WorldWideScience

Sample records for absorption gamma-ray spectrometer

  1. A mathematical model concerned in self-absorption correction to calibrate detection efficiency of the Ge gamma-ray spectrometer

    A self-absorption correction function used for cylindrical samples with different density in the Gamma-ray spectrum analysis is reported. The effects of the Gamma-ray energy and sample density on the self-absorption are unitized in the function model, and so a shortcut for detection efficiency calibration in the Gamma-ray spectrum analysis is found

  2. The GRAD gamma ray spectrometer

    Rester, A.C.; Piercey, R.B.; Eichhorn, G.; Coldwell, R.L.; McKisson, J.M.; Ely, D.W.; Mann, H.M.; Jenkins, D.A.

    1986-02-01

    A gamma-ray spectrometer for an upcoming space shuttle mission is described. Consisting of a 150 cm/sup 3/ n-type germanium detector set inside active shielding of bismuth germanate and plastic scintillator, the instrument will be used in studies of the Orbiter background and the galactic center.

  3. The GRAD gamma ray spectrometer

    A gamma-ray spectrometer for an upcoming space shuttle mission is described. Consisting of a 150 cm3 n-type germanium detector set inside active shielding of bismuth germanate and plastic scintillator, the instrument will be used in studies of the Orbiter background and the galactic center

  4. Airborne gamma ray spectrometer surveying

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  5. Studies of the $\\beta$-decay of Kr and Sr nuclei on and near the N=Z line with a Total Absorption $\\gamma$-ray Spectrometer

    2002-01-01

    It is proposed to measure the Gamow-Teller strength distribution in the decays of $^{71-75}$Kr and $^{75,76}$Sr using a Total Absorption Gamma-ray Spectrometer (TAGS) based on a large NaI(TI) detector. The $\\gamma$-rays emitted in these decays will be detected in the TAGS in coincidence with positrons and X-rays from electron capture. Measurements of $\\beta$-delayed particles will also be performed in coincidence with the TAGS. Comparison with theoretical calculations based on the mean field approach, Tamm-Dancoff and QRPA method should allow a determination of the shapes of the ground states of these nuclei.

  6. Software tool for xenon gamma-ray spectrometer control

    Chernysheva, I. V.; Novikov, A. S.; Shustov, A. E.; Dmitrenko, V. V.; Pyae Nyein, Sone; Petrenko, D.; Ulin, S. E.; Uteshev, Z. M.; Vlasik, K. F.

    2016-02-01

    Software tool "Acquisition and processing of gamma-ray spectra" for xenon gamma-ray spectrometers control was developed. It supports the multi-windows interface. Software tool has the possibilities for acquisition of gamma-ray spectra from xenon gamma-ray detector via USB or RS-485 interfaces, directly or via TCP-IP protocol, energy calibration of gamma-ray spectra, saving gamma-ray spectra on a disk.

  7. Gamma ray spectrometer for Lunar Scout 2

    Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

    1993-01-01

    We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

  8. Gamma ray auto absorption correction evaluation methodology

    Neutron activation analysis (NAA) is a well established nuclear technique, suited to investigate the microstructural or elemental composition and can be applied to studies of a large variety of samples. The work with large samples involves, beside the development of large irradiation devices with well know neutron field characteristics, the knowledge of perturbing phenomena and adequate evaluation of correction factors like: neutron self shielding, extended source correction, gamma ray auto absorption. The objective of the works presented in this paper is to validate an appropriate methodology for gamma ray auto absorption correction evaluation for large inhomogeneous samples. For this purpose a benchmark experiment has been defined - a simple gamma ray transmission experiment, easy to be reproduced. The gamma ray attenuation in pottery samples has been measured and computed using MCNP5 code. The results show a good agreement between the computed and measured values, proving that the proposed methodology is able to evaluate the correction factors. (authors)

  9. Digital Logarithmic Airborne Gamma Ray Spectrometer

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  10. Modernization of multichannel gamma-ray spectrometer at the second horizontal channel of reactor WWR-M

    Berko, V J; Lyibman, V A

    2003-01-01

    Fast anti coincidence scheme with one privileged entrance has been developed, made and adjusted for underestimation of background distribution under full absorption peaks of gamma-ray by transformation one track of multichannel pair gamma-ray spectrometer into anticompton spectrometer. Obtained suppression factor of background is from 1,5 to 4, depending on gamma-ray energy.

  11. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    National Aeronautics and Space Administration — We utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray spectrometers. Two...

  12. Superconducting High Energy Resolution Gamma-ray Spectrometers

    Chow, D T

    2002-02-22

    We have demonstrated that a bulk absorber coupled to a TES can serve as a good gamma-ray spectrometer. Our measured energy resolution of 70 eV at 60 keV is among the best measurements in this field. We have also shown excellent agreement between the noise predictions and measured noise. Despite this good result, we noted that our detector design has shortcomings with a low count rate and vulnerabilities with the linearity of energy response. We addressed these issues by implementation of an active negative feedback bias. We demonstrated the effects of active bias such as additional pulse shortening, reduction of TES change in temperature during a pulse, and linearization of energy response at low energy. Linearization at higher energy is possible with optimized heat capacities and thermal conductivities of the microcalorimeter. However, the current fabrication process has low control and repeatability over the thermal properties. Thus, optimization of the detector performance is difficult until the fabrication process is improved. Currently, several efforts are underway to better control the fabrication of our gamma-ray spectrometers. We are developing a full-wafer process to produce TES films. We are investigating the thermal conductivity and surface roughness of thicker SiN membranes. We are exploring alternative methods to couple the absorber to the TES film for reproducibility. We are also optimizing the thermal conductivities within the detector to minimize two-element phonon noise. We are experimenting with different absorber materials to optimize absorption efficiency and heat capacity. We are also working on minimizing Johnson noise from the E S shunt and SQUID amplifier noise. We have shown that our performance, noise, and active bias models agree very well with measured data from several microcalorimeters. Once the fabrication improvements have been implemented, we have no doubt that our gamma-ray spectrometer will achieve even more spectacular results.

  13. Hand-held high resolution gamma ray spectrometer

    A fully portable and a semi-portable high resolution gamma spectrometer are described. These instruments have the resolving capabilities that are inherent to germanium spectrometers and have the portability needed for health physics. The instruments are usable as a gamma-ray or x-ray fluorescence spectrometer

  14. SWEPP Gamma-Ray Spectrometer System software design description

    Femec, D.A.; Killian, E.W.

    1994-08-01

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system.

  15. SWEPP Gamma-Ray Spectrometer System software design description

    To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system

  16. High Pressure XENON Gamma-Ray Spectrometers for Field Use

    This project explored a new concept for high-pressure xenon ionization chambers by replacing the Frisch grid with coplanar grid electrodes similar to those used in wide bandgap semiconductor gamma-ray spectrometers. This work is the first attempt to apply the coplanar grid anode design in a gas ionization chamber in order to achieve to improved energy resolution. Three prototype detectors, two cylindrical and one parallel plate configurations, were built and tested. While the detectors did not demonstrate energy resolutions as good as other high pressure xenon gamma-ray spectrometers, the results demonstrated that the concept of single polarity charge sending using coplanar grid electrodes will work in a gas detector

  17. Preliminary observations of the SELENE Gamma Ray Spectrometer

    Forni, O.; Diez, B.; Gasnault, O.; Munoz, B.; D'Uston, C.; Reedy, R. C.; Hasebe, N.

    2008-09-01

    Introduction We analyze the spectra measured by the Gamma Ray Spectrometer (GRS) on board the SELENE satellite [1]. SELENE was inserted in lunar orbit on 4 Oct. 2007. After passing through a health check and a function check, the GRS was shifted to nominal observation on 21 Dec. 2007. The spectra consist in various lines of interest (O, Mg, Al, Si, Ti, Ca, Fe, K, Th, U, and possibly H) superposed on a continuum. The energies of the gamma rays identify the nuclides responsible for the gamma ray emission and their intensities relate to their abundance. Data collected through 17 Feb. 2008 are studied here, corresponding to an accumulation time (Fig. 1) sufficiently good to allow preliminary mapping. Analysis of the global gamma ray spectrum In order to obtain spectra with counting statistics sufficient for peak analysis, we accumulate all observations. The identification of lines is performed on this global lunar spectrum (Fig 2). Fit of individual lines The gamma ray lines that arise from decay of longlived radioactive species are among the easiest to analyze. So far the abundance of two species is studied thanks to such lines: potassium (1461 keV) and thorium (2614 keV). Secondary neutrons from cosmic ray interactions also produce gamma ray when reacting with the planetary material, according to scattering or absorption reactions. However these lines need substantial corrections before an interpretation in terms of abundance can be performed. Lines have been examined with different techniques. The simplest method consists in summing the spectra in a window containing the line of interest. The continuum is adjusted with a polynomial and removed. Such a method was used for the gamma ray spectra collected by Lunar Prospector [2]. This method is especially robust for isolated lines, such as those of K and Th mentioned above, or with very low statistics. The second method consists in fitting the lines by summing a quadratic continuum with Gaussian lines and exponential

  18. Studies of the $\\beta$-decay of Sr nuclei on and near the N=Z Line with a Total Absorption Gamma-ray Spectrometer

    Marechal, F; Caballero ontanaya, L

    2002-01-01

    In the framework of the investigation of the shapes of the ground states of the parent nucleus, we propose to carry out measurements of the complete Gamow-Teller strength distribution for the $^{76-80}$Sr isotopes, with a new Total Absorption Gamma Spectrometer installed on a new beam line. The results will be compared with theoretical calculations based on the mean field approach. A brief report on the IS370 experiment on $^{72-75}$Kr decay, which was recently performed at ISOLDE, will be given and the performance of the sum spectrometer will be presented.

  19. Electronic characterization of mercuric iodide gamma ray spectrometers

    During the past four years the yield of high resolution mercuric iodide (HgI2) gamma ray spectrometers produced at EG ampersand G/EM has increased dramatically. Data is presented which demonstrates a strong correlation between starting material and spectrometer performance. Improved spectrometer yields are attributed to the method of HgI2 synthesis and to material purification procedures. Data is presented which shows that spectrometer performance is correlated with hole mobility-lifetime products. In addition, the measurement of Schottky barrier heights on HgI2 spectrometers has been performed using I-V curves and the photoelectric method. Barrier heights near 1.1 eV have been obtained using various contacts and contact deposition methods. These data suggest the pinning of the Fermi level at midgap at the HgI2 surface, probably due to surface states formed prior to contact deposition

  20. The Lunar Prospector gamma-ray and neutron spectrometers

    Gamma-ray and neutron spectrometers (GRS and NS, respectively) are included in the payload complement of Lunar Prospector (LP) that is currently orbiting the Moon. Specific objectives of the GRS are to map abundances of O, Si, Fe, Ti, U, Th, K, and perhaps, Mg, Al, and Ca, to depths of about 20 cm. Those of the NS are to search for water ice to depths of about 50 cm near the lunar poles and to map regolith maturity. The designs of both spectrometers are described and their performance in both the laboratory and in lunar orbit are presented

  1. A gamma-ray spectrometer system for fusion applications

    Esposito, B; Kaschuck, Y A; Martin-Solis, J R; Portnov, D V

    2002-01-01

    A NaI scintillator spectrometer system for the measurement of gamma-ray spectra in tokamak discharges has been developed and installed on the Frascati Tokamak Upgrade. Two NaI scintillators are viewing the plasma at two different angles with respect to the equatorial plane. The main features of the spectrometer system (energy range: 0.3-23 MeV) and of the unfolding technique used to restore physical spectra from the pulse-height distributions are described: a method of solution with regularisation for matrix equations of large size, allowing to process count distributions with significant statistical noise, has been developed. A dedicated software, portable to any platform, has been written both for the acquisition and the analysis of the spectra. The typical gamma-ray spectra recorded in hydrogen and deuterium discharges, also with additional heating, are presented and discussed; two components have been observed: (a) thick-target Bremsstrahlung gamma-rays produced by runaway electrons hitting the Inconel po...

  2. A mobile gamma ray spectrometer system for nuclear hazard mapping

    Smethurst, M A

    2000-01-01

    The Geological Survey of Norway has developed a system for mobile gamma ray spectrometer surveying suitable for use in nuclear emergencies where potentially dangerous radioactive materials have been released into the environment. The measuring system has been designed for use with different kinds of transportation platforms. These include fixed-wing aircraft, helicopters and vans. The choice of transportation platform depends on the nature of the nuclear emergency. Widespread fallout from a distant source can be mapped quickly from the air while local sources of radiation can be delineated by a car-borne system. The measuring system processes gamma ray spectra in real time. The operator of the system is therefore able to guide surveying in accordance with meaningful data values and immediately report these values to decision making The operator is presented with a number of different displays suited to different kinds of nuclear emergencies that lead to more efficient surveying. Real time processing of data m...

  3. Gamma-ray spectrometer onboard Chang'E-2

    Chang'E-2 gamma-ray spectrometer (GRS) is included in the payload of Chinese second lunar mission Chang'E-2 that has been launched in October 2010. Specific objectives of the GRS are to map abundance of O, Si, Fe, Ti, U, Th, K, and, perhaps, Mg, Al, and Ca, to depth of about 20 cm. The energy resolution and detection efficiency were improved compared with Chang'E-1 GRS. We will describe the design of GRS, which used LaBr3 for its main detector, and present its performance in this paper. Moreover, the initial result of Chang'E-2 GRS is reported

  4. Multichannel CdZnTe gamma ray spectrometer

    Doty, F. P.; Lingren, C. L.; Apotovsky, B. A.; Brunsch, J.; Butler, J. F.; Collins, T.; Conwell, R. L.; Friesenhahn, S.; Gormley, J.; Pi, B.; Zhao, S.; Augustine, F. L.; Bennett, B. A.; Cross, E.; James, R. B.

    1999-02-01

    A 3 cm 3 multichannel gamma spectrometer for DOE applications is under development by Digirad Corporation. The device is based on a position sensitive detector packaged in a compact multi-chip module (MCM) with integrated readout circuitry. The modular, multichannel design will enable identification and quantitative analysis of radionuclides in extended sources, or sources containing low levels of activity. The MCM approach has the advantages that the modules are designed for imaging applications, and the sensitivity can be arbitrarily increased by increasing the number of pixels, i.e. adding modules to the instrument. For a high sensitivity probe, the outputs for each pixel can be corrected for gain and offset variations, and summed digitally. Single pixel results obtained with discrete low noise readout indicate energy resolution of 3 keV can be approached with currently available CdZnTe. The energy resolution demonstrated to date with MCMs for 511 keV gamma rays is 10 keV.

  5. Pocket PC-based portable gamma-ray spectrometer

    Kamontip Ploykrachang

    2011-04-01

    Full Text Available A portable gamma-ray spectrometer based on a Pocket PC has been developed. A 12-bit pipeline analog-to-digitalconverter (ADC associated with an implemented pulse height histogram function on field programmable gate array (FPGAoperating at 15 MHz is employed for pulse height analysis from built-in pulse amplifier. The system, which interfaces withthe Pocket PC via an enhanced RS-232 serial port under the microcontroller facilitation, is utilized for spectrum acquisition,display and analysis. The pulse height analysis capability of the system was tested and it was found that the ADC integralnonlinearity of ±0.45% was obtained with the throughput rate at 160 kcps. The overall system performance was tested usinga PIN photodiode-CsI(Tl crystal coupled scintillation detector and gamma standard radioactive sources of Cs-137 andCo-60. Low cost and the compact system size as a result of the implemented logical function are also discussed.

  6. Gamma ray spectrometer for operation in small aircraft

    A four-channel gamma ray spectrometric survey system has been developed that is suitable for operation in small aircraft. The system is equipped with an 111/2 in. dia, 4 in. thick NaI(Tl) detector. Previous work using a single channel instrument in a helicopter produced the criteria for the design of the present system. It was assumed at the outset that the helicopter would be the preferred vehicle. Weight, volume, portability, power consumption, facility of operation and versatility in data recording were the general design considerations. The construction proceeded in two phases. The spectrometer with analog data recording facility was completed first and the digital data recording subsystem was added in the second phase. The original intention to include analog spectrum stripping circuitry was abandoned with the addition of the digital recorder. (U.S.)

  7. Design and applications of an anticoincidence shielded low background gamma-ray spectrometer

    Petri, H. [Forschungszentrum Juelich GmbH (Germany). Zentralabteilung fuer Chemische Analysen

    1997-03-01

    A low background gamma-ray spectrometer has been constructed for measuring artificial and natural radioative isotopes. The design of the spectrometer, its properties and the application to the determination of natural radioactivity of dental ceramics are described. (orig.)

  8. Design and applications of an anticoincidence shielded low background gamma-ray spectrometer

    A low background gamma-ray spectrometer has been constructed for measuring artificial and natural radioative isotopes. The design of the spectrometer, its properties and the application to the determination of natural radioactivity of dental ceramics are described. (orig.)

