WorldWideScience

Sample records for absorption heat pumps

  1. Absorption heat pumps

    Huhtinen, M.; Heikkilae, M.; Andersson, R.

    1987-03-01

    The aim of the study was to analyze the technical and economic feasibility of absorption heat pumps in Finland. The work was done as a case study: the technical and economic analyses have been carried out for six different cases, where in each the suitable size and type of the heat pump plant and the auxiliary components and connections were specified. The study also detailed the costs concerning the procurement, installation and test runs of the machinery, as well as the savings in energy costs incurred by the introduction of the plant. Conclusions were drawn of the economic viability of the applications studied. The following cases were analyzed: heat recovery from flue gases and productin of district heat in plants using peat, natural gas, and municipal wastes as a fuel. Heat recovery in the pulp and paper industry for the upgrading of pressure of secondary steam and for the heating of white liquor and combustion and drying the air. Heat recovery in a peat-fulled heat and power plant from flue gases that have been used for the drying of peat. According to the study, the absorption heat pump suits best to the production of district heat, when the heat source is the primary energy is steam produced by the boiler. Included in the flue as condensing is the purification of flue gases. Accordingly, benefit is gained on two levels in thick applications. In heat and power plants the use of absorption heat pumps is less economical, due to the fact that the steam used by the pump reduces the production of electricity, which is rated clearly higher than heat.

  2. Application of the absorption heat pump in an oil refinery

    K.C., Sushil

    2015-01-01

    Absorption heat pumps (AHPs) have been popular due to their ability to convert thermal waste into useful energy. This study investigates the applicability of the absorption heat pump to the Porvoo oil refinery and compares the results to the ordinary heat pump (HP). The vacuum distillation unit 2 (TT2) and gas turbine (KTVL-3) units were considered for the case studies. Vacuum condenser is an inseparable part of the vacuum column DA-2201. The pressure at the top of the column DA-2201 is d...

  3. Absorption Cycle Heat Pump Model for Control Design

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard;

    2015-01-01

    actual heat pump located at a larger district heating plant. The model is implemented in Modelica and is based on energy and mass balances, together with thermodynamic property functions for LiBr and water and staggered grid representations for heat exchangers. Model parameters have been fitted to......Heat pumps have recently received increasing interest due to green energy initiatives and increasing energy prices. In this paper, a nonlinear dynamic model of a single-effect LiBr-water absorption cycle heat pump is derived for simulation and control design purposes. The model is based on an...

  4. Analysis of Decentralized Control for Absorption Cycle Heat Pumps

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergård; Bendtsen, Jan Dimon

    Email Print Request Permissions This paper investigates decentralized control structures for absorption cycle heat pumps and a dynamic nonlinear model of a single-effect LiBr-water absorption system is used as case study. The model has four controllable inputs, which can be used to stabilize the...

  5. Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps

    Østergaard, Poul Alberg

    2013-01-01

    -temperature geothermal resources. The analyses have also demonstrated that the municipality will still rely heavily on surrounding areas for electric load balancing assistance. With a departure in a previously elaborated 100% renewable energy scenario, this article investigates how absorption heat pumps (AHP...

  6. Development of an Ionic-Liquid Absorption Heat Pump

    Holcomb, Don

    2011-03-29

    Solar Fueled Products (SFP) is developing an innovative ionic-liquid absorption heat pump (ILAHP). The development of an ILAHP is extremely significant, as it could result in annual savings of more than 190 billion kW h of electrical energy and $19 billion. This absorption cooler uses about 75 percent less electricity than conventional cooling and heating units. The ILAHP also has significant environmental sustainability benefits, due to reduced CO2 emissions. Phase I established the feasibility and showed the economic viability of an ILAHP with these key accomplishments: • Used the breakthrough capabilities provided by ionic liquids which overcome the key difficulties of the common absorption coolers. • Showed that the theoretical thermodynamic performance of an ILAHP is similar to existing absorption-cooling systems. • Established that the half-effect absorption cycle reduces the peak generator temperature, improving collector efficiency and reducing collector area. • Component testing demonstrated that the most critical components, absorber and generator, operate well with conventional heat exchangers. • Showed the economic viability of an ILAHP. The significant energy savings, sustainability benefits, and economic viability are compelling reasons to continue the ILAHP development.

  7. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix; Reinholdt, L.; Elmegaard, Brian

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change of the zeotropic mixture, ammonia-water. To evaluate to which extent these advantages can be translated into feasible heat pump solutions, the working domain of the HACHP is investigated base...

  8. Technical and Economic Working Domains of Industrial Heat Pumps: Part 2 - Ammonia-Water Hybrid Absorption-Compression Heat Pumps

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix;

    2014-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phase change of the ze......, all with economical benefits for the investor....

  9. Technical and economic working domains of industrial heat pumps: Part 2 - ammonia-water hybrid absorption-compression heat pumps

    Jensen, Jonas Kjær; Ommen, Torben Schmidt; Markussen, Wiebke Brix;

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) has been proposed as a relevant technology for industrial heat supply, especially for high sink temperatures and high temperature glides in the sink and source. This is due to the reduced vapour pressure and the non-isothermal phas...... up to 60 K, all with economical benefits for the investor....

  10. Coefficient of Performance Optimization of Single-Effect Lithium-Bromide Absorption Cycle Heat Pumps

    Vinther, Kasper; Just Nielsen, Rene; Nielsen, Kirsten Mølgaard; Andersen, Palle; Pedersen, Tom Søndergård; Bendtsen, Jan Dimon

    In this paper, we investigate the coefficient of performance (COP) of a LiBr absorption cycle heat pump under different operating conditions. The investigation is carried out using a dynamical model fitted against data recorded from an actual heat pump used for district heating in S⊘nderborg, Den......In this paper, we investigate the coefficient of performance (COP) of a LiBr absorption cycle heat pump under different operating conditions. The investigation is carried out using a dynamical model fitted against data recorded from an actual heat pump used for district heating in S...

  11. Application of customized absorption heat pumps for utilization of low-grade heat sources

    Based on established and proven technology of water/lithium bromide absorption chillers, customized single-stage and double-stage heat pump cycles adapted to specific applications can be designed, especially aiming at medium and large heating capacities of 500 kW and above. These heat pumps can either be fossil fired or driven by heat from combined heating and power (CHP) systems or other sources. In terms of primary energy saving, in many cases this is the most suitable technology to utilize the available heat sources. This is demonstrated by three examples of current installations in southern Germany. An analysis of the energetic performance and of the economic situation has been performed. At a municipal composting plant, waste heat is generated at a temperature level of about 40-50 deg. C. Previously, this waste heat had to be rejected to the ambient by means of a cooling tower. A direct-fired single-stage absorption heat pump has been installed which lifts the waste heat to a temperature level of 82 deg. C enabling its utilization in the local heating network of a commercial area. At a spa with various swimming pools located next to a thermal spring, a CHP engine plant is installed. The reject heat of the gas engine drives a novel two-stage absorption heat pump that utilizes the spring water as renewable heat source to provide heating of the pools and the building. In Munich, a solar-assisted local district heating system is installed in a new housing development area with about 300 accommodation units. At this site, a seasonal hot water storage for the solar system of about 5700 m3 is erected. At the beginning of the heating season, it serves the local heating network directly and afterwards - at a lower temperature level - it is utilized as heat source for an absorption heat pump that is driven by the municipal district heating network. By that concept two effects are accomplished: the available temperature change of the hot water storage is increased and

  12. Thermodynamic modeling and performance analysis of the variable-temperature heat reservoir absorption heat pump cycle

    Qin, Xiaoyong; Chen, Lingen; Ge, Yanlin; Sun, Fengrui

    2015-10-01

    For practical absorption heat pump (AHP) plants, not all external heat reservoir heat capacities are infinite. External heat reservoir heat capacity should be an effect factor in modeling and performance analysis of AHP cycles. A variable-temperature heat reservoir AHP cycle is modeled, in which internal working substance is working in four temperature levels and all irreversibility factors are considered. The irreversibility includes heat transfer irreversibility, internal dissipation irreversibility and heat leakage irreversibility. The general equations among coefficient of performance (COP), heating load and some key characteristic parameters are obtained. The general and optimal characteristics are obtained by using numerical calculations. Besides, the influences of heat capacities of heat reservoirs, internal dissipation irreversibility, and heat leakage irreversibility on cycle performance are analyzed. The conclusions can offer some guidelines for design and operation of AHP plants.

  13. Development of solar driven absorption air conditioners and heat pumps

    Dao, K.; Wahlig, M.; Wali, E.; Rasson, J.; Molishever, E.

    1980-03-01

    The development of absorption refrigeration systems for solar active heating and cooling applications is discussed. The approaches investigated are those using air-cooled condenser-absorber and those leading to coefficient of performances (COP) that increase continuously with heat source temperature. This is primarily an experimental project, with the emphasis on designing, fabricating and testing absorption chillers in operating regimes that are particularly suited for solar energy applications. Its demonstrated that the conventional single-effect ammonia-water absorption cycle can be used (with minor modifications) for solar cooling.

  14. A new open absorption heat pump for latent heat recovery from moist gas

    Highlights: • A new open absorption heat pump system was proposed. • The new system aims at recovering latent heat from low-temperature moist gas. • The new system can utilize a lower temperature range of heat source. • COPh and heat recovery efficiency is high with the production of high-temperature steam. • Increasing generation temperature and humidity of gas is beneficial for the new system. - Abstract: Conventional drying processes discharge high humidity gas to the atmosphere. The exhaust gas contains large amount of energy. The direct discharging would result in relatively large energy waste. In order to improve the thermal efficiency of drying process, in this paper, a new open absorption heat pump system was proposed, which aims at recovering the latent heat from exhausted moist gas and producing steam for reutilization. The working principle was discussed in detail and thermodynamic models were established to analyze the performance of the new system. The new system can work under both single-stage and double-stage modes. Simulation results showed that the new system could utilize a heat source with lower generation temperature compared with that utilized by a traditional open absorption system. The temperature range of heat source for the double-stage mode is 130–160 °C, and that for the single-stage mode is 160–175 °C. The new system also eliminates the limitation of traditional close absorption system, whose evaporation temperature has to be lower than the dew point temperature of discharged moist gas to recover the latent heat of water steam. Simulation results also indicated an improved COPh of the new system compared with that of double-stage close absorption heat pump system. The COPh of the new system varied from 1.52 to 1.97 and the efficiency of heat recovery varied from 15.1% to 54.8% when the temperature of heat source varied from 135 °C to 175 °C and saturated steam of 100 °C was produced

  15. Performance of Different Experimental Absorber Designs in Absorption Heat Pump Cycle Technologies: A Review

    Jonathan Ibarra-Bahena

    2014-02-01

    Full Text Available The absorber is a major component of absorption cycle systems, and its performance directly impacts the overall size and energy supplies of these devices. Absorption cooling and heating cycles have different absorber design requirements: in absorption cooling systems, the absorber works close to ambient temperature, therefore, the mass transfer is the most important phenomenon in order to reduce the generator size; on the other hand, in heat transformer absorption systems, is important to recover the heat delivered by exothermic reactions produced in the absorber. In this paper a review of the main experimental results of different absorber designs reported in absorption heat pump cycles is presented.

  16. Crystallization Analysis and Control of Ammonia-Based Air Source Absorption Heat Pump in Cold Regions

    Wu, Wei; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2013-01-01

    Energy consumption of heating and domestic hot water is very high and will keep increasing. Air source absorption heat pump (ASAHP) was proposed to overcome the problems of low energy efficiency and high air pollution existing in boiler systems, as well as the problem of bad performance under low ambient temperatures for electrical heat pumps. In order to investigate the crystallization possibility of ammonia-salt ASAHP, crystallization margin (evaluated by solution mass concentration) at gen...

  17. Comparison of LCA results of low temperature heat plant using electric heat pump, absorption heat pump and gas-fired boiler

    Highlights: • Usage of geothermal heat pump can bring environmental benefits. • The lowest environmental impact for whole life cycle is obtained for absorption heat pump. • The value of heat pump COP has a significant influence on environmental impact. • In case of coal based power generation the damage to human health is significant. - Abstract: This study compares the life cycle impacts of three heating plant systems which differ in their source of energy and the type of system. The following heating systems are considered: electric water-water heat pump, absorption water-water heat pump and natural gas fired boiler. The heat source for heat pump systems is low temperature geothermal source with temperature below 20 °C and spontaneous outflow 24 m3/h. It is assumed that the heat pumps and boiler are working in monovalent system. The analysis was carried out for heat networks temperature characteristic at 50/40 °C which is changing with outdoor temperature during heating season. The environmental life cycle impact is evaluated within life cycle assessment methodological framework. The method used for life cycle assessment is eco-indicator ‘99. The functional unit is defined as heating plant system with given amount of heat to be delivered to meet local heat demand in assumed average season. The data describing heating plant system is derived from literature and energy analysis of these systems. The data describing the preceding life cycle phases: extraction of raw materials and fuels, production of heating devices and their transportation is taken from Ecoinvent 2.0 life cycle inventory database. The results were analyzed on three levels of indicators: single score indicator, damage category indicators and impact category indicator. The indicators were calculated for characterization, normalization and weighting phases as well. SimaPro 7.3.2 is the software used to model the systems’ life cycle. The study shows that heating plants using a low

  18. Air source absorption heat pump in district heating: Applicability analysis and improvement options

    Highlights: • Applicability of air source absorption heat pump (ASAHP) district heating is studied. • Return temperature and energy saving rate (ESR) in various conditions are optimized. • ASAHP is more suitable for shorter distance or lower temperature district heating. • Two options can reduce the primary return temperature and improve the applicability. • The maximum ESR is improved from 13.6% to 20.4–25.6% by compression-assisted ASAHP. - Abstract: The low-temperature district heating system based on the air source absorption heat pump (ASAHP) was assessed to have great energy saving potential. However, this system may require smaller temperature drop leading to higher pump consumption for long-distance distribution. Therefore, the applicability of ASAHP-based district heating system is analyzed for different primary return temperatures, pipeline distances, pipeline resistances, supplied water temperatures, application regions, and working fluids. The energy saving rate (ESR) under different conditions are calculated, considering both the ASAHP efficiency and the distribution consumption. Results show that ASAHP system is more suitable for short-distance district heating, while for longer-distance heating, lower supplied hot water temperature is preferred. In addition, the advantages of NH3/H2O are inferior to those of NH3/LiNO3, and the advantages for warmer regions and lower pipeline resistance are more obvious. The primary return temperatures are optimized to obtain maximum ESRs, after which the suitable distances under different acceptable ESRs are summarized. To improve the applicability of ASAHP, the integration of cascaded heat exchanger (CHX) and compression-assisted ASAHP (CASAHP) are proposed, which can reduce the primary return temperature. The integration of CHX can effectively improve the applicability of ASAHP under higher supplied water temperatures. As for the utilization of CASAHP, higher compression ratio (CR) is better in longer

  19. Heat pumps

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  20. Investigation of ammonia/water hybrid absorption/compression heat pumps for heat supply temperatures above 100 °C

    Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour pressures. Using standard refrigeration components (28 bar) HACHP up to 100 °C are commercially available. Components developed for high pressure NH3 (52 bar) and transcritical CO2 (140 bar) increase th...

  1. Heat pumps

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  2. Thermo-ecological analysis and optimization performance of an irreversible three-heat-source absorption heat pump

    Highlights: • Thermo-ecological modeling of irreversible three-heat-source absorption heat pump is performed. • The latter is achieved using NSGA algorithm and thermodynamic analysis. • Various decision makers are carried out to indicate optimum values of outputs obtained with optimization process. - Abstract: Throughout present research, optimization investigations of an irreversible absorption heat pump system on the basis of a new thermo-ecological criterion. The objective functions which considered are the specific heating load, coefficient of performance (COP) and the ecological coefficient of performance (ECOP). Three objective functions of the ECOP, COP and the specific heating load are optimized simultaneously using the multi-objective optimization algorithm NSGAII. COP and ECOP are maximized and specific heating load is minimized in order to get the best performance. Decision making is done by means of three methods of LINAMP and TOPSIS and FUZZY. Finally, sensitivity analysis and error analysis was performed for the system

  3. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and absorption heat pump

    Cachorro, Irene Albacete; Daraban, Iulia Maria; Lainé, Guillaume;

    2013-01-01

    . The heat pump is a heat driven system and is running with the heat recovered by a heat exchanger from the exhausted gases from SOFC. The working fluid pair is NH3-H2O and is driven in two evaporators which are working at two different pressures. Thus, the heat pump will operate at tree pressure level......In this paper a system consisting of an SOFC system for cogeneration of heat and power and vapour absorption heat pump for cooling and freezing is assessed and performance is evaluated. Food industry where demand includes four forms of energy simultaneously is a relevant application such a system...... in order to meet the bought cooling and freezing demands. This is an innovative configuration for absorption heat pumps because the cascade is implemented only in vapour compression heat pumps. A smaller ratio of the exhausted gases supplies the energy demand for space heating. The SOFC is fuelled...

  4. Investigation of ammonia/water hybrid absorption/compression heat pumps for heat supply temperatures above 100 °C

    Jensen, Jonas Kjær; Reinholdt, Lars; Markussen, Wiebke Brix;

    2014-01-01

    using these components. A technically and economically feasible solution is defined as one that satisfies constraints on the coefficient of performance (COP), low and high pressure, compressor discharge temperature and volumetric heat capacity. The ammonia mass fraction of the rich solution......The hybrid absorption/compression heat pump (HACHP) using ammonia-water as working fluid is a promising technology for development of a high temperature industrial heat pump. This is due to two properties inherent to the use of zeotropic mixtures: non-isothermal phase change and reduced vapour...

  5. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;

    2015-01-01

    and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129°C......Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...... limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content...

  6. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    Highlights: • Thermal and heat transfer models of absorption heat pumps driven by exhaust gas, hot water, or natural gas. • Natural gas boiler combustion model. • Heat exchanger for condensing. • Experimental data of a hot water absorption heat pump. • Economic assessment of heat recovery absorption heat pump for improving natural gas boilers. - Abstract: Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150–200 °C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50–60 °C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural

  7. A new waste heat district heating system with combined heat and power (CHP) based on ejector heat exchangers and absorption heat pumps

    A new waste heat district heating system with CHP based on ejector heat exchangers and absorption heat pumps (DH-EHE) is presented to decrease heating energy consumption of existing CHP systems by recovering waste heat of exhausted steam from a steam turbine, which could also increase heat transmission capacity of the primary heating network (PHN) by decreasing temperature of the return water of existing PHN. A new ejector heat exchanger based on ejector refrigeration cycle is invented to decrease temperature of the return water of PHN to 30 °C under the designed case. DH-EHE is analyzed in terms of laws of thermodynamics and economics. Compared to conventional district heating systems with CHP (CDH), DH-EHE can decrease consumption of steam extracted from a steam turbine by 41.4% and increase heat transmission capacity of the existing PHN by 66.7% without changing the flow rate of circulating water. The heating cost of DH-EHE is 8.62 ¥/GJ less than that of CDH. Compared to CDH, the recovery period of additional investment of DH-EHE is about two years. DH-EHE shows better economic and environmental benefits, which is promising for both district heating systems for long-distance heat transmission and waste heat district heating systems. - Highlights: • Heating capacity of this new heating system increases by 41% by waste heat recovery. • Temperature of return water of the primary heating network can be reduced to 30 °C. • Heating cost of new heating system is 8.62¥/GJ less than that of conventional one. • The recovery period of additional investment of new heating system is about 2 years. • This new heating system shows better economic and environmental benefits

  8. Application of customized absorption heat pumps with heating capacities above 500 kW

    Radspieler, Michael; Zachmeier, Peter; Schweigler, Christian

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458

  9. A new heating system based on coupled air source absorption heat pump for cold regions: Energy saving analysis

    Highlights: • A double-stage coupled air source absorption heat pump (ASAHP) is proposed. • The coupled ASAHP exhibits stable and high performance in very cold regions. • Energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. - Abstract: Energy consumption for heating and domestic hot water is very high. The heating system based on an air source absorption heat pump (ASAHP) had been assessed to have great energy saving potential. However, the single-stage ASAHP exhibits poor performance when the outdoor air temperature is very low. A double-stage coupled ASAHP is proposed to improve the energy-saving potential of single-stage ASAHP in cold regions. The heating capacity and primary energy efficiency (PEE) of the proposed system operated in both coupled mode and single-stage mode are simulated under various working conditions. The building load and primary energy consumption of different heating systems applied in cold regions are analyzed comparatively to investigate the energy-saving potential of the coupled ASAHP. Results show that the coupled ASAHP exhibits stable PEE and provides high heating capacity in very cold conditions. The energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. In addition, the energy-saving potential of the single-stage ASAHP in severely cold areas can be improved obviously by coupled ASAHP, with an improvement of 7.73% in Harbin

  10. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and absorption heat pump

    Cachorro, Irene Albacete; Daraban, Iulia Maria; Lainé, Guillaume; Singh, Navdeep; Liso, Vincenzo

    2013-01-01

    In this paper a system consisting of an SOFC system for cogeneration of heat and power and vapour absorption heat pump for cooling and freezing is assessed and performance is evaluated. Food industry where demand includes four forms of energy simultaneously is a relevant application such a system.The heat pump is a heat driven system and is running with the heat recovered by a heat exchanger from the exhausted gases from SOFC. The working fluid pair is NH3-H2O and is driven in two evaporators...

  11. Validation of a PC based program for single stage absorption heat pump. Final report

    Zaltash, A.; Ally, M.R.

    1991-09-01

    An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO{sub 3}/water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3%. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design. 4 refs.

  12. Validation of a PC based program for single stage absorption heat pump

    Zaltash, A.; Ally, M.R.

    1991-09-01

    An interactive computer code was developed to evaluate single stage absorption heat pump performance for temperature amplifier and heat amplifier modes using water as the refrigerant. This program performs the cycle calculations for single stage cycles based on the polynomial expressions developed to correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy-concentration data for LiBr/water and (Li, K, Na)NO{sub 3}/water systems as well as the properties of pure water. The operating parameters obtained by this program were tested against mass and energy balances in documented cases and the results show that the maximum deviation between coefficient of performance (COP) values obtained by this software and the ones previously calculated is less than 3%. In addition, this program was used to study the effect of solution temperature leaving the absorber on the other operating parameters. This type of analysis could be used to improve and optimize cycle design. 4 refs.

  13. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  14. Performance analysis of ejector absorption heat pump using ozone safe fluid couple through artificial neural networks

    Thermodynamic analysis of absorption thermal systems is too complex because the analytic functions calculating the thermodynamic properties of fluid couples involve the solution of complex differential equations and simulation programs. This study aims at easing this complex situation and consists of three cases: (i) A special ejector, located at the absorber inlet, instead of the common location at the condenser inlet, to increase overall performance was used in the ejector absorption heat pump (EAHP). The ejector has two functions: Firstly, it aids the pressure recovery from the evaporator and then upgrades the mixing process and pre-absorption by the weak solution of the methanol coming from the evaporator. (ii) Use of artificial neural networks (ANNs) has been proposed to determine the properties of the liquid and two phase boiling and condensing of an alternative working fluid couple (methanol/LiCl), which does not cause ozone depletion. (iii) A comparative performance study of the EAHP was performed between the analytic functions and the values predicted by the ANN for the properties of the couple. The back propagation learning algorithm with three different variants and logistic sigmoid transfer function were used in the network. In order to train the neural network, limited experimental measurements were used as training and test data. In the input layer, there are temperature, pressure and concentration of the couples. Specific volume is in the output layer. After training, it was found that the maximum error was less than 3%, the average error was less than 1.2% and the R2 values were about 0.9999. Additionally, in comparison of the analysis results between analytic equations obtained by using experimental data and by means of the ANN, the deviations of the refrigeration effectiveness of the system for cooling (COPr), exergetic coefficient of performance of the system for cooling (ECOPr) and circulation ratio (F) for all working temperatures were found to

  15. Simulation and experimental study of solar-absorption heat transformer integrating with two-stage high temperature vapor compression heat pump

    Nattaporn Chaiyat; Tanongkiat Kiatsiriroat

    2014-01-01

    In this study, simulation and experiment studies of a 10 kW solar H2O–LiBr absorption heat transformer (AHT) integrating with a two-stage vapor compression heat pump (VCHP) were carried out. The whole system was named as compression/absorption heat transformer (CAHT). The VCHP was used to recover rejected heat at the AHT condenser which was transferred back to the AHT evaporator at a higher temperature. The AHT unit took solar heat from a set of flat-plate solar collectors in parallel connect...

  16. Demonstration project of a natural gas heated absorption heat pump for heating of buildings and service water; Demonstrationsprojekt einer mit Erdgas beheizten Absorptionswaermepumpe fuer Gebaeudeheizung und Brauchwasserbereitung

    Moser, Harald; Rieberer, Rene [Technische Univ. Graz (Austria). Inst. fuer Waermetechnik

    2011-07-01

    For IEA HPP Annex 34 ''Thermally Driven Heat Pumps for Heating and Cooling'', the Institut fuer Waermetechnik of TU Graz university carried out a demonstration project in which the seasonal performance factor of two ammonia/water absorption heat pumps for space and water heating was to be investigated. Each of the heat pumps had a rated capacity of 48 kW; they are used for heating a storage hall and offices and also service water for a brewery at Graz. The ground is used as heat source, and heat is distributed via a low-temperature floor heating system. The heat pumps have an integrated heat exchanger for flue gas condensation, in which part of the water vapour contained in the flue gas is condensed, and the condensation heat is recirculated into the heating unit. Measurements took place through 2010; all relevant temperatures and heating rates were measured as well as the natural gas volume flow and the electric power consumption. The system worked reliably and with high efficiency. A seasonal performance factor of 1.54 was achieved in 2010 as referred to the lower calorific value of the natural gas. The measurements also showed potential for improvement, especially in service water heating in the summer season. [German] Im Rahmen des IEA HPP Annex 34 ''Thermally Driven Heat Pumps for Heating and Cooling'' wurde am Institut fuer Waermetechnik der TU Graz ein Demonstrationsprojekt durchgefuehrt, mit dem Ziel die Jahresarbeitszahl von zwei Ammoniak/Wasser-Absorptionswaermepumpen (AWP) zur Gebaeudeheizung und Brauchwasserbereitung zu erheben. Die installierten AWP besitzen eine Nennleistung von je ca. 40 kW und stellen die benoetigte Heizwaerme fuer eine Lagerhalle und Bueroraeumlichkeiten sowie fuer das Brauchwasser eines Lagerzentrums einer Brauerei in Graz bereit. Als Waermequelle werden Erdreichsonden verwendet und zur Waermeverteilung ist ein Niedertemperatur-Fussbodenheizungssystem vorgesehen. Eine Besonderheit der

  17. Heat pump technology

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  18. An experimental integrated absorption heat pump effluent purification system. Pt. 1: Operating on water/lithium bromide solutions

    Santoyo-Gutierrez, S.; Santoyo, E. [Unidad Geotermia (Mexico); Siqueiros, J. [Unidad Energias No-Convencionales (Mexico); Heard, C.L. [Unidad Uso de la Energia Electrica, Inst. de Investigaciones Electricas, Temixco (Mexico); Holland, F.A. [Salford Univ., Overseas Educational Development Office, Salford (United Kingdom)

    1999-05-01

    The merits of single stage absorption heat pumps coupled to simple distillation for effluent treatment are discussed. An experimental integrated absorption heat pump effluent purification system (IAHPEPS) was built and operated with water-lithium bromide as a working mixture. This unit has been used to raise the temperature and hence, the vapour pressure of the impure water contained in one vessel, to the point where pure water vapour will distil from impure effluent solution (tap water or brine) and condense in a second vessel used to collect pure water. Pure effluent production rates of between 0.5 and 4.3 kg h{sup -1} were obtained. The actual coefficient of performance (COP{sub A}) and the heat pump effectiveness varied from 1.1 to 1.4 and 0.58 to 0.72, respectively. The results from the small scale systems indicate the likely results from industrial scale units which could be operated with low quality heat such as waste heat, solar or geothermal resources. (Author)

  19. Annual performance investigation and economic analysis of heating systems with a compression-assisted air source absorption heat pump

    Highlights: • Optimal compression ratio of CASAHP is obtained for the maximum energy saving rate. • Annual performance is improved by 10–20% compared to ASAHP without compression. • Energy saving rate is 17.7–29.2% and investment is reduced to 30–60% for CASAHP. • Both compression and partial-design enhance the economy with given energy saving. • Payback time is reduced from 12–32 to 3–6 years by compression and partial-design. - Abstract: The compression-assisted air source absorption heat pump (CASAHP) is a promising alternative heating system in severe operating conditions. In this research, parameter studies on the annual performance under various compression ratios (CRs) and source temperatures are performed to achieve the maximum energy saving rates (ESRs). Economic analyses of the CASAHP under different CRs and partial-design ratios are conducted to obtain an optimal design that considers both energy savings and economy improvements. The results show that the optimal CR becomes higher in colder regions and with lower heat source temperatures. For a source temperature of 130 °C, the optimal CR values in all of the cities are within 2.0. For source temperatures from 100 to 130 °C, the maximum ESR is in the range of 17.7–29.2% in the studied cities. The efficiency improvement rate (EIR) caused by compression in a severe source condition can reach 10.0–20.0%. From the viewpoint of economy, the relative investment of CASAHP is reduced to 30–60% with a CR of 2.0–3.0. With a 2–6% sacrifice in ESR, the payback period can be reduced from 12–32 to 5–9 years using compression. Partial-design of the CASAHP can further reduce the payback period to 3–6 years with a partial-design ratio of 50% and a CR of 2.8. Additionally, CRs and partial-design ratios are designed comprehensively by seeking the maximum ESR for a given acceptable payback period

  20. Absorption heat pump integrated in an effluent purification system; Bomba de calor por absorcion integrada a un sistema de purificacion de efluentes

    Santoyo, Socrates; Siqueiros, Javier; Heard, Christopher; Santoyo, Edgar [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    The results derived of the integration of an absorption heat pump to an industrial effluents purification system, are presented. The advantages of these heat pumps with respect to heat pumps by mechanical compression of vapor, as well as the advantages in using absorption heat pumps in simple distillation systems, are mentioned. Finally, a description is made of the equipment designed and built, as well as the results obtained in a preliminary test. [Espanol] Se presentan los resultados derivados de la integracion de una bomba de calor por absorcion a un sistema de purificacion de efluentes industriales. Se mencionan las ventajas de este tipo de bombas de calor con respecto a las de calor por compresion mecanica de vapor, asi como las ventajas de usar bombas de calor en sistemas de destilacion simple. Finalmente, se describe el equipo disenado y construido, asi como los resultados obtenidos de una prueba preliminar.

  1. Thermoeconomic analysis of a low-temperature multi-effect thermal desalination system coupled with an absorption heat pump

    This study presents a thermal and economic performance analysis of a LT-MEE (low-temperature multi-effect evaporation) water desalination system coupled with an LiBr-H2O ABHP (absorption heat pump). A 60-78% water production increase over a stand-alone LT-MEE run at the same heat source conditions can be obtained owing to the coupling. A detailed thermodynamic sensitivity analysis of the ABHP-MEE is performed. Although ABHP is usually considered to be more efficient than an EHP (ejector heat pump), we also compare the thermal performance of the ABHP-MEE with an integrated EHP-MEE system. The results show that the ABHP has a more favorable thermal performance than the EHP only in certain parameters ranges. The reasons and these parameters ranges are discussed. The economic analysis of the ABHP-MEE shows that the capital cost of the ABHP accounts for a very small part of the water cost, and when designing an ABHP for an existing MEE unit, the parameters selection of an ABHP for lower water cost is consistent with that for better thermal performance. The unit steam cost is an important factor in determining whether the ABHP-MEE or the EHP-MEE is economically favorable, with the influence discussed. Also, a recommended general procedure for economic comparison between ABHP-MEE and EHP-MEE is outlined.

  2. Regional Climate Zone Modeling of a Commercial Absorption Heat Pump Hot Water Heater Part 1: Southern and South Central Climate Zones

    Geoghegan, Patrick J [ORNL; Shen, Bo [ORNL; Keinath, Christopher M. [Stone Mountain Technologies, Inc., Johnson City; Garrabrant, Michael A. [Stone Mountain Technologies, Inc., Johnson City

    2016-01-01

    Commercial hot water heating accounts for approximately 0.78 Quads of primary energy use with 0.44 Quads of this amount from natural gas fired heaters. An ammonia-water based commercial absorption system, if fully deployed, could achieve a high level of savings, much higher than would be possible by conversion to the high efficiency nonheat-pump gas fired alternatives. In comparison with air source electric heat pumps, the absorption system is able to maintain higher coefficients of performance in colder climates. The ammonia-water system also has the advantage of zero Ozone Depletion Potential and low Global Warming Potential. A thermodynamic model of a single effect ammonia-water absorption system for commercial space and water heating was developed, and its performance was investigated for a range of ambient and return water temperatures. This allowed for the development of a performance map which was then used in a building energy modeling software. Modeling of two commercial water heating systems was performed; one using an absorption heat pump and another using a condensing gas storage system. The energy and financial savings were investigated for a range of locations and climate zones in the southern and south central United States. A follow up paper will analyze northern and north/central regions. Results showed that the system using an absorption heat pump offers significant savings.

  3. Ground Source Heat Pumps

    Lale Valizade

    2013-01-01

    A heat pump is a device that is able to transfer heat from one fluid at a lower temperature to another at a higher temperature. Ground source heat pumps are generally classified by the type of ground loop. The coefficient of performance (COP) is used to define the heating performance of heat pumps. Both the COP and EER values are valid only at the specific test conditions used in the rating. A ground source pump could reach 450%, compared with an efficient gas boiler of 90% obviously this is ...

  4. The design and optimisation of a bubble pump for an aqua-ammonia diffusion absorption heat pump / Stefan van der Walt.

    Van Der Walt, Stefan

    2012-01-01

    Energy shortages around the world necessitated research into alternative energy sources especially for domestic applications to reduce the load on conventional energy sources. This resulted in research done on the possibility of integrating solar energy with an aqua-ammonia diffusion absorption cycle specifically for domestic applications. The bubble pump can be seen as the heart of the diffusion absorption cycle, since it is responsible, in the absence of a mechanical pump, to circulate ...

  5. Development of the Hybrid Operation Method of a Multi-Geothermal Heat Pump System and Absorption Chiller-Heater

    Young-Ju Jung

    2015-08-01

    Full Text Available Considerable efforts have been made to reduce the energy consumption of buildings due to the energy crisis, and, the Korean government has supported the use of renewable energy through various grants. Among the possible renewable energy sources, geothermal energy can be used regardless of the outside weather. Therefore, energy consumption can be reduced considerably in summer and winter. Despite the increasing use of renewable energy, the use of renewables has not been operating appropriately. Therefore, this study examined some of the problems of the operation of renewable energy and some possible improvements. The aim of the study is to evaluate a building containing an actual installed multi-geothermal heat pump (Multi-GHP system, in terms of the energy efficiency. In addition, this study evaluated the present control system and the method of complex operation regarding existing heat sources systems and GHP systems through a simulation. The results can be regarded as the result of a hybrid operation method for the improvement of an existing operation. Therefore, the Multi-GHP system energy use of a hybrid operation condition of the Multi-GHP systems and the absorption (ABS chiller-heater system was reduced compared to the operation condition of the Multi-GHP system, and the total energy consumption of the heat source equipment was reduced. The proposed operation plan was evaluated after applying the system to a building. These results showed that the efficient operation of a Multi-GHP hybrid operation method is possible. As a result, the GHP energy use of Multi-GHP systems and the ABS chiller-heater system was reduced by 30% compared to existing operation and the total energy consumption of heat source equipment was reduced by 78%.

  6. Lunar Base Heat Pump

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  7. Advanced heat pump

    Ashley, Joseph L.; Matthews, John D.

    1989-09-01

    This patent application discloses a heat pump which includes a first packed bed of liquid desiccant for removing moisture from outside air in the heating mode of operation, and a pump for transferring the moisture laden desiccant to a second packed bed which humidifies condenser heated inside air by adding water vapor to the air. The first packed bed, by removing moisture from the outside air before it passes through the heat pump's evaporator coils, prevents frost from forming on the coils. In the cooling mode of operation the second packed bed of liquid desiccant removes water vapor from the air inside of the building. The moisture laden desiccant is then transferred to the first packed bed by a second pump where condenser heat transfers the moisture from the desiccant to outside air.

  8. Heat pump planning handbook

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  9. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures

  10. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  11. Stirling Engine Heat Pump

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  12. Legal issues concerning heat pumps

    Gersemann, D.

    Heat pumps are considered suitable to contribute to an improvement of the total energy balance. As a rule, they are divided into the following categories of utilizable auxiliary energies: ground water, surface waters, soil, absorbers, air. They are also distinguished according to driving systems: electric, gas, or Diesel heat pumps. Considering forecasts concerning the utilization potential of heat pumps it seems easy to see that the legal assessment of heat pumps shall obtain considerable practical importance for the authorities as well as for private managers. The article gives a survey of the most important legal issues concerning heat pumps.

  13. Open absorption heat pump and application in flue gas waste heat recovering%开式吸收式热泵及在烟气余热回收中的应用

    贾红书; 付林; 张世钢

    2013-01-01

    开式吸收式热泵具有结构简单、低品位热能驱动、省电等优点,推广利用该技术,对解决目前面临的城市热源不足及提高工业能源利用效率具有重要意义,但运行中存在设备腐蚀、不凝性气体等问题。本文总结了国内外开式吸收式热泵的研究进展,其应用领域涉及供暖、空调、制冷及工业生产,处理气流包括空气、燃烧后烟气,驱动热源包括太阳能、生物质锅炉、天然气锅炉及电厂锅炉等集中热源和分布式能源,结构形式多样化;简述了开式吸收式热泵在工业余热,特别是天然气锅炉烟气余热和湿法脱硫电厂饱和烟气潜热和水回收领域中的应用;分析了运行中出现的溶液腐蚀、不凝气气体及设备堵塞问题,并提出了解决方案。%Simple structure and low grade heat energy requirement are great advantages of open absorption heat pump. Proper use of this technology is important to solve the city heat shortage and improve energy efficiencies in industries. However,equipment corrosion,non-condensable gas and other issues often prevent the application of open absorption pump. This paper summarized the domestic and international research progressed of the open absorption heat pump. It can be used in heating,air conditioning,refrigeration and other industrial processes. Processing media including air, flue gas after combustion,driving heat source can be concentrated heat source and distributed energy, such as solar energy,biomass boiler,gas boiler and power plant boiler. Structures can be different based on heat sources and purposes of applications. Applications of open absorption heat pump in the industrial waste heat recovery,especially flue gas waste heat recovery were also briefly overviewed. The causes and possible solutions to corrosion and non-condensable gas plugging were analyzed as well.

  14. Smart Grid enabled heat pumps

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    an empirical study in order to achieve a number of recommendations with respect to technology concepts and control strategies that would allow residential vapor-compression heat pumps to support large-scale integration of intermittent renewables. The analysis is based on data gathered over a period...... of up to 3 years for 283 residential heat pumps installed and operating in Denmark. The results are used to assess the flexibility of domestic heat pumps and their ability to follow production....

  15. High Temperature Thermoacoustic Heat Pump

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  16. High temperature thermoacoustic heat pump

    Tijani, H.; Spoelstra, S. [Energy research Centre of the Netherlands, 1755 ZG Petten (Netherlands)

    2012-06-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. A thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestics and offices energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6% and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  17. Heat pumps for the home

    Cantor, John

    2013-01-01

    In recent years, heat pumps have emerged as a promising new form of technology with a relatively low environmental impact. Moreover, they have presented householders with an opportunity to reduce their heating bills. Heat pumps can heat a building by 'pumping' heat from either the ground or the air outside: an intriguing process which utilizes principles that are somewhat analogous to those employed in the domestic refrigerator. Armed with the practical information contained in these pages, homeowners will have the necessary knowledge to take advantage of this potentially low-carbon t

  18. Heat pumps in district heating networks

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    In the current Danish energy system, the majority of electricity and heat is produced in combined heat and power plants. With increasing shares of intermittent renewable power production, it becomes a challenging task to match power and heat production, as heat demand and production capacity...... constraints limit the power plants. Efficient heat pumps can be used to decouple the constraints of electricity and heat production, while maintaining the high energy efficiency needed to match the politically agreed carbon emission goals. The requirements in terms of COP, location, capacity and economy...... and strategic planning in the energy sector. The paper presents a case study of optimal implementation of heat pumps in the present energy system of the Copenhagen area. By introduction of the correct capacity of heat pumps, a 1,6 % reduction in fuel consumption for electricity and heat production can...

  19. Heat pumps at the maltings

    1987-11-01

    Heat pumps have halved the energy costs of producing finished malt at two of the country's maltsters. The fuel-fired kilning processes described are now performed by heat pumps with considerable energy and production benefits at the maltings of J.P. Simpson and Co. (Alnwick) Ltd, in Tivetshall St Margaret, Norfolk, and of Munton and Fison Plc of Stowmarket, Suffolk. The heat pump system installed at the Station Malting of J.P. Simpson was devised by the Electricity Council Research Centre at Capenhurst near Chester. Energy cost benefits of Pound 6,000 a month are being realised at Simpsons, but there is the added benefit that the system has been designed to provide conditioned air to the germination cycle to ensure that the correct temperature is maintained throughout the year. At the Cedars factory of Munton and Fison, heat pumps were used on a trial basis for plant micropropagation and for a fish farming unit.

  20. Electrohydrodynamic inductively pumped heat pipe

    Mitchell, A.S.

    1981-01-19

    The self-priming voltage controllable electrohydrodynamic inductively pumped heat pipe of the present invention greatly improves the maximum thermal throughout of heat pipes in low and medium temperature applications calling for the use of dielectric working fluids. An applied traveling potential wave induces a traveling wave of electrical charge in selected phase relation in the liquid phase of the dielectric working fluid providing an electrical traction which pumps the working fluid from the condensor to the evaporator.

  1. Applicability Analysis on Absorption Ground Source Heat Pump System Assisted by Air Source Heat Pump%空气源热泵辅助吸收式地源热泵系统的适用性分析

    韩宗伟; 王一茹; 阿不来提·依米提; 张艳红; 杨军; 孟欣

    2014-01-01

    针对严寒地区集中供热系统能源利用效率低的问题,结合该地区应用地源热泵系统存在土壤吸/排热不平衡的问题,本文提出将一次网的高温蒸汽(热水)作为吸收式热泵发生器热源的地源热泵系统,利用空气源热泵保障地下换热系统热平衡。介绍了复合系统的运行模式,确定了系统的运行控制策略,选取哈尔滨地区某办公建筑对系统的全年运行性能进行分析。通过计算,系统平均综合性能系数为2.1,相比传统的供暖空调方式节能33.1%。该系统全年运行土壤取/排热不平衡率为3.8%,可以保证土壤温度场以年为周期的热平衡;系统可以长期稳定运行。%In the present study, regarding the low energy efficiency of traditional central heating system in cold regions, and combining with the endothermic/reject heat unbalance of soil for application of ground source heat pump, the ground source heat pump system was proposed by using high temperature steam/water from primary network as the generator heat source and using air source heat pump to ensure the thermal balance of underground heat exchange system. The operation modes of the coupled system were introduced; the control strategy of the system operation was determined and the annual operation performance was analyzed on an office building in Harbin. The results showed that, the system average coefficient of overall performance was calculated to be 2.1, and the energy saving of the proposed system was 33.1%comparing with the traditional central heating way. The soil endothermic/reject heat unbalance rate of the system was 3.8%, which can ensure thermal balance of the soil temperature filed over one year cycle. The long-run effects of the system tended to be stable.

  2. Problem of heat pumps in central Russia

    This article describes the problems of heat pumps due to climatic conditions and the characteristics of energy sources. As energy sources for heat pumps, solar power, air, groundwater, soil, and rejected heat are considered. It is shown that in central Russia it is only rational to use waste heat as an energy source for heat pump systems. (author)

  3. 双效溴化锂吸收式热泵机组变工况性能模拟%SIMULATION OF OFF-DESIGN PERFORMANCE OF DOUBLE EFFECT LiBr-H2O ABSORPTION HEAT PUMP

    杨筱静; 由世俊; 张欢

    2013-01-01

    According to the thermodynamic and heat-transfer theories, the nonlinear-coupled models of double effect LiBr-H2O absorption heat pump were built to analyze its cooling off-design performance and its heating nominal and off-design performances. These models were solved using interior-reflective Newton method. The simulation results show that the cooling COPC of double effect absorption heat pump with heat-source water flow and solution flow control method is better than that with heat-source water flow control method, but the heat-source water flow is also higher. Moreover, the heating nominal COPh of double effect absorption heat pump is 2.498, better than that of existing absorption water heater chiller. In addition, the off-design performance of absorption heat pump is the best and COPh is 2. 700 when heating load ratio is 40%.%通过对高温热水驱动的双效溴化锂吸收式热泵机组内传热部件进行热力及传热分析,建立非线性耦合模型,并采用内部映射牛顿法进行求解,分析采用高温热源水流量调节法和高温热源水流量与溶液循环量组合式调节法时吸收式热泵机组制冷变工况性能和制热名义工况、制热变工况时热泵机组性能.研究结果表明:泵机组制冷采用高温热源水流量与溶液循环量组合式调节法时COPc较好,但高温热源水流量略高;制热名义工况时机组COP为2.498,制热效果优于现有双效冷温水机组;机组制热变工况性能在负荷率为40%时最优,COPh高达2.700.

