method was validated by analyzing lake sediments LKSD-4 certified reference material, and by comparison with classical digestion method (CD). Application of USD/SPE on Jordanian PR samples gave total Cr rang 29.1-122.0 mg kg(-1) (±1.4-6.3), while Cr(III) ranged between 23.8 and 101.7 mg kg(-1) (±1.3-5.5). AFPC Rock Check Program samples gave total Cr range 238.9-394.7 mg kg(-1) (±11.5-24.1), while Cr(III) ranged between 202.4 and 335.8 mg kg(-1) (±11.4-18.3). These results were very close to the results obtained by the CD method. PMID:24148433

  7. Laser mass spectrometric detection of AlH molecules as collision-free excimer laser photoproducts from aluminum alkyls

    Zhang, Y.; Stuke, M.

    1988-08-01

    Aluminum hydride molecules AlH are detected and identified by tunable dye-laser mass spectroscopy as collision-free UV excimer laser photoproducts of the Al alkyls TEA (triethylaluminum (C 2H 5) 3Al) and TIBA (triisobutylaluminum ( i-C 4H 9) 3Al) at 248 and 193 nm. An internal energy distribution analysis of the photoproducts shows only minor vibrational excitation of ν″ = 1 and a Boltzmann-type rotational energy distribution with a temperature of about 0.03 eV, compared to the incoming photon energy of 5.0 or 6.42 eV.

  8. Determination of free amino compounds in betalainic fruits and vegetables by gas chromatography with flame ionization and mass spectrometric detection.

    Kugler, Florian; Graneis, Stephan; Schreiter, Pat P-Y; Stintzing, Florian C; Carle, Reinhold

    2006-06-14

    Amino acids and amines are the precursors of betalains. Therefore, the profiles of free amino compounds in juices obtained from cactus pears [Opuntia ficus-indica (L.) Mill. cv. Bianca, cv. Gialla, and cv. Rossa], pitaya fruits [Selenicereus megalanthus (K. Schumann ex Vaupel) Moran, Hylocereus polyrhizus (Weber) Britton & Rose, and Hylocereus undatus (Haworth) Britton & Rose], and in extracts from differently colored Swiss chard [Beta vulgaris L. ssp. cicla (L.) Alef. cv. Bright Lights] petioles and red and yellow beets (B. vulgaris L. ssp. vulgaris var. conditiva Alef. cv. Burpee's Golden) were investigated for the first time. Amino compounds were derivatized with propyl chloroformate. While gas chromatography (GC) with mass spectrometry was used for peak assignment, GC flame ionization detection was applied for quantification of individual compounds. Whereas proline was the major free amino compound of cactus pear and pitaya fruit juices, glutamine dominated in Swiss chard stems and beets, respectively. Interestingly, extremely high concentrations of dopamine were detected in Swiss chard stems and beets. Furthermore, the cleavage of betaxanthins caused by derivatization in alkaline reaction solutions is demonstrated for the first time. Amino acids and amines thus released might increase the actual free amino compound contents of the respective sample. To evaluate the contribution of betaxanthin cleavage to total amino acid and amine concentration, isolated betaxanthins were derivatized according to the "EZ:faast" method prior to quantification of the respective amino compounds released. On a molar basis, betaxanthin contribution to overall amino compound contents was always below 6.4%. PMID:16756361

  9. Copper(II)-rubeanic acid coprecipitation system for separation-preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations

    A simple and facile preconcentration procedure based on the coprecipitation of trace heavy metal ions with copper(II)-rubeanic acid complex has been developed. The analytical parameters including pH, amounts of rubeanic acid, sample volume, etc. was investigated for the quantitative recoveries of Pb(II), Fe(III), Cd(II), Au(III), Pd(II) and Ni(II). No interferic effects were observed from the concomitant ions. The detection limits for analyte ions by 3 sigma were in the range of 0.14 μg/l for iron-3.4 μg/l for lead. The proposed coprecipitation method was successfully applied to water samples from Palas Lake-Kayseri, soil and sediment samples from Kayseri and Yozgat-Turkey

  10. Determination of nine high-intensity sweeteners in various foods by high-performance liquid chromatography with mass spectrometric detection.

    Zygler, Agata; Wasik, Andrzej; Kot-Wasik, Agata; Namieśnik, Jacek

    2011-06-01

    An analytical procedure involving solid-phase extraction (SPE) and high-performance liquid chromatography-mass spectrometry has been developed for the determination of nine high-intensity sweeteners authorised in the EU; acesulfame-K (ACS-K), aspartame (ASP), alitame (ALI), cyclamate (CYC), dulcin (DUL), neohesperidin dihydrochalcone (NHDC), neotame (NEO), saccharin (SAC) and sucralose (SCL) in a variety of food samples (i.e. beverages, dairy and fish products). After extraction with a buffer composed of formic acid and N,N-diisopropylethylamine at pH 4.5 in ultrasonic bath, extracts were cleaned up using Strata-X 33 μm Polymeric SPE column. The analytes were separated in gradient elution mode on C(18) column and detected by mass spectrometer working with an electrospray source in negative ion mode. To confirm that analytical method is suitable for its intended use, several validation parameters, such as linearity, limits of detection and quantification, trueness and repeatibilty were evaluated. Calibration curves were linear within a studied range of concentrations (r(2) ≥ 0.999) for six investigated sweeteners (CYC, ASP, ALI, DUL, NHDC, NEO). Three compounds (ACS-K, SAC, SCL) gave non-linear response in the investigated concentration range. The method detection limits (corresponding to signal-to-noise (S/N) ratio of 3) were below 0.25 μg mL(-1) (μg g(-1)), whereas the method quantitation limits (corresponding to S/N ratio of 10) were below 2.5 μg mL(-1) (μg g(-1)). The recoveries at the tested concentrations (50%, 100% and 125% of maximum usable dose) for all sweeteners were in the range of 84.2 ÷ 106.7%, with relative standard deviations sweeteners in drinks, yoghurts and fish products. The procedure described here is simple, accurate and precise and is suitable for routine quality control analysis of foodstuffs. PMID:21465096

  11. Matrix isolation Fourier transform infrared spectrometric detection in the open tubular column gas chromatography of polycyclic aromatic hydrocarbons

    Hembree, D.M.; Garrison, A.A.; Crocombe, R.A.; Yokley, R.A.; Wehry, E.L.; Mamantov, G.

    1981-10-01

    A detailed description of a system for gas chromatographic (GC) detection of matrix isolation Fourier transform infrared (FTIR) spectrometry is presented. Substances eluting from a support-coated open tubular column are deposited directly on individual faces of a 12-sided movable gold-plated copper disk mounted within the cold head of a closed-cycle cryostat. The same gas is used as GC carrier and spectroscopic matrix gas. An optical interface, comprising beam condensing and rod optics, permits the modified cryostat head to be mounted in proximity to the sample chamber of an FTIR spectrometer. Applications of the technique to identification of polycyclic aromatic hydrocarbon constituents of coal-derived materials are demonstrated, and quantitative aspects of the procedure are considered.

  12. A new preconcentration and separation method for flame atomic absorption spectrometric determinations of some trace metal ions on a diaion HP-20 column

    A preconcentration/separation method for determination of Cr(3), Cd(2), Bi(3) and Co(2) has been proposed. The analytes were adsorbed on a column filled Diaion HP-20 resin as metal-8-hydroxiquinoline complexes and desorbed from the column by using 10 ml of 1M HNO3 in acetone. The influences of some analytical parameters such as pH, amounts of oxine, type of eluent etc on the recoveries of chromium, cadmium, bismuth and cobalt were discussed. Effects of the various alkaline salts on the recoveries of the investigated ions were also examined. The method was applied for the determination of Cr(3), Cd(2), Bi(3), and Co(2) contents of table salt samples, some chemical grade alkaline salts produced in Turkey and a stream sediment standard reference material sample (GBW 07309) with satisfactory results (recoveries > 95%, relative standard deviations < 9%). The limit of detection for analyte ions (3s, N=20) was between 23-305 ng/g

  13. Bioactivity screening and mass spectrometric confirmation for the detection of PPARδ agonists that increase type 1 muscle fibres.

    Bovee, Toine F H; Blokland, Marco; Kersten, Sander; Hamers, Astrid R M; Heskamp, Henri H; Essers, Martien L; Nielen, Michel W F; van Ginkel, Leendert A

    2014-01-01

    Sensitive and robust bioassays able to detect nuclear receptor activation are very useful for veterinary and doping control, pharmaceutical industry and environmental scientists. Here, we used bioassays based on human leukemic monocyte lymphoma U937 and human liver hepatocellular carcinoma HepG2 cell lines to detect the ligand-induced activation of the peroxisome proliferator-activated receptor delta (PPARδ). Exposure of U937 cells to the PPARδ agonist GW501516 resulted in a marked increase in mRNA expression of the PPARδ target gene Angptl4 which was quantified by qRT-PCR analysis. Exposure of HepG2 cells transiently transfected with a PPARδ expression plasmid and a PPAR-response element-driven luciferase reporter plasmid to PPARδ agonists GW501516, GW610742 and L-165041 resulted in clear dose-response curves. Although the qRT-PCR resulted in higher fold inductions, the luciferase assay with transfected HepG2 cells is cheaper and quicker and about ten times more sensitive to GW501516 compared to analysis of Angptl4 mRNA expression in U937 cells by qRT-PCR. The HepG2-based luciferase assay was therefore used to screen GW501516-spiked supplements and feed and water samples. After liquid extraction and clean-up by solid phase extraction using a weak anion exchange column, extracts were screened in the HepG2 bioassay followed by confirmation with a newly developed UPLC-MS/MS method, using two transitions for each compound, i.e., for GW501516, 454.07>188.15 (collision energy (CE) 46 V) and 454.07>257.08 (CE 30 V); for GW610742, 472.07>206.2 (CE 48 V) and 472.07>275.08 (CE 30 V); and for L-165041, 401.2>193.15 (CE 26 V) and 401.2>343.2 (CE 20 V). PMID:24287635

  14. Spectrometric techniques 3

    Vanasse, George A

    2013-01-01

    Spectrometric Techniques, Volume III presents the applications of spectrometric techniques to atmospheric and space studies. This book reviews the spectral data processing and analysis techniques that are of broad applicability.Organized into five chapters, this volume begins with an overview of the instrumentation used for obtaining field data. This text then reviews the contribution that space-borne spectroscopy in the thermal IR has made to the understanding of the planets. Other chapters consider the instruments that have recorded the planetary emission spectra. This book discusses as well

  15. Flame atomic absorption spectrometric (FAAS) determination of copper, iron and zinc in food samples after solid-phase extraction on Schiff base-modified duolite XAD 761

    The present study involves the development of solid-phase extraction (SPE) procedure for the preconcentration of trace amounts of copper (Cu2+), iron (Fe3+) and zinc (Zn2+) ions on duolite XAD 761 modified by bis(2-hydroxyacetophenone)-2,2-dimethyl-1,3-propanediimine(BHAPDMPDI). The complexation between the metal ions and the proposed ligand was investigated potentiometrically. The metal ions retained on the sorbent were quantitatively determined via complexation with BHAPDMPDI. The complexed metal ions were efficiently eluted using 6 mL of 4 mol L−1 nitric acid in acetone. The influences of the analytical parameters, including pH, amounts of the ligand and the solid phase, eluent conditions and sample volume, on the recoveries of the metal ions were optimized. Using the optimized parameters, the linear response of the SPE method for Cu2+, Zn2+ and Fe3+ ions were in the ranges of 0.01–0.34, 0.01–0.28 and 0.02–0.31 μg mL−1, respectively, and the detection limits for Cu2+, Zn2+ and Fe3+ ions were 1.8, 1.6 and 2.4 μg mL−1, respectively. The proposed method exhibits a preconcentration factor of 208 for all of the ions studied and an enhancement factor for Cu2+, Fe3+ and Zn2+ ions of 34, 28 and 38, respectively. The presented results demonstrate the successful application of the proposed method for the determination of these metal ions in some real samples with high recoveries (> 95%) and reasonable relative standard deviation (RDS < 5%). Highlights: ► Highly efficient adsorbent for dye removal was synthesized. ► The sorbent was fully characterized. ► The proposed method has a potential of a waste water treatment alternative. ► Excellent properties of the sorbent have been illustrated in detail

  16. Identification of organic sulfur compounds in coal bitumen obtained by different extraction techniques using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometric detection

    Machado, Maria Elisabete; Cappelli Fontanive, Fernando; Bastos Caramao, Elina; Alcaraz Zini, Claudia [Universidade Federal do Rio Grande do Sul, Instituto de Quimica, Porto Alegre, RS (Brazil); Oliveira, Jose Vladimir de [URI, Universidade Regional Integrada do Alto Uruguai e das Missoes, Erechim, RS (Brazil)

    2011-11-15

    The determination of organic sulfur compounds (OSC) in coal is of great interest. Technically and operationally these compounds are not easily removed and promote corrosion of equipment. Environmentally, the burning of sulfur compounds leads to the emission of SO{sub x} gases, which are major contributors to acid rain. Health-wise, it is well known that these compounds have mutagenic and carcinogenic properties. Bitumen can be extracted from coal by different techniques, and use of gas chromatography coupled to mass spectrometric detection enables identification of compounds present in coal extracts. The OSC from three different bitumens were tentatively identified by use of three different extraction techniques: accelerated solvent extraction (ASE), ultrasonic extraction (UE), and supercritical-fluid extraction (SFE). Results obtained from one-dimensional gas chromatography (1D GC) coupled to quadrupole mass spectrometric detection (GC-qMS) and from two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC x GC-TOFMS) were compared. By use of 2D GC, a greater number of OSC were found in ASE bitumen than in SFE and UE bitumens. No OSC were identified with 1D GC-qMS, although some benzothiophenes and dibenzothiophenes were detected by use of EIM and SIM modes. GC x GC-TOFMS applied to investigation of OSC in bitumens resulted in analytical improvement, as more OSC classes and compounds were identified (thiols, sulfides, thiophenes, naphthothiophenes, benzothiophenes, and benzonaphthothiophenes). The roof-tile effect was observed for OSC and PAH in all bitumens. Several co-elutions among analytes and with matrix interferents were solved by use of GC x GC. (orig.)

  17. Airborne Measurements of CO2 Column Absorption and Range Using a Pulsed Direct-Detection Integrated Path Differential Absorption Lidar

    Abshire, James B.; Riris, Haris; Weaver, Clark J.; Mao, Jianping; Allan, Graham R.; Hasselbrack, William E.; Browell, Edward V.

    2013-01-01

    We report on airborne CO2 column absorption measurements made in 2009 with a pulsed direct-detection lidar operating at 1572.33 nm and utilizing the integrated path differential absorption technique. We demonstrated these at different altitudes from an aircraft in July and August in flights over four locations in the central and eastern United States. The results show clear CO2 line shape and absorption signals, which follow the expected changes with aircraft altitude from 3 to 13 km. The lidar measurement statistics were also calculated for each flight as a function of altitude. The optical depth varied nearly linearly with altitude, consistent with calculations based on atmospheric models. The scatter in the optical depth measurements varied with aircraft altitude as expected, and the median measurement precisions for the column varied from 0.9 to 1.2 ppm. The altitude range with the lowest scatter was 810 km, and the majority of measurements for the column within it had precisions between 0.2 and 0.9 ppm.

  18. Transient C IV broad absorption lines in radio-detected QSOs

    Vivek, M.; Srianand, R.; Gupta, N.

    2016-01-01

    We study the transient (i.e. emerging or disappearing) C IV broad absorption line (BAL) components in 50 radio-detected QSOs using multi-epoch spectra available in Sloan Digital Sky Survey Data Release-10. We report the detection of six BALQSOs having at least one distinct transient C IV absorption component. Based on the structure function analysis of optical light curves, we suggest that the transient absorption is unlikely to be triggered by continuum variations. Transient absorption components usually have low C IV equivalent widths (10 000 km s-1) and typically occur over rest-frame time-scales >800 d. The detection rate of transient C IV absorption seen in our sample is higher than that reported in the literature. Using a control sample of QSOs, we show that this difference is most likely due to the longer monitoring time-scale of sources in our sample while the effect of small number statistics cannot be ignored. Thus, in order to establish the role played by radio jets in driving the BAL outflows, we need a larger sample of radio-detected BALs monitored over more than 3 yr in the QSO's rest frame. We also find that the transient phenomenon in radio-detected and radio-quiet BALs does not depend on any of the QSO properties, i.e. the Eddington ratio, black hole mass, bolometric luminosity and optical-to-IR colours. All this suggests that transient BAL phenomenon is simply the extreme case of BAL variability.

  19. Valence-to-core-detected X-ray absorption spectroscopy

    Hall, Eleanor R.; Pollock, Christopher J.; Bendix, Jesper;

    2014-01-01

    transitions from filled ligand orbitals to the metal 1s core hole, with distinct energetic shifts for ligands of differing ionization potentials. VtC-detected XAS data were obtained from multiple valence emission features for a series of well-characterized Mn model compounds; taken together, these data...... XAS, nonresonant XES, and VtC RXES data were all modeled within a density functional theory approach. While the TFY XAS and nonresonant XES data are readily interpreted by theory, the VtC RXES cannot be reproduced within such a simplified model. Nonetheless, dramatic changes in the experimental...