  9. A mobile gamma ray spectrometer system for nuclear hazard mapping

    The Geological Survey of Norway has developed a system for mobile gamma ray spectrometer surveying suitable for use in nuclear emergencies where potentially dangerous radioactive materials have been released into the environment. The measuring system has been designed for use with different kinds of transportation platforms. These include fixed-wing aircraft, helicopters and vans. The choice of transportation platform depends on the nature of the nuclear emergency. Widespread fallout from a distant source can be mapped quickly from the air while local sources of radiation can be delineated by a car-borne system. The measuring system processes gamma ray spectra in real time. The operator of the system is therefore able to guide surveying in accordance with meaningful data values and immediately report these values to decision making authorities. The operator is presented with a number of different displays suited to different kinds of nuclear emergencies that lead to more efficient surveying. Real time processing of data means that the results of a survey can be delivered to decision makers immediately upon return to base. It is also possible to deliver data via a live mobile telephone link while surveying is underway. The measuring system can be adjusted to make measurements lasting between 1 second and 5 seconds. The spatial density of measuring positions depends on the duration of each measurement and the speed of travel of the measuring system. Measuring with 1 s intervals while travelling at 50 km/h in a car results in a measurement every 14 m along the road. Measuring with 1 s intervals in an aeroplane travelling at 250 km/h produces a measurement for every 70 m travelled. Eight hours surveying can produce up to 30000 measurements over a region hundreds of kilometres across. (Author)

  10. Airborne Gamma-Ray Spectrometer Experiments Over the Canadian Shield

    The Geological Survey of Canada and Atomic Energy of Canada Ltd. have produced a high sensitivity spectrometer for radiometric mapping of the Canadian Shield. During 1967 experiments were undertaken in the Bancroft and Elliot Lake areas of Ontario to determine the system parameters. Ground control was provided by measurements with field gamma-ray spectrometers on a 200-ft grid over 3 square miles. An experimental spectrometer employed three 5 x 5 in. (12.5 x 12.5 cm) diam. Nal (Tl) detectors, in order to record the full gamma - spectrum in real-time on magnetic tape. To provide the highest possible count-rates per unit distance at varying heights the spectrometer was flown in a helicopter at 25 mph (40 kmph). A study of the spectra obtained shows that the optimum spectral window widths for measuring the relative abundance of potassium, uranium and thorium are potassium, 40K 1.35 - 1.58 meV, uranium, 214Bi 1.65 - 1.88 meV; thorium, 208Tl 2.42 - 2.62 meV. The recorded data was subsequently processed through a PDP-9 computer to provide corrections for dead-time, Compton scattering and deviations from constant terrain clearance. Based on this work a much more sensitive airborne system was constructed in 1968 and installed in a twin-engined STOL aircraft. The system employs twelve 9 x 4 in. (23 x 10 cm) Nal (Tl) crystals. This detector volume provides a 10% (1 standard deviation) precision in corrected accumulated count in any of the three spectral windows when the aircraft measures radiation over an elapsed distance of 350 ft at a ground speed of 120 mph and 400 tt terrain clearance. The airborne system includes Doppler navigation, radar altimeter, and TV tracking camera equipment. (author)

  11. Remote planetary geochemical exploration with the NEAR X-ray/gamma-ray spectrometer

    The X-ray/gamma-ray spectrometer (XGRS) instrument onboard the Near Earth Asteroid Rendezvous (NEAR) spacecraft will map asteroid 433 Eros in the 0.2 keV to 10 MeV energy region. Measurements of the discrete line X-ray and gamma-ray emissions in this energy domain can be used to obtain both qualitative and quantitative elemental composition maps of the asteroid surface. The NEAR X-ray/gamma-ray spectrometer (XGRS) was turned on for the first time during the week of 7 April 1996. Rendezvous with Eros 433 is expected during December 1998. Observations of solar X-ray spectra during both quiescent and active periods have been made. A gamma-ray transient detection system has been implemented and about three gamma-ray transient events a week have been observed which are associated with either gamma-ray bursts or solar flares

  12. Mercuric Iodide Anticoincidence Shield for Gamma-Ray Spectrometer Project

    National Aeronautics and Space Administration — We propose to utilize a new detector material, polycrystalline mercuric iodide, for background suppression by active anticoincidence shielding in gamma-ray...

  13. Advances in gamma ray resonant scattering and absorption long-lived isomeric nuclear states

    Davydov, Andrey V

    2015-01-01

    This book presents the basics and advanced topics of research of gamma ray physics. It describes measuring of  Fermi surfaces with gamma resonance spectroscopy and the theory of angular distributions of resonantly scattered gamma rays. The dependence of excited-nuclei average lifetime on the shape of the exciting-radiation spectrum and electron binding energies in the spectra of scattered gamma rays is described. Resonant excitation by gamma rays of nuclear isomeric states with long lifetime leads to the emission and absorption lines. In the book, a new gamma spectroscopic method, gravitational gamma spectrometry, is developed. It has a resolution hundred million times higher than the usual Mössbauer spectrometer. Another important topic of this book is resonant scattering of annihilation quanta by nuclei with excited states in connection with positron annihilation. The application of the methods described is to explain the phenomenon of Coulomb fragmentation of gamma-source molecules and resonant scatt...

  14. Computer-controlled remote gamma-ray spectrometer

    The nuclear-power industry must monitor various effluents of power plants as well as plant operations. Programs under way at INEL to meet these objectives require the use of several remote, real-time, gamma-ray-spectrometer systems. Measurements performed by these systems include radioactive-effluent monitoring, irradiated reactor-fuel scanning, fission-product analysis for fuel condition, and monitoring of plant operations. It was decided to develop a standardized data-accumulation system having significant flexibility to meet all objectives and allowing development and training costs to be shared by the various programs. The development of such a standardized system requires a reliable method of data accumulation remote from a control computer system which has the responsibility for verification, analysis, and interpretation of the data. In the designing of such a system, three goals were established: (1) the data accumulation and transfer of data must be completely automated and under control of a central processor, (2) the remote system must be able to monitor and verify its own operation, and (3) the remote system must be able to control external devices. The development of a remote analyzer system that would meet all required goals was carried out in three phases: (1) implementation of a commercial hard-wired analyzer that could be controlled remotely via commands received from a central computer; (2) implementation of a minicomputer as the controlling device for the analyzer system in which the computer receives and interprets commands from the central computer and performs the required functions; (3) incorporation of all functions developed for phase 2 in a microcomputer-controlled system

  15. The gamma ray energy tagging spectrometer of ROKK-2 facility at VEPP-3 storage ring

    The gamma ray energy tagging spectrometer is described. The storage ring bending magnet was used as an analyzer for the gamma ray tagging spectrometer in the photon energy range from 1.5% up to 14% of the initial beam energy with the drift chambers as a coordinate detector. Factors determine the registration efficiency and the energy resolution of the tagging spectrometer are discussed. The tagging spectrometer energy resolution is measured by using the width of high energy edge of the Compton spectrum. The registration efficiency value consists 95% and the photon energy resolution is 4 MeV. 12 refs.; 10 figs

  16. Definition of the radiation fields for the JET gamma-ray spectrometer diagnostics

    The JET gamma-ray diagnostics system provides information on the behaviour of fast particles within the tokamak plasma. Information on the spatial distribution of the interacting fast particles is obtained from the gamma-ray cameras, while energy distribution information is provided by gamma-ray spectrometers. These techniques have been successfully applied so far in fast particle simulation experiments at JET. The extension of these diagnostics to high performance discharges with high neutron yields is not straightforward due to the background gamma-ray emission induced by neutrons. Two gamma-ray diagnostics upgrade projects at JET addressed this issue by developing neutron/gamma radiation filters (“neutron attenuators”) and collimators for a proper definition of the radiation (neutron and gamma) fields along the diagnostics line-of-sight. A pair of neutron/gamma collimators working in a tandem configuration have been designed and constructed for the JET quasi-tangential gamma-ray spectrometer. The tandem collimators were designed to provide shielding factors of about 5 × 102 for 2.45 MeV neutrons and about 103 for 9 MeV gamma-rays. The devices have been installed on the JET machine and the paper presents the first experimental results. A similar tandem collimator system was designed for deuterium-tritium experiments on JET. The results of neutron-photon transport calculations for 14.1 MeV neutrons are also presented

  17. A high precision gamma-ray spectrometer for the Mars-94 mission

    Mitrofanov, I.G.; Anfimov, D.S.; Chernenko, A.M. [Inst. for Space Research, Moscow (Russian Federation)] [and others

    1994-06-01

    The high precision gamma-ray spectrometer (PGS) is scheduled to be launched on the Mars-94 mission in October 1994, and to go into an elliptical polar orbit around Mars. The PGS consists of two high-purity germanium (Ge) detectors, associated electronics, and a passive cooler and will be mounted on one of the solar panels. The PGS will measure nuclear gamma-ray emissions from the martian surface, cosmic gamma-ray bursts, and the high-energy component of solar flares in the broad energy range from 50 KeV to 8 MeV using 4096 energy channels.

  18. A field-deployable gamma-ray spectrometer utilizing xenon at high pressure

    Prototype gamma-ray spectrometers utilizing xenon gas at high pressure, suitable for applications in the nuclear safeguards, arms control, and nonproliferation communities, have been developed at Brookhaven National Laboratory (BNL). These spectrometers function as ambient-temperature ionization chambers detecting gamma rays with good efficiency in the energy range 50 keV - 2 MeV, with an energy resolution intermediate between semiconductor (Ge) and scintillation (NaI) spectrometers. They are capable of prolonged, low-power operation without a requirement for cryogenic fluids or other cooling mechanisms, and with the addition of small quantities of 3He gas, can function simultaneously as efficient thermal neutron detectors

  19. Design of a Multi-Channel Ultra-High Resolution Superconducting Gamma-Ray Spectrometer

    Friedrich, S; Terracol, S F; Miyazaki, T; Drury, O B; Ali, Z A; Cunningham, M F; Niedermayr, T R; Barbee Jr., T W; Batteux, J D; Labov, S E

    2004-11-29

    Superconducting Gamma-ray microcalorimeters operated at temperatures around {approx}0.1 K offer an order of magnitude improvement in energy resolution over conventional high-purity Germanium spectrometers. The calorimeters consist of a {approx}1 mm{sup 3} superconducting or insulating absorber and a sensitive thermistor, which are weakly coupled to a cold bath. Gamma-ray capture increases the absorber temperature in proportion to the Gamma-ray energy, this is measured by the thermistor, and both subsequently cool back down to the base temperature through the weak link. We are developing ultra-high-resolution Gamma-ray spectrometers based on Sn absorbers and superconducting Mo/Cu multilayer thermistors for nuclear non-proliferation applications. They have achieved an energy resolution between 60 and 90 eV for Gamma-rays up to 100 keV. We also build two-stage adiabatic demagnetization refrigerators for user-friendly detector operation at 0.1 K. We present recent results on the performance of single pixel Gamma-ray spectrometers, and discuss the design of a large detector array for increased sensitivity.

  20. The calibration of portable and airborne gamma-ray spectrometers - theory, problems, and facilities

    A gamma-ray spectrometer for use in geological exploration possesses four stripping ratios and three window sensitivities which must be determined to make the instrumentation applicable for field assay or airborne measurement of potassium, uranium, and thorium contents in the ground. Survey organizations in many parts of the world perform the instrument calibration using large pads of concrete which simulate a plane ground of known radioelement concentration. Calibration and monitoring trials with twelve facilities in ten countries prove that moisture absorption, radon exhalation, and particle-size effects can offset a radiometric grade assigned to concrete whose aggregate contains an embedded radioactive mineral. These and other calibration problems are discussed from a combined theoretical and practical viewpoint. (author)

  1. Measurement of natural radionuclides in phosphgypsum using an anti-cosmic gamma-ray spectrometer

    Ferreux, Laurent [CEA, LIST, Laboratoire National Henri Becquerel, F-91191, Gif-sur-Yvette Cedex (France)], E-mail: laurent.ferreux@cea.fr; Moutard, Gerard; Branger, Thierry [CEA, LIST, Laboratoire National Henri Becquerel, F-91191, Gif-sur-Yvette Cedex (France)

    2009-05-15

    Gamma-ray spectrometry measurements have been carried out to determine the activity of natural radionuclides in a phosphogypsum sample included in a specific tight container. The gamma spectrometer includes an N-type coaxial high-purity germanium (HPGe) detector equipped with an anti-cosmic system. This measurement required the determination of linear attenuation coefficients of phosphogypsum to calculate self-absorption correction between efficiency calibration conditions and measurement ones. The results are given for the three natural chains and for {sup 40}K, in term of specific activity/g of dry material, ranging from a few Bq kg{sup -1} to a few hundreds Bq kg{sup -1}. The equilibrium within the different families and the {sup 235}U/{sup 238}U ratio are discussed.

  2. Absorption of high-energy gamma rays in Cygnus X-3

    Cerutti, B.; Dubus, G.; Malzac, J.; Szostek, A.; Belmont, R.; Zdziarski, A. A.; Henri, G.

    2011-05-01

    Context. The microquasar Cygnus X-3 was detected at high energies by the gamma-ray space telescopes AGILE and Fermi. The gamma-ray emission is transient, modulated with the orbital period and seems related to major radio flares, i.e. to the relativistic jet. The GeV gamma-ray flux can be substantially attenuated by internal absorption with the ambient X-rays. Aims: We examine quantitatively the effect of pair production in Cygnus X-3 and put constraints on the location of the gamma-ray source. Methods: Cygnus X-3 exhibits complex temporal and spectral patterns in X-rays. During gamma-ray flares, the X-ray emission can be approximated by a bright disk black-body component and a non-thermal tail extending in hard X-rays, which is possibly related to a corona above the disk. We calculate numerically the exact optical depth for gamma rays above a standard accretion disk. Emission and absorption in the corona are also investigated. Results: GeV gamma rays are significantly absorbed by soft X-rays emitted from the inner parts of the accretion disk. The absorption pattern is complex and anisotropic. Isotropization of X-rays caused by Thomson scattering in the companion-star wind tends to increase the gamma-ray opacity. Gamma rays from the corona suffer from strong absorption by photons from the disk and cannot explain the observed high-energy emission, unless the corona is unrealistically extended. Conclusions: The lack of an absorption feature in the GeV emission indicates that high-energy gamma rays should be located at a minimum distance ~108-1010 cm from the compact object. The gamma-ray emission is unlikely to have a coronal origin.

  3. Particle transport simulation for spaceborne, NaI gamma-ray spectrometers

    Radioactivity induced in detectors by protons and secondary neutrons limits the sensitivity of spaceborne gamma-ray spectrometers. Three dimensional Monte Carlo transport codes have been employed to simulate particle transport of cosmic rays and inner-belt protons in various representations of the Gamma Ray Observatory Spacecraft and the Oriented Scintillation Spectrometer Experiment. Results are used to accurately quantify the contributions to the radioactive background, assess shielding options and examine the effect of detector and space-craft orientation in anisotropic trapped proton fluxes. (author)

  4. Discussion on the background determination and method of gamma-ray spectrometer

    In the process of the calibration and verification of gamma-ray spectrometer, the back-ground of the instrument is of important effect on the verification results. Thr author expounds the accuracy of measurement, conditions of application and methods of use for various kinds of methods such as water surface method, lead chamber method and background model method. Emphasis is placed on the discussion on negative values appeared from background determined by the background model methods which are of practical significance for rising the quality of the calibration and verification of gamma-ray spectrometer

  5. The self-absorption effect of gamma rays in 239Pu

    Nuclear materials assay with gamma-ray spectrum measurement is a well-established method for safeguards. However, for a thick source, the self-absorption of characteristic low-energy gamma rays has been a handicap to accurate assay. The author has carried out Monte Carlo simulations to study this effect using the 239Pu α-decay gamma-ray spectrum as an example. The thickness of a plutonium metal source can be considered a function of gamma-ray intensity ratios. In a practical application, gamma-ray intensity ratios can be obtained from a measured spectrum. With the help of calculated curves, scientists can find the source thickness and make corrections to gamma-ray intensities, which then lead to an accurate quantitative determination of radioactive isotopes in the material

  6. Regional radiometric map of Syria, using gamma-ray spectrometer

    The regional radiometric gamma-ray spectrometry map of Syria, scaled 1/1000000, for surficial concentration of the total radioactivity (Ur), eU, eTh and %K was completely achieved after normalizing the airborne and carbon data sets to match each other. It worthy notice that, the anomalies found to be closely related to either phosphate and/or glauconite deposits. It is worth mentioning that throughout the survey work many scattered occurrences of secondary uranium mineralization were found as spots in some formations and phosphate rocks. Where this phenomena attributes to chemical and physical disseminating instead of accumulating the radioelements. So, that leads to a weak expectation for usual surface uranium deposits where attributed to the oxidizing condition. Then this expectation remains, as an open question requires answering through planning to subsurface prospecting. (Author)

  7. Direction-Sensitive Hand-Held Gamma-Ray Spectrometer

    Mukhopadhyay, S.