  4. About Variable Speed Heating and Cooling Pumps

    Cătălin Popovici; Jan Ignat

    2009-01-01

    The present work has the purpose of underlying the advantages of variable speed heating and cooling pumps use for the perspective of general and particular pumping costs and efficiency. The study approaches comparisons between constant flow pumps and variable flow pumps in different given situations and comparatively analyses the pumping costs.

  5. Plasma heat pump and heat engine

    A model system where cold charged particles are locally confined in a volume VP within a warm plasma of volume V (VPE. The law of thermodynamics involving PE and an equation of state for PE are obtained. It is shown that the expansion/compression of electrostatic fields associated with charged particles is a new mechanism that converts mechanical work into plasma heat and vice versa. Two applications of this theory are, first we propose a pumping device which heats plasmas by an adiabatic/isothermal compression of fields. Heating power ranging from a few hundred watts to a few kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of PE are shown to be observable in colloidal solutions.

  6. Heat Pumps in CHP Systems

    Ommen, Torben Schmidt

    capacity constraints limit the efficient operation of the CHP plants. Heat pumps (HPs) can be used to decouple such constraints, but current state of the art are not competitive all things considered. Methods to improve the high energy efficiency are required to match the politically agreed carbon emission......In the current Danish energy system, the majority of electricity and heat is produced in combined heat and power (CHP) plants. With increasing shares of intermittent renewable power production, it becomes a challenging task to match power and heat production to its demand curves, as production...... goals. The presented study investigates the possible introduction of HPs from both a thermodynamic and a system/operation management perspective, in order to find optimal integration schemes in both current and future energy scenarios. Five generic configurations of HPs in district heating (DH) systems...

  7. A simplified heat pump model for use in solar plus heat pump system simulation studies

    Perers, Bengt; Andersen, Elsa; Nordman, Roger; Kovacs, Peter

    2012-01-01

    Solar plus heat pump systems are often very complex in design, with sometimes special heat pump arrangements and control. Therefore detailed heat pump models can give very slow system simulations and still not so accurate results compared to real heat pump performance in a system. The idea here is...

  8. Supply temperature control concepts in heat pump heating systems

    Huchtemann, Kristian

    2015-01-01

    In recent years, electrically driven compression heat pumps have come to be widely used for the heating of buildings. Their efficiency strongly depends on the temperature lift which is influenced by the supply temperature of the heat sink. When used with radiator heating systems it is challenging to operate heat pumps efficiently because high supply temperatures are required. Therefore, in order to efficiently operate heat pumps, this work analyses advanced control concepts for heatpump heati...

  9. Advanced electric residential heat pump

    Veyo, S. E.

    The heat pump concept developed uses the vapor compression refrigeration cycle with R22 as the working fluid. In order to achieve the target efficiency an improved reciprocating compressor with modulatable capacity was developed along with higher efficiency air movers, a breadboard microprocessor based control system and higher effectiveness heat exchangers. The relative proportions of the compressor, blower, fan, and heat exchangers are specified through system optimization to minimize annual ownership cost while constrained to provide comfort. The efficiency of this compressor is comparable to the best available while the ratio of minimum to maximum capacity can be selected as a parameter of optimization. The incremental cost of this compressor is estimated to be one third that of the compressor with two speed drive motor.

  10. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  11. Ground Source Heat Pump in Heating System with Electronics Monitoring

    NEAMŢU Ovidiu

    2013-10-01

    Full Text Available The monitoring system is implemented for a ground coupled heat pump in heating/ system. The borehole heat exchangers – which are 150 m long - are filled with a mixture of water and ethilene glycol calledbrine. Metering and monitoring energy consumption is achieved for: heat pump, circulation pumps, additional electrical heating, hot air ventilation systems, control systems with sensors: analog and smart sensors. Instantaneous values are stored in a local computer.

  12. Performance analysis of air——water dual source heat pump water heater with heat recovery

    CHEN ZeShao; TAO WenQuan; ZHU YanWen; HU Peng

    2012-01-01

    A new air-water dual source heat pump water heater with heat recovery is proposed.The heat pump system can heat water by using a single air source,a single water source,or air-water dual sources.The water is first pre-heated by waste hot water,then heated by the heat pump.Waste heat is recovered by first preheating the cold water and as water source of the heat pump.According to the correlated formulas of the coefficient of performance of air-source heat pump and water-source heat pump,and the gain coefficient of heat recovery-preheater,the formulas for the coefficient of performance of heat pump in six operating modes are obtained by using the dimensionless correspondence analysis method.The system characteristics of heat absorption and release associated with the heat recovery-preheater are analyzed at different working conditions.The developed approaches can provide reference for the optimization of the operating modes and parameters.The results of analysis and experiments show that the coefficient of performance of the device can reach 4-5.5 in winter,twice as much as air source heat pump water heater.The utilization of waste heat in the proposed system is higher than that in the system which only uses waste water to preheating or as heat source.Thus,the effect of energy saving of the new system is obvious.On the other hand,the dimensionless correspondence analysis method is introduced to performance analysis of the heat pump,which also has theoretical significance and practical value.

  13. A comparison of heat pumps; Warmtepompen vergeleken

    Dieleman, M. [Novem, Utrecht (Netherlands); Bakker, M.M.C.; Verhoef, L.S. [Ebatech, Amsterdam (Netherlands)

    2000-06-01

    A brief overview is given of the results of a study on the most cost-effective heat pump systems for newly built houses. It appears that the cost of heat pumps for houses must be substantially reduced. Lower maintenance cost and a future 'green heat' label will bring a balanced budget in view.

  14. Absorption heat cycles. An experimental and theoretical study

    A flow sheeting programme, SHPUMP, was developed for simulating different absorption heat cycles. The programme consists of ten different modules which allow the user to construct his own absorption cycle. The ten modules configurate evaporators, absorbers, generators, rectifiers, condensers, solution heat exchangers, pumps, valves, mixers and splitters. Seven basic and well established absorption cycles are available in the configuration data base of the programme. A new Carnot model is proposed heat cycles. Together with exergy analysis, general equations for the Carnot coefficient of performance and equations for thermodynamic efficiency, exergetic efficiency and exergy index, are derived, discussed and compared for both absorption heat pumps and absorption heat transformers. Utilizing SHPUMP, simulation results are presented for different configurations where absorption heat cycles are suggested to be incorporated in three different unit operations within both pulp and paper and oleochemical industries. One of the application studies reveled that an absorption heat transformer incorporated with an evaporation plant in a major pulp and paper industry, would save 18% of the total prime energy consumption in one of the evaporation plants. It was also concluded that installing an absorption heat pump in a paper drying plant would result in steam savings equivalent to 12 MW. An experimental absorption heat transformer unit operating with self-circulation has been modified and thoroughly tested. A reference heat transformer plant has been designed and installed in a major pulp and paper mill where it is directly incorporated with one of the evaporation plants. Preliminary plant operation data are presented. 72 refs, 63 figs, 33 tabs

  15. Heat exchangers and the performance of heat pumps - Analysis of a heat pump database

    Heat pumping is a highly energy-efficient technology that could help reduce energy and environmental problems. The efficiency of a heat pump greatly depends on the individual and integral performance of the components inside. In this study, heat pump performance is investigated with a special focus on heat exchangers. Experimental data obtained from comprehensive heat pump measurements performed at the Austrian Institute of Technology (AIT) were analyzed with the help of thermodynamic models developed for this purpose. The analysis shows that the performance of heat exchangers varies widely resulting in substantial COP differences among the heat pumps. The models and methodology developed in this study are found capable of extracting useful information from measurement data quickly and accurately and could be useful for the industry. - Research highlights: → A heat pump database has been analyzed focussing on the influences of heat exchangers on COP. → It was shown that an empirical equation could excellently correlate experimental COP data with relevant parameters. → It was found that heat exchanger design alone caused 15-20% difference in COP.

  16. Electricity Market Optimization of Heat Pump Portfolio

    Biegel, Benjamin; Andersen, Palle; Pedersen, Tom S.;

    2013-01-01

    We consider a portfolio of domestic heat pumps controlled by an aggregator. The aggregator is able to adjust the consumption of the heat pumps without affecting the comfort in the houses and uses this ability to shift the main consumption to hours with low electricity prices. Further, the aggrega......We consider a portfolio of domestic heat pumps controlled by an aggregator. The aggregator is able to adjust the consumption of the heat pumps without affecting the comfort in the houses and uses this ability to shift the main consumption to hours with low electricity prices. Further...

  17. Energy efficient ammonia heat pump. Final report

    Madsen, Claus; Pijnenburg, B.; Schumann Grindorf, H. [Danish Technological Institute, Aarhus (Denmark); Christensen, Rolf [Alfa Laval, Lund (Sweden); Rasmussen, Bjarne D. [Grundfos, Bjerringbro (Denmark); Gram, S.; Fredborg Jakobsen, D. [Svedan Industri Koeleanlaeg, Greve (Denmark)

    2013-09-15

    The report describes the development of a highly effective ammonia heat pump. Heat pumps play an increasingly important role in the search for more effective use of energy in our society. Highly efficient heat pumps can contribute to reduced energy consumption and improved economy of the systems which they are a part of. An ammonia heat pump with high pressure reciprocating compressor and a novel split condenser was developed to prove potential for efficiency optimization. The split of the condenser in two parts can be utilized to obtain smaller temperature approaches and, thereby, improved heat pump efficiency at an equal heat exchanger area, when compared to the traditional solution with separate condenser and de-superheater. The split condenser design can also be exploited for heating a significant share of the total heating capacity to a temperature far above the condensing temperature. Furthermore, the prototype heat pump was equipped with a plate type evaporator combined with a U-turn separator with a minimum liquid height and a liquid pump with the purpose of creating optimum liquid circulation ratio for the highest possible heat transfer coefficients at the lowest possible pressure drop. The test results successfully confirmed the highest possible efficiency; a COP of 4.3 was obtained when heating water from 40 deg. C to 80 deg. C while operating with evaporating/condensing temperatures of +20 deg C/+73 deg C. (Author)

  18. Unitary water-to-air heat pumps

    Christian, J.E.

    1977-10-01

    Performance and cost functions for nine unitary water-to-air heat pumps ranging in nominal size from /sup 1///sub 2/ to 26 tons are presented in mathematical form for easy use in heat pump computer simulations. COPs at nominal water source temperature of 60/sup 0/F range from 2.5 to 3.4 during the heating cycle; during the cooling cycle EERs range from 8.33 to 9.09 with 85/sup 0/F entering water source temperatures. The COP and EER values do not include water source pumping power or any energy requirements associated with a central heat source and heat rejection equipment.

  19. Two simple models of classical heat pumps

    Marathe, Rahul; Jayannavar, A. M.; Dhar, Abhishek

    2006-01-01

    Motivated by recent studies on models of particle and heat quantum pumps, we study similar simple classical models and examine the possibility of heat pumping. Unlike many of the usual ratchet models of molecular engines, the models we study do not have particle transport. We consider a two-spin system and a coupled oscillator system which exchange heat with multiple heat reservoirs and which are acted upon by periodic forces. The simplicity of our models allows accurate numerical and exact s...

  20. Investigations of after-heat removal pumps

    Parameters influencing the pump performance were analysed during stationary and instationary conditions of an original DWR-heat removal pump, which was equipped with special measurement devices. The most important results will be presented by the following: 1) air addition deteriorates pump performance; 2) increasing system temperatures improve cavitation behaviour; 3) instationary tests lead to hysteresis phenomena; 4) pump performance was good within the tested parameter region. With 94 figs

  1. Nonlinear Aspects of Heat Pump Utilization

    R. Najman

    2010-01-01

    Full Text Available This work attempts to answer the question: How much can we believe that the coefficient of performance provided by the manufacturer is correct, when a heat pump is required to face the real load coming from changes of temperature? The paper summarizes some basics of heat pump theory and describes the results of numerical models.

  2. D-Zero HVAC Heat Pump Controls

    This engineering note documents the integration of Dzero Heat Pump 1 through Heat Pump 15 into the cryo/gas process control system commonly referred to as the cryo control system. Heat pumps 1 through 15 control the ambient air temperature on the 3rd, 5th, and 6th floor office areas at Dzero. The entire Johnson HVAC control system was replaced with a Siemens control system in 1999 leaving behind the 15 heat pumps with stand-alone Johnson controllers. Now, these 15 heat pump Johnson controllers are being replaced with small stand alone Beckhoff BC9000 controllers. The Beckhoff BC9000 controllers are network able into the existing Intellution control system. The Beckhoff BC9000 controllers use the cryo private Ethernet network and an OPC driver to get data into the Intellution SCADA node databases. The BC9000 is also programmed over this same Ethernet network.

  3. Unitary air-to-air heat pumps

    Christian, J.E.

    1977-07-01

    This technology evaluation covers commercially available unitary heat pumps ranging from nominal capacities of 1/sup 1///sub 2/ to 45 tons. The nominal COP of the heat pump models, selected as representative, vary from 2.4 to 2.9. Seasonal COPs for heat pump installations and single-family dwellings are reported to vary from 2.5 to 1.1, depending on climate. For cooling performance, the nominal EER's vary from 6.5 to 8.7. Representative part-load performance curves along with cost estimating and reliability data are provided to aid: (1) the systems design engineer to select suitably sized heat pumps based on life-cycle cost analyses, and (2) the computer programmer to develop a simulation code for heat pumps operating in an Integrated Community Energy System.

  4. Scavenged body heat powered infusion pump

    An infusion pump powered by body heat is investigated in this paper, with the goal of addressing the needs of dermal wound healing. The infusion pump incorporates a Knudsen gas pump, a type of thermally driven pump, to pneumatic push the pharmaceutical agent from a reservoir. Two designs are considered: an integrated pump and reservoir, and a design with cascaded pump and reservoir. Thermal models are developed for both pumps, and the simulations agree well with the experimental results. The integrated pump and reservoir design uses hydrophobic materials to prevent a flow from occurring unless the infusion pump is placed on a human body. Flow rates in the µL min−1 range for the integrated pump and reservoir, and approximately 70 µL min−1 for the cascaded pump were obtained. The dynamic behavior of the cascaded pump is described based on the thermal models. Multiple copies of the cascaded pump are easily made in series or parallel, to increase either the pressure or the flow rate. The flow rate of multiple pumps in series does not change, and the pressure of multiple pumps in parallel does not change. (paper)

  5. HEAT PUMP USING SUBSOIL WATERS AS LOW TEMPERATURE HEAT SOURCE

    Denysova Alla

    2015-08-01

    Full Text Available One of the basic directions of perfection of heat supply systems is the tendency of transition to the low-temperature heating systems based on application of heat pump installations. We consider heat supply system with heat pump installations using subsoil waters. Numerical simulation of thermal processes in the elements of a single-stage and double-stage heat pump systems has been worked out. Values of depths of wells and their quantity, necessary for effective operation of the offered installations, and values of capacity of electric water pumps for subsoil waters unit are calculated. Capacity of compressor electric drive and coefficient of performance of heat pump for the conditions of the city of Odessa are presented.

  6. HEAT ACCUMULATION IN HELIUM GROUND SYSTEMS IN HEAT PUMP SUPPLY

    A. I. Kolosov

    2012-04-01

    Full Text Available Problem statement. The paper discusses the problem of estimation of prospects of heat accumulation in the combined systems of heat supply with the use of low potential energy of renewable sources (sun and ground and heat pumps for increase of their potential.Results and conclusions. The use of heat accumulators in combined heating systems that utilize low-potential solar and ground energy as primary energy sources and heat pumps to boost the po-tential of the latter was discussed. A method of calculating ground heat exchangers that use the heat pump cycle to increase a thermal potential of renewable energy sources was set forth. An at-tempt was made at addressing the problem of heat and mass transfer in ground when ground ac-cumulators like “a Field’s tube” are used: a geothermal circulation system comprises two wells (pumping and operational.

  7. Geothermal heat-pump systems of heat supply

    The data on the multilayer operation of the objects, located in the climatic conditions of the central area of Russia and equipped with the geothermal heat-pumping systems of the heat supply are presented. The results of the analytical studies on evaluating the geothermal heat-pumping systems of the heat supply integration efficiency into the structure of the energy supply system, prevailing in the country, are presented

  8. Présentation d'une boucle prototype de pompe à chaleur à absorption haute température industrielle de 100 kW Description of a 100-Kw Prototype Loop for an Industrial High-Temperature Absorption Heat-Pump

    Thomas D.

    2006-11-01

    Full Text Available II apparait indispensable, dans le contexte énergétique actuel, de mettre au point de nouvelles techniques de revalorisation d'énergie. Les pompes à chaleur à absorption peuvent, dans certains secteurs industriels, apporter des solutions particulièrement intéressantes par rapport aux pompes à chaleur à compression notamment, en particulier dans le domaine des hautes températures de revalorisation (120-150 °C. Pour mener à bien les études entreprises sur ce thème, le Gaz de France travaille en étroite collaboration avec l'Institut du Génie Chimique de Toulouse et la Société Creusot-Loire. Dans une première partie, les auteurs rappellent les principes de fonctionnement des pompes à chaleurs à absorption et leurs caractères spécifiques. Quelques exemples d'applications industrielles sont proposés. Ils présentent, dans une deuxième partie, la boucle prototype de 100 kW qui a été réalisée et décrivent ses caractéristiques, son cycle de fonctionnement et le programme des essais. Ce pilote de taille semi-industrielle utilise le couple eau-bromure de lithium. La définition d'un prototype industriel de pompe à chaleur à absorption haute température et les compléments de recherche entrepris dans ce domaine constituent la troisième partie de la communication. In the present energy context, it seems absolutely necessary to develop new techniques for energy upgrading. In some industrial sectors, absorption heat pumps may bring particularly interesting solutions compared, in particular, to compression heat pumps, especially in the field of high-temperature upgrading (120-150°C. Reasearch is being done in this field by Gaz de France in close collaboration with the Institut du Génie Chimique in Toulouse and with Creusot-Loire. ,The first part of this article reviews the operating principles of absorption heat pumps and their specific features. Some examples of industrial applications are then proposed. The second part

  9. Multi-photon Absorption in Optical Pumping of Rubidium

    Xu, Xinyi

    2015-01-01

    In optical pumping of rubidium, a new kind of absorption occurs with a higher amplitude of radio frequency current. From measurement of the corresponding magnetic field value where this absorption occurs, there is a conclusion that it is multi-photon absorption. Both the degeneracy and energy of photons contribute to the intensity.

  10. Absorption technology for solar and waste heat utilization

    Absorption heat pumps, first developed in the 19th century, have received renewed and growing attention in the past two decades. With the increasing cost of oil and electricity, the particular features of this heat-powered cycle have made it attractive for both residential and industrial applications. Solar-powered air conditioning, gas-fired domestic cooling and waste-heat-powered temperature boosters are some of the applications on which intensive research and development has been conducted. This paper describes the operation of absorption systems and discusses several practical applications. It surveys recent advances in absorption technology, including the selection of working fluids, cycle improvements and multi-staging, and fundamentals of the combined heat and mass transfer in absorption processes. (author)

  11. Heat Pump with Two Heat Sources on Different Temperature Levels

    Bertsch, Stefan; Uhlmann, Michael; Heldstab, Andres

    2014-01-01

    Aim of the project is the development of a new heat pump system with economizing that is able to improve the heating performance using two or more different heat sources. These heat sources preferably on different temperature levels are incorporated in the system with minimal loss of exergy, by adding the heat at different pressure levels. Applications are i.e. buildings with heat pump and a solar thermal collector. While solar thermal systems can be used for heating and domestic hot water in...

  12. Heat pumps in combined heat and power systems

    Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian

    2014-01-01

    of the considered cases. When considering a case where the heat pump is located at a CHP (combined heat and power) plant, a configuration that increases the DH return temperature proposes the lowest operation cost, as low as 12 EUR MWh-1 for a 90 °C e 40 °C DH network. Considering the volumetric heating capacity......Heat pumps have previously been proposed as a way to integrate higher amounts of renewable energy in DH (district heating) networks by integrating, e.g., wind power. The paper identifies and compares five generic configurations of heat pumps in DH systems. The operational performance......, a third configuration is superior in all cases. Finally, the three most promising heat pump configurations are integrated in a modified PQ-diagram of the CHP plant. Each show individual advantages, and for two, also disadvantages in order to achieve flexible operation....

  13. Developing a Magnetocaloric Domestic Heat Pump

    Bahl, Christian R.H.

    2014-01-01

    beverage coolers, A/Cs for cars and electronics cooling. Devices for heating have not been extensively demonstrated. Here we consider a promising application of magnetocaloric heat pumps for domestic heating. The task of designing and building such a device is a multidisciplinary one encompassing materials...

  14. Hot Topics! Heat Pumps and Geothermal Energy

    Roman, Harry T.

    2009-01-01

    The recent rapid rises in the cost of energy has significantly increased interest in alternative energy sources. The author discusses the underlying principles of heat pumps and geothermal energy. Related activities for technology education students are included.

  15. ENERGY STAR Certified Geothermal Heat Pumps

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 3.0 ENERGY STAR Program Requirements for Geothermal Heat Pumps that are effective as of...

  16. High-efficiency absorption-type heat pumps and refrigerators. From topology to the pilot plant; Hocheffiziente Absorptionsmaschinen zur Versorgung mit Kaelte und Waerme. Von der Topologie zur Pilotanlage

    Ziegler, F.; Demmel, S.; Lamp, P. [Bayerisches Zentrum fuer Angewandte Energieforschung e.V. (ZAE Bayern), Wuerzburg (Germany); Kahn, R. [Technische Univ. Muenchen (Germany). Physik Dept. E19; Alefeld, G.

    1998-12-31

    Absorption-type heat pumps or refrigerators are systems operated with heat. They have been known for a long time and are frequently used especially in airconditioning in the USA and south-east Asia. However, the conventional technique used is subject to many physical limitations, restricting their broader use. The paper demonstrates ways of overcoming these restrictions, for instance by multi-stage design. The exploitation of topological principles much facilitates the synthesis of novel circuits. The technical relevance of such developments is demonstrated by means of selected examples of executed laboratory and pilot plants. Modern absorption technology saves resources and prevents environmental pollution by consuming less fossil energy compared with the conventional technique, for instance by harnessing the thermal potential of solar energy or utilizing waste heat and residual heat, and, not least, thanks to the use of natural refrigerants. (orig.) [Deutsch] Absorptionswaermepumpen oder -kaeltemaschinen sind durch Waerme angetriebene Anlagen, die seit langem bekannt sind und besonders in der Klimatechnik in den USA und im suedostasiatischen Raum haeufig eingesetzt werden. Die dabei verwendete konventionelle Technik unterliegt allerdings vielfaeltigen physikalischen Einschraenkungen, die ihre noch breitere Anwendung verhindern. Es wird gezeigt, wie diese Einschraenkungen beispielsweise durch Mehrstufigkeit ueberwunden werden koennen. Durch die Verwendung topologischer Grundsaetze wird die Synthese neuartiger Kreislaeufe stark vereinfacht. Die technische Bedeutung solcher Entwicklungen wird an ausgewaehlten Beispielen ausgefuehrter Labor- und Pilotanlagen gezeigt. Durch den im Vergleich zu konventioneller Technik geringeren Verbrauch an fossiler Energie, beispielsweise durch die thermische Nutzung von Sonnenenergie oder durch die Nutzung von Ab- oder Restwaerme und nicht zuletzt durch die Verwendung natuerlicher Kaeltemittel werden bei Einsatz moderner

  17. HEAT ACCUMULATION IN HELIUM GROUND SYSTEMS IN HEAT PUMP SUPPLY

    A. I. Kolosov; A. A. Sedaev

    2012-01-01

    Problem statement. The paper discusses the problem of estimation of prospects of heat accumulation in the combined systems of heat supply with the use of low potential energy of renewable sources (sun and ground) and heat pumps for increase of their potential.Results and conclusions. The use of heat accumulators in combined heating systems that utilize low-potential solar and ground energy as primary energy sources and heat pumps to boost the po-tential of the latter was discussed. A method o...

  18. An important feature of air heat pump cycle: Heating capacity in line with heating load

    In the conventional vapor-compression heat pumps, the heating capacity and the heating load usually vary in opposite directions, which results in a mismatch of the heating capacity and the heating load at off-design conditions. Air (reversed Brayton) cycle is a potential substitute for the conventional vapor-compression cycles. This paper proved that in theory the air heat pump cycle can make the heating capacity in line with the heating load at a stable level of heating COP (coefficient of performance). A thermodynamic model for the air heat pump cycle with practical compressor and expander was developed. The optimal heating COP and the corresponding pressure ratio were derived from the model. Then the cycle performance was analytically expressed under the optimal COP conditions. The heating capacity under different operating conditions was found in line with the heating load. Comparisons between the air heat pump cycle and two typical vapor-compression heat pump cycles were numerically done for further verification. It also turned out that the energy efficiency of air heat pump is comparable to the transcritical CO2 heat pump, particularly at large temperature difference. - Highlights: • We developed a thermodynamic model for air heat pump cycle. • The optimal COP (coefficient of performance) was derived and the corresponding cycle performance was analyzed. • Comparison of air heat pump cycle and vapor-compression cycles was numerically done. • We proved air heat pump cycle can make heating capacity in line with heating load

  19. Capillary pumped loop body heat exchanger

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  20. Solar-powered Rankine heat pump for heating and cooling

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  1. Efficiency optimization of the classical molecular heat pump

    Zheng, Dong-Qin; Zhong, Wei-Rong

    2011-07-01

    We investigate a three-terminal heat pump through classical molecular dynamics simulations. It is reported an asymmetrical structure is necessary for the molecular heat pump. There exists an optimum pumping efficiency by controlling the asymmetry and the average temperature of the heat pump. The efficiency increases with the decreasing of the temperature difference between the hot and cold heat baths.

  2. Demand flexibility from residential heat pump

    Bhattarai, Bishnu Prasad; Bak-Jensen, Birgitte; Pillai, Jayakrishnan Radhakrishna;

    2014-01-01

    high thermal time constant, heat pumps (HP) can offer a great deal of flexibility in the future intelligent grids especially to compensate fluctuating generation. However, the HP flexibility is highly dependent on thermal demand profile, namely hot water and space heating demand. This paper proposes...

  3. Modelling of Ammonia Heat Pump Desuperheaters

    Christensen, Stefan Wuust; Elmegaard, Brian; Markussen, Wiebke Brix;

    2015-01-01

    This paper presents a study of modelling desuperheating in ammonia heat pumps. Focus is on the temperature profile of the superheated refrigerant. Typically, the surface area of a heat exchanger is estimated using the Log Mean Temperature Difference (LMTD) method. The assumption of this method is...

  4. Thermoeconomic comparison of industrial heat pumps

    Ommen, Torben Schmidt; Markussen, Christen Malte; Reinholdt, L.;

    2011-01-01

    the temperature lift between sink and source. At temperature lifts below 30°C the entire temperature range is covered. Exceeding this temperature lift, the range of sink temperatures is not completely covered above 125°C. Three of the heat pumps prove very cost competitive when compared to heating...

  5. Industrial Heat Pump for a High Temperature District Heating Application

    Poulsen, Claus Nørgaard

    2013-01-01

    Domestic heat pumps for shallow geothermal heating of family houses are popular and the range and supply of standard solutions is large. However, in applications for large capacities and temperatures, like district heating in the mega Watt range, standard solutions for high temperatures are scarce...

  6. Performance evaluation of heat pump dryer

    Pal, U. S.; Khan, M. K.

    2010-01-01

    A batch type heat pump assisted dehumidified air dryer was developed successfully with a medium range of temperatures (30–41°C) for safe drying of heat sensitive crops. Dehumidification system of the developed heat pump dryer (HPD) maintained the relative humidity (RH) of air entering the drying chamber below 40%. The inlet drying air temperature decreased during early hours of drying followed by rapid rise between the 2nd and 10th h, after which the temperature was almost stable. The RH of i...

  7. Heat Pumps With Direct Expansion Solar Collectors

    Ito, Sadasuke

    In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.

  8. Environmental and energy efficiency evaluation of residential gas and heat pump heating

    Energy efficiency and source air pollutant emission factors of gas heaters, gas engine heat pumps, and electric heat pumps for domestic heating have been evaluated and compared. The analysis shows that with the present state of technology, gas engine heat pumps have the highest energy efficiency followed by electric heat pumps and then gas heaters. Electric heat pumps produce more than twice as much NOx, and comparable CO2 and CO per unit of useful heating energy compared to natural gas heaters. CO production per unit of useful heating energy from gas engine heat pumps without any emission control is substantially higher than electric heat pumps and natural gas heaters. NOx production per unit of useful heating energy from natural gas engine heat pumps (using lean burn technology) without any emission control is about the same as effective NOx production from electric heat pumps. Gas engine heat pumps produce about one-half CO2 compared to electric heat pumps

  9. Heat transmission processes in the heat pump borehole

    Due to increasing pollution and related climate changes it is necessary to significantly reduce greenhouse gas emissions using the most appropriate energy sources. One of the possible ways is to use the alternative energy sources, a system for underground accumulation of heat energy. In the paper the mathematical model, which describes thermal processes on relation ground- borehole and fluid in a collector, and the reasons for the justifiable use of heat pumps, is presented. Key words: alternative energy sources, heat pumps, U-tube, heat flow processes, thermal resistance

  10. Design manual. [High temperature heat pump for heat recovery system

    Burch, T.E.; Chancellor, P.D.; Dyer, D.F.; Maples, G.

    1980-01-01

    The design and performance of a waste heat recovery system which utilizes a high temperature heat pump and which is intended for use in those industries incorporating indirect drying processes are described. It is estimated that use of this heat recovery system in the paper, pulp, and textile industries in the US could save 3.9 x 10/sup 14/ Btu/yr. Information is included on over all and component design for the heat pump system, comparison of prime movers for powering the compressor, control equipment, and system economics. (LCL)

  11. Heat pump R and D at Oak Ridge National Laboratory

    Ellison, R. D.; Creswick, F. A.

    Heat pump system and component performance evaluations at steady state and under frosting conditions are described. A computer model of electric motor driven heat pumps was developed to explore the practical limits of steady-state heating efficiency of conventional air-source heat pumps, and to demonstrate an approach to computer-aided heat pump design techniques. Scoping calculations of alternative heat pump systems, such as aircycle heat pumps and electric motor driven Stirling heat pumps are presented. Computer programs were written to model the expected performance of vertical-pipe ground-coupled heat exchangers, and for the detailed performance analysis of air-to-refrigerant heat exchangers with complex refrigerant circuiting by calculating the performance of each tube of the heat exchanger individually. Seasonal performance factors for air-source heat pumps using hour-by-hour calculations with empirical temperature dependent degradation factors were estimated.

  12. Technical and Economic Working Domains of Industrial Heat Pumps: Part 1 - Vapour Compression Heat Pumps

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix;

    2014-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions is carried out considering the...... constraints of available refrigeration equipment and a requirement of a positive Net Present Value of the investment. The considered sink outlet temperature range is from 40 °C to 140 °C, but for the heat pumps considered in this paper, the upper limit is 100 °C. Five heat pumps are studied. For each set of...... heat sink and source temperatures the optimal solution is determined. At low sink temperature glide R717 heat pumps show best performance, while at higher sink glide transcritical R744 may become important. In a second paper, the results of the VCHP are compared to a similar study considering the...

  13. Analyzis of exhaust air-source heat pump

    Strautnikas, Jonas

    2014-01-01

    First there are heat losses calculations to find out needed amount of the energy for heating purposes. Then it is analized an exhaust air-source heat pump. Calculated annual electricity energy consumption and annual costs of the exhaust air-source heat pump. In the end it is compared two different heat pumps. Found out which (exhaust air-source or ground source) heat pump consumes less electricity energy consumption.

  14. HEAT PUMP APPLICATION IN FOOD TECHNOLOGY

    Péter Korzenszky

    2012-10-01

    Full Text Available The economy of food technologies is greatly influenced by their energy consumption. Almost no operation or procedure exists that could be executed without the need for electricity. At the same time, several technologies require direct or indirect input of thermal energy as well. An example to quote is the heating of the raw materials of food industry or the pasteurisation or sterilisation of finished products, but heating the production rooms or cleaning or washing the machinery also require energy. Needless to say food industry plants constantly seek ways to improve their energy efficiency such as the reintroduction of waste heat into the technology and the use of renewables. Heat recovering heat exchangers are used in the pasteurisation technology of milk. In case of lower temperatures, however, simple heat exchangers are of no use. Few practical examples of heat recovery obtained upon cooling products or raw materials exist in the food industry even though the possibility of this is available using heat pumps. Heat pumps have been successfully applied to heat apartments with thermal energy recovered from the cooling of soils, water or air or to utilise the excess heat of thermal spring waters. Our present article introduces the application possibility in a soda water plant, fundamentally determining the quality of soda water and showing an example of rational utilisation.

  15. Aggregated Control of Domestic Heat Pumps

    Nielsen, Kirsten M.; Andersen, Palle; Pedersen, Tom S.

    2013-01-01

    A challenge in Denmark in the near future is to balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines. In this work an aggregated control system using heat pumps in single family houses to help balancing the grid is investigated. The...... control system is able to adjust the consumptions of the heat pump without affecting the comfort in the houses and uses this ability to shift the total consumption to hours with high wind energy production....

  16. Geothermal energy. Ground source heat pumps

    Geothermal energy can be harnessed in 2 different ways: electricity or heat generation. The combined net electrical geothermal power of the European Union countries reached 719.3 MWe in 2008 (4.8 MW up on 2007) for 868.1 MWe of installed capacity. Gross electrical production contracted slightly in 2008 (down 1% on the 2007 level) and stood at 5809.5 GWh in 2008. Italy has a overwhelming position with a production of 5520.3 GWh. Geothermal heat production concerning aquifers whose temperature is 30-150 C. degrees generally at a depth of 1-3 km is called low- and medium-enthalpy energy. 18 of the 27 EU members use low- and medium-enthalpy energy totaling 2560.0 MWth of installed capacity that yielded 689.2 ktoe in 2008 and 3 countries Hungary, Italy and France totaling 480.3 ktoe. Very low-enthalpy energy concerns the exploitation of shallow geothermal resources using geothermal heat pumps. In 2008, 114452 ground heat pumps were sold in Europe. At the end of 2008, the installed capacity was 8955.4 MWth (16.5% up on 2007 level, it represented 785206 pumps. Over one million ground heat pumps are expected to be operating in 2010 in Europe. (A.C.)

  17. Residential gas-fired sorption heat pumps. Test and technology evaluation

    Naeslund, M.

    2008-12-15

    Heat pumps may be the next step in gas-fired residential space heating. Together with solar energy it is an option to combine natural gas and renewable energy. Heat pumps for residential space heating are likely to be based on the absorption or adsorption process, i.e. sorption heat pumps. Manufacturers claim that the efficiency could reach 140-160%. The annual efficiency will be lower but it is clear that gas-fired heat pumps can involve an efficiency and technology step equal to the transition from non-condensing gas boilers with atmospheric burners to condensing boilers. This report contains a review of the current sorption gas-fired heat pumps for residential space heating and also the visible development trends. A prototype heat pump has been laboratory tested. Field test results from Germany and the Netherlands are also used for a technology evaluation. The tested heat pump unit combines a small heat pump and a supplementary condensing gas boiler. Field tests show an average annual efficiency of 120% for this prototype design. The manufacturer abandoned the tested design during the project period and the current development concentrates on a heat pump design only comprising the heat pump, although larger. The heat pump development at three manufacturers in Germany indicates a commercial stage around 2010-2011. A fairly high electricity consumption compared to traditional condensing boilers was observed in the tested heat pump. Based on current prices for natural gas and electricity the cost savings were estimated to 12% and 27% for heat pumps with 120% and 150% annual efficiency respectively. There is currently no widespread performance testing procedure useful for annual efficiency calculations of gas-fired heat pumps. The situation seems to be clearer for electric compression heat pumps regarding proposed testing and calculation procedures. A German environmental label exists and gasfired sorption heat pumps are also slightly treated in the Eco-design work

  18. Determination of absorption efficiency of side pumped Nd:YAG laser and effect of pumped polarization

    Three and four array side pumped diode lasers are considered for Nd:YAG rod. The pumped beams are designed to illuminate the rod symmetrically. The effect of P and S polarization on the rod absorption efficiency as a function of light illumination (slit width) is also calculated.

  19. Performance of a solar augmented heat pump

    Bedinger, A. F. G.; Tomlinson, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance of a residential size solar augmented heat pump is reported for the 1979-1980 heating season. The facility located in Knoxville, Tennessee, has a measured heat load coefficient of 339.5 watt/C (644 BTU/hr- F). The solar augmented heat pump system consists of 7.4 cu m of one inch diameter crushed limestone. The heat pump is a nominal 8.8 KW (2 1/2 ton) high efficiency unit. The system includes electric resistance heaters to give the option of adding thermal energy to the pebble bed storage during utility off-peak periods, thus offering considerable load management capability. A 15 KW electric resistance duct heater is used to add thermal energy to the pebble bin as required during off-peak periods. Hourly thermal performance and on site weather data was taken for the period November 1, 1979, to April 13, 1980. Thermal performance data consists of heat flow summations for all modes of the system, pebble bed temperatures, and space temperature. Weather data consists of dry bulb temperature, dew point temperature, total global insolation (in the plane of the collector), and wind speed and direction. An error analysis was performed and the least accurate of the measurements was determined to be the heat flow at 5%. Solar system thermal performance factor was measured to be 8.77. The heat pump thermal performance factor was 1.64. Total system seasonal performance factor was measured to be 1.66. Using a modified version of TRNSYS, the thermal performance of this system was simulated. When simulation results were compared with data collected onsite, the predicted heat flow and power consumption generally were within experimental accuracy.

  20. Submersible pumping system with heat transfer mechanism

    Hunt, Daniel Francis Alan; Prenger, F. Coyne; Hill, Dallas D; Jankowski, Todd Andrew

    2014-04-15

    A submersible pumping system for downhole use in extracting fluids containing hydrocarbons from a well. In one embodiment, the pumping system comprises a rotary induction motor, a motor casing, one or more pump stages, and a cooling system. The rotary induction motor rotates a shaft about a longitudinal axis of rotation. The motor casing houses the rotary induction motor such that the rotary induction motor is held in fluid isolation from the fluid being extracted. The pump stages are attached to the shaft outside of the motor casing, and are configured to impart fluid being extracted from the well with an increased pressure. The cooling system is disposed at least partially within the motor casing, and transfers heat generated by operation of the rotary induction motor out of the motor casing.

  1. Exergoeconomic optimization of an ammonia-water hybrid heat pump for heat supply in a spray drying facility

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;

    2014-01-01

    Spray drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 XC. The inlet flow...... rate is 100,000 m3/h which yields a heat load of 6.1 MW. The exhaust air from the drying process is 80 XC. The implementation of an ammonia-water hybrid absorption-compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation...

  2. Dual-stroke heat pump field performance

    Veyo, S. E.

    1984-11-01

    Two nearly identical proprototype systems, each employing a unique dual-stroke compressor, were built and tested. One was installed in an occupied residence in Jeannette, Pa. It has provided the heating and cooling required from that time to the present. The system has functioned without failure of any prototypical advanced components, although early field experience did suffer from deficiencies in the software for the breadboard micro processor control system. Analysis of field performance data indicates a heating performance factor (HSPF) of 8.13 Stu/Wa, and a cooling energy efficiency (SEER) of 8.35 Scu/Wh. Data indicate that the beat pump is oversized for the test house since the observed lower balance point is 3 F whereas 17 F La optimum. Oversizing coupled with the use of resistance heat ot maintain delivered air temperature warmer than 90 F results in the consumption of more resistance heat than expected, more unit cycling, and therefore lower than expected energy efficiency. Our analysis indicates that with optimal mixing the dual stroke heat pump will yield as HSFF 30% better than a single capacity heat pump representative of high efficiency units in the market place today for the observed weather profile.

  3. Maintenance and service of heat pump plants

    Diehl, J.; Dirmeier, K.

    1983-02-01

    The utilization of heat pumps for layer plants (from ca. 150 kW upward) which is definitely efficient already today often fails because of insufficient maintenance services offered by the installing firms. The detailed practical information regarding maintenance is not to replace but to complete the service training usually offered by the manufacturers.

  4. Multi-Function Gas Fired Heat Pump

    Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vineyard, Edward Allan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-11-30

    The aim of this project was to design a residential fuel fired heat pump and further improve efficiency in collaboration with an industry partner – Southwest Gas, the developer of the Nextaire commercial rooftop fuel-fired heat pump. Work started in late 2010. After extensive search for suitable engines, one manufactured by Marathon was selected. Several prototypes were designed and built over the following four years. Design changes were focused on lowering the cost of components and the cost of manufacturing. The design evolved to a final one that yielded the lowest cost. The final design also incorporates noise and vibration reduction measures that were verified to be effective through a customer survey. ETL certification is currently (as of November 2015) underway. Southwest Gas is currently in talks with GTI to reach an agreement through which GTI will assess the commercial viability and potential of the heat pump. Southwest Gas is searching for investors to manufacture the heat pump and introduce it to the market.

  5. Heat pump evaluation for Space Station ATCS evolution

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  6. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    Munk, Jeffrey D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Odukomaiya, Adewale [Georgia Inst. of Technology, Atlanta, GA (United States); Gehl, Anthony C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  7. Heating salt to store heat and produce cold; Thermochemical heat pump as cooling system with storage. Warmte opslaan en koude maken door zout te verwarmen; Thermochemische warmtepomp als koelmachine met opslag

    Thomassen, J.; Klein Horsman, J.W. (De Beijer RTB, Arnhem (Netherlands))

    Attention is paid to a prototype of the title heat pump, which is in use for the cooling of an office room in the storehouse of an energy utility (PGEM) in Almere, Netherlands. The heat pump, also known as a solid-state absorption heat pump or as SWEAT (Salt Water Energy Accumulation and Transformation), operates on the heat, supplied by a district heating system. The modular design, the principles of the thermochemical heat pump, and the results of the prototype experiment in Almere are briefly discussed. Also some applications of this heat pump are mentioned. 5 figs., 2 ills.

  8. Natural refrigerants. Future heat pumps for district heating; Naturliga koeldmedier. Framtida vaermepumpar foer fjaerrvaerme

    Ingvarsson, Paul; Steen Ronnermark, Ingela [Fortum Teknik och Miljoe AB, Stockholm (Sweden); Eriksson, Marcus [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science

    2004-01-01

    improvement in components, system and external preconditions. In the future it might be more interesting to use turbine driven heat pumps instead of electric motors. The absorption process is not considered to be an alternative to replace present heat pumps, but there is a certain niche where heat source and driving energy, considering temperature levels, are more suitable for district heating. A technique that seems to be an alternative to the compression cycle is a combination of compression and absorption. Using the media pair water and ammonia might be an interesting solution and should be compared to the alternative using carbon dioxide. A further study is recommended on this subject.

  9. Performance of a solar augmented heat pump

    Bedinger, A. F. G.; Tomlinsin, J. J.; Reid, R. L.; Chaffin, D. J.

    Performance results from a test house equipped with a parallel solar augmented heat pump system with off-peak storage and a utility interconnection back-up, are presented. The collector array consisted of 12 air heating flat plates with a 9 l/sec flow. Thermal storage was consigned to a 260 cu ft crushed limestone pebble bed, with an 8.8 kW heat pump used to draw heat from storage during off-peak hours and a 15 kW electrical resistance heater used to charge the pebble bed. Monitoring and data recording were carried out on all energy inputs and outputs of the systems, and a modified TRNSYS program was employed to model the system performance. The data indicate that although the system offered the possibility of reducing the utility capacity, the addition of the solar system did not significantly augment the performance of the heat-pump system, at least in terms of the cost of supplementary electricity.