  20. Prototype explosives detection system based on nuclear resonance absorption in nitrogen

    A laboratory prototype system has been developed for the experimental evaluation of an explosives detection technique based on nuclear resonance absorption of gamma rays in nitrogen. Major subsystems include a radiofrequency quadrupole proton accelerator and associated beam transport system, a high-power gamma-ray production target, an airline-luggage tomographic inspection system, and an image- processing/detection-alarm subsystem. The detection system performance, based on a limited experimental test, is reported

  1. HI Absorption Lines Detected from the Arecibo Legacy Fast ALFA Survey Data

    Zhong-zu, Wu; Martha P, Haynes; Riccardo, Giovanelli; Ming, Zhu; Ru-rong, Chen

    2015-10-01

    We present some preliminary results of an on-going study of HI 21-cm absorption lines based on the 40% survey data released by the Arecibo Legacy Fast Arecibo L-band Feed Array (ALFALFA). (1) Ten HI candidate absorbers have been detected. Five of them are previously published in the literature, and the rest of them are new detections that need further confirmation. (2) For those sources with no detected absorptions, we have calculated the upper limit of their foreground HI column density NHI. The statistical result of the NHI distribution indicates that the ratio Ts/f between the averaged spin temperature and coverage factor for DLAs (the damped Lyα systems) might be larger than 500 K. The radio frequency interference (RFI) and standing wave are the main factors affecting the detection of HI absorption lines, which have been analyzed and discussed as well in order to find a method of solution. Our study can serve as a pathfinder for the future large-scale search of HI 21-cm absorption lines using the Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST), which is an Arecibo-type radio telescope currently under construction in China with greatly increased sensitivity, bandwidth, and observational sky area. As prospects, we have discussed two types of observational studies of HI absorption lines toward extragalactic sources using the FAST telescope.

  2. Novel algorithm for simultaneously detecting multiple vapor materials with multiple-wavelength differential absorption lidar

    Shirong Yin; Weiran Wang

    2006-01-01

    Differential absorption lidar (DIAL) has been successfully used to detect vapor material, however limited to detect single vapor using two closely spaced wavelengths. The progress in multiple-wavelength lasers motivates the need for detection and estimation algorithms that have the capability for simultaneous detection of multiple materials. In this paper, a simple and accurate algorithm is presented for simultaneously detecting and estimating multiple vapor materials with multiple-wavelength DIAL, which based on the maximum likelihood estimation (MLE) methodology. The performance of the algorithm is evaluated by simulation experiments, the results show that this algorithm can separately identify and quantify vapor material in mixtures and perform quite well.

  3. Probing the dynamics of polyatomic multichannel elementary reactions by crossed molecular beam experiments with soft electron-ionization mass spectrometric detection.

    Casavecchia, Piergiorgio; Leonori, Francesca; Balucani, Nadia; Petrucci, Raffaele; Capozza, Giovanni; Segoloni, Enrico

    2009-01-01

    In this Perspective we highlight developments in the field of chemical reaction dynamics. Focus is on the advances recently made in the investigation of the dynamics of elementary multichannel radical-molecule and radical-radical reactions, as they have become possible using an improved crossed molecular beam scattering apparatus with universal electron-ionization mass spectrometric detection and time-of-flight analysis. These improvements consist in the implementation of (a) soft ionization detection by tunable low-energy electrons which has permitted us to reduce interfering signals originating from dissociative ionization processes, usually representing a major complication, (b) different beam crossing-angle set-ups which have permitted us to extend the range of collision energies over which a reaction can be studied, from very low (a few kJ mol(-1), as of interest in astrochemistry or planetary atmospheric chemistry) to quite high energies (several tens of kJ mol(-1), as of interest in high temperature combustion systems), and (c) continuous supersonic sources for producing a wide variety of atomic and molecular radical reactant beams. Exploiting these new features it has become possible to tackle the dynamics of a variety of polyatomic multichannel reactions, such as those occurring in many environments ranging from combustion and plasmas to terrestrial/planetary atmospheres and interstellar clouds. By measuring product angular and velocity distributions, after having suppressed or mitigated, when needed, the problem of dissociative ionization of interfering species (reactants, products, background gases) by soft ionization detection, essentially all primary reaction products can be identified, the dynamics of each reaction channel characterized, and the branching ratios determined as a function of collision energy. In general this information, besides being of fundamental relevance, is required for a predictive description of the chemistry of these

  4. Laser-spectrometric gas analysis: CO2–TDLAS at 2 µm

    Employing direct absorption spectroscopy and using a spectrometer comprising a single-pass and a multipass white cell, we probed the R(12) line of carbon dioxide (CO2) in the combination band around 2 µm. Gravimetric gas standards containing CO2, between 300 and 60 000 µmol mol−1 (0.03% to 6%), in N2 were quantified by means of the TILSAM method. The spectrometric results were compared with the gravimetric reference values. We describe our implementation of the ‘Guide to the Expression of Uncertainty in Measurements’ to infrared laser-spectrometric gas analysis. Data quality objectives are addressed by uncertainty and traceability flags. Uncertainty budgets are presented to show the quality of the results and to demonstrate software-assisted uncertainty assessment. The relative standard uncertainties of the spectrometrically measured CO2 amount fractions at, e.g., ambient levels of 360 µmol mol−1 and at exhaled breath gas levels of 50 mmol mol−1 were 1.4% and 0.7%, respectively. Our detection limit was 2.2 µmol mol−1. The reproducibility of individual results was in the ±1% range. Furthermore, we measured collisional broadening coefficients of the R(12) line of CO2 at 4987.31 cm−1. The relative standard uncertainties of the measured self-, nitrogen-, oxygen- and air-broadening coefficients were in the ±1.7% range. (paper)

  5. Infrared differential absorption lidar for stand-off detection of chemical agents

    A K Razdan; S Veerabuthiran; M K Jindal; R K Sharma

    2014-02-01

    A compact trolley-mounted pulsed transverse electric atmospheric pressure (TEA) carbon dioxide laser-based differential absorption lidar (DIAL) system capable of stand-off detection of chemical clouds in aerosol and vapour form upto about 200 m range in the atmosphere has been developed and assembled at Laser Science and Technology Centre (LASTEC), Delhi. The system was tested successfully with diethyl ether (DEE) (a toxic industrial chemical (TIC)) and differential absorption signals at on (strong absorption, 9R16) and off (weak absorption, 10R26) wavelengths were recorded for stand-off distances upto ∼100 m (open air ground path). This paper discusses the technical details of trolley-mounted CO2 DIAL system and the data generated during the test and evaluation of this sensor using DEE aerosols.

  6. Absorption of human skin and its detecting platform in the process of laser cosmetology

    Zhang, Yong-Lin; Ouyang, Li; Wang, Yang

    2000-10-01

    Because of the melanin, hemoglobin and water molecules, etc. contained, light absorption of human skin tissue changes with wavelength of light. This is the principle used in laser cosmetology for treating pigment diseases and vascular lesion diseases as well as skin decoration such as body tattooing, eyebrow tattooing, etc. The parameters of treatment used in laser cosmetology principally come from the research of the skin tissue optical characteristics of whites, and it is not suitable for the Oriental. The absorption spectrum of yellow race alive skin has been researched. The detecting platform for use in the measuring of vivi-tissue absorption spectrum has been developed which using opto-electronic nondestructive testing and virtual instrument techniques. The degree of pathological changes of skin can be detected by this platform also, thus the shortcoming of dosage selection in laser clinical treatments which have been decided only by naked eye observation and past experience of doctors can be solved.

  7. Speciation of four selenium compounds using high performance liquid chromatography with on-line detection by inductively coupled plasma mass spectrometry or flame atomic absorption spectrometry

    Pedersen, G.A. [National Food Agency of Denmark, Institute of Food Chemistry and Nutrition, Moerkhoej Bygade 19, DK-2860 Soeborg (Denmark); Larsen, E.H. [National Food Agency of Denmark, Institute of Food Chemistry and Nutrition, Moerkhoej Bygade 19, DK-2860 Soeborg (Denmark)

    1997-07-01

    An analytical method for the speciation of selenomethionine, selenocystine, selenite and selenate by high performance liquid chromatography (HPLC) with atomic spectrometric detection is presented. An organic polymeric strong anion exchange column was used as the stationary phase in combination with an aqueous solution of 6 mmol L{sup -1} of salicylate ion at pH 8.5 as the mobile phase which allowed the isocratic separation of the four selenium analytes within 8 minutes. The separated selenium species were detected on-line by flame atomic absorption spectrometry (FAAS) or inductively coupled plasma mass spectrometry (ICP-MS). The signal-to-noise ratio of the FAAS detector was optimized using a hydrogen-argon entrained-air flame and a slotted-tube atom trap (STAT) in the flame. The limit of detection (3 {sigma}) achieved by the HPLC-FAAS system was 1 mg L{sup -1} of selenium (100 {mu}L injections) for each of the four selenium species. More powerful selenium detection was achieved using an ELAN 5000 ICP-MS instrument. Selenium was measured at m/z = 82. The ICP-MS signal intensity was enhanced by a factor of 3-4 after addition of 3% methanol to the chromatographic mobile phase and by using an increased plasma power input of 1300 W. The limit of detection achieved under these conditions was 1 {mu}g L{sup -1} (100 {mu}L injections). The HPLC-ICP-MS system was used for selenium speciation of selenite and selenate in aqueous solutions during a BCR certification exercise and for selenium speciation in the certified reference material, BCR No. 402 White Clover. Extraction experiments revealed that the selenium species in the biological material were extractable only in the presence of water in the extraction medium. The results indicated that selenate and a compound of unknown identity U were present in the plant sample. (orig.). With 5 figs., 5 tabs.

  8. Detection of Ca II absorption triplet in a circumnuclear H II region of NGC 3310

    Terlevich, Elena; Angeles I. Díaz; Pastoriza, Miriani G.; Terlevich, Roberto; Dottori, Horacio

    1990-01-01

    This is an electronic version of an article published in Monthly Notices of the Royal Astronomical Society. Terlevich, E., Díaz, A.I., Pastoriza, M.G., Terlevich, R. and H. Dottori. Detection of Ca II absorption triplet in a circumnuclear H II region of NGC 3310. Monthly Notices of the Royal Astronomical Society 242 (1990): 48-51

  9. OH detection by absorption of frequency-doubled diode laser radiation at 308nm

    Barry, Hugh R.; Bakowski, Ben; Corner, Laura; Freegarde, Tim; Hawkins, Oliver T. W.; Hancock, Gus; Jacobs, Robert M. J.; Peverall, Robert; Ritchie, Grant A.D.

    2000-01-01

    Radiation at 308 nm has been obtained by frequency doubling the output of a commercial diode laser cooled to 165 K. A single pass through a crystal of LiIO3 converted 1 mW of 616 nm radiation to 50 pW of UV, and this was used to detect the OH radical in absorption in a flow tube. Possible extensions of the method for detection of OH in the atmosphere are discussed.

  10. Portable 4.6 Micrometers Laser Absorption Spectrometer for Carbon Monoxide Monitoring and Fire Detection

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Ruff, Gary A.

    2013-01-01

    The air quality aboard manned spacecraft must be continuously monitored to ensure crew safety and identify equipment malfunctions. In particular, accurate real-time monitoring of carbon monoxide (CO) levels helps to prevent chronic exposure and can also provide early detection of combustion-related hazards. For long-duration missions, environmental monitoring grows in importance, but the mass and volume of monitoring instruments must be minimized. Furthermore, environmental analysis beyond low-Earth orbit must be performed in-situ, as sample return becomes impractical. Due to their small size, low power draw, and performance reliability, semiconductor-laser-based absorption spectrometers are viable candidates for this purpose. To reduce instrument form factor and complexity, the emission wavelength of the laser source should coincide with strong fundamental absorption lines of the target gases, which occur in the 3 to 5 micrometers wavelength range for most combustion products of interest, thereby reducing the absorption path length required for low-level concentration measurements. To address the needs of current and future NASA missions, we have developed a prototype absorption spectrometer using a semiconductor quantum cascade laser source operating near 4.6 micrometers that can be used to detect low concentrations of CO with a compact single-pass absorption cell. In this study, we present the design of the prototype instrument and report on measurements of CO emissions from the combustion of a variety of aerospace plastics.

  11. Non-degenerate two photon absorption enhancement for laser dyes by precise lock-in detection

    Xue, B. [Advanced Ultrafast Laser Research Center and Department of Engineering Science, Faculty of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 (Japan); Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Katan, C. [Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Université Rennes 1, 35042 Rennes (France); Bjorgaard, J. A. [Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM (United States); Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM (United States); Kobayashi, T., E-mail: kobayashi@ils.uec.ac.jp [Advanced Ultrafast Laser Research Center and Department of Engineering Science, Faculty of Informatics and Engineering, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585 (Japan); Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo, 102-0075 (Japan); Department of Electrophysics, National Chiao-Tung University, Hsinchu, 30010, Taiwan (China); Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka, 565-0871 (Japan)

    2015-12-15

    This study demonstrates a measurement system for a non-degenerate two-photon absorption (NDTPA) spectrum. The NDTPA light sources are a white light super continuum beam (WLSC, 500 ∼ 720 nm) and a fundamental beam (798 nm) from a Ti:Sapphire laser. A reliable broadband NDTPA spectrum is acquired in a single-shot detection procedure using a 128-channel lock-in amplifier. The NDTPA spectra for several common laser dyes are measured. Two photon absorption cross section enhancements are found in the experiment and validated by theoretical calculation for all of the chromophores.

  12. Non-degenerate two photon absorption enhancement for laser dyes by precise lock-in detection

    This study demonstrates a measurement system for a non-degenerate two-photon absorption (NDTPA) spectrum. The NDTPA light sources are a white light super continuum beam (WLSC, 500 ∼ 720 nm) and a fundamental beam (798 nm) from a Ti:Sapphire laser. A reliable broadband NDTPA spectrum is acquired in a single-shot detection procedure using a 128-channel lock-in amplifier. The NDTPA spectra for several common laser dyes are measured. Two photon absorption cross section enhancements are found in the experiment and validated by theoretical calculation for all of the chromophores

  13. Standard addition/absorption detection microfluidic system for salt error-free nitrite determination.

    Ahn, Jae-Hoon; Jo, Kyoung Ho; Hahn, Jong Hoon

    2015-07-30

    A continuous-flow microfluidic chip-based standard addition/absorption detection system has been developed for accurate determination of nitrite in water of varying salinity. The absorption detection of nitrite is made via color development using the Griess reaction. We have found the yield of the reaction is significantly affected by salinity (e.g., -12% error for 30‰ NaCl, 50.0 μg L(-1)N-NO2(-) solution). The microchip has been designed to perform standard addition, color development, and absorbance detection in sequence. To effectively block stray light, the microchip made from black poly(dimethylsiloxane) is placed on the top of a compact housing that accommodates a light-emitting diode, a photomultiplier tube, and an interference filter, where the light source and the detector are optically isolated. An 80-mm liquid-core waveguide mounted on the chip externally has been employed as the absorption detection flow cell. These designs for optics secure a wide linear response range (up to 500 μg L(-1)N-NO2(-)) and a low detection limit (0.12 μg L(-1)N-NO2(-) = 8.6 nM N-NO2(-), S/N = 3). From determination of nitrite in standard samples and real samples collected from an estuary, it has been demonstrated that our microfluidic system is highly accurate (<1% RSD, n = 3) and precise (<1% RSD, n = 3). PMID:26320643

  14. [Detection technology of methane gas concentration based on infrared absorption spectrum].

    Luo, Da-Feng; Yang, Jian-Hua; Zhong, Chong-Gui

    2011-02-01

    According to the disadvantages of current methane sensor in coal mine, the infrared methane concentration detection system based on the principle of infrared spectrum absorption was designed using differential absorption technology. In the system single light beam absorbing cell and single light beam and double wavelengths technology are adopted. Differential amplifier circuit serves as the core of faint signal processing circuit that detects the output signal of methane concentration, and linear formula fits the curve of methane concentration and output voltage, which realizes accurate and full range detection of gas concentration. Experiment shows that measurement error is less than 2%, and the system has very high measurement precision and possesses the basis of industrial applications. PMID:21510386

  15. 30% improvement in absorption spectroscopy detectivity achieved by the detuned loading of a quantum cascade laser.

    Michel, Florian; Juretzka, Carsten; Carras, Mathieu; Elsäßer, Wolfgang

    2014-11-01

    We perform a direct absorption spectroscopy experiment of carbon monoxide at 2193  cm(-1) by exploring the detectivity improvement potential of an intensity noise (IN)-reduced distributed feedback (DFB) quantum cascade laser. This was achieved by a detuned loading approach via a short, phase-sensitive optical feedback cavity. Under optimum IN reduction conditions, we obtain an improvement in signal-to-noise ratio from 733 to 1048, which transfers into a detection limit improvement from 1.2 ppm to 840 ppb. Therefore, we achieve a 30% lower detection limit, with the IN reduced when compared to the free-running case. PMID:25361352

  16. Spectrometric techniques 2

    Vanasse, George A

    2013-01-01

    Spectrometric Techniques, Volume II provides information pertinent to vacuum ultraviolet techniques to complete the demonstration of the diversity of methods available to the spectroscopist interested in the ultraviolet visible and infrared spectral regions. This book discusses the specific aspects of the technique of Fourier transform spectroscopy.Organized into five chapters, this volume begins with an overview of the large number of systematic effects in the recording of an interferogram. This text then examines the design approach for a Fourier transform spectrometer with focus on optics.

  17. Simultaneous qualification and quantification of eight triterpenoids in radix achyranthis bidentatae by high-performance liquid chromatography with evaporative light scattering detection and mass spectrometric detection.