    2012-10-04

    A novel, light-weight, hand-held gamma-ray detector with directional sensitivity is being designed. The detector uses a set of multiple rings around two cylindrical surfaces, which provides precise location of two interaction points on two concentric cylindrical planes, wherefrom the source location can be traced back by back projection and/or Compton imaging technique. The detectors are 2.0 × 2.0 mm europium-doped strontium iodide (SrI2:Eu2+) crystals, whose light output has been measured to exceed 120,000 photons/MeV, making it one of the brightest scintillators in existence. The crystal’s energy resolution, less than 3% at 662 keV, is also excellent, and the response is highly linear over a wide range of gamma-ray energies. The emission of SrI2:Eu2+ is well matched to both photo-multiplier tubes and blue-enhanced silicon photodiodes. The solid-state photomultipliers used in this design (each 2.0 × 2.0 mm) are arrays of active pixel sensors (avalanche photodiodes driven beyond their breakdown voltage in reverse bias); each pixel acts as a binary photon detector, and their summed output is an analog representation of the total photon energy, while the individual pixel accurately defines the point of interaction. A simple back-projection algorithm involving cone-surface mapping is being modeled. The back projection for an event cone is a conical surface defining the possible location of the source. The cone axis is the straight line passing through the first and second interaction points.

  8. A towed sea-bed gamma-ray spectrometer for continental shelf surveys

    A sea-bed gamma-ray spectrometer has been developed and towed on the continental shelf of the United Kingdom for more than 10000km at speeds of up to 7 knots. The gamma-ray detecting probe is enclosed in a long flexible tube or 'eel' which minimizes the risk of snagging on sea-bed obstacles. The 'eel' is towed from a purpose-built winch mounted on board the survey vessel, and the associated control, analysis and recording facilities are housed within the ship's laboratory. The radiometric data are recorded in both analogue and digital form, and later processed to produce contour maps of the total gamma-ray activity, and the potassium, uranium and thorium activities of the sea-bed. Comparisons between radiometric and acoustic data are presented together with the results of a spectrometer survey in the Bristol Channel. (author)

  9. Determination of radionuclides for river sediment CRM with HPGe gamma-ray spectrometer

    The authors described the method and results for determination of seven radionuclides: 238U, 235U, 226Ra, 232Th, 40K, 60Co and 137Cs in the river sediment Certified Reference Material (CRM) using a HPGe gamma-ray spectrometer. The accuracy and reliability of measurement results were improved through varieties of techniques, which include: precise calibration of the gamma-ray spectrometer, coincidence summing correction and interference peak correction, two kinds of peak analysis methods (TPA and function fit), and utilization of as many as possible characteristic gamma-rays. Present measurement results for the seven radionuclides were in agreement with the verification results of the CRM with 1 σ or 2σ uncertainty, and its relative deviation were in the range of +1.0%--6.5%

  10. The Redshift Dependence of Gamma-Ray Absorption in the Environments of Strong-Line AGNs

    Reimer, A.; /Stanford U., HEPL /KIPAC, Menlo Park

    2007-11-12

    The case of {gamma}-ray absorption due to photon-photon pair production of jet photons in the external photon environments, such as the accretion disk and the broad-line region radiation fields, of {gamma}-ray--loud active galactic nuclei (AGNs) that exhibit strong emission lines is considered. I demonstrate that this 'local opacity,' if detected, will almost unavoidably be redshift-dependent in the sub-TeV range. This introduces nonnegligible biases and complicates approaches for studying the evolution of the extragalactic background light with contemporary GeV instruments such as the Gamma-Ray Large Area Space Telescope (GLAST ), where the {gamma}-ray horizon is probed by means of statistical analysis of absorption features (e.g., the Fazio-Stecker relation) in AGN spectra at various redshifts. It particularly applies to strong-line quasars, where external photon fields are potentially involved in {gamma}-ray production.

  11. The transient gamma-ray spectrometer: A new high resolution detector for gamma-ray burst spectroscopy

    The Transient Gamma-Ray Spectrometer (TGRS) to be flown aboard the WIND spacecraft is primarily designed to perform high resolution spectroscopy of transient gamma-ray events, such as cosmic γ-ray bursts and solar flares, over the energy range 20 keV to 10 MeV with an expected spectroscopic resolution of E/δE = 500. The detector itself consists of a 215 cm3 high purity n-type Ge crystal kept at cryogenic temperatures by a passive radiative cooler. The geometric field of view defined by the cooler is 170 degrees. To avoid continuous triggers caused by soft solar events, a thin Be/Cu sun-shield around the sides of the cooler has been provided. A passive Mo/Pb occulter, which modulates signals from within ±5 degrees of the ecliptic plane at the spacecraft spin frequency, is used to identify and study solar flares, as well as emission from the galactic plane and center. Thus, in addition to transient event measurements, the instrument will allow the search for possible diffuse background lines and monitor the 511 keV positron annihilation radiation from the galactic center. In order to handle the typically large burst count rates which can be in excess of 100 kHz, burst data are stored directly in an on-board 2.75 Mbit burst memory with an absolute timing accuracy of ±1.5 ms after ground processing. This capacity is sufficient to store the entire spectral data set of all but the largest bursts. The experiment is scheduled to be launched on a Delta II launch vehicle from Cape Canaveral in the fall of 1993

  12. Estimation method of planetary fast neutron flux by a Ge gamma-ray spectrometer

    Hareyama, M.; Fujibayashi, Y.; Yamashita, Y.; Karouji, Y.; Nagaoka, H.; Kobayashi, S.; Reedy, R. C.; Gasnault, O.; Forni, O.; d'Uston, C.; Kim, K. J.; Hasebe, N.

    2016-08-01

    An intensity map of lunar fast neutrons (LFNs) and their temporal variation has been estimated by fitting "sawtooth" peaks in the energy spectra of lunar gamma rays observed by the Kaguya (SELENE) Gamma Ray Spectrometer (GRS) consisting of a high-purity germanium (HPGe) detector with a BGO scintillator. While an ordinary peak in the spectrum is produced by only gamma ray lines, the sawtooth peak is produced by gamma ray lines and recoil nuclei in the detector by Ge(n ,n‧ γ) reaction. We develop a model for the shape of the sawtooth peak and apply it to fit sawtooth peaks together with ordinary peaks in actual observed spectra on the Moon. The temporal variation of LFNs is synchronous with that of galactic cosmic rays (GCRs), and the global distribution of fast neutrons on the lunar surface agrees well with the past observation reported by the Neutron Spectrometer aboard Lunar Prospector. Based on these results, a new method is established to estimate the flux of fast neutrons by fitting sawtooth peaks on the gamma ray spectrum observed by the HPGe detector.

  13. An efficiency study of a high resolution gamma-ray spectrometer

    A review of the different curves for the efficiency fit of a high resolution gamma-ray spectrometer was made. These curves are used to fit the efficiency of our detector system. In order to study the goodness of the different fits various standards were used, and the ICRP GAM-83 exercise results were employed. (author)

  14. A carborne gamma-ray spectrometer system for natural radioactivity mapping and environmental monitoring

    Grasty, R.L.; Cox, J.R. [Exploranium Ltd., Mississauga, Ontario (Canada)

    1997-12-31

    This paper summarizes the experience gained in the use of a carborne gamma-ray spectrometer system for mapping both natural and man-made radiation. Particular emphasis is placed on the calibration of the system for converting the gamma-ray measurements to ground concentrations of potassium, uranium and thorium and the activity of {sup 137}Cs. During the Finnish Emergency Response Exercise (Resume95), the carborne system was shown to be effective in mapping both natural and man-made radiation from {sup 137}Cs fallout and in locating radioactive sources. The application of the carborne system for mineral exploration is also demonstrated. (au). 10 refs.

  15. The Dynamic Range of Ultra-High Resolution Cryogenic Gamma-ray Spectrometers

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to multilayer Mo/Cu transition-edge sensors (TES). The energy resolution achieved with a 1 x 1 x 0.25 mm3 Sn absorber is 50 -90eV for γ-rays up to 100 keV and it decreases for large absorber sizes. We discuss the trade-offs between energy resolution and dynamic range, as well as development of TES arrays for higher count rates and better sensitivity

  16. The dynamic range of ultra-high-resolution cryogenic gamma-ray spectrometers

    We are developing high-resolution cryogenic gamma-ray spectrometers for nuclear science and non-proliferation applications. The gamma-ray detectors are composed of a bulk superconducting Sn foil absorber attached to a multilayer Mo/Cu transition-edge sensor (TES). The energy resolution of a detector with a 1x1x0.25 mm3 Sn absorber is 50-90 eV FWHM for γ-rays up to 100 keV, and it decreases for larger absorbers. Here, we present the detector performance for different absorber volumes, and discuss the trade-offs between energy resolution and dynamic range

  17. Monitoring of Natural Soil Radioactivity with Portable Gamma-Ray Spectrometers

    Bøtter-Jensen, Lars; Løvborg, Leif; Kirkegaard, Peter;

    1979-01-01

    Two portable NaI(Tl) spectrometers with four energy windows were used for the recording of gamma-ray counts over soil and rock of differing natural radioactivity. The exposure rates at the field sites were simultaneously measured with a high-pressure argon ionization chamber. Background measureme......Two portable NaI(Tl) spectrometers with four energy windows were used for the recording of gamma-ray counts over soil and rock of differing natural radioactivity. The exposure rates at the field sites were simultaneously measured with a high-pressure argon ionization chamber. Background...... results it is concluded that portable spectrometers of the type used here are suited for in situ assays of natural soil radioactivity...

  18. Chang’E-1 gamma ray spectrometer and preliminary radioactive results on the lunar surface

    Zhu, Meng-Hua; Ma, Tao; Chang, Jin

    2010-10-01

    The Chang'E-1(CE-1) spacecraft took a gamma-ray spectrometer (hereafter, CGRS) to detect the element distributions on the lunar surface in a circular, 200 km altitude, polar orbit with approximately 2 h periodicity. CGRS consists of two large CsI(Tl) crystals as the main and anticoincidence detectors. The large CsI crystal of CGRS has a higher detector effective area than other lunar gamma ray spectrometers. For its 1-year mission, gamma ray spectra including many peaks of major elements and trace elements on the lunar surface have been measured by CGRS. Global measurement within 0.55-0.75 MeV is given here to describe the distribution of radioactive composition (e.g., uranium and thorium) on the lunar surface. Although CGRS has a lower energy resolution that cannot separate the uranium peak from others in this energy region, 609 keV uranium gamma ray line dominates the shape of the spectrum in this energy region. Therefore, the radioactive map can indirectly describe the uranium distribution on the lunar surface. The radioactive map shows that the higher radiation is concentrated in the Procellarum KREEP Terrene (PKT) on the nearside with an oval shape. The secondary high-radiation is located in South Pole-Aitken (SPA) basin. Lunar highlands have lower concentration. The relationship between radiation and topography displays different linear correlations for lunar highlands and SPA basin, which imply the different processes for these two regions.

  19. Defining the IBL and Gamma-Ray Absorption

    Stecker, Floyd

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. Our empirically based approach allows us, for the first time, to obtain a completely model independent determination of the IBL and to quantify its uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, independent of previous constraints that were obtained by making theoretical assumptions. We then compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  20. Radiation measurement above the lunar surface by Kaguya gamma-ray spectrometer

    Hasebe, Nobuyuki; Nagaoka, Hiroshi; Kusano, Hiroki; Hareyama, Matoko; Ideguchi, Yusuke; Shimizu, Sota; Shibamura, Eido

    The lunar surface is filled with various ionizing radiations such as high energy galactic particles, albedo particles and secondary radiations of neutrons, gamma rays and other elementary particles. A high-resolution Kaguya Gamma-Ray Spectrometer (KGRS) was carried on the Japan’s lunar explorer SELENE (Kaguya), the largest lunar orbiter since the Apollo missions. The KGRS instrument employed, for the first time in lunar exploration, a high-purity Ge crystal to increase the identification capability of elemental gamma-ray lines. The Ge detector is surrounded by BGO and plastic counters as for anticoincidence shields. The KGRS measured gamma rays in the energy range from 200 keV to 13 MeV with high precision to determine the chemical composition of the lunar surface. It provided data on the abundance of major elements over the entire lunar surface. In addition to the gamma-ray observation by the KGRS, it successfully measured the global distribution of fast neutrons. In the energy spectra of gamma-rays observed by the KGRS, several saw-tooth- peaks of Ge are included, which are formed by the collision interaction of lunar fast neutrons with Ge atoms in the Ge crystal. With these saw-tooth-peaks analysis, global distribution of neutrons emitted from the lunara surface was successfully created, which was compared with the previous results obtained by Lunar Prospector neutron maps. Another anticoincidence counter, the plastic counter with 5 mm thickness, was used to veto radiation events mostly generated by charged particles. A single photomultiplier serves to count scintillation light from the plastic scintillation counter. The global map of counting rates observed by the plastic counter was also created, implying that the radiation counting rate implies the geological distribution, in spite that the plastic counter mostly measures high energy charged particles and energetic neutrons. These results are presented and discussed.

  1. Absorption of 10--200 Gev Gamma Rays by Radiation from BLR in Blazars

    Liu, H T

    2008-01-01

    In this paper, we study the photon-photon pair production optical depth for gamma-rays with energies from 10 to 200 GeV emitted by powerful blazars due to the diffuse radiation field of broad line region (BLR). There are four key parameters in the BLR model employed to determine the $\\gamma-\\gamma$ attenuation optical depth of these gamma-rays. They are the gamma-ray emitting radius $R_{\\gamma}$, the BLR luminosity $L_{\\rm{BLR}}$, the BLR half thickness $h$ and the ratio $\\tau_{\\rm{BLR}}/f_{\\rm{cov}}$ of the Thomson optical depth to the covering factor of BLR. For FSRQs, on average, it is impossible for gamma-rays with energies from 10 to 200 GeV to escape from the diffuse radiation field of the BLR. If $\\it GLAST$ could detect these gamma-rays for most of FSRQs, the gamma-ray emitting region is likely to be outside the cavity formed by the BLR. Otherwise, the emitting region is likely to be inside the BLR cavity. As examples, we estimate the photon-photon absorption optical depth of gamma-rays with energies ...

  2. On the active volume of cadmium zinc telluride gamma-ray spectrometers

    In this paper the authors develop quantitative models to predict the active volume of cadmium zinc telluride (CZT) detectors operated as gamma-ray pulse height spectrometers. Three cases are considered: a conventional planar detector, a unipolar device, and a detector in which electronic signal processing has been applied to correct for charge trapping effects. The find that existing detectors are very limited in their maximum attainable active volume, but unipolar devices with charge correction show promise for producing large active volume devices

  3. Enhanced Analysis Techniques for an Imaging Neutron and Gamma Ray Spectrometer

    Madden, Amanda C.

    The presence of gamma rays and neutrons is a strong indicator of the presence of Special Nuclear Material (SNM). The imaging Neutron and gamma ray SPECTrometer (NSPECT) developed by the University of New Hampshire and Michigan Aerospace corporation detects the fast neutrons and prompt gamma rays from fissile material, and the gamma rays from radioactive material. The instrument operates as a double scatter device, requiring a neutron or a gamma ray to interact twice in the instrument. While this detection requirement decreases the efficiency of the instrument, it offers superior background rejection and the ability to measure the energy and momentum of the incident particle. These measurements create energy spectra and images of the emitting source for source identification and localization. The dual species instrument provides superior detection than a single species alone. In realistic detection scenarios, few particles are detected from a potential threat due to source shielding, detection at a distance, high background, and weak sources. This contributes to a small signal to noise ratio, and threat detection becomes difficult. To address these difficulties, several enhanced data analysis tools were developed. A Receiver Operating Characteristic Curve (ROC) helps set instrumental alarm thresholds as well as to identify the presence of a source. Analysis of a dual-species ROC curve provides superior detection capabilities. Bayesian analysis helps to detect and identify the presence of a source through model comparisons, and helps create a background corrected count spectra for enhanced spectroscopy. Development of an instrument response using simulations and numerical analyses will help perform spectra and image deconvolution. This thesis will outline the principles of operation of the NSPECT instrument using the double scatter technology, traditional analysis techniques, and enhanced analysis techniques as applied to data from the NSPECT instrument, and an

  4. Development of Three-Dimensional Position-Sensitive Room Temperature Semiconductor Gamma-Ray Spectrometers

    Semiconductor detectors can provide better spectroscopic performance than scintillation or gas-filled detectors because of the small ionization energy required to generate each electron-hole pair. Indeed, cryogenically cooled high-purity germanium detectors have played the dominant role whenever the best gamma-ray spectroscopy is required. A decades-long search for other semiconductor detectors that could provide higher stopping power and could operate at room temperature has been ongoing. Wide-bandgap semiconductors, such as CdTe, CdZnTe, and HgI2, have captured the most attention. However, the use of these semiconductors in detectors has been hindered primarily by problems of charge trapping and material nonuniformity. Introduced in 1994, single-polarity charge sensing on semiconductor detectors has shown great promise in avoiding the hole-trapping problem, and the newly demonstrated three-dimensional position-sensing technique can significantly mitigate the degradation of energy resolution due to nonuniformity of detector material. In addition, three-dimensional position sensitivity will provide unique imaging capabilities of these gamma-ray spectrometers. These devices are of interest for nuclear nonproliferation, medical imaging, gamma-ray astronomy, and high-energy physics applications. This paper describes the three-dimensional position-sensing method and reports our latest results using second-generation three-dimensional position-sensitive semiconductor spectrometers

  5. The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization

    Xhixha, G; Broggini, C; Buso, GP; Caciolli, A; Callegari, I; De Bianchi, S; Fiorentini, G; Guastaldi, E; Xhixha, M Kaçeli; Mantovani, F; Massa, G; Menegazzo, R; Mou, L; Pasquini, A; Alvarez, C Rossi; Shyti, M

    2012-01-01

    Materials containing radionuclides of natural origin, which is modified by human made processes and being subject to regulation because of their radioactivity are known as NORM. We present a brief review of the main categories of non-nuclear industries together with the levels of activity concentration in feed raw materials, products and waste, including mechanisms of radioisotope enrichments. The global management of NORM shows a high level of complexity, mainly due to different degrees of radioactivity enhancement and the huge amount of worldwide waste production. The future tendency of guidelines concerning environmental protection will require both a systematic monitoring based on the ever-increasing sampling and high performance of gamma ray spectroscopy. On the ground of these requirements a new low background fully automated high-resolution gamma-ray spectrometer MCA_Rad has been developed. The design of Pb and Cu shielding allowed to reach a background reduction of two order of magnitude with respect ...