  10. Proceedings: Meeting customer needs with heat pumps, 1991

    Electric heat pumps provide a growing number of residential and commercial customers with space heating and cooling as well as humidity control and water heating. Industrial customers use heat pump technology for energy-efficient, economical process heating and cooling. Heat pumps help utilities meet environmental protection needs and satisfy their load-shape objectives. The 1991 conference was held in Dallas on October 15--18, featuring 60 speakers representing electric utilities, consulting organizations, sponsoring organizations, and heat pump manufacturers. The speakers presented the latest information about heat pump markets, technologies, applications, trade ally programs, and relevant issues. Participants engaged in detailed discussions in ''breakout'' and parallel sessions and viewed more than 30 exhibits of heat pumps, software, and other products and services supporting heat pump installations and service. Electric utilities have the greatest vested interest in the sale of electric heat pumps and thus have responsibility to ensure quality installations through well-trained technicians, authoritative and accurate technical information, and wellinformed design professionals. The electric heat pump is an excellent tool for the electric utility industry's response to environmental and efficiency challenges as well as to competition from other fuel sources. Manufacturers are continually introducing new products and making research results available to meet these challenges. Industrial process heat pumps offer customers the ability to supply heat to process at a lower cost than heat supplied by primary-fuel-fired boilers. From the utility perspective these heat pumps offer an opportunity for a new electric year-round application

  11. Simulation of a heat pump system for total heat recovery from flue gas

    This paper introduces an approach of using an open-cycle absorption heat pump (OAHP) for recovering waste heat from the flue gas of a gas boiler with a system model. And equivalent energy efficiency is used to evaluate two other heat recovery systems that integrate an electric compression heat pump (EHP) or an absorption heat pump (AHP) with a boiler. The key factors influencing the systems are evaluated. The OAHP system efficiency is improved by 11% compared to the base case. And the OAHP system is more efficient than the AHP or the EHP systems, especially when the solution mass flow rate is only a little less than the cold water mass flow rate. The energy efficiency comparison is supplemented with a simplified economic analysis. The results indicate that the OAHP system is the best choice for the current prices of electricity and natural gas in Beijing. - Highlights: • An OAHP system is analyzed to improve heat recovery from natural gas flue gas. • OAHP system models are presented and analyzed. • The key factors influencing the OAHP systems are analyzed. • The OAHP system is most efficient for most cases compared with other systems. • The OAHP system is more economic than other systems

  12. Estimation of Power Efficiency of Combined Heat Pumping Stations in Heat Power Supply Systems

    I. I. Matsko

    2010-01-01

    The paper considers realization of heat pumping technologies advantages at heat power generation for heat supply needs on the basis of combining electric drive heat pumping units with water heating boilers as a part of a combined heat pumping station.The possibility to save non-renewable energy resources due to the combined heat pumping stations utilization instead of water heating boiler houses is shown in the paper.The calculation methodology for power efficiency for introduction of combine...

  13. Performance of heat pumps with direct expansion in vertical ground heat exchangers in heating mode

    Highlights: • The work focuses on direct expansion ground source heat pumps in heating mode. • The evaporating process of the refrigerant fluid into boreholes is analyzed. • A method to design the direct expansion borehole heat exchangers is presented. • Direct expansion and the common secondary loop heat pumps are compared. • The comparison is carried out in terms of both borehole length and performance. - Abstract: Ground source heat pump systems represent an interesting example of renewable energy technology for heating and cooling of buildings. The connection with the ground is usually done by means of a closed loop where a heat-carrier fluid (pure water or a solution of antifreeze and water) flows and, in heating mode, moves heat from ground to refrigerant fluid of heat pump. A new solution is the direct expansion heat pump. In this case, the heat-carrier fluid inside the ground loop is the same refrigerant fluid of heat pump. This paper focuses on the energy performance of direct expansion ground source heat pump with borehole heat exchangers in heating mode, looking at residential building installations. For this purpose, the evaporating process of the refrigerant fluid inside vertical tubes is investigated in order to analyze the influence of the convective heat transfer coefficient on the global heat transfer with the surrounding ground. Then, an analytical model reported in literature for the design of common borehole heat exchangers has been modified for direct expansion systems. Finally, the direct expansion and common ground source heat pumps have been compared in terms of both total borehole length and thermal performance. Results indicate that the direct expansion system has higher energy performance and requires lower total borehole length compared to the common system. However, when the two systems are compared with the same mean fluid evaporating temperature, the overall length of the ground heat exchanger of the direct expansion heat

  14. A Numerical Study on System Performance of Groundwater Heat Pumps

    Jin Sang Kim; Yujin Nam

    2015-01-01

    Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs) are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomia...

  15. Exergoeconomic optimization of an ammonia-water hybrid heat pump for heat supply in a spray drying facility

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars; Elmegaard, Brian

    2014-01-01

    Spray drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 XC. The inlet flow rate is 100,000 m3/h which yields a heat load of 6.1 MW. The exhaust air from the drying process is 80 XC. The implementation of an ammonia-water hybrid absorption-compression heat pump to partly co...

  16. NGTC`s natural gas heat pumps

    Binet, M. [Natural Gas Technologies Centre, Boucherville, PQ (Canada)

    1996-12-01

    An overview of natural gas heat pumps and cooling systems evaluation projects carried out by the Natural Gas Technologies Centre (NGTC) in Boucherville, Quebec, was presented. Technological description of three natural gas engine-driven technologies were provided, as well as the results of laboratory and field tests. The residential sector was covered by the 3-ton York Triathlon heat pump, the commercial sector by the 10-ton Trico natural gas engine-driven condensing unit, and the institutional sector by 25-ton Carrier engine-driven rooftops. The York Triathlon heat pump showed a good performance at the given conditions, with an average COP of 1.29 in cooling mode and of 1.03 in heating mode. The Trico unit was fully instrumented at NGTC; performance testing will be carried out later in 1996. The Carrier rooftops showed performance levels below those of the manufacturer`s suggested characteristics, although user satisfaction with the comfort provided by the units was high. 7 refs., 9 figs., 3 tabs.

  17. Reflection of ground-source heat pump systems' application

    ZHANGSuyun; LINZhenguo; WUXiangsheng; WUTian

    2003-01-01

    Ground-source heat pump system is an air-conditioning form of energy efficient and environment protection. This article introduced the forms of ground-source heat pump systems, analyzed the problems of ground-source heat pump systems in application in China, and put forward the solutions to these problems.

  18. Rational choice systems control compressor station heat pump

    Чермалых, А.В.; Чермалых, В. М.

    2012-01-01

    Based on the analysis of the heat pump mode, the possible structures of the control electric compressor heat pump installation. Using structural models obtained graphs of the controlled variables. Simulation results are given guidance on the application of rational management systems compressor station, depending on the evaluation criteria and the technological regime of the heat pump

  19. Affordable Hybrid Heat Pump Clothes Dryer

    TeGrotenhuis, Ward E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Butterfield, Andrew [Jabil, St. Petersburg, FL (United States); Caldwell, Dustin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Crook, Alexander [Jabil, St. Petersburg, FL (United States)

    2016-06-30

    This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency over heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.

  20. Phonon cooling by an optomechanical heat pump

    Dong, Ying; Bariani, F.; Meystre, P.

    2015-01-01

    We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single pre-cooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.

  1. Phonon Cooling by an Optomechanical Heat Pump

    Dong, Ying; Bariani, F.; Meystre, P.

    2015-11-01

    We propose and analyze theoretically a cavity optomechanical analog of a heat pump that uses a polariton fluid to cool mechanical modes coupled to a single precooled phonon mode via external modulation of the substrate of the mechanical resonator. This approach permits us to cool phonon modes of arbitrary frequencies not limited by the cavity-optical field detuning deep into the quantum regime from room temperature.

  2. Field Monitoring Protocol. Heat Pump Water Heaters

    Sparn, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Earle, L. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wilson, E. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, C. E. [Mountain Energy Partnership, Longmont, CO (United States)

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  3. Field Monitoring Protocol: Heat Pump Water Heaters

    Sparn, B.; Earle, L.; Christensen, D.; Maguire, J.; Wilson, E.; Hancock, E.

    2013-02-01

    This document provides a standard field monitoring protocol for evaluating the installed performance of Heat Pump Water Heaters in residential buildings. The report is organized to be consistent with the chronology of field test planning and execution. Research questions are identified first, followed by a discussion of analysis methods, and then the details of measuring the required information are laid out. A field validation of the protocol at a house near the NREL campus is included for reference.

  4. Advanced heat pumps and their economic aspects. The case for super heat pump

    The results of the economic evaluation of the Super Heat Pump Energy Accumulation System project in Japan are reviewed. It is reported that although the initial costs of super heat pumps are higher than those of conventional systems, the calculated operating costs of a unit thermal energy produced by a super heat pump is reduced considerably. All the various system concepts with thermal/chemical storage were evaluated economically with the exception of the high temperature thermal storage systems using salt ammonia complexes and solvation. These latter systems were not further developed as pilot plants. It is advocated to accelerate the introduction of super heat pumps by facilitating their market introduction. Actual clathrate chemical storage systems have shown that the annual costs are comparable to those of an ice storage system. Clathrate systems will find their way in the market. It is concluded that most of the super heat pump systems and clathrate storage systems will be economic in the future. A big challenge however still exists in further improving the cost effectiveness of heat storage in tanks by reducing their size dramatically (to 1/10th)

  5. Liquid for absorption of solar heat

    Nakamura, T.; Iwamoto, Y.; Kadotani, K.; Marui, T.

    1984-11-13

    A liquid for the absorption of solar heat, useful as an heat-absorbing medium in water heaters and heat collectors comprises: a dispersing medium selected from the group consisting of propylene glycol, mixture of propylene glycol with water, mixture of propylene glycol with water and glycerin, and mixture of glycerin with water, a dispersant selected from the group consisting of polyvinylpyrrolidone, caramel, and mixture of polyvinylpyrrolidone with caramel, and a powdered activated carbon as a black coloring material.

  6. Solar heating and cooling with absorption refrigeration

    Montlló Casabayó, Gerard

    2010-01-01

    This project is focused on solar heating and cooling installations that use solar thermal energy to produce heat for domestic hot water or space heating, and cooling for air conditioning through absorption refrigeration cycle. The first part of the project is a literature review of said technology. The main components of such installations are described and results and conclusions from existing installations are reviewed. The second part is focused on designing, modelling and simula...

  7. Potential of the heat pump; Potenziale der Waermepumpe

    Flade, F. [Bundesverband WaermePumpe (BWP) e.V., Muenchen (Germany)

    2005-07-01

    Heat pumps have been around for years. They are a mature and economically efficient heating technology which will reduce primary energy consumption and CO2 emissions quickly and sustainably. In 2002, 251,000 million l of heating oil and 289,000 million cubic metres of gas were consumed for heating in Germany, which might have been greatly reduced with heat pumps. At a seasonal performance factor of 4.5 as is common in groundwater and ground source heat pumps, heat pumps will produce 40 percent less CO2 than gas-fuelled high-efficiency boilers. At 'normal' values of 3.5 which are more or less standard values for air-to-water heat pumps, CO2 emissions will be reduced by 30 percent. The heat pump is an ecologically effective and economically efficient alternative to conventional heating systems. (orig.)

  8. Measured Performance of a Low Temperature Air Source Heat Pump

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  9. Research on ground heat exchanger of Ground Source Heat Pump technique

    LIU Dong-sheng; SUN You-hong; GAO Ke; WU Xiao-hang

    2004-01-01

    Ground Source Heat Pump technique and its operating principle are described in this paper. Ground heat exchanger is the key technique of ground source heat pump and its pattems are discussed. Software is helpful to design ground heat exchanger. A project of Chinese Ground Source Heat Pump is introduced and its market is more and more extensive.

  10. A Numerical Study on System Performance of Groundwater Heat Pumps

    Jin Sang Kim

    2015-12-01

    Full Text Available Groundwater heat pumps have energy saving potential where the groundwater resources are sufficient. System Coefficients of Performance (COPs are measurements of performance of groundwater heat pump systems. In this study, the head and power of submersible pumps, heat pump units, piping, and heat exchangers are expressed as polynomial equations, and these equations are solved numerically to determine the system performance. Regression analysis is used to find the coefficients of the polynomial equations from a catalog of performance data. The cooling and heating capacities of water-to-water heat pumps are determined using Energy Plus. Results show that system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system performance. The system COPs are used to compare the system performance of various system configurations. The groundwater pumping level and temperature provide the greatest effects on the system performance of groundwater heat pumps along with the submersible pumps and heat exchangers. The effects of groundwater pumping levels, groundwater temperatures, and the heat transfer coefficient in heat exchanger on the system performance are given and compared. This analysis needs to be included in the design process of groundwater heat pump systems, possibly with analysis tools that include a wide range of performance data.

  11. Heat pump assisted drying of agricultural produce—an overview

    Patel, Krishna Kumar; Kar, Abhijit

    2011-01-01

    This review paper included the recent progress made in heat pump assisted drying, its principle, mechanism and efficiency, type and its application for drying of agricultural produce. Heat pump assisted drying provides a controllable drying environment (temperature and humidity) for better products quality at low energy consumption. It has remarkable future prospects and revolutionaries ability. The heat pump system consists of an expansion valve, two heat exchangers (evaporator and condenser...

  12. Carbon dioxide heat pump for dual-temperature drinking fountain

    杨大章; 吕静; 何哲彬; 黄秀芝

    2009-01-01

    Carbon dioxide trans-critical heat pump system for heating and cooling water was designed,and its thermodynamic steady-state concentration model was established. Based on the steady-state model,parameters of the carbon dioxide trans-critical heat pump were calculated by computer programming. According to these parameters,the effects and application prospect of the heat pump system were analyzed for dual-temperature drinking fountains.

  13. Cold Climate Heat Pumps Using Tandem Compressors

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  14. Heating load, heating-load density and COP optimizations of an endoreversible air heat-pump

    The finite-time thermodynamic performance has been studied of an endoreversible air heat-pump with constant-temperature heat-reservoirs. The heating load, the coefficient of performance (COP), and the heating-load density, i.e. the ratio of heating load to the maximum specific volume in the cycle, are the optimization objectives. The analytical formulae relating the heating load and pressure-ratio, between the COP and pressure-ratio, as well as between the heating-load density and pressure-ratio are derived assuming heat resistance losses occur in the hot- and cold-side heat-exchangers. The influences of the effectiveness of the heat-exchangers and the heat-reservoir temperature-ratio on the heating load, the COP and the heating-load density are analyzed. The cycle performance optimizations are performed by searching the optimal distribution of heat conductance of the hot- and cold-side heat-exchangers for the fixed total heat-exchanger inventory. The influences of some design parameters, including heat-capacity rate of the working fluid, heat-reservoir temperature-ratio and heat-exchanger inventory on the optimal distribution of heat conductance, the maximum heating load and the maximum heating-load density are indicated by numerical examples. The different results obtained from the heating-load optimization and the heating-load density optimization are shown. The air heat-pump design, with heat-loading density optimization, leads to smaller size equipment

  15. A comparison of the heat and mechanical energy of a heat-pump wind turbine system

    Aybek, A.; Arslan, S.; Yildiz, E.; Atik, K. [University of Kahramanmaras (Turkey). Dept. of Agricultural Machinery

    2000-07-01

    While a variety of applications of wind energy have been studied in Turkey, no significant efforts have been made to utilize heat pumps for heat generation. The use of heat pumps in wind energy systems is worth considering because of the high efficiency of heat production. In this study, a directly coupled wind turbine-heat pump system was designed, constructed, and tested. Measurements determined the mechanical energy of the rotors of the wind turbine and the heat energy generated by the heat pump driven by the rotor shaft. Based on the comparisons between the power generated by the heat pump and the power of the Savonius rotors, it was found that the heat energy gained by the heat pump was four times greater than the mechanical energy obtained from the turbine. It was suggested that heat pumps could be efficiently used in wind energy systems. (Author)

  16. Energy Savings Potential for Pumping Water in District Heating Stations

    Ioan Sarbu

    2015-05-01

    Full Text Available In district heating stations, the heat carrier is circulated between the energy source and consumers by a pumping system. Fluid handling systems, such as pumping systems, are responsible for a significant portion of the total electrical energy use. Significant opportunities exist to reduce pumping energy through smart design, retrofitting, and operating practices. Most existing systems requiring flow control make use of bypass lines, throttling valves or pump speed adjustments. The most efficient of these options is pump speed control. One of the issues in using variable-speed pumping systems, however, is the total efficiency of the electric motor/pump arrangement under a given operating condition. This paper provides a comprehensive discussion about pump control in heating stations and analyzes the energy efficiency of flow control methods. Specific attention is also given to the selection of motor types, sizing and pump duty cycle. A comparative energy analysis is performed on the hot water discharge adjustment using throttling control valves and variable-speed drives in a district heating station constructed in Romania. To correlate the pumped flow rate with the heat demand and to ensure the necessary pressure using minimum energy, an automatic system has been designed. The performances of these control methods are evaluated in two practical applications. The results show that approximately 20%–50% of total pumping energy could be saved by using the optimal control method with variable-speed pumps. Additionally, some modernization solutions to reduce the environmental impact of heating stations are described.

  17. Current and future employment of the heat pumps

    Heat pumps, mainly the compression type, grant high energy savings together with environment protection because of the free low temperature energy from environment or wasted heat they use. Their large employment depends on the appreciation of the above properties that are will be done. To grant economic savings on using heat pumps, electric energy and natural gas should have fixed and predictable prices

  18. Profile: Department of Refrigeration and Heat Pump Technology

    Sluis, S.M.

    2000-01-01

    The activities in the fields of refrigeration and heatpumps are concentrated within TNO Environment, Energy and Process Innovation, Apeldoorn, and specifically within the Department of Refrigeration and Heat Pump Technology. The aim of this department is to develop, implement and test: — systems for generating, distributing and using reftigeration; — heat pumps for heating purposes and industrial processes.

  19. Residential CO{sub 2} heat pump system for combined space heating and hot water heating

    Stene, Joern

    2004-02-01

    Carbon dioxide (CO{sub 2}, R-744) has been identified as a promising alternative to conventional working fluids in a number of applications due to its favourable environmental and thermophysical properties. Previous work on residential CO{sub 2} heat pumps has been dealing with systems for either space heating or hot water heating, and it was therefore considered interesting to carry out a theoretical and experimental study of residential CO{sub 2} heat pump systems for combined space heating and hot water heating - o-called integrated CO{sub 2} heat pump systems. The scope of this thesis is limited to brine-to-water and water-to-water heat pumps connected to low-temperature hydronic space heating systems. The main conclusions are: (1) Under certain conditions residential CO{sub 2} heat pump systems for combined space heating and hot water heating may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pumps. (2) In contrary to conventional heat pump systems for combined space heating and DHW heating, the integrated CO{sub 2} heat pump system achieves the highest COP in the combined heating mode and the DHW heating mode, and the lowest COP in the space heating mode. Hence, the larger the annual DHW heating demand, the higher the SPF of the integrated CO{sub 2} heat pump system. (3) The lower the return temperature in the space heating system and the lower the DHW storage temperature, the higher the COP of the integrated CO{sub 2} heat pump. A low return temperature in the space heating system also results in a moderate DHW heating capacity ratio, which means that a relatively large part of the annual space heating demand can be covered by operation in the combined heating mode, where the COP is considerably higher than in the space heating mode. (4) During operation in the combined heating mode and the DHW heating mode, the COP of the integrated CO{sub 2} heat pump is heavily influenced by

  20. Heat pumps in Denmark - From ugly duckling to white swan

    Nyborg, Sophie; Røpke, Inge

    2015-01-01

    processes. This paper seeks to address this gap by exploring, firstly, the historical development of heat pumps in Denmark through an actor-network theory perspective and, secondly, by discussing the current challenges to a more widespread dissemination of heat pumps on the basis of this account.......Over the last 10 years, the smart grid and heat pumps have increasingly gained attention in Denmark as an integral part of the low carbon transition of the energy system. The main reason being that the smart grid enables the integration of large amounts of intermittent wind energy into the...... electricity system via, among other things, intelligent interoperation with domestic heat pumps, which consume the 'green' electricity. Unfortunately, recent years' sales of heat pumps have been disappointing. Several studies have investigated the 'dissemination potential' of heat pumps in Denmark, primarily...

  1. Refrigerant charge management in a heat pump water heater

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  2. Potential and limits of sodium hydroxide as an additive to the binary system ammonia/water in absorption heat pumps; Potenzial und Grenzen von Natriumhydroxid als Zusatz zum Stoffpaar Ammoniak/Wasser in Absorptions-Waermepumpen

    Kotenko, Oleksandr; Moser, Harald; Fenzl, Thomas; Rieberer, Rene [Technische Univ. Graz (Austria). Inst. fuer Waermetechnik

    2011-07-01

    Several authors proposed the use of sodium hydroxide (NaOH) as an additive to the ammonia/water working fluid mixture (NH{sub 3} / H{sub 2}O), especially in solar air conditioners. Measured vapour-liquid equilibrium data of this tertiary mixture are found in the relevant literature. Thermodynamic calculations carried out with these data show that the efficiency (COP) will be enhanced in theory while the rectification time will decrease. To verify these theoretical considerations and to gain practical experience with the tertiary mixture NH{sub 3} / H{sub 2}O / NaOH, a test stand was constructed at the Institut fuer Waermetechnik, and measurements were carried out on the mixture NH{sub 3} / H{sub 2}O, i.e. without NaOH, and with 5% NaOH. The technical feasibility of the process was established, although NaOH depositions in the refrigerating circuit caused operational disturbances, so that the mixture had to be renewed regularly and the plant had to be flushed with water. The expected efficiency improvement was not observed. Analyses using ''ASPEN Plus'' showed that this was the result of lower absorber efficiency, which may be due to the higher circulation rate and higher viscosity of the working fluid mixture. Measurements showed a moderate improvements of heat transfer in the expeller after addition of NaOH; no effects were found in the evaporator, solvent heat exchanger and rectification column. The findings suggest that fast implementation of NH{sub 3} / H{sub 2}O / NaOH-AWP is not realistic. Considerable research and development will still be required for optimisation of the absorber for operation with NaOH. [German] Die Verwendung von Natriumhydroxid (NaOH) als Zusatz zum Arbeitsstoffgemisch Ammoniak / Wasser (NH{sub 3} / H{sub 2}O) wurde von verschiedenen Autoren insbesondere fuer das Anwendungsgebiet der solaren Klimatisierung vorgeschlagen. In der einschlaegigen Literatur wurden gemessene Dampf-Fluessig-Gleichgewichts-Daten von diesem

  3. Heat Pump Clothes Dryer Model Development

    Shen, Bo [ORNL

    2016-01-01

    A heat pump clothes dryer (HPCD) is an innovative appliance that uses a vapor compression system to dry clothes. Air circulates in a closed loop through the drum, so no vent is required. The condenser heats air to evaporate moisture out of the clothes, and the evaporator condenses water out of the air stream. As a result, the HPCD can achieve 50% energy savings compared to a conventional electric resistance dryer. We developed a physics-based, quasi-steady-state HPCD system model with detailed heat exchanger and compressor models. In a novel approach, we applied a heat and mass transfer effectiveness model to simulate the drying process of the clothes load in the drum. The system model is able to simulate the inherently transient HPCD drying process, to size components, and to reveal trends in key variables (e.g. compressor discharge temperature, power consumption, required drying time, etc.) The system model was calibrated using experimental data on a prototype HPCD. In the paper, the modeling method is introduced, and the model predictions are compared with experimental data measured on a prototype HPCD.

  4. EVALUATION AND OPTIMIZATION RESEARCH OF GROUND SOURCE HEAT PUMP

    Zhou, Taian

    2011-01-01

    Nowadays energy efficiency and environmental protection have got particular attention. After the sustainable development theory had been put forward decades ago. Ground source heat pump with air conditioning system has pointed out a new way for saving energy as well as reducing air pollution and carbon emission. This thesis describes the theories of ground source heat pump and lists the differences between ground source heat pump with air conditioning system and other air conditioning sy...

  5. Green Technology Applying Heat Pump Drying, Modelling and Simulation

    Mukhatov, Kirill

    2014-01-01

    This work has focused on the development of atmospheric freeze and non-freeze drying applying a heat pump system as an environmental friendly and economically preferable technology compare to vacuum freeze drying. The main reason of the research is a lack of knowledge and information in the literature about the atmospheric heat pump drying, while the more common vacuum freeze drying process is widely covered.The main objective for developing atmospheric heat pump drying as a new drying techno...

  6. Performance analysis of ground source heat pumps for buildings applications

    Omer, Abdeen Mustafa

    2012-01-01

    Geothermal heat pumps (GSHPs), or direct expansion (OX) ground source heat pumps, are a highly efficient renewable energy technology, which uses the earth, groundwater or surface water as a heat source when operating in heating mode or as a heat sink when operating in a cooling mode. It is receiving increasing interest because of its potential to reduce primary energy consumption and thus reduce emissions of GHGs. The main concept of this technology is that it utilises the lower temperature o...

  7. Model Based Diagnosis of an Air Source Heat Pump

    Alfredsson, Sandra

    2011-01-01

    The purpose of a heat pump is to control the temperature of an enclosed space. This is done by using heat exchange with a heat source, for example water, air, or ground. In the air source heat pump that has been studied during this master thesis, a refrigerant exchanges heat with the outdoor air and with a water distribution system. The heat pump is controlled through the circuit containing the refrigerant and it is therefore crucial that this circuit is functional. To ensure this, a diagnosi...

  8. Residential heat pumps in the future Danish energy system

    Petrovic, Stefan; Karlsson, Kenneth Bernard

    2016-01-01

    . The improved modelling of residential heat pumps proved to have influence on the results. First, it would be optimal to invest in more ground-source heat pumps, but there is not enough available ground area. Second, the total system costs are higher when COPs are modelled as temperature......Denmark is striving towards 100% renewable energy system in 2050. Residential heat pumps are expected to be a part of that system.We propose two novel approaches to improve the representation of residential heat pumps: Coefficients of performance (COPs) are modelled as dependent on air and ground...

  9. Air-source heat pump carbon footprints: HFC impacts and comparison to other heat sources

    European governments see that heat pumps could reduce carbon emissions in space- and hot-water heating. EU's Renewable Energy Directive designates heat pumps as renewable - eligible for various subsidies - if their carbon footprints are below an implied, average threshold. This threshold omits carbon generated by manufacture and emission of a heat-pump's fluorocarbon refrigerant. It also omits the footprint of the heat pump's hardware. To see if these omissions are significant, this study calculated carbon footprints of representative, residential heat pumps in the UK. Three findings emerged. First, in relation to power generation, which accounts for most of a heat-pump's greenhouse-gas emissions, fluorocarbons add another 20% to the footprint. Second, at UK efficiencies a heat-pump footprint (in kg CO2e emitted per kWh delivered) is comparable or higher than footprints of gaseous fuels used in heating. It is lower than the footprint of heating oil and far lower than the footprints of solid fuels. Third, production and disposal of a heat pump's hardware is relatively insignificant, accounting for only 2-3% of the overall heat-pump footprint. Sensitivities to the results were assessed: key factors are footprint of electricity generation, F-gas composition and leak rates and type of wall construction. - Research highlights: → Refrigerant emissions add 20% to a UK air-source heat pump's carbon footprint. → This contribution is so far ignored by regulations. → UK heat pump footprints are comparable to those of gaseous fuels.

  10. Solar/gas Brayton/Rankine cycle heat pump assessment

    Rousseau, J.; Liu, A. Y.

    1982-05-01

    A 10-ton gas-fired heat pump is currently under development at AiResearch under joint DOE and GRI sponsorship. This heat pump features a highly efficient, recuperated, subatmospheric Brayton-cycle engine which drives the centrifugal compressor of a reversible vapor compression heat pump. The investigations under this program were concerned initially with the integration of this machine with a parabolic dish-type solar collector. Computer models were developed to accurately describe the performance of the heat pump packaged in this fashion. The study determined that (1) only a small portion (20 to 50 percent) of the available solar energy could be used because of a fundamental mismatch between the heating and cooling demand and the availability of solar energy, and (2) the simple pay back period, by comparison to the baseline non-solar gas-fired heat pump, was unacceptable (15 to 36 years).

  11. Computer simulation of heat pump application in distillation towers

    Distillation columns rank among the largest industrial energy users today. Almost 30-60% of the total energy demand in the chemical and petrochemical industry is needed to heat distillation columns. Hence, researchers decided to optimize energy consumption to make its application more efficient. One of the recommended way is to use heat pumps. Several works have been reported in the literature in which comparisons of energy consumption between conventional and heat pump distillation for two or three component systems have been investigated. However, the concluded results are not sufficient. In this work, a case study was considered in which different heat pump configurations were applied and the optimum configuration was selected. The cost of each configuration was found to be depending on the cold temperature approach of the heat pump. Therefore, an optimum value was found for each configuration. In addition, the cost of the heat pump was found to be sensitive to the compression and condensation of the process fluid

  12. Heat pump system utilizing produced water in oil fields

    As the alternative to the heating furnace for crude oil heating, a heat pump system utilizing produced water, a main byproduct, in oil fields was proposed and the thermodynamic model of the system was established. A particular compression process with inner evaporative spray water cooling was applied in the screw compressor and an analysis method for the variable-mass compression process was introduced. The simulation results showed that the efficiency of the screw compressor, the temperature of produced water and the temperature difference in flash process are key parameters affecting the system performance. The energy cost of the heat pump system was compared to that of the heating furnace, revealing that the heat pump system with EER, 4.67, would save over 20% energy cost as compared with the heating furnace. Thus, the heat pump system was energy saving, money saving and environmentally benign

  13. On side refrigerant measurement of heat pump seasonal performances

    Tran, Cong-Toan; Rivière, Philippe; Marchio, Dominique; Arzano-Daurelle, Christine; Coevoet, M.

    2011-01-01

    Heat pump systems have become very popular for space heating in the residential sector in Europe. However, there is no data available on the in situ seasonal heating performances of air-to-air heat pumps. This is due to the difficulty of measuring their thermal capacity on field over a long period. Several methods relying on air flow rate and enthalpy measurements are being considered for in-situ measurement for air-to-air heat pumps. But accuracy and reliability of these methods are still un...

  14. Norwegian participation in the IEA Heat Pump Programme Annex 34 - final report

    Nordtvedt, S.R.

    2012-07-01

    This report is the Norwegian team contribution to Task A within the IEA Heat Pumps Programme Annex 34 on #Left Double Quotation Mark#Thermally driven heat pumps#Right Double Quotation Mark#. It aims to give an overview of the thermally driven heat pump (TDHP) and chiller (TDC) market, recent developments in the area of TDHP and TDC, as well as to give an outlook of the progress of this technology. There are no Norwegian manufacturers on the TDHP market. There are only seven existing thermally driven absorption system installations in Norway. Three are district heat driven water/LiBr chillers, one is a steam driven water/LiBr chiller, one water/LiBr heat pump for flue gas condensation in a wood chip heating unit, and two gas driven ammonia-water chillers. The future market for thermally driven heat pumps and chillers in Norway is expected to be in combination of biomass, district heat or waste heat. (Author)

  15. Ground coupled solar heat pumps: analysis of four options

    Andrews, J.W.

    1981-01-01

    Heat pump systems which utilize both solar energy and energy withdrawn from the ground are analyzed using a simplified procedure which optimizes the solar storage temperature on a monthly basis. Four ways of introducing collected solar energy to the system are optimized and compared. These include use of actively collected thermal input to the heat pump; use of collected solar energy to heat the load directly (two different ways); and use of a passive option to reduce the effective heating load.

  16. Estimation of Power Efficiency of Combined Heat Pumping Stations in Heat Power Supply Systems

    I. I. Matsko

    2014-07-01

    Full Text Available The paper considers realization of heat pumping technologies advantages at heat power generation for heat supply needs on the basis of combining electric drive heat pumping units with water heating boilers as a part of a combined heat pumping station.The possibility to save non-renewable energy resources due to the combined heat pumping stations utilization instead of water heating boiler houses is shown in the paper.The calculation methodology for power efficiency for introduction of combined heat pumping stations has been developed. The seasonal heat needs depending on heating system temperature schedule, a low potential heat source temperature and regional weather parameters are taken into account in the calculations.

  17. Performance Comparison of Hydronic Secondary Loop Heat Pump and Conventional Air-Source Heat Pump

    Bell, Ian; Braun, James

    2012-01-01

    In residential heat pump systems, the motivation for secondary loop systems is to allow for the use of flammable or toxic refrigerants with lower global warming potentials than the currently employed HFC refrigerants. The addition of radiant panels as integral building components (embedded in concrete at construction or attached to the underside of wood flooring) is becoming more common. Combining the large surface area of the radiant panel and an efficient primary loop, a hydronic secondary ...

  18. Computational Simulation of a Water-Cooled Heat Pump

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  19. Harnessing geothermal energy with heat pumps : a literature review

    Arisi, J.A. [Memorial Univ. of Newfoundland, St. John' s, NL (Canada). Dept. of Civil Engineering

    2009-07-01

    Fossil fuel combustion emits large amounts of greenhouse gases (GHGs) into the atmosphere. Renewable fuel sources that do not have a negative impact on the environment are needed to reduce the risk of climatic change. This abstract discussed recent research related to geothermal energy. Two types of geothermal energy were investigated: (1) deep underground heat using turbines to produce electricity; and (2) shallow depth heat using heat pumps to provide space heating. A review of recent research on shallow depth heat harnessing was presented. The costs and GHG emission reductions related to the installation of a geothermal heat pump system for space heating were also discussed.

  20. Improved reliability of residential heat pumps; Foerbaettrad driftsaekerhet hos villavaermepumpar

    Haglund Stignor, Caroline; Larsson, Kristin; Jensen, Sara; Larsson, Johan; Berg, Johan; Lidbom, Peter; Rolfsman, Lennart

    2012-07-01

    Today, heat pump heating systems are common in Swedish single-family houses. Many owners are pleased with their installation, but statistics show that a certain number of heat pumps break every year, resulting in high costs for both insurance companies and owners. On behalf of Laensfoersaekringars Forskningsfond, SP Energy Technology has studied the cause of the most common failures for residential heat pumps. The objective of the study was to suggest what measures to be taken to reduce the number of failures, i.e. improving the reliability of heat pumps. The methods used were analysis of public failure statistics and sales statistics and interviews with heat pump manufacturers, installers, service representatives and assessors at Laensfoersaekringar. In addition, heat pump manuals have been examined and literature searches for various methods for durability tests have been performed. Based on the outcome from the interviews the most common failures were categorized by if they; 1. Could have been prevented by better operation and maintenance of the heat pump. 2. Caused by a poorly performed installation. 3. Could have been prevented if certain parameters had been measured, recorded and followed up. 4. Are due to poor quality of components or systems. However, the results show that many of the common failures fall into several different categories and therefore, different types of measures must be taken to improve the operational reliability of residential heat pumps. The interviews tell that failures often are caused by poor installation, neglected maintenance and surveillance, and poor quality of standard components or that components are used outside their declared operating range. The quality of the installations could be improved by increasing installers' knowledge about heat pumps and by requiring that an installation protocol shall be filled-in. It is also important that the owner of the heat pump performs the preventive maintenance recommended by the

  1. Experimental study on energy performance of clean air heat pump

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo...

  2. History of heat pumps - Swiss contributions and international milestones

    Zogg, M.

    2008-05-15

    Compared to conventional boilers, heating by heat pumps cuts down fuel consumption and CO{sub 2} emissions to about 50%. Compared to electric resistance heating, the energy consumption is even reduced up to 80%. Therefore, the impressive market penetration growth of heat pumps will continue. Swiss pioneers were the first to realize functioning vapour recompression plants. The first European heat pumps were realized in Switzerland. To date it remains one of the heat pump champions. Swiss pioneering work in the development of borehole heat exchangers, sewage heat recovery, oil free piston compressors and turbo compressors is well known. The biggest heat pump ever built comes from Switzerland. Although there is a fairly comprehensive natural gas distribution grid, 75% of the new single-family homes built in Switzerland are currently heated by heat pumps. This paper presents some of the highlights of this success story focusing on Swiss developments and relating them to the international milestones. In order to indicate the direction in which the future development might go to, some recent Swiss research projects are presented as well. (author)

  3. Applicability of sewage heat pump air-conditioning system

    陈金华; 刘猛; 刘勇; 靳鸣; 陈洁

    2009-01-01

    A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.

  4. Information about heat pump application in West Germany

    1982-01-01

    Information about the use and application of heat pumps is compiled. This information was acquired by the main advisory body for energy management during a study tour in the Osnabrueck-Paderborn-Gelsenkirchen triangle. First of all the information centre of Siemens AG in Osnabrueck is described; a water/water heat pump was visited. A further example is the heat recovery from the outgoing air of an in door swimming pool. Reports are provided on school-heating by a heat-pump system and the use of heat pumps in blocks of flats. Experiences with a central plant are described, technical details are submitted. Furthermore the utilization of the outgoing air of a dairy-cattle shed and the AEG-training centre for energy management in Gelsenkirchen are described.

  5. Gas-fuelled compression heat pump for Almere-haven

    Menkveld, H.J.

    1981-12-01

    Measurements of a gas compression heat pump are described which is to serve the heating of 45 dwelling units at Almere-haven (Holland). By using the ground water as environmental energy and by the high return temperatures from the floor heating good heating values are obtained. The maximum performance of the heat pump was 250 kW. Several operating modes were tested at the VEG Gas Institute. They showed that about 91% of the annual heat demand can be supplied by the heat pump if a boiler covering 50% of the heat demand is being operated in parallel, with the annual output including the consumption of the additional boiler amounting to 200%, related to Hsub(o). Thus a gas conservation of more than 50% can be expected.

  6. Efficiency of heat pump ventilation and water heating system in an indoor swimming pool

    Безродний, Михайло Костянтинович; Кутра, Дмитро Сергійович; Морощук, Олександр Олександрович

    2014-01-01

    The thermodynamic efficiency of the heat pump ventilation and water heating system of indoor swimming pool with partial exhaust air recirculation and heat pump bypass is analyzed in the paper. The purpose of the work is to determine the system efficiency depending on the change of fresh supply air temperature, ventilation system intensity and heat pump bypassing factor. As a result of implementing the developed mathematical model using the method of successive approximations, dependences of t...

  7. Upgrading primary heat transport pump seals

    Changes in the operating environment at the Bruce-A Nuclear Generating Station created the need for an upgraded Primary Heat Transport Pump (PHTP) seal. In particular, the requirement for low pressure running during more frequent start-ups exposed a weakness of the CAN2 seal and reduced its reliability. The primary concern at Bruce-A was the rotation of the CAN2 No. 2 stators in their holders. The introduction of low pressure running exacerbated this problem, giving rapid wear of the stator back face, overheating, and thermocracking. In addition, the resulting increase in friction between the stator and its holder increased stationary-side hysteresis and thereby changed the seal characteristic to the point where interseal pressure oscillations became prevalent. The resultant increased hysteresis also led to hard rubbing of the seal faces during temperature transients. An upgraded seal was required for improved reliability to avoid forced outages and to reduce maintenance costs. This paper describes this upgraded 'replacement seal' and its performance history. In spite of the 'teething' problems detailed in this paper, there have been no forced outages due to the replacement seal, and in the words of a seal maintenance worker at Bruce-A, 'it allows me to go home and sleep at night instead of worrying about seal failures.' (author)

  8. Ground-source Heat Pump Barometer

    NONE

    2011-09-15

    The double whammy dealt by the economic crisis and housing slump has stifled expansion of the ground-source heat pump market in many European countries. The European Union market contracted for the second year running (by 2.9% between 2009 and 2010), and this despite the fact that more than 100,000 units were sold over the twelve-month period, taking the number of installed units past the one million mark. [French] La crise economique ainsi que la crise immobiliere qui touchent de nombreux pays europeens ne facilitent pas l'essor du marche de la pompe a chaleur geothermique. Pour la deuxieme annee consecutive, le marche de l'union europeenne est en baisse (-2,9 % entre 2009 et 2010). il parvient tout de meme a se maintenir au-dessus des 100 000 unites vendues par an, ce qui lui permet de depasser pour la premiere fois le cap du million d'unites installees.

  9. The Feasibility Analysis of Wastewater Source Heat Pump Using the Urban Wastewater Heat

    Yaxiu Gu; Huqiu Deng

    2012-01-01

    There is a large potential in the heat losses from the urban wastewater. By integrating a heat pump to utilize this heat, we can produce a higher temperature heat supply while maintaining a low temperature-lift requirement. This leads to the possibility of directly regenerating the hot water supply through wastewater heat recovery. Based on the plan of Xi’an urban Wastewater Source Heat Pump (WWSHP) system, the discussion and summary about wastewater characteristic parameters were made accord...

  10. Simulation study of a heat pump for simultaneous heating and cooling coupled to buildings

    Ghoubali, Redouane; Byrne, Paul; Miriel, Jacques; Bazantay, Frederic

    2014-01-01

    In several situations, a heat pump for simultaneous heating and cooling (HPS) can be installed advantageously in buildings where simultaneous needs occur. Unlike a reversible heat pump that works alternatively in heating or cooling, a HPS operates under three modes: a heating mode, a cooling mode and a simultaneous mode. In this article, different types of buildings are simulated using Trnsys software to identify their needs for heating, cooling and domestic hot water production (DHW). The in...

  11. Technical and economic working domains of industrial heat pumps: Part 1 - single stage vapour compression heat pumps

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars; Elmegaard, Brian

    2015-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering the constraints of available refrigeration equipment and a requirement of a positive net present value of the investment. Six heat pump systems were considered, corresponding to an upper limit of the si...

  12. Simulation of a micro heat pump cycle / Martin van Eldik

    van Eldik, Martin

    1998-01-01

    The purpose of this study was to develop a thermal cycle simulation for a micro heat pump. A feature of the simulation is that it can simulate the four qasic components in detail, based on fundamental principles. The product of this study is a simulation routine which can be used as a design tool for micro heat pumps as well as its individual components. Experimental tests were conducted on an existing R-134a micro heat pump.and the results were successfully used to verify the simulation rout...

  13. Maldistribution in airewater heat pump evaporators. Part 1: Effects on evaporator, heat pump and system level

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2015-01-01

    This paper presents an approach to quantify the effect of evaporator maldistribution onoperating costs of air-water heat pumps. In the proposed simulation model maldistributionis induced by two parameters describing refrigerant phase and air flow distribution.Annual operating costs are calculated...... cost increasefor the climate zones arise mainly due to a varying number of operating hours.Absolute cost increase is considerable in the average and especially colder climate zoneand can only partly be reduced by enlarging the evaporator.© 2014 Elsevier Ltd and IIR. All rights reserved....

  14. Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump

    Highlights: ► The increase of temperature of endothermic reaction reduces performance of heat pump. ► The better the performance is, the larger the number of trays. ► COP focuses on the quantity of recovered heat. ► Exergy efficiency focuses on the quantity and quality of recovered heat. - Abstract: The performance of an Isopropanol–Acetone–Hydrogen (IAH) chemical heat pump system is investigated in terms of enthalpy efficiency (COP) and exergy efficiency, in which the exothermic and endothermic reactions take place in the gas phase. The increase of reflux ratio, temperature of endothermic reaction and temperature of exothermic reaction reduces the performance of the heat pump when the other operating parameters remain unchanged. However, the performance of the IAH chemical heat pump improves with the increase of the ratio of molar quantity of hydrogen to that of acetone in the entry of exothermic reactor and the number of heat transfer units of regenerator. Generally, a better performance of the chemical heat pump corresponds to a larger number of trays in the distillation column. The performance of the system can be improved significantly after multi-parameter optimization design. The coefficient of performance (COP) pays more attention to the heat released from the exothermic reactor, while the exergy efficiency takes into consideration of both heat released from the exothermic reactor and temperature of exothermic reaction.

  15. News from heat-pump research - Large-scale heat pumps, components, heat pumps and solar heating; News aus der Waermepumpen-Forschung - Gross-Waermepumpen, Komponenten, Waermepumpe und Solar

    NONE

    2010-06-15

    These proceedings summarise the presentations made at the 16{sup th} annual meeting held by the Swiss Federal Office of Energy's Heat Pump Research Program in Burgdorf, Switzerland. The proceedings include contributions on large-scale heat pumps, components and the activities of the heat pump promotion society. A summary of targets and trends in energy research in general is presented and an overview of the heat pump market in 2009 and future perspectives is given. International work within the framework of the International Energy Agency's heat pump group is reviewed, including solar - heat pump combinations. Field-monitoring and the analysis of large-scale heat pumps are discussed and the importance of the use of correct concepts in such installations is stressed. Large-scale heat pumps with carbon dioxide as working fluid are looked at, as are output-regulated air/water heat pumps. Efficient system solutions with heat pumps used both to heat and to cool are discussed. Deep geothermal probes and the potential offered by geothermal probes using carbon dioxide as a working fluid are discussed. The proceedings are rounded off with a list of useful addresses.