    Li, Juan; Li, Ping; Li, Hui-Jun; Song, Yue; Bi, Zhi-Ming; Li, Yan-Jing

    2007-04-01

    An HPLC with evaporative light scattering detection (ELSD) and ESI-MS was established for the simultaneous determination of eight triterpenoids in Radix Achyranthis Bidentatae. The optimal chromatographic conditions were achieved on a Zorbax C18 column by linear gradient elution with 0.08% v/v aqueous formic acid and ACN as the mobile phase at the flow rate of 0.8 mL/min. Temperature for the detector drift tube was set at 101 degrees C and the nitrogen flow rate was 2.8 L/min. The identities of the analytes were accomplished by comparing retention times and mass data with those of reference compounds. The validation of the method included tests of linearity, sensitivity, repeatability, recovery, and stability. All the calibration curves of the eight triterpenoids showed good linear regression (R2 >0.997) within the test ranges. The method provides desirable repeatability with overall intra- and interday variations of less than 4.9%. The obtained recoveries varied between 93.6 and 98.1% while the RSDs were below 3.9% (n = 3). The analysis results indicate that the content of investigated triterpenoids in Radix Achyranthis Bidentatae from different locations was greatly diverse, and the triterpenoids could be used as chemical markers for the discrimination of genuine and ungenuine crude drugs. PMID:17536729

  18. A CCD-based system for the detection of DNA in electrophoresis gels by UV absorption

    A method and apparatus for the detection and quantification of large fragments of unlabelled nucleic acids in agarose gels is presented. The technique is based on ultraviolet (UV) absorption by nucleotides. A deuterium source illuminates individual sample lanes of an electrophoresis gel via an array of optical fibres. As DNA bands pass through the illuminated region of the gel the amount of UV light transmitted is reduced because of absorption by the DNA. During electrophoresis the regions of DNA are detected on-line using a UV-sensitive charge coupled device (CCD). As the absorption coefficient is proportional to the mass of DNA the technique is inherently quantitative. The mass of DNA in a region of the gel is approximately proportional to the integrated signal in the corresponding section of the CCD image. This system currently has a detection limit of less than 1.25 ng compared with 2-10 ng for the most popular conventional technique, ethidium bromide (EtBr) staining. In addition the DNA sample remains in its native state. The removal of the carcinogenic dye from the detection procedure greatly reduces associated biological hazards. (author)

  19. Detectability of cold streams into high-z galaxies by absorption lines

    Goerdt, Tobias; Sternberg, Amiel; Gnat, Orly; Ceverino, Daniel

    2012-01-01

    Cold gas streaming along the dark-matter filaments of the cosmic web is predicted to be the major source of fuel for disc buildup, violent disk instability and star formation in massive galaxies at high redshift. We investigate to what extent such cold gas is detectable in the extended circum-galactic environment of galaxies via Ly alpha absorption and selected low ionisation metal absorption lines. We model the expected absorption signatures using high resolution zoom-in AMR cosmological simulations. In the postprocessing, we distinguish between self-shielded gas and unshielded gas. In the self-shielded gas, which is optically thick to Lyman continuum radiation, we assume pure collisional ionisation for species with an ionisation potential greater than 13.6 eV. In the optically thin, unshielded gas these species are also photoionised by the meta-galactic radiation. In addition to absorption of radiation from background quasars, we compute the absorption line profiles of radiation emitted by the galaxy at the...

  20. Solid phase extraction of cadmium on 2-mercaptobenzothiazole loaded on sulfur powder in the medium of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and cold vapor generation-atomic absorption spectrometric determination

    A novel solid phase extractor for preconcentration of cadmium at ng L-1 levels has been developed. Cadmium ions were retained on a column packed with sulfur powder modified with 2-mercaptobenzothiazole (2-MBT) in the medium of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim]+PF6-) ionic liquid. The presence of ionic liquid during modification of sulfur enhanced the retention of cadmium ions on the column. The retained cadmium ions were eluted with 2 mol L-1 solution of HCl and measured by cold vapor generation-atomic absorption spectrometry (CVG-AAS). By using reaction cell-gas liquid separator (RC-GLS), gaseous cadmium vapors were produced and reached the atomic absorption spectrometer, instantaneously. The influence of different variables on both processes of solid phase extraction and CVG-AAS determination of cadmium ions was investigated. The calibration curve was linear in the range of 10-200 ng L-1of cadmium in the initial solution with r = 0.9992 (n = 8) under optimum conditions. The limit of detection based on three times the standard deviation of the blank (3Sb, n = 10) was 4.6 ng L-1. The relative standard deviation (R.S.D.) of 25 and 150 ng L-1 of cadmium was 4.1 and 2.2% (n = 8), respectively. The procedure was validated by the analysis of a certified reference material (DORM-3), water and fish samples.

  1. Sensitive CH4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy.

    Lang, N; Macherius, U; Wiese, M; Zimmermann, H; Röpcke, J; van Helden, J H

    2016-03-21

    We report on sensitive detection of atmospheric methane employing quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS). An instrument has been built utilizing a continuous-wave distributed feedback quantum cascade laser (cw-QCL) with a V-shaped cavity, a common arrangement that reduces feedback to the laser from non-resonant reflections. The spectrometer has a noise equivalent absorption coefficient of 3.6 × 10-9 cm-1 Hz-1/2 for a spectral scan of CH4 at 7.39 μm. From an Allan-Werle analysis a detection limit of 39 parts per trillion of CH4 at atmospheric pressure within 50 s acquisition time was found. PMID:27136874

  2. Determination of 2-ethylhexyl 4-(dimethylamino) benzoate using membrane-assisted liquid-liquid extraction and gas chromatography-mass spectrometric detection.

    March, J G; Genestar, C; Simonet, B M

    2009-06-01

    A flow-cell for micro-porous membrane liquid-liquid extraction with a sheet membrane was used to extract 2-ethylhexyl 4-(dimethylamino) benzoate (EDB) from urine of solar-cream users and spiked wine samples. The cell enabled the target analyte to be extracted from 7.9 mL of donor solution into 200 microL of acceptor solution (decane). After extraction, the acceptor solution was transferred to a micro-vial for GC-MS analysis without derivation. In this work, variables affecting the enrichment factor were also studied, such as organic solvent, extraction time, recirculation flow of the donor solution through the donor chamber, presence of potassium chloride and ethanol in the donor solution and pH. The method has been evaluated in terms of linearity, sensitivity, precision, limits of detection and quantification and extraction efficiency. Limits of quantification were 1 and 3 microg L(-1) EDB for urine and wine, respectively. Quantitative analysis has been carried out by applying the method of standard additions. Within- and between-day relative standard deviations were lower than 12% and 20%, respectively. EDB was found in the urine of users of cream containing EDB in the concentration interval 1.2-7.2 microg L(-1). Therefore, this provides evidence of EDB dermal absorption and subsequent excretion through the urinary tract. EDB was not found in the analysed wine samples. PMID:19347661

  3. Development and validation of a supercritical fluid chromatography method for the direct determination of enantiomeric purity of provitamin B5 in cosmetic formulations with mass spectrometric detection.

    Khater, Syame; West, Caroline

    2015-01-01

    A rapid and efficient chiral supercritical fluid chromatography (SFC) method has been developed for the quantitative determination of panthenol enantiomers in cosmetic formulations (cream, lotion, wipe, and exfoliant). Indeed, the pharmacological effect only depends on the D form (Dexpanthenol) thus accurate measurement of its enantiomeric purity in formulated cosmetic products is of interest. The samples were prepared with liquid-liquid extraction followed by solid-phase extraction on Adsorbex amino cartridges. After testing several enantioselective columns in an attempt at reversing the elution order to have the minor enantiomer eluted first, the best separation of enantiomers and internal standard (N-acetyl-L-alanine) was achieved on a 3 μm-amylose-type immobilized polysaccharide chiral stationary phase (Chiralpak IA) in less than 6 min with a simple mobile phase comprising carbon dioxide and 11% methanol pumped at 2.3 mL/min, 25°C and 150 bar backpressure. Supercritical fluid chromatography coupled to both an optical diode-array detector and a user-friendly single-quadrupole mass spectrometer (Waters QDa) equipped with electrospray ionization source has been used. The on-line coupling ensures the technique to be more informative and improves detection sensitivity, as underivatized panthenol has a poor UV absorption. The limit of quantification (LOQ) achieved with single-ion recording was 0.5 μg/mL. The method was validated in terms of linearity, precision and accuracy and satisfactory results were obtained. PMID:25459930

  4. Simultaneous detection of potassium, water vapor and temperature with tunable diode laser absorption spectroscopy

    Norén, Edvin

    2015-01-01

    Existing tunable diode laser absorption spectroscopy (TDLAS) sensors for potassium (K) and for water vapor (H2O) and temperature were combined to enable simultaneous measurements in combustion and gasification processes. In-situ real-time detection of the above mentioned combustion parameters will improve the understanding of ash-formation during thermochemical conversion of biomass. Simultaneous measurements facilitate the experimental procedure and decrease the methodological uncertainty in...

  5. Commercial Applications of X Ray Spectrometric Techniques

    In the 21st century, the X-ray fluorescence (XRF) technique is widely used in process control, industrial applications and for routine elemental analysis. The technique has a multielement capability capable of detecting elements with Z ≥ 10, with a few instruments capable of detecting also elements with Z ≥ 5. It is characterized by a non-destructive analysis process and relatively good detection limits, typically one part per million, for a wide range of elements. The first commercial XRF instruments were introduced to the market about 50 years ago. They were the wavelength dispersive X ray fluorescence (WDXRF) spectrometers utilizing Bragg’s law and reflection on crystal lattices for sequential elemental analysis of sample composition. The advances made in radiation detector technology, especially the introduction of semiconductor detectors, improvements in signal processing electronics, availability and exponential growth of personal computer market led to invention of energy dispersive X ray fluorescence (EDXRF) technique. The EDXRF is more cost effective as compared to WDXRF. It also allows for designing compact instruments. Such instruments can be easily tailored to the needs of different customers, integrated with industrial installations, and also miniaturized for the purpose of in-situ applications. The versatility of the technique has been confirmed in a spectacular way by using the XRF and X-ray spectrometric techniques, among few others, during the NASA and ESA missions in search for the evidence of life and presence of water on the surface of Mars. The XRF technique has achieved its strong position within the atomic spectroscopy group of analytical techniques not only due to its versatility but also due to relatively low running costs, as compared to the commonly used methods, e.g., atomic absorption spectrometry (AAS) or inductively coupled plasma atomic emission/mass spectrometry (ICP-AES/MS). Presently, the XRF technique together with X ray

  6. 运用HPLC-MS对鸦胆子油自微乳给药系统肠吸收的研究%High-performance Liquid Chromatography Coupled with Mass Spectrometric Method for the Intestinal Absorption Study of Brucea Javanica Oil SMEDDS

    陈瑾瑾; 张懿; 王睿锐; 李盈; 沈琦; 马依然

    2012-01-01

    Objective: To develop a rapid, sensitive and selective high-performance liquid chromatography coupled with mass spectrometric method (HPLC-MS) for detection oleic acid and linoleic acid. Methods: The chromatographic separation was achieved on C18 column at 35℃, with a mobile phase consisting of methanol-distilled water (95:5, v/v) at a flow rate of 0.4 mL/min. An in-vitro diffusion chamber system across isolated rat intestinal membranes was chosen as a model. A self-microemulsifying drug delivery system was used to enhance the intestinal absorption of bruces javanica oil. Results: Oleic acid and linoleic acid were separated with retention times of 10.46 ± 0.02 and 8.55 ± 0.01 min, respectively. A good linear relationship for oleic acid and linoleic acid were in the range of 0.50~50.0 ng/mL(oleic acid) and 5.06~101.2 ng/mL(linoleic acid) , respectively. The mean absolute recoveries of oleic acid and linoleic acid determined in middle concentrations were 97.49± 3.11 % and 105.76± 3.13 % respectively. The coefficients of variation for inter-day and intra-day assay were less than 5 %. The absorption of oleic acid and linoleic acid in bruces javanica oil were 2.8-fold and 4.1-fold enhancement in the presence of the self-microemulsifying drug delivery system respectively, compared with brucea javanica oil alone. Conclusion: HPLC-MS method will be of great utility in routine quality control procedure for the determination of oleic acid and linoleic acid in absorption experiments.%目的:建立高效液相色谱-串联质谱法检测油酸和亚油酸含量的方法,从而对鸦胆子油自微乳给药系统中鸦胆子油的肠吸收进行研究.方法:以甲醇-水(95∶5 v/v)为流动相,流速为0.4 mL/min,柱温为35℃作为高效液相色谱的检测条件.利用大鼠小肠膜建立体外药物扩散体系研究鸦胆子油的肠吸收特性.结果:油酸和亚油酸的保留时间分别为10.46± 0.02和8.55±0.01 min,线性范围分别为0.50~50.0 ng

  7. Widespread Galactic CF+ absorption: detection toward W49 with the Plateau de Bure Interferometer

    Liszt, H S; Pety, J; Gerin, M; Neufeld, D A; Gratier, P

    2015-01-01

    To study the usefulness of \\CFP\\ as a tracer of the regions where C\\p\\ and \\HH\\ coexist in the interstellar medium. We used the Plateau de Bure Interferometer to synthesize \\CFP\\ J=1-0 absorption at 102.6 GHz toward the core of the distant HII region W49N at l = 43.2\\degr, b=0.0\\degr, and we modeled the fluorine chemistry in diffuse/translucent molecular gas. We detected \\CFP\\ absorption over a broad range of velocity showing that \\CFP\\ is widespread in the \\HH-bearing Galactic disk gas. Originally detected in dense gas in the Orion Bar and Horsehead PDR, \\CFP\\ was subsequently detected in absorption from diffuse and translucent clouds seen toward \\bll\\ and 3C111. Here we showed that \\CFP\\ is distributed throughout the diffuse and translucent molecular disk gas with N(\\CFP)/N(\\HH) $= 1.5-2.0\\times10^{-10}$, increasing to N(\\CFP)/N(\\HH) $= 3.5\\times10^{-10}$ in one cloud at 39 \\kms\\ having higher N(\\HH) $\\approx 3\\times10^{21}\\pcc$. Models of the fluorine chemistry reproduce the observed column densities and r...

  8. Detection of Ca II absorption triplet in a circumnuclear H II region of NGC 3310

    We have obtained long slit spectrophotometry across NGC 3310, a luminous galaxy with circumnuclear bursts of star formation, covering the spectral range from λ3650 to 9700 A. In one giant star-forming region, the near-IR Ca II absorption lines (a signature of young supergiants) was detected with a strength similar to that of the nuclear region. This is, to our knowledge, the first detection of the IR Ca II triplet in an extragalactic giant H II region and confirms theoretical predictions that, after some 4 Myr, red supergiants should appear in bursts of star formation. (author)

  9. Detection of water vapour absorption around 363nm in measured atmospheric absorption spectra and its effect on DOAS evaluations

    Lampel, Johannes; Polyansky, Oleg. L.; Kyuberis, Alexandra A.; Zobov, Nikolai F.; Tennyson, Jonathan; Lodi, Lorenzo; Pöhler, Denis; Frieß, Udo; Platt, Ulrich; Beirle, Steffen; Wagner, Thomas

    2016-04-01

    Water vapour is known to absorb light from the microwave region to the blue part of the visible spectrum at a decreasing magnitude. Ab-initio approaches to model individual absorption lines of the gaseous water molecule predict absorption lines until its dissociation limit at 243 nm. We present first evidence of water vapour absorption at 363 nm from field measurements based on the POKAZATEL absorption line list by Polyansky et al. (2016) using data from Multi-Axis differential optical absorption spectroscopy (MAX-DOAS) and Longpath (LP)-DOAS measurements. The predicted absorptions contribute significantly to the observed optical depths with up to 2 × 10‑3. Their magnitude correlates well (R2 = 0.89) to simultaneously measured well-established water vapour absorptions in the blue spectral range from 452-499 nm, but is underestimated by a factor of 2.6 ± 0.6 in the ab-initio model. At a spectral resolution of 0.5nm this leads to a maximum absorption cross-section value of 5.4 × 10‑27 cm2/molec at 362.3nm. The results are independent of the employed cross-section data to compensate for the overlayed absorption of the oxygen dimer O4. The newly found absorption can have a significant impact on the spectral retrieval of absorbing trace-gas species in the spectral range around 363 nm. Its effect on the spectral analysis of O4, HONO and OClO are discussed.

  10. [Carbon monoxide gas detection system based on mid-infrared spectral absorption technique].