  6. A fiber optic array for continuous energy coverage in a gamma ray spectrometer

    Cochran, C.W.; Kammeraad, J.E.; Sale, K.E.; Lown, J.G.; Robson, J.D. [Lawrence Livermore National Lab., CA (United States); Marroquin, J.P.; Sanchez, A. Jr. [EG and G Energy Measurements, Inc., Las Vegas, NV (United States)

    1992-07-01

    Optical fibers are being used to obtain full coverage over a range of energies in a multi-channel, time-resolved gamma ray spectrometer. Gamma rays are incident upon a beryllium foil 60cm from the entrance port of a Sm-Co magnet. Compton electrons from the foil are focussed according to their energy onto quartz optical fibers arrayed in close-packed configuration behind a low-Z vacuum window at the focal plane. Cerenkov radiation produced inside each of the fibers propagates down the fiber which is brought out of the magnet. Fibers are grouped into preselected energy bins corresponding to streak record channel assignments. The light from the fibers in an energy bin are combined into one signal and then transmitted to a streak camera with a specified number of channels. This unique optical fiber array serves both as the detector and as a means to define energy bins of our choosing for a streak camera recording system.

  7. Fiber optic array for continuous energy coverage in a gamma-ray spectrometer

    Cochran, Curtis W.; Kammeraad, Judith E.; Sale, Kenneth E.; Lown, Joseph G.; Robson, Jack D.; Marroquin, John P.; Sanchez, Amadeo

    1992-12-01

    Optical fibers are being used to obtain full coverage over a range of energies in a multi- channel, time-resolved gamma ray spectrometer. Gamma rays are incident upon a beryllium foil 60 cm from the entrance port of a Sm-Co magnet. Compton electrons from the foil are focussed according to their energy onto quartz optical fibers arrayed in close-packed configuration behind a low-Z vacuum window at the focal plane. Cerenkov radiation produced inside each of the fibers propagates down the fiber which is brought out of the magnet. Fibers are grouped into preselected energy bins corresponding to streak record channel assignments. The light from the fibers in an energy bin are combined into one signal and then transmitted to a streak camera with a specified number of channels. This unique optical fiber array serves both as the detector and as a means to define energy bins of our choosing for a streak camera recording system.

  8. Gamma-ray spectrum measurement in Japan research reactor no. 3 using a portable Ge(Li) spectrometer

    A portable Ge(Li) gamma-ray spectrometer having 2.6% peak detection efficiency and 3.5 keV energy resolution was made using a 7.5 liter liquid nitrogen dewar. The total weight of the spectrometer including the detector, cryostat, preamplifier, high voltage filter, and 7.5 liter liquid nitrogen was 11 kg. Gamma-ray spectra were measured at various places in Japan Research Reactor No. 3 using the spectrometer. Gamma-rays from natural radioactive nuclides such as 40K, 208Tl, 214Bi, and from 60Co, which was an induced radioactive nuclide of the reactor constructing components, were observed at all the places. During the reactor in operation, gamma-rays from 41Ar, the induced radioactive nuclide of argon in air, were observed also at all the places. High-energy gamma-rays from the neutron capture reaction in iron and from 16N induced by 16O(n,p)16N reaction in the oxygen in heavy-water coolant were found in the first floor of the reactor room; the former seemed to originate from the monochromator crystals of the neutron diffractometers. Noble gas fission product gamma-rays were observed in helium cover gas in the FFD system. Pulse height distributions and counting rates of these gamma-rays were shown. (author)

  9. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Altukhov, A. B.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Nersesyan, N. S.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.

    2016-09-01

    A gamma-ray spectrometer based on LaBr3(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr3(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 107 s-1. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr3(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1-5 ms.

  10. A pixilated design of high pressure xenon gamma-ray spectrometer

    Feng, Yuxin; Baciak, James E.; Sullivan, Clair; Gardner, Gary

    2007-08-01

    A pixilated anode design of a high pressure xenon gamma-ray spectrometer is investigated. This design is composed of a single planar cathode and four anode pixels embedded in the center of a "non-collecting" anode plate. This design removes the Frisch grid which can suffer from excessive micro-phonics in real-world applications. To investigate the energy resolution of this design, the charge collecting efficiency and waveform of induced charge on each anode were calculated via tracking electron cloud drifting.

  11. Airborne gamma-ray spectrometer and magnetometer survey: north/south tieline. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted along the 990 longitude meridian from the Canadian border southward to the Mexican border. A total of 1555 line miles of geophysical data were acquired and, subsequently, compiled. The north-south tieline was flown as part of the National Uranium Resources Evaluation. NURE is a program of the US Department of Energy's Grand Junction, Colorado, office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  12. Airborne gamma-ray spectrometer and magnetometer survey: Sleetmute quadrangle (Alaska). Final report

    During the months of July, August, and September 1979 an airborne high sensitivity gamma-ray spectrometer and magnetometer survey was carried out over ten 30 x 10 NTMS quadrangles of West-Central Alaska. The results obtained over Sleetmute map are discussed. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps. The histograms and the multiparameter profiles are presented with the anomaly maps and flight path map in a separate bound volume

  13. Airborne gamma-ray spectrometer and magnetometer survey: Ophir quadrangle (Alaska). Final report

    During July, August, and September 1979, an airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten 30 x 10 NTMS quadrangles of West-Central Alaska. The results obtained over the Ophir map area. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps; and computer printer maps. The histograms and the multiparameter profiles are presented with the anomaly maps and flight path map in a separate bound volume

  14. Radioactivity observed in the sodium iodide gamma-ray spectrometer returned on the Apollo 17 mission

    Dyer, C. S.; Trombka, J. I.; Schmadebeck, R. L.; Eller, E.; Bielefeld, M. J.; Okelley, G. D.; Eldridge, J. S.; Northcutt, K. J.; Metzger, A. E.; Reedy, R. C.

    1975-01-01

    In order to obtain information on radioactive background induced in the Apollo 15 and 16 gamma-ray spectrometers (7 cm x 7 cm NaI) by particle irradiation during spaceflight, and identical detector was flown and returned to earth on the Apollo 17 mission. The induced radioactivity was monitored both internally and externally from one and a half hours after splashdown. When used in conjunction with a computation scheme for estimating induced activation from calculated trapped proton and cosmic-ray fluences, these results show an important contribution resulting from both thermal and energetic neutrons produced in the heavy spacecraft by cosmic-ray interactions.

  15. Airborne gamma-ray spectrometer and magnetometer survey, Meade River Quadrangle, Alaska. Final report

    The results obtained from an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over the Meade River map area of Alaska are presented. Based on the criteria outlined in the general section on interpretation, a total of eight uranium anomalies have been outlined on the interpretation map. Most of these are only weakly to moderately anomalous. Zones 3 and 7 are relatively better than the others though none of the anomalies are thought to be of any economic significance. No follow-up work is recommended

  16. Airborne gamma-ray spectrometer and magnetometer survey: McGrath Quadrangle (Alaska). Final report

    During the months of July, August, and September 1979, an airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten 30 x 10 NTMS quadrangle of West-Central Alaska. The results obtained over the McGrath map area are discussed. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps. The histograms and the multiparameter profiles are presented with the anomaly maps and flight path map in a separate volume

  17. The Polarization Dependence of Gamma-Gamma Absorption - Implications for Gamma-Ray Bursts and Blazars

    Boettcher, Markus

    2014-01-01

    This paper presents an analysis of the dependence of the opacity for high-energy gamma-rays to gamma-gamma absorption by low-energy photons, on the polarization of the gamma-ray and target photons. This process has so far only been considered using the polarization-averaged gamma-gamma absorption cross section. It is demonstrated that in the case of polarized gamma-ray emission, subject to source-intrinsic gamma-gamma absorption by polarized target photons, this may lead to a slight over-estimation of the gamma-gamma opacity by up to ~ 10 % in the case of a perfectly ordered magnetic field. Thus, for realistic astrophysical scenarios with partially ordered magnetic fields, the use of the polarization-averaged gamma-gamma cross section is justified for practical purposes, such as estimates of minimum Doppler factors inferred for gamma-ray bursts and blazars, based on gamma-gamma transparency arguments, and this paper quantifies the small error incurred by the unpolarized-radiation approximation. Furthermore, i...

  18. The gamma-ray spectrometer HORUS and its applications for nuclear astrophysics

    Netterdon, L; Endres, J; Fransen, C; Hennig, A; Mayer, J; Müller-Gatermann, C; Sauerwein, A; Scholz, P; Spieker, M; Zilges, A

    2014-01-01

    A dedicated setup for the in-beam measurement of absolute cross sections of astrophysically relevant charged-particle induced reactions is presented. These, usually very low, cross sections at energies of astrophysical interest are important to improve the modeling of the nucleosynthesis processes of heavy nuclei. Particular emphasis is put on the production of the $p$ nuclei during the astrophysical $\\gamma$ process. The recently developed setup utilizes the high-efficiency $\\gamma$-ray spectrometer HORUS, which is located at the 10 MV FN tandem ion accelerator of the Institute for Nuclear Physics in Cologne. The design of this setup will be presented and results of the recently measured $^{89}$Y(p,$\\gamma$)$^{90}$Zr reaction will be discussed. The excellent agreement with existing data shows, that the HORUS spectrometer is a powerful tool to determine total and partial cross sections using the in-beam method with high-purity germanium detectors.

  19. DuMond curved crystal spectrometer for in-beam X- and gamma-ray spectroscopy

    An in-beam curved crystal spectrometer facility has been installed at the SIN variable energy cyclotron. The radius of curvature is 3.15 m. Using the (110) planes of different bent quartz laminas, diffraction peaks down to Δθ = 5 arcsec FWHM are obtained. The energy resolution is thus ΔE ≅ 0.01 E2/n, where n is the diffraction order, ΔE being expressed in eV and E in keV. The spectrometer has been constructed to cover an angular range of ±100. Transitions in the range 17 to about 350 keV have so far been observed. Measurements have been performed in conventional line source DuMond geometry and in slit geometry. The instrument is being used for the high-resolution observation of X- and gamma-rays induced by proton, helium- and oxygen-ion bombardment. (orig.)

  20. The Sandwich spectrometer for ultra low-level gamma-ray spectrometry.

    Wieslander, J S Elisabeth; Hult, Mikael; Gasparro, Joël; Marissens, Gerd; Misiaszek, Marcin; Preusse, Werner

    2009-05-01

    The technical details and performance of the newly developed Sandwich spectrometer for ultra low-level gamma-ray spectrometry are presented. The spectrometer, which consists of two HPGe detectors, an active muon shield and a lead/copper shield with a convenient and rapid opening mechanism, is located in an underground laboratory at a depth of 500 m water equivalent. The data is collected in list mode, which enables off-line data analysis to identify muon-induced events and possible Ge detector crosstalk due to Compton scattering. The background count-rate from 40 to 2700 keV normalised to the mass of the Ge crystals is 220 day(-1)kg(-1). PMID:19246202

  1. HAND-HELD GAMMA-RAY SPECTROMETER BASED ON HIGH-EFFICIENCY FRISCH-RING CdZnTe DETECTORS

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution, el% FWHM at 662 keV, and good efficiency for detecting gamma rays. This technique facilitates the application of CdZnTe materials for high efficiency gamma-ray detection. A hand-held gamma-ray spectrometer based on Frisch-ring detectors is being designed at Brookhaven National Laboratory. It employs an 8x8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so that detection efficiency is significantly improved. By using the front-end ASICs developed at BNL, this spectrometer has a small profile and high energy resolution. The spectrometer includes signal processing circuit, digitization and storage circuit, high-voltage module, and USB interface. In this paper, we introduce the details of the system structure and report our test results with it

  2. ACCURACY OF MEASUREMENT OF NATURAL GAMMA RAY SPECTRA BY HD—8004 NaI(T1) GAMMA SPECTROMETER

    朱国钦; 郑仁淑

    1995-01-01

    The measurement principle and analysis method of natural gammaray spectra using NaI(T1) scintillation spectrometer are briefly described first,then block diagrams of the HD-8004 NaI(T1) gamma-ray spectrometer,Finally,sample measurements are listed and discussed.The results are quite promising.Based on the analysis of these measurements,measures to improve the accuracy of spectrum measurement are proposed.It is well hoped that these measures can contribute to the development and application of gamma-ray spectrum measurement.

  3. Methods for fitting of efficiency curves obtained by means of HPGe gamma rays spectrometers

    The present work describes a few methodologies developed for fitting efficiency curves obtained by means of a HPGe gamma-ray spectrometer. The interpolated values were determined by simple polynomial fitting and polynomial fitting between the ratio of experimental peak efficiency and total efficiency, calculated by Monte Carlo technique, as a function of gamma-ray energy. Moreover, non-linear fitting has been performed using a segmented polynomial function and applying the Gauss-Marquardt method. For the peak area obtainment different methodologies were developed in order to estimate the background area under the peak. This information was obtained by numerical integration or by using analytical functions associated to the background. One non-calibrated radioactive source has been included in the curve efficiency in order to provide additional calibration points. As a by-product, it was possible to determine the activity of this non-calibrated source. For all fittings developed in the present work the covariance matrix methodology was used, which is an essential procedure in order to give a complete description of the partial uncertainties involved. (author)

  4. A Liquid-Cryogen-Free Cryostat for Ultrahigh Resolution Gamma-Ray Spectrometers

    We are developing ultra-high energy resolution gamma-ray detectors based on superconducting transition edge sensors (TESs) for nuclear non-proliferation and fundamental science applications. They use bulk tin absorbers attached to molybdenum-copper multilayer TESs, and have achieved an energy resolution between 50 and 90 eV FWHM for gamma-ray energies below 122 keV. For increased user-friendliness, we have built a cryostat that attains the required detector operating temperature of 0.1 K at the push of a button without the use of cryogenic liquids. It uses a two-stage mechanical pulse tube refrigerator for precooling to ∼3 K, and a two-stage adiabatic demagnetization refrigerator for cooling to the base temperature. The cryostat is fully automated, attains a base temperature below 30 mK without the use of cryogenic liquids, and has a hold time of ∼2 days at 0.1 K between 1-hour demagnetization cycles. Here we discuss the performance of the cryostat for operation in a Gamma-spectrometer with 112-pixel arrays of superconducting TES detectors

  5. A technical review of the SWEPP gamma-ray spectrometer system

    Hartwell, J.K.

    1996-03-01

    The SWEPP Gamma-ray Spectrometer (SGRS) was developed by INEL researchers as a nonintrusive method of determining the isotopic ratios of TRU and U materials in a 208-liter waste drums. The SGRS has been in use at SWEPP since mid-1994. Enough questions have been raised regarding the system reliability and technical capabilities, that, coupled with a desire to procure an additional gamma-ray spectroscopy system in order to increase the drum throughput of SWEPP, have prompted an independent technical review of the SGRS. The author was chosen as the reviewer, and this report documents the results of the review. While the SGRS is accurate in its isotopic ratio results, the system is not calculationally robust. The primary reason for this lack of calculational reliability is the implementation of the attenuation corrections. Suggested changes may improve the system reliability dramatically. The SGRS is a multiple detector spectrometry system. Tests were conducted on various methods for combining the four detector results into a single drum representative value. No clear solution was reached for the cases in which the isotopic ratios are vertically segregated; however, some methods showed promise. These should be investigated further. 14 refs. , 15 figs., 23 tabs.

  6. A technical review of the SWEPP gamma-ray spectrometer system

    The SWEPP Gamma-ray Spectrometer (SGRS) was developed by INEL researchers as a nonintrusive method of determining the isotopic ratios of TRU and U materials in a 208-liter waste drums. The SGRS has been in use at SWEPP since mid-1994. Enough questions have been raised regarding the system reliability and technical capabilities, that, coupled with a desire to procure an additional gamma-ray spectroscopy system in order to increase the drum throughput of SWEPP, have prompted an independent technical review of the SGRS. The author was chosen as the reviewer, and this report documents the results of the review. While the SGRS is accurate in its isotopic ratio results, the system is not calculationally robust. The primary reason for this lack of calculational reliability is the implementation of the attenuation corrections. Suggested changes may improve the system reliability dramatically. The SGRS is a multiple detector spectrometry system. Tests were conducted on various methods for combining the four detector results into a single drum representative value. No clear solution was reached for the cases in which the isotopic ratios are vertically segregated; however, some methods showed promise. These should be investigated further. 14 refs. , 15 figs., 23 tabs

  7. Study on prompt gamma-ray spectrometer using Compton suppression system

    Cho, Hyun-Je; Chung, Yong-Sam; Kim, Young-Jin

    2005-04-01

    The performance of the prompt gamma-ray activation analysis (PGAA) facility was improved by a series of modifications to the making composition of a Compton suppression system at HANARO, the 24 MW research reactor in the Korea Atomic Energy Research Institute. An adjustment of the crystal was made by various efforts to obtain most suitable condition for the diffracted beam, the neutron flux was increased by 20% at the sample position to 8.4 × 107 n cm-2 s-1, and the Compton suppression ratio was 4.3-5 times below the Compton continuum region that appeared near the sample of interest such as boron. The PGAA facility at the HANARO research reactor serves as a major analytical tool for quantifying light elements in biological, geological and food samples. The sensitivity of boron is 1468 cps/mg which is obtained from the slope of the boron peak count rate versus the boron mass. For the low background conditions, a supplement to the shielding materials on the detection assembly was made and the path of the beam line reduced the background count rate, which was evaluated from the boron data using the Compton- and single-mode. From this Compton suppressed gamma-ray spectrometer, we obtained high quality spectroscopic data from thermal neutron capture.