  16. Waste-heat and gas heat pump application for local district heating of Suessen

    Grad, H.

    The waste heat from a mill was used directly and via a gas heat pump for heating a school-and-sports centre as a first major step within the integrated energy concept of the town of Suessen near Goeppingen. This allowed to reduce the primary energy demand of the centre by 45%. Emissions are lowered by 79% by a changeover from oil to natural gas and by the catalyst used. The author demonstrates the design and function of the system. (BWI).

  17. Using Heat Pump Energy Storages in the Power Grid

    Pedersen, Tom S.; Andersen, Palle; Nielsen, Kirsten M.;

    2011-01-01

    and large fluctuations in prices. The paper presents a method which takes advantage of heat capacity in single-family houses using heat pumps which are anticipated to be installed in large numbers in Denmark in next decade. This type of heating gives a large time constant and it is shown possible to move...

  18. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian;

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit in...... order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts. Energy efficiency and thermodynamic performance of these concepts are calculated and compared. The...... results show that the proposed system has the highest efficiency. Furthermore, we compare thermodynamic and economic performance of the suggested heat pump-based concept with different solutions, using electric water heater. The micro booster heat pump system has the highest annualised investment (390 EUR...

  19. AUTOMATIC CONTROL SYSTEM OF HEAT PUMP STATION GAS COOLER AT THE WIDE RANGE OF HEAT LOAD

    Juravleov A.A.

    2008-08-01

    Full Text Available There is examined the structure the of control system of gas cooler of heat pump station, which uses the carbon dioxide as the working fluid in the transctitical thermodynamical cycle. It is analiyed the structure of the complex: heat pump station – district heating system.

  20. AUTOMATIC CONTROL SYSTEM OF HEAT PUMP STATION GAS COOLER AT THE WIDE RANGE OF HEAT LOAD

    Juravleov A.A.; Sit M.L.; Sit B.M.; Poponova O.; Zubatii A.

    2008-01-01

    There is examined the structure the of control system of gas cooler of heat pump station, which uses the carbon dioxide as the working fluid in the transctitical thermodynamical cycle. It is analiyed the structure of the complex: heat pump station – district heating system.

  1. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems....

  2. Optimal Power Consumption in a Central Heating System with Geothermal Heat Pump

    Tahersima, Fatemeh; Stoustrup, Jakob; Rasmussen, Henrik

    2011-01-01

    Driving a ground source heat pump in a central heating system with the minimum power consumption is studied. The idea of control is based on the fact that, in a heat pump, the temperature of the forward water has a strong positive correlation with the consumed electric power by the compressor. Th...

  3. Geothermal Heat Pump Profitability in Energy Services

    None

    1997-11-01

    If geothermal heat pumps (GHPs) are to make a significant mark in the market, we believe that it will be through energy service pricing contracts offered by retailcos. The benefits of GHPs are ideally suited to energy service pricing (ESP) contractual arrangements; however, few retailcos are thoroughly familiar with the benefits of GHPs. Many of the same barriers that have prevented GHPs from reaching their full potential in the current market environment remain in place for retailcos. A lack of awareness, concerns over the actual efficiencies of GHPs, perceptions of extremely high first costs, unknown records for maintenance costs, etc. have all contributed to limited adoption of GHP technology. These same factors are of concern to retailcos as they contemplate long term customer contracts. The central focus of this project was the creation of models, using actual GHP operating data and the experience of seasoned professionals, to simulate the financial performance of GHPs in long-term ESP contracts versus the outcome using alternative equipment. We have chosen two case studies, which may be most indicative of target markets in the competitive marketplace: A new 37,000 square foot office building in Toronto, Ontario; we also modeled a similar building under the weather conditions of Orlando, Florida. An aggregated residential energy services project using the mass conversion of over 4,000 residential units at Ft. Polk, Louisiana. Our method of analyses involved estimating equipment and energy costs for both the base case and the GHP buildings. These costs are input in to a cash flow analysis financial model which calculates an after-tax cost for the base and GHP case. For each case study customers were assumed to receive a 5% savings over their base case utility bill. A sensitivity analysis was then conducted to determine how key variables affect the attractiveness of a GHP investment.

  4. Energetic analysis of a diffusion–absorption system: A bubble pump under geometrical and operational conditions effects

    This paper presents an analytical model of the bubble pump in a commercial diffusion–absorption refrigerator. Moreover, the energetic analysis achieved is integrated with a heat transfer model and coupled to a thermodynamic model to evaluate the cooling capacity and the coefficient of performance of the refrigeration system, based on geometrical and operational parameters such as heat input, diameter ratio and bubble tube length as well as the ammonia fraction at the inlet of the bubble pump. The results show that the cooling capacity and COP are mainly influenced by geometrical parameters, such as diameter ratio and tube length of the bubble pump, and slightly influenced by the heat input supplied to the bubble pump. The strong concentration range, which is also considered in this work, is a parameter that does not affect the cooling capacity and COP. Moreover, the results reveal that the lowest cooling capacity and COP are obtained when the refrigerator operates at the manufacture design conditions. An increase in cooling capacity and COP of about 150% can be obtained when the diameter ratio is expanded up to 1.5 when comparing with the original configuration. It is expected that these results help researchers and manufacturers extend their analysis to increase the energy performance in diffusion–absorption refrigeration systems. - Highlights: • An analytical model of the bubble pump of a commercial diffusion–absorption refrigerator is proposed. • The analysis presents a broadly characterization of the bubble pump. • A heat transfer model was included in order to evaluate the cooling capacity of all thermostat positions. • The model was validated using several operation conditions of the experimental refrigerator. • The cooling capacity and COP are mainly influenced by the geometrical parameters

  5. Residential gas heat pump assessment: A market-based approach

    Hughes, P.J.

    1995-09-01

    There has been considerable activity in recent years to develop technologies that could reduce or levelize residential and light-commercial building space cooling electrical use and heating/cooling energy use. For example, variable or multi-speed electric heat pumps, electric ground-source heat pumps, dual-fuel heat pumps, multi-function heat pumps, and electric cool storage concepts have been developed; and several types of gas heat pumps are emerging. A residential gas heat pump (GHP) benefits assessment is performed to assist gas utility and equipment manufacturer decision making on level of commitment to this technology. The methodology and generic types of results that can be generated are described. National market share is estimated using a market segmentation approach. The assessment design requires dividing the 334 Metropolitan Statistical Areas (MSAS) of the US into 42 market segments of relatively homogeneous weather and gas/electric rates (14 climate groupings by 3 rate groupings). Gas and electric rates for each MSA are evaluated to arrive at population-weighted rates for the market segments. GHPs are competed against 14 conventional equipment options in each homogeneous segment.

  6. Low grade waste heat recovery using heat pumps and power cycles

    Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest. Heat pumps upgrading waste heat to process heat and cooling and power cycles converting waste heat to electricity can make a strong impact in the related industries. The potential of several alternative technologies, either for the upgrading of low temperature waste heat such as compression-resorption, vapor compression and trans-critical heat pumps, or for the conversion of this waste heat by using organic Rankine, Kalina and trilateral cycle engines, are investigated with regards to energetic and economic performance by making use of thermodynamic models. This study focuses on temperature levels of 45–60 °C as at this temperature range large amounts of heat are rejected to the environment but also investigates the temperature levels for which power cycles become competitive. The heat pumps deliver 2.5–11 times more energy value than the power cycles in this low temperature range at equal waste heat input. Heat engines become competitive with heat pumps at waste heat temperatures at 100 °C and above. - Highlights: • Application of heat pump technology for heating and cooling. • Compression resorption heat pumps operating with large glides approaching 100 K. • Compression-resorption heat pumps with wet compression. • Potential to convert Industrial waste heat to power or high grade heat. • Comparison between low temperature power cycles and heat pumps

  7. Wind power integration using individual heat pumps – Analysis of different heat storage options

    Hedegaard, Karsten; Mathiesen, Brian Vad; Lund, Henrik;

    2012-01-01

    Significant installations of individual heat pumps are expected in future energy systems due to their economic competitiveness. This case study of the Danish energy system in 2020 with 50% wind power shows that individual heat pumps and heat storages can contribute to the integration of wind power...... reductions in excess electricity production and fuel consumption than heat accumulation tanks. Moreover, passive heat storage is found to be significantly more cost-effective than heat accumulation tanks. In terms of reducing fuel consumption of the energy system, the installation of heat pumps is the most...... important step. Adding heat storages only moderately reduces the fuel consumption. Model development has been made to facilitate a technical optimisation of individual heat pumps and heat storages in integration with the energy system....

  8. Flue gas condensing with heat pump; Roekgaskondensering med vaermepump

    Axby, Fredrik; Pettersson, Camilla [Carl Bro Energikonsult AB, Malmoe (Sweden)

    2004-11-01

    Flue gas condensing is often both a technically and economically efficient method to increase the thermal efficiency in a plant using fuels with high moisture and/or high hydrogen content. The temperature of the return water in district heating systems in Sweden is normally 50 deg C, which gives quite high efficiency for a flue gas condenser. The flue gas after the flue gas condenser still contains energy that to some extent can be recovered by a combustion air humidifier or a heat pump. The object of this project is to technically and economically analyse flue gas condensing with heat pump. The aim is that plant owners get basic data to evaluate if a coupling between a flue gas condenser and a heat pump could be of interest for their plant. With a heat pump the district heating water can be 'sub cooled' to increase the heat recover in the flue gas condenser and thereby increase the total efficiency. The project is set up as a case study of three different plants that represent different types of technologies and sizes; Aabyverket in Oerebro, Amagerforbraending in Copenhagen and Staffanstorp district heating central. In this report a system with a partial flow through the condenser of the heat pump is studied. For each plant one case with the smallest heat pump and a total optimization regarding total efficiency and cost for investment has been calculated. In addition to the optimizations sensitivity analyzes has been done of the following parameters: Moisture in fuel; Type of heat pump; Temperature of the return water in the district heating system; and, Size of plant. The calculations shows that the total efficiency increases with about 6 % by the installation of the heat pump at a temperature of the return water in the district heating system of 50 deg C at Aabyverket. The cost for production of heat is just below 210 kr/MWh and the straight time for pay-off is 5,4 years at 250 kr/MWh in heat credit and at 300 kr/MWh in basic price for electricity. The

  9. Field Monitoring Protocol. Mini-Split Heat Pumps

    Christensen, Dane [National Renewable Energy Lab. (NREL), Golden, CO (United States); Fang, Xia [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tomerlin, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hancock, E. [Mountain Energy Partnership, Longmont, CO (United States)

    2011-03-01

    This Building America program report provides a detailed method for accurately measuring and monitoring performance of a residential mini-split heat pump, which will be used in high-performance retrofit applications.

  10. Process integration and opportunity for heat pumps in industrial processes

    Becker, Helen; Maréchal, François; Vuillermoz, Aurélie

    2009-01-01

    Process integration methods allow one optimizing industrial processes. The main goals are decreasing energy demand and operating costs as well as reduction of pollutants emissions. High fuel costs promote installation of heat pumps. In a heat pump process waste energy is valorized by electrical power to produce higher quality energy. That is used to satisfy a part of the process demand so that less fuel is required and CO2 emission will decrease. This paper presents a methodology, based...

  11. Experimental research on a CFCs free thermally activated heat pump

    This paper deals with test results of a new type of Thermally Activated Heat Pump (TAHP) based on the highly efficient Vuilleumier cycle using helium gas as its refrigerant and natural gas as fuel of its external system. These test results show that, in addition to being CFCs free, this heat pump brings about lower CO2 and NOx emissions. (TEC). 7 figs., 6 refs

  12. Low Temperature District Heating Consumer Unit with Micro Heat Pump for Domestic Hot Water Preparation

    Zvingilaite, Erika; Ommen, Torben Schmidt; Elmegaard, Brian; Franck, M.L.

    2012-01-01

    In this paper we present and analyse the feasibility of a district heating (DH) consumer unit with micro heat pump for domestic hot water (DHW) preparation in a low temperature (40 °C) DH network. We propose a micro booster heat pump of high efficiency (COP equal to 5,3) in a consumer DH unit in order to boost the temperature of the district heating water for heating the DHW. The paper presents the main designs of the suggested system and different alternative micro booster heat pump concepts...

  13. Fundamental optimal relation of a generalized irreversible Carnot heat pump with complex heat transfer law

    Jun Li; Lingen Chen; Fengrui Sun

    2010-02-01

    The fundamental optimal relation between heating load and coefficient of performance (COP) of a generalized irreversible Carnot heat pump is derived based on a new generalized heat transfer law, which includes the generalized convective heat transfer law and generalized radiative heat transfer law, $q \\varpropto ( T^{n})^{m}$. The generalized irreversible Carnot heat pump model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat leakage, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities besides heat resistance are characterized by a constant parameter and a constant coefficient. The effects of heat transfer laws and various loss terms are analysed. The heating load vs. COP characteristic of a generalized irreversible Carnot heat pump is a parabolic-like curve, which is consistent with the experimental result of thermoelectric heat pump. The obtained results include those obtained in many literatures and indicated that the analysis results of the generalized irreversible Carnot heat pump were more suitable for engineering practice than those of the endoreversible Carnot heat pump.

  14. Heat pumps; Synergy of high efficiency and low carbon electricity

    Koike, Akio

    2010-09-15

    Heat pump is attracting wide attention for its high efficiency to utilize inexhaustible and renewable ambient heat in the environment. With its rapid innovation and efficiency improvement, this technology has a huge potential to reduce CO2 emissions by replacing currently widespread fossil fuel combustion systems to meet various heat demands from the residential, commercial and industrial sectors. Barriers to deployment such as low public awareness and a relatively long pay-back period do exist, so it is strongly recommended that each country implement policies to promote heat pumps as a renewable energy option and an effective method to combat global warming.

  15. Feasibility analysis of heat pump dryer to dry hawthorn cake

    Highlights: → A heat pump dryer (HPD) is effectively proposed to dry hawthorn cake-likely materials. → Low drying temperature and high COP of heat pump are obtained in drying beginning. → HPD is more effective, economic than a traditional hot air dryer. → Feasibility of the HPD is also validated by the operation economy estimation. - Abstract: A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.

  16. Repetitive 1 Hz fast-heating fusion driver HAMA pumped by diode pumped solid state laser

    We describe a repetitive fast-heating fusion driver called HAMA pumped by Diode Pumped Solid State Laser (DPSSL) to realize the counter irradiation of sequential implosion and heating laser beams. HAMA was designed to activate DPSSL for inertial confinement fusion (ICF) research and to realize a unified ICF machine for power plants. The details of a four-beam alignment scheme and the results of the counter irradiation of stainless plates are shown. (author)

  17. A study on the design and analysis of a heat pump heating system using wastewater as a heat source

    Baek, N.C. [Korea Institute of Energy, Daejeon (Korea). Solar Thermal Research Center; Shin, U.C. [Daejeon University (Korea); Yoon, J.H. [Hanbat University, Daejeon (Korea)

    2005-03-01

    In this study, the compression heat pump system using wastewater, as a heat source, from hotel with sauna was designed and analyzed. This study was performed to investigate the feasibility of the wastewater use for heat pump as a heat source and to obtain engineering data for system design. This heat pump system uses off-peak electricity that is a cheap energy compared to fossil fuel in Korea. For this, the charging process of heat into the hot water storage tank is achieved only at night time (22:00-08:00). TRNSYS was used for the system simulation with some new components like the heat pump, which we create ourselves. As a result, it was forecasted that the yearly mean COP of heat pump is about 4.8 and heat pump can supply 100% of hot water load except weekend of winter season. The important thing that should be considered for the system design is to decrease the temperature difference between condenser and evaporator working fluids during the heat charging process by the heat pump. This heat pump system using wastewater from sauna, public bath, building, etc. can therefore be effectively applied not only for water heating but also space heating and cooling in regions like as Korea. (author)

  18. 燃气蒸汽联合循环与吸收式热泵的综合应用研究%Integrated Application for Gas-Steam Combined Cycle and Absorption Heat Pump

    史明闯; 余晓明; 朱祥政; 张晓; 雷会玉

    2015-01-01

    与普通蒸汽轮机相比,燃气轮机在节能环保方面更具优势。尤其是燃气-蒸汽联合循环越来越受到重视。分析了热泵系统和联合循环系统,对热电联供系统进行了能量分析,最后通过案例分析得出结论:以天然气为燃料的热电联供系统能够减少环境污染,提高能量利用率,对我国节能低碳事业有重要意义。%Compared with the ordinary steam turbine, gas turbine has more advantage in energy conservation and environmental protection. Especially the gas-steam combined cycle has been paid more and more attention. This paper introduced the heat pump system and combined cycle system, and analyzed the energy relationships of the cogeneration system. In conclusion, cogeneration systems driven by gas can reduce environmental pollution and improve the energy utilization, and it has vital significance to the energy-saving and low carbon cause in China.

  19. Performances of four magnetic heat-pump cycles

    Magnetic heat pumps have been successfully used for refrigeration applications at near absolute-zero-degree temperatures. In these applications, a temperature lift of a few degrees in a cryogenic environment is sufficient and can be easily achieved by a simple magnetic heat-pump cycle. To extend magnetic heat pumping to other temperature ranges and other types of applications in which the temperature lift is more than just a few degrees requires more involved cycle processes. This paper investigates the characteristics of a few better-known thermomagnetic heat-pump cycles (Carnot, Ericsson, Stirling, and regenerative) in extended ranges of temperature lift. The regenerative cycle is the most efficient one. For gadolinium operating between 0 and 7 T (Tesla) in a heat pump cycle with a heat-rejection temperature of 320 K, our analysis predicted a 42% loss in coefficient of performance at 260 K cooling temperature, and a 15% loss in capacity at 232 K cooling temperature for the constant-field cycle as compared with the ideal regenerative cycle. Such substantial penalties indicate that the potential irreversibilities from this one source (the additional heat transfer that would be needed for the constant-field vs. the ideal regenerative cycle) may adversely affect the viability of certain proposed MHP concepts if the relevant loss mechanisms are not adequately addressed

  20. Development and Validation of a Gas-Fired Residential Heat Pump Water Heater - Final Report

    Michael Garrabrant; Roger Stout; Paul Glanville; Janice Fitzgerald; Chris Keinath

    2013-01-21

    For gas-fired residential water heating, the U.S. and Canada is predominantly supplied by minimum efficiency storage water heaters with Energy Factors (EF) in the range of 0.59 to 0.62. Higher efficiency and higher cost ($700 - $2,000) options serve about 15% of the market, but still have EFs below 1.0, ranging from 0.65 to 0.95. To develop a new class of water heating products that exceeds the traditional limit of thermal efficiency, the project team designed and demonstrated a packaged water heater driven by a gas-fired ammonia-water absorption heat pump. This gas-fired heat pump water heater can achieve EFs of 1.3 or higher, at a consumer cost of $2,000 or less. Led by Stone Mountain Technologies Inc. (SMTI), with support from A.O. Smith, the Gas Technology Institute (GTI), and Georgia Tech, the cross-functional team completed research and development tasks including cycle modeling, breadboard evaluation of two cycles and two heat exchanger classes, heat pump/storage tank integration, compact solution pump development, combustion system specification, and evaluation of packaged prototype GHPWHs. The heat pump system extracts low grade heat from the ambient air and produces high grade heat suitable for heating water in a storage tank for domestic use. Product features that include conventional installation practices, standard footprint and reasonable economic payback, position the technology to gain significant market penetration, resulting in a large reduction of energy use and greenhouse gas emissions from domestic hot water production.

  1. Utilization of heat pumps in the brown coal industry

    Strehlau, R.

    1981-09-01

    This paper points out fields for possible energy recovery by heat pumps in the area of brown coal surface mines. It is stated that surface mine ground water from a depth of 80 m has a constant temperature of 10 to 11 C. The theoretical heat content of cooling 170,000 m/SUP/3/h of drainage water of all GDR surface mines from 10 C to 5 C is calculated to amount to 9 million MWh. Research is therefore being conducted on recovering heat from mine drainage and mine surface waters for use as space heating in buildings and installations of surface mines, which are at present electrically heated. Further sources of heat which are being examined for possible heat pump employment are heat generating plants and large surface mine machinery. Studies have been carried out by TAKRAF on determining feasibility and economic benefit of using waste heat from engine and transmission mechanisms of heavy surface mining equipment. Results of a further study on utilizing waste heat from a large transformer station show that a direct heat recovery system is definitely more efficient than employing a heat pump system, but only in the case of a transformer average load higher than 60%. (2 refs.)

  2. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  3. Measurement and Evaluation of Heating Performance of Heat Pump Systems Using Wasted Heat from Electric Devices for an Electric Bus

    Moo-Yeon Lee; Jong-Phil Won; Chung-Won Cho; Ho-Seong Lee

    2012-01-01

    The objective of this study is to investigate heating performance characteristics of a coolant source heat pump using the wasted heat from electric devices for an electric bus. The heat pump, using R-134a, is designed for heating a passengers’ compartment by using discharged energy from the coolant of electric devices, such as motors and inverters of the electric bus. The heating performance of the heat pump was tested by varying the operating parameters, such as outdoor temperature and vol...

  4. Efficiency of using heat pumps for heat supply of low-storied housing areas

    Filippov, S. P.; Dil'Man, M. D.; Ionov, M. S.

    2011-11-01

    Results of technical and economical comparison of competing schemes of heat supply to low-storied housing areas for different regions of Russia are presented. Limitations on using heat pumps for these purposes are analyzed.

  5. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    Min Li

    2013-05-01

    Full Text Available In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can greatly reduce the drying energy consumption, which provides theoretical support to the design and processing of heat recovery heat pump of refrigeration system coupled solar drying device.

  6. Monitoring and evaluating ground-source heat pump. Final report

    Stoltz, S.V.; Cade, D.; Mason, G.

    1996-05-01

    This report presents the measured performance of four advanced residential ground-source heat pump (GSHP) systems. The GSHP systems were developed by WaterFurnace International to minimize the need for electric resistance backup heating and featured multiple speed compressors, supplemental water heating, and at most sites, multiple-speed fans. Detailed data collected for a complete year starting in June 1994 shows that the advanced design is capable of maintaining comfort without the use of electric resistance backup heating. In comparison with a conventional air-source heat pump, the advanced-design GSHP reduced peak heating demand by more than 12 kilowatts (kW) per residence and provided energy savings. The report describes the cooling and heating season operation of the systems, including estimated seasonal efficiency, hours of operation, and load profiles for average days and peak days. The electrical energy input, cooling output, and efficiency are presented as a function of return air temperature and ground loop temperature.

  7. Thermo-economic and thermodynamic analysis and optimization of a two-stage irreversible heat pump

    Highlights: • Thermodynamic modeling of a two-stage irreversible heat pump is performed. • The latter is achieved using NSGA algorithm and thermodynamic analysis. • 3 answers given by the decision-making methods selected. - Abstract: This research study mainly deals with a comprehensive thermodynamic modeling and thermo-economic optimization of an irreversible absorption heat pump. For the optimization goal, various objective functions are considered comprising the specific heating load, coefficient of performance (COP) and the thermo-economic benchmark (F). In order to specify the optimum design variables, non-dominant sorting genetic algorithm (NSGA) is applied satisfying some restrictions. In this optimization study, all three objective functions (e.g. COP, F and specific heating load) are maximized. In addition, decision making is carried out using three well-suited approaches namely LINAMP and TOPSIS and FUZZY. Finally, sensitivity analysis and error analysis are conducted in order to improve understanding of the system performance

  8. Compressor Selection and Equipment Sizing for Cold Climate Heat Pumps

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL

    2014-01-01

    In order to limit heating capacity degradation at -25 C (-13 F) ambient to 25%, compared to the nominal rating point capacity at 8.3 C (47 F), an extensive array of design and sizing options were investigated, based on fundamental equipment system modeling and building energy simulation. Sixteen equipment design options were evaluated in one commercial building and one residential building, respectively in seven cities. The energy simulation results were compared to three baseline cases: 100% electric resistance heating, a 9.6 HSPF single-speed heat pump unit, and 90% AFUE gas heating system. The general recommendation is that variable-speed compressors and tandem compressors, sized such that their rated heating capacity at a low speed matching the building design cooling load, are able to achieve the capacity goal at low ambient temperatures by over-speeding, for example, a home with a 3.0 ton design cooling load, a tandem heat pump could meet this cooling load running a single compressor, while running both compressors to meet heating load at low ambient temperatures in a cold climate. Energy savings and electric resistance heat reductions vary with building types, energy codes and climate zones. Oversizing a heat pump can result in larger energy saving in a less energy efficient building and colder regions due to reducing electric resistance heating. However, in a more energy-efficient building or for buildings in warmer climates, one has to consider balance between reduction of resistance heat and addition of cyclic loss.

  9. Technical and economic working domains of industrial heat pumps: Part 1 - single stage vapour compression heat pumps

    Ommen, Torben Schmidt; Jensen, Jonas Kjær; Markussen, Wiebke Brix;

    2015-01-01

    A large amount of operational and economic constraints limit the applicability of heat pumps operated with natural working fluids. The limitations are highly dependent on the integration of heat source and sink streams. An evaluation of feasible operating conditions was carried out considering the...... constraints of available refrigeration equipment and a requirement of a positive net present value of the investment. Six heat pump systems were considered, corresponding to an upper limit of the sink temperature of 120 °C. For each set of heat sink and source temperatures the best available technology was...... determined. The results showed that four different heat pump systems propose the best available technology at different parts of the complete domain. Ammonia systems presented the best available technology at low sink outlet temperature. At high temperature difference between sink in- and outlet, the...

  10. Field Performance of Heat Pump Water Heaters in the Northeast

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-02-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads.

  11. Heat-pump-centered integrated community energy systems. Final report

    1979-11-01

    A Heat Pump Centered-Integrated Community Energy System (HP-ICES) concept was explored and developed that is based on use of privately owned ice-making heat pumps in each building or complex within a community. These heat pumps will provide all of the space heating, space cooling and domestic hot water needs. All of the community input energy required is provided by electrical power, thereby eliminating a community's dependence on gas or oil supplies. The heat pumps will operate in both air and water source modes, deriving performance advantages of both. The possible forms of an HP-ICES system, the technical and economic limitations, environmental impacts and other factors are discussed from a general viewpoint. The concept is applied to a specific planned community and its performance and economic features are examined in detail. It is concluded that the HP-ICES concept is technically viable, but that its economic desirability as compared with conventional heat pump systems is hampered by much higher initial costs, and that the economic feasibility of HP-ICES systems will depend on future fuel source costs and supply and on electric power rates. (LCL)

  12. Reversible heat pump model for seasonal performance optimization

    Kinab, Elias; Marchio, Dominique; Riviere, Philippe; Zoughaib, Assaad [MINES ParisTech - Center for Energy and Processes, 60 boulevard Saint Michel, 75006 Paris (France)

    2010-12-15

    Building is one of the economical sectors where solutions are available to significantly reduce energy consumption and greenhouse gases emissions. Electric heat pumps are one of the solutions favored in Europe. Europe recently adopted a conventional primary energy to electricity ratio which enables to compare electric heat pumps and fossil fuel boilers. This leads to an increased consideration for the evaluation of the seasonal performances of heat pumps. Nowadays, the design and sizing of heat pumps are still based on full load performance in order to fulfill thermal comfort under extreme conditions. However, the HVAC industry is switching to designs based on improved seasonal performance. The objective of this work is to model an air to water reversible heat pump that can re-design its components for seasonal performance improvement. In this context, we will present a system model including detailed sub-models of each component of the system: heat exchangers, compressor, and expansion valve. The model converges with the system thermodynamic equilibrium after simulating each component separately. Results obtained are validated through experimental data per component and for the whole cycle. Modeling requirements for the purpose of simulating seasonal performance improvements are discussed. (author)

  13. Gas heat pump of the Labour Office of Ulm

    Hartenstein, A.

    Seven possibilities of heat generation, had been investigated for the new building of the labour Office of Ulm: petroleum boiler, gas boiler, electric heat pump, gas heat pump, electric and gas heat pump and boiler. Although a district heat connection would have been the cheapest and simplest solution the decision was made in favour of the possibility which would lead to the highest conservation rate of primary energy and thus to the lowest operating costs in the long term; a gas heat pump with a peak boiler. Two water-to-water aggregates of 174 resp. 152 kW of heat performance and a 389 kW gas boiler were installed in order to cover the total heat demand of 669 kW. Last not least the determining factor was that the building had been constructed in the lowlands of the Danube where plenty of ground water could be taken off without a well-boring plant and the cooled water could be fed into a canalized brook on the estate.

  14. Performance analysis on solar-water compound source heat pump for radiant floor heating system

    曲世林; 马飞; 仇安兵

    2009-01-01

    A solar-water compound source heat pump for radiant floor heating (SWHP-RFH) experimental system was introduced and analyzed. The SWHP-RFH system mainly consists of 11.44 m2 vacuum tube solar collector,1 000 L water tank assisted 3 kW electrical heater,a water source heat pump,the radiant floor heating system with cross-linked polyethylene (PE-X) of diameter 20 mm,temperature controller and solar testing system. The SWHP-RFH system was tested from December to February during the heating season in Beijing,China under different operation situations. The test parameters include the outdoor air temperature,solar radiation intensity,indoor air temperature,radiation floor average surface temperature,average surface temperature of the building envelope,the inlet and outlet temperatures of solar collector,the temperature of water tank,the heat medium temperatures of heat pump condenser side and evaporator side,and the power consumption includes the water source heat pump system,the solar source heat pump system,the auxiliary heater and the radiant floor heating systems etc. The experimental results were used to calculate the collector efficiency,heat pump dynamic coefficient of performance (COP),total energy consumption and seasonal heating performance during the heating season. The results indicate that the performance of the compound source heat pump system is better than that of the air source heat pump system. Furthermore,some methods are suggested to improve the thermal performance of each component and the whole SWHP-RFH system.

  15. PERFORMANCE INVESTIGATION OF SLINKY HEAT EXCHANGER FOR SOLAR ASSISTED GROUND SOURCE HEAT PUMP

    ÖZSOLAK, Onur; ESEN, Mehmet

    2014-01-01

    In the following study, 12 m2 test chamber was heated by solar and ground source heat pump under the physical conditions of Elazığ. In order to place slinky heat exchanger pipes, a hole was dug with 1 meter width, 2 meters depth and 15 meters length. Slinky pipes were put horizontally in the hole and water-antifreeze mixture was circulated with the circulating pump in the slinky heat exchanger. The heat taken from the ground was transferred into the environment to be heated through the heat p...

  16. Optimization of Heat Transfer Systems and Use of the Environmental Exergy Potential - Application to Compact Heat Exchangers and Heat Pumps

    Canhoto, Paulo

    2012-01-01

    In this thesis, the optimization of forced convection heat sinks and groundwater-source heat pumps is addressed with the purpose of improving energy efficiency. Parallel ducts heat sinks are considered under constrained (fixed) pressure drop, pumping power and heat transfer rate. The intersection-of-asymptotes method is employed together with numerical simulations and relationships for determining optimum hydraulic diameter are put forward. An optimal design emerges under fixed heat transfer ...

  17. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-07-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter ( S r = r 2 /r 1), dimensionless temperature ratio ( θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  18. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-04-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter (S r = r 2 /r 1), dimensionless temperature ratio (θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  19. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    Dentz, Jordan [ARIES Collaborative, New York, NY (United States); Podorson, David [ARIES Collaborative, New York, NY (United States); Varshney, Kapil [ARIES Collaborative, New York, NY (United States)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  20. Cooling with solar heat. Absorption refrigerator; Mit Sonnenwaerme kuehlen. Absorptionskaeltemaschine

    Anon.

    2009-04-15

    Absorption and adsorption techniques make it possible to provide cold water at a typical air conditioning level by means of solar heat. Often, absorption refrigerators using lithium bromide dissolved in water as absorption agent and water as refrigerant are used for this purpose. (orig.)

  1. Finite time exergoeconomic performance optimization for an irreversible universal steady flow variable-temperature heat reservoir heat pump cycle model

    Huijun Feng, Lingen Chen, Fengrui Sun

    2010-01-01

    An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP) and profit rate of the universal heat pump cycle model are derived, res...

  2. Thermal energy storage using thermo-chemical heat pump

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  3. Heat pumps barometer - EurObserv'ER - September 2015

    Heat pumps have moved up the ranks of renewable energy - producing heating technologies since the mid-2000's. The EU Member States' individual market trends are characterised by the technologies used and their heating and cooling needs. More than 1.7 million systems were sold in the European Union in 2014. According to EurObserv'ER, several market factors were responsible for sales dipping slightly below their 2013 level of just under 2 million

  4. Generalized Performance Characteristics of Refrigeration and Heat Pump Systems

    Mahmoud Huleihil; Bjarne Andresen

    2010-01-01

    A finite-time generic model to describe the behavior of real refrigeration systems is discussed. The model accounts for finite heat transfer rates, heat leaks, and friction as different sources of dissipation. The performance characteristics are cast in terms of cooling rate (r) versus coefficient of performance (w). For comparison purposes, various types of refrigeration/heat pump systems are considered: the thermoelectric refrigerator, the reverse Brayton cycle, and the reverse Rankine ...

  5. Miniature reciprocating heat pumps and engines

    Thiesen, Jack H. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  6. Magnetocaloric heat-pump cycles based on the AF-F transition in Fe-Rh alloys

    Annaorazov, M.P. E-mail: annaoraz@bahcesehir.edu.trannaoraz@hotmail.com; Uenal, M.; Nikitin, S.A.; Tyurin, A.L.; Asatryan, K.A

    2002-10-01

    The proposal involves a heat-pumping scheme based upon the first-order antiferromagnetism-ferromagnetism transition in FeRh alloy. Using the model S-T diagram for this alloy, the heat-pump cycles, are drawn up based on the transition latent heat absorption and emission when the transition is induced by applying magnetic field. The calculated values of heat coefficient {phi} for the cycles are {approx}39 at {delta}T=5 K and {approx}30 at {delta}T=10 K, where {delta}T is the difference between the temperature surrounding and that of the heat receiver. These values are achieved using the comparatively low magnetic fields of {approx}2x10{sup 6} A m{sup -1}. The high values of {phi}, together with high value of cooling capacity, make it possible to consider Fe-Rh alloys as an effective magnetic heat-pump working body near the room temperature.

  7. Advances in heat pump assisted distillation column: A review

    Highlights: • This article reviews the heat pump assisted distillation (HPAD) technologies. • It covers the use of vapor recompression in both batch and continuous columns. • It identifies future challenges involved in HPAD schemes. - Abstract: Progressive depletion of conventional fossil fuels with increasing energy demand and federal laws on environmental emissions have stimulated intensive research in improving energy efficiency of the existing fractionation units. In this light, the heat pump assisted distillation (HPAD) scheme has emerged as an attractive separation technology with great potential for energy saving. This paper aims at providing a state-of-the-art assessment of the research work carried out so far on heat pumping systems and identifies future challenges in this respect. At first, the HPAD technology is introduced with its past progresses that have centered upon column configuration, modeling, design and optimization, economic feasibility and experimental verification for steady state operation. Then the focus is turned to review the progress of a few emerging heat integration approaches that leads to motivate the researchers for further advancement of the HPAD scheme. Presenting the recently developed hybrid HPAD based heat integrated distillation configurations, the feasibility of heat pumping in batch processing is discussed. Finally the work highlights the opportunities and future challenges of the potential methodology

  8. Heating performance of a ground source heat pump system installed in a school building

    Jaedo; SONG; Kwangho; LEE; Youngman; JEONG; Seongir; CHEONG; Jaekeun; LEE; Yujin; HWANG; Yeongho; LEE; Donghyuk; LEE

    2010-01-01

    The heating performance of a water-to-refrigerant type ground source heat pump system is represented in this paper under the actual working conditions of the GSHP(ground source heat pump) system during the winter season of 2008.Ten heat pump equipments with the capacity of 10 HP each and a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth were constructed.We investigated a variety of working conditions,including the outdoor temperature,the ground temperature,and the water temperature of inlet and outlet of the ground heat exchanger in order to examine the heating performance of the GSHP system.Subsequently,the heating capacity and the input power were investigated to determine the heating performance of the GSHP system.The average heating coefficient of performance(COP) of the heat pump was noted to be 5.1 at partial load of 47%,while the overall system COP was found to be 4.2.Also,performance of the GSHP system was compared with that of air source heat pump.

  9. Heat Recovery in a Pasta Factory. Pinch Analysis Leads to Optimal Heat Pump Usage.

    Staine, Frédéric; Favrat, Daniel; Krummenacher, Pierre

    1994-01-01

    In the previous issue of the IEA Heat Pump Centre Newsletter (Vol, 12, No.3, pp. 29-31), an article by these authors described the use of pinch analysis (also known as pinch technology) in a buildings application. This article describes a similar procedure for integrating a heat pump into a pasta production process. Many industrial processes, and particularly those dealing with drying, are characterized by an overabundance of low- grade heat which often cannot be effi...

  10. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.; Reinholdt, Lars; Elmegaard, Brian

    2012-01-01

    This paper presents a generic, numerical study of high temperature heat pumps for waste heat recovery in industry using ammonia and carbon dioxide as refrigerants. A study of compressors available on the market today, gives a possible application range of the heat pumps in terms of temperatures. Calculations of cycle performances are performed using a reference cycle for both ammonia and carbon dioxide as refrigerant. For each cycle a thorough sensitivity analysis reveals that the forward and...

  11. Study and Test of Cold Storage Heat Recovery Heat Pump Coupled Solar Drying Device

    Min Li; Xiao-Qiang Jiang; Bao-Chuan Wu

    2013-01-01

    In this study, we design the recovery of a heat pump combined solar drying device. Then, with this device, drying experiments of aquatic product, tilapia, were conducted, indicating that the newly designed device functions are well in temperature adjusting and controlling performance and showing that drying time is closely related to energy consumption and drying conditions. Heat recovery heat pump combined solar energy drier can improve the drying quality of aquatic products, but also can gr...

  12. Meetings to share advancements in heat pump technologies

    Creswick, F. A.; Devault, R. C.; Fairchild, P. D.

    1990-04-01

    The Conference brought together researchers, engineers, managers, and government policy makers from the various participating countries and provided a forum to share information on heat pump technological advancements and related environmental issues. From interactions with the Japanese participants in various working meetings and site visits, it is clear that heat pumps represent a major technology emphasis in Japan for industry and utility supported R and D, as well as government sponsored programs. The Super Heat Pump (SHP) project sponsored by the Agency of Industrial Science and Technology (AIST), Ministry of International Trade and Industry (MITI) and aimed at leveling electric power demand in addition to higher heat pump performance, is a notable example of this emphasis and of the way in which industry, research institutes, and government are working together in Japan. A joint industry R and D association established for the SHP effort, for example, includes sixteen (16) major corporate members (Mitsubishi, Toshiba, etc.). Also, gas fired heat pumps have moved beyond laboratory prototypes and field tests and have emerged in Japan in production quantities. These first market entry products use near conventional small I.C. engines and are sized for residential and small commercial building applications. Sales are already in the ten thousands annually, and are increasing. Four major companies are already manufacturing and marketing such units (Yamaha, Yanmar, Aisin Seiki, and Sanyo). The Japanese companies and research organizations were much more open and frank about their research activities and progress than anticipated. The new Heat Pump Technology Center of Japan (HPTCJ) was an excellent host and established a positive atmosphere for international dialogue and cooperation.

  13. Air Conditioning in cold region and utilization of heat pump. Kanchi no danreibo to heat pump riyo

    Ochifuji, N. (Hokkaido University, Sapporo (Japan). Faculty of Engineering)

    1990-02-02

    Hokkaido and Tohoku District being about four times and two times, respectively as large as all Japan in average quantity of fuel, used for the air heating, the buildings there, as structured thermally insulated and aerially tightened, must be of a high quality environment with ventilation, aerial cleanness, etc. From the viewpoint that the heat pump, as able to utilize the low density energy,is appropriate exactly for the air heating in such a cold district, the heat pump was introduced in principle, categories and characteristics, problems of thermal source, and recent topics. With highness in temperature level of existing thermal source and lowness in that of air heating, the heat pump is thermodynamically explainable to be high in coefficient of performance (ratio of added quantity of heat on the high temperature side to the input power from the exterior). It is therefore the most important to maintain high quantity thermal sources, generally such as air, water, soil and waste water. Artificial waste heat is thermal source, the most noticeable as that in the cold region for the future. For example, local air conditioning system, utilizing waste heat from the subway operation, in Sapporo Station is taken notice of for its worldwidely first materialization. 21 refs., 21 figs., 6 tabs.

  14. HEAT PUMP APPLICATION IN FOOD TECHNOLOGY

    Péter Korzenszky; Gábor Géczi

    2012-01-01

    The economy of food technologies is greatly influenced by their energy consumption. Almost no operation or procedure exists that could be executed without the need for electricity. At the same time, several technologies require direct or indirect input of thermal energy as well. An example to quote is the heating of the raw materials of food industry or the pasteurisation or sterilisation of finished products, but heating the production rooms or cleaning or washing the machinery also require ...

  15. Flat tube heat exchangers – Direct and indirect noise levels in heat pump applications

    In the outdoor unit of an air-source heat pump the fan is a major noise source. The noise level from the fan is dependent on its state of operation: high air-flow and high pressure drop often result in higher noise levels. In addition, an evaporator that obstructs an air flow is a noise source in itself, something that may contribute to the total noise level. To be able to reduce the noise level, heat exchanger designs other than the common finned round tubes were investigated in this study. Three types of heat exchanger were evaluated to detect differences in noise level and air-side heat transfer performance at varying air flow. The measured sound power level from all the heat exchangers was low in comparison to the fan sound power level (direct effect). However, the heat exchanger design was shown to have an important influence on the sound power level from the fan (indirect effect). One of the heat exchangers with flat tubes was found to have the lowest sound power level, both direct and indirect, and also the highest heat transfer rate. This type of flat tube heat exchanger has the potential to reduce the overall noise level of a heat pump while maintaining heat transfer efficiency. - Highlights: •The direct noise from a heat exchanger is negligible in heat pump applications. •The design of the heat exchanger highly influences the noise from an outdoor unit. •Flat tube heat exchangers can reduce the noise from the outdoor unit of a heat pump. •Flat tube heat exchangers can increase the energy efficiency of a heat pump

  16. Energy Factor Analysis for Gas Heat Pump Water Heaters

    Gluesenkamp, Kyle R [ORNL

    2016-01-01

    Gas heat pump water heaters (HPWHs) can improve water heating efficiency with zero GWP and zero ODP working fluids. The energy factor (EF) of a gas HPWH is sensitive to several factors. In this work, expressions are derived for EF of gas HPWHs, as a function of heat pump cycle COP, tank heat losses, burner efficiency, electrical draw, and effectiveness of supplemental heat exchangers. The expressions are used to investigate the sensitivity of EF to each parameter. EF is evaluated on a site energy basis (as used by the US DOE for rating water heater EF), and a primary energy-basis energy factor (PEF) is also defined and included. Typical ranges of values for the six parameters are given. For gas HPWHs, using typical ranges for component performance, EF will be 59 80% of the heat pump cycle thermal COP (for example, a COP of 1.60 may result in an EF of 0.94 1.28). Most of the reduction in COP is due to burner efficiency and tank heat losses. Gas-fired HPWHs are theoretically be capable of an EF of up to 1.7 (PEF of 1.6); while an EF of 1.1 1.3 (PEF of 1.0 1.1) is expected from an early market entry.

  17. Development of a vapor compression heat pump for space use

    Berner, F.; Savage, C. J.

    1981-06-01

    A heat pump is presently developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system. It is expected to feature a high coefficient of performance because its power requirement is minimized through continuous adjustment of two operating parameters of its vapor compression cycle, i.e., evaporator pressure and compressor speed, to the instantaneous cooling requirements and heat rejection conditions. The heat pump system will achieve the highest possible cooling rate as long as the temperature of the payload to be cooled is significantly above the desired level, and it will minimize the difference between actual and set heat source temperature when this difference has become small. The most complicated component of the heat pump is the reciprocating vapor compressor. This component's main features are described and its experimentally determined performance parameters are given. Based on these parameters, operating maps, showing achievable heat source temperatures and cooling rates with curves of constant power consumption included, are presented for different temperatures of the fluid to which the heat is rejected.

  18. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle.

  19. Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade.

    Liu, Xiaobing [Oak Ridge National Lab

    2014-06-01

    High initial cost and lack of public awareness of ground source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights findings of a case study of one of the ARRA-funded GSHP demonstration projects, which is a heating only central GSHP system using shallow aquifer as heat source and installed at a warehouse and truck bay at Kalispell, MT. This case study is based on the analysis of measured performance data, utility bills, and calculations of energy consumptions of conventional central heating systems for providing the same heat outputs as the central GSHP system did. The evaluated performance metrics include energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of GSHP system compared with conventional heating systems. This case study also identified areas for reducing uncertainties in performance evaluation, improving operational efficiency, and reducing installed cost of similar GSHP systems in the future. Publication of ASHRAE at the annual conference in Seattle June 2014.