    Li, Guo-Lin; Dong, Ming; Song, Nan; Song, Fang; Zheng, Chuan-Tao; Wang, Yi-Ding

    2014-10-01

    Based on infrared spectral absorption technique, a carbon monoxide (CO) detection system was developed using the fundamental absorption band at the wavelength of 4.6 μm of CO molecule and adopting pulse-modulated wideband incandescence and dual-channel detector. The detection system consists of pulse-modulated wideband incandescence, open ellipsoid light-collec- tor gas-cell, dual-channel detector, main-control and signal-processing module. By optimizing open ellipsoid light-collector gas- cell, the optical path of the gas absorption reaches 40 cm, and the amplitude of the electrical signal from the detector is 2 to 3 times larger than the original signal. Therefore, by using the ellipsoidal condenser, the signal-to-noise ratio of the system will be to some extent increased to improve performance of the system. With the prepared standard CO gas sample, sensing characteris- tics on CO gas were investigated. Experimental results reveal that, the limit of detection (LOD) is about 10 ppm; the relative er- ror at the LOD point is less than 14%, and that is less than 7. 8% within the low concentration range of 20~180 ppm; the maxi- mum absolute error of 50 min long-term measurement concentration on the 0 ppm gas sample is about 3 ppm, and the standard deviation is as small as 0. 18 ppm. Compared with the CO detection systems utilizing quantum cascaded lasers (QCLs) and dis- tributed feedback lasers (DFBLs), the proposed sensor shows potential applications in CO detection under the circumstances of coal-mine and environmental protection, by virtue of high performance-cost ratio, simple optical-path structure, etc. PMID:25739235

  11. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection

    A broadband absorption spectrometer has been developed for highly sensitive and target-selective in situ trace gas measurements. The instrument employs two distinct modes of operation: (i) broadband cavity enhanced absorption spectroscopy (BBCEAS) is used to quantify the concentration of gases in sample mixtures from their characteristic absorption features, and (ii) periodic measurements of the cavity mirrors' reflectivity are made using step-scan phase shift cavity ringdown spectroscopy (PSCRDS). The latter PSCRDS method provides a stand-alone alternative to the more usual method of determining mirror reflectivities by measuring BBCEAS absorption spectra for calibration samples of known composition. Moreover, the instrument's two modes of operation use light from the same light emitting diode transmitted through the cavity in the same optical alignment, hence minimizing the potential for systematic errors between mirror reflectivity determinations and concentration measurements. The ability of the instrument to quantify absorber concentrations is tested in instrument intercomparison exercises for NO2 (versus a laser broadband cavity ringdown spectrometer) and for H2O (versus a commercial hygrometer). A method is also proposed for calculating effective absorption cross sections for fitting the differential structure in BBCEAS spectra due to strong, narrow absorption lines that are under-resolved and hence exhibit non-Beer-Lambert law behavior at the resolution of the BBCEAS measurements. This approach is tested on BBCEAS spectra of water vapor's 4v+δ absorption bands around 650 nm. The most immediate analytical application of the present instrument is in quantifying the concentration of reactive trace gases in the ambient atmosphere. The instrument's detection limits for NO3 as a function of integration time are considered in detail using an Allan variance analysis. Experiments under laboratory conditions produce a 1σ detection limit of 0.25 pptv for a 10 s

  12. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions.

    Qu, Zhechao; Steinvall, Erik; Ghorbani, Ramin; Schmidt, Florian M

    2016-04-01

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer-Lambert's law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950-1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor. PMID:26938713

  13. On-line sample processing involving microextraction techniques as a front-end to atomic spectrometric detection for trace metal assays: A review

    Miró, Manuel, E-mail: manuel.miro@uib.es [FI-TRACE Group, Department of Chemistry, Faculty of Sciences, University of the Balearic Islands, E-07122 Palma de Mallorca, Illes Balears (Spain); Hansen, Elo Harald [Granåsen 93, DK-2800 Kgs. Lyngby (Denmark)

    2013-06-11

    Graphical abstract: -- Highlights: •Role of flow injection in automation of microextraction techniques for metal assays. •On-line coupling of liquid phase microextraction (LPME) to atomic spectrometry. •Critical evaluation of on-line single drop and dispersive LPME. •On-line coupling of micro-solid phase extraction (μSPE) to atomic spectrometry. •Critical appraisal of magnetic/carbon nanoparticles and biomass for on-line μSPE. -- Abstract: Within the last decade, liquid-phase microextraction (LPME) and micro-solid phase extraction (μSPE) approaches have emerged as substitutes for conventional sample processing procedures for trace metal assays within the framework of green chemistry. This review surveys the progress of the state of the art in simplification and automation of microextraction approaches by harnessing to the various generations of flow injection (FI) as a front end to atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS) or inductively coupled plasma atomic emission spectrometry or mass spectrometry (ICP-AES/MS). It highlights the evolution of flow injection analysis and related techniques as vehicles for appropriate sample presentation to the detector and expedient on-line matrix separation and pre-concentration of trace levels of metals in troublesome matrices. Rather than being comprehensive this review is aimed at outlining the pros and cons via representative examples of recent attempts in automating green sample preparation procedures in an FI or sequential injection (SI) mode capitalizing on single-drop microextraction, dispersive liquid-phase microextraction and advanced sorptive materials including carbon and metal oxide nanoparticles, ion imprinted polymers, superparamagnetic nanomaterials and biological/biomass sorbents. Current challenges in the field are identified and the synergetic combination of flow analysis, nanotechnology and metal-tagged biomolecule detection is envisaged.

  14. Invisible Active Galactic Nuclei. II Radio Morphologies & Five New HI 21 cm Absorption Line Detections

    Yan, Ting; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2015-01-01

    We have selected a sample of 80 candidates for obscured radio-loud active galactic nuclei and presented their basic optical/near-infrared (NIR) properties in Paper 1. In this paper, we present both high-resolution radio continuum images for all of these sources and HI 21cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz VLA continuum observations find that 52 sources are compact or have substantial compact components with size 0.1 Jy at 4.9 GHz. The most compact 36 sources were then observed with the VLBA at 1.4 GHz. One definite and 10 candidate Compact Symmetric Objects (CSOs) are newly identified, a detection rate of CSOs ~3 times higher than the detection rate previously found in purely flux-limited samples. Based on possessing compact components with high flux densities, 60 of these sources are good candidates for absorption-line searches. Twenty seven sources were observed for HI 21cm absorption at their photometric or spectroscopic redshifts with only ...

  15. A mathematical model concerned in self-absorption correction to calibrate detection efficiency of the Ge gamma-ray spectrometer

    A self-absorption correction function used for cylindrical samples with different density in the Gamma-ray spectrum analysis is reported. The effects of the Gamma-ray energy and sample density on the self-absorption are unitized in the function model, and so a shortcut for detection efficiency calibration in the Gamma-ray spectrum analysis is found

  16. HI emission and absorption in nearby, gas-rich galaxies II. -- sample completion and detection of intervening absorption in NGC 5156

    Reeves, S N; Allison, J R; Koribalski, B S; Curran, S J; Pracy, M B; Phillips, C J; Bignall, H E; Reynolds, C

    2016-01-01

    We present the results of a survey for intervening 21cm HI absorption in a sample of 10 nearby, gas-rich galaxies selected from the HI Parkes All-Sky Survey (HIPASS). This follows the six HIPASS galaxies searched in previous work and completes our full sample. In this paper we searched for absorption along 17 sightlines with impact parameters between 6 and 46 kpc, making one new detection. We also obtained simultaneous HI emission-line data, allowing us to directly relate the absorption-line detection rate to the HI distribution. From this we find the majority of the non-detections in the current sample are because sightline does not intersect the HI disc of the galaxy at sufficiently high column density, but that source structure is also an important factor. The detected absorption-line arises in the galaxy NGC 5156 ($z = 0.01$) at an impact parameter of 19 kpc. The line is deep and narrow with an integrated optical depth of 0.82 km s$^{-1}$. High resolution Australia Telescope Compact Array (ATCA) images at...

  17. Flame atomic absorption spectrometric determination of trace amounts of Pb(II) and Cr(III) in biological, food and environmental samples after preconcentration by modified nano-alumina

    A new solid-phase extraction sorbent was used for the preconcentration of Pb(II) and Cr(III) ions prior to their determination by flame atomic absorption spectrometry. It was prepared by immobilization of 2,4-dinitrophenylhydrazine on nano-alumina coated with sodium dodecyl sulfate. The sorbent was characterized by scanning electron microscopy, N2 adsorption and Fourier transform infrared spectrometry, and used for preconcentration and separation of Pb(II) and Cr(III) from aqueous solutions. The ions on the sorbent were eluted with a mixture of nitric acid and methanol. The effects of sample pH, flow rates of samples and eluent, type of eluent, breakthrough volume and potentially interfering ions were studied. Linearity is maintained between 1.2 and 350 μg L-1 of Pb(II), and between 2.4 and 520 μg L-1 of Cr(III) for an 800-mL sample. The detection limit (3 s, N=10) for Pb(II) and Cr(III) ions is 0.43 and 0.55 μg L-1, respectively, and the maximum preconcentration factor is 267. The method was successfully applied to the evaluation of these trace and toxic metals in various water, food, industrial effluent and urine samples. (author)

  18. Herschel/HIFI detections of hydrides towards AFGL 2591. Envelope emission versus tenuous cloud absorption

    Bruderer, S.; Benz, A. O.; van Dishoeck, E. F.;

    2010-01-01

    . Surprisingly, the CH(JF,P = 3/22,- - 1/21,+ ) and CH+(J = 1-0, J = 2-1) lines are detected in emission at the systemic velocity. We can assign the absorption features to a foreground cloud and an outflow lobe, while the CH and CH+ emission stems from the envelope. The observed abundance and excitation of CH...... with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Apppendices and Table 1 (pages 6 to 7) are only available in electronic form at http://www.aanda.org...

  19. Mid-infrared carbon monoxide detection system using differential absorption spectroscopy technique

    Dong, Ming; Sui, Yue; Li, Guo-lin; Zheng, Chuan-tao; Chen, Mei-mei; Wang, Yi-ding

    2015-11-01

    A differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g. light-collector) and a multi-pass gas-chamber is presented in this paper. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path and environmental changes. Detection principle of the device is described, and both the optical part and the electrical part are developed. Experiments are carried out to evaluate the sensing performance on CO concentration. The results indicate that at 1.013×105 Pa and 298 K, the limit of detection (LoD) is about 11.5 mg/m3 with an absorption length of 40 cm. As the gas concentration gets larger than 115 mg/m3 (1.013×105 Pa, 298 K), the relative detection error falls into the range of -1.7%—+1.9%. Based on 12 h long-term measurement on the 115 mg/m3 and 1 150 mg/m3 CO samples, the maximum detection errors are about 0.9% and 5.5%, respectively. Due to the low cost and competitive characteristics, the proposed device shows potential applications in CO detection in the circumstances of coal-mine production and environmental protection.

  20. First detection of [N II] 205 micrometer absorption in interstellar gas

    Persson, C M; Mookerjea, B; Black, J H; Olberg, M; Goicoechea, J R; Hassel, G E; Falgarone, E; Levrier, F; Menten, K M; Pety, J

    2014-01-01

    We present high resolution [NII] 205 micrometer ^3P_1-^3P_0 spectra obtained with Herschel-HIFI towards a small sample of far-infrared bright star forming regions in the Galactic plane: W31C (G10.6-0.4), W49N (G43.2-0.1), W51 (G49.5-0.4) and G34.3+0.1. All sources display an emission line profile associated directly with the HII regions themselves. For the first time we also detect absorption of the [NII] 205 micrometer line by extended low-density foreground material towards W31C and W49N over a wide range of velocities. We attribute this absorption to the Warm Ionised Medium (WIM) and find N(N^+)\\approx 1.5x10^17 cm^-2 towards both sources. This is in agreement with recent Herschel-HIFI observations of [CII] 158 micrometer, also observed in absorption in the same sight-lines (Gerin et al. 2012, 2014), if ~10-13% of all C^+ ions exist in the WIM on average. Using an abundance ratio of [N]/[H] = 6.76x10^-5 in the gas-phase we find that the mean electron and proton densities are ~0.2-2 cm^-3 assuming a WIM fil...

  1. The Detection of Lyman-alpha Absorption from Nine Nearby Galaxies

    Bowen, D V; Blades, J C; Bowen, David V.; Pettini, Max

    2001-01-01

    We have used STIS aboard HST to search for Lyman-alpha (Lya) absorption in the outer regions of nine nearby (cz<6000 km/s) galaxies using background QSOs and AGN as probes. The foreground galaxies are intercepted between 26 and 199 h-1 kpc from their centers, and in all cases we detect Lya within +/-500 km/s of the galaxies' systemic velocities. The intervening galaxies have a wide range of luminosities, from M_B = -17.1 to -20.0, and reside in various environments: half the galaxies are relatively isolated, the remainder form parts of groups or clusters of varying richness. The equivalent widths of the Lya lines range from 0.08 - 0.68 A and, with the notable exception of absorption from one pair, crudely correlate with sightline separation in a way consistent with previously published data, though the column densities derived from the lines do not. The lack of correlation between line strength and galaxy luminosity or, in particular, the environment of the galaxy, suggests that the absorption is not relat...

  2. Herschel observations of extra-ordinary sources: Detecting spiral arm clouds by CH absorption lines

    Qin, S -L; Comito, C; Möller, T; Rolffs, R; Müller, H S P; Belloche, A; Menten, K M; Lis, D C; Phillips, T G; Bergin, E A; Bell, T A; Crockett, N R; Blake, G A; Cabrit, S; Caux, E; Ceccarelli, C; Cernicharo, J; Daniel, F; Dubernet, M -L; Emprechtinger, M; Encrenaz, P; Falgarone, E; Gerin, M; Giesen, T F; Goicoechea, J R; Goldsmith, P F; Gupta, H; Herbst, E; Joblin, C; Johnstone, D; Langer, W D; Lord, S D; Maret, S; Martin, P G; Melnick, G J; Morris, P; Murphy, J A; Neufeld, D A; Ossenkopf, V; Pagani, L; Pearson, J C; Pérault, M; Plume, R; Salez, M; Schlemmer, S; Stutzki, J; Trappe, N; van der Tak, F F S; Vastel, C; Wang, S; Yorke, H W; Yu, S; Zmuidzinas, J; Boogert, A; Güsten, R; Hartogh, P; Honingh, N; Karpov, A; Kooi, J; Krieg, J M; Schieder, R; Diez-Gonzalez, M C; Bachille, R; Martin-Pintado, J; Baechtold, W; Olberg, M; Nordh, L H; Gill, J L; Chattopadhyay, G

    2010-01-01

    We have observed CH absorption lines ($J=3/2, N=1 \\leftarrow J=1/2, N=1$) against the continuum source Sgr~B2(M) using the \\textit{Herschel}/HIFI instrument. With the high spectral resolution and wide velocity coverage provided by HIFI, 31 CH absorption features with different radial velocities and line widths are detected and identified. The narrower line width and lower column density clouds show `spiral arm' cloud characteristics, while the absorption component with the broadest line width and highest column density corresponds to the gas from the Sgr~B2 envelope. The observations show that each `spiral arm' harbors multiple velocity components, indicating that the clouds are not uniform and that they have internal structure. This line-of-sight through almost the entire Galaxy offers unique possibilities to study the basic chemistry of simple molecules in diffuse clouds, as a variety of different cloud classes are sampled simultaneously. We find that the linear relationship between CH and H$_2$ column dens...

  3. Detection of EC absorption radius for real-time control applications

    Localized ECRH/ECCD is a promising tool for a variety of applications, from Tearing Mode stabilization to sawtooth-crash triggering (or suppression), Internal Transport Barrier control and detection, heat transport studies, formation of advanced scenarios. In all cases the knowledge of the real absorption radius is important for the understanding of experimental results. In some cases, as for NTM stabilization or sawtooth control, the intervention of ECRH/ECCD should eventually be automatic and in real time in fusion reactors, requiring continuous information on the absorption radius for a correct feedback action. In case several EC beams are to be used currently, possibly each one heating a different layer, real-time detection of all absorption radii is indeed a difficult task. Well-known techniques for power deposition profile PEC(r) reconstruction are based on a fast change of the EC power and a fast measurement of the electron temperature profile. ECE diagnostic is preferable, because of the close relation between emission and absorption, and frequency instead of radius can be used as the ordering parameter. Two complementary techniques are feasible: On or Off switching ECRH with monitoring of the Te ramp-rate radial profile; modulated ECRH with monitoring of the fluctuating amplitude distribution. In both cases, in order to provide an accurate PEC(r) profile the time scale for Te measurement has to be fast, in principle much shorter than the heat diffusion time across the absorption layer δdep. Since in most cases the typical order of magnitude of the absorption layer width is δdep ∼ 0.03 m, and the thermal diffusivity is in the order of χ ∼ 1 m2/s, it follows that the characteristic diffusion time τdiff = d2/χe is in the order of a ms, and modulation frequencies in the kHz range are needed. MECH technique can in principle provide continuous monitoring of rdep, but at the expense of a non-negligible fraction of the total power available for the

  4. GBT Detection of Polarization-Dependent HI Absorption and HI Outflows in Local ULIRGs and Quasars

    Teng, Stacy H.; Veilleux, Sylvain; Baker, Andrew J.

    2013-01-01

    We present the results of a 21-cm HI survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Green Bank Telescope (GBT). These remnants were selected from the Quasar/ULIRG Evolution Study (QUEST) sample of ultraluminous infrared galaxies (ULIRGs; L(sub 8 - 1000 micron) > 10(exp 12) solar L) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGN) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of HI absorption (emission) to be 100% (29%) in ULIRGs with HI detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km/s in some cases. Unexpectedly, we find polarization-dependent HI absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground HI clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the approx 10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into "mature" radio galaxies.

  5. Spectrophotometric detection of diethylstilbestrol on the basis of the plasmon resonance absorption of silver nanoparticles

    2010-01-01

    In this study,a spectrophotometric detection method for diethylstilbestrol(DES)was proposed by reducing silver nitrate(AgNO3)to obtain silver nanoparticles(AgNPs)in the medium of ammonia and sodium hydroxide.It was found that the resulting AgNPs have plasmon resonance absorption(PRA)characteristic at 415 nm,and the PRA is proportional to the increase of DES concentration in the range of 4.0×10-8-1.0×10-5M with the detection limit(3σ)of 1.2×10-7M.Most of the coexisting substances at high concentrations did n...

  6. Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure.