  8. Thermal Design and Performance of the Gamma-Ray Spectrometer for the MESSENGER Spacecraft

    Burks, M; Cork, C P; Eckels, D; Hull, E; Madden, N W; Miller, W; Goldsten, J; Rhodes, E; Williams, B

    2004-10-13

    A gamma-ray spectrometer (GRS) has been built and delivered to the Mercury MESSENGER spacecraft which launched on August 3, 2004, from Cape Canaveral, Florida. The GRS, a part of seven scientific instruments on board MESSENGER, is based on a coaxial high-purity germanium detector. Gamma-ray detectors based on germanium have the advantage of providing excellent energy resolution, which is critical to achieving the science goals of the mission. However, germanium has the disadvantage that it must operate at cryogenic temperatures (typically {approx}80 K). This requirement is easy to satisfy in the laboratory but difficult near Mercury, which has an extremely hot thermal radiation environment. To cool the detector, a Stirling cycle mechanical cooler is employed. In addition, radiation and conduction techniques a are used to reduce the GRS heat load. Before delivering the flight sensor, a complete thermal prototype was built and tested. The results of these test, including thermal design, radiative and conductive heat loads, and cooler performance are described.

  9. Reset charge sensitive amplifier for NaI(Tl) gamma-ray spectrometer

    The time constant of the output signal of the front-end readout circuit of a traditional gamma-ray spectrometer with a NaI(Tl)+PMT structure is affected by temperature, measurement environment and the signal transmission cable, so it is difficult to get a good resolution spectrum, especially at higher counting rates. In this paper, a reset charge sensitive amplifier (RCSA) is designed for the gamma-ray spectrometer with a NaI(Tl)+PMT structure. The designed RCSA outputs a step signal, thus enabling the acquisition of double-exponential signals with a stable time constant by using the next stage of a CR differentiating circuit. The designed RCSA is mainly composed of a basic amplifying circuit, a reset circuit and a dark current compensation circuit. It provides the output step signal through the integration of the PMT output charge signal. When the amplitude of the step signal exceeds a preset voltage threshold, it triggers the reset circuit to generate a reset pulse (about 5 µs pulse width) to reset the output signal. Experimental results demonstrated that the designed RCSA achieves a charge sensitivity of 4.26×1010 V/C, with a zero capacitance noise of 51.09 fC and a noise slope of 1.98 fC/pF. Supported by the digital shaping algorithm of the digital multi-channel analyzer (DMCA), it can maintain good energy resolution with high counting rates up to 150 kcps and with a temperature range from −19 °C to 50 °C. - Highlights: • A new reset type charge sensitive amplifier for gamma-ray spectrometer based on a photomultiplier tube is proposed. • Reset circuit formed by constant current source output a fixed width pulse to reset charge sensitive amplifier. • Photomultiplier tube dark current compensation circuit could increase the pulse through rate by decreasing reset frequency. • This amplifier outputs a step function signal that could match next stage circuit easily

  10. An oil/water/gas composition meter based on multiple energy gamma ray absorption (MEGRA) measurement

    A class of multiphase flowmeters uses the principle of dual energy gamma ray absorption (DEGRA) composition measurement to determine the individual water, oil and gas fractions. Under homogenous flow conditions the ultimate uncertainty in phase fractions achievable with this technique depends strongly on the choice of component hardware. The meter presented in this paper uses unique components optimised for water, oil and gas fraction measurement, yielding theoretical uncertainties of 2% in the fractions over a 1 second measurement period. Generally composition meters are sensitive to changes in production water salinity, causing significant systematic errors in the fraction and watercut measurements. A new measurement concept based on multiple energy gamma ray absorption (MEGRA) which is insensitive to salinity variations is introduced. A multiphase flowmeter which employs the MEGRA concept does not require field calibration, a decisive advantage in subsea or marginal field developments. (author)

  11. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  12. Wireless, low-cost, FPGA-based miniature gamma ray spectrometer

    Becker, E.M., E-mail: beckere@engr.orst.edu; Farsoni, A.T.

    2014-10-11

    A compact, low-cost, wireless gamma-ray spectrometer is a tool sought by a number of different organizations in the field of radiation detection. Such a device has applications in emergency response, battlefield assessment, and personal dosimetry. A prototype device fitting this description has been constructed in the Advanced Radiation Instrumentation Laboratory at Oregon State University. The prototype uses a CsI(Tl) scintillator coupled to a solid-state photomultiplier and a 40 MHz, 12-bit, FPGA-based digital pulse processor to measure gamma radiation, and is able to be accessed wirelessly by mobile phone. The prototype device consumes roughly 420 mW, weighs about 28 g (not including battery), and measures 2.54×3.81 cm{sup 2}. The prototype device is able to achieve 5.9% FWHM energy resolution at 662 keV.

  13. A study of radioactive elements of various rocks in Pattani Province with gamma ray spectrometer

    Kaewtubtim, P.

    2002-01-01

    Full Text Available The radioactivity of the three elements, potassium, uranium and thorium, in rocks of various types in Pattani Province was investigated by using a gamma ray spectrometer. It was found that potassium contents in igneous rocks, sedimentary rocks and metamorphic rocks were 6.29 %, 2.21% and 1.54 % respectively. Uranium equivalent contents in igneous rock, sedimentary rocks and metamorphic rocks were found to be 22.51 ppm, 11.25 ppm and 14.13 ppm, while thorium contents in these rocks were 21.78 ppm, 18.88 ppm and 18.15 ppm respectively. The results obtained were similar to those reported by Pungtip Ranglek (1995 for igneous rock at Liwong Pluton site in Thepha, Na Thawi, Chana and Saba Yoi Districts, Songkhla Province, and were about six times higher than those reported by Kittichai Wattananikorn (1994 for igneous rock in the northern part of Thailand.

  14. Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices

    Semkow, T.M., E-mail: thomas.semkow@health.ny.gov [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144 (United States); Bradt, C.J.; Beach, S.E.; Haines, D.K.; Khan, A.J.; Bari, A.; Torres, M.A.; Marrantino, J.C.; Syed, U.-F. [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Kitto, M.E. [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144 (United States); Hoffman, T.J. [Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201 (United States); Curtis, P. [Kiltel Systems, Inc., Clyde Hill, WA 98004 (United States)

    2015-11-01

    A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm{sup −3}. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid. - Highlights: • Preparation and spiking of traceable complex matrices in extended geometries. • Calibration of Ge gamma spectrometers for complex matrices. • Verification of gamma calibrations. • Comparison of semi-empirical, computational Monte Carlo, and transfer methods of Ge calibration. • Tuning of Monte Carlo calculations using a multidimensional paraboloid.

  15. Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices

    A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm−3. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid. - Highlights: • Preparation and spiking of traceable complex matrices in extended geometries. • Calibration of Ge gamma spectrometers for complex matrices. • Verification of gamma calibrations. • Comparison of semi-empirical, computational Monte Carlo, and transfer methods of Ge calibration. • Tuning of Monte Carlo calculations using a multidimensional paraboloid

  16. Principles of construction and optimization of active and passive shielding of gamma-ray spectrometer for low background measurements

    Principles of construction of gamma-ray spectrometer shielding from an external background are considered. The background from protons, mesons, neutrons and y-quanta is taken into account. An analytical approach is based on a concept of cross section of deducing of particles from a flux. Results of analytical calculations are compared with data received by Monte Carlo method simulation. (Authors)

  17. Very high energy gamma ray absorption via the Milky Way diffuse radiation field

    When very high energy (VHE) gamma rays (E>100 GeV) transverse low energy photon fields, the production of electron-positron pairs leads to the attenuation of the intrinsic gamma ray flux. This phenomena is well know for VHE radiation from extragalactic sources, like eg. blazars, interacting with the cosmic infrared background. In this contribution the absorption of galactic VHE gamma rays due to the interaction with the Milky Way diffuse radiation field is discussed. While the photon field densities inside our galaxy can be several orders of magnitude higher compared to the diffuse extragalactic flux, the distances are much shorter leading to an overall smaller effect. On the other hand, the detection of such an attenuation could be used to study the galactic IR emission, measure the distance of galactic sources, or investigate particle physics phenomena beyond the standard model. It is investigated how forthcoming imaging air Cherenkov telescopes, like CTA, and wide angle Cherenkov arrays, like HiSCORE, with their improved sensitivities up to several hundred TeV will measure this absorption feature for a large number of galactic sources.

  18. Very high energy gamma ray absorption via the Milky Way diffuse radiation field

    Maurer, Andreas; Raue, Martin; Kneiske, Tanja; Horns, Dieter [Institut fuer Experimentalphysik, Hamburg (Germany)

    2012-07-01

    When very high energy (VHE) gamma rays (E>100 GeV) transverse low energy photon fields, the production of electron-positron pairs leads to the attenuation of the intrinsic gamma ray flux. This phenomena is well know for VHE radiation from extragalactic sources, like eg. blazars, interacting with the cosmic infrared background. In this contribution the absorption of galactic VHE gamma rays due to the interaction with the Milky Way diffuse radiation field is discussed. While the photon field densities inside our galaxy can be several orders of magnitude higher compared to the diffuse extragalactic flux, the distances are much shorter leading to an overall smaller effect. On the other hand, the detection of such an attenuation could be used to study the galactic IR emission, measure the distance of galactic sources, or investigate particle physics phenomena beyond the standard model. It is investigated how forthcoming imaging air Cherenkov telescopes, like CTA, and wide angle Cherenkov arrays, like HiSCORE, with their improved sensitivities up to several hundred TeV will measure this absorption feature for a large number of galactic sources.

  19. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    Boettcher, Markus

    2016-01-01

    The expected level of gamma-gamma absorption in the Broad Line Region (BLR) radiation field of gamma-ray loud Flat Spectrum Radio Quasars (FSRQs)is evaluated as a function of the location of the gamma-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the gamma-gamma opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to $\\gamma\\gamma$ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the gamma-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the cen...

  20. Attenuation studies near K-absorption edges using Compton scattered 241Am gamma rays

    K K Abdullah; N Ramachandran; K Karunakaran Nair; B R S Babu; Antony Josephm; Rajive Thomas; K M Varier

    2008-04-01

    We have carried out photon attenuation measurements at several energies in the range from 49.38 keV to 57.96 keV around the K-absorption edges of the rare earth elements Sm, Eu, Gd, Tb, Dy and Er using 59.54 keV gamma rays from 241Am source after Compton scattering from an aluminium target. Pellets of oxides of the rare earth elements were chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. The scattered gamma rays were detected by an HPGe detector. The results are consistent with theoretical values derived from the XCOM package.

  1. The worldwide NORM production and a fully automated gamma-ray spectrometer for their characterization

    Materials containing radionuclides of natural origin and being subject to regulation because of their radioactivity are known as Naturally Occurring Radioactive Material (NORM). By following International Atomic Energy Agency, we include in NORM those materials with an activity concentration, which is modified by human made processes. We present a brief review of the main categories of non-nuclear industries together with the levels of activity concentration in feed raw materials, products and waste, including mechanisms of radioisotope enrichments. The global management of NORM shows a high level of complexity, mainly due to different degrees of radioactivity enhancement and the huge amount of worldwide waste production. The future tendency of guidelines concerning environmental protection will require both a systematic monitoring based on the ever-increasing sampling and high performance of gamma-ray spectroscopy. On the ground of these requirements a new low-background fully automated high-resolution gamma-ray spectrometer MCARad has been developed. The design of lead and cooper shielding allowed to reach a background reduction of two order of magnitude with respect to laboratory radioactivity. A severe lowering of manpower cost is obtained through a fully automation system, which enables up to 24 samples to be measured without any human attendance. Two coupled HPGe detectors increase the detection efficiency, performing accurate measurements on small sample volume (180 cm3) with a reduction of sample transport cost of material. Details of the instrument calibration method are presented. MCARad system can measure in less than one hour a typical NORM sample enriched in U and Th with some hundreds of Bq kg-1, with an overall uncertainty less than 5 %. Quality control of this method has been tested. Measurements of three certified reference materials RGK-1, RGU-2 and RGTh-1 containing concentrations of potassium, uranium and thorium comparable to NORM have been

  2. Self-absorption correction in determining the 238U activity of soil samples via 63.3 keV gamma ray using MCNP5 code

    The essential issue in analyzing the activity of 238U in an HPGe detector based gamma spectrometer via 63.3 keV line is relating to the strong self-absorption of this weak gamma ray in sample material. The present work suggests a method of the self-absorption corrections for 63.3 keV gamma rays by a combination of experimental measurements and Monte Carlo MCNP5 calculations. The effects of sample chemical composition, density and geometry were calculated in terms of self-attenuation factors. The method, developed for a cylindrical sample geometry, accounted for variable sample heights and densities. The analysis of 238U activity was applied for three main soil types in Vietnam, which are grey, alluvial and red soils. The results obtained with the above outlined method were in good agreement with those derived by other methods. - Highlights: ► Determination of the 238U activity via 63.3 keV gamma rays. ► Self-attenuation factors of 63.3 keV gamma rays for cylindrical sample container. ► The density, chemical composition and geometry effects are taken into account. ► Determination of the 238U activity in three soil types: grey, alluvial and red soils.

  3. Calibration of Ge gamma-ray spectrometers for complex sample geometries and matrices

    Semkow, T. M.; Bradt, C. J.; Beach, S. E.; Haines, D. K.; Khan, A. J.; Bari, A.; Torres, M. A.; Marrantino, J. C.; Syed, U.-F.; Kitto, M. E.; Hoffman, T. J.; Curtis, P.

    2015-11-01

    A comprehensive study of the efficiency calibration and calibration verification of Ge gamma-ray spectrometers was performed using semi-empirical, computational Monte-Carlo (MC), and transfer methods. The aim of this study was to evaluate the accuracy of the quantification of gamma-emitting radionuclides in complex matrices normally encountered in environmental and food samples. A wide range of gamma energies from 59.5 to 1836.0 keV and geometries from a 10-mL jar to 1.4-L Marinelli beaker were studied on four Ge spectrometers with the relative efficiencies between 102% and 140%. Density and coincidence summing corrections were applied. Innovative techniques were developed for the preparation of artificial complex matrices from materials such as acidified water, polystyrene, ethanol, sugar, and sand, resulting in the densities ranging from 0.3655 to 2.164 g cm-3. They were spiked with gamma activity traceable to international standards and used for calibration verifications. A quantitative method of tuning MC calculations to experiment was developed based on a multidimensional chi-square paraboloid.

  4. Dose calculations of brachytherapy with compensations of gamma-ray absorption

    A dose-distribution calculation system for the brachytherapy was developed with a personal-computer (NEC PC-9800 series). The operating system, MS-DOS ver. 2.1, was used and the programs were written by the compiler BASIC and the assembler. The followings are the features of the system. The system can be realized with low cost compared to a commercially available mini-computer system. And the system has high performances in the speed of calculation and data-transfer without the lack of accuracy. Moreover the gamma rays absorption within sources and their containers are considered in the calculation of the table-data. (author)

  5. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle.

  6. Airborne gamma-ray spectrometer and magnetometer survey, Mitchell Quadrangle, South Dakota. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 20 x 10 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 20 x 10 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Mitchell map area. The purpose of this program is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1479 line miles are in this quadrangle

  7. Airborne gamma-ray spectrometer and magnetometer survey: Huron quadrangle, South Dakota. Final report

    1981-04-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 2/sup 0/ x 1/sup 0/ NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 2/sup 0/ x 1/sup 0/ NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Huron map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1459 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  8. Thorium distribution on the lunar surface observed by Chang'E-2 gamma-ray spectrometer

    Wang, Xianmin; Zhang, Xubing; Wu, Ke

    2016-07-01

    The thorium distribution on the lunar surface is critical for understanding the lunar evolution. This work reports a global map of the thorium distribution on the lunar surface observed by Chang'E-2 gamma-ray spectrometer (GRS). Our work exhibits an interesting symmetrical structure of thorium distribution along the two sides of the belt of Th hot spots. Some potential positions of KREEP volcanism are suggested, which are the Fra Mauro region, Montes Carpatus, Aristarchus Plateau and the adjacent regions of Copernicus Crater. Based on the lunar map of thorium distribution, we draw some conclusions on two critical links of lunar evolution: (1) the thorium abundance within the lunar crust and mantle, in the last stage of Lunar Magma Ocean (LMO) crystallization, may have a positive correlation with the depth in the crust, reaches a peak when coming through the transitional zone between the crust and mantle, and decreases sharply toward the inside of the mantle; thus, the Th-enhanced materials originated from the lower crust and the layer between the crust and mantle, (2) in PKT, KREEP volcanism might be the primary mechanism of Th-elevated components to the lunar surface, whereas the Imbrium impact acted as a relatively minor role.