  20. Investigation of direct expansion in ground source heat pumps

    Kalman, M. D.

    A fully instrumented subscale ground coupled heat pump system was developed, and built, and used to test and obtain data on three different earth heat exchanger configurations under heating conditions (ground cooling). Various refrigerant flow control and compressor protection devices were tested for their applicability to the direct expansion system. Undistributed Earth temperature data were acquired at various depths. The problem of oil return at low evaporator temperatures and low refrigerant velocities was addressed. An analysis was performed to theoretically determine what evaporator temperature can be expected with an isolated ground pipe configuration with given length, pipe size, soil conditions and constant heat load. Technical accomplishments to data are summarized.

  1. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  2. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical...... air-clad structures may thus suppress the pump-absorption efficiency η below the ergodic scaling law η∞ Ac/Acl, where Ac and Acl are the areas of the rare-earth doped core and the cladding, respectively....

  3. Building Space Heating with a Solar-Assisted Heat Pump Using Roof-Integrated Solar Collectors

    Zhiyong Yang; Li Zhu; Yiping Wang

    2011-01-01

    A solar assisted heat pump (SAHP) system was designed by using a roof-integrated solar collector as the evaporator, and then it was demonstrated to provide space heating for a villa in Tianjin, China. A building energy simulation tool was used to predict the space heating load and a three dimensional theoretical model was established to analyze the heat collection performance of the solar roof collector. A floor radiant heating unit was used to decrease the energy demand. The measurement resu...

  4. Smart Depths: Geothermal Heat Pumps Design Manual

    Troian, S.

    2012-01-01

    This "designers' manual" is made during the TIDO-course AR0531 Smart & Bioclimatic Design. One of the possible ways for smart and sustainable designs is the use of geothermal energy for space heating. This manual explains the possible use in designs, the functioning and treats different systems.

  5. Heat pumps: planning, optimisation, operation and maintenance; Waermepumpen. Planung - Optimierung - Betrieb - Wartung

    Kunz, P. [Kunz-Beratungen, Dietlikon (Switzerland); Afjei, T. [Fachhochschule Nordwestschweiz, Institut fuer Energie am Bau, Muttenz (Switzerland); Betschart, W.; Prochaska, V. [Hochschule Luzern, Technik und Architektur, Horw (Switzerland); Hubacher, P. [Hubacher Engineering, Engelburg (Switzerland); Loehrer, R. [Scheco AG, Winterthur (Switzerland); Mueller, A. [Mueller und Pletscher AG, Winterthur (Switzerland)

    2008-01-15

    This handbook issued by the Swiss Federal Office of Energy (SFOE) in co-operation with a trade publication takes a look at the planning, optimisation, operation and maintenance of heat pumps. First of all, the basics of heat pump technology, heat pump components and refrigerants are discussed. Then, heat sources and heat distribution are looked at, followed by chapters on the integration of heat pumps into heating systems and noise protection topics. The definition of projects, commissioning and operation of heat pump systems are then discussed. Examples of installations round off the handbook.

  6. A Small Power Recovery Expander for Heat Pump COP Improvement

    Ferrara, G.; Ferrari, L.; D. Fiaschi; Galoppi, G.; Karellas, S.; Secchi, R; Tempesti, D.

    2015-01-01

    Heat pumps are becoming more and more applied for heating, due to their possibility of working as cooling systems in the summer period. However, up to now, recovery of expansion work in small system has not been considered as a viable solution, because of the limited amount of recoverable energy and of difficulties in designing and operating a two-phase flow expander. The idea here presented is to investigate the application of a radial piston machine, adapted from oleodynamic motor design...

  7. Dynamic modeling of an air source heat pump water heater

    Fardoun, Farouk; Ibrahim, Oussama; Zoughaib, Assaad

    2011-01-01

    International audience This paper presents a dynamic simulation model to predict the performance of an air source heat pump water heater (ASHPWH). The mathematical model consists of submodels of the basic system components i.e. evaporator, condenser, compressor, and expansion valve. These submodels were built based on fundamental principles of heat transfer, thermodynamics, fluid mechanics, empirical relationships and manufacturer's data as necessary. The model simulation was carried out u...

  8. Energy Consequences of Non-optimal Heat Pump Parameterization

    Tejeda, Alberto; Milu, Anamaria; Riviere, Philippe; Marchio, Dominique

    2014-01-01

    The substitution of low-performance gas and fuel boilers by air to water electrical heat pumps is a solution to meet the energy challenge to reduce GHG dwellings emissions. Indeed, most dwelling emissions in Europe are due to heating and DHW generation with fossil fuels. Apart from low carbon emissions, high energy savings are expected from rated performances, but an AWHP may not deliver the expected efficiency because of a bad commissioning. Nowadays, these machines present a high number of ...

  9. Radio frequency assisted heat pump drying of crushed brick

    Marshall, M.G.; Metaxas, A.C. [University of Cambridge (United Kingdom). Electricity Utilisation Group

    1999-04-01

    This paper describes an experimental heat pump batch particulate dryer which has been combined with radio frequency (rf) energy, the latter being operated in a continuous pulsed mode. The results show several improvements resulting from the combination drying process. A simplified mathematical model of the dryer, including the rf heating source, has been developed using mass and energy conservation, which show good agreement with experimental results. (author)

  10. A novel radio frequency assisted heat pump dryer

    Marshall, M.G.; Metaxas, A.C.

    1999-09-01

    This paper compares an experimental heat pump batch dryer with the implementation of volumetric Radio Frequency (RF) heating, in the combination drying of crushed brick particulate. Results are presented showing overall improvements in drying. A simplified mathematical drying model including the RF energy source has been developed using mass and energy conservation, confirming the experimental results. Drying is a widespread, energy intensive industrial unit operation. The economics of a drying process operation largely depend upon the dryers performance and ultimately the cost of energy consumption. To enhance the performance of a drying system, the damp air stream that exits the drying chamber can be recycled to reclaim the enthalpy of evaporation that it carries, by using a heat pump (Hodgett, 1976). However, because the medium that dries is still warm air, this system also suffers from heat transfer limitations, particularly towards the falling drying rate period. Such limitations in drying performance can be overcome with the use of Radio Frequency (RF) energy which generates heat volumetrically within the wet material by the combined mechanisms of dipole rotation and conduction effects which speeds up the drying process (Metaxas et al, 1983). Despite the clear advantages that heat pumps and high frequency heating offer for drying, the combination of these two techniques until recently has not been studied (Kolly et al, 1990; Marshall et al, 1995).A series of experiments carried out comprising a motor driven heat pump which was retro-fitted with the ability of imparting RF energy into a material at various stages of the drying cycle are described and compared with a mathematical model.

  11. Blackbody absorption efficiencies for six lamp pumped Nd laser materials

    Cross, Patricia L.; Barnes, Norman P.; Skolaut, Milton W., Jr.; Storm, Mark E.

    1990-01-01

    Utilizing high resolution spectra, the absorption efficiencies for six Nd laser materials were calculated as functions of the effective blackbody temperature of the lamp and laser crystal size. The six materials were Nd:YAG, Nd:YLF, Nd:Q-98 Glass, Nd:YVO4, Nd:BEL, and Nd:Cr:GSGG. Under the guidelines of this study, Nd:Cr:GSGG's absorption efficiency is twice the absorption efficiency of any of the other laser materials.

  12. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt(tm) whole-house building simulations.

  13. Laboratory Performance Evaluation of Residential Integrated Heat Pump Water Heaters

    Sparn, B.; Hudon, K.; Christensen, D.

    2014-06-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of U.S. climate regions. HPWHs are expected to provide significant energy savings in certain climate zones when compared to typical electric resistance water heaters. Results show that this technology is a viable option in most climates, but differences in control schemes and design features impact the performance of the units tested. Tests were conducted to map heat pump performance across the operating range and to determine the logic used to control the heat pump and the backup electric heaters. Other tests performed include two unique draw profile tests, reduced air flow performance tests and the standard DOE rating tests. The results from all these tests are presented here for all five units tested. The results of these tests will be used to improve the EnergyPlus heat pump water heater for use in BEopt™ whole-house building simulations.

  14. EnergyPlus Air Source Integrated Heat Pump Model

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; Adams, Mark B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division; New, Joshua Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  15. Profile: Department of Refrigeration and Heat Pump Technology

    Sluis, S.M. van der

    2000-01-01

    The activities in the fields of refrigeration and heatpumps are concentrated within TNO Environment, Energy and Process Innovation, Apeldoorn, and specifically within the Department of Refrigeration and Heat Pump Technology. The aim of this department is to develop, implement and test: — systems for

  16. Heat pumping technologies in Sri Lanka: applications and future prospects

    Tharumaratnam, V.; Mendis, D.L.O. [Mini Well Systems (pvt) Ltd. (Sri Lanka)

    1998-09-01

    New applications of heat pumping technologies have been introduced in Sri Lanka. These include manufacture of made tea, drying fruits and vegetables, and drying coconut for manufacture of export quality copra. Tea has been the backbone of the export economy for many years, and only recently has it been overtaken by garment exports. It also accounts for a large amount of energy, in terms of electricity supplied from the national grid, biomass in the form of firewood, and petroleum products , chiefly diesel oil. It has been demonstrated in pilot scale commercial trials by the company that application of heat pumping technology reduces the cost of energy in manufacture of tea from about Rs 5 per kilogram of made tea to about Rs 3. Mobile drying units have been manufactured to demonstrate the application of heat pumping technology for drying fruits, vegetables and other agricultural produce on a commercial scale. This has resulted in considerable interest in the CISIR, the Industrial Development Board, and various private sector organizations. Application of heat pumping to drying coconut for manufacture of copra has been very successful. The quality of copra has been consistently supra-grade, since there is no contamination as in the traditional method of manufacture using biomass fuels in the form of coconut shells, which causes discolouration. (author)

  17. Geothermal Heat Pumps Score High Marks in Schools.

    National Renewable Energy Lab (DOE).

    Geothermal heat pumps (GHPs) are showing their value in providing lower operating and maintenance costs, energy efficiency, and superior classroom comfort. This document describes what GHPs are and the benefits a school can garner after installing a GHP system. Three case studies are provided that illustrate these benefits. Finally, the Department…

  18. Maximizing Storage Flexibility in an Aggregated Heat Pump Portfolio

    Pedersen, Tom S.; Nielsen, Kirsten M.; Andersen, Palle

    2014-01-01

    To balance the electrical grid due to a large increase in the renewable energy production mainly from wind turbines will be a problem in the near future in Denmark. Smart grid solutions with new storage capacities are essential. In this work single family houses with heat pumps are investigated...

  19. TWO-PHASE EJECTOR of CARBON DIOXIDE HEAT PUMP CALCULUS

    Sit B.M.

    2010-12-01

    Full Text Available It is presented the calculus of the two-phase ejector for carbon dioxide heat pump. The method of calculus is based on the method elaborated by S.M. Kandil, W.E. Lear, S.A. Sherif, and is modified taking into account entrainment ratio as the input for the calculus.

  20. Heat Pump Drying of Fruits and Vegetables: Principles and Potentials for Sub-Saharan Africa

    Folasayo Fayose; Zhongjie Huan

    2016-01-01

    Heat pump technology has been used for heating, ventilation, and air-conditioning in domestic and industrial sectors in most developed countries of the world including South Africa. However, heat pump drying (HPD) of fruits and vegetables has been largely unexploited in South Africa and by extension to the sub-Saharan African region. Although studies on heat pump drying started in South Africa several years ago, not much progress has been recorded to date. Many potential users view heat pump ...

  1. Heating of super high vacuum system in the pumping out by the nitrogen forevacuum pump

    Highvacuum system training technology by heating at chamber pressures from atmospheric to 10 mm Hg provided with nitrogen condensation pump has been suggested and tested. The small chamber warm-up to 300 deg C for several hours with further pumping out by helium high vacuum pump results in attaining partial pressures of water vapours and hydrocarbons less than 10-11 mm Hg. Large chamber warm-up of 0.5 m3 volume at temperatures about 150 deg C decreases the level of degassing of surfaces locating in vacuum by water vapours and hydrocarbons down to values about 10-10 and 10-12 mm Hg l/s-1xcm-2 respectively. It is proposed to apply the given procedure of surface decontamination when pumping out of thermonuclear system chambers

  2. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  3. Air reversing CO2 heat pumps

    Andreassen, Hanne Elisabeth Bø

    2010-01-01

    CO2 is an environmentally friendly refrigerant that has a no global warming potential when used as refrigerant. The current refrigerants used for air conditioning in public transport are chemical components, and have a high global warming impact. The possibility of replacing the conventional refrigerants by CO2 is investigated for various parts of the transport sector. A possible CO2system for heating and cooling for public transport has been modeled and simulated. This system is a turntable ...

  4. Fort Bragg Embraces Groundbreaking Heat Pump Technology

    none,

    2013-03-01

    The U.S. Army’s Fort Bragg partnered with the Department of Energy (DOE) to develop and implement solutions to build new, low-energy buildings that are at least 50% below Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE’s Commercial Building Partnerships (CBP) Program.

  5. WASTE HEAT RECOVERY IN HEAT PUMP SYSTEMS: SOLUTION TO REDUCE GLOBAL WARMING

    Y. Baradey

    2015-11-01

    Full Text Available Energy conversion technologies, where waste heat recovery systems are included, have received significant attention in recent years due to reasons that include depletion of fossil fuel, increasing oil prices, changes in climatic conditions, and global warming. For low temperature applications, there are many sources of thermal waste heat, and several recovery systems and potential useful applications have been proposed by researchers [1-4]. In addition, many types of equipment are used to recover waste thermal energy from different systems at low, medium, and high temperature applications, such as heat exchangers, waste heat recovery boiler, thermo-electric generators, and recuperators. In this paper, the focus is on waste heat recovery from air conditioners, and an efficient application of these energy resources. Integration of solar energy with heat pump technologies and major factors that affect the feasibility of heat recovery systems have been studied and reviewed as well. KEYWORDS: waste heat recovery; heat pump.

  6. Simulation Based Assessment of Heat Pumping Potential in Non-Residential Buildings – Part 1: Modeling

    Bertagnolio, Stéphane; Stabat, Pascal; Soccal, Benjamin; Gendebien, Samuel; Andre, Philippe

    2010-01-01

    1 Introduction A solution to reduce the energy consumption in office and health care buildings consist in better exploiting the potential of the heat pump technology. This can be done by recovering heat at the condenser when the chiller is used to produce cold (simultaneous heating and cooling demands) or by using the chiller in heat pump mode (non-simultaneous heating and cooling demands). Both strategies appear particularly feasible when cooling and heating needs and the heat pump techno...

  7. Domestic Hot Water Supply for Multiple Familiy Dwellings using Heat Pumps

    Vetsch, Bernhard; Gschwend, Andreas; Bertsch, Stefan S.

    2012-01-01

    In multiple family dwellings of central Europe heat pumps are not only used for space heating but also increasingly for domestic hot water (dhw) supply. The water is often heated in a centralized or decentralized installation with a large distribution network. This leads to the combination of heat pumps with various trace heating systems to ensure both comfort and protection from legionella disease. The COP of the heat pump can be greatly affected by the choice of the heat tracing system whic...

  8. Assessment of two-level heat pump installations’ power efficiency for heat supply systems

    Аlla Е. Denysova

    2015-06-01

    Full Text Available The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources has essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump installations application. The heat supply system considered provides an effective use of two-level heat pump installation operating as heat source the Odessa city ground waters during the lowest ambient temperature period. Proposed is a calculation method of heat pump installations on the basis of geothermal heat supply. Calculated are the values of electric energy consumption N by the compressors’ drive, and the heat supply system transformation coefficient µ for a source of geothermal heat from ground waters of Odessa city allowing to estimate efficiency of two-level heat pump installations.

  9. Multifunctional absorption technology in district heating systems; Absorptionsteknik med multifunktion i fjaerrvaermesystem

    Martin, Viktoria; Setterwall, Fredrik

    2010-05-15

    Within the framework of the IEA's implementing agreement on heat pumping technologies, a state-of-the-art assessment of absorption technology was presented the year 2000. There, barriers for increased implementation of absorption technology were pointed out as being the high investment cost, as well as lack of knowledge with engineers and other actors. The project presented herein has analyzed the situation ten years later, with a wide scope of using the absorption technology - from ice to steam production in a district energy system. The overall aim of the presented project is to provide new knowledge on the technical and economical possibilities of integrating multiple function absorption technology in district energy systems. Also, new knowledge on important design parameters for practical and cost-effective design is given, for example the influence of temperatures (heat source as well as heat sink) and desired COP. A combination of renewed state-of-the-art assessment and new calculations has been used to reach this goal. The state-of-the-art assessment show that the increased focus on combined heat and power (CHP) for resource-efficient energy conversion go hand in hand with an increased interest in thermally driven cooling (TDC) technology. This project has identified the following to be specifically district energy adapted in absorption cooling: - design for low return temperature of the heat carrier leaving the generator part - design for 'high enough' COP maintained at part load for heat source temperatures as low as 70 deg C. - cost minimization by optimal sizing of heat exchanger surfaces for district energy design criteria (as opposed to accepting 'off-the-shelf' designs intended for higher operating temperatures). The overall analysis and findings regarding trigeneration concludes that: a. a holistic view of the production of power, heat and cold should be adopted when considering absorption technology in district energy

  10. Optimizing a Small Ammonia Heat Pump with Accumulator Tank for Space and Hot Tap Water Heating

    Lalovs, Arturs

    2015-01-01

    The heat pump market offers a wide variety of different residential heat pumps where most of them utilize refrigerant R-410A which has high global warming potential. Considering the fact that global policy starts to focus on issues related to energy efficiency and harmful impact to the environment, it is necessary to investigate over new refrigerants. As an alternative solution is to utilize natural refrigerants, such as ammonia, which has almost zero glob...

  11. Pressure heat pumping in the orifice pulse-tube refrigerator

    The mechanism by which heat is pumped as a result of pressure changes in an orifice pulse-tube refrigerator (OPTR) is analyzed thermodynamically. The thermodynamic cycle considered consists of four steps: (1) the pressure is increased by a factor π1 due to motion of a piston in the heat exchanger at the warm end of the regenerator; (2) the pressure is decreased by a factor π2 due to leakage out of the orifice; (3) the pressure is further decreased due to motion of the piston back to its original position; (4) the pressure is increased to its value at the start of the cycle due to leakage through the orifice back into the pulse tube. The regenerator and the heat exchangers are taken to be perfect. The pressure is assumed to be uniform during the entire cycle. The temperature profiles of the gas in the pulse tube after each step are derived analytically. Knowledge of the temperature at which gas enters the cold heat exchanger during steps 3 and 4 provides the heat removed per cycle from this exchanger. Knowledge of the pressure as a function of piston position provides the work done per cycle by the piston. The pressure heat pumping mechanism considered is effective only in the presence of a regenerator. Detailed results are presented for the heat removed per cycle, for the coefficient of performance, and for the refrigeration efficiency as a function of the compression ratio π1 and the expansion ratio π2. Results are also given for the influence on performance of the ratio of specific heats. The results obtained are compared with corresponding results for the basic pulse-tube refrigerator (BPTR) operating by surface heat pumping

  12. Conventional and advanced exergoenvironmental analysis of an ammonia-water hybridabsorption-compression heat pump

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars; Elmegaard, Brian

    2015-01-01

    The ammonia-water hybrid absorption-compression heat pump (HACHP) is a technology suitable for industrial scale heat pumps in the process industry. A helpful tool in the design of cost effective and low environmental impact energy conversion systems, such as the HACHP, is the application of an...... to allocate the initial and operational environmental impact to the system components, thus revealing the main sources of environmental impact. The application of the advanced exergoenvironmental analysis improves the level of detail attained.This is achieved by accounting for technological and...... advanced exergy-based analysis, comprised of both an advanced exergy, exergoeconomic and exergoenvironmental analysis. Recent studies have presented both the advanced exergy and advanced exergoeconmic analysis of the HACHP. Anexergoenvironmental analysis combines exergy analysis with life cycle assessment...

  13. Transient Characteristics of Free Piston Vuilleurnier Cycle Heat Pumps

    Matsue, Junji; Fujimoto, Norioki; Shirai, Hiroyuki

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed using a time-stepping integration method to investigate transient characteristics under power controlling. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components. The force for pistons is mainly caused by the pressure change of working gas varying with piston displacements; moreover nonlinear viscous dissipative force due to the oscillating flow of working gas in heat exchangers and discontinuous damping force caused by solid friction at piston seals and rod seals are included. The displacements of pistons and pressure changes in the Vuilleumier cycle heat pump were integrated by an ideal isothermal thermodynamic relationship. It was assumed that the flow friction was proportional to the kinematic pressure of working gas, and that the solid friction at the seals was due to the functions of the working gas pressure and the tension of seal springs. In order to investigate the transient characteristics of a proposed free piston Vuilleumier cycle heat pump machine when hot-side working gas temperatures and alternate force were changed, some calculations were performed and discussed. These calculation results make clear transient characteristics at starting and power controlling. It was further found that only a small amount of starter power is required in particular conditions. During controlling, the machine becomes unstable when there is ar elatively large reduction in cooling or heating power. Therefore, an auxiliary device is additionally needed to obtain stable operation, such as al inear motor.

  14. Environmental Assessment of Ground Source Heat Pump Systems

    Bayer, P.; Saner, D.; Juraske, R.; Kübert, M.

    2009-12-01

    Ground source heat pump systems (GSHPs) represent the most frequent geothermal application. Because of the economic and environmental benefits of GSHPs in comparison with other technologies for space-heating, cooling, and warm-water provision, an exponential growth rate for these systems is predicted for the coming decades. GSHPs are considered to have a low environmental impact. However, they are not fully renewable. Devices such as borehole heat exchangers have to be installed and maintained, and during operation a heat pump continuously consumes electricity from the grid. In order to assess the environmental benefits of such technologies, the complete life-cycle of all technological elements has to be examined. This life-cycle includes drilling, installation, operation and disposal phase of GSHP application, and all background process for device production, transport and power generation. This paper presents a comprehensive analysis of a GSHP life cycle. The environmental relevance of individual technological elements is rated for a number of environmental indicators, including CO2 savings potential, ozone layer depletion, soil ecotoxicological potential, and impacts on the local aquifer. The role of primary energy used for heat pump operation is discussed, and comparison is made with alternative conventional space-conditioning systems.

  15. Geothermal heat pumps, a booming technology in North America; Geothermal Heat Pumps - der Boom der oberflaechennahen Geothermie in Nordamerika

    Sanner, B. [Giessen Univ. (Germany). Inst. fuer Angewandte Geowissenschaften

    1997-12-01

    Over the last years, the interest in and the use of ground-source heat pumps has substantially increased in North America. In a market dominated by space cooling heat pumps can show clearly their advantages. This paper describes the development in Canada and USA, gives examples of the technologies used and presents some large plants. The differences to the Central European situation are discussed. Also mentioned are the various activities in market penetration, which peaked in the foundation of the `Geothermal Heat Pump Consortium` in Washington in 1994. (orig.) [Deutsch] In den letzten Jahren hat das Interesse an und der Einsatz von erdgekoppelten Waermepumpen in Nordamerika stark zugenommen. In einem von der Raumkuehlung dominierten Markt koennen Waermepumpen ihre Vorteile voll ausspielen. Der Beitrag beschreibt die Entwicklung in Kanada und den USA, stellt Beispiele der eingesetzten Technik vor und geht auf einige Grossanlagen ein. Ausserdem werden die Unterschiede zu der Situation in Mitteleuropa herausgearbeitet und die verschiedenen Aktivitaeten zu `Markt Penetration` behandelt, die 1994 in die Gruendung des `Geothermal Heat Pump Consortiums` in Washington muendeten. (orig.)

  16. High Efficiency R-744 Commercial Heat Pump Water Heaters

    Elbel, Dr. Stefan W.; Petersen, Michael

    2013-04-25

    The project investigated the development and improvement process of a R744 (CO2) commercial heat pump water heater (HPWH) package of approximately 35 kW. The improvement process covered all main components of the system. More specific the heat exchangers (Internal heat exchanger, Evaporator, Gas cooler) as well as the expansion device and the compressor were investigated. In addition, a comparison to a commercially available baseline R134a unit of the same capacity and footprint was made in order to compare performance as well as package size reduction potential.

  17. Heat Generation by Heat Pump for LNG Plants

    Moe, Bjørn Kristian

    2011-01-01

    Abstract The LNG production plant processing natural gas from the Snøhvit field outside Hammerfest in northern Norway utilizes heat and power produced locally with gas turbines. Building a new production train supplied with electricity from the power grid is being evaluated as a possible solution for reducing CO2 emissions from the plant. Buying electricity from the grid rather than producing it in a combined heat and power plant makes it necessary to find new ways to cover the heat loads at ...

  18. ASPECTS OF THE PROBLEM OF INCENTIVES FOR IMPLEMENTATION OF HEAT PUMPS

    Berzan V.; Robu S.; Sit M.

    2011-01-01

    There were identified reasons for incentives of the implementation of heat pumps by the Governement of industial developped countries. It is considered scheme of obtaining of benefits for the Governement as a result of heat pump incentives.

  19. Utilization of waste heat from river bank pump station. Energy efficiency improvement. Feasibility study

    A solution for energy saving by heating the NPP's River Bench Pump Station using the waste heat from recirculating pumps is developed by the Energoproekt plc. The issue is assessed both from technical and economical point of view

  20. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    Zehnder, Michele

    2004-01-01

    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  1. Efficient air-water heat pumps for high temperature lift residential heating, including oil migration aspects

    Zehnder, Michele; Favrat, Daniel

    2005-01-01

    This thesis presents a system approach with the aim to develop improved concepts for small capacity, high temperature lift air-water heat pumps. These are intended to replace fuel fired heating systems in the residential sector, which leads to a major reduction of the local greenhouse gas emissions. Unfavorable temperature conditions set by the existing heat distribution systems and by the use of atmospheric air, as the only accessible heat source, have to be overcome. The proposed concepts a...

  2. Experimental Study of the Performance of Air Source Heat Pump Systems Assisted by Low-Temperature Solar-Heated Water

    Jinshun Wu; Chao Chen; Song Pan; Jun Wei; Tianquan Pan; Yixuan Wei; Yunmo Wang; Xinru Wang; Jiale Su

    2013-01-01

    Due to the low temperatures, the heating efficiency of air source heat pump systems during the winter is very low. To address this problem, a low-temperature solar hot water system was added to a basic air source heat pump system. Several parameters were tested and analyzed. The heat collection efficiency of the solar collector was analyzed under low-temperature conditions. The factors that affect the performance of the heat pumps, such as the fluid temperature, pressure, and energy savings, ...

  3. Heat pump for district cooling and heating at Oslo Airport, Gardermoen[Aquifer thermal energy systems (ATES)

    Eggen, Geir; Vangsnes, Geir

    2006-07-01

    At Gardermoen, one of the largest groundwater reservoirs in Norway is located. This aquifer is used for both heating and cooling of Gardermoen Airport. In the summer, ground water is pumped from cold wells and used for cooling before it is returned to the warm wells. In winter, this process is turned around, as ground water from the warm wells is used as heat source for the heat pump. The heat pump is mainly designed for cooling, and the design cooling demand is 9 MW. The district cooling water is pre-cooled by the ground water, and post cooled by the combined heat pump/refrigeration plant. The base heat load is covered by the heat pump. Additional heat is supplied from a heat energy central with bio fuels as well as oil heated and electrically heated boilers. During the last years, heat production from the heat pump was about 11 GWh/year, and the heat pump also provides about 8 GWh/year of the cooling demand. In addition, approximately 3 GWh/year cold is produced by direct heat exchange with ground water. Compared with a district heating system heated by fossil fuels, and a conventional refrigeration system for district cooling, the pay back period for the aquifer heat pump system is within a couple of years (author) (ml)

  4. Theoretical energy and exergy analyses of solar assisted heat pump space heating system

    Atmaca Ibrahim

    2014-01-01

    Full Text Available Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.

  5. Analysis of CO2 heat pump for low energy residential building

    Thoreby, Aleksander Olsen

    2013-01-01

    In low energy buildings heat loss is reduced through energy-saving measureslike heat recovery of ventilation air and a well-insulated buildingenvelope. Consequently the demand for domestic hot water often makesup a larger share of the annual heating demand than in traditional buildings.For this application heat pumps using CO2 as a working fluid areseen as a promising alternative to conventional heat pumps. In the currentstudy a transcritical CO2 heat pump model for use in building simulation...

  6. Analysis of CO2 heat pump for low energy residential building

    Thoreby, Aleksander Olsen

    2013-01-01

    In low energy buildings heat loss is reduced through energy-saving measureslike heat recovery of ventilation air and a well-insulated buildingenvelope. Consequently the demand for domestic hot water often makesup a larger share of the annual heating demand than in traditional buildings.For this application heat pumps using CO2 as a working fluid areseen as a promising alternative to conventional heat pumps. In the currentstudy a transcritical CO2 heat pump model for use in building simulation...

  7. Discussion on application of water source heat pump technology to uranium mines

    Application of water source heat pump units in recovering waste heat from uranium mines is discussed, and several forms of waste heat recovery are introduced. The problems in the application of water source heat pump technology are analyzed. Analysis results show that the water source heat pump technology has broad application prospects in uranium mines, and it is a way to exchange existing structure of heat and cold sources in uranium mines. (authors)

  8. Simulation of embedded heat exchangers of solar aided ground source heat pump system

    王芳; 郑茂余; 邵俊鹏; 李忠建

    2008-01-01

    Aimed at unbalance of soil temperature field of ground source heat pump system, solar aided energy storage system was established. In solar assisted ground-source heat pump (SAGSHP) system with soil storage, solar energy collected in three seasons was stored in the soil by vertical U type soil exchangers. The heat abstracted by the ground-source heat pump and collected by the solar collector was employed to heating. Some of the soil heat exchangers were used to store solar energy in the soil so as to be used in next winter after this heating period; and the others were used to extract cooling energy directly in the soil by circulation pump for air conditioning in summer. After that solar energy began to be stored in the soil and ended before heating period. Three dimensional dynamic numerical simulations were built for soil and soil heat exchanger through finite element method. Simulation was done in different strata month by month. Variation and restoration of soil temperature were studied. Economy and reliability of long term SAGSHP system were revealed. It can be seen that soil temperature is about 3 ℃ higher than the original one after one year’s running. It is beneficial for the system to operate for long period.

  9. Experimental Evaluation of High Performance Integrated Heat Pump

    Miller, William A [ORNL; Berry, Robert [Unico Inc., St. Louis, MO; Durfee, Neal [ORNL; Baxter, Van D [ORNL

    2016-01-01

    Integrated heat pump (IHP) technology provides significant potential for energy savings and comfort improvement for residential buildings. In this study, we evaluate the performance of a high performance IHP that provides space heating, cooling, and water heating services. Experiments were conducted according to the ASHRAE Standard 206-2013 where 24 test conditions were identified in order to evaluate the IHP performance indices based on the airside performance. Empirical curve fits of the unit s compressor maps are used in conjunction with saturated condensing and evaporating refrigerant conditions to deduce the refrigerant mass flowrate, which, in turn was used to evaluate the refrigerant side performance as a check on the airside performance. Heat pump (compressor, fans, and controls) and water pump power were measured separately per requirements of Standard 206. The system was charged per the system manufacturer s specifications. System test results are presented for each operating mode. The overall IHP performance metrics are determined from the test results per the Standard 206 calculation procedures.

  10. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    Hedegaard, Karsten; Balyk, Olexandr

    2013-01-01

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be ta...... of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments.......Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should...... be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage...

  11. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  12. In the Loop : A look at Manitoba's geothermal heat pump industry

    This booklet outlines the position of Manitoba's heat pump market with the objective of promoting the widespread use of geothermal heat pumps in the province. It makes reference to the size of the market, customer satisfaction with heat pumps, and opinion of key players in the industry regarding the heat pump market. The information in this booklet is drawn on market research and lessons learned in Europe and the United States. In October 2001, a group of key stakeholders in Manitoba's heat pump market attended an industry working meeting to address the issues of market barriers, market enablers and market hot buttons. Market barriers include the high cost of geothermal heat pumps, lack of consumer awareness, lack of consistent standards, and public perception that heat pumps are not reliable. Market enablers include the low and stable operating costs of geothermal heat pumps, high level of comfort, high quality and reliability of geothermal heat pumps, and financial incentives under Manitoba Hydro's Power Smart Commercial Construction Program. Market hot buttons include lowering the cost of geothermal heat pumps, improving industry performance, increasing consumer awareness, and forming a Manitoba Geothermal Trade Association. Approximately 2,500 heat pump systems have been installed in Manitoba. In 2001, heat pump sales in Manitoba grew 40 per cent. 1 tab., 6 figs

  13. Model of a total momentum filtered energy selective electron heat pump affected by heat leakage and its performance characteristics

    A total momentum filtered energy selective electron (ESE) heat pump model with heat leakage is established in this paper. The analytical expressions of heating load and coefficient of performance (COP) for both the total momentum filtered (kr-filtered) ESE heat pump and the conventionally filtered (kx-filtered) ESE heat pump in which the electrons are transmitted according to the momentum in the direction of transport only are derived, respectively. The optimal performance of the kr-filtered ESE heat pump is analyzed by using the theory of finite time thermodynamics (FTT). The optimal regions of COP and heating load for the kr-filtered heat pump are obtained. By comparing the performance of the kr-filtered device with that of the kx-filtered device, it is found that the heating load performance and the COP versus heating load characteristic curves of the kr-filtered heat pump are totally different from those of the kx-filtered device; and the maximum COP and maximum heating load of the kr-filtered device are generally higher than those of the kx-filtered device. The influences of heat leakage, resonance width, hot reservoir temperature and chemical potential on the performance of the total momentum filtered ESE heat pump are further analyzed by numerical calculations. The obtained results can provide some theoretical guidelines for the design of practical electron systems such as solid-state thermionic heat pump devices. -- Highlights: → A total momentum filtered energy selective electron heat pump model with heat leakage is established. → Analytical expressions of heating load and COP for the heat pump are derived. → The optimal performance of the heat pump is analyzed by using finite time thermodynamics.

  14. Development of a gas fired Vuilleumier heat pump for residential heating

    Carlsen, Henrik

    1989-01-01

    mean pressure, and it is designed as a semihermetic unit. A crank mechanism distinguished by very small loads on the piston rings was developed. The advantages and disadvantages of the Vuilleumier principle for heat-driven heat pumps are discussed. Results of the extensive experimental work are...

  15. Theory of Attosecond Transient Absorption Spectroscopy of Krypton for Overlapping Pump and Probe Pulses

    Pabst, Stefan; Sytcheva, Arina; Moulet, Antoine; Wirth, Adrian; Goulielmakis, Eleftherios; Santra, Robin

    2012-01-01

    We present the first fully ab initio calculations for attosecond transient absorption spectroscopy of atomic krypton with overlapping pump and probe pulses. Within the time-dependent configuration interaction singles (TDCIS) approach, we describe the pump step (strong-field ionization using a near-infrared pulse) as well as the probe step (resonant electron excitation using an extreme- ultraviolet pulse) from first principles. We extent our TDCIS model and account for the spin-orbit splitting...

  16. Point Lepreau primary heat transport pump wear ring cracking

    The number 3 Primary Heat Transport (PHT) pump from Point Lepreau Nuclear Generating Station (Point Lepreau) was disassembled after more than 30 years of service for inspection during station refurbishment. The disassembly and inspection were performed to provide assurance of continued satisfactory operation during life extension. The inspection revealed cracks in the wear ring, at and near the tack welds (Type 309 stainless steel weld metal) at the cap screws that attach the Type 420 stainless steel wear ring to the body of the pump. Investigative work consisted of on-site PT and replication of the microstructure at the surface of the wear ring, subsequent impressions of two crack faces, and hardness determinations. This paper describes the investigative work and conclusions associated with resolution of the following questions: 1. What is the most likely cause of the cracking? 2. Will the cracks propagate within the base metal of the wear ring? 3. If propagation is possible, what is the risk of cracks intersecting, such that a piece of metal could become dislodged? Question number 3 has clear ramifications with respect to foreign material entering and damaging a nuclear fuel-containing pressure tube. There are also questions associated with extent of condition, specifically, whether other PHT pumps may have similar or worse cracking and whether such cracks will grow. Results will be applied to wear rings in other PHT pumps at Point Lepreau and are likely to be applicable to similar components in other CANDU PHT pumps. (author)

  17. Analysis of terbium thermodynamic characteristics for magnetic heat pump applications

    Based on molecular field theory, including the effect of the field-dependent nature of Neel temperature, the entropy, and the magnetocaloric effect in terbium (Tb) have been calculated with the external field between 0 and 7 T (Tesla). The calculated results are compared with the existing experimental measurements. The maximum magnetocaloric temperature change (ΔT) is approximately 14 K near the zero-field Neel temperature (230 K) for an external field at 7 T field. This relatively large magnetocaloric effect indicates that Tb could be an attractive candidate for magnetic heat pump application. The results are then used to study the performance of heat pumps for the Carnot cycle, the constant field cycle, and the ideal regenerative cycle. The performances of these three cycles are discussed and compared

  18. A Dynamic Analysis of Free Piston Vuilleumier Cycle Heat Pumps

    MATSUE, Junji; Nakazato, Takashi; Shirai, Hiroyuki

    2000-01-01

    A dynamic analysis of a free piston Vuilleumier cycle heat pump was performed by a time-stepping integration method. The nonlinear relationship between displacement and force for pistons was taken into account for the motion of reciprocating components, in addition to the pressure change of working gas, nonlinear viscous dissipative force due to an oscillating flow and discontinuous damping force caused by solid friction. The displacement of pistons and pressure changes in the Vuilleumier cyc...

  19. Heat Pump Water Heaters and American Homes: A Good Fit?

    Franco, Victor

    2011-01-01

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2)...

  20. Hourly Calculation Method of Air Source Heat Pump Behavior

    Ludovico Danza; Lorenzo Belussi; Italo Meroni; Michele Mililli; Francesco Salamone

    2016-01-01

    The paper describes an hourly simplified model for the evaluation of the energy performance of heat pumps in cooling mode maintaining a high accuracy and low computational cost. This approach differs from the methods used for the assessment of the overall energy consumption of the building, normally placed in the so-called white or black box models, where the transient conduction equation is deterministically and stochastically solved, respectively. The present method wants to be the expressi...

  1. A New Method of Magnetic Pumping for Plasma Heating

    The authors propose a new method of magnetic pumping in which torsion of the static field lines is used instead of compression of the field; the oscillating magnetic field is perpendicular to the static field. The curvature of the lines of force of the static configuration plays an important part in the heating process: the force which heats the particles is the component, along the magnetic perturbation, of the centrifugal force due to thermal motion of the particles. The arrangement proposed is effective in configurations with a large aspect ratio, such as Tokamak configurations. In this case, the most efficient perturbation has the azimuthal wave number 1 around the magnetic axis and around the principal axis. The optimal pumping frequency is of the order of the inverse of the transit time around the principal axis. It is typically three times less than the optimal frequency for compressional magnetic pumping. However, heating of the particles is twice as strong, for equal magnetic perturbations. The authors estimate the increase in the heating power due to the electrostatic field accompanying the magnetic perturbation and the plasma diffusion induced by this perturbation. Particle and energy diffusion due to the perturbation are calculated under conditions where the effect of trapped particles is negligible. The diffusion coefficients have a form analogous to that of the coefficients of the mechanical theory in the intermediate range. The diffusion due to magnetic pumping is only due to the spatial harmonics created by the coils and, in a realistic example, it is assumed that its effect is negligible compared to the other causes of diffusion. (author)

  2. Optimized design for micro Wankel compressor used in space-borne vapor compression heat pump

    Wu, Yuting; Ma, Chongfang; Chen, Xia; Du, Chunxu

    2014-01-01

    For aerospace applications, vapor compression heat pump can be used as thermal control system to collect the heat from electronic devices and transport heat to radiator by which heat can be rejected to space. Heat pumps can be used in two cases. The first consists of raising the temperature of heat energy so that the amount of radiator surface required is reduced. The second involves situations where heat cannot be directly rejected by radiators, because the heat sink temperature is higher th...

  3. The role of large‐scale heat pumps for short term integration of renewable energy

    Mathiesen, Brian Vad; Blarke, Morten; Hansen, Kenneth;

    2011-01-01

    technologies is focusing on natural working fluid hydrocarbons, ammonia, and carbon dioxide. Large-scale heat pumps are crucial for integrating 50% wind power as anticipated to be installed in Denmark in 2020, along with other measures. Also in the longer term heat pumps can contribute to the minimization of......In this report the role of large-scale heat pumps in a future energy system with increased renewable energy is presented. The main concepts for large heat pumps in district heating systems are outlined along with the development for heat pump refrigerants. The development of future heat pump...... savings with increased wind power and may additionally lead to economic savings in the range of 1,500-1,700 MDKK in total in the period until 2020. Furthermore, the energy system efficiency may be increased due to large heat pumps replacing boiler production. Finally data sheets for large-scale ammonium...

  4. Ground-source heat pump systems in Norway

    The Norwegian ground source heat pump (GSHP) market is reviewed. Boreholes in bedrock are of growing interest for residential systems and of growing interest for larger systems with thermal recharging or thermal energy storage. Ground water is limited to areas where the water has acceptable purity. Challenges and important boundary conditions include 1) high quality GSHP system requires engineering expertise, 2) new building codes and EU directive 'energy performance of buildings.'(2006), and 3) hydronic floor heating systems in 50 percent of new residences (author) (ml)

  5. Energetic Efficiency Evaluation by Using GroundWater Heat Pumps

    Tokar Adriana

    2012-09-01

    Full Text Available Romania has significant energy potential from renewable sources, but the potential used is much lower due to technical and functional disadvantages, to economic efficiency, the cost elements and environmental limitations. However, efforts are being made to integrate renewable energy in the national energy system. To promote and encourage private investments for renewable energy utilization, programs have been created in order to access funds needed to implement these technologies. Assessment of such investments was carried out from technical and economical point of view, by analyzing a heat pump using as heat source the solar energy from the ground.

  6. Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery

    Different heat pump systems were used to recover the heat from waste water with mean temperature of 45 °C and produce hot water with the temperature up to 95 °C. Those systems include single-stage vapor compression heat pump (system 1), two-stage heat pump with external heat exchanger (system 2), two-stage heat pump with refrigerant injection (system 3), two-stage heat pump with refrigerant injection and internal heat exchanger (system 4), two-stage heat pump with flash tank (system 5) and two-stage heat pump with flash tank and intercooler (system 6). Thermodynamic and economic analyses were conducted to compare the performance of each system. Results showed that the COP and exergy efficiency for both system 5 and system 6 are quite close, and much higher than those of other systems. Besides, the payback period of both system 5 and system 6 are also shorter as compared to other systems. Considering both the thermodynamic performance and economic quality of the system, system 5 is finally preferred since less initial investment is required for system 5 as compared to system 6. - Highlights: • Different heat pump systems were introduced to recover the heat of waste water. • Thermodynamic and economic performances of those systems were analyzed and compared. • The two-stage heat pump system with flash tank was preferred

  7. Analysis of operating modes of a ground source heat pump with short helical heat exchangers

    Highlights: • The work focuses on the short helical-shaped pipe ground heat exchanger. • Multi-year integrated simulations of ground source heat pumps are carried out. • The simulation tool is validated with field measurements in cooling operation. • The effect of operating modes on the energy efficiency of the heat pump is shown. • The influence of grouting material and diameter of heat exchanger is analysed. - Abstract: This study focuses on different operating modes of a ground source heat pump system in residential buildings. Ground coupling was made using a closed loop system consisting of a helical shaped pipe installed at a shallow depth. Few studies have examined this particular ground heat exchanger. The analysis was carried out using a detailed numerical model capable of considering the geometry of the helical ground heat exchanger as well as the effects of axial thermal conduction and the weather at ground level, variables which cannot be ignored when shallow depths are being investigated. Field measurements were used to validate the model before it was utilized. In addition, the simulation tool considered the entire ground source heat pump system, including both the borehole field and the heat pump. The energy efficiency of the heat pump in three operating modes (continuous daytime, continuous nighttime, and intermittent mode) over a ten year period was analysed. The simulations were performed in two different climatic zones maintaining the daily energy load of the building unmodified. Finally, the effect of the grouting material of the helical ground heat exchanger and of the diameters of both the borehole and the helix on the system’s energy performance was also investigated. Results indicated that the seasonal energy efficiency of the heat pump was approximately the same for the three operating modes and that energy efficiency was nearly constant during the day when the system was operating on an hourly intermittent basis. When the

  8. Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  9. Development of a System Identification Model for an Air Source Heat Pump

    Han, Dong Won; Chang, Youngsoo; Kim, Seo Young; Kim, Yongchan

    2012-01-01

    Heat pump system can save energy and installation cost and reduces CO2 emissions. In this study, a system identification of an air source heat pump system using R410A with a variable speed compressor was experimentally investigated under various ambient and indoor temperature and cooling or heating capacity. The experimental study was also performed under cold and hot climate conditions as well as normal ambient temperature in cooling and heating mode. A heat pump system was installed and tes...