    Van den Meersche, Tina; Van Pamel, Els; Van Poucke, Christof; Herman, Lieve; Heyndrickx, Marc; Rasschaert, Geertrui; Daeseleire, Els

    2016-01-15

    In this study, a fast, simple and selective ultra high performance liquid chromatographic-tandem mass spectrometric (UHPLC-MS/MS) method for the simultaneous detection and quantification of colistin, sulfadiazine, trimethoprim, doxycycline, oxytetracycline and ceftiofur and for the detection of tylosin A in swine manure was developed and validated. First, a simple extraction procedure with acetonitrile and 6% trichloroacetic acid was carried out. Second, the supernatant was evaporated and the pellet was reconstituted in 1 ml of water/acetonitrile (80/20) and 0.1% formic acid. Extracts were filtered and analyzed by UHPLC-MS/MS on a Kinetex C18 column using gradient elution. The method developed was validated according to the criteria of Commission Decision 2002/657/EC. Recovery percentages varied between 94% and 106%, repeatability percentages were within the range of 1.7-9.2% and the intralaboratory reproducibility varied between 2.8% and 9.3% for all compounds, except for tylosin A for which more variation was observed resulting in a higher measurement uncertainty. The limit of detection and limit of quantification varied between 1.1 and 20.2 and between 3.5 and 67.3 μg/kg, respectively. This method was used to determine the presence and concentration of the seven antibiotic residues in swine manure sampled from ten different manure pits on farms where the selected antibiotics were used. A link was found between the antibiotics used and detected, except for ceftiofur which is injected at low doses and degraded readily in swine manure and was therefore not recovered in any of the samples. To the best of our knowledge, this is the first method available for the simultaneous extraction and quantification of colistin with other antibiotic classes. Additionally, colistin was never extracted from swine manure before. Another innovative aspect of this method is the simultaneous detection and quantification of five different classes of antibiotic residues in swine manure

  7. Mass Spectrometric Immunoassays in Characterization of Clinically Significant Proteoforms

    Olgica Trenchevska

    2016-03-01

    Full Text Available Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and single-nucleotide polymorphisms (SNPs, as well as posttranslational processing. To address their clinical significance in a context of diagnostic information, proteoforms require a more in-depth analysis. Mass spectrometric immunoassays (MSIA have been devised for studying structural diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner, by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric detection. MSIA has been used for qualitative and quantitative analysis of single and multiple proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions. This mini review offers an overview of the development and application of mass spectrometric immunoassays for clinical and population proteomics studies. Provided are examples of some recent developments, and also discussed are the trends and challenges in mass spectrometry-based immunoassays for the next-phase of clinical applications.

  8. Infrared absorption of gaseous CH2BrOO detected with a step-scan Fourier-transform absorption spectrometer

    CH2BrOO radicals were produced upon irradiation, with an excimer laser at 248 nm, of a flowing mixture of CH2Br2 and O2. A step-scan Fourier-transform spectrometer coupled with a multipass absorption cell was employed to record temporally resolved infrared (IR) absorption spectra of reaction intermediates. Transient absorption with origins at 1276.1, 1088.3, 961.0, and 884.9 cm−1 are assigned to ν4 (CH2-wagging), ν6 (O–O stretching), ν7 (CH2-rocking mixed with C–O stretching), and ν8 (C–O stretching mixed with CH2-rocking) modes of syn-CH2BrOO, respectively. The assignments were made according to the expected photochemistry and a comparison of observed vibrational wavenumbers, relative IR intensities, and rotational contours with those predicted with the B3LYP/aug-cc-pVTZ method. The rotational contours of ν7 and ν8 indicate that hot bands involving the torsional (ν12) mode are also present, with transitions 70112vv and 80112vv, v = 1–10. The most intense band (ν4) of anti-CH2BrOO near 1277 cm−1 might have a small contribution to the observed spectra. Our work provides information for directly probing gaseous CH2BrOO with IR spectroscopy, in either the atmosphere or laboratory experiments

  9. A novel approach for speciation of airborne chromium by convective-interaction media fast-monolithic chromatography with electrothermal atomic-absorption spectrometric detection.

    Scancar, Janez; Milacic, Radmila

    2002-05-01

    A new analytical procedure using an anion-exchange separation support based on convective-interaction media (CIM) was developed for the speciation of chromium. The separation of Cr(VI) was performed on a weak anion-exchange CIM diethylamine (DEAE) fast-monolithic chromatographic disc. Buffer A (0.005 mol dm(-3) TRIS-HCl, pH 8.0) and buffer B (buffer A plus 3 mol dm(-3) NH4NO3) were employed in the separation procedure. The separated chromium species were determined 'off-line' by ETAAS in 0.5 cm3 fractions. The applicability of the CIM DEAE-ETAAS procedure was investigated for the determination of airborne Cr(VI) at a plasma cutting workplace. Aerosols were collected on polycarbonate membrane filters of 8 and 0.4 microm pore size (inhalable and respirable aerosols). Alkaline extraction of filters in a heated ultrasonic bath was applied to leach chromium. Good repeatability of measurement (+/-3.0%) of the alkaline extracts was obtained for Cr(VI). The LOD (3s) was found to be 0.30 microg m(-3) Cr(VI), when 0.25 m3 of air was collected on the filter. The validation of the procedure was performed by spiking filters with Cr(VI) and by the analysis of the standard reference material CRM 545, Cr(VI) in welding dust loaded on a filter. Good recoveries for spiked samples (101-102%) and good agreement between Cr(VI) found and the reported certified value for CRM 545 were obtained. The extracts were also analysed by the FPLC-ETAAS technique. Good agreement between two techniques (r2 = 0.9978) confirmed the reliability of the CIM DEAE-ETAAS procedure developed. The main advantage of the procedure lies in the speed of the chromatographic separation (chromatographic run completed in 15 min). PMID:12081040

  10. Pretreatment of oily samples for analysis by flow injection-spectrometric methods.

    Burguera, José Luis; Burguera, Marcela

    2011-01-15

    This review presents a critical discussion of selected reports dealing with the pretreatment methods of oily samples and the determination of their organic and inorganic constituents using flow systems and spectrometric methods. Special emphasis is given to the on-line couplings with detection systems based on UV-visible spectrophotometry and spectrofluorimetry, atomic absorption spectrometry either with flame or electrothermal atomization as well as inductively coupled plasma optical emission spectrometry or inductively coupled plasma-mass spectrometry. Simple dilution with organic solvents, digestion with concentrated acids under thermal heating, microwave or ultrasound radiation and emulsification procedures are mostly used. The empirical preparation of certain organized assemblies like micelles, emulsions and specially microemulsions added to the confusion of some of the terms, demand a brief description of their characteristics, the correct formulation and some of their applications to the manipulation and treatment of oily samples. The analytical capabilities of combining flow manifolds with spectrometric methods for the determination of specific parameters in oily samples apparently have not been sufficiently exploited yet. PMID:21147308

  11. GMRT Detection of HI 21cm Associated Absorption towards the = 1.2 Red Quasar 3C 190

    C. H. Ishwara-Chandra; K. S. Dwarakanath; K. R. Anantharamaiah

    2003-03-01

    We report the GMRT detection of associated HI 21 cm-line absorption in the = 1.1946 red quasar 3C 190. Most of the absorption is blue-shifted with respect to the systemic redshift. The absorption, at ∼ 647.7MHz, is broad and complex, spanning a velocity width of ∼ 600 kms-1. Since the core is self-absorbed at this frequency, the absorption is most likely towards the hotspots. Comparison of the radio and deep optical images reveal linear filaments in the optical which overlap with the brighter radio jet towards the south-west.We therefore suggest that most of the HI 21 cm-line absorption could be occurring in the atomic gas shocked by the south-west jet.

  12. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.

    Yilmaz, Erkan; Ocsoy, Ismail; Ozdemir, Nalan; Soylak, Mustafa

    2016-02-01

    Herein, the synthesis of bovine serum albumin-Cu(II) hybrid nanoflowers (BSA-NFs) through the building blocks of bovine serum albumin (BSA) and copper(II) ions in phosphate buffered saline (PBS) and their use as adsorbent for cadmium and lead ions are reported. The BSA-NFs, for the first time, were efficiently utilized as novel adsorbent for solid phase extraction (SPE) of cadmium and lead ions in water, food, cigarette and hair samples. The method is based on the separation and pre-concentration of Cd(II) and Pb(II) by BSA-NFs prior to determination by slurry analysis via flame atomic absorption spectrometry (FAAS). The analytes were adsorbed on BSA-NFs under the vortex mixing and then the ion-loaded slurry was separated and directly introduced into the flame AAS nebulizer by using a hand-made micro sample introduction system to eliminate a number of drawbacks. The effects of analytical key parameters, such as pH, amount of BSA-NFs, vortexing time, sample volume, and matrix effect of foreign ions on adsorbing of Cd(II) and Pb(II) were systematically investigated and optimized. The limits of detection (LODs) for Cd(II) and Pb(II) were calculated as 0.37 μg L(-)(1) and 8.8 μg L(-)(1), respectively. The relative standard deviation percentages (RSDs) (N = 5) for Cd(II) and Pb(II) were 7.2%, and 5.0%, respectively. The accuracy of the developed procedure was validated by the analysis of certified reference materials (TMDA-53.3 Fortified Water, TMDA-70 Fortified Water, SPS-WW2 Waste Water, NCSDC-73349 Bush Branches and Leaves) and by addition/recovery analysis. The quantitative recoveries were obtained for the analysis of certified reference materials and addition/recovery tests. The method was successfully applied to the analysis of cadmium and lead in water, food, cigarette and hair samples. PMID:26772130

  13. Invisible ink mark detection in the visible spectrum using absorption difference.

    Lee, Joong; Kong, Seong G; Kang, Tae-Yi; Kim, Byounghyun; Jeon, Oc-Yeub

    2014-03-01

    One of popular techniques in gambling fraud involves the use of invisible ink marks printed on the back surface of playing cards. Such covert patterns are transparent in the visible spectrum and therefore invisible to unaided human eyes. Invisible patterns can be made visible with ultraviolet (UV) illumination or a CCD camera installed with an infrared (IR) filter depending on the type of ink materials used. Cheating gamers often wear contact lenses or eyeglasses made of IR or UV filters to recognize the secret marks on the playing cards. This paper presents an image processing technique to reveal invisible ink patterns in the visible spectrum without the aid of special equipment such as UV lighting or IR filters. A printed invisible ink pattern leaves a thin coating on the surface with different refractive index for different wavelengths of light, which results in color dispersion or absorption difference. The proposed method finds the differences of color components caused by absorption difference to detect invisible ink patterns on the surface. Experiment results show that the proposed scheme is effective for both UV-active and IR-active invisible ink materials. PMID:24529777

  14. The Azimuthal Dependence of Outflows and Accretion Detected Using OVI Absorption

    Kacprzak, Glenn G; Churchill, Christopher W; Nielsen, Nikole M; Charlton, Jane C

    2015-01-01

    We report a bimodality in the azimuthal angle ($\\Phi$) distribution of gas around galaxies traced by OVI absorption. We present the mean $\\Phi$ probability distribution function of 29 HST-imaged OVI absorbing (EW>0.1A) and 24~non-absorbing (EW<0.1A) isolated galaxies (0.08absorption is azimuthally dependent and occurs between $\\pm10-20^{\\circ}$ of the galaxy projected major axis and within $\\pm30^{\\circ}$ of the projected minor axis. We find higher EWs along the projected minor axis with weaker EWs along the project major axis. Highly inclined galaxies have the lowest covering fractions due to minimized outflow/inflow cross-section geometry. Absorbing galaxies also have bluer colors while non-absorbers have redder colors, suggesting that star-formation is a key driver in the OVI detection rate. OVI surrou...

  15. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection.

    Langen, Johannes; Wegmann-Herr, Pascal; Schmarr, Hans-Georg

    2016-09-01

    Native concentrations of α-ionone, β-ionone, and β-damascenone were studied in various authentic and commercial wines. In addition, the enantiomeric distribution of α-ionone was determined and its merits as a potential marker for aroma adulteration in wine were discussed. For extraction of volatiles, headspace solid-phase microextraction (HS-SPME) was applied, followed by heart-cut multidimensional gas chromatography coupled to tandem mass spectrometric detection for trace-level analysis. The enantioselective analysis of α-ionone was achieved with octakis(2,3-di-O-pentyl-6-O-methyl)-γ-cyclodextrin as the chiral selector in the separation column for gas chromatography (GC). In all the authentic wines studied, α-ionone showed a high enantiomeric ratio in favor of the (R)-enantiomer. Since an illegal addition of α-ionone in a racemic form changes the enantiomeric ratio, this ratio may serve as an adulteration marker. Concentrations varied between authenticity markers in wine. PMID:27417694

  16. Speciation and subcellular location of Se-containing proteins in human liver studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and hydride generation-atomic fluorescence spectrometric detection

    Chen, Chunying; Zhao, Jiujiang; Zhang, Peiqun; Chai, Zhifang [Institute of High Energy Physics and Laboratory of Nuclear Analytical Techniques, Chinese Academy of Sciences, Beijing (China)

    2002-02-01

    Speciation of Se-containing proteins in the subcellular fractions of human liver was studied by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by hydride generation-atomic fluorescence spectrometric (HG-AFS) detection. It was found that about 24 kinds of Se-containing proteins existed in subcellular fractions of normal human liver. The molecular weights (MW) of the subunits were mostly in the range 20-30 kDa and 50-80 kDa. Major Se-containing protein fractions at 61 kDa and 21 kDa are probably selenoprotein P and glutathione peroxidase, respectively. The 54 kDa protein is probably a thioredoxin reductase, which is presented in nuclei, mitochondria, lysosome, microsome and cytosol. We noticed that the Se-containing protein with the lowest MW of 9.3 kDa only existed in lysosome. Most of the proteins have not been identified and would require further investigation to characterize them. The specific subcellular distributions of different Se-containing proteins suggest that they could play important biological roles in each organelle. (orig.)

  17. Element-selective trace detection of toxic species in environmental samples using chromatographic techniques and derivative diode laser absorption spectrometry

    Koch, J.; Zybin, A.; Niemax, K.

    1998-10-01

    Very sensitive laser absorption techniques based on a double-beam scheme with logarithmic processing of the detector signals and wavelength modulation of laser diodes are presented. Detection limits equivalent to 10-7 absorption per square root of detection bandwidth are obtained if sufficient laser power is available and if the absorption is also subject to additional modulation. The analytical versatility of these techniques is demonstrated by quantitative analysis of very low concentrations of (i) Cr(VI) species in tap water and (ii) chlorinated poly-aromatics (chlorophenols) in plant extracts, both after chromatographic separation. The atomic absorption measurements were performed in an air-acetylene flame (Cr) and in a low-pressure microwave-induced plasma (chlorophenols).

  18. Diffuse-light absorption spectroscopy by fiber optics for detecting and quantifying the adulteration of extra virgin olive oil

    Mignani, A. G.; Ciaccheri, L.; Ottevaere, H.; Thienpont, H.; Conte, L.; Marega, M.; Cichelli, A.; Attilio, C.; Cimato, A.

    2010-09-01

    A fiber optic setup for diffuse-light absorption spectroscopy in the wide 400-1700 nm spectral range is experimented for detecting and quantifying the adulteration of extra virgin olive oil caused by lower-grade olive oils. Absorption measurements provide spectral fingerprints of authentic and adulterated oils. A multivariate processing of spectroscopic data is applied for discriminating the type of adulterant and for predicting its fraction.

  19. Monitoring of PAHs in air by collection on XAD-2 adsorbent then microwave-assisted thermal desorption coupled with headspace solid-phase microextraction and gas chromatography with mass spectrometric detection

    Wei, Ming-Chi; Chang, Wan-Ting [Central Taiwan University of Science and Technology, Department of Food Science, Taichung (Taiwan); Jen, Jen-Fon [National Chung-Hsing University, Department of Chemistry, Taichung (Taiwan)

    2007-02-15

    Microwave-assisted thermal desorption (MAD) coupled to headspace solid-phase microextraction (HS-SPME) has been studied for in-situ, one-step, sample preparation for PAHs collected on XAD-2 adsorbent, before gas chromatography with mass spectrometric detection. The PAHs on XAD-2 were desorbed into the extraction solution, evaporated into the headspace by use of microwave irradiation, and absorbed directly on a solid-phase microextraction fiber in the headspace. After desorption from the SPME fiber in the hot GC injection port, PAHs were analyzed by GC-MS. Conditions affecting extraction efficiency, for example extraction solution, addition of salt, stirring speed, SPME fiber coating, sampling temperature, microwave power and irradiation time, and desorption conditions were investigated. Experimental results indicated that extraction of 275 mg XAD-2, containing 10-200 ng PAHs, with 10-mL ethylene glycol-1 mol L{sup -1} NaCl solution, 7:3, by irradiation with 120 W for 40 min (the same as the extraction time), and collection with a PDMS-DVB fiber at 35 C, resulted in the best extraction efficiency. Recovery was more than 80% and RSD was less than 14%. Optimum desorption was achieved by heating at 290 C for 5 min. Detection limits varied from 0.02 to 1.0 ng for different PAHs. A real sample was obtained by using XAD-2 to collect smoke from indoor burning of joss sticks. The amounts of PAHs measured varied from 0.795 to 2.53 ng. The method is a simple and rapid procedure for determination of PAHs on XAD-2 absorbent, and is free from toxic organic solvents. (orig.)

  20. Spectrometric analysis of process etching solutions of the photovoltaic industry--determination of HNO3, HF, and H2SiF6 using high-resolution continuum source absorption spectrometry of diatomic molecules and atoms.