  9. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 20 x 10 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 10 x 20 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  10. Airborne gamma-ray spectrometer and magnetometer survey, Medford Quadrangle Oregon. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 20 x 10 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 10 x 20 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Medford, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of three miles. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 2925 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  11. Airborne gamma-ray spectrometer and magnetometer survey, Roseburg Quadrangle, Oregon. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 20 x 10 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 10 x 20 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Roseburg, Oregon, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1596 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  12. Airborne gamma-ray spectrometer and magnetometer survey Coos Bay, Oregon. Final report

    1981-05-01

    During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Coos Bay, Oregon, map area. Line spacing was generally six miles for east/west traverses and eighteen miles for north/south tie lines over the northern one-half of the area. Traverses and tie lines were flown at three miles and twelve miles respectively over the southern one-half of the area. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 863.8 line miles are in this quadrangle.

  13. The ground support equipment for the transient gamma-ray spectrometer

    We describe the function and implementation of the ground support equipment (GSE) for the transient gamma-ray spectrometer (TGRS), to be flown on-board the WIND spacecraft. A particularly novel feature of the system is that it was assembled almost entirely from commercially available, off-the-shelf components (including software), offering simplicity, portability, reliability and low cost. It was designed so that nearly every aspect of data accumulation, instrument verification, and analysis can be carried out by the GSE, which alleviates the necessity of a mainframe computer for all but the most comprehensive of data processing. For example, the bulk of the spectral analysis can be carried out using a commercially available, PC based PHA/MCA analysis package. Data products are archieved directly onto a removable media optical disk drive, providing more than 20 days storage per disk at the nominal telemetry bit rate of ∝ 400 bps. Data packets are made available for distribution over a local area network based on thin-wire Ethernet. (orig.)

  14. Development of hard X-ray and gamma-ray spectrometer using superconducting transition edge sensor

    Superconducting transition edge sensors (TES) are used for high-resolution X-ray spectroscopy. In our group, we developed an Ir-TES and reported an energy resolution of 6.9 eV FWHM at 5.9 keV (Kunieda et al., 2004). In this study, we have designed a new TES detector using a superconducting tin (Sn) absorber to detect high energy photons over 100 keV. The Sn absorber is coupled to an Ir/Au superconducting film which is deposited on an ultra-thin SiN membrane (500 nm thick) with a small amount of epoxy post (Stycast 2850FT) by handling with a flip-chip bonding machine. The measured energy resolution is 485 eV FWHM at 60 keV and is better than that of HPGe detector. -- Highlights: ► We designed a Gamma-ray Spectrometer using superconducting transition edge sensor. ► Sn absorber was coupled to an Ir/Au superconducting film through the Stycast epoxy. ► An extremely small epoxy post was fabricated on a 500 nm thick SiN membrane. ► The absorber was coupled to a superconducting film using flip-chip bonding machine. ► We have achieved a better energy resolution than conventional HPGe detectors

  15. Airborne gamma-ray spectrometer and magnetometer survey: Ukiah quadrangle, California. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 20 x 10 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 10 x 20 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Ukiah, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1517 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  16. Airborne gamma-ray spectrometer and magnetometer survey. Volume I. Final report

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Mariposa, California and Nevada; Fresno, California; and Bakersfield, Caifornia 1:250,000 National Topographic Map Series (NTMS) 10 x 20 quadrangle maps. The survey was a part of DOE's National Aerial Radiometric Reconnaissance (ARR) program, which in turn is a part of the National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer having a large crystal volume, and a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test range. Data quality was ensured throughout the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. These maps were interpreted and an anomaly interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data processing procedures, the data display format, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  17. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 20 x 10 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 10 x 20 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  18. Airborne gamma-ray spectrometer and magnetometer survey: Alturas quadrangle, California. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 20 x 10 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 10 x 20 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Alturas, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1631.6 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  19. Airborne gamma-ray spectrometer and magnetometer survey: Eureka quadrangle, California. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 20 x 10 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 10 x 20 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Eureka/Crescent City, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were aquired, compiled, and interpreted during the survey, of which 349.5 line miles are in this area. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  20. Airborne gamma-ray spectrometer and magnetometer survey: Huron quadrangle, South Dakota. Final report

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over eleven (11) 20 x 10 NTMS quadrangles located in the states of Minnesota and Wisconsin and seven (7) 20 x 10 NTMS quadrangles in North and South Dakota. The quadrangles located within the North and South Dakota survey area include Devil's Lake, New Rockford, Jamestown, Aberdeen, Huron, Mitchell, and Sioux Falls. This report discusses the results obtained over the Huron map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately twenty-four (24) miles apart. A total of 21,481 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1459 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States

  1. Airborne gamma-ray spectrometer and magnetometer survey Coos Bay, Oregon. Final report

    During the months of August, September, and October of 1980, Aero Service Division Western Geophysical Company of America conducted an airborne high sensitivity gamma-ray spectrometer and magnetometer survey over ten (10) areas over northern California and southwestern Oregon. These include the 20 x 10 NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 10 x 20 areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Coos Bay, Oregon, map area. Line spacing was generally six miles for east/west traverses and eighteen miles for north/south tie lines over the northern one-half of the area. Traverses and tie lines were flown at three miles and twelve miles respectively over the southern one-half of the area. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 863.8 line miles are in this quadrangle

  2. Airborne gamma-ray spectrometer and magnetometer survey: Chico quadrangle, California. Final report

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Chico, California, map area. Traverse lines were flown in an east-west direction at a line spacing of three. Tie lines were flown north-south approximately twelve miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 3026.4 line miles are in the quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  3. Airborne gamma-ray spectrometer and magnetometer survey: Susanville quadrangle, California. Final report

    1981-05-01

    An airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten (10) areas over northern California and southwestern Oregon. These include the 2/sup 0/ x 1/sup 0/ NTMS quadrangles of Roseburg, Medford, Weed, Alturas, Redding, Susanville, Ukiah, and Chico along with the 1/sup 0/ x 2/sup 0/ areas of the Coos Bay quadrangle and the Crescent City/Eureka areas combined. This report discusses the results obtained over the Susanville, California, map area. Traverse lines were flown in an east-west direction at a line spacing of six (6) miles. Tie lines were flown north-south approximately eighteen (18) miles apart. A total of 16,880.5 line miles of geophysical data were acquired, compiled, and interpreted during the survey, of which 1642.8 line miles are in this quadrangle. The purpose of this study is to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States.

  4. Airborne gamma-ray spectrometer and magnetometer survey: Wenatchee, Concrete, quadrangles (Washington). Final report

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Wenatchee and Concrete, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  5. Airborne gamma-ray spectrometer and magnetometer survey: Iditarod quadrangle (Alaska). Final report

    During the months of July, August, and September 1979, an airborne high sensitivity gamma-ray spectrometer and magnetometer survey was conducted over ten 30 x 10 NTMS quadrangles of West-Central Alaska. The results obtained over the Iditarod map area are reported. The final data are presented in four different forms: on magnetic tape; on microfiche; in graphic form as profiles and histograms; and in map form as anomaly maps, flight path maps, and computer printer maps. The histograms and the multiparameter profiles are presented with the anomaly maps and flight path map in a separate volume. Anomalous radioactivity levels are encountered in mine locations on the Idatarod quadrangle, on both the uranium and thorium spectral windows. Three of these are relatively restricted, discrete anomalous features. The other six are in two groups of comparatively long intervals variably high in uranium and thorium series radiation, and they are aligned in such a manner as to suggest that their source is in a length zone or formation enriched in uranium and thorium mineralization

  6. Performance of digital gamma ray spectrometer for loss free counting and its application to NAA using short-lived radionuclides

    A digital gamma-ray spectrometer with loss-free counting system was used for real time correction for dead time (DT) due to pulse processing in the electronics. This spectrometer was used for radioactive assay of samples having constant as well as varying DT conditions. The system was tested by measuring activity of short and medium lived nuclides namely 28Al, 52V and 128I in the DT ranges of 80-2 %. Using this spectrometer and neutron activation analysis (NAA), concentrations of Al, V, Ti, Ca, Dy and Mn were determined in some samples and reference materials. (author)

  7. Measurement of material uniformity using 3-D position sensitive CdZnTe gamma-ray spectrometers

    He, Z; Knoll, G F; Wehe, D K; Stahle, C M

    2000-01-01

    We present results from two 1 cm sup 3 CdZnTe gamma-ray spectrometers with full 3-D position sensitivity. To our knowledge, these are the first reported semiconductor spectrometers that provide independent spectral data for each of over 2000 volume elements. Energy resolutions of 1.5-1.6% FWHM and position resolutions of 0.7x0.7x0.5 mm were obtained at 662 keV gamma-ray energy from the central region of both detectors for single-pixel events. With the 3-D position sensing capability, variations in spectral response over the detector volume were recorded using a sup 1 sup 3 sup 7 Cs source. These measurements allow a study of full-energy peak efficiency, mean ionization energy and electron trapping as a function of 3-D position. The effects of material non-uniformity on detector spectroscopic performance are discussed.

  8. Gamma-to-electron magnetic spectrometer (GEMS): An energy-resolved {gamma}-ray diagnostic for the National Ignition Facility

    Kim, Y.; Herrmann, H. W.; Mack, J. M.; Young, C. S.; Barlow, D. B.; Schillig, J. B.; Sims, J. R. Jr.; Lopez, F. E.; Mares, D.; Oertel, J. A.; Hayes-Sterbenz, A. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Hilsabeck, T. J.; Wu, W. [General Atomics, PO Box 85608, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States); Stoeffl, W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2012-10-15

    The gamma-to-electron magnetic spectrometer, having better than 5% energy resolution, is proposed to resolve {gamma}-rays in the range of E{sub o}{+-} 20% in single shot, where E{sub o} is the central energy and is tunable from 2 to 25 MeV. Gamma-rays from inertial confinement fusion implosions interact with a thin Compton converter (e.g., beryllium) located at approximately 300 cm from the target chamber center (TCC). Scattered electrons out of the Compton converter enter an electromagnet placed outside the NIF chamber (approximately 600 cm from TCC) where energy selection takes place. The electromagnet provides tunable E{sub o} over a broad range in a compact manner. Energy resolved electrons are measured by an array of quartz Cherenkov converters coupled to photomultipliers. Given 100 detectable electrons in the energy bins of interest, 3 Multiplication-Sign 10{sup 14} minimum deuterium/tritium (DT) neutrons will be required to measure the 4.44 MeV {sup 12}C {gamma}-rays assuming 200 mg/cm{sup 2} plastic ablator areal density and 3 Multiplication-Sign 10{sup 15} minimum DT neutrons to measure the 16.75 MeV DT {gamma}-ray line.

  9. Modeling of gamma-ray energy absorption buildup factors using response surface method

    Buildup factors are always useful for practical computations in gamma-ray shield design. Generally point kernel method being easier to handle is adopted for shielding calculations. This method models a gamma ray directly at the evaluation point without scattering which is multiplied by buildup factors to obtain the gamma dose rate. The American Nuclear Society Standard Committee working group (ANSI/ANS-6.4.3-1991) has compiled the energy absorption and exposure buildup factors from 1 mean free path to 40 mean free paths as a standard reference data base for a large number of elements including water, air and concrete. Literature study reveals that there is a substantially significant disagreement in the buildup factor data by different approximating formulae. In view of this, it is required to compute or predict the buildup factor for those materials. The buildup factor data have been computed by various codes. Some of the codes are ASFIT (Gopinath and Sakamoto et al, 1971), PALLAS (Takeuchi and Tanaka, 1984) and EGS4 (Nelson et al, 1985). Taylor (1954), Berger (1956), Capo (1958) have fitted Goldstein and Wilkins (1954) data to construct parametric buildup factor formulae. Harimaet et al. (1986) has developed geometric progress fitting formula for the ANSI/ANS-6.4.3 (ANSI, 1991). The energy absorption buildup factor is defined as the photon buildup factor in which the quantity of interest is the absorbed or deposited energy in the shield medium and the detector response function is that of absorption in the material. Geometric progression buildup factor formula was simplified using the new modeling (fitting algorithm) of gamma ray energy absorption buildup factor. Advantage of having the simplification of buildup factor formula provides the easiness of usage of point kernel method based gamma shielding in the sense that analytic expression of collided flux can be easily constructed. Furthermore, that analytical expression of collided flux can be optimized to

  10. Educational Testing of an Auditory Display of Mars Gamma Ray Spectrometer Data

    Keller, J. M.; Pompea, S. M.; Prather, E. E.; Slater, T. F.; Boynton, W. V.; Enos, H. L.; Quinn, M.

    2003-12-01

    A unique, alternative educational and public outreach product was created to investigate the use and effectiveness of auditory displays in science education. The product, which allows students to both visualize and hear seasonal variations in data detected by the Gamma Ray Spectrometer (GRS) aboard the Mars Odyssey spacecraft, consists of an animation of false-color maps of hydrogen concentrations on Mars along with a musical presentation, or sonification, of the same data. Learners can access this data using the visual false-color animation, the auditory false-pitch sonification, or both. Central to the development of this product is the question of its educational effectiveness and implementation. During the spring 2003 semester, three sections of an introductory astronomy course, each with ˜100 non-science undergraduates, were presented with one of three different exposures to GRS hydrogen data: one auditory, one visual, and one both auditory and visual. Student achievement data was collected through use of multiple-choice and open-ended surveys administered before, immediately following, and three and six weeks following the experiment. It was found that the three student groups performed equally well in their ability to perceive and interpret the data presented. Additionally, student groups exposed to the auditory display reported a higher interest and engagement level than the student group exposed to the visual data alone. Based upon this preliminary testing,we have made improvements to both the educational product and our evaluation protocol. This fall, we will conduct further testing with ˜100 additional students, half receiving auditory data and half receiving visual data, and we will conduct interviews with individual students as they interface with the auditory display. Through this process, we hope to further assess both learning and engagement gains associated with alternative and multi-modal representations of scientific data that extend beyond

  11. Destructive versus Nondestructive Assay Comparisons Using the SWEPP Gamma-ray Spectrometer

    Hartwell, John Kelvin; Harker, Yale Deon; Killian, Elmo Wayne; Yoon, Woo Yong

    1998-11-01

    In support of data quality objectives for the INEEL Stored Waste Examination Pilot Plant (SWEPP) a series of 208-liter (55-gallon) waste drums containing inorganic sludge have been sampled and destructively analyzed. The drums were non-destructively assayed by the SWEPP PAN system and the SWEPP Gamma-Ray Spectrometer (SGRS) prior to sampling. This paper reports some of the conclusions from the destructive versus NDA comparisons, and additionally presents the results of an on-going effort to use the destructive analyses to validate absolute efficiency curves calculated using Monte-Carlo and analytical modeling for the SGRS. Destructive analysis results are available from radiochemical assay of 128 sludge-containing drums. The content codes represented are CC001 (42 items), CC002 (8), CC007 (48), CC800 (16), CC803 (3), and CC807 (11.) Each drum had two full-length vertical cores removed from designated radial positions. The entire length of each core was composited and submitted for analysis. All of the core composites were analyzed radiochemically for Am-241, Pu-239/240, and Pu-238, and by inductively-coupled mass spectrometry (ICPMS) for U-235 and U-238. Not only have the destructive analysis results been useful in documenting the performance of both the SGRS and the PAN system, but also have allowed the determination of certain absolute counting efficiency values for the SGRS. The values, in turn will allow us to validate SGRS counting efficiencies computed by MCNP and analytical modeling, and perhaps use the SGRS as an absolute assay technique.

  12. Destructive versus Nondestructive Assay Comparisons Using the SWEPP Gamma-Ray Spectrometer

    E. W. Killian; J. K. Hartwell; W. Yoon; Y. D. Harker

    1998-11-01

    In support of data quality objectives for the INEEL Stored Waste Examination Pilot Plant (SWEPP) a series of 208-liter (55-gallon) waste drums containing inorganic sludge have been sampled and destructively analyzed. The drums were non-destructively assayed by the SWEPP PAN system and the SWEPP Gamma-Ray Spectrometer (SGRS) prior to sampling. This paper reports some of the conclusions from the destructive versus NDA comparisons, and additionally presents the results of an on-going effort to use the destructive analyses to validate absolute efficiency curves calculated using Monte-Carlo and analytical modeling for the SGRS. Destructive analysis results are available from radiochemical assay of 128 sludge-containing drums. The content codes represented are CC001 (42 items), CC002 (8), CC007 (48), CC800 (16), CC803 (3), and CC807 (11.) Each drum had two full-length vertical cores removed from designated radial positions. The entire length of each core was composited and submitted for analysis. All of the core composites were analyzed radiochemically for Am-241, Pu-239/240, and Pu-238, and by inductively-coupled mass spectrometry (ICPMS) for U-235 and U-238. Not only have the destructive analysis results been useful in documenting the performance of both the SGRS and the PAN system, but also have allowed the determination of certain absolute counting efficiency values for the SGRS. The values, in turn will allow us to validate SGRS counting efficiencies computed by MCNP and analytical modeling, and perhaps use the SGRS as an absolute assay technique.