  10. Comparison of Microwave and Conventional Driven Adsorption Heat Pump Cycle Duration

    Demir, Hasan

    2015-01-01

    The present experimental study includes comparison of microwave regenerated and conventional heated adsorbent bed of adsorption heat pump. The novel adsorption heat pump driving with microwave heating system was designed and manufactured. Microwave oven was constructed for providing homogeneous temperature distribution in the adsorbent bed. Temperature and pressure variations in the adsorption heat pump for both microwave and conventional regenerated cycles were measured and investigated. Dur...

  11. Development of a Residential Ground-Source Integrated Heat Pump

    Rice, C Keith [ORNL; Baxter, Van D [ORNL; Hern, Shawn [ClimateMaster, Inc.; McDowell, Tim [Thermal Energy System Specialists, LLC; Munk, Jeffrey D [ORNL; Shen, Bo [ORNL

    2013-01-01

    A residential-size ground-source integrated heat pump (GSIHP) system has been developed and is currently being field tested. The system is a nominal 2-ton (7 kW) cooling capacity, variable-speed unit, which is multi-functional, e.g. space cooling, space heating, dedicated water heating, and simultaneous space cooling and water heating. High-efficiency brushless permanent-magnet (BPM) motors are used for the compressor, indoor blower, and pumps to obtain the highest component performance and system control flexibility. Laboratory test data were used to calibrate a vapor-compression simulation model (HPDM) for each of the four primary modes of operation. The model was used to optimize the internal control options and to simulate the selected internal control strategies, such as controlling to a constant air supply temperature in the space heating mode and a fixed water temperature rise in water heating modes. Equipment performance maps were generated for each operation mode as functions of all independent variables for use in TRNSYS annual energy simulations. These were performed for the GSIHP installed in a well-insulated 2600 ft2(242 m2) house and connected to a vertical ground loop heat exchanger(GLHE). We selected a 13 SEER (3.8 CSPF )/7.7 HSPF (2.3 HSPF, W/W) ASHP unit with 0.90 Energy Factor (EF) resistance water heater as the baseline for energy savings comparisons. The annual energy simulations were conducted over five US climate zones. In addition, appropriate ground loop sizes were determined for each location to meet 10-year minimum and maximum design entering water temperatures (EWTs) to the equipment. The prototype GSIHP system was predicted to use 52 to 59% less energy than the baseline system while meeting total annual space conditioning and water heating loads.

  12. Performance of Gas-Engine Driven Heat Pump Unit

    Abdi Zaltash; Randy Linkous; Randall Wetherington; Patrick Geoghegan; Ed Vineyard; Isaac Mahderekal; Robert Gaylord

    2008-09-30

    Air-conditioning (cooling) for buildings is the single largest use of electricity in the United States (U.S.). This drives summer peak electric demand in much of the U.S. Improved air-conditioning technology thus has the greatest potential impact on the electric grid compared to other technologies that use electricity. Thermally-activated technologies (TAT), such as natural gas engine-driven heat pumps (GHP), can provide overall peak load reduction and electric grid relief for summer peak demand. GHP offers an attractive opportunity for commercial building owners to reduce electric demand charges and operating expenses. Engine-driven systems have several potential advantages over conventional single-speed or single-capacity electric motor-driven units. Among them are variable speed operation, high part load efficiency, high temperature waste heat recovery from the engine, and reduced annual operating costs (SCGC 1998). Although gas engine-driven systems have been in use since the 1960s, current research is resulting in better performance, lower maintenance requirements, and longer operating lifetimes. Gas engine-driven systems are typically more expensive to purchase than comparable electric motor-driven systems, but they typically cost less to operate, especially for commercial building applications. Operating cost savings for commercial applications are primarily driven by electric demand charges. GHP operating costs are dominated by fuel costs, but also include maintenance costs. The reliability of gas cooling equipment has improved in the last few years and maintenance requirements have decreased (SCGC 1998, Yahagi et al. 2006). Another advantage of the GHP over electric motor-driven is the ability to use the heat rejected from the engine during heating operation. The recovered heat can be used to supplement the vapor compression cycle during heating or to supply other process loads, such as water heating. The use of the engine waste heat results in greater

  13. Control and energy optimization of ground source heat pump systems for heating and cooling in buildings

    Cervera Vázquez, Javier

    2016-01-01

    [EN] In a context of global warming concern and global energy policies, in which heating and cooling systems in buildings account for a significant amount of the global energy consumption, ground source heat pump (GSHP) systems are widely considered as being among the most efficient and comfortable heating and cooling renewable technologies currently available. Nevertheless, both an optimal design of components and an optimal operation of the system as a whole become crucial so that these ...

  14. Determining the potential impact of a micro heat pump for domestic water heating / Pieter Willem Jordaan

    Jordaan, Pieter Willem

    2002-01-01

    Hot water used in the South African domestic sector is mostly heated by in-tank electrical resistance heaters. These so-called "geysers" are the major contributors to the undesirable high morning and afternoon peaks imposed on the national electricity supply grid. These peak demands continue to be of concern to Eskom. The "reduced capacity in-line water heating system design methodology" was developed to address this problem. A parallel inline heat pump water heater further red...

  15. Assessment of two-level heat pump installations’ power efficiency for heat supply systems

    Аlla Е. Denysova; Igor O. Bodnar

    2015-01-01

    The problem of energy saving becomes one of the most important in power engineering. It is caused by exhaustion of world reserves in hydrocarbon fuel, such as gas, oil and coal representing sources of traditional heat supply. Conventional sources has essential shortcomings: low power, ecological and economic efficiencies, that can be eliminated by using alternative methods of power supply, like the considered one: low-temperature natural heat of ground waters of on the basis of heat pump in...

  16. The Integration of Heat Resources in a Solar Thermal-Heat Pump Hydronic System

    DeGrove, John

    2015-01-01

    According to the U.S. Department of Energy, roughly 41% of the energy consumed in the U.S. is used the power buildings. Within that number, almost half is used to heat or cool the building. Current technologies allow for consistent thermal management, but most utilize energy harvested from fossil fuels or convert electricity back into thermal energy. Background literature shows that the utilization of alternative heat resources such as heat pumps and solar thermal collectors can greatly reduc...

  17. Development of Vertical Ground Heat Exchanger for Ground-Source Heat Pump System

    Jalaluddin

    2012-01-01

    ABSTRACT: Geothermal energy as environmentally friendly energy source with wide range of applications such as for space heating and cooling, hot water supply and applications in the agricultural field has been used in practical engineering. The well-known application is for space heating and cooling in residential and commercial buildings with using ground-source heat pump (GSHP) system. An advantage of using the geothermal energy is the stability of the temperature range of ground at tens...

  18. Evaluation on Efficiency of CO2 Heat Pump Cycle for Hot Water Supply

    Saikawa, Michiyuki; Hashimoto, Katsumi

    In Japan, it is very effective for saving energy to develop highly efficient heat pumps for hot water supply. On the other hand, heat pumps with "natural working fluids" are being developed eagerly for environmental protection. After surveying the status of R&D relating to heat pumps with natural working f1uids, CRIEPI focused on a CO2 heat pump and started a basic study on it. We calculated COP of CO2 heat pump cycle for hot water supply and studied the characteristics of the cycle. We verified that CO2 cycle had unique characteristics and achieved higher COP than those of conventional working fluids.

  19. The Impact of thermostatic expansion valve heating on the performance of air-source heat pumps in heating mode

    Gao, Zhiming [Oak Ridge National Laboratory, PO BOX 2008, MS6472, Oak Ridge, TN 37831-6472 (United States)

    2010-04-15

    This paper discusses the strategy of improving the efficiency of air-source heat pumps by adding a small amount of heat to the sensor of the thermostatic expansion valve (TXV). TXV heating retards the closing of the valve and boosts energy efficiency in heating mode. Test results demonstrate that appropriate TXV heating achieves an improvement in coefficient of performance (COP) and thermal comfort. The required heating power is no more than 40 W and the additional equipment cost is less than $20 at manufacturer cost (2006). Thus, the strategy of TXV heating is both technologically practical and low cost. (author)

  20. The Impact of thermostatic expansion valve heating on the performance of air-source heat pumps in heating mode

    Gao Zhiming, E-mail: gaoz@ornl.go [Oak Ridge National Laboratory, PO BOX 2008, MS6472, Oak Ridge, TN 37831-6472 (United States)

    2010-04-15

    This paper discusses the strategy of improving the efficiency of air-source heat pumps by adding a small amount of heat to the sensor of the thermostatic expansion valve (TXV). TXV heating retards the closing of the valve and boosts energy efficiency in heating mode. Test results demonstrate that appropriate TXV heating achieves an improvement in coefficient of performance (COP) and thermal comfort. The required heating power is no more than 40 W and the additional equipment cost is less than $20 at manufacturer cost (2006). Thus, the strategy of TXV heating is both technologically practical and low cost.

  1. Compact interior heat exchangers for CO{sub 2} mobile heat pumping systems

    Hafner, Armin

    2003-07-01

    The natural refrigerant carbon dioxide (CO{sub 2}) offers new possibilities for design of flexible, efficient and environmentally safe mobile heat pumping systems. As high-efficient car engines with less waste heat are developed, extra heating of the passenger compartment is needed in the cold season. A reversible transcritical CO{sub 2} system with gliding temperature heat rejection can give high air delivery temperature which results in rapid heating of the passenger compartment and rapid defogging or defrosting of windows. When operated in cooling mode, the efficiency of transcritical CO{sub 2} systems is higher compared to common (HFC) air conditioning systems, at most dominant operating conditions. Several issues were identified for the design of compact interior heat exchangers for automotive reversible CO{sub 2} heat pumping systems. Among theses issues are: (1) Refrigerant flow distribution, (2) Heat exchanger fluid flow circuiting, (3) Air temperature uniformity downstream of the heat exchanger, (4) Minimization of temperature approach, (5) Windshield flash fogging due to retained water inside the heat exchanger, (6) Internal beat conduction in heating mode operation, and (7) Refrigerant side pressure drop In order to provide a basis for understanding these issues, the author developed a calculation model and set up a test facility and investigated different prototype heat exchangers experimentally.

  2. Modeling and computational simulation of adsorption based chemical heat pumps

    In this study a methodology is developed for the design of a packed bed reactor to be used in a Chemical Heat Pump (CHP). Adsorption and desorption of ethanol on active carbon packing in the reactor are investigated. Depending on the cycle, i.e. adsorption or desorption, cooling or heating of the reactor material is modeled through transient energy equation. The parameters associated with the vapor-carbon adsorption kinetics are experimentally determined. Then spatial distribution of temperature and adsorbed vapor amount are obtained with respect to time in adsorption–desorption cycles. These profiles are used to predict heating or cooling powers and COP for different adsorbent bed geometries and adsorption/desorption cycle times. Strong effect of heat transfer resistance of the packing, hence reactor size, on the system performance is observed. - Highlights: ► Performance of a chemical pump reactor is investigated theoretically. ► Ethanol adsorption/desorption on active carbon packing is modeled and simulated. ► Adsorption/desorption kinetics and equilibrium relations are found experimentally.

  3. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  4. Heating load vs. COP characteristic of an endoreversible Carnot heat-pump subjected to the heat-transfer law q ∝ (ΔTn)m

    The relation between heating load and coefficient of performance (COP) of an endoreversible Carnot heat-pump is derived based on a new generalized convective heat-transfer law and generalized radiative heat-transfer law, q ∝ (ΔTn)m. Our results include those obtained in many literature studies and can provide some theoretical guidance for the designs of real heat pumps

  5. Ammonia and Carbon Dioxide Heat Pumps for Heat Recovery in Industry

    Brix, Wiebke; Christensen, Stefan W.; Markussen, Michael M.;

    2012-01-01

    . Calculations of cycle performances are performed using a reference cycle for both ammonia and carbon dioxide as refrigerant. For each cycle a thorough sensitivity analysis reveals that the forward and return temperatures of the heat sink (condenser or gas cooler) of the heat pump are most important for the...... coefficient of performance, COP. By comparing the cycles it is found that for each set of operating conditions the two refrigerants perform equally well at one given inlet temperature of the heat sink. Above this temperature ammonia cycles have the best COP and below CO2 cycles perform best. A general...... conclusion is that ammonia heat pumps are best at heat sink inlet temperatures above 28°C and CO2 is best below 24°C, independent of other parameters....

  6. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    Highlights: • Individual heat pumps can significantly support the integration of wind power. • The heat pumps significantly reduce fuel consumption, CO2 emissions, and costs. • Heat storages for the heat pumps can provide only moderate system benefits. • Main benefit of flexible heat pump operation is a lower peak/reserve capacity need. • Socio-economic feasibility only identified for some heat storages to some extent. - Abstract: Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also crucial for the feasibility of the heat storages. Socio-economic feasibility is identified for control equipment enabling intelligent heat storage in the building structure and in existing hot water tanks. In contrast, investments in new heat accumulation tanks are not found competitive

  7. Optimization analysis of high temperature heat pump coupling to desiccant wheel air conditioning system

    Sheng, Ying; Zhang, Yufeng; Fang, Lei;

    2014-01-01

    The high temperature heat pump and desiccant wheel (HTHP&DW) system can make full use of heat released from the condenser of heat pump for DW regeneration without additional heat. In this study, DW operation in the HTHP&DW system was investigated experimentally, and the optimization analysis of H...

  8. A solar assisted heat-pump dryer and water heater

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  9. Coabsorbent and thermal recovery compression heat pumping technologies

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  10. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical air-clad geometries. While air-clad structures supporting sup-wavelength convex air-glass interfaces (viewed from the high-index side) will promote chaotic dynamics we find guidance of regular whispering-gallery modes in air-clad structures resembling an overall cylindrical symmetry. Highly symmetric air-clad structures may thus suppress the pump-absorption efficiency eta below the ergodic scaling law eta proportional to Ac/Acl, where Ac and Acl are the areas of the rare-earth doped core and the cladding, respectively.

  11. Optical pumping effect in absorption imaging of F=1 atomic gases

    Kim, Sooshin; Noh, Heung-Ryoul; Shin, Y

    2016-01-01

    We report our study of the optical pumping effect in absorption imaging of $^{23}$Na atoms in the $F=1$ hyperfine spin states. Solving a set of rate equations for the spin populations under a probe beam, we obtain an analytic expression for the optical signal of the $F=1$ absorption imaging. Furthermore, we verify the result by measuring the absorption spectra of $^{23}$Na Bose-Einstein condensates prepared in various spin states with different probe beam pulse durations. The analytic result can be used in quantitative analysis of $F=1$ spinor condensate imaging and readily applied to other alkali atoms with $I=3/2$ nuclear spin such as $^{87}$Rb.

  12. Hydrothermal treatment of sorption materials. Implications on adsorption heat pumps

    Henninger, S.K.; Mueller, S.; Ratzsch, K.F.; Schossig, P.; Henning, H.M. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany). Dept. of Thermal Systems and Buildings; Munz, G. [PSE AG, Freiburg (Germany)

    2010-07-01

    Material stability of adsorbents for thermally driven systems like heat storage and heat transformation plays a key role. In particular high power-density applications like adsorption heat pumps and chillers in combination with recently developed adsorption materials lead to a significant increased number of cycles over the lifetime (<100'000) making cycle stability crucial. With regard to current developments on composite structures improving the heat and mass transfer, additional stability analysis like thermo-mechanical properties are now getting into focus. This contribution gives a broad overview on the stability of current available sorption materials like silica gels and zeolites, recently developed (silica-) aluminophosphates (AIPO/SAPO) and most novel synthesized metal organic framework (MOF) materials under hydrothermal treatment. The results give a first indication on the suitability of these materials for the use in heat storage, thermally driven sorption heat pumps and cooling machines. Pure powders as well as composites have been analysed under continuous cycling conditions. Whereas the stability of powders and granules have been analysed in-situ by thermogravimetric cycle measurements, a cycling-test rig has been developed in order to realise a lifetime stress of composites consisting of active sorption material and a support structure. The need for a first stage short-cycle analysis is demonstrated impressively by the dramatic loss of more than 50% in sorption capacity of a SAPO-34 sample within the first 10 cycles. Several composite samples have passed a treatment of 30'000 cycles or more and show continuous degradation effects leading to a reduction in sorption capacity of 20% compared to the initial value. (orig.)

  13. Percutaneous absorption of tritium-gas-contaminated pump oil

    Trivedi, A. [Radiation Biology and Health Physics Branch, Ontario (Canada)

    1995-08-01

    One of the radiological problems encountered in tritium handling facilities is the hazards associated with tritium`s ability to label and degrade organic materials. Experiments in which male hairless rats have been contaminated with tritium-gas-contaminated pump oil have demonstrated that tritium deposited on the skin provides an input of organically bound tritium and tritiated water in the body. The accumulation of organically bound tritium at the point of contact in the skin and in various tissues influenced tritium excretion in urine and feces. The retention of tritium in the body showed that tritium was mainly metabolized and assimilated as organically bound tritium. The distribution of tritiated water was rapid and uniform in the whole-body. Analyses of tritium excreted in animal urine and feces showed that a significant level of organically bound tritium was excreted shortly after exposure. The highest concentration of tritium activity was measured in the exposed area of the skin. An increased level of tritium accumulation in the liver and kidneys was seen. Dose calculations showed that the exposed skin had the highest dose, and the skin dose was primarily due to the retention of organically bound tritium at the point of contact. The interpretation of these data has indicated that the retention of short-term organically bound tritium in the skin may be a dominant factor for dosimetry purposes. 19 refs., 5 figs., 4 tabs.

  14. Percutaneous absorption of tritium-gas-contaminated pump oil

    Trivedi, A

    1995-07-01

    One of the radiological problems encountered in tritium handling facilities is the hazards associated with tritium's ability to label and degrade organic materials. Experiments in which male hairless rats have been contaminated with tritium-gas-contaminated pump oil have demonstrated that tritium deposited on the skin provides an input of organically bound tritium and tritiated water in the body. The accumulation of organically bound tritium at the point of contact in the skin and in various tissues influenced tritium excretion in urine and feces. The retention of tritium in the body showed that tritium was mainly metabolized and assimilated as organically bound tritium. The distribution of tritiated water was rapid and uniform in the whole-body. Analyses of tritium excreted in animal urine and feces showed that a significant level of organically bound tritium was excreted shortly after exposure. The highest concentration of tritium activity was measured in the exposed area of the skin. An increased level of tritium accumulation in the liver and kidneys was seen. Dose calculations showed that the exposed skin had the highest dose, and the skin dose was primarily due to the retention of organically bound tritium at the point of contact. The interpretation of these data has indicated that the retention of short-term organically bound tritium in the skin may be a dominant factor for dosimetry purposes. (author)

  15. Percutaneous absorption of tritium-gas-contaminated pump oil

    One of the radiological problems encountered in tritium handling facilities is the hazards associated with tritium's ability to label and degrade organic materials. Experiments in which male hairless rats have been contaminated with tritium-gas-contaminated pump oil have demonstrated that tritium deposited on the skin provides an input of organically bound tritium and tritiated water in the body. The accumulation of organically bound tritium at the point of contact in the skin and in various tissues influenced tritium excretion in urine and feces. The retention of tritium in the body showed that tritium was mainly metabolized and assimilated as organically bound tritium. The distribution of tritiated water was rapid and uniform in the whole-body. Analyses of tritium excreted in animal urine and feces showed that a significant level of organically bound tritium was excreted shortly after exposure. The highest concentration of tritium activity was measured in the exposed area of the skin. An increased level of tritium accumulation in the liver and kidneys was seen. Dose calculations showed that the exposed skin had the highest dose, and the skin dose was primarily due to the retention of organically bound tritium at the point of contact. The interpretation of these data has indicated that the retention of short-term organically bound tritium in the skin may be a dominant factor for dosimetry purposes. (author)

  16. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  17. Experimental study on a hybrid photovoltaic/heat pump system

    Several studies have found that the decrease of photovoltaic (PV) cell temperature would increase the solar-to-electricity conversion efficiency. Different working fluids such as air and water have been used for the cooling of PV modules, but the improvement in energy performance has been found to be small. In this paper, R134a refrigerant was employed to cool the PV modules. With its low evaporating temperature, it was expected to achieve better cooling effect and electrical performance of the PV modules than using air and water working fluids. An experimental rig of a hybrid micro PV panel-based heat pump system was constructed for the performance testing in a laboratory at University of Nottingham. A small PV panel was made of 6 glass vacuum tube - PV module - aluminium sheet - cooper tube (GPAC) sandwiches connected in series, acting as the evaporator. This was coupled with a small heat pump system. The glass vacuum tubes reduced the heat loss from the PV panel to the ambient, resulting in the improvement of thermal performance. Three testing modes were proposed to investigate the effect of solar radiation, condenser water flow rate and condenser water supply temperature on energy performance. The testing results showed that an averaged COP reached 3.8, 4.3 and 4.0 under the three testing modes with variable radiation, condenser water supply water temperature and water flow rate, respectively, but this could be much higher for a large capacity heat pump system using large PV panels on building roofs. The COP increased with the increasing solar radiation, but decreased with the increasing condenser water supply temperature and water flow rate. The electrical efficiency of PV panel was improved by up to 1.9% based on a reference PV efficiency of 3.9%, compared with that without cooling. The condenser water supply temperature and water flow rate had little effect on the electrical performance. - Highlights: → R134a refrigerant was used for cooling of PV modules

  18. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Silvia Cocchi; Sonia Castellucci; Andrea Tucci

    2013-01-01

    The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling), through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP) uses the shallow ground a...

  19. Mobile Heat Pump Exploration Using R445A and R744

    Musser, Andrew; Hrnjak, Predrag S.

    2014-01-01

    The increased usage of hybrid and electric vehicles where waste heat availability is limited has spurred research and development of mobile heat pump systems. Many options exist for heat pump system architectures and refrigerants to be used. Currently R134a use is prevalent in vehicle air conditioning systems but offers poor heat pump performance at low ambient temperatures. Two refrigerants will be explored in this paper, R744 and R445A. Both of these refrigerants are getting attention in ve...

  20. Calculation methods for SPF for heat pump systems for comparison, system choice and dimensioning

    Nordman, Roger; Andersson, Kajsa; Axell, Monica; Lindahl, Markus

    2010-09-15

    In this project, results from field measurements of heat pumps have been collected and summarised. Also existing calculation methods have been compared and summarised. Analyses have been made on how the field measurements compare to existing calculation models for heat pumps Seasonal Performance Factor (SPF), and what deviations may depend on. Recommendations for new calculation models are proposed, which include combined systems (e.g. solar - HP), capacity controlled heat pumps and combined DHW and heating operation

  1. Study on the Performance of a Ground Source Heat Pump System Assisted by Solar Thermal Storage

    Yu Jin Nam; Xin Yang Gao; Sung Hoon Yoon; Kwang Ho Lee

    2015-01-01

    A ground source heat pump system (GSHPS) utilizes a relatively stable underground temperature to achieve energy-saving for heating and cooling in buildings. However, continuous long-term operation will reduce the soil temperature in winter, resulting in a decline in system performance. In this research, in order to improve the system performance of a GSHPS, a ground heat pump system integrated with solar thermal storage was developed. This solar-assisted ground heat pump system (SAGHPS) can b...

  2. Optimization of the Geometrical Parameters of a Solar Bubble Pump for Absorption-Diffusion Cooling Systems

    N. Dammak

    2010-01-01

    Full Text Available Problem statement: The objective of this study was to optimize the geometrical parameters of a bubble pump integrated in a solar flat plate collector. Approach: This solar bubble pump was part of an ammonia/water/helium (NH3/H2O/He absorption-diffusion cooling system. Results: An empirical model was developed on the basis of momentum, mass, material equations and energy balances. The mathematical model was solved using the simulation tool “Engineering Equation Solver (EES”. Conclusion/Recommendations: Using metrological data from Gabes (Tunisia various parameters were geometrically optimized for maximum bubble pump efficiency which was best for a bubble pump tube diameter of 6 mm, a tube length of 1.5 m, an inclination to the horizontal between 30 and 50° of the solar flat plate collector and a submergence ratio between 0.2 and 0.3.

  3. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    Horton, W. Travis [Purdue University; Groll, Eckhard A. [Purdue University; Braun, James E. [Purdue University

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  4. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  5. Water source heat pumps for greenhouse soil cooling. Final report

    Spieser, H.

    1987-06-01

    In an attempt to diversify and grow flowers which are in high demand, growers are looking to produce certain exotic flowers which require unique growing conditions. One example is the Alstroemerias also knwon as the Peruvian Lily. If the plants are grown continuously at about 12-15/sup 0/C soil temperature, the plant will continue to flower regardless of air temperature and photoriod. These latter two factors are considered secondary to the importance of cool soil temperatures. Alstroemeria production is still relatively new to the greenhouse industry. Some controversy still exists as to the direct benefits of planned soil cooling. This project was set up to evaluate a mechanical soil cooling system for continuous year round Alstroemeria production. A heat pump soil cooling system was installed in two greenhouses each with dimensions of 16 m by 61 m. Combined these greenhouses have a growing area of 1952 m/sup 2/. These greenhouses are older wooden greenhouses, covered by double poly, air-inflated glazing. This system worked very well, maintaining the soil temperature at the proper levels throughout the spring and summer months. During the rest of the year the soil cooling system is used less intensely. During winter months when soil cooling is not required, the heat pumps provide base load heating to the greenhouse through fan forced unit heaters.

  6. National Certification Standard for Ground Source Heat Pump Personnel

    Kelly, John [Geothermal Heat Pump Consortium

    2013-07-31

    The National Certification Standard for the Geothermal Heat Pump Industry adds to the understanding of the barriers to rapid growth of the geothermal heat pump (GHP) industry by bringing together for the first time an analysis of the roles and responsibilities of each of the individual job tasks involved in the design and installation of GHP systems. The standard addresses applicable qualifications for all primary personnel involved in the design, installation, commissioning, operation and maintenance of GHP systems, including their knowledge, skills and abilities. The resulting standard serves as a foundation for subsequent development of curriculum, training and certification programs, which are not included in the scope of this project, but are briefly addressed in the standard to describe ways in which the standard developed in this project may form a foundation to support further progress in accomplishing those other efforts. Follow-on efforts may use the standard developed in this project to improve the technical effectiveness and economic feasibility of curriculum development and training programs for GHP industry personnel, by providing a more complete and objective assessment of the individual job tasks necessary for successful implementation of GHP systems. When incorporated into future certification programs for GHP personnel, the standard will facilitate increased consumer confidence in GHP technology, reduce the potential for improperly installed GHP systems, and assure GHP system quality and performance, all of which benefit the public through improved energy efficiency and mitigated environmental impacts of the heating and cooling of homes and businesses.

  7. Experimental analysis of an air–water heat pump with micro-channel heat exchanger

    A multi-port extruded (MPE) aluminium flat tube air heat exchanger was compared to a round tube finned coil (FC). The MPE heat exchanger has parallel flow vertical tube configuration with headers in horizontal position and conventional folded louvred fins. The two heat exchangers were mounted on a 10 kW cooling capacity R410A packaged air heat pump. They were sized to approximately obtain the same cooling and heating capacities in chiller and heating mode, respectively. Climatic room steady state tests without frosting phenomena occurring during heat pump operation, demonstrated that the round tube and the flat tube heat exchanger performance are comparable. The MPE heat exchanger was tested with different refrigerant inlet distributor/outlet tubes configurations to investigate the effect of liquid refrigerant distribution. Cycling frosting/defrosting operations were tested with two equivalent machines placed in parallel outdoor and working at full load condition, one of the units was equipped with the MPE heat exchanger while the other mounted a standard finned coil. Penalization factors were analytically introduced to evaluate frosting associated heating energy and energy efficiency degradation. Test results indicate that both the heat pumps are penalized by frost formation but both the penalization factors are higher for the MPE-unit than the FC-unit one in the −6 to 4 °C air dry bulb temperature range. For the two units, a roughly linear dependence of the heating energy penalization factor and of the energy efficiency factor from the difference between outdoor air and saturated air at the evaporation temperature humidity ratio can be pointed out. - Highlights: ► A multi-port aluminium flat tube heat exchanger was compared to a round tube finned one in a heat pump application. ► In steady state tests without frosting the round and the flat tube heat exchanger are comparable. ► Different inlet distributor/outlet tubes configurations were tested to

  8. COMPARATIVE EFFICIENCY OF HEAT-PUMPS APPLICATION IN LOW TEMPERATURE HEAT SUPPLY SYSTEMS

    M. N. Chepurnoy; N. V. Resident

    2015-01-01

    The  article  considers  comparative  operation-efficiency  of  the  low-temperature  heatsupply systems with heat pumping plants (HPP) and with hot-water boilers. The paper shows that for energy evaluation of the alternative heat-supply systems effectiveness one cannot employ the transformation ratio (heating coefficient) and the fuel heat-utilization factor in the HPP. Nonetheless the transformation ratio enters the formulae designating the efficiency of HPP operation. The authors obtain a ...

  9. Integration of large-scale heat pumps in the district heating systems of Greater Copenhagen

    Bach, Bjarne; Werling, Jesper; Ommen, Torben Schmidt;

    2016-01-01

    This study analyses the technical and private economic aspects of integrating a large capacity of electric driven HP (heat pumps) in the Greater Copenhagen DH (district heating) system, which is an example of a state-of-the-art large district heating system with many consumers and suppliers....... The analysis was based on using the energy model Balmorel to determine the optimum dispatch of HPs in the system. The potential heat sources in Copenhagen for use in HPs were determined based on data related to temperatures, flows, and hydrography at different locations, while respecting technical constraints...

  10. Domestic Hot Water Production with Ground Source Heat Pump in Apartment Buildings

    Jukka Yrjölä

    2015-08-01

    Full Text Available Producing domestic hot water (DHW with a ground source heat pump (GSHP is challenging due to the high temperature (HT of DHW. There are many studies proving the better performance of cascade heat pumps compared to single-stage heat pumps when the difference between the condensing and the evaporation temperature is large. In this system approach study, different GSHP arrangements are described and computationally compared. A two-stage heat pump arrangement is introduced in which water tanks of the heating system are utilized for warming up the DHW in two stages. It is shown that the electricity consumption with this two-stage system is approximately 31% less than with the single-stage heat pump and 12% less than with the cascade system. Further, both low temperature (LT and HT heat pumps can run alone, which is not common in cascade or other two-stage heat pumps. This is advantageous because the high loads of the space heating and DHW production are not simultaneous. Proper insulation of the DHW and recirculation pipe network is essential, and drying towel rails or other heating coils should be avoided when aiming for a high efficiency. The refrigerants in the calculations are R407C for the LT heat pump and R134a for the HT heat pump. Investment costs are excluded from calculations.

  11. Continuous heating of an air-source heat pump during defrosting and improvement of energy efficiency

    Highlights: • The newly designed dual hot gas spray defrosting method was examined. • Uninterrupted heating of an air source heat pump during defrosting. • We compared newly designed dual hot gas and traditional reverse cycle defrost. • Total energy efficiency was increased by 8% compared to traditional method. - Abstract: During winter operation, an air-source heat pump extracts heat from the cold outside air and releases the heat into the living space. At certain outside air conditions, when it operates in heating mode, frost can form on the air-cooled heat exchanger, decreasing the heating performance. Conventionally, reverse-cycle defrosting (RCD) has been the common method of frost removal. But this method requires the interruption of heating during defrosting, as well as a period of time to reheat the cooled pipes of the indoor units after defrosting. In this study, a new technology called continuous heating was developed, which utilize only a hot gas bypass valve to remove the frost from the outdoor heat exchanger and thus enabling the supply of hot air to indoors without any interruption. For this, a new high temperature and low pressure gas bypass method was designed, which is differentiated from the common high pressure hot gas bypass methods by its use of low pressure. Various refrigerant mass flow distributions were examined, and the most effective defrosting mass flow was 50% in this case. Heating capacity was increased by 17% because of continuous heating, and the cumulated energy efficiency was increased by 8% compared to the traditional reverse cycle defrosting over 4 h including two defrost operations. Also, cumulated energy efficiency was increased by 27% compared to electronic heaters that supply the same heating capacity during defrosting. By this new technology, it has been proved that continuous heating and energy savings could be achieved without adopting expensive technologies

  12. Heat transfer enhancement of NBI vacuum pump cryopanels

    Highlights: ► Cryopanel is optimized minimizing its maximal temperature rise and heat capacity. ► Copper coating on the cryopanels is necessary to reach a high thermal efficiency. ► The copper coating is achieved using an electroplating technique. ► A thermal shield for the cryopump 4 K manifold would reduce heat leaks down to 10%. ► The manufacturability and operation of the thermal shield is discussed. -- Abstract: Huge cryogenic pumps are installed inside neutral beam injectors in order to manage the typically very large gas flows. This paper deals with the aspect of passive cooling in NBI cryopump design development and discusses design considerations in two example areas. One is the design of cryopanels consisting of a pipe, centrally supplied with cryogenic helium, and a welded fin, passively cooled, to provide the necessary pumping surface below a given maximum temperature. The results of several parametric simulations in ANSYS are presented using different copper thicknesses and cryopanel geometries to discuss the thermal capability (heat transfer characteristics and heat capacities) of a number of design variants. The optimum design solution is based on copper-coated fins, using an electroplating technique, and thereby improving the heat transfer of the cryopanels while attaining an overall reduction in weight. The other area is the sound design of the manifold shielding system with a weld contact between copper and stainless steel. Weld samples were manufactured and investigated to raise awareness of the demands and risks during manufacturing and to demonstrate that readily applicable weld procedures exist

  13. A key review of wastewater source heat pump (WWSHP) systems

    Highlights: • Comprehensively reviewing WWSHP systems for the first time. • Varying the COP values for heating of the reviewed systems between 1.77 and 10.63. • Ranging the COP values for cooling of the reviewed systems from 2.23 to 5.35. • Being the majority of the performance assessments on the energetic basis. - Abstract: Heat pumps (HPs) are part of the environmentally friendly technologies using renewable energy and have been utilized in the developed countries for years. Wastewater is seen as a renewable heat source for HPs. At the beginning of the 1980s, waste (sewage) water source heat pumps (WWSHPs) were widely applied in North European countries like Sweden and Norway and partially applied in China. In the past two decades, the WWSHP has become increasingly popular due to its advantages of relatively higher energy utilization efficiency and environmental protection. The present study comprehensively reviews WWSHP systems in terms of applications and performance assessments including energetic, exergetic, environmental and economic aspects for the first time to the best of the authors’ knowledge. In this context, a historical development of WWSHPs was briefly given first. Next, wastewater potential and its characteristics were presented while a WWSHP system was introduced. The previously conducted studies on WWSHPs were then reviewed and classified in a tabulated form. Finally, some concluding remarks were listed. The COP values of the reviewed studies ranged from 1.77 to 10.63 for heating and 2.23 to 5.35 for cooling based on the experimental and simulated values. The performance assessments are mostly made using energy analysis methods while the number of exergetic evaluations is very low and has not been comprehensively performed. It is expected that the comprehensive review here will be very beneficial to those dealing with the design, analysis, simulation and performance assessment of WWSHP systems

  14. International heat pump status and policy review 1993-1996. Part 1. Analysis

    Four years after the publication of the International heat pump status and policy review, the International Energy Agency (IEA) Heat Pump Centre set out to compile an update of this study. The update reviews developments in the years 1993-96 and provides an outlook on future developments. Where available it includes data on 1997 as well. In 1997, roughly 90 million heat pumps were in operation worldwide (55 million in 1992). The main objective of the update of the International heat pump status and policy review is to provide an assessment of basic factors affecting heat pumps, policy measures regarding heat pumps, the status of various heat pump technologies and the current and expected penetration of heat pumps in all marker sectors. The analysis is based on a survey of the heat pump situation in 18 countries: Austria, Canada, China, Denmark, France, Germany, Greece, Italy, Japan, the Netherlands, Norway, South Africa, South Korea, Spain, Sweden, Switzerland, UK and USA. In part one, the information from all these countries is brought together, compared and analysed. The information is gathered from detailed reviews of the situations in the individual countries, the so-called National Position Papers, which can be found in part two of the report for which a separate abstract has been prepared. The report reveals that overall the heat pump market showed a favourable development in the years 1993-96

  15. International heat pump status and policy review 1993-1996. Part 2. National Position Papers

    Four years after the publication of the International heat pump status and policy review, the International Energy Agency (IEA) Heat Pump Centre set out to compile an update of this study. The update reviews developments in the years 1993-96 and provides an outlook on future developments. Where available it includes data on 1997 as well. In 1997, roughly 90 million heat pumps were in operation worldwide (55 million in 1992). The main objective of the update of the International heat pump status and policy review is to provide an assessment of basic factors affecting heat pumps, policy measures regarding heat pumps, the status of various heat pump technologies and the current and expected penetration of heat pumps in all marker sectors. The analysis is based on a survey of the heat pump situation in 18 countries: Austria, Canada, China, Denmark, France, Germany, Greece, Italy, Japan, the Netherlands, Norway, South Africa, South Korea, Spain, Sweden, Switzerland, UK and USA. In part one, for which a separate abstract has been prepared, the information from all these countries is brought together, compared and analysed. The information is gathered from detailed reviews of the situations in the individual countries, the so-called National Position Papers, which can be found in this volume (part two) of the report. The reports reveal that overall the heat pump market showed a favourable development in the years 1993-96

  16. Modelling and Analysis of Heat Pumps for Zero Emission Buildings

    Småland, Leif

    2013-01-01

    The work of this Master thesis is a continuation of a project work. This defines qualitative and quantitative parameters needed to make a simulation tool for early-stage decision making with regards to the energy supply strategy for non-residential Zero Emission Building (ZEB). The work is based on the assumption that the heat pump (HP) technology will be one of the core technologies for the energy supply strategy in the ZEB concept. The simulation tool proposed should be able to find the bes...

  17. Estimation of Residential Heat Pump Consumption for Flexibility Market Applications

    Kouzelis, Konstantinos; Tan, Zheng-Hua; Bak-Jensen, Birgitte;

    2015-01-01

    Recent technological advancements have facilitated the evolution of traditional distribution grids to smart grids. In a smart grid scenario, flexible devices are expected to aid the system in balancing the electric power in a technically and economically efficient way. To achieve this, the flexible...... load of a flexible device, namely a Heat Pump (HP), out of the aggregated energy consumption of a house. The main idea for accomplishing this, is a comparison of the flexible consumer with electrically similar non-flexible consumers. The methodology is based on machine learning techniques, probability...

  18. North Village Ground Source Heat Pump Demonstration Project

    Redderson, Jeff

    2015-08-03

    This project demonstrated the feasibility of converting from a traditional direct exchange system to a ground source heat pump system on a large scale, multiple building apartment complex on a university campus. A total of ten apartment buildings were converted using vertical well fields and a ground source loop that connected the 24 apartments in each building into a common system. The system has yielded significant operational savings in both energy and maintenance and transformed the living environments of these residential buildings for our students.

  19. Response functions and thermal influence for various multiple borehole configurations in ground coupled heat pump systems

    Pešl, Metka; Goričanec, Darko

    2012-01-01

    Ground coupled heat pump (GCHP) utilizes the immense renewable storage capacity of the ground as a heat source or sink to provide space heating, cooling, and domestic hot water. GCHP systems are generally comprised of watersource heat pumps and ground heat exchangers (GHEs). Consisting of closedloop of pipes buried in boreholes, ground heat exchangers (GHEs) are devised for extraction or injection of thermal energy from/into the ground. Despite the low energy and lower maintenance benefits of...

  20. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  1. An investigation of energy efficient and sustainable heating systems for buildings : Combining photovoltaics with heat pump

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    Renewable energy sources contribute considerable amounts of energy when natural phenomena are converted into useful forms of energy. Solar energy, i.e. renewable energy, is converted to electricity by photovoltaic systems (PV). This study was aimed at investigating the possibility of combining PV with Heat Pump (HP) (PV-HP system). HP uses direct electricity to produce heat. In order to increase the sustainability and efficiency of the system, the required electricity for the HP was supposed ...

  2. Development of an adsorption chiller and heat pump for domestic heating and air-conditioning applications

    Nunez, Tomas; Henning, Hans-Martin [Fraunhofer Institut for Solar Energy Systems ISE, Heidenhofstrasse 2, 79110 Freiburg (Germany); Mittelbach, Walter [SorTech AG, Weinbergweg 23, 06120 Halle a.d. Saale (Germany)

    2007-09-15

    The scope of this paper is to present the development of a prototype of a small adsorption heat pump working on the adsorption pair silica gel-water. The development of this prototype with remarkable high power densities has been carried out during the last year and is a result of continued joint work on adsorption heat transformation systems carried out at SorTech AG and the Fraunhofer Institute. (author)

  3. Combined solar heat-pump facility for district heating of private dwelling house

    Combined solar heat-pump facility for district heat supply of private dwelling houses is described. The application of the above facility provides for economy of traditional fuel-energy resources and completely meets the approved trend aimed at refusal from such generally accepted environmental pollutants as small-sized boiler-rooms, furnaces, etc. The system substantiation, calculations and parameters selection are presently completed. The facility design documentation is developed and the prototype production started. 4 refs.; 2 figs

  4. Design and evaluation of a primary/secondary pumping system for a heat pump assisted solar thermal loop

    Krockenberger, Kyle G.

    A heat pump assisted solar thermal system was designed, commissioned, tested and analyzed over a period of two years. The unique system uses solar energy whenever it is available, but switches to heat pump mode at night or whenever there is a lack of solar energy. The solar thermal energy is added by a variety of flat plat solar collectors and an evacuated tube heat pipe solar collector. The working medium in the entire system is a 50% mixture of propylene glycol and water for freeze protection. During the design and evaluation the primary / secondary pumping system was the focus of the evaluation. Testing within this research focused on the operation modes, pump stability, and system efficiency. It was found that the system was in full operation, the pumps were stable and that the efficiency factor of the system was 1.95.

  5. Characterization of a mini-channel heat exchanger for a heat pump system

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  6. Characterization of a mini-channel heat exchanger for a heat pump system

    Arteconi, A.; Giuliani, G.; Tartuferi, M.; Polonara, F.

    2014-04-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  7. Optimization of thermoelectric heat pumps by operating condition management and heat exchanger design

    Highlights: ► A new configuration of thermoelectric heat pump is introduced. ► An optimization method based on an analytical model is presented. ► Optimization of the device is realized by maximization of the global COP. ► Results obtained by maximization of the COP or EGM are equivalent. ► An optimal design of the device and operating conditions are deduced of the optimization. - Abstract: This paper introduces an optimization method for improving thermoelectric heat pump performance by operating condition management of the thermoelectric modules (TEMs) and design optimization of the heat exchangers linked to the TEMs. The device studied, corresponding to an original configuration of the thermoelectric heat pump, comprises two commercial thermoelectric modules and two mini-channel heat sinks through which water flows, in contact with both sides of the TEMs. The objective function is the maximization of the device’s coefficient of performance (COP), including the electrical and mechanical consumption of the thermoelectric modules and the circulating auxiliaries. First, the optimization variables are the number and the diameter of mini-channels, and the mass flows for both heat sinks (hot and cold sides). The results show that similar results are obtained by minimization of the entropy generation in the device. Finally, the hot thermal power demand is included in the optimization variables for complete optimization of the device. The results of full optimization converge with those obtained with the previous partial optimization.

  8. Development of an Air-Source Heat Pump Integrated with a Water Heating / Dehumidification Module

    Rice, C Keith [ORNL; Uselton, Robert B. [Lennox Industries, Inc; Shen, Bo [ORNL; Baxter, Van D [ORNL; Shrestha, Som S [ORNL

    2014-01-01

    A residential-sized dual air-source integrated heat pump (AS-IHP) concept is under development in partnership between ORNL and a manufacturer. The concept design consists of a two-stage air-source heat pump (ASHP) coupled on the air distribution side with a separate novel water heating/dehumidification (WH/DH) module. The motivation for this unusual equipment combination is the forecast trend for home sensible loads to be reduced more than latent loads. Integration of water heating with a space dehumidification cycle addresses humidity control while performing double-duty. This approach can be applied to retrofit/upgrade applications as well as new construction. A WH/DH module capable of ~1.47 L/h water removal and ~2 kW water heating capacity was assembled by the manufacturer. A heat pump system model was used to guide the controls design; lab testing was conducted and used to calibrate the models. Performance maps were generated and used in a TRNSYS sub-hourly simulation to predict annual performance in a well-insulated house. Annual HVAC/WH energy savings of ~35% are predicted in cold and hot-humid U.S. climates compared to a minimum efficiency baseline.