    Bücker, Stefan; Acker, Jörg

    2012-05-30

    The surface of raw multicrystalline silicon wafers is treated with HF-HNO(3) mixtures in order to remove the saw damage and to obtain a well-like structured surface of low reflectivity, the so-called texture. The industrial production of solar cells requires a consistent level of texturization for tens of thousands of wafers. Therefore, knowing the actual composition of the etch bath is a key element in process control in order to maintain a certain etch rate through replenishment of the consumed acids. The present paper describes a novel approach to quantify nitric acid (HNO(3)), hydrofluoric acid (HF), and hexafluosilicic acid (H(2)SiF(6)) using a high-resolution continuum source graphite furnace absorption spectrometer. The concentrations of Si (via Si atom absorption at the wavelength 251.611 nm, m(0),(Si)=130 pg), of nitrate (via molecular absorption of NO at the wavelength 214.803 nm, [Formula: see text] ), and of total fluoride (via molecular absorption of AlF at the wavelength 227.46 nm, m(0,F)=13 pg) were measured against aqueous standard solutions. The concentrations of H(2)SiF(6) and HNO(3) are directly obtained from the measurements. The HF concentration is calculated from the difference between the total fluoride content, and the amount of fluoride bound as H(2)SiF(6). H(2)SiF(6) and HNO(3) can be determined with a relative uncertainty of less than 5% and recoveries of 97-103% and 96-105%, respectively. With regards to HF, acceptable results in terms of recovery and uncertainty are obtained for HF concentrations that are typical for the photovoltaic industry. The presented procedure has the unique advantage that the concentration of both, acids and metal impurities in etch solutions, can be routinely determined by a single analytical instrument. PMID:22608457

  1. Data correlation in on-line solid-phase extraction-gas chromatography-atomic emission/mass spectrometric detection of unknown microcontaminants

    Hankemeier, Th.; Rozenbrand, J.; Abhadur, M.; Vreuls, J.J.; Brinkman, U.A.Th.

    1998-01-01

    A procedure is described for the (non-target) screening of hetero-atom-containing compounds in tap and waste water by correlating data obtained by gas chromatography (GC) using atomic emission (AED) and mass selective (MS) detection. Solid-phase extraction (SPE) was coupled on-line to both GC system

  2. Electrolyte system strategies for anionic isotachophoresis with electrospray-ionization mass-spectrometric detection. 1. Regular isotachophoresis and free-acid isotachophoresis

    Malá, Zdeňka; Gebauer, Petr; Boček, Petr

    2013-01-01

    Roč. 34, 20-21 (2013), s. 3072-3078. ISSN 0173-0835 R&D Projects: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : Diclofenac * ESI-MS detection * Ibuprofen * isotachophoresis * water analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  3. Impurity Sub-Band in Heavily Cu-Doped InAs Nanocrystal Quantum Dots Detected by Ultrafast Transient Absorption.

    Yang, Chunfan; Faust, Adam; Amit, Yorai; Gdor, Itay; Banin, Uri; Ruhman, Sanford

    2016-05-19

    The effect of Cu impurities on the absorption cross section, the rate of hot exction thermalization, and on exciton recombination processes in InAs quantum dots was studied by femtosecond transient absorption. Our findings reveal dynamic spectral effects of an emergent impurity sub-band near the bottom of the conduction band. Previously hypothesized to explain static photophysical properties of this system, its presence is shown to shorten hot carrier relaxation. Partial redistribution of interband oscillator strength to sub-band levels reduces the band edge bleach per exciton progressively with the degree of doping, even though the total linear absorption cross section at the band edge remains unchanged. In contrast, no doping effects were detected on absorption cross sections high in the conduction band, as expected due to the relatively high density of sates of the undoped QDs. PMID:26720008

  4. Speciation of selenoamino acids, selenonium ions and inorganic selenium by ion exchange HPLC with mass spectrometric detection and its application to yeast and algae

    Larsen, Erik Huusfeldt; Hansen, M.; Fan, T.;

    2001-01-01

    Cation and anion exchange HPLC were used to separate a mixture of 12 selenium species comprising selenoamino acids, selenonium ions and inorganic selenium. The cationic species were separated from each other and from the co-injected anions using a cation exchange column with gradient elution...... by aqueous pyridinium formate at pH similar to 3 as the mobile phase. The anionic species were separated using an anion exchange column with isocratic elution by an aqueous salicylate-TRIS mobile phase at pH 8.5. The separated selenium species were detected as Se-80 by ICP-dynamic reaction cell (DRC...... acid extract of Chlorella algae contained dimethylselenonium propionate (DMSeP), which was verified by HPLC-ES-MS. Se-allylselenocysteine and selenoethionine was detected at the low ng g(-1) concentration level based on co-chromatography with the standard substances spiked to the algal extract....

  5. Use of an oxidative destruction and quadrupole mass spectrometric (QMS) detection for the determination of the organic elemental composition of suspended matter in surface water

    Reijnders, H.F.R.; Onderdelinden, D.; Visser, M.G.; Griepink, B.

    1980-01-01

    A study was made of the applicability of a system consisting of a combustion followed by QMS-detection for the determination of the elemental composition of organic matter suspended in surface water. The solid material obtained from several types of water was collected by centrifugation. The results show possible applications e.g. in the field of water characterization. A complete elemental analysis including pretreatment takes about 30 min.

  6. Comparison of various liquid chromatographic methods involving UV and atmospheric pressure chemical ionization mass spectrometric detection for the efficient trace analysis of phenylurea herbicides in various types of water samples.

    van der Heeft, E; Dijkman, E; Baumann, R A; Hogendoorn, E A

    2000-05-19

    The performance of mass spectrometric (MS) detection and UV detection in combination with reversed-phase liquid chromatography without and with the use of coupled column RPLC (LC-LC) has been compared for the trace analysis of phenylurea herbicides in environmental waters. The selected samples of this comparative study originated from an inter-laboratory study. For both detection modes, a 50 mm x 4.6 mm I.D. column and a 100 mm x 4.6 mm I.D. column packed with 3 microm C18 were used as the first (C-1) and second (C-2) column, respectively. Atmospheric pressure chemical ionization mass spectrometry was performed on a magnetic sector instrument. The LC-LC-MS analysis was carried out on-line by means of direct large volume (11.7 ml) injection (LVI). The performance of both on-line (LVI, 4 ml of sample) and off-line LC-LC-UV (244 nm) analysis was investigated. The latter procedure consisted of a solid-phase extraction (SPE) of 250 ml of water sample on a 500 mg C18 cartridge. The comparative study showed that LC-LC-MS is more selective then LC-LC-UV and, in most cases, more sensitive. The LVI-LC-LC-MS approach combines direct quantification and confirmation of most of the analytes down to a level of 0.01 microg/l in water samples in less then 30 min. As regards LC-LC-UV, the off-line method appeared to be a more viable approach in comparison with the on-line procedure. This method allows the screening of phenylurea's in various types of water samples down to a level of at least 0.05 microg/l. On-line analysis with LVI provided marginal sensitivity (limits of detection of about 0.1 microg/l) and selectivity was sometimes less in case of surface water samples. Both the on-line LVI-LC-LC-MS method and the LC-LC-UV method using off-line SPE were validated by analysing a series of real-life reference samples. These samples were part of an inter-laboratory test and contained residues of herbicides ranging from 0.02 to 0.8 microg/l. Beside good correlation between the methods

  7. The use of ultra-high pressure liquid chromatography with tandem mass spectrometric detection in the analysis of agrochemical residues and mycotoxins in food - challenges and applications.

    O'Mahony, John; Clarke, Lesa; Whelan, Michelle; O'Kennedy, Richard; Lehotay, Steven J; Danaher, Martin

    2013-05-31

    In the field of food contaminant analysis, the most significant development of recent years has been the integration of ultra-high pressure liquid chromatography (UHPLC), coupled to tandem quadrupole mass spectrometry (MS/MS), into analytical applications. In this review, we describe the emergence of UHPLC through technological advances. The implications of this new chromatographic technology for MS detection are discussed, as well as some of the remaining challenges in exploiting it for chemical residue applications. Finally, a comprehensive overview of published applications of UHPLC-MS in food contaminant analysis is presented, with a particular focus on veterinary drug residues. PMID:23352828

  8. Speciation of eight arsenic compounds in human urine by high performance liquid chromatography with inductively coupled plasma mass spectrometric detection using antimonate for internal chromatographic standardization

    Larsen, Erik Huusfeldt; Pritzl, G.; Hansen, S. H.

    1993-01-01

    Four anionic and four cationic arsenic compounds in urine were separated by anion- and cation-exchange high-performance liquid chromatography and detected by inductively coupled plasma mass spectrometry (ICP-MS) at m/z 75. The species were the anions arsenite, arsenate, monomethylarsonate and...... arsenate in urine but was stable after at least 4-fold dilution of the urine with water. Arsenite was unstable in both urine samples and standard mixtures when diluted with the basic (pH 10.3) mobile phase used for anion chromatography. This could not be prevented by adding ascorbic acid as antioxidant...

  9. Detection of molecular absorption in the dayside of exoplanet 51 Pegasi b?

    Brogi, M; de Kok, R J; Albrecht, S; Birkby, J L; de Mooij, E J W

    2013-01-01

    In this paper we present ground-based high-resolution spectroscopy of 51 Pegasi using CRIRES at the Very Large Telescope. The system was observed for 3x5 hours at 2.3 {\\mu}m at a spectral resolution of R = 100,000, targeting potential signatures from carbon monoxide, water vapour and methane in the planet's dayside spectrum. In the first 2x5 hours of data, we find a combined signal from carbon monoxide and water in absorption at a formal 5.9{\\sigma} confidence level, indicating a non-inverted atmosphere. We derive a planet mass of M_P = (0.46 +- 0.02) M_Jup and an orbital inclination i between 79.6 and 82.2 degrees, with the upper limit set by the non-detection of the planet transit in previous photometric monitoring. However, there is no trace of the signal in the final 5 hours of data. A statistical analysis indicates that the signal from the first two nights is robust, but we find no compelling explanation for its absence in the final night. The latter suffers from stronger noise residuals and greater inst...

  10. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    Robinson, Tyler D. [NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035 (United States); Ennico, Kimberly [NASA Ames Research Center, MS 245-6, Moffett Field, CA 94035 (United States); Meadows, Victoria S.; Sparks, William; Schwieterman, Edward W. [NASA Astrobiology Institute' s Virtual Planetary Laboratory, University of Washington, P.O. Box 351580, Seattle, WA 98195 (United States); Bussey, D. Ben J. [NASA Ames Research Center, MS 17-1, Moffett Field, CA 94089, USA Now the NASA Solar System Exploration Research Virtual Institute. (United States); Breiner, Jonathan, E-mail: tyler.d.robinson@nasa.gov [Astronomy Department, University of Washington, Seattle, WA 98195 (United States)

    2014-06-01

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  11. Application of tunable diode laser absorption spectroscopy in the detection of oxygen

    Zhou, Xin; Jin, Xing

    2015-10-01

    Most aircrafts is driven by chemic energy which is released in the combustion process. For improving the capability of engine and controlling the running on-time, the processes of fuel physics and chemistry need to be analysis by kinds of high quality sensor. In the research of designing and improving the processes of fuel physics and chemistry, the concentration, temperature and velocity of kinds of gas in the combustor need to be detected and measured. In addition, these engines and research equipments are always in the harsh environment of high temperature, high pressure and high speed. The harsh environment needs the sensor to be high reliability, well repetition, no cross- sensitivity between gases, and the traditional measurement system can't satisfy the metrical requirement well. Tunable diode laser absorption spectroscopy (TDLAS) analytic measurement technology can well satisfy the measurement in the harsh environment, which can support the whole measurement plan and high quality measurement system. Because the TDLAS sensor has the excellence of small bulk, light weight, high reliability and well specifically measurement, the TDLAS measurement technology has wide prospects. Different from most measurements, only a beam of laser can be pass through the measured environment by TDLAS, and the measurement equipment needn't be set in the harsh environment. So, the TDLAS equipment can't be interrupted by the measured equipment. The ability of subsistence in the harsh environment is very valuable, especially in the measurement on the subject of aerospace with environment of high speed, combustion and plasma. This paper focuses on the collecting the articles on the subject of oxygen detection of TDLAS. By analyzing the research and results of the articles, we conclude the central issues, difficulties and results. And we can get some instructive conclusions.

  12. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.

  13. Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography-corona discharge ion mobility spectrometric detection.

    Saraji, Mohammad; Jafari, Mohammad Taghi; Mossaddegh, Mehdi

    2016-01-15

    A high efficiency solid-phase microextraction (SPME) fiber coated with porous carbon nanotubes-silicon dioxide (CNTs-SiO2) nanohybrids was synthesized and applied for the determination of some organophosphorus pesticides (OPPs) in vegetables, fruits and water samples. Gas chromatography-corona discharge ion mobility spectrometry was used as the detection system. Glucose, as a biocompatible compound, was used for connecting CNT and SiO2 during a hydrothermal process. The electrospinning technique was also applied for the fiber preparation. The parameters affecting the efficiency of extraction, including stirring rate, salt effect, extraction temperature, extraction time, desorption temperature and desorption time, were investigated and optimized. The developed CNTs@SiO2 fiber presented better extraction efficiency than the commercial SPME fibers (PA, PDMS, and PDMS-DVB). The intra- and inter-day relative standard deviations were found to be lower than 6.2 and 9.0%, respectively. For water samples, the limits of detection were in the range of 0.005-0.020 μg L(-1) and the limits of quantification were between 0.010 and 0.050 μg L(-1). The results showed a good linearity in the range of 0.01-3.0 μg L(-1) for the analytes. The spiking recoveries ranged from 79 (± 9) to 99 (± 8). The method was successfully applied for the determination of OPPs in real samples. PMID:26709024

  14. Combining asymmetrical flow field-flow fractionation with light-scattering and inductively coupled plasma mass spectrometric detection for characterization of nanoclay used in biopolymer nanocomposites

    Schmidt, Bjørn; Petersen, Jens Højslev; Koch, C. Bender;

    2009-01-01

    It is expected that biopolymers obtained from renewable resources will in due course become fully competitive with fossil fuel-derived plastics as food-packaging materials. In this context, biopolymer nanocomposites are a field of emerging interest since such materials can exhibit improved...... mechanical and barrier properties and be more suitable for a wider range of food-packaging applications. Natural or synthetic clay nanofillers are being investigated for this purpose in a project called NanoPack funded by the Danish Strategic Research Council. In order to detect and characterize the size of...... polylactide (PLA) with 5% Cloisite®30B (a derivatized montmorillonite clay) as a filler. Based on AF4-MALS analyses, we found that particles ranging from 50 to 800 nm in radius indeed migrated into the 95% ethanol used as a food simulant. The full hyphenated AF4-MALS-ICP-MS system showed, however, that none...

  15. Standoff detection of bioaerosols over wide area using a newly developed sensor combining a cloud mapper and a spectrometric LIF lidar

    Buteau, Sylvie; Simard, Jean-Robert; Roy, Gilles; Lahaie, Pierre; Nadeau, Denis; Mathieu, Pierre

    2013-10-01

    A standoff sensor called BioSense was developed to demonstrate the capacity to map, track and classify bioaerosol clouds from a distant range and over wide area. The concept of the system is based on a two steps dynamic surveillance: 1) cloud detection using an infrared (IR) scanning cloud mapper and 2) cloud classification based on a staring ultraviolet (UV) Laser Induced Fluorescence (LIF) interrogation. The system can be operated either in an automatic surveillance mode or using manual intervention. The automatic surveillance operation includes several steps: mission planning, sensor deployment, background monitoring, surveillance, cloud detection, classification and finally alarm generation based on the classification result. One of the main challenges is the classification step which relies on a spectrally resolved UV LIF signature library. The construction of this library relies currently on in-chamber releases of various materials that are simultaneously characterized with the standoff sensor and referenced with point sensors such as Aerodynamic Particle Sizer® (APS). The system was tested at three different locations in order to evaluate its capacity to operate in diverse types of surroundings and various environmental conditions. The system showed generally good performances even though the troubleshooting of the system was not completed before initiating the Test and Evaluation (T&E) process. The standoff system performances appeared to be highly dependent on the type of challenges, on the climatic conditions and on the period of day. The real-time results combined with the experience acquired during the 2012 T & E allowed to identify future ameliorations and investigation avenues.

  16. Flame atomic absorption spectrometric determination of zinc, nickel, iron and lead in different matrixes after solid phase extraction on sodium dodecyl sulfate (SDS)-coated alumina as their bis (2-hydroxyacetophenone)-1, 3-propanediimine chelates

    A sensitive and simple solid phase extraction method for the simultaneous determination of trace and toxic metals in food samples has been reported. The method is based on the adsorption of zinc, nickel, iron and lead on sodium dodecyl sulfate (SDS)-coated alumina, which is also chelated with bis (2-hydroxyacetophenone)-1, 3-propanediimine (BHAPN). The retained analyte ions on modified solid phase were eluted using 8 mL of 4 mol L-1 HNO3. The analyte determinations were carried out by flame atomic absorption spectrometry. The influences of some metal ions and anions on the recoveries of understudy analyte ions were investigated. The proposed method has been successfully applied for the evaluation of these trace and toxic metals in some traditional food samples from Iran.

  17. Determination of polybrominated diphenyl ethers in house dust using standard addition method and gas chromatography with electron capture and mass spectrometric detection.