  13. Two CdZnTe detector-equipped gamma-ray spectrometers for attribute measurements on irradiated nuclear fuel

    Some United States Department of Energy-owned spent fuel elements from foreign research reactors (FRRs) are presently being shipped from the reactor location to the US for storage at the Idaho National Engineering and Environmental Laboratory (INEEL). Two cadmium zinc telluride detector-based gamma-ray spectrometers have been developed to confirm the irradiation status of these fuels. One spectrometer is configured to operate underwater in the spent fuel pool of the shipping location, while the other is configured to interrogate elements on receipt in the dry transfer cell at the INEEL's Interim Fuel Storage Facility (IFSF) Both units have been operationally tested at the INEEL. (author)

  14. Two CdZnTe Detector-Equipped Gamma-ray Spectrometers for Attribute Measurements on Irradiated Nuclear Fuel

    Some United States Department of Energy-owned spent fuel elements from foreign research reactors (FRRs) are presently being shipped from the reactor location to the US for storage at the Idaho National Engineering and Environmental Laboratory (INEEL). Two cadmium zinc telluride detector-based gamma-ray spectrometers have been developed to confirm the irradiation status of these fuels. One spectrometer is configured to operate underwater in the spent fuel pool of the shipping location, while the other is configured to interrogate elements on receipt in the dry transfer cell at the INEEL's Interim Fuel Storage Facility (IFSF). Both units have been operationally tested at the INEEL

  15. Self-absorption corrections of various sample-detector geometries in gamma-ray spectrometry using sample Monte Carlo Simulations

    Corrections for self-absorption in gamma-ray spectrometry have been developed using a simple Monte Carlo simulation technique. The simulation enables the calculation of gamma-ray path lengths in the sample which, using available data, can be used to calculate self-absorption correction factors. The simulation was carried out on three sample geometries: disk, Marinelli beaker, and cylinder (for well-type detectors). Mathematical models and experimental measurements are used to evaluate the simulations. A good agreement of within a few percents was observed. The simulation results are also in good agreement with those reported in the literature. The simulation code was carried out in FORTRAN 90,

  16. Development of a high-pressure xenon ionization chamber gamma-ray spectrometer for field deployment in cone penetrometers

    It is sometimes necessary to measure gamma-ray spectra under difficult circumstances such as those encountered during in situ characterization of radioactive soils. For some classes of soil, various measurement instruments can be inserted to depths of 100 feet or more using the cone penetrometer technique. The problems for gamma-ray spectroscopy in this application include size limitations, elevated and/or variable temperature environment, vibration and shock, and remote operation. Measurement of gamma-ray spectra under these conditions has been done using scintillation detectors such as NaI(Tl) or BGO. However, these instruments suffer from poor energy resolution (ca. 8-10%), temperature sensitivity and, in the case of NaI(Tl), activation by neutrons. Sentor Technologies, Inc., working under Department of Energy sponsorship and in conjunction with Virginia Commonwealth University and the University of California, San Diego, has developed a high-pressure xenon ionization chamber spectrometer that is specifically designed for use in cone penetrometers. Key features of the detector design include a 29 mm O.D. cylindrical geometry with concentric cathode, Frisch grid, and anode, and ultra-purified (ca. ppb) xenon pressurized to a density of 0.6 g x cm-3. Utility of high-pressure xenon ionization spectrometers for field use in cone penetrometers or similar applications including borehole logging was demonstrated. (author)

  17. SHARC: Silicon Highly-segmented Array for Reactions and Coulex used in conjunction with the TIGRESS {gamma}-ray spectrometer

    Diget, C A; Fox, S P; Adsley, P; Fulton, B R [Department of Physics, University of York, York, YO10 5DD (United Kingdom); Smith, A [School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL (United Kingdom); Williams, S; Ball, G C; Churchman, R M; Dech, J; Valentino, D Di; Djongolov, M [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Porter-Peden, M [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States); Achouri, L [Laboratoire de Physique Corpusculaire, IN2P3-CNRS, ISMRA et Universite de Caen, F-14050 Caen (France); Al-Falou, H; Austin, R A E [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS, B3H 3C3 (Canada); Blackmon, J C [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Brown, S; Catford, W N [Department of Physics, University of Surrey, Guildford, GU2 5XH (United Kingdom); Chen, A A; Chen, J, E-mail: christian.diget@york.ac.uk [Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1 (Canada)

    2011-02-01

    The combination of {gamma}-ray spectroscopy and charged-particle spectroscopy is a powerful tool for the study of nuclear reactions with beams of nuclei far from stability. This paper presents a new silicon detector array, SHARC, the Silicon Highly-segmented Array for Reactions and Coulex. The array is used at the radioactive-ion-beam facility at TRIUMF (Canada), in conjunction with the TIGRESS {gamma}-ray spectrometer, and is built from custom Si-strip detectors utilising a fully digital readout. SHARC has more than 50% efficiency, approximately 1000-strip segmentation, angular resolutions of {Delta}{theta} {approx} 1.3 deg. and {Delta}{phi} {approx} 3.5 deg., 25-30 keV energy resolution, and thresholds of 200 keV for up to 25 MeV particles. SHARC is now complete, and the experimental program in nuclear astrophysics and nuclear structure has commenced.

  18. Self-absorption of neutron capture gamma-rays in gold samples

    The self absorption of neutron capture gamma rays in gold samples has been determined experimentally for two standard setups used in measurements of neutron capture cross sections. One makes use of an artificially collimated neutron beam and two C6D6 detectors, the other of kinematically collimated neutrons and three Moxon-Rae detectors. Correction factors for an actual measurement of a neutron capture cross section using a gold standard of 1 mm thickness up to 12% were found for the first setup while they are only 4% for the second setup. The present data allow to determine the correction in an actual measurement with an accuracy of 0.5-1%. (orig.)

  19. A simplified spectrometer based on a fast digital oscilloscope for the measurement of high energy $\\gamma$-rays

    Markochev, S S

    2014-01-01

    A simplified digital spectrometer for the study of $\\gamma$-rays with energies up to $\\sim100$ MeV is presented and tested. The spectrometer is only consisted of a fast digital oscilloscope and three scintillation detectors which can work in single or in coincidence modes: two BGO-detectors comprising $\\varnothing\\,7.62\\times7.62$ cm BGO-crystalls and one plastic detector which includes an organic polystyrene-based scintillator. The basic properties of the spectrometer (energy resolution, time resolution, $\\gamma$-rays detection efficiency) were studied exhaustively also using a Geant4-based Monte-Carlo simulation. Several numerical algorithms for processing of waveforms in offline mode were proposed and tested to perform digital timing, pulse area measurement and processing of pile-up events without rejection. As a result, the spectrometer demonstrated $\\sim10\\%$ better energy resolution than was obtained by a common 10-bit CAMAC ADC with the same detectors. And the developed algorithm based on the pulse sha...

  20. Determination of self-absorption corrections by computation in routine gamma-ray spectrometry for typical environmental samples

    A simple and practical method has been developed to quickly calculate self-absorption corrections and mass attenuation coefficients, μ/p, in common environmental samples being analyzed by gamma-ray spectrometry. The method involves using a sample computer program and estimates of the elemental compositions of typical environmental samples. The use of this method eliminates the need for gamma-ray-transmission measurements of individual samples, as well as expensive and time consuming elemental analyses of routine samples. The calculated percent attenuation of the beam through various samples, as determined by this method, agrees very well with experimentally measured values of percent attenuation

  1. The characteristics of a low background germanium gamma ray spectrometer at China JinPing underground laboratory

    A low background germanium gamma ray spectrometer, GeTHU, has been installed at China JinPing Underground Laboratory (CJPL). The integral background count rate of the spectrometer was 0.629 cpm between 40 and 2700 keV, the origins of which were studied by Monte Carlo simulation. Detection limits and efficiencies were calculated for selected gamma peaks. Some samples of rare event experiments were measured and 137Cs contamination was found in boric acid. GeTHU will be mainly used to measure environmental samples and screen materials in dark matter and double beta decay experiments. - Highlights: • The first low background gamma ray spectrometer (GeTHU) was developed at CJPL. • It has a large inner chamber which can host large samples for different purposes. • The background characteristics are presented and the origin is studied. • Detection limits are given for selected radionuclides and efficies are calculated. • Some samples were measured and 137Cs contamination was found in boric acid

  2. Gamma ray radiation induced visible light absorption in P-doped silica fibers at low dose levels

    Lu Ping; Kulkarni, N S; Brown, K

    1999-01-01

    A CCD Fiber Optic Spectrometer has been used to monitor the gamma ray radiation induced loss in P-doped fibers at different dopant concentrations (1, 5 and 10 mol%) with a light source (an incandescent bulb with a temperature of 2800-3000 K). The range of dose rates is limited to that used in medical applications (cancer treatments), that is 0.1 to 1.0 Gray per minute (Gy/min). At low integral dose level (<2.0 Gy) four absorption peaks were observed (470, 502, 540 and 600 nm) within the visible region. It has been observed that the radiation induced loss at 470 and 600 nm depends strongly on dose rate. At dose rates of 0.2 and 0.5 Gy/min the induced loss shows nonlinear relation to the total dose. However, at high dose rate (1.0 Gy/min) and low dose rate (0.1 Gy/min) it seems to have a linear dependence with total dose. The conversion from NBOHCs to GeX centers was observed during gamma radiation at low dose rates (0.1-0.5 Gy/min). At the wavelength of 502 and 540 nm, the radiation induced losses show exce...

  3. Determination of attenuation properties of some petroleum products in Ghana by gamma ray absorption technique

    The mass attenuation coefficient (µ/ ρ) and the mass energy absorption coefficient (µen⁄ρ) are important parameters to characterise the penetration and the interaction of gamma rays in chemical materials such as hydrocarbons. Accurate determination of values of (µ/ ρ) and (µen⁄ρ) are relevant in estimating certain important physical properties of petroleum products. In this study, gamma – ray absorption technique has been used to determine mass attenuation coefficients and mass energy absorption coefficients of the following petroleum products; Kerosene, Aviation Turbine Kerosene, Gasoline (Petrol) and Gasoil (Diesel). Gamma photon energy of 662 keV from a 30 mCi (137Cs) source was utilised together with NaI (Tl) Scintillation detector and Ludlum ratemeter (Gamma Counter). The Theoretical values of mass attenuation coefficient and the mass energy absorption coefficient of each petroleum products was calculated. Experimental results were compared with theoretical ones showing a good correlation between methods. These attenuation properties can be used to determine some physical parameters of petroleum products such as density and hence check adulterations in petroleum products. The experimental values of (µ/ ρ) of the petroleum samples range from 0. 0855 to 0.0911 (cm2/g), the theoretical values of (µ/ ρ) were between 0.0916 and 0.0932(cm2/g) with error deviation from 3% to 7%. The experimental and theoretical mass energy absorption coefficients (µen⁄ρ) recorded were in the range of 0.0330 to 0.0352(cm2/g) and 0.0336 to 0.0342 (cm2/g) respectively, having an error deviation between 1% and 3%. (au)

  4. Digital signal processing gamma-ray spectrometers in high count rate applications

    In gamma-ray spectrometry the digital signal processing devices conquer the market of digital electronics. Most digital devices have some advantages, especially concerning their capability of full software control via standard connections. In our laboratories we operate DSP based systems for some years. From this experience some further main advantages were observed as stability of the energy calibration and linearity of the energy calibration over a large range of energies. The suppliers often argue that DSP based systems also have advantages concerning higher throughputs and are therefore useful especially in high count rate applications. To examine this. the performance of a digital signal processing gamma-ray spectrometry system was compared with a high end analogous device in a field of high count rate applications. Both systems were exposed to high gamma-ray fluxes. The performance was evaluated by means of dead time, dead time correction, energy resolution, energy stability and throughput. The description of the measurements and the results are presented in the following. (orig.)

  5. Modification of the gamma-ray spectra by internal absorption in OVV blazars: The example cases of 3C 273 and 3C 279

    Sitarek, J.; Bednarek, W.

    2008-01-01

    Recent observations with the low threshold Cherenkov telescopes proved that sub-TeV gamma-rays are able to arrive from active galaxies at relatively large distances in spite of expected severe absorption in the extragalactic background light (EBL). We calculate the gamma-ray spectra at TeV energies from two example OVV quasars, 3C 273 and 3C 279, assuming that gamma-rays are injected in the inner parts of the jets launched by the accretion disks. It is assumed that gamma-rays in the broad ene...

  6. Scintillation response of Xe gas studied by gamma-ray absorption and Compton electrons

    Swiderski, L.; Chandra, R.; Curioni, A.; Davatz, G.; Friederich, H.; Gendotti, A.; Gendotti, U.; Goeltl, L.; Iwanowska-Hanke, J.; Moszyński, M.; Murer, D.; Resnati, F.; Rubbia, A.; Szawlowski, M.

    2015-07-01

    In this study we report on the scintillation response of Xe gas under irradiation of gamma-rays in the energy range between 50 keV and 1.5 MeV. Xe gas was pressurized to 50 bar and tested as a detector for gamma spectroscopy. The gas was confined in a titanium vessel of 200 mm length and 101 mm diameter with 2.5 mm thick walls. The vessel was sealed with two 3 inch diameter UV transparent windows. The inner surface of the vessel was covered with a reflecting wavelength shifter. Two photomultipliers coupled to both windows at the end of the vessel allowed for registration of 3700 photoelectrons/MeV, which resulted in 7.0% energy resolution registered for 662 keV γ-rays from a 137Cs source. The non-proportionality of the photoelectron yield and intrinsic resolution was studied with gamma photoabsorption peaks. Due to the thickness of the detector vessel, the response of the Xe gas as a scintillator in the low energy range was performed by means of a Compton Coincidence Technique and compared with the gamma absorption results. The shape of the non-proportionality characteristics of Xe gaseous scintillator was compared to the results obtained for NaI:Tl, LaBr3:Ce and LYSO:Ce. A correlation between non-proportionality and intrinsic resolution of Xe gaseous scintillator was pointed out.

  7. Determination of concentration of uranium in process stream samples of uranyl nitrate using gamma ray spectrometer

    A rapid non-destructive gamma ray spectrometric method has been developed for the determination of concentration of uranium in the process stream samples. Concentration of uranium in the samples was observed to be linear from 0.5-130 g/l of uranium. Uranium present in the organic medium was counted directly without the need for stripping into aqueous medium. The results were compared well with that obtained by Davis and Grey redox titrimetric method and wavelength dispersive x-ray fluorescence method. (author)

  8. Intercomparison of gamma ray emission rate measurements by means of germanium spectrometers and 152Eu sources

    The work carried out to determine the gamma rays emission rates of ten strongest lines of 152Eu has been described and the results obtained with other laboratories which took part in the intercomparison organised by the Working Group of 'α-, β-, γ-rays Spectrometry' of the International Committee for Radionuclide Metrology (I.C.R.M.) have been compared. The work was carried out using a 60 cc Gsub(e)(Li) detector having resolution 3.5 MeV at 1332 MeV coupled to a 1024 channel analyser. An efficiency calibration curve for the required energy range was obtained using the calibrated activities of 54Mn, 60Co, 134Cs, 137Cs, 140Ls and 203Hg. The gamma ray emission rates of the ten strong lines of 152Eu as required by I.C.R.M. were determined. The deviation of the results from the weighted mean of all the participating laboratories is less than the uncertainties on the values for most of the gamma reported in the present work. (auth.)

  9. Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network

    Kucuk, Nil; Manohara, S.R.; Hanagodimath, S.M.; Gerward, L.

    2013-01-01

    In this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca3(PO4)2] in the energy region 0.015–15MeV, and...

  10. Abundance and distribution of radioelements in lunar terranes: Results of Chang'E-1 gamma ray spectrometer data

    Chen, Jian; Ling, Zongcheng; Li, Bo; Zhang, Jiang; Sun, Lingzhi; Liu, Jianzhong

    2016-02-01

    The gamma ray spectrometer (GRS) onboard Chang'E-1 has acquired valuable datasets recording the gamma ray intensities from radioelements (Potassium (K), Thorium (Th) and Uranium (U), etc.) on lunar surface. We extracted the elemental concentrations from the GRS data with spectral fitting techniques and mapped the global absolute abundance of radioelements in terms of the ground truths from lunar samples and meteorites. The obtained global concentration maps of these radioelements indicate heterogeneous distribution among three major lunar crustal terranes (i.e., Procellarum KREEP Terrane (PKT), Feldspathic Highlands Terrane (FHT), and South Pole Aitken Terrane (SPAT)) in relation with their origin and distinct geologic history. The majority of radioelements are restricted in PKT, approving the scenario of KREEP (Potassium (K), rare earth elements (REE), Phosphorus (P)) residua concentrating under the Procellarum region. Moreover, we found the consistency of distribution for radioelements and basalts, concluding that the subsequent volcanism might be associated with local concentrations of radioelements in western Oceanus Procellarum and northwestern South Pole Aitken Basin. The prominent and asymmetric radioactive signatures were confirmed in SPAT comparing to FHT dominated by low level radioactivity, while the magnitudes are much lower than that of PKT, indicating a primary geochemical heterogeneity for the Moon.