  9. Development of ANC-type empirical two-phase pump model for full size CANDU primary heat transport pump

    The development of an ANC-type empirical two-phase pump model for CANDU (Canadian Deuterium) reactor primary heat transport pumps is described in the present paper. The model was developed based on Ontario Hydro Technologies' full scale Darlington pump first quadrant test data. The functional form of the ANC model which is widely used was chosen to facilitate the implementation of the model into existing computer codes. The work is part of a bigger test program with the aims: (1) to produce high quality pump performance data under off-normal operating conditions using both full-size and model scale pumps; (2) to advance our basic understanding of the dominant mechanisms affecting pump performance based on more detailed local measurements; and (3) to develop a 'best-estimate' or improved pump model for use in reactor licensing and safety analyses. (author)

  10. Generalized Performance Characteristics of Refrigeration and Heat Pump Systems

    Mahmoud Huleihil

    2010-01-01

    Full Text Available A finite-time generic model to describe the behavior of real refrigeration systems is discussed. The model accounts for finite heat transfer rates, heat leaks, and friction as different sources of dissipation. The performance characteristics are cast in terms of cooling rate (r versus coefficient of performance (w. For comparison purposes, various types of refrigeration/heat pump systems are considered: the thermoelectric refrigerator, the reverse Brayton cycle, and the reverse Rankine cycle. Although the dissipation mechanisms are different (e.g., heat leak and Joule heating in the thermoelectric refrigerator, isentropic losses in the reverse Brayton cycle, and limits arising from the equation of state in the reverse Rankine cycle, the r−w characteristic curves have a general loop shape. There are four limiting types of operation: open circuit in which both r and w vanish in the limit of slow operation; short circuit in which again r and w vanish but in the limit of fast operation; maximum r; maximum w. The behavior of the considered systems is explained by means of the proposed model. The derived formulae could be used for a quick estimation of w and the temperatures of the working fluid at the hot and cold sides.

  11. Heat pumps barometer - EurObserv'ER - October 2013

    Demand on the European heat pump market has been a series of peaks and troughs since 2008 after several years of very strong growth. These fluctuations in annual sales affect the whole of Europe, and its individual countries. Sales have been hit by a blend of economic slowdown, financial uncertainties and low new construction figures. The 2012 trend pointed to further decline, because of tighter conditions in some of the key markets. The assessment made by EurObserv'ER of the air source and ground source HP market for domestic heating and cooling shows that sales decreased from 1.79 million units in 2011 to 1.65 million units in 2012, i.e. a 7.9% drop

  12. Air-clad fibers: pump absorption assisted by chaotic wave dynamics?

    Mortensen, Niels Asger

    2007-01-01

    Wave chaos is a concept which has already proved its practical usefulness in design of double-clad fibers for cladding-pumped fiber lasers and fiber amplifiers. In general, classically chaotic geometries will favor strong pump absorption and we address the extent of chaotic wave dynamics in typical air-clad geometries. While air-clad structures supporting sup-wavelength convex air-glass interfaces (viewed from the high-index side) will promote chaotic dynamics we find guidance of regular whis...

  13. Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system

    Highlights: • A transient model was developed to predict dynamic performance of new PV/LHP system. • The model accuracy was validated by experiment giving less than 9% in error. • The new system had basic and advanced performance coefficients of 5.51 and 8.71. • The new system had a COP 1.5–4 times that for conventional heat pump systems. • The new system had higher exergetic efficiency than PV and solar collector systems. - Abstract: Objective of the paper is to present an investigation into the dynamic performance of a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for potential use in space heating or hot water generation. The methods used include theoretical computer simulation, experimental verification, analysis and comparison. The fundamental equations governing the transient processes of solar transmission, heat transfer, fluid flow and photovoltaic (PV) power generation were appropriately integrated to address the energy balances occurring in different parts of the system, e.g., glazing cover, PV cells, fin sheet, loop heat pipe, heat pump cycle and water tank. A dedicated computer model was developed to resolve the above grouping equations and consequently predict the system’s dynamic performance. An experimental rig was constructed and operated under the real weather conditions for over one week in Shanghai to evaluate the system living performance, which was undertaken by measurement of various operational parameters, e.g., solar radiation, photovoltaic power generation, temperatures and heat pump compressor consumption. On the basis of the first- (energetic) and second- (exergetic) thermodynamic laws, an overall evaluation approach was proposed and applied to conduct both quantitative and qualitative analysis of the PV/LHP module’s efficiency, which involved use of the basic thermal performance coefficient (COPth) and the advanced performance coefficient (COPPV/T) of such a system. Moreover, a simple comparison

  14. Geothermal heat pump system assisted by geothermal hot spring

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  15. Hourly Calculation Method of Air Source Heat Pump Behavior

    Ludovico Danza

    2016-04-01

    Full Text Available The paper describes an hourly simplified model for the evaluation of the energy performance of heat pumps in cooling mode maintaining a high accuracy and low computational cost. This approach differs from the methods used for the assessment of the overall energy consumption of the building, normally placed in the so-called white or black box models, where the transient conduction equation is deterministically and stochastically solved, respectively. The present method wants to be the expression of the grey box model, taking place between the previous approaches. The building envelope is defined using a building thermal model realized with a 3 Resistance 1 Capacitance (3R1C thermal network based on the solution of the lumped capacitance method. The simplified model evaluates the energy efficiency ratio (EER of a heat pump through the determination of the hourly second law efficiency of a reversed Carnot cycle. The results of the simplified method were finally compared with those provided by EnergyPlus, a dynamic building energy simulation program, and those collected from an outdoor test cell in real working conditions. The results are presented in temperatures and energy consumptions profiles and are validated using the Bland-Altman test.

  16. Elimination of Oscillations in a Central Heating System using Pump Control

    Andersen, Palle; Pedersen, Tom Søndergaard; Stoustrup, Jakob; Bidstrup, N.; Svensen, J.; Lovmand, B.

    heating the room. Using the pump speed as an active part in control is it shown that the room temperature may be stabilized in a wider interval of heat demand. The idea is to control the pump speed in a way that keeps the thermostatic valve within a suitable operating area using an estimate of the valve...... position. The position is estimated from the pump terminals, using the pump flow and the pump differential pressure. The concept is tested on a small central heating test bench. The results show that it is possible to stabilize the room temperature even at part load conditions...

  17. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  18. Energy and exergy analysis of fossil plant and heat pump building heating system at two different dead-state temperatures

    Lohani, S.P. [Kathmandu University, Dhulikhel (Nepal)

    2010-08-15

    In this paper, we deal with the energy and exergy analysis of a fossil plant and ground and air source heat pump building heating system at two different dead-state temperatures. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for heat pump building heating system. Since energy and exergy demand are key parameters to see which system is efficient at what reference temperature, we did a study on the influence of energy and exergy efficiencies. In this regard, a commercial software package IDA-ICE program is used for calculation of fossil plant heating system, however, there is no inbuilt simulation model for heat pumps in IDA-ICE, different COP (coefficient of performance) curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy. The outcome of the energy and exergy flow analysis at two different dead-state temperatures revealed that the ground source heat pumps with ambient reference have better performance against all ground reference systems as well as fossil plant (conventional system) and air source heat pumps with ambient reference. (author)

  19. Influence of the laser-diode temperature on crystal absorption and output power in an end-pumped Nd:YVO4 laser

    Ebrahim Safari

    2011-01-01

    In this work, we studied the influence of heat loaded into the laser crystal in an endpumped solid-state Nd:YVO4 high power laser. We have shown experimentally that the optimum value of the laser-diode temperature for the maximum pump power absorption by the Nd:YVO4 crystal and the maximum Nd:YVO4 laser output power are approximately similar to that of a system of the low power type, but by increasing the pump power, different values can be obtained.

  20. Experimental study on fouling in the heat exchangers of surface water heat pumps

    Fouling in the heat exchangers plays a key role on the performance of surface water heat pumps. It is also the basement for the system design criteria and operation energy efficiency. In this paper, experimental measurements are performed both in the field and the laboratory with different water qualities, temperatures and velocities. The research will focus on the dynamic growth characteristics of fouling and its main components. By studying the variation rules of fouling resistance, the fouling resistance allowance for certain water condition is recommended. Furthermore, a fouling prediction model in surface water heat pump will be developed and validated based on elaborating with fouling principle under specified water conditions. - Highlights: • Field and laboratory experiments are taken to measure the fouling variation. • Fouling growth process can be divided into four stages. • We recommend fouling resistance allowances for certain conditions. • A fouling prdiction model is developed and validated

  1. Raising the temperature of the UK heat pump market: Learning lessons from Finland

    Heat pumps play a central role in decarbonising the UK's buildings sector as part of the Committee on Climate Change's (CCC) updated abatement scenario for meeting the UK's fourth carbon budget. However, the UK has one of the least developed heat pump markets in Europe and renewable heat output from heat pumps will need to increase by a factor of 50 over the next 15 years to be in line with the scenario. Therefore, this paper explores what lessons the UK might learn from Finland to achieve this aim considering that its current level of heat pump penetration is comparable with that outlined in the CCC scenario for 2030. Despite the two countries’ characteristic differences we argue they share sufficient similarities for the UK to usefully draw some policy-based lessons from Finland including: stimulating new-build construction and renovation of existing stock; incorporating renewable heat solutions in building energy performance standards; and bringing the cost of heat pumps in-line with gas fired heating via a combination of subsidies, taxes and energy RD&D. Finally, preliminary efforts to grow the heat pump market could usefully focus on properties unconnected to the gas-grid, considering these are typically heated by relatively expensive oil or electric heating technologies. -- Highlights: •Heat pumps are expected to play a key role in meeting the UK's 4th carbon budget. •Today, heat pump deployment per capita in the UK is one of the lowest in Europe. •Finland offers some policy lessons given its high level of heat pump deployment. •Policies: raising build rates, building standards and heat pump cost-effectiveness. •Deployment efforts should focus on buildings not heated by relatively low-cost gas

  2. Experimental research on LiBr refrigeration - Heat pump system applied in CCHP system

    A new heat recovery technique for a LiBr refrigeration-heat pump system applied in CCHP(Combined Cooling, Heating and Power system) system is proposed in this paper. The system can recover the heat of the LiBr refrigeration cooling water to heat the demineralized water of the boiler. Experimental research on the operating characteristics of the compound system is carried out and the obtained conclusions are as follows: The LiBr refrigeration-heat pump system is able to perform stably and flexibly. The heat pump system has a relative large coefficient of performance (COPP) which can be as high as 6.13. When the outlet temperature of the demineralized water is 67.8 oC, the CCHP system brings 26.6% decrease in primary energy rate consumption compared with the combined heat and power production system (CHP) plus electricity-driven refrigeration. It is suggested that heat pumps should be used in CCHP system to heat the demineralized water of the boiler by recovering the exhaust heat of the LiBr refrigeration system. - Highlights: → LiBr refrigeration-heat pump system applied in CCHP system is proposed. → This system can recover the heat of the LiBr refrigeration cooling water to heat the demineralized water of the boiler. → Using heat pump to recover exhaust heat can increase the energy efficiency of the whole CCHP.

  3. Design and Thermodynamic Analysis of a Steam Ejector Refrigeration/Heat Pump System for Naval Surface Ship Applications

    Cüneyt Ezgi

    2015-12-01

    Full Text Available Naval surface ships should use thermally driven heating and cooling technologies to continue the Navy’s leadership role in protecting the marine environment. Steam ejector refrigeration (SER or steam ejector heat pump (SEHP systems are thermally driven heating and cooling technologies and seem to be a promising technology to reduce emissions for heating and cooling on board naval surface ships. In this study, design and thermodynamic analysis of a seawater cooled SER and SEHP as an HVAC system for a naval surface ship application are presented and compared with those of a current typical naval ship system case, an H2O-LiBr absorption heat pump and a vapour-compression heat pump. The off-design study estimated the coefficient of performances (COPs were 0.29–0.11 for the cooling mode and 1.29–1.11 for the heating mode, depending on the pressure of the exhaust gas boiler at off-design conditions. In the system operating at the exhaust gas boiler pressure of 0.2 MPa, the optimum area ratio obtained was 23.30.

  4. The Effects of Gas Cooler Inlet Pressure on System Performance in Heat Pump Tumble Dryers

    Erdem, Serkan; Onan, Cenk; Heperkan, Hasan Alpay; Özkan, Derya Burcu

    2014-01-01

    Heat pumps working with CO2 as a refrigerant have low energy consumptions if right application areas and operating conditions are selected. The use of CO2 in heat pump dryers is feasible if operating temperatures are appropriate. In heat pump dryers working with CO2 according to the transcritical cycle, one of the most important operating conditions is optimum gas cooler inlet pressure, which gives the maximum coefficient of performance (COP). In this study, a model was developed by using MAT...

  5. Application analysis of ground source heat pumps in building space conditioning

    Qian, Hua

    2014-01-01

    The adoption of geothermal energy in space conditioning of buildings through utilizing ground source heat pump (GSHP, also known as geothermal heat pump) has increased rapidly during the past several decades. However, the impacts of the GSHP utilization on the efficiency of heat pumps and soil temperature distribution remained unclear and needs further investigation. This paper presents a novel model to calculate the soil temperature distribution and the coefficient of performance (COP) of ...

  6. Heat pump-based geothermal energy. Technical and economic study. The costs of heat-pump-based geothermal energy

    This study aims at identifying the financial basis on which actors of a geothermal project for heating, cooling and hot water production can rely. It also aims at describing the three main technical solutions for very-low-energy geothermal: horizontal sensors, vertical probes, and geothermal doublets on aquifer. After a presentation of the adopted methodology and of the different economic, thermal and technical hypotheses, the respective costs of these technical solutions are assessed and a comparison between these systems and conventional energies is reported. The economic study is performed for different markets: individual housing, collective housing, and office building. Different aspects of each operation are studied: underground works (drilling) and surface equipment (heat pump and support). Investment, maintenance and operational costs are analysed

  7. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    Hedegaard, Karsten; Morthorst, Poul Erik; Münster, Marie; Detlefsen, Nina

    2013-01-01

    The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing research, main focus is put on individual heat pumps in the residential sector and the possibilities for flexible operation, using the heat storage options available. Extensive model development is...

  8. ENERGY CONSERVATION ANALYSIS BY APPLICATION OF HEAT PUMP SYSTEM - A CASE STUDY

    Mr.S.N.Nalawade; Mr.G.B.Jadhav; Prof.N.N.Shinde

    2015-01-01

    Heat pump application delivers an efficient way to replace the electrical energy for heating application in an industry, specifically for large - scale installations. This technology is very cost effective, Eco friendly source for water heating application which significantly reduces the use of elect rical energy consumption. An analysis of heat pump system for water heating application at the process industry established a new option for water heater. This paper prese...

  9. Experimental Investigation of Refrigerant Charge Minimisation of a Small Capacity Heat Pump

    Fernando, W. Primal D.

    2007-01-01

    Enormous quantities of heat are available in air, soil, water, exhaust air from buildings, and in waste water of any kind. However these heat sources are use-less for heating purposes since their temperatures are lower than the tempera-ture required for heating. Heat pumps can be used to extract heat from these sources with a small expenditure of additional energy and up-grade and deliver the energy as useful heat for room heating. The heat pump cycle employs the well-known vapour compression...

  10. Field Performance of Heat Pump Water Heaters in the Northeast

    Shapiro, C.; Puttagunta, S.

    2013-08-01

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publicly available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(tm), A.O. Smith Voltex(r), and Stiebel Eltron Accelera(r)300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  11. Field Performance of Heat Pump Water Heaters in the Northeast

    Shapiro, Carl [Consortium for Advanced Residential Buildings, Norfolk, CT (United States); Puttagunta, Srikanth [Consortium for Advanced Residential Buildings, Norfolk, CT (United States)

    2016-02-05

    Heat pump water heaters (HPWHs) are finally entering the mainstream residential water heater market. Potential catalysts are increased consumer demand for higher energy efficiency electric water heating and a new Federal water heating standard that effectively mandates use of HPWHs for electric storage water heaters with nominal capacities greater than 55 gallons. When compared to electric resistance water heating, the energy and cost savings potential of HPWHs is tremendous. Converting all electric resistance water heaters to HPWHs could save American consumers 7.8 billion dollars annually ($182 per household) in water heating operating costs and cut annual residential source energy consumption for water heating by 0.70 quads. Steven Winter Associates, Inc. embarked on one of the first in situ studies of these newly released HPWH products through a partnership with two sponsoring electric utility companies, National Grid and NSTAR, and one sponsoring energy efficiency service program administrator, Cape Light Compact. Recent laboratory studies have measured performance of HPWHs under various operating conditions, but publically available field studies have not been as available. This evaluation attempts to provide publicly available field data on new HPWHs by monitoring the performance of three recently released products (General Electric GeoSpring(TM), A.O. Smith Voltex(R), and Stiebel Eltron Accelera(R) 300). Fourteen HPWHs were installed in Massachusetts and Rhode Island and monitored for over a year. Of the 14 units, ten were General Electric models (50 gallon units), two were Stiebel Eltron models (80 gallon units), and two were A.O. Smith models (one 60-gallon and one 80-gallon unit).

  12. Observer based Model Identification of Heat Pumps in a Smart Grid

    Andersen, Palle; Pedersen, Tom S.; Nielsen, Kirsten M.

    2012-01-01

    . A part of a solution can be to take advantage of floor heat capacity in single-family houses using heat pumps.This large heat capacity makes it possible to move consumption without compromising the comfort of house residents. In a Danish research project a virtual power plant using centralized control...... of a large number of houses with heat pumps is established. In order to make the control algorithm a vital part is a dynamic model of each house. The model predicts the house indoor temperature when heat pump power and outdoor temperature is known. The model must be able to describe a large variety of heat...

  13. Heat-pump performance: voltage dip/sag, under-voltage and over-voltage

    William J.B. Heffernan

    2014-12-01

    Full Text Available Reverse cycle air-source heat-pumps are an increasingly significant load in New Zealand and in many other countries. This has raised concern over the impact wide-spread use of heat-pumps may have on the grid. The characteristics of the loads connected to the power system are changing because of heat-pumps. Their performance during under-voltage events such as voltage dips has the potential to compound the event and possibly cause voltage collapse. In this study, results from testing six heat-pumps are presented to assess their performance at various voltages and hence their impact on voltage stability.

  14. DEVELOPMENT OF COLD CLIMATE HEAT PUMP USING TWO-STAGE COMPRESSION

    Shen, Bo [ORNL; Rice, C Keith [ORNL; Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL

    2015-01-01

    This paper uses a well-regarded, hardware based heat pump system model to investigate a two-stage economizing cycle for cold climate heat pump applications. The two-stage compression cycle has two variable-speed compressors. The high stage compressor was modelled using a compressor map, and the low stage compressor was experimentally studied using calorimeter testing. A single-stage heat pump system was modelled as the baseline. The system performance predictions are compared between the two-stage and single-stage systems. Special considerations for designing a cold climate heat pump are addressed at both the system and component levels.

  15. Wind power integration with heat pumps, heat storages, and electric vehicles – Energy systems analysis and modelling

    Hedegaard, Karsten

    moderate additional benefits are achieved. Hereof, the main benefit is that the need for investing in peak/reserve capacities can be reduced through peak load shaving. It is more important to ensure flexible operation of electric vehicles than of individual heat pumps, due to differences in the load......The fluctuating and only partly predictable nature of wind challenges an effective integration of large wind power penetrations. This PhD thesis investigates to which extent heat pumps, heat storages, and electric vehicles can support the integration of wind power. Considering the gaps in existing...... research, main focus is put on individual heat pumps in the residential sector and the possibilities for flexible operation, using the heat storage options available. Extensive model development is performed that significantly improves the possibilities for analysing individual heat pumps and heat storages...

  16. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Mittereder, Nick [IBACOS, Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season.

  17. Operation Performance of Air Source Heat Pump System for Space Heating in Tianjin

    ZHAO Jun; CHEN Yan; QU Hang; LI Xinguo

    2007-01-01

    An air source heat pump system (ASHPS) used in an office building is set up and studied experimentally. Its operating performance in winter is evaluated based on test data and a comparative discussion is given on the effect of climate conditions and heating load ratio on the operation behavior.Then heating capacity variation caused by evaporator frosting is analyzed as well. Finally, the defrosting parameters and the technical feasibility are studied for a constant heating demand. The experimental results indicate that both the outlet water temperature drop and the system COP should be taken into account when setting defrosting parameters, and ASHPS is a viable technology for space heating and hotwater production in winter in Tianjin, which can maintain the room temperature above 19 ℃ when the outdoor temperature is -2 ℃.

  18. A Liquid-Liquid Thermoelectric Heat Exchanger as a Heat Pump for Testing Phase Change Material Heat Exchangers

    Sheth, Rubik B.; Makinen, Janice; Le, Hung V.

    2016-01-01

    The primary objective of the Phase Change HX payload on the International Space Station (ISS) is to test and demonstrate the viability and performance of Phase Change Material Heat Exchangers (PCM HX). The system was required to pump a working fluid through a PCM HX to promote the phase change material to freeze and thaw as expected on Orion's Multipurpose Crew Vehicle. Due to limitations on ISS's Internal Thermal Control System, a heat pump was needed on the Phase Change HX payload to help with reducing the working fluid's temperature to below 0degC (32degF). This paper will review the design and development of a TEC based liquid-liquid heat exchanger as a way to vary to fluid temperature for the freeze and thaw phase of the PCM HX. Specifically, the paper will review the design of custom coldplates and sizing for the required heat removal of the HX.

  19. Finite time exergoeconomic performance optimization for an irreversible universal steady flow variable-temperature heat reservoir heat pump cycle model

    Huijun Feng, Lingen Chen, Fengrui Sun

    2010-11-01

    Full Text Available An irreversible universal steady flow heat pump cycle model with variable-temperature heat reservoirs and the losses of heat-resistance and internal irreversibility is established by using the theory of finite time thermodynamics. The universal heat pump cycle model consists of two heat-absorbing branches, two heat-releasing branches and two adiabatic branches. Expressions of heating load, coefficient of performance (COP and profit rate of the universal heat pump cycle model are derived, respectively. By means of numerical calculations, heat conductance distributions between hot- and cold-side heat exchangers are optimized by taking the maximum profit rate as objective. There exist an optimal heat conductance distribution and an optimal thermal capacity rate matching between the working fluid and heat reservoirs which lead to a double maximum profit rate. The effects of internal irreversibility, total heat exchanger inventory, thermal capacity rate of the working fluid and heat capacity ratio of the heat reservoirs on the optimal finite time exergoeconomic performance of the cycle are discussed in detail. The results obtained herein include the optimal finite time exergoeconomic performances of endoreversible and irreversible, constant- and variable-temperature heat reservoir Brayton, Otto, Diesel, Atkinson, Dual, Miller and Carnot heat pump cycles.

  20. Ground Source Integrated Heat Pump (GS-IHP) Development

    Baxter, V. D. [ORNL; Rice, K. [ORNL; Murphy, R. [ORNL; Munk, J. [ORNL; Ally, Moonis [ORNL; Shen, Bo [ORNL; Craddick, William [ORNL; Hearn, Shawn A. [ClimateMaster, Inc.

    2013-05-24

    Between October 2008 and May 2013 ORNL and ClimateMaster, Inc. (CM) engaged in a Cooperative Research and Development Agreement (CRADA) to develop a groundsource integrated heat pump (GS-IHP) system for the US residential market. A initial prototype was designed and fabricated, lab-tested, and modeled in TRNSYS (SOLAR Energy Laboratory, et al, 2010) to predict annual performance relative to 1) a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (combination of air-source heat pump (ASHP) and resistance water heater) and 2) a state-of-the-art (SOA) two-capacity ground-source heat pump with desuperheater water heater (WH) option (GSHPwDS). Predicted total annual energy savings, while providing space conditioning and water heating for a 2600 ft{sup 2} (242 m{sup 2}) house at 5 U.S. locations, ranged from 52 to 59%, averaging 55%, relative to the minimum efficiency suite. Predicted energy use for water heating was reduced 68 to 78% relative to resistance WH. Predicted total annual savings for the GSHPwDS relative to the same baseline averaged 22.6% with water heating energy use reduced by 10 to 30% from desuperheater contributions. The 1st generation (or alpha) prototype design for the GS-IHP was finalized in 2010 and field test samples were fabricated for testing by CM and by ORNL. Two of the alpha units were installed in 3700 ft{sup 2} (345 m{sup 2}) houses at the ZEBRAlliance site in Oak Ridge and field tested during 2011. Based on the steady-state performance demonstrated by the GS-IHPs it was projected that it would achieve >52% energy savings relative to the minimum efficiency suite at this specific site. A number of operational issues with the alpha units were identified indicating design changes needed to the system before market introduction could be accomplished. These were communicated to CM throughout the field test period. Based on the alpha unit test results and the diagnostic information coming from the field test

  1. Earliest Deadline Control of a Group of Heat Pumps with a Single Energy Source

    Jiří Fink

    2016-07-01

    Full Text Available In this paper, we develop and investigate the optimal control of a group of 104 heat pumps and a central Combined Heat and Power unit (CHP. The heat pumps supply space heating and domestic hot water to households. Each house has a buffer for domestic hot water and a floor heating system for space heating. Electricity for the heat pumps is generated by a central CHP unit, which also provides thermal energy to a district heating system. The paper reviews recent smart grid control approaches for central and distributed levels. An online algorithm is described based on the earliest deadline first theory that can be used on the aggregator level to control the CHP and to give signals to the heat pump controllers if they should start or should wait. The central controller requires only a limited amount of privacy-insensitive information from the heat pump controllers about their deadlines, which the heat pump controllers calculate for themselves by model predictions. In this way, a robust heat pump and CHP control is obtained, which is able to minimize energy demand and results in the desired thermal comfort for the households. The simulations demonstrate fast computation times due to minor computational and communication overheads.

  2. Effect of operating conditions on the performance of the bubble pump of absorption-diffusion refrigeration cycles

    Benhmidene Ali

    2011-01-01

    Full Text Available The mathematical model will be able to predict the operated condition (required tube diameters, heat input and submergence ratio….. That will result in a successful bubble pump design and hence a refrigeration unit. In the present work a one-dimensional two-fluid model of boiling mixing ammonia-water under constant heat flux is developed. The present model is used to predict the outlet liquid and vapor velocities and pumping ratio for different heat flux input to pump. The influence of operated conditions such as: ammonia fraction in inlet solution and tube diameter on the functioning of the bubble pump is presented and discussed. It was found that, the liquid velocity and pumping ratio increase with increasing heat flux, and then it decreases. Optimal heat flux depends namely on tube diameter variations. Vapour velocity increases linearly with increasing heat flux under designed conditions.

  3. Waste Heat Powered Ammonia Absorption Refrigeration Unit for LPG Recovery

    Donald C, Energy Concepts Co.; Lauber, Eric, Western Refining Co.

    2008-06-20

    An emerging DOE-sponsored technology has been deployed. The technology recovers light ends from a catalytic reformer plant using waste heat powered ammonia absorption refrigeration. It is deployed at the 17,000 bpd Bloomfield, New Mexico refinery of Western Refining Company. The technology recovers approximately 50,000 barrels per year of liquefied petroleum gas that was formerly being flared. The elimination of the flare also reduces CO2 emissions by 17,000 tons per year, plus tons per year reductions in NOx, CO, and VOCs. The waste heat is supplied directly to the absorption unit from the Unifiner effluent. The added cooling of that stream relieves a bottleneck formerly present due to restricted availability of cooling water. The 350oF Unifiner effluent is cooled to 260oF. The catalytic reformer vent gas is directly chilled to minus 25oF, and the FCC column overhead reflux is chilled by 25oF glycol. Notwithstanding a substantial cost overrun and schedule slippage, this project can now be considered a success: it is both profitable and highly beneficial to the environment. The capabilities of directly-integrated waste-heat powered ammonia absorption refrigeration and their benefits to the refining industry have been demonstrated.

  4. Unsteady free convection from a heated sphere in the presence of internal heat generation or absorption

    This paper is concerned with an unsteady, laminar, free convective flow over a heated sphere with the effect of internal heat generation/absorption. The dimensionless governing equations have been solved employing the finite difference method as well as a perturbation method for short time and an asymptotic method for long time. We examine the effects of the physical parameters, such as, the Prandtl number, Pr, and the heat generation/absorption parameter, γ, on the friction factor and heat transfer rate as well as the velocity and temperature profiles. It is observed that when the Prandtl number, Pr, is increased, the friction factor decreases while the heat transfer rate increases. In the presence of internal heat generation, the friction factor increases while the heat transfer rate reduces. The reverse pattern is found with the heat absorption parameter. The momentum and thermal boundary layers become thicker with an increase of the heat generation parameter. A comparison among the numerical solutions, the perturbation solutions for short time and the asymptotic solutions for long time has been presented which provides a good agreement among the solutions. (authors)

  5. System Analysis on Absorption Chiller Utilizing Intermediate Wasted Heat

    Yamada, Miki; Suzuki, Hiroshi; Usui, Hiromoto

    A system analysis has been performed for the multi-effect absorption chiller (MEAC) applied as a bottoming system of 30kW class hybrid system including micro gas turbine (MGT) and solid oxide fuel cell (SOFC) hybrid system. In this paper, an intermediate wasted heat utilization (IWHU) system is suggested for lifting up the energy efficiency of the whole system and coefficient of performance (COP) of MEAC. From the results, the suggested IWHU system was found to show the very high energy efficiency compared with a terminal wasted heat utilization (TWHU) system that uses only the heat exhausted from the terminal of MGT/SOFC system. When TWHU system is applied for MEAC, the utilized heat from the MGT/SOFC system is found to remain low because the temperature difference between the high temperature generator and the wasted heat becomes small. Then, the energy efficiency does not become high in spite of high COP of MEAC. On the other hand, the IWHU system could increase the utilized heat for MEAC as performs effectively. The exergy efficiency of IWHU system is also revealed to be higher than that of a direct gas burning system of MEAC, because the wasted heat is effectively utilized in the IWHU system.

  6. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spraydrying facility

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars;

    2015-01-01

    Spray-drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 C yielding a heat...

  7. Low-power communication with a photonic heat pump.

    Huang, Duanni; Santhanam, Parthiban; Ram, Rajeev J

    2014-12-15

    An optical communication channel is constructed using a heated thermo-electrically pumped, high efficiency infrared light-emitting diode (LED). In these devices, electro-luminescent cooling is observed, resulting in greater than unity (> 100%) efficiency in converting electrical power to optical power. The average amount of electrical energy required to generate a photon (4.3 meV) is much less than the optical energy in that photon (520 meV). Such a light source can serve as a test-bed for fundamental studies of energy-efficient bosonic communication channels. In this low energy consumption mode, we demonstrate data transmission at 3 kilobits per second (kbps) with only 120 picowatts of input electric power. Although the channel employs a mid-infrared source with limited quantum efficiency, a binary digit can be communicated using 40 femtojoules with a bit error rate of 3 x 10-3. PMID:25607478

  8. Thermodynamic characteristics of a Brownian heat pump in a spatially periodic temperature field

    2010-01-01

    This paper has studied the thermodynamic performance of a thermal Brownian heat pump,which consists of Brownian particles moving at a periodic sawtooth potential with external forces and contacting with the alternating hot and cold reservoirs along the space coordinate.The heat flows driven by both potential and kinetic energies are taken into account.The analytical expressions for the heating load,coefficient of performance(COP) and power input of the Brownian heat pump are derived and the performance characteristics are obtained by numerical calculations.It is shown that due to the heat flow via the change of kinetic energy of the particles,the Brownian heat pump is always irreversible and the COP can never attain the Carnot COP.The study has also investigated the influences of the operating parameters,i.e.the external force,barrier height of the potential,asymmetry of the sawtooth potential and temperature ratio of the heat reservoirs,on the performance of the Brownian heat pump.The effective regions of external force and barrier height of the potential in which the Brownian motor can operates as a heat pump are determined.The results show that the performance of the Brownian heat pump greatly depends on the parameters;if the parameters are properly chosen,the Brownian heat pump may be controlled to operate in the optimal regimes.

  9. Application and installation quality analysis of residential heat pump equipment in Alabama

    Parker, J.F. [Alabama Power Co., Verbena, AL (United States). Heat Pump Training Center; Johnson, B.W. [Alabama Power Co., Birmingham, AL (United States)

    1997-12-31

    Compliance of heat pump installations to Guidelines for Application and Installation of Heat Pump Systems by approved heating, ventilating, and airconditioning (HVAC) contractors has been observed for many years in most regions of the state of Alabama. Since 1964, various programs have been implemented to monitor dealer compliance with common sense criteria to ensure quality heat pump installations that provide for customer comfort, equipment reliability, and economy of operation. This paper discusses a historical overview of these programs. The primary focus is on the summary for programs implemented in 1995 and 1996 to observe and monitor field problems in application and installation of heat pump equipment. An electronically filed customer satisfaction survey form was the basis for the 1995 program. The 1996 program implemented a dealer complaint form to track customer complaints regarding the quality and performance of heat pump equipment installations.

  10. WEXA: exergy analysis for increasing the efficiency of air/water heat pumps - Final report

    Gasser, L.; Wellig, B.; Hilfiker, K.

    2008-04-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study at the made by the Engineering and Architecture department at the Lucerne University of Applied Sciences and Arts. The subject of the WEXA study (Waermepumpen-Exergie-Analyse - heat pump exergy analysis) is the analysis of the operation of air/water heat-pumps using exergy analysis methods. The basic thermodynamics of heating systems using heat-pumps is discussed. The exergy analyses and exergy balances for the various components and processes of an air/water heat-pump are presented and discussed. Comparisons are presented for heat-pumps with on/off and continuous control systems for their compressors and fans. The paper is concluded with a collection of appendices on the subject.

  11. Program listing for heat-pump seasonal-performance model (SPM). [CNHSPM

    1982-06-30

    The computer program CNHSPM is listed which predicts heat pump seasonal energy consumption (including defrost, cyclic degradation, and supplementary heat) using steady state rating point performance and binned weather data. (LEW)

  12. Heat pump demonstration project Almere Haven. Design specifications and practical experience

    Knipscheer, H.J.M.

    1983-03-01

    A gas engine heat pump installation for space heating of 45 dwellings is described. Design specifications are given. Energy consumption and energy conservation when using this installation are given. Investment and operation experience are given.

  13. COMPARATIVE EFFICIENCY OF HEAT-PUMPS APPLICATION IN LOW TEMPERATURE HEAT SUPPLY SYSTEMS

    M. N. Chepurnoy

    2015-10-01

    Full Text Available The  article  considers  comparative  operation-efficiency  of  the  low-temperature  heatsupply systems with heat pumping plants (HPP and with hot-water boilers. The paper shows that for energy evaluation of the alternative heat-supply systems effectiveness one cannot employ the transformation ratio (heating coefficient and the fuel heat-utilization factor in the HPP. Nonetheless the transformation ratio enters the formulae designating the efficiency of HPP operation. The authors obtain a generalized formula for ascertainment of transformation ratio and suggest evaluating the operation efficiency of the heat-supply systems by means of indicators specifying relative gain in the exergy-efficiency factor, fuel savings and saving expenditures connected with fuel and utilities. They attain formulae and build nomographic charts for those indicators ascertainment. The operation-efficiency comparative analysis of the low-temperature heat supply systems with HPP and with hot-water boilers shows that the HPP systems increase their effectiveness with transformation ratio, fuel price increase as well as with low electric-energy prices. The article specifies that with fuel low prices, the transformation-ratios limiting values with which the HPP operation-efficacy gains, grow. Energy-efficiency increase in the HPP does not always guaranty their economic effectiveness. These findings are true only for the heating systems. The hot water-supply systems will require the HPP condenser water additional heating to the assumed temperature from another thermal source, which reduces the effectiveness of the heat pump plants utilizing.

  14. Empirical Platform Data Analysis to Investigate how Heat Pumps Operate in Real-Life Conditions

    Carmo, Carolina; Elmegaard, Brian; Nielsen, Mads Pagh;

    2015-01-01

    heat pump configurations are considered depending on source (ground or air) and sink (radiators, floor heating and/or combined systems). This unique study intends to point out the benefits and limitations of such technologies in terms of energy efficiency and comfort delivery, as well as investigating......Heat pumps have been widely acknowledged, by academia and industry, as highly efficient thermal energy technologies, for space heating and domestic hot water production. However, there is a lack of information about real performance in residential single family houses with active participation of...... the suitability of heat pumps to support fossil-fuel free energy systems....

  15. Air-to-air heat pumps in real-life use

    Gram-Hanssen, Kirsten; Christensen, Toke Haunstrup; Petersen, Poul Erik

    2012-01-01

    This paper deals with individual air-to-air heat pumps in Danish dwellings and summerhouses and the question of to what extent they actually deliver savings of energy consumption. Results show that 20% of the expected reduction of electricity consumption is converted into increased comfort in the...... homes, including extended heating areas, keeping a higher temperature and a longer heating season and using the heat pump for air conditioning. Data include electricity consumption in 185 households before and after installation of heat pumps together with survey results of 480 households. Furthermore...

  16. Performance of high temperature chemical heat pump with metal hydride reaction

    JAERI has been developing a hydrogen storage type high temperature chemical heat pump not only to amplify thermal energy of the temperature 373 K to 1273 K as well as store mass hydrogen energy, but hydrogen transportation to remote side. To testify the concept of this type of heat pump, heat pump element test facility was constructed and has been testing its performance. Heat conversion from 773 K to 1173 K was achieved with high heat exchanged coefficient by helium cooling technique. Present paper reports the recent tests results of the facility, including R and D on metal-hydride and structural materials for this system. (author)

  17. Ground Source Heat Pump Sub-Slab Heat Exchange Loop Performance in a Cold Climate

    Mittereder, N.; Poerschke, A.

    2013-11-01

    This report presents a cold-climate project that examines an alternative approach to ground source heat pump (GSHP) ground loop design. The innovative ground loop design is an attempt to reduce the installed cost of the ground loop heat exchange portion of the system by containing the entire ground loop within the excavated location beneath the basement slab. Prior to the installation and operation of the sub-slab heat exchanger, energy modeling using TRNSYS software and concurrent design efforts were performed to determine the size and orientation of the system. One key parameter in the design is the installation of the GSHP in a low-load home, which considerably reduces the needed capacity of the ground loop heat exchanger. This report analyzes data from two cooling seasons and one heating season. Upon completion of the monitoring phase, measurements revealed that the initial TRNSYS simulated horizontal sub-slab ground loop heat exchanger fluid temperatures and heat transfer rates differed from the measured values. To determine the cause of this discrepancy, an updated model was developed utilizing a new TRNSYS subroutine for simulating sub-slab heat exchangers. Measurements of fluid temperature, soil temperature, and heat transfer were used to validate the updated model.

  18. Energy Savings and Peak Demand Reduction of a SEER 21 Heat Pump vs. a SEER 13 Heat Pump with Attic and Indoor Duct Systems

    Cummings, J. [BA-PIRC/ Florida Solar Energy Center, Cocoa, FL (United States); Withers, C. [BA-PIRC/ Florida Solar Energy Center, Cocoa, FL (United States)

    2014-03-01

    This report describes results of experiments that were conducted in an unoccupied 1600 square foot house--the Manufactured Housing (MH Lab) at the Florida Solar Energy Center (FSEC)--to evaluate the delivered performance as well as the relative performance of a SEER 21 variable capacity heat pump versus a SEER 13 heat pump. The performance was evaluated with two different duct systems: a standard attic duct system and an indoor duct system located in a dropped-ceiling space.

  19. Time-resolved absorption spectroscopy of optically pumped Si by using fs-laser plasma x-ray

    Femtosecond laser-produced plasmas emit ultrashort x-ray pulse that is synchronized to a femtosecond laser pulse. By utilizing this feature, we demonstrated time-resolved soft x-ray absorption measurements of optically pumped silicon near its LII,III absorption edge by means of pump-probe spectroscopy. As a result, we observed more than 10% increase in the absorption near absorption edge caused by laser pulse irradiation, which means that the transition of core-electrons was rapidly modified by excitation of valence electrons. The recovery time constant of this change was measure to be about 20 ps. (author)

  20. Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems

    Heat pumps are seen as a promising technology for load management in the built environment, in combination with the smart grid concept. They can be coupled with thermal energy storage (TES) systems to shift electrical loads from high-peak to off-peak hours, thus serving as a powerful tool in demand-side management (DSM). This paper analyzes heat pumps with radiators or underfloor heating distribution systems coupled with TES with a view to showing how a heat pump system behaves and how it influences the building occupants' thermal comfort under a DSM strategy designed to flatten the shape of the electricity load curve by switching off the heat pump during peak hours (16:00–19:00). The reference scenario for the analysis was Northern Ireland (UK). The results showed that the heat pump is a good tool for the purposes of DSM, also thanks to the use of TES systems, in particular with heating distribution systems that have a low thermal inertia, e.g. radiators. It proved possible to achieve a good control of the indoor temperature, even if the heat pump was turned off for 3 h, and to reduce the electricity bill if a “time of use” tariff structure was adopted. -- Highlights: ► Heat pump heating systems with thermal energy storage are considered. ► System behavior is investigated during a DSM strategy for reducing peak energy demand. ► Heat pump heating systems demonstrate to be able to have an active role in DSM programs. ► A TES system must be coupled with the heat pump in presence of low thermal inertia heating distribution systems. ► Central role played by incentives schemes to promote this technology

  1. Heat Pump Water Heater Durabliltiy Testing - Phase II

    Baxter, VAND.

    2004-05-29

    Ten heat pump water heaters (HPWH) were placed in an environmentally controlled test facility and run through a durability test program of approximately 7300 duty cycles (actual cycles accumulated ranged from 6640 to 8324 for the ten units). Five of the units were upgraded integral types (HPWH mounted on storage tank, no pump) from the same manufacturer as those tested in our first durability program in 2001 (Baxter and Linkous, 2002). The other five were ''add-on'' type units (HPWH with circulation pump plumbed to a separate storage tank) from another manufacturer. This durability test was designed to represent approximately 7-10 years of normal operation to meet the hot water needs of a residence. The integral units operated without incident apart from two control board failures. Both of these were caused by inadvertent exposure to very hot and humid (>135 F dry bulb and >120 F dew point) conditions that occurred due to a test loop failure. It is not likely that any residential water heater would be installed where such conditions were expected so these failures are not considered a long-term reliability concern. Two of the integral HPWHs featured a condensate management system (CMS) option that effectively eliminated any need for an evaporator condensate drain, but imposed significant efficiency penalties when operating in high humidity ambient conditions. The add-on units experienced no operational failures (breakdowns with loss of hot water production) during the course of the testing. However, their control systems exhibited some performance degradation under the high temperature, high humidity test conditions--HPWHs would shut off with tank water temperatures 15-20 F lower than when operating under moderate ambient conditions. One unit developed a refrigerant leak during the test program and lost about 50% of its charge resulting in reduced efficiency. Efficiency measurements on all the integral units and four of the add-on units showed

  2. Exergoeconomic optimization of an ammonia–water hybrid absorption–compression heat pump for heat supply in a spraydrying facility

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars; Elmegaard, Brian

    2015-01-01

    Spray-drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 C yielding a heat load of 6.1 MW. The exhaust air from the drying process is 80 C. The implementation of anammonia–water hybrid absorption–compression heat pump to partly cover the heat load is investigated. A thermod...

  3. MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I

    Sit B.

    2009-08-01

    Full Text Available There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending on the operating parameter, for example, external air temperature and wind speed.

  4. MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I)

    Sit B.

    2009-01-01

    There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending ...

  5. Development of a Bench-Top Air-to-Water Heat Pump Experimental Apparatus

    H. I. Abu-Mulaweh

    2009-01-01

    A bench-top air-to-water heat pump experimental apparatus was designed,developed, and constructed for instructional and demonstrative purposes. Thisair-to-water heat pump experimental apparatus is capable of demonstratingthermodynamics and heat transfer concepts and principles. This heat pumpexperimental setup was designed around the vapor compression refrigerationcycle. This experimental apparatus has an intuitive user interface, reliable, safefor student use, and portable. The interface is ...