    Król, Sylwia; Zabiegała, Bożena; Namieśnik, Jacek

    2012-08-01

    Monitoring of the environmental fate of polybrominated diphenyl ethers (PBDEs) involves determination of their concentration in air, airborne particles and settled dust. This requires the implementation of appropriate analytical tools like measuring instruments, reference materials and analytical procedures. In this study an analytical procedure was developed for determining PBDEs in samples with a complex matrix composition. The efficiencies of three different extraction techniques - Soxhlet extraction (SE), Accelerated Solvent Extraction (ASE) and Ultrasound Assisted Extraction (UAE) - were compared. The study investigated the possibility of using the standard addition method for estimating PBDEs levels. The GC-μECD system was successfully applied as an alternative to low resolution mass spectrometry (LRMS) for determining BDE-209 in dust samples. The developed analytical procedure was then used to analyze dust samples, collected from houses and computer suites in the Tri-city area (Gdansk, Gdynia and Sopot), in order to detect and quantify the presence of polybrominated diphenyl ethers (PBDEs) in the indoor environment. Concentrations of studied congeners (from triBDE to heptaBDE), obtained by chromatographic analysis of dust samples extracts, performed applying two measurement systems (GC-EIMS and GC-μECD) ranged between 331 and 3102 ng g(-1) for house dust and between

  18. Monolithic silica spin column extraction and simultaneous derivatization of amphetamines and 3,4-methylenedioxyamphetamines in human urine for gas chromatographic-mass spectrometric detection

    Nakamoto, Akihiro [Scientific Investigation Laboratory, Hiroshima Prefectural Police Headquarters, Kohnan 2-26-3, Naka-ku, Hiroshima 730-0825 (Japan); Nishida, Manami [Hiroshima University Technical Center, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan); Saito, Takeshi [Department of Emergency and Critical Care Medicine, Tokai University School of Medicine, Shimokasuya 143, Isehara, Kanagawa 259-1143 (Japan); Kishiyama, Izumi; Miyazaki, Shota [GL Sciences Inc., Sayamagahara 237-2, Iruma, Saitama 358-0032 (Japan); Murakami, Katsunori [Scientific Investigation Laboratory, Hiroshima Prefectural Police Headquarters, Kohnan 2-26-3, Naka-ku, Hiroshima 730-0825 (Japan); Nagao, Masataka [Department of Forensic Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan); Namura, Akira, E-mail: namera@hiroshima-u.ac.jp [Department of Forensic Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551 (Japan)

    2010-02-19

    A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d{sub 5} was used as an internal standard. The linear ranges were 0.01-5.0 {mu}g mL{sup -1} for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 {mu}g mL{sup -1} for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation {>=}0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 {mu}g mL{sup -1} of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio {>=} 3) in urine was 5 ng mL{sup -1} for MA and MDMA and 10 ng mL{sup -1} for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.

  19. 分光光度计法快速检测果汁中嗜热耐酸菌%A Rapid Spectrometric Method for Detecting Alicyclobacillus acidoterrestris in Fruit Juice

    叶建芳; 李文俊; 赵文超; 莫小晶; 贾彩凤

    2011-01-01

    酸土脂环酸芽孢杆菌(Alicyclobacillus acidoterrestris)是果汁污染的主要嗜酸耐热菌。它可以将香草酸或者香兰素转化为愈创木酚,后者在过氧化物酶的作用下产生红褐色产物,从而可以快速检测该菌。根据这个原理,设计实验探究该颜色反应的最优培养条件以及实际体系中检测该菌的可行性。结果表明:在静止培养情况下,在BAM培养基中添加100μg/kg的香草酸最有利于愈创木酚的产生;不同浓度的嗜热耐酸菌芽孢液在上述条件下培养,随着浓度的降低产生高浓度愈创木酚时间依次延迟,最低浓度为3个/mL的芽孢%In the presence of AlicyclobaciUus acidoterrestris, vanillic acid and vanillin can be converted into guaiacol, which can be further converted into a reddish-brown product by peroxidase. Based on this color reaction, a method was developed to spectrometrically detect the presence of Alicyclobacillus acidoterrestris in real systems. In static culture, BAM medium with the addition of 100 μg/kg vanillic acid was the most favorable for gualacol formation. The peak value of guaiacol concentration was delayed along with the decrease of bacteria concentration. A visible color was formed in medium and its OD470 could reach up to 1.0 or even more after 21 hours of culture at the initial spore density of 3 spores/mL. And the same result also was obtained in an apple juice system. Thus, this method can allow rapid, simple and sensitive detection ofAlicyclobacillus acidoterrestris in fruit juice.

  20. Preconcentration and Atomization of Arsane in a Dielectric Barrier Discharge with Detection by Atomic Absorption Spectrometry.

    Novák, Petr; Dědina, Jiří; Kratzer, Jan

    2016-06-01

    Atomization of arsane in a 17 W planar quartz dielectric barrier discharge (DBD) atomizer was optimized, and its performance was compared to that of a multiple microflame quartz tube atomizer (MMQTA) for atomic absorption spectrometry (AAS). Argon, at a flow rate of 60 mL min(-1), was the best DBD discharge gas. Free As atoms were also observed in the DBD with nitrogen, hydrogen, and helium discharge gases but not in air. A dryer tube filled with NaOH beads placed downstream from the gas-liquid separator to prevent residual aerosol and moisture transport to the atomizer was found to improve the response by 25%. Analytical figures of merit were comparable, reaching an identical sensitivity of 0.48 s ng (-1) As in both atomizers and limits of detection (LOD) of 0.15 ng mL(-1) As in MMQTA and 0.16 ng mL(-1) As in DBD, respectively. Compared to MMQTA, DBD provided 1 order of magnitude better resistance to interference from other hydride-forming elements (Sb, Se, and Bi). Atomization efficiency in DBD was estimated to be 100% of that reached in the MMQTA. A simple procedure of lossless in situ preconcentration of arsane was developed. Addition of 7 mL min(-1) O2 to the Ar plasma discharge resulted in a quantitative retention of arsane in the optical arm of the DBD atomizer. Complete analyte release and atomization was reached as soon as oxygen was switched off. Preconcentration efficiency of 100% was observed, allowing a decrease of the LOD to 0.01 ng mL(-1) As employing a 300 s preconcentration period. PMID:27159266

  1. Inability to detect significant absorption of immunoreactive soya protein in healthy adults may be relevant to its weak allergenicity

    Lund, Cecilia M; Dirks, Christina G; Pedersen, Mona H;

    2013-01-01

    soya protein. While we cannot totally exlude technical reasons, it may also reflect a true poor absorption in healthy adult volunteers. This could, in turn, be relevant to the apparently weak allergenicity of soy protein by comparison with peanut protein in allergic subjects....... protein absorption between the two foods, might explain this diversity.In the current study the amount of soya protein absorbed after soya bean ingestion in healthy adults was estimated. Ten subjects ingested 100 grams of soya beans (40 grams of soya protein) and blood was drawn before and 1, 3 and 24...... hours after administration. Serum was analysed by ELISA and histamine release (HR). In all serum samples the soya protein concentration was below quantification limit (1.6 ng/ml which corresponds to 4.8 mug or 0.12 parts per million absorbed soya protein.We could not detect any significant absorption of...

  2. Electrothermal atomic absorption spectrometric determination of vanadium in extracts of soil and sewage sludge certified reference materials after fractionation by means of the Communities Bureau of Reference modified sequential extraction procedure

    A modified three-step sequential extraction procedure proposed by the Commission of European Communities Bureau of Reference (BCR) was applied to certified reference materials of three different soil groups (rendzina, luvisol, cambisol) and sewage sludge of different composition originating from a municipal water treatment plant in order to assess potential mobility and the distribution of vanadium in the resulting fractions. Analysis of the extracts was carried out by electrothermal atomic absorption spectrometry with Zeeman background correction using transversely heated graphite atomizers. Extracts showed significant matrix interferences which were overcome by the standard addition technique. The original soil and sludge certified reference materials (CRMs) and the extraction residue from the sequential extraction were decomposed by a mixture of HNO3-HClO4-HF in an open system. The content of V determined after decomposition of the samples was in very good agreement with the certified total values. The accuracy of the sequential extraction procedure was checked by comparing the sum of the vanadium contents in the three fractions and in the extraction residue with the certified total content of V. The amounts of vanadium leached were in good correlation with the certified total contents of V in the CRMs of soils and sewage sludge. In the soils examined, vanadium was present almost entirely in the mineral lattice, while in the sewage sludge samples 9-14% was found in the oxidizable and almost 25% in the reducible fractions. The recovery ranged from 93-106% and the precision (RSD) was below 10%

  3. Cinchocaine hydrochloride determination by atomic absorption spectrometry and spectrophotometry.

    Abdel-Ghani, Nour T; Youssef, Ahmed F A; Awady, Mohamed A

    2005-05-01

    Two sensitive spectrophotometric and atomic absorption spectrometric procedures have been developed for determination of cinchocaine hydrochloride (Cin.Cl) in pure form and in pharmaceutical formulation. The spectrophotometric method was based on formation of an insoluble colored ion-associate between the cited drug and tetrathiocyanatocobaltate (CoTC) or hexathiocyanatochromate (CrTC) which dissolved and extracted in an organic solvent. The optimal experimental conditions for quantitative extraction such as pH, concentration of the reagents and solvent were studied. Toluene and iso-butyl alcohol proved to be the most suitable solvents for quantitative extraction of Cin-CoTC and Cin-CrTC ion-associates with maximum absorbance at 620 and 555 nm, respectively. The optimum concentration ranges, molar absorptivities, Ringbom ranges and Sandell sensitivities were also evaluated. The atomic absorption spectrometric method is based on measuring of the excess cobalt or chromium in the aqueous solution, after precipitation of the drug, at 240.7 and 357.9 nm, respectively. Linear application ranges, characteristic masses and detection limits were 57.99-361.9, 50.40 and 4.22 microg ml(-1) of Cin.Cl, in case of CoTC, while 37.99-379.9, 18.94 and 0.81 microg ml(-1) in case of CrTC. PMID:15910814

  4. A Nano-Biosensor for DNA Sequence Detection Using Absorption Spectra of SWNT-DNA Composite

    J. Bansal

    2011-01-01

    Full Text Available A biosensor based on Single Walled Carbon Nanotube (SWNT-Poly (GTn ssDNA hybrid has been developed for medical diagnostics. The absorption spectrum of this assay is determined with the help of a Shimadzu UV-VIS-NIR spectrophotometer. Two distinct bands each containing three peaks corresponding to first and second van Hove singularities in the density of states of the nanotubes were observed in the absorption spectrum. When a single-stranded DNA (ssDNA having a sequence complementary to probic DNA is added to the ssDNA-SWNT conjugates, hybridization takes place, which causes the red shift of absorption spectrum of nanotubes. On the other hand, when the DNA is noncomplementary, no shift in the absorption spectrum occurs since hybridization between the DNA and probe does not take place. The red shifting of the spectrum is considered to be due to change in the dielectric environment around nanotubes.

  5. Detection of hydrogen fluoride absorption in diffuse molecular clouds with Herschel/HIFI: a ubiquitous tracer of molecular gas

    Sonnentrucker, P; Phillips, T G; Gerin, M; Lis, D C; De Luca, M; Goicoechea, J R; Black, J H; Bell, T A; Boulanger, F; Cernicharo, J; Coutens, A; Dartois, E; Kazmierczak, M; Encrenaz, P; Falgarone, E; Geballe, T R; Giesen, T; Godard, B; Goldsmith, P F; Gry, C; Gupta, H; Hennebelle, P; Herbst, E; Hily-Blant, P; Joblin, C; Kolos, R; Krelowski, J; Mart\\in-Pintado, J; Menten, K M; Monje, R; Mookerjea, B; Pearson, J; Perault, M; Persson, C M; Plume, R; Salez, M; Schlemmer, S; Schmidt, M; Stutzki, J; Teyssier, D; Vastel, C; Yu, S; Caux, E; Gusten, R; Hatch, W A; Klein, T; Mehdi, I; Morris, P; Ward, J S

    2010-01-01

    We discuss the detection of absorption by interstellar hydrogen fluoride (HF) along the sight line to the submillimeter continuum sources W49N and W51. We have used Herschel's HIFI instrument in dual beam switch mode to observe the 1232.4762 GHz J = 1 - 0 HF transition in the upper sideband of the band 5a receiver. We detected foreground absorption by HF toward both sources over a wide range of velocities. Optically thin absorption components were detected on both sight lines, allowing us to measure - as opposed to obtain a lower limit on - the column density of HF for the first time. As in previous observations of HF toward the source G10.6-0.4, the derived HF column density is typically comparable to that of water vapor, even though the elemental abundance of oxygen is greater than that of fluorine by four orders of magnitude. We used the rather uncertain N(CH)-N(H2) relationship derived previously toward diffuse molecular clouds to infer the molecular hydrogen column density in the clouds exhibiting HF abs...

  6. Characterization of nuclear fuels by ICP mass-spectrometric techniques

    Isotopic analyses of radioactive materials such as irradiated nuclear fuel are of major importance for the optimization of the nuclear fuel cycle and for safeguard aspects. Among the mass-spectrometric techniques available, inductively coupled plasma mass spectrometry (ICP-MS) and thermal ionization mass spectrometry are the most frequently applied methods for nuclear applications. Because of the low detection limits, the ability to analyze the isotopic composition of the elements and the applicability of the techniques for measuring stable as well as radioactive nuclides with similar sensitivity, both mass-spectrometric techniques are an excellent amendment to classical radioactivity counting methods. The paper describes selected applications of multicollector ICP-MS in combination with chromatographic separation techniques and laser ablation for the isotopic analysis of irradiated nuclear fuels. The advantages and limitations of the selected analytical technique for the characterization of such a heterogeneous sample matrix are discussed. (orig.)

  7. Can Ground-based Telescopes Detect The Oxygen 1.27 Micron Absorption Feature as a Biomarker in Exoplanets ?

    Kawahara, Hajime; Takami, Michihiro; Fujii, Yuka; Kotani, Takayuki; Murakami, Naoshi; Tamura, Motohide; Guyon, Olivier

    2012-01-01

    The oxygen absorption line imprinted in the scattered light from the Earth-like planets has been considered as the most promising metabolic biomarker of the exo-life. We examine the feasibility of the detection of the oxygen 1.27 micron band from habitable exoplanets, in particular, around late-type stars with a 30 m class ground-based telescope with a future instrument. We analyzed the night airglow around 1.27 micron with IRCS/echelle spectrometer on Subaru and found that the strong telluric emission from atmospheric oxygen molecules declines by an order of magnitude by the midnight. With compilation of nearby star catalogues combined with the sky background model, we estimate the detectability of the oxygen absorption band from an Earth twin, if exists, around nearby stars. We find that the most dominant photon noise of the oxygen 1.27 micron detection comes from the night airglow if the leakage is suppressed enough to detect the planet. We conclude that the future detectors for which the detection contras...

  8. HST hot Jupiter Transmission Spectral Survey: A detection of Na and strong optical absorption in HAT-P-1b

    Nikolov, N; Pont, F; Burrows, A S; Fortney, J J; Ballester, G E; Evans, T M; Huitson, C M; Wakeford, H R; Wilson, P A; Aigrain, S; Deming, D; Gibson, N P; Henry, G W; Knutson, H; Etangs, A Lecavelier des; Showman, A P; Vidal-Madjar, A; Zahnle, K

    2013-01-01

    We present an optical to near-infrared transmission spectrum of the hot Jupiter HAT-P-1b, based on HST observations, covering the spectral regime from 0.29 to 1.027{\\mu}m with STIS, which is coupled with a recent WFC3 transit (1.087 to 1.687{\\mu}m). We derive refined physical parameters of the HAT-P-1 system, including an improved orbital ephemeris. The transmission spectrum shows a strong absorption signature shortward of 0.55{\\mu}m, with a strong blueward slope into the near-ultraviolet. We detect atmospheric sodium absorption at a 3.3{\\sigma} significance level, but find no evidence for the potassium feature. The red data implies a marginally flat spectrum with a tentative absorption enhancement at wavelength longer than ~0.85{\\mu}m. The STIS and WFC3 spectra differ significantly in absolute radius level (4.3 +/- 1.6 pressure scale heights), implying strong optical absorption in the atmosphere of HAT-P-1b. The optical to near-infrared difference cannot be explained by stellar activity, as simulta- neous st...

  9. Herschel observations of extra-ordinary sources: Detection of Hydrogen Fluoride in absorption towards Orion~KL

    Phillips, T G; Lis, D C; Neufeld, D A; Bell, T A; Wang, S; Crockett, N R; Emprechtinger, M; Blake, G A; Caux, E; Ceccarelli, C; Cernicharo, J; Comito, C; Daniel, F; Dubernet, M -L; Encrenaz, P; Gerin, M; Giesen, T F; Goicoechea, J R; Goldsmith, P F; Herbst, E; Joblin, C; Johnstone, D; Langer, W D; Latter, W D; Lord, S D; Maret, S; Martin, P G; Melnick, G J; Menten, K M; Morris, P; Muller, H S P; Murphy, J A; Ossenkopf, V; Pearson, J C; Perault, M; Plume, R; Qin, S -L; Schilke, P; Schlemmer, S; Stutzki, J; Trappe, N; van der Tak, F F S; Vastel, C; Yorke, H W; Yu, S; Zmuidzinas, J; Boogert, A; Gusten, R; Hartogh, P; Honingh, N; Karpov, A; Kooi, J; Krieg, J -M; Schieder, R

    2010-01-01

    We report a detection of the fundamental rotational transition of hydrogen fluoride in absorption towards Orion KL using Herschel/HIFI. After the removal of contaminating features associated with common molecules ("weeds"), the HF spectrum shows a P-Cygni profile, with weak redshifted emission and strong blue-shifted absorption, associated with the low-velocity molecular outflow. We derive an estimate of 2.9 x 10^13 cm^-2 for the HF column density responsible for the broad absorption component. Using our best estimate of the H2 column density within the low-velocity molecular outflow, we obtain a lower limit of ~1.6 x 10^-10 for the HF abundance relative to hydrogen nuclei, corresponding to 0.6% of the solar abundance of fluorine. This value is close to that inferred from previous ISO observations of HF J=2--1 absorption towards Sgr B2, but is in sharp contrast to the lower limit of 6 x 10^-9 derived by Neufeld et al. (2010) for cold, foreground clouds on the line of sight towards G10.6-0.4.