  11. Selection of new innovation crystal for Mercury Gamma-ray and Neutron Spectrometer on-board MPO/BepiColombo mission.

    Kozyrev, Alexander; Mitrofanov, Igor; Benkhoff, Johannes; Litvak, Maxim; McAuliffe, Jonathan; Mokrousov, Maxim; Owens, Alan; Quarati, Francesco; Shvetsov, Valery; Timoshenko, Gennady

    2015-04-01

    The Mercury Gamma-ray and Neutron Spectrometer (MGNS) was developed in Space Research Institute for detection the flux of neutron and gamma-ray from the Mercury subsurface on-board Mercury Polar Orbiter of ESA BepiColombo mission. The instrument consists of 3He proportional counters and organic scintillator for detection of neutron and also gamma-spectrometer based on scintillation crystal for detection of gamma-ray. For the gamma-ray spectrometer the LaBr3 crystal was selected, the best choice at the time of the instrument proposal in 2004. However, quite recently the European industry has developed the new crystal CeBr3, which could be much better than LaBr3 crystal for planetology. Such crystal with the necessary size of 3 inch became available in the stage of manufactory of Flight Spare Module of MGNS instrument. New CeBr3 crystal has much better signal-to-noise ratio than LaBr3 crystal in the energy band up to 3 MeV. Also, in the LaBr3 crystal, the important for planetology gamma-ray line of potassium at 1461 keV is overlapping with the background gamma-ray line of 138La isotope at 1473 keV. This CeBr3 crystal was integrated to MGNS instrument. We present the results of gamma-ray performance and environment tests of MGNS with CeBr3 crystal, and also comparison between LaBr3 and new CeBr3 crystals in context of space application for this instrument.

  12. Soft X-ray absorption excess in gamma-ray burst afterglow spectra: Absorption by turbulent ISM

    Tanga, M; Gatto, A; Greiner, J; Krause, M G H; Diehl, R; Savaglio, S; Walch, S

    2016-01-01

    Two-thirds of long duration gamma-ray bursts (GRBs) show soft X-ray absorption in excess of the Milky Way. The column densities of metals inferred from UV and optical spectra differ from those derived from soft X-ray spectra, at times by an order of magnitude, with the latter being higher. The origin of the soft X-ray absorption excess observed in GRB X-ray afterglow spectra remains a heavily debated issue, which has resulted in numerous investigations on the effect of hot material both internal and external to the GRB host galaxy on our X-ray afterglow observations. Nevertheless, all models proposed so far have either only been able to account for a subset of our observations (i.e. at z > 2), or they have required fairly extreme conditions to be present within the absorbing material. In this paper, we investigate the absorption of the GRB afterglow by a collisionally ionised and turbulent interstellar medium (ISM). We find that a dense (3 per cubic centimeters) collisionally ionised ISM could produce UV/opti...

  13. A portable medium-resolution gamma-ray spectrometer and analysis software

    There is a strong need for portable radiometric instrumentation that can both accurately confirm the presence of nuclear materials and allow isotopic analysis of radionuclides in the field. To fulfill this need the Safeguards Technology Program at LLNL has developed a hand-held, non-cryogenic, low-power gamma-ray and x-ray measurements and analysis instrument that can both search for and then accurately verify the presence of nuclear materials. We will report on the use of cadmium zinc telluride (CZT) detectors, detector electronics, and the new field-portable instrument being developed. We will also describe the isotopic analysis that allows enrichment measurements to be made accurately in the field. These systems provide capability for safeguards inspection and verification applications and could find application in counter-smuggling operations

  14. Spectra characteristics of airborne gamma-ray spectrometer based on data fusion

    Background: Airborne gamma-ray spectrometry is made up of multiple NaI (Tl) detector, but the detectors have the different level of noise. Purpose: Aimed at reducing the affection of noise, a weighted least square fusion estimation algorithm is presented to extract the Spectra Characteristics. Methods: The method doesn't need any prior knowledge on the detector, but carries on the variance estimated on-line these data and timely adjust weights of various fusion sensors in order to make the mean-square error of fusion results least all the time. Results: It is used to process the date come from the standard model, the results show that measurement error range of 40K decreased from 17% to 12%. Conclusions: The result has shown that the method can dramatically decrease the error and improve the accuracy. (authors)

  15. A portable medium-resolution gamma-ray spectrometer and analysis software

    Lavietes, A.D.; McQuaid, J.H.; Ruhter, W.D.; Buckley, W.M.; Clark, D-L. [Lawrence Livermore National Lab., CA (United States); Paulus, T.J. [EG and G ORTEC, Oak Ridge, TN (United States)

    1996-07-01

    There is a strong need for portable radiometric instrumentation that can both accurately confirm the presence of nuclear materials and allow isotopic analysis of radionuclides in the field. To fulfill this need the Safeguards Technology Program at LLNL has developed a hand-held, non-cryogenic, low-power gamma-ray and x-ray measurements and analysis instrument that can both search for and then accurately verify the presence of nuclear materials. We will report on the use of cadmium zinc telluride (CZT) detectors, detector electronics, and the new field-portable instrument being developed. We will also describe the isotopic analysis that allows enrichment measurements to be made accurately in the field. These systems provide capability for safeguards inspection and verification applications and could find application in counter-smuggling operations.

  16. Analyzing global distribution of thorium on the lunar surface using Chang' E-1 Gamma-Ray spectrometer spectra data

    In order to acquire the global elemental distributions on the lunar surface, a method to process level 2C spectra data measured by Chang' E-1 gamma-ray spectrometer (CE1-GRS) was proposed and implemented. After data processing made by this method to level 2C spectra measured from 27 Nov, 2007 to 6 Feb, 2008, preliminary global counting rate map of thorium is derived. Compared with the global map of thorium measured by the Lunar Prospector (LP) GRS, the result shows that major features of the global thorium distribution appeared in CE1 map is consistent with the map of thorium from the LP GRS, but there are still some differences in detail between these two maps. (authors)

  17. Stabilization of spectra provided by a gamma-ray spectrometer. Application to the construction of a stabilizer

    This research is concerned with the stabilization of spectra provided by a gamma-ray spectrometer. It is required to hold the calibration straight line of the spectrometer in a position which is fixed initially to better than 5x10-5 channel. A prototype numerical stabilizer has been constructed : the SPECTROSTAB; it is made up of two independent control loops; one of these makes the spectrometer gain depend on the derivatives of a reference peak at high energies; the other makes the origin of the energy scale depend on the derivatives of a second reference peak at low energies A theoretical study of the behaviour of a control loop shows that a direct action stabilizer gives the most accurate stabilization; the loss in resolving power on the theoretical peaks of the spectra attains about 1 % with a scintillation detector, and 10 % with a semi-conductor detector. Various tests show that the expected results are obtained and that the displacement of the spectral peaks produced by the derivatives are hidden by errors in the calculation of the peak abscissae. (author)

  18. Charge collection characteristics of Frisch collar CdZnTe gamma-ray spectrometers

    A collimated 198Au source was used to determine the charge collection efficiency (CCE) at several locations along the length of a 3.4x3.4x5.5 mm3 CdZnTe bar detector, both in planar configuration and with Frisch collars of varying length. For each configuration, a 0.50-mm-long region spanning the width of the device was irradiated with 411-keV gamma rays produced by a neutron-activated gold foil. Irradiation began at the cathode and stepped in 0.50-mm steps toward the anode, with a spectrum being collected at each location. By observing the channel location of the full-energy peak in each collected spectrum, an average CCE was determined for each irradiated region. The CCE was found to vary nearly linearly along the length of the device in the planar configuration, starting at a peak value of 89% and dropping to a minimum measured value of 26% near the anode. The addition of a Frisch collar covering the entire length of the crystal greatly altered the CCE profile, which remained near 87% for approximately two-thirds of the length, then sharply dropped near the anode. Results were confirmed by theoretical models. Further CCE mapping was also completed for devices with Frisch collars of various lengths. Those results are reported as well

  19. Gamma ray optics

    Jentschel, M.; Guenther, M. M.; Habs, D.; Thirolf, P. G. [Institut Laue-Langevin, F38042 Grenoble (France); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany); Max-Planck-Institut fuer Quantenoptik, D-85748 Garching, Germany and Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany); Ludwig-Maximilians-Universitaet Muenchen, D-85748 Garching (Germany)

    2012-07-09

    Via refractive or diffractive scattering one can shape {gamma} ray beams in terms of beam divergence, spot size and monochromaticity. These concepts might be particular important in combination with future highly brilliant gamma ray sources and might push the sensibility of planned experiments by several orders of magnitude. We will demonstrate the experimental feasibility of gamma ray monochromatization on a ppm level and the creation of a gamma ray beam with nanoradian divergence. The results are obtained using the inpile target position of the High Flux Reactor of the ILL Grenoble and the crystal spectrometer GAMS. Since the refractive index is believed to vanish to zero with 1/E{sup 2}, the concept of refractive optics has never been considered for gamma rays. The combination of refractive optics with monochromator crystals is proposed to be a promising design. Using the crystal spectrometer GAMS, we have measured for the first time the refractive index at energies in the energy range of 180 - 2000 keV. The results indicate a deviation from simple 1/E{sup 2} extrapolation of X-ray results towards higher energies. A first interpretation of these new results will be presented. We will discuss the consequences of these results on the construction of refractive optics such as lenses or refracting prisms for gamma rays and their combination with single crystal monochromators.

  20. Measurement of natural radioactivity in marble found in Pakistan using a NaI(Tl) gamma-ray spectrometer

    Due to the widespread use of marble as a building/construction material, experimental measurements of 226Ra, 232Th and 40K activities in marble have been carried out using a NaI(Tl) gamma-ray spectrometer with a matrix-inversion-based spectral stripping technique. The samples were collected from various geological formations in Pakistan. The IAEA reference RG-Set was used for calibration of the spectrometer. The photo-peaks at 1460.8, 1764.5 and 2614.6 keV due to 40K, 226Ra and 232Th, respectively, were used for the corresponding activity measurements. For 226Ra, 232Th and 40K, the measured activity concentrations have been found to lie in the specific ranges 4-63, 9-40 and 7-105 Bq kg-1, respectively, which are towards the lower end of the range of measurements on various geological materials world wide. The radium equivalent activity ranged from 25 to 99 Bq kg-1. Values of 0.19 and 0.26 were determined as the average external and internal hazard indices of the marble samples

  1. Polarisation studies of the prompt gamma-ray emission from GRB 041219a using the Spectrometer aboard INTEGRAL

    McGlynn, S; Dean, A J; Hanlon, L; McBreen, S; Willis, D R; McBreen, B; Bird, A J; Foley, S

    2007-01-01

    The spectrometer aboard INTEGRAL, SPI, has the capability to detect the signature of polarised emission from a bright gamma-ray source. GRB 041219a is the most intense burst localised by INTEGRAL and is an ideal candidate for such a study. Polarisation can be measured using multiple events scattered into adjacent detectors because the Compton scatter angle depends on the polarisation of the incoming photon. A search for linear polarisation in the most intense pulse of duration 66 seconds and in the brightest 12 seconds of GRB 041219a was performed in the 100-350keV, 100-500keV and 100keV-1MeV energy ranges. The multiple event data from the spectrometer was analysed and compared with the predicted instrument response obtained from Monte-Carlo simulations using the GEANT 4 INTEGRAL mass model. The chi^2 distribution between the real and simulated data as a function of the percentage polarisation and polarisation angle was calculated for all three energy ranges. The degree of linear polarisation in the brightest...

  2. Estimating the background count rate in the energy field from 0.55-2.75 MeV for Chang'E-1 gamma-ray spectrometer

    With a large geometrical area, the Gamma-ray spectrometer (GRS) onboard Chang'E-1 was designed to detect gamma rays from the moon. The scientific objective is to study the element information including both type and abundance by distinguishing the energy of gamma ray peak relative to elements and calculating the peak area counts. Regretfully, the cislunar spectrum of GRS was not collected. Nevertheless, we give a method to estimate the background count rate in the energy field from 0.55-2.75 MeV. A natural radioactivity count rate map in 2°×2° grids is shown after reducing the background count rate and the uncertainty of the result is discussed.

  3. A new method in gamma-ray spectroscopy: A two crystal scintillation spectrometer with improved resolution

    Hoogenboom, A.M.

    1958-01-01

    A new method has been developed to measure the spectra of gamma radiation emitted in cascade disintegrations. Use is made of a two-crystal scintillation spectrometer and a gated multi-channel analysing device. The pulses produced by summing the outputs of the two crystal-photomultiplier combinations

  4. An united method for calculating neutron fluence attenuation and gamma-ray self-absorption in a large cylindrical sample for (n, xγ) experiment

    An united formula is proposed for calculating neutron fluence attenuation and gamma-ray self-absorption in a large cylindrical sample, it can be used in measurements of gamma-ray production cross sections from fast neutron induced (n,x γ) reactions. The position correlation of these two effects is taken into account in the deduction. The preliminary calculations are completed at an IBM-PC microcomputer. This methos is proved both fast and reliable

  5. NATURAL RADIOACTIVITY IN SOME BUILDING MATERIALS USING A GAMMA-RAY SPECTROMETER

    AKKURT, Iskender; Betül MAVİ

    2011-01-01

    The main reason for the natural radioactivity in the earth is decay series of 40K, 238U and 232Th radionuclides. Because all building materials are soil product, they contain these radionuclides as natural so that building materials have different amounts of radioactivity. In this study the concentrations of natural radioactivity levels of the commonly used natural building materials in Isparta region have been determined. The samples have been analysed using a NaI(Tl) ƒ×-ray spectrometer sy...

  6. Gamma-ray energy absorption and exposure buildup factor studies in some human tissues with endometriosis

    Kurudirek, Murat, E-mail: mkurudirek@gmail.co [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey); Dogan, Bekir [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey); Ingec, Metin [Faculty of Medicine, Department of Obstetrics and Gynecology, Ataturk University, 25240 Erzurum (Turkey); Ekinci, Neslihan; Ozdemir, Yueksel [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey)

    2011-02-15

    Human tissues with endometriosis have been analyzed in terms of energy absorption (EABF) and exposure (EBF) buildup factors using the five-parameter geometric progression (G-P) fitting formula in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). Chemical compositions of the tissue samples were determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Possible conclusions were drawn due to significant variations in EABF and EBF for the selected tissues when photon energy, penetration depth and chemical composition changed. Buildup factors so obtained may be of use when the method of choice for treatment of endometriosis is radiotherapy.

  7. Gamma-ray energy absorption and exposure buildup factor studies in some human tissues with endometriosis

    Human tissues with endometriosis have been analyzed in terms of energy absorption (EABF) and exposure (EBF) buildup factors using the five-parameter geometric progression (G-P) fitting formula in the energy region 0.015-15 MeV up to a penetration depth of 40 mfp (mean free path). Chemical compositions of the tissue samples were determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Possible conclusions were drawn due to significant variations in EABF and EBF for the selected tissues when photon energy, penetration depth and chemical composition changed. Buildup factors so obtained may be of use when the method of choice for treatment of endometriosis is radiotherapy.

  8. A high pressure xenon gamma-ray spectrometer using a coplanar anode configuration

    A new design of a high pressure xenon ionization chamber has been fabricated in an attempt to eliminate the problems associated with acoustical vibrations of the Frisch grid. The function of the traditional Frisch grid has been accomplished by employing a coplanar anode system capable of single polarity charge sensing. Two different detector designs have been fabricated using both cylindrical and parallel plate geometries. Each is filled with highly purified xenon gas at a pressure of approximately 57 atm. The designs of these new spectrometers and their measured characteristics will be presented

  9. A high pressure xenon gamma-ray spectrometer using a coplanar anode configuration

    Sullivan, C. J.; He, Z.; Knoll, G. F.; Tepper, G.; Wehe, D. K.

    2003-06-01

    A new design of a high pressure xenon ionization chamber has been fabricated in an attempt to eliminate the problems associated with acoustical vibrations of the Frisch grid. The function of the traditional Frisch grid has been accomplished by employing a coplanar anode system capable of single polarity charge sensing. Two different detector designs have been fabricated using both cylindrical and parallel plate geometries. Each is filled with highly purified xenon gas at a pressure of approximately 57 atm. The designs of these new spectrometers and their measured characteristics will be presented.

  10. Airborne gamma-ray spectrometer and magnetometer survey, Copalis Beach, Seattle, Cape Flattery, Victoria, Quadrangles (Washington). Final report

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Copalis Beach, Seattle, Victoria, and Cape Flattery, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NRRE) program. Data were collected by helicopters equipped with gamma-ray spectrometers with large crystal volumes, and with high sensitivity proton precession magnetometers. The radiometric systems were calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton Scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedure, the data processing procedures, the data presentation; the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  11. Airborne gamma-ray spectrometer and magnetometer survey: San Luis Obispo (California), Santa Maria (California). Final report

    An airborne combined radiometric and magnetic survey was performed over the area covered by the Santa Maria and San Luis Obispo, California 1:250,000 National Topographic Map Series (NTMS) 10 x 20 quadrangle maps. The survey was a part of DOE's