  6. Solar Assisted Ground Source Heat Pump Performance in Nearly Zero Energy Building in Baltic Countries

    Januševičius, K; Streckienė, G

    2013-01-01

    In near zero energy buildings (NZEB) built in Baltic countries, heat production systems meet the challenge of large share domestic hot water demand and high required heating capacity. Due to passive solar design, cooling demand in residential buildings also needs an assessment and solution. Heat pump systems are a widespread solution to reduce energy use. A combination of heat pump and solar thermal collectors helps to meet standard requirements and increases the share of...

  7. Experimental Study of the Gas Engine Driven Heat Pump with Engine Heat Recovery

    Wei Zhang

    2015-01-01

    Full Text Available Gas engine driven heat pumps (GEHPs represent one of practical solutions to effectively utilize fossil fuel energy and reduce environmental pollution. In this paper, the performance characteristics of the GEHP were investigated experimentally with engine heat recovery. A GEHP test facility was set up for this purpose. The effects of several important factors including engine speed, ambient temperature, condenser water flow rate, and condenser water inlet temperature on the system performance were studied over a wide range of operating conditions. The results showed that the engine waste heat accounted for about 40–50% of the total heat capacity over the studied operating conditions. It also showed that engine speed and ambient temperature had significant effects on the GEHP performance. The coefficient of performance (COP and the primary energy ratio (PER decreased by 14% and 12%, respectively, as engine speed increased from 1400 rpm to 2000 rpm. On the other hand, the COP and PER of the system increased by 22% and 16%, respectively, with the ambient temperature increasing from 3 to 12°C. Furthermore, it was demonstrated that the condenser water flow rate and condenser water inlet temperature had little influence on the COP of the heat pump and the PER of the GEHP system.

  8. High Performance Operation Control for Heat Driven Heat Pump System using Metal Hydride

    Okamoto, Hideyuki; Masuda, Masao; Kozawa, Yoshiyuki

    lt is recognized that COP of heat driven heat pump system using metal hydride is 0.3-0.4 in general. In order to rise COP, we have proposed two kinds of specific operation control; the control of cycle change time according to cold heat load and the control of cooling water temperature according to outside air wet-bulb temperature. The characteristics of the heat pump system using metal hydride have grasped by various experiments and simulations. The validity of the simulation model has been confirmed by comparing with experimental results. As results of the simulations programmed for the actual operation control month by month, yearly COP has risen till 0.5-0.6 for practical scale air-conditioning system without regard for the building use. By the operation control hour by hour, yearly COP has risen till 0.6-0.65. Moreover, in the office building case added 40% sensible heat recovery, yearly COP has risen more than 0.8.

  9. Research highlights : study of the noise generated by heat pumps in residential areas

    Rising energy costs and aggressive marketing played a major role in the substantial increase in the number of domestic heat pumps installed. As a rule, heat pumps are connected to the heating and ventilation systems on the outside of the house. Whether the heat pump is equipped with an integrated compressor or not, it creates noise. The noise is generated by the powerful fan designed to cool all the coils, and also by the compressor itself and the circulation of the refrigerant gas. Some municipalities received so many complaints on this topic that they are considering adopting noise bylaws. The first objective of the research undertaken by Canada Mortgage and Housing Corporation on heat pumps in residential areas was to analyze the noise pollution mode of commonly used heat pumps. A study of a simple noise reduction device was performed, and the extent to which it should be used. Finally, there had to be no reduction of the thermal capacities of the pumps. Phase 1 of the study took place between May and August 1990, in the area of Quebec City. A total of 125 heat pumps were identified. The four major manufacturers were Trane, Carrier, York, and Lennox. Initial sound pressure levels measurements were made at one metre from the unit, for 80 such units, respecting the ratio by brands in the sample of 125. A detailed global noise measurement determined the sound power of each pump. A detailed muffler feasibility study was then conducted, using a Trane heat pump. The results of the study indicated that heat pumps were a major source of continuous noise in low and mid-density areas. It was discovered that a noise attenuation device could always be built around heat pumps, which needed to be installed as close as possible to the casing of the heat pump. It is not possible to design a device to fit each and every heat pump, the design is specific to the dimensions and characteristics of each model of heat pump. The thermal performance of the pumps will not be affected by

  10. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    2012-02-14

    ... distribution of those central air conditioning systems and heat pump systems manufactured after January 1, 2010, that are designed to use R-22 refrigerant. 74 FR 66450 (Dec. 15, 2009). EPA's rulemaking included an... issued two guidance documents surrounding testing central air conditioner and heat pump systems...

  11. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range...

  12. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  13. Influence of individual heat pumps on wind power integration – Energy system investments and operation

    Hedegaard, Karsten; Münster, Marie

    2013-01-01

    to facilitating larger wind power investments and reducing system costs, fuel consumption, and CO2 emissions. Investments in heat storages can provide only moderate system benefits in these respects. The main benefit of the flexible heat pump operation is a reduced need for peak/reserve capacity, which is also......Individual heat pumps are expected to constitute a significant electricity demand in future energy systems. This demand becomes flexible if investing in complementing heat storage capabilities. In this study, we analyse how the heat pumps can influence the integration of wind power by applying...... an energy system model that optimises both investments and operation, and covers various heat storage options. The Danish energy system by 2030 with around 50–60% wind power is used as a case study. Results show that the heat pumps, even without flexible operation, can contribute significantly...

  14. Matching heat sources cooling load and heat rejection capability with an absorption machine

    Dorgan, C.E. [Wisconsin Univ., Madison, WI (United States); Dorgan, C.B. [Dorgan Associates, Inc., Madison, WI (United States)

    1996-11-01

    The new `Application Guide for Absorption Cooling/Refrigeration Using Recovered Heat` was described. The objective of this Guide is to assist in the design and application of absorption systems by providing detailed background information and selection criteria. Topics covered include basic principles of operation, methods of heat recovery, application procedures and example selections. In this paper, the organization of the Guide was reviewed, the application procedure was presented, and two example selections were detailed. The examples correspond to a lithium bromide system and an aqueous ammonia refrigeration system. 7 refs., 2 figs., 2 tabs.

  15. CLEAN-AIR heat pump. Reduced energy consumption for ventilation in buildings by integrating air cleaning and heat pump. Final Report; CLEAN-AIR heat pump - Reduceret energiforbrug til ventilation af bygninger ved luftrensning integreret med luft varmepumpe. Slut rapport

    Fang, L.; Olesen, Bjarne W.; Molinaro, G.; Simmonsen, P.; Skocajic, S. [Danmarks Tekniske Univ. Institut for Byggeri og Anlaeg, Lyngby (Denmark); Hummelshoej, R.M.; Carlassara, L. [COWI A/S, Lyngby, (Denmark); Groenbaek, H.; Hansen, Ole R. [Exhausto A/S, Langeskov (Denmark)

    2011-07-01

    This report summarizes task 1 of the Clean Air Heat Pump project - modelling and simulation on energy savings when using the clean air heat pump for ventilation, air cleaning and energy recovery. The total energy consumption of the proposed ventilation systems using clean air heat pump technology was calculated by a theoretical model and compared with the reference ventilation systems (conventional ventilation systems). The energy compared between the two systems includes energy used for heating, cooling and fan. The simulation and energy saving calculation was made for the application of the clean air heat pump in three typical climate conditions, i.e. mild-cold, mild-hot and hot and wet climates. Real climate data recorded from three cities in 2002 was used for the calculation. The three cities were Copenhagen (Denmark), Milan (Italy) and Colombo (Sir Lanka) which represent the above three typical climate zones. For the Danish climate (the mild cold climate), the calculations show that the ventilation system using clean air heat pump technology can save up to 42% of energy cost in winter compared to the conventional ventilation system. The energy saving in summer can be as high as 66% for the ventilation system with humidity control and 9% for the ventilation system without the requirement of humidity control. Since the Danish summer climate is very mild, over 80% of the yearly energy consumption for ventilation is used during winter season. It is, therefore, estimated that more than 35% annual energy saving for ventilation is expected in Denmark using the clean air heat pump ventilation technology. For the mild hot climate, e.g. the Italian climate, the calculations show that up to 63% of the energy saving can be achieved in summer season. For the winter mode, 17% reduction of the energy cost can be expected for the domestic use. For industrial use, the energy cost of the clean air heat pump may not be favourable due to the industrial price of gas in Italy is

  16. A new ejector heat exchanger based on an ejector heat pump and a water-to-water heat exchanger

    Highlights: • EHE is based on the reverse Carnot cycle and current heat transfer mechanisms. • EHE can decrease the return water temperature in the PHN to 35 °C. • EHE can increase the heating capacity of the existed PHN by approximately 43%. • The return water temperature in the PHN is much lower than that in the SHN. • EHE has a simpler structure, lower manufacture cost, and better regulation characteristics. - Abstract: As urban construction has been developing rapidly in China, urban heating load has been increasing continually. Heating capacity of the existed primary heating network (PHN) cannot meet district heating requirements of most metropolises in northern China. A new type of ejector heat exchanger (EHE) based on an ejector heat pump and a water-to-water heat exchanger (WWHE) was presented to increase the heating capacity of the existed PHN, and the EHE was also analyzed in terms of laws of thermodynamics. A new parameter, the exergy distribution ratio (EDR), is introduced, which is adopted to analyze regulation characteristics of the EHE. We find that the EHE shows better performance when EDR ranges from 44% to 63%. EHE can decrease the temperature of return water in the PHN to 35 °C, therefore, this can increase the heating capacity of existed PHN by about 43%. The return water with lower temperature in the PHN could recover more low-grade waste heat in industrial systems. Because of its smaller volume and lower investment, EHEs could be applied more appropriately in district heating systems for long-distance heating and waste heat district heating systems

  17. EXERGY-BASED ECOLOGICAL ANALYSIS OF GENERALIZED IRREVERSIBLE HEAT PUMP SYSTEM

    GOVIND MAHESHWARI

    2011-10-01

    Full Text Available A reverse Carnot cycle forms the basis of all heat-pump cycles in providing heating and cooling loads. The optimal exergy-based Ecological analysis of an irreversible Heat-pump system with the losses of heat resistance, heat leak and internal irreversibility has been carried out by taking into account Exergy based ecological function (E as an objective in the viewpoint of Finite-Time-Thermodynamics (FTT or Entropy Generation Minimization (EGM. Exergy is defined here as the power required minus the lost power. The effects of irreversibilities along with internal heat leakage on coefficient on the performance of the system are investigated. The exergy based Ecological function decreases steadily with irreversibilites and heat leakages in the system. COP in such a system increases with the cycle temperature ratio. If a heat pump cycle is optimized with above mentioned criterion, there is a trade-off between its coefficient of Performance and the heating load it provides.

  18. Experimental Study of Thermoelectric Heat Pump Water Heater with Exhaust Heat Recovery from Kitchens

    LIU Zhong-bing; ZHANG Ling; YANG Zhang; XU Ming; HAN Tian-he

    2009-01-01

    A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was pre-sented,and its performances were investigated under different operating voltages.The experiment results show that the coefficient of performance decreases and the temperature difference between the hot and cold sides be-comes larger with the increase of the operating voltage,but the heating time becomes short.The higher the temperature of water,the greater the temperature difference between the hot and cold sides,leading to a smaller eoeffieient of performance.Under an exhaust temperature of 36℃,the coefficient of performance decreases from 1.66 tO 1.22 when the temperature of water increases from 28℃to 46℃with operating voltage 16 V.Performance tests illustrate that,compared with the conventional electrical water heaters,the new kind of ther-moelectric heat pump water heater is more coefficient.

  19. Analysis of a combined system of an earth-heat-exchanger and a heat pump

    Herz, J.; Doll, A. [Umwelt-Campus Birkenfeld (Germany). Automation and Energy System Technology; Brinkmann, K.

    2004-07-01

    This paper presents an analysis of the system technology of an earth-heatexchanger combined to a heat pump, which was (ca. 1995 - 2002) realised at the building of the Umwelt-Campus in Birkenfeld, which belongs to the University of Applied Sciences Trier in Germany. The heat pump works for a recovery of the stored heat in a massive absorber at the air-outlet, in order to minimise energy losses in the atmosphere. Examinations and comparisons to others up to now realised earth-heat-exchanger projects in Germany, done by Joern Herz for reaching his diploma degree, show, that the special configuration at the Umwelt-Campus Birkenfeld seems to be the first of that kind. This presentation gives an overview of the system technology and working principle. Measurements and mathematical modelling were done, in order to evaluate the efficiency of this combined system and to identify to advantages and disadvantages of this realisation. Additional, practical experiences with stability and working conditions etc., made by Andreas Doll, the responsible technical engineer for the Campus Buildings, are integrated. (orig.)

  20. Techno-economic study of a heat pump enhanced flue gas heat recovery for biomass boilers

    An active condensation system for the heat recovery of biomass boilers is evaluated. The active condensation system utilizes the flue gas enthalpy exiting the boiler by combining a quench and a compression heat pump. The system is modelled by mass and energy balances. This study evaluates the operating costs, primary energy efficiency and greenhouse gas emissions on an Austrian data basis for four test cases. Two pellet boilers (10 kW and 100 kW) and two wood chip boilers (100 kW and 10 MW) are considered. The economic analysis shows a decrease in operating costs between 2% and 13%. Meanwhile the primary energy efficiency is increased by 3–21%. The greenhouse gas emissions in CO2 equivalents are calculated to 15.3–27.9 kg MWh−1 based on an Austrian electricity mix. The payback time is evaluated on a net present value (NPV) method, showing a payback time of 2–12 years for the 10 MW wood chip test case. - Highlights: • A heat pump was studied to recover both sensible and latent heat of the flue gas. • The economic analysis shows a decrease in operating costs between 2% and 13%. • For a 10 MW wood chip boiler a payback time of 2–12 years was estimated

  1. Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report

    Nick Rosenberry, Harris Companies

    2012-05-04

    A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

  2. Theoretical study of heat pump system using CO2/dimethylether as refrigerant

    Fan Xiao-Wei

    2013-01-01

    Full Text Available Nowadays, HCFC22 is widely used in heat pump systems in China, which should be phased out in the future. Thus, eco-friendly mixture CO2/dimethylether is proposed to replace HCFC22. Compared with pure CO2 and pure dimethylether, the mixture can reduce the heat rejection pressure, and suppress the flammability and explosivity of pure dimethylether. According to the Chinese National Standards on heat pump water heater and space heating system, performances of the subcritical heat pump system are discussed and compared with those of the HCFC22 system. It can be concluded that CO2 /dimethylether mixture works efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of dimethylether is increased, the heat rejection pressure is reduced. Under the nominal working condition, there is an optimal mixture mass fraction of 28/72 of CO2/dimethylether for water heater application under conventional condensation pressure, 3/97 for space heating application. For water heater application, both the heating coefficient of performance and volumetric heating capacity increase by 17.90% and 2.74%, respectively, compared with those of HCFC22 systems. For space heating application, the heating coefficient of performance increases by 8.44% while volumetric heating capacity decreases by 34.76%, compared with those of HCFC22 systems. As the superheat degree increases, both the heating coefficient of performance and volumetric heating capacity tend to decrease.

  3. Theoretical study of thermally driven heat pumps based on double organic rankine cycle

    Demierre, Jonathan; Favrat, Daniel

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] This study deals with a type of thermally driven heat pumps that consists of a reverse Rankine heat pump cycle, the compressor of which is driven by the turbine of a supercritical Organi...

  4. Influence of hydraulics and control of thermal storage in solar assisted heat pump combisystems

    Poppi, Stefano; Bales, Chris

    2014-01-01

    This paper studies the influence of hydraulics and control of thermal storage in systems combined with solar thermal and heat pump for the production of warm water and space heating in dwellings. A reference air source heat pump system with flat plate collectors connected to a combistore was defined and modeled together with the IEA SHC Task 44 / HPP Annex 38 (T44A38) “Solar and Heat Pump Systems” boundary conditions of Strasbourg climate and SFH45 building. Three and four pipe connections as...

  5. High efficient ammonia heat pump system for industrial process water using the ISEC concept. Part 1

    Rothuizen, Erasmus Damgaard; Madsen, C.; Elmegaard, Brian;

    2014-01-01

    The purpose of the Isolated System Energy Charging (ISEC) is to provide a high-efficient ammonia heat pump system for hot water production. The ISEC concept uses two storage tanks for the water, one discharged and one charged. The charged tank is used for the industrial process while the discharged...... investigate the performance of the ISEC system. The ISEC concept approaches the efficiency of a number of heat pumps in series and the COP of the system may reach 6.8, which is up to 25 % higher than a conventional heat pump heating water in one step....

  6. A heated chamber burner for atomic absorption spectroscopy.

    Venghiattis, A A

    1968-07-01

    A new heated chamber burner is described. The burner is of the premixed type, and burner heads of the types conventionally used in atomic absorption may be readily adapted to it. This new sampling system has been tested for Ag, Al, Ca, Cu, Fe, Mg, Mn, Ni, Pb, Si, Ti, and Zn in aqueous solutions. An improvement of the order of ten times has been obtained in sensitivity, and in detection limits as well, for the elements determined. Interferences controllable are somewhat more severe than in conventional burners but are controllable. PMID:20068792

  7. Domestic heat pumps in the UK. User behaviour, satisfaction and performance

    Caird, S.; Roy, R.; Potter, S. [Design Innovation Group, Dept. Design, Development, Environment and Materials, Faculty of Mathematics, Computing and Technology, The Open University, Milton Keynes, MK7 6AA (United Kingdom)

    2012-08-15

    Consumer adoption of microgeneration technologies is part of the UK strategy to reduce carbon emissions from buildings. Domestic heat pumps are viewed as a potentially important carbon saving technology, given the ongoing decarbonisation of the electricity supply system. To address the lack of independent evaluation of heat pump performance, the Energy Saving Trust undertook the UK's first large-scale heat pump field trial, which monitored 83 systems in real installations. As part of the trial, the Open University studied the consumers' experience of using a domestic heat pump. An in-depth user survey investigated the characteristics, behaviour, and satisfactions of private householders and social housing residents using ground source and air source heat pumps for space and/or water heating, and examined the influence of user-related factors on measured heat pump system efficiency. The surveys found that most users were satisfied with the reliability, heating, hot water, warmth and comfort provided by their system. Analysis of user characteristics showed that higher system efficiencies were associated with greater user understanding of their heat pump system, and more continuous heat pump operation, although larger samples are needed for robust statistical confirmation. The analysis also found that the more efficient systems in the sample were more frequently located in the private dwellings than at the social housing sites and this difference was significant. This is explained by the interaction between differences in the systems, dwellings and users at the private and social housing sites. The implications for heat pump research, practice and policy are discussed.

  8. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

    Over the past three decades there has been nearly exponential growth in drying R and D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy. (author)

  9. Review on advanced of solar assisted chemical heat pump dryer for agriculture produce

    Fadhel, M.I. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Faculty of Engineering and Technology, Multimedia University, Jalan Ayer Keroh Lama, 75450 Melaka (Malaysia); Sopian, K.; Daud, W.R.W.; Alghoul, M.A. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2011-02-15

    Over the past three decades there has been nearly exponential growth in drying R and D on a global scale. Improving of the drying operation to save energy, improve product quality as well as reduce environmental effect remained as the main objectives of any development of drying system. A solar assisted chemical heat pump dryer is a new solar drying system, which have contributed to better cost-effectiveness and better quality dried products as well as saving energy. A solar collector is adapted to provide thermal energy in a reactor so a chemical reaction can take place. This reduces the dependency of the drying technology on fossil energy for heating. In this paper a review on advanced of solar assisted chemical heat pump dryer is presented (the system model and the results from experimental studies on the system performance are discussed). The review of heat pump dryers and solar assisted heat pump dryer is presented. Description of chemical heat pump types and the overview of chemical heat pump dryer are discussed. The combination of chemical heat pump and solar technology gives extra efficiency in utilizing energy. (author)

  10. The Oak Ridge Heat Pump Design Model: Mark 3 version program documentationon

    Fischer, S. K.; Rice, C. K.; Jackson, W. L.

    1988-03-01

    Oak Ridge National Laboratory (ORNL) is a leader in the development of analytical tools for the design of electrically driven, air-to-air heat pumps. Foremost among these tools is the ORNL Heat Pump Design Model, which can be used to predict the steady-state heating and cooling performance of an electrically driven, air-source heat pump. The ORNL Heat Pump Design Model has continued to evolve since the users' manual for the program, ORNL/CON-80/R1, was last revised in August 1983. This series of modifications to the heat pump model resulted in the Mark 3 Version, which is three to five times faster, easier to use, and more versatile than earlier versions and can be executed on a personal computer. The major changes made to earlier versions of the heat pump model relate to the organization of the input data, elimination of redundant calculations in the compressor and refrigerant property computations, improvement of thermostatic expansion valve and capillary tube correlations, revision of output format, and modifications to enable the model to run on a personal computer. The Mark 3 version is a comprehensive, easy-to-use program for the simulation of an electrically driven, air-source heat pump.

  11. A Comparative Cycle and Refrigerant Simulation Procedure Applied on Air-Water Heat Pumps

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2012-01-01

    small capacity heat pump applications today. Many of the applicable refrigerants also reach their technical limits regarding low vapor pressure for very low source temperatures and high discharge temperatures for high sink temperatures. These issues are especially manifest for air-water heat pumps. Many...... alternative cycle setups and refrigerants are known to improve the energy efficiency of a vapor compression cycle and reduce discharge temperatures. However not all of them are feasible for small capacity heat pumps from a cost and complexity point of view. This paper presents a novel numerical approach......A vapor compression heat pump absorbs heat from the environment at a low temperature level and rejects heat at a high temperature level. The bigger the difference between the two temperature levels the more challenging is it to gain high energy efficiency with a basic cycle layout as found in most...

  12. Long-term performance of central heat pumps in Slovenian homes

    Marčič, Milan

    2012-01-01

    Due to limited availability of natural resources exploited for heating and in order to reduce the environmental impact, people should strive to use renewable energy sources. Heat pumps allow the conversion of ambient heat, available in almost unlimited quantities, to heating energy. The paper describes an energy-saving house provided with good thermal insulation and heated by an air-to-water split-type heat pump. The condenser is located in the attic and the evaporator in the boiler room of t...

  13. Optimization design of recuperator in a chemical heat pump system based on entransy dissipation theory

    Based on the entransy dissipation theory, the multi-parameter optimization design of recuperator is conducted in an Isopropanol–Acetone–Hydrogen (IAH) chemical heat pump system. The performance of the heat pump system can be improved significantly through the multi-parameter optimization, when the main operation parameters of chemical heat pump remain unchanged. When the main operation parameters of chemical heat pump and the heat transfer area of recuperator remain unchanged, the heat transfer rate of recuperator, the high-temperature heat released from the exothermic reactor, and the coefficient of performance (COP) and exergy efficiency of IAH heat pump system greatly increase while the compressor power decreases remarkably as entransy dissipation number decreases. This is done only by optimizing the combination of design parameters of recuperator taking entransy dissipation number as the objective function under certain constraint conditions, and the cost is no more than the low-temperature waste heat having no practical value. -- Highlights: ► Optimization of heat exchanger based on entransy dissipation is conducted at system level. ► The optimization approach is very effective at both component and system levels. ► The performance of the system is improved significantly after the optimization design. ► The obtained high-temperature heat is improved greatly at the expense of low-temperature heat.

  14. Norwegian households' perception of wood pellet stove compared to air-to-air heat pump and electric heating

    In 2003, the high dependency on electric heating combined with the high electricity price prompted a significant number of Norwegian households to consider alternative heating systems. The government introduced economic support for wood pellet heating and heat pumps. In contrast to the fast growing heat pump market, this financial support has not resulted in a widespread adoption of wood pellet heating. This paper studies factors that influence the choice of heating system based on Norwegian households' perceptions. Electric heating, heat pump and wood pellet heating were compared, with a special focus on wood pellet heating. This study was conducted as a questionnaire survey on two independent samples. The first sample consisted of 188 randomly chosen Norwegian households, mainly using electric heating; the second sample consisted of 461 households using wood pellet heating. Our results show that socio-demographic factors, communication among households, the perceived importance of heating system attributes, and the applied decision strategy all influence the Norwegian homeowners. The significance of these factors differs between the two samples and the preferred type of anticipated future heating system. Strategies for possible interventions and policy initiatives are discussed.

  15. Norwegian households' perception of wood pellet stove compared to air-to-air heat pump and electric heating

    In 2003, the high dependency on electric heating combined with the high electricity price prompted a significant number of Norwegian households to consider alternative heating systems. The government introduced economic support for wood pellet heating and heat pumps. In contrast to the fast growing heat pump market, this financial support has not resulted in a widespread adoption of wood pellet heating. This paper studies factors that influence the choice of heating system based on Norwegian households' perceptions. Electric heating, heat pump and wood pellet heating were compared, with a special focus on wood pellet heating. This study was conducted as a questionnaire survey on two independent samples. The first sample consisted of 188 randomly chosen Norwegian households, mainly using electric heating; the second sample consisted of 461 households using wood pellet heating. Our results show that socio-demographic factors, communication among households, the perceived importance of heating system attributes, and the applied decision strategy all influence the Norwegian homeowners. The significance of these factors differs between the two samples and the preferred type of anticipated future heating system. Strategies for possible interventions and policy initiatives are discussed. (author)

  16. Norwegian households' perception of wood pellet stove compared to air-to-air heat pump and electric heating

    Sopha, Bertha Maya; Hertwich, Edgar G. [Industrial Ecology Programme, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Kloeckner, Christian A. [Department of Psychology, Section for Risk Psychology, Environment and Safety (RIPENSA), Norwegian University of Science and Technology, NO-7491 Trondheim (Norway); Skjevrak, Geir [Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim (Norway)

    2010-07-15

    In 2003, the high dependency on electric heating combined with the high electricity price prompted a significant number of Norwegian households to consider alternative heating systems. The government introduced economic support for wood pellet heating and heat pumps. In contrast to the fast growing heat pump market, this financial support has not resulted in a widespread adoption of wood pellet heating. This paper studies factors that influence the choice of heating system based on Norwegian households' perceptions. Electric heating, heat pump and wood pellet heating were compared, with a special focus on wood pellet heating. This study was conducted as a questionnaire survey on two independent samples. The first sample consisted of 188 randomly chosen Norwegian households, mainly using electric heating; the second sample consisted of 461 households using wood pellet heating. Our results show that socio-demographic factors, communication among households, the perceived importance of heating system attributes, and the applied decision strategy all influence the Norwegian homeowners. The significance of these factors differs between the two samples and the preferred type of anticipated future heating system. Strategies for possible interventions and policy initiatives are discussed. (author)

  17. Automotive absorption air conditioner utilizing solar and motor waste heat

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  18. Analysis of the Thermodynamical Efficiency of an Air Handling Unit with a Heat Pump

    Vytautas Martinaitis; Paulius Bareika; Violeta Misevičiūtė

    2012-01-01

    This paper evaluates the seasonal thermodynamic efficiency of the air-to-air heat pump used for a heat recovery ventilation system and several modulations of compressors affecting the thermodynamic efficiency of the heat pump. A variable speed and on/off-type compressors have been selected. In order to evaluate the thermodynamic potential of the device, energy analysis has been performed. Along with modelling the operation of the air handling unit during the cold time of the year, variations ...

  19. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    Kazjonovs Janis; Sipkevics Andrejs; Jakovics Andris; Dancigs Andris; Bajare Diana; Dancigs Leonards

    2014-01-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a...

  20. Analysis of air-to-water heat pump in cold climate: comparison between experiment and simulation

    Karolis Januševičius; Giedrė Streckienė

    2015-01-01

    Heat pump systems are promising technologies for current and future buildings and this research presents the performance of air source heat pump (ASHP) system. The system was monitored, analysed and simulated using TRNSYS software. The experimental data were used to calibrate the simulation model of ASHP. The specific climate conditions are evaluated in the model. It was noticed for the heating mode that the coefficient of performance (COP) varied from 1.98 to 3.05 as the outdoor temperature ...

  1. Performance Assessment of a Solar Assisted Ground Source Heat Pump in a Mountain Site

    Ferrara, Maria; Filippi, Marco; Fabrizio, Enrico; Corgnati, Stefano Paolo

    2015-01-01

    Abstract Systems based on the integrated use of multiple renewable energy sources, such as "Solar Assisted Geothermal Heat Pumps" (SAGHPs), seem to increase efficiency and overcome limits of the use of traditional heat pump systems. In this work, a \\SAGHP\\ providing energy for heating and \\DHW\\ of a newly built restaurant in an Alpine ski park was analyzed through transient simulations with TRNSYS®, following the collection of information about the system component, the operation and the weat...

  2. Thermodynamic and Kinetic Investigation of a Chemical Reaction-Based Miniature Heat Pump

    Flueckiger, Scott M.; Volle, Fabien; Garimella, S V; Mongia, Rajiv K.

    2012-01-01

    Representative reversible endothermic chemical reactions (paraldehyde depolymerization and 2-proponal dehydrogenation) are theoretically assessed for their use in a chemical heat pump design for compact thermal management applications. Equilibrium and dynamic simulations are undertaken to explore the operation of the heat pump which upgrades waste heat from near room temperature by approximately 20 in a minimized system volume. A model is developed based on system mass and energy balances cou...

  3. Demand side management for commercial buildings using an in line heat pump water heating methodology

    Most of the sanitary hot water used in South African buildings is heated by means of direct electrical resistance heaters. This is one of the major contributors to the undesirably high morning and afternoon peaks imposed on the national electricity supply grid. For this reason, water heating continues to be of concern to the electricity supplier, ESCOM. Previous studies, conducted by the Potchefstroom University for Christian Higher Education in South Africa, indicated that extensive application of the so called inline heat pump water heating methodology in commercial buildings could result in significant demand side management savings to ESKOM. Furthermore, impressive paybacks can be obtained by building owners who choose to implement the design methodology on existing or new systems. Currently, a few examples exist where the design methodology has been successfully implemented. These installations are monitored with a fully web centric monitoring system that allows 24 h access to data from each installation. Based on these preliminary results, a total peak demand reduction of 108 MW can be achieved, which represents 18% of the peak load reduction target set by ESKOM until the year 2015. This represents an avoided cost of approximately MR324 (ZAR) [Int J Energy Res 25(4) (1999) 2000]. Results based on actual data from the monitored installations shows a significant peak demand reduction for each installation. In one installation, a hotel with an occupancy of 220 people, the peak demand contribution of the hot water installation was reduced by 86%, realizing a 36% reduction in peak demand for the whole building. The savings incurred by the building owner also included significant energy consumption savings due to the superior energy efficiency of the heat pump water heater. The combined savings result in a conservatively calculated straight payback period of 12.5 months, with an internal rate of return of 98%. The actual cost of water heating is studied by

  4. Experimental investigation on the photovoltaic-thermal solar heat pump air-conditioning system on water-heating mode

    Fang, Guiyin; Hu, Hainan; Liu, Xu [Department of Physics, Nanjing University, Nanjing 210093 (China)

    2010-09-15

    An experimental study on operation performance of photovoltaic-thermal solar heat pump air-conditioning system was conducted in this paper. The experimental system of photovoltaic-thermal solar heat pump air-conditioning system was set up. The performance parameters such as the evaporation pressure, the condensation pressure and the coefficient of performance (COP) of heat pump air-conditioning system, the water temperature and receiving heat capacity in water heater, the photovoltaic (PV) module temperature and the photovoltaic efficiency were investigated. The experimental results show that the mean photovoltaic efficiency of photovoltaic-thermal (PV/T) solar heat pump air-conditioning system reaches 10.4%, and can improve 23.8% in comparison with that of the conventional photovoltaic module, the mean COP of heat pump air-conditioning system may attain 2.88 and the water temperature in water heater can increase to 42 C. These results indicate that the photovoltaic-thermal solar heat pump air-conditioning system has better performances and can stably work. (author)

  5. Ground source heat pump performance in case of high humidity soil and yearly balanced heat transfer

    Highlights: • GSHPs are simulated in case of humid soil and yearly balanced heat transfer. • Humid soil and yearly balanced heat transfer imply higher compactness of GSHPs. • Resulting GSHPs are compared with other traditional and innovative HVAC systems. • GSHPs score best, especially in case of inverter-driven compressors. - Abstract: Ground source heat pump (GSHP) systems are spreading also in Southern Europe, due to their high energy efficiency both in heating and in cooling mode. Moreover, they are particularly suitable in historical cities because of difficulties in the integration of heating/cooling systems into buildings subjected to historical preservation regulations. In these cases, GSHP systems, especially the ones provided with borehole heat exchangers, are a suitable solution instead of gas boilers, air-cooled chillers or cooling towers. In humid soils, GSHP systems are even more interesting because of their enhanced performance due to higher values of soil thermal conductivity and capacity. In this paper, GSHP systems operating under these boundary conditions are analyzed through a specific case study set in Venice and related to the restoration of an historical building. With this analysis the relevant influences of soil thermal conductivity and yearly balanced heat transfer in the design of the borehole field are shown. In particular, the paper shows the possibility to achieve higher compactness of the borehole field footprint area when yearly balanced heat transfer in the borehole field is expected. Then, the second set of results contained in the paper shows how GSHP systems designed for high humidity soils and yearly balanced heat loads at the ground side, even if characterized by a compact footprint area, may still ensure better performance than other available and more common technologies such as boilers, air-cooled chillers, chillers coupled with cooling towers and heat pumps and chillers coupled with lagoon water. As a consequence

  6. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  7. Effects of flash tank vapor injection on the heating performance of an inverter-driven heat pump for cold regions

    Heo, Jaehyeok; Jeong, Min Woo; Kim, Yongchan [Department of Mechanical Engineering, Korea University, Anam-Dong, Sungbuk-Ku, Seoul 136-713 (Korea)

    2010-06-15

    A heat pump has received much attention as substitute for the conventional boiler or heating coil because of its high efficiency. For the wide application of the heat pump, the most important design factor is the performance degradation upon its installation in tropical and cold regions. In this study, the effects of flash tank vapor injection on the heating performance of a two-stage heat pump with an inverter-driven twin rotary compressor were measured and analyzed for compressor frequency ranging from 50 to 100 Hz at ambient temperatures of -15, -5, and 5 C. The COP and heating capacity of the injection cycle were enhanced by 10% and 25%, respectively, at the ambient temperature of -15 C. The total mass flow rate of the injection cycle was 30-38% higher than that of the non-injection cycle. (author)

  8. Heat Pump Water Heaters and American Homes: A Good Fit?

    Franco, Victor; Lekov, Alex; Meyers, Steve; Letschert, Virginie

    2010-05-14

    Heat pump water heaters (HPWHs) are over twice as energy-efficient as conventional electric resistance water heaters, with the potential to save substantial amounts of electricity. Drawing on analysis conducted for the U.S. Department of Energy's recently-concluded rulemaking on amended standards for water heaters, this paper evaluates key issues that will determine how well, and to what extent, this technology will fit in American homes. The key issues include: 1) equipment cost of HPWHs; 2) cooling of the indoor environment by HPWHs; 3) size and air flow requirements of HPWHs; 4) performance of HPWH under different climate conditions and varying hot water use patterns; and 5) operating cost savings under different electricity prices and hot water use. The paper presents the results of a life-cycle cost analysis of the adoption of HPWHs in a representative sample of American homes, as well as national impact analysis for different market share scenarios. Assuming equipment costs that would result from high production volume, the results show that HPWHs can be cost effective in all regions for most single family homes, especially when the water heater is not installed in a conditioned space. HPWHs are not cost effective for most manufactured home and multi-family installations, due to lower average hot water use and the water heater in the majority of cases being installed in conditioned space, where cooling of the indoor environment and size and air flow requirements of HPWHs increase installation costs.

  9. Exergetic efficiency optimization for an irreversible heat pump working on reversed Brayton cycle

    Yuehong Bi; Lingen Chen; Fengrui Sun

    2010-03-01

    This paper deals with the performance analysis and optimization for irreversible heat pumps working on reversed Brayton cycle with constant-temperature heat reservoirs by taking exergetic efficiency as the optimization objective combining exergy concept with finite-time thermodynamics (FTT). Exergetic efficiency is defined as the ratio of rate of exergy output to rate of exergy input of the system. The irreversibilities considered in the system include heat resistance losses in the hot- and cold-side heat exchangers and non-isentropic losses in the compression and expansion processes. The analytical formulas of the heating load, coefficient of performance (COP) and exergetic efficiency for the heat pumps are derived. The results are compared with those obtained for the traditional heating load and coefficient of performance objectives. The influences of the pressure ratio of the compressor, the allocation of heat exchanger inventory, the temperature ratio of two reservoirs, the effectiveness of the hot- and cold-side heat exchangers and regenerator, the efficiencies of the compressor and expander, the ratio of hot-side heat reservoir temperature to ambient temperature, the total heat exchanger inventory, and the heat capacity rate of the working fluid on the exergetic efficiency of the heat pumps are analysed by numerical calculations. The results show that the exergetic efficiency optimization is an important and effective criterion for the evaluation of an irreversible heat pump working on reversed Brayton cycle.

  10. Pump-flow-probe x-ray absorption spectroscopy as a tool for studying aintermediate states of photocatalytic systems

    Smolentsev, Grigory; Guda, Alexander; Zhang, Xiaoyi;

    2013-01-01

    A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub-millimolar concentr......A new setup for pump-flow-probe X-ray absorption spectroscopy has been implemented at the SuperXAS beamline of the Swiss Light Source. It allows recording X-ray absorption spectra with a time resolution of tens of microseconds and high detection efficiency for samples with sub...... measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations, and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon...

  11. Thermodynamic properties of aqueous ternary solutions relevant to chemical heat pumps: Final report. [LiNO/sub 3/-KNO/sub 3/-NaNO/sub 3/

    Ally, M.R.

    1987-03-01

    Polynomial expressions are developed that correlate experimental vapor-liquid-equilibrium (VLE) and specific enthalpy concentration data for a newly developed ternary absorption fluid (LiNO/sub 3/-KNO/sub 3/-NaNO/sub 3/). The development of these expressions are an important step toward using existing ORNL computer software to evaluate heat pump performance. A canned least-square-fit program, POLFIT.BAS, was invoked to obtain the polynomial coefficients. Results show that the maximum deviation between correlated and actual values is less than 3% for vapor pressure and enthalpy. This is considered sufficiently accurate for heat pump cycle performance studies.

  12. Potential for increased wind-generated electricity utilization using heat pumps in urban areas

    Highlights: • Large-scale wind power and increased electric heat pumps were evaluated. • A deterministic model of wind power and electricity demand was developed. • Sub-models for space heating and domestic hot water demand were developed. • Increased use of heat pumps can improve the viability of large-scale wind power. • Larger wind power capacity can meet a target utilization rate with more heat pumps. - Abstract: The U.S. has substantial wind power potential, but given wind’s intermittent availability and misalignment with electricity demand profiles, large-scale deployment of wind turbines could result in high electricity costs due to energy storage requirements or low utilization rates. While fuel switching and heat pumps have been proposed as greenhouse gas (GHG) emissions and energy reduction strategies at the building scale, this paper shows that heat pump adoption could have additional system-wide benefits by increasing the utilization of wind-generated electricity. A model was developed to evaluate the effects of coupling large-scale wind power installations in New York State with increased use of electric heat pumps to meet a portion of space heating and domestic hot water (DHW) demands in New York City. The analysis showed significant increases in wind-generated electricity utilization with increased use of heat pumps, allowing for higher installed capacity of wind power. One scenario indicates that 78.5% annual wind-generated electricity utilization can be achieved with 3 GW of installed wind power capacity generated electricity equal to 20% of existing NYC annual electricity demand; if 20% of space heating and DHW demands are provided by heat pumps, the 78.5% utilization rate can be achieved with an increase of total wind power capacity to 5 GW. Therefore, this integrated supply–demand approach could provide additional system-wide emissions reductions

  13. Experimental research on a new solar pump-free lithium bromide absorption refrigeration system with a second generator

    Yaxiu, Gu; Yuyuan, Wu; Xin, Ke [Department of Refrigerating and Cryogenic Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2008-01-15

    This paper is concerned with experimental research on a new solar pump-free lithium bromide absorption refrigeration system with a second generator. By using the second generator together with a lunate thermosiphon elevation tube, the required minimum driving temperature of the heat source is only 68{sup o}C compared to above 100{sup o}C in traditional absorption refrigeration systems. Based on the horizontal-tube falling-film method, the performance of the absorber can be enhanced by the second generator due to an increase in the differential concentration of the solution between the inlet and the outlet of the absorber and an increase in the temperature difference between the inlet and the outlet of the cooling water in the absorber. The yield of condensate with the second generator open is increased by 68% compared to that with the second generator closed. The performance of the evaporator is significantly improved due to the increase in temperature drop of the chilled water and the decrease in the outlet temperature of the chilled water. This leads to an improvement of the performance of the overall refrigeration system. The maximum coefficient of performance (COP) approaches 0.787. (author)

  14. Experiment research on grain drying process in the heat pump assisted fluidized beds

    Jing Yang; Li Wang; Fi Xiang; Lige Tong; Hua Su

    2004-01-01

    A heat pump assisted fluidized bed grain drying experimental system was developed. Based on this system, a serial of experiments was performed under four kinds of air cycle conditions. According to the experimental analysis, an appropriate drying medium-air cycle for the heat pump assisted fluidized bed drying equipment was decided, which is different from the commonly used heat pump assisted drying system. The experimental results concerning the drying operation performance of the new system show that the averaged coefficient of performance (COP) can reach more than 2.5. The economical evaluation was performed and the powefficiency and great application potentiality in future market.

  15. New industrial heat pump applications to a synthetic rubber plant. Final report, Phase IIA

    NONE

    1993-12-31

    This report summarizes the results of the Phase IIA of the DOE sponsored study titled, Advanced Industrial Heat Pump Application and Evaluation. The scope of this phase of the study was to finalize the process design of the heat pump scheme, develop a process and instrumentation diagram, and a detailed cost estimate for the project. This information is essential for the site management to evaluate the economic viability and operability of the proposed heat pump design, prior to the next phase of installation and testing.

  16. Fault Detection and Diagnosis for Brine to Water Heat Pump Systems

    Vecchio, Daniel

    2014-01-01

    The overall objective of this thesis is to develop methods for fault detection and diagnosis for ground source heat pumps that can be used by servicemen to assist them to accurately detect and diagnose faults during the operation of the heat pump. The aim of this thesis is focused to develop two fault detection and diagnosis methods, sensitivity ratio and data-driven using principle component analysis. For the sensitivity ratio method model, two semi-empirical models for heat pump unit were b...

  17. Federal Technology Alert: Ground-Source Heat Pumps Applied to Federal Facilities--Second Edition

    Hadley, Donald L.

    2001-03-01

    This Federal Technology Alert, which was sponsored by the U.S. Department of Energy's Office of Federal Energy Management Programs, provides the detailed information and procedures that a Federal energy manager needs to evaluate most ground-source heat pump applications. This report updates an earlier report on ground-source heat pumps that was published in September 1995. In the current report, general benefits of this technology to the Federal sector are described, as are ground-source heat pump operation, system types, design variations, energy savings, and other benefits. In addition, information on current manufacturers, technology users, and references for further reading are provided.

  18. Optimal planning exploits potentials. Heat pump software tools facilitate the consultation, planning and design of heat pump facilities; Optimale Planung schoepft Potenziale aus. Waermepumpen Software-Tools erleichtern die Beratung, Planung und Ausfuehrung der Waermepumpenanlagen

    Theiss, Eric

    2012-12-15

    The optimal planning of a heat pump system and therefore the most effective and economic utilization of environmental energy can only be realized by means of a heat pump software. The technical parameters of the heat pumps, the source temperature as well as the temperature requirements of the heating system mutually influence each other. Thus, it is difficult to achieve prognoses on the operational behaviour and economic efficiency of the total heating system without a computerized simulation.

  19. Heat pumps - Even more efficient and quieter; Waermepumpen - noch effizienter und leiser

    Kopp, T.

    2003-07-01

    These comprehensive proceedings contain nine presentations made at the 10th Conference held by the Swiss Research Programme on Environmental Heat, Combined Heat and Power Generation (CHP) and Refrigeration in Burgdorf, Switzerland in June 2003. In a paper by Stefen Bertsch, Peter Hubacher and Prof. Dr. Max Ehrbar, methods of freeing the evaporators used in air-water heat pumps of ice is examined, Prof. Dr. Thomas Afjei introduces standardised schematics for heat pump installations, Dr. Hans Rudolf Graf presents the results of research into noise reduction for air-water heat pumps and Dr. Esfandiar Shafai reports on pulse-width-modulation for small heat pumps. A further paper covers the use of ammonia in small heat pumps (Ewald Geisser). Dr. Martin Zogg looks back on 10 years of heat pump research at the Swiss Federal Office of Energy whilst Prof. Dr. Thomas Kopp takes a look at the future activities of the programme. Finally, Prof. Dr. Max Ehrbar discusses strategies for and the implementation of pilot and demonstration plants.

  20. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps. PMID:22797241