  10. A BeppoSAX observation of 3C273 broadband spectrum and detection of a low-energy absorption feature

    Grandi, P; Mineo, T; Parmar, A N; Fiore, F; Matteuzzi, A; Nicastro, F; Perola, G C; Piro, L; Cappi, M; Cusumano, G; Frontera, F; Giarrusso, S; Palazzi, E; Piraino, S

    1997-01-01

    We report the results of a 3C273 observation performed during the Science Verification Phase (SVP) of the BeppoSax satellite. The broad-band spectrum is well represented by a power-law between 1 keV and 200 keV. The spectral slope is flat (\\Gamma ~1.6) with a weak emission line at ~ 6.4 keV (rest frame) of EW ~ 30 eV. Below 1 keV, a deviation from a power-law due to an absorption feature plus a soft component is present. This is the first time that a feature in absorption at ~ 0.5 keV (observer frame) is unambiguously detected in 3C273.

  11. The physical understanding on dynamic readout/detection of super-resolution pits with nonlinear reverse saturation absorption thin films

    The physical mechanism and understanding behind dynamic readout/detection of super-resolution pits with a nonlinear reverse-saturation absorption active layer, such as an InSb active layer, is presented on the basis of experimental results of open-aperture z-scan measurements and pump–probe transient time response analysis. The super-resolution of an InSb active layer is a result of the formation of a sub-wavelength scatterer region at the center of the focused spot. The frequency response function also verifies that the cutoff frequency with an InSb active layer is clearly extended compared to when an InSb active layer is not used. The findings are useful for understanding the physical process of the far-field super-resolution effect with nonlinear reverse-saturation absorption characteristics. (paper)

  12. Highly Selective Hg (II Ion Detection Based on Linear Blue-Shift of the Maximum Absorption Wavelength of Silver Nanoparticles

    Li Ping Wu

    2012-01-01

    Full Text Available A new method of detecting Hg (II ion with silver nanoparticles (AgNPs is developed in this contribution. When Hg (II ions were added into AgNPs solution, the solution displayed rapid color change and blue shift of the maximum absorption wavelength (Δλ, which was in proportion to the Hg (II ion concentration over the range of 2.0 × 10−7–6.0 × 10−6 mol/L, with detection limit (3σ of 6.6 × 10−9 mol/L. Under the same experimental conditions, other metal ions did not interfere. Thus, we propose a rapid, simple and highly selective method for detecting Hg (II ion.

  13. Modeling absorption spectra for detection of the combustion products of jet engines by laser remote sensing.

    Voitsekhovskaya, Olga K; Kashirskii, Danila E; Egorov, Oleg V; Shefer, Olga V

    2016-05-10

    The absorption spectra of exhaust gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3) particles were modeled at different temperatures for the first time and suitable spectral ranges were determined for conducting laser remote sensing of the combustion products of jet engines. The calculations were conducted on the basis of experimental concentrations of the substances and the sizes of the aerosol particles. The temperature and geometric parameters of jet engine exhausts were also taken from the literature. The absorption spectra were obtained via the line-by-line method, making use of the spectral line parameters from the authors' own high-temperature databases (for NO2 and SO2 gases) and the HITEMP 2010 database, and taking into account atmospheric transmission. Finally, the theoretical absorption spectra of the exhaust gases were plotted at temperatures of 400, 700, and 1000 K, and the impact of aerosol particles on the total exhaust spectra was estimated in spectral ranges suitable for remote sensing applications. PMID:27168298

  14. A survey for HI in the distant Universe: the detection of associated 21-cm absorption at z=1.28

    Curran, S J; Tanna, A; Sadler, E M; Pracy, M B; Athreya, R

    2012-01-01

    We have undertaken a survey for HI 21-cm absorption within the host galaxies of z ~ 1.2 - 1.5 radio sources, in the search of the cool neutral gas currently "missing" at z > 1. This deficit is believed to be due to the optical selection of high redshift objects biasing surveys towards sources of sufficient ultra-violet luminosity to ionise all of the gas in the surrounding galaxy. In order to avoid this bias, we have selected objects above blue magnitudes of B\\sim20, indicating ultra-violet luminosities below the critical value above which 21-cm has never been detected. As a secondary requirement to the radio flux and faint optical magnitude, we shortlist targets with radio spectra suggestive of compact sources, in order to maximise the coverage of background emission. From this, we obtain one detection out of ten sources searched, which at z=1.278 is the third highest redshift detection of associated 21-cm absorption to date. Accounting for the spectra compromised by radio frequency interference, as well as ...

  15. Absorption studies

    Absorption studies were once quite popular but hardly anyone does them these days. It is easier to estimate the blood level of the nutrient directly by radioimmunoassay (RIA). However, the information obtained by estimating the blood levels of the nutrients is not the same that can be obtained from the absorption studies. Absorption studies are primarily done to find out whether some of the essential nutrients are absorbed from the gut or not and if they are absorbed, to determine how much is being absorbed. In the advanced countries, these tests were mostly done to detect pernicious anaemia where vitamin B12 is not absorbed because of the lack of the intrinsic factor in the stomach. In the tropical countries, ''malabsorption syndrome'' is quire common. In this condition, several nutrients like fat, folic acid and vitamin B12 are not absorbed. It is possible to study absorption of these nutrients by radioisotopic absorption studies

  16. Magnetic-field-modulated microwave-absorption detection in a Bi-Sr-Ca-Cu-O superconductor

    Bohandy, J.; Adrian, F.J.; Kim, B.F.; Moorjani, K.; Shull, R.D.; Swartzendruber, L.J.; Bennett, L.H.; Wallace, J.S.

    1988-06-01

    Superconducting transitions are observed at 110 K, 100 K, and 72 K in a nominally BiSrCaCu/sub 2/O/sub x/ ceramic using the novel technique of magnetic-field-modulated microwave-absorption detection. The response of the BiSrCaCu/sub 2/O/sub x/ ceramic to an external magnetic field differs markedly from that of YBa/sub 2/Cu/sub 3/O and, in particular, -dT/sub c//dH is much greater in the bismuth sample.

  17. Magnetic-field-modulated microwave-absorption detection in a Bi-Sr-Ca-Cu-O superconductor

    Superconducting transitions are observed at 110 K, 100 K, and 72 K in a nominally BiSrCaCu2O/sub x/ ceramic using the novel technique of magnetic-field-modulated microwave-absorption detection. The response of the BiSrCaCu2O/sub x/ ceramic to an external magnetic field differs markedly from that of YBa2Cu3O and, in particular, -dT/sub c//dH is much greater in the bismuth sample

  18. Can Ground-based Telescopes Detect The Oxygen 1.27 Micron Absorption Feature as a Biomarker in Exoplanets ?

    Kawahara, Hajime; Matsuo, Taro; Takami, Michihiro; Fujii, Yuka; Kotani, Takayuki; Murakami, Naoshi; Tamura, Motohide; Guyon, Olivier

    2012-01-01

    The oxygen absorption line imprinted in the scattered light from the Earth-like planets has been considered the most promising metabolic biomarker of the exo-life. We examine the feasibility of the detection of the 1.27 micron oxygen band from habitable exoplanets, in particular, around late- type stars observed with a future instrument on a 30 m class ground-based telescope. We analyzed the night airglow around 1.27 micron with IRCS/echelle spectrometer on Subaru and found that the strong te...

  19. A carbon monoxide detection device based on mid-infrared absorption spectroscopy at 4.6 μm

    Li, Guo-Lin; Sui, Yue; Dong, Ming; Ye, Wei-Lin; Zheng, Chuan-Tao; Wang, Yi-Ding

    2015-05-01

    We present a differential carbon monoxide (CO) concentration sensing device using a self-fabricated spherical mirror (e.g., light collector) and a multi-pass gas chamber. Single-source dual-channel detection method is adopted to suppress the interferences from light source, optical path, and environmental changes. The detection principle of the device is described, and both the optical part and the electrical part are designed and developed. Experiments are carried out to evaluate the sensing performances on CO concentration. The results indicate that the limit of detection is about 10 ppm with an absorption length of 40 cm. As the gas concentration gets larger than 100 ppm, the relative detection error falls into the range of -1.7 to +1.9 %. Based on 12-h long-term measurements on the 100 and 1000 ppm CO samples, the maximum detection errors are about 0.9 and 5.5 %, respectively. Benefit from low cost and competitive characteristics, the proposed device shows potential applications in CO detection under the circumstances of coal-mine production and environmental protection.

  20. Invisible Active Galactic Nuclei. II Radio Morphologies & Five New HI 21 cm Absorption Line Detections

    Yan, Ting; Stocke, John T.; Darling, Jeremy; Momjian, Emmanuel; Sharma, Soniya; Kanekar, Nissim

    2015-01-01

    We have selected a sample of 80 candidates for obscured radio-loud active galactic nuclei and presented their basic optical/near-infrared (NIR) properties in Paper 1. In this paper, we present both high-resolution radio continuum images for all of these sources and HI 21cm absorption spectroscopy for a few selected sources in this sample. A-configuration 4.9 and 8.5 GHz VLA continuum observations find that 52 sources are compact or have substantial compact components with size

  1. Evidence for ultra-fast outflows in radio-quiet AGNs: I - detection and statistical incidence of Fe K-shell absorption lines

    Tombesi, F.; Cappi, M.; Reeves, J. N.; Palumbo, G.G.C.; Yaqoob, T.; Braito, V.; Dadina, M.

    2010-01-01

    We performed a blind search for narrow absorption features at energies greater than 6.4 keV in a sample of 42 radio-quiet AGNs observed with XMM-Newton. We detect 36 narrow absorption lines on a total of 101 XMM-Newton EPIC pn observations. The number of absorption lines at rest-frame energies E>7 keV is 22. Their global probability to be generated by random fluctuations is very low, less than 3x10^-8, and their detection have been independently confirmed by a spectral analysis of the MOS dat...

  2. GREEN BANK TELESCOPE DETECTION OF POLARIZATION-DEPENDENT H I ABSORPTION AND H I OUTFLOWS IN LOCAL ULIRGs AND QUASARS

    We present the results of a 21 cm H I survey of 27 local massive gas-rich late-stage mergers and merger remnants with the Robert C. Byrd Green Bank Telescope. These remnants were selected from the Quasar/ULIRG Evolution Study sample of ultraluminous infrared galaxies (ULIRGs; L8–1000μm > 1012 L☉) and quasars; our targets are all bolometrically dominated by active galactic nuclei (AGNs) and sample the later phases of the proposed ULIRG-to-quasar evolutionary sequence. We find the prevalence of H I absorption (emission) to be 100% (29%) in ULIRGs with H I detections, 100% (88%) in FIR-strong quasars, and 63% (100%) in FIR-weak quasars. The absorption features are associated with powerful neutral outflows that change from being mainly driven by star formation in ULIRGs to being driven by the AGN in the quasars. These outflows have velocities that exceed 1500 km s–1 in some cases. Unexpectedly, we find polarization-dependent H I absorption in 57% of our spectra (88% and 63% of the FIR-strong and FIR-weak quasars, respectively). We attribute this result to absorption of polarized continuum emission from these sources by foreground H I clouds. About 60% of the quasars displaying polarized spectra are radio-loud, far higher than the ∼10% observed in the general AGN population. This discrepancy suggests that radio jets play an important role in shaping the environments in these galaxies. These systems may represent a transition phase in the evolution of gas-rich mergers into ''mature'' radio galaxies.

  3. Absolute high spectral resolution measurements of surface solar radiation for detection of water vapour continuum absorption.

    Gardiner, T D; Coleman, M; Browning, H; Tallis, L; Ptashnik, I V; Shine, K P

    2012-06-13

    Solar-pointing Fourier transform infrared (FTIR) spectroscopy offers the capability to measure both the fine scale and broadband spectral structure of atmospheric transmission simultaneously across wide spectral regions. It is therefore suited to the study of both water vapour monomer and continuum absorption behaviours. However, in order to properly address this issue, it is necessary to radiatively calibrate the FTIR instrument response. A solar-pointing high-resolution FTIR spectrometer was deployed as part of the 'Continuum Absorption by Visible and Infrared radiation and its Atmospheric Relevance' (CAVIAR) consortium project. This paper describes the radiative calibration process using an ultra-high-temperature blackbody and the consideration of the related influence factors. The result is a radiatively calibrated measurement of the solar irradiation at the ground across the IR region from 2000 to 10 000 cm(-1) with an uncertainty of between 3.3 and 5.9 per cent. This measurement is shown to be in good general agreement with a radiative-transfer model. The results from the CAVIAR field measurements are being used in ongoing studies of atmospheric absorbers, in particular the water vapour continuum. PMID:22547234

  4. Detection Limit of Glucose Concentration with Near-Infrared Absorption and Scattering Spectroscopy

    LUO Yun-Han; HUANG Fu-Rong; LI Shi-Ping; CHEN Zhe

    2008-01-01

    @@ Theoretical analyses and Monte Carlo simulation are performed to investigate the detection limit of glucose concentration with near-infrared spectroscopy.The relation between detection limitation of glucose concentration and source-detector separation is derived.Monte Carlo simulation performed with a skin-layered model shows that the ratio of effective photons from the target layer could excess 50% by selecting proper source-detector separation,and that the detection limit of glucose concentration approaches to 0.28mM,which satisfies the requirement of food and drug administration for noninvasive glucose sensing.

  5. Changing of Bacteria Catalase Activity Under the Influence of Electro-Magnetic Radiation on a Frequency of Nitric Oxide Absorption and Radiation Molecular Spectrum

    G.M. Shub

    2009-09-01

    Full Text Available The dynamics of catalase activity degree changing in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa is described under the influence of electro-magnetic radiation on a frequency of nitric oxide absorption and radiation molecular spectrum. The panoramic spectrometric measuring complex, developed in Central Scientific Research Institute of measuring equipment Public corporation, Saratov, was used while carrying out the research. Electromagnetic vibrations of extremely high frequencies were stimulated in this complex imitating the structure of nitric oxide absorption and radiation molecular spectrum. The growth of activity of the mentioned enzyme of the strains under research was detected. The most significant changes were observed under 60-minutes exposure.

  6. Accuracy of X-ray fluorescence spectrometric determination of Rb and Sr concentrations in rock samples

    It is shown that application of the Compton scattering for matrix correction in the X-ray fluorescence spectrometric determination of the trace elements Rb and Sr in rock samples can provide concentrations at a relative accuracy level of 1%. The empirical method applies to rock samples showing differences in mass absorption up to a factor of two. The accuracy of the method has been tested by analysis of 57 samples analysed for Rb and Sr by mass spectrometric isotope dilution. In addition a few of the U.S. Geological Survey reference rock powders, showing significantly different mass absorption, were analysed for Rb and Sr. It is demonstrated that the mica effect, if significant, is smaller than 1% relative. There is no advantage in the use of the LiF(220) analysing crystal as a substitute for the LiF(200). The method appears to be insensitive to the pellet thickness. (author)

  7. Photometric and emission-spectrometric determination of boron in steels

    A method for the photometric determination of boron in unalloyed and alloyed steels is described, in which Curcumine is used as reagent. A separation of boron is not necessary. Limit of detection: 0.0003% B. The decomposition of boron nitride in the steel is achieved by heating the whole sample in fuming sulphuric acid/phosphoric acid. For the emission spectrometric investigation of solid steel samples and for the spectrochemical analysis of solutions with plasma excitation working parameters are given and possibilities of interferences are demonstrated. (orig.)

  8. Photometric and emission-spectrometric determination of boron in steels

    Thierig, D.

    1982-01-01

    A method for the photometric determination of boron in unalloyed and alloyed steels is described, in which Curcumine is used as reagent. A separation of boron is not necessary. Limit of detection: 0.0003% B. The decomposition of boron nitride in the steel is achieved by heating the whole sample in fuming sulphuric acid/phosphoric acid. For the emission spectrometric investigation of solid steel samples and for the spectrochemical analysis of solutions with plasma excitation working parameters are given and possibilities of interferences are demonstrated.

  9. 'Intelligent' triggering methodology for improved detectability of wavelength modulation diode laser absorption spectrometry applied to window-equipped graphite furnaces

    The wavelength modulation-diode laser absorption spectrometry (WM-DLAS) technique experiences a limited detectability when window-equipped sample compartments are used because of multiple reflections between components in the optical system (so-called etalon effects). The problem is particularly severe when the technique is used with a window-equipped graphite furnace (GF) as atomizer since the heating of the furnace induces drifts of the thickness of the windows and thereby also of the background signals. This paper presents a new detection methodology for WM-DLAS applied to a window-equipped GF in which the influence of the background signals from the windows is significantly reduced. The new technique, which is based upon a finding that the WM-DLAS background signals from a window-equipped GF are reproducible over a considerable period of time, consists of a novel 'intelligent' triggering procedure in which the GF is triggered at a user-chosen 'position' in the reproducible drift-cycle of the WM-DLAS background signal. The new methodology makes also use of 'higher-than-normal' detection harmonics, i.e. 4f or 6f, since these previously have shown to have a higher signal-to-background ratio than 2f-detection when the background signals originates from thin etalons. The results show that this new combined background-drift-reducing methodology improves the limit of detection of the WM-DLAS technique used with a window-equipped GF by several orders of magnitude as compared to ordinary 2f-detection, resulting in a limit of detection for a window-equipped GF that is similar to that of an open GF

  10. Aspects of optical fibers and spectrometric sensors in chemical process and industrial environments

    For on-line control, the two alternatives of automatic sample transfer and in situ remote analysis are discussed. New concepts are emerging from the possibilities offered by optical fibers. Absorption in the visible, UV and IR, fluorescence and Raman spectrometric techniques are examined. The state of the art of optodes and devices in chemical process control are given, with some examples of applications in nuclear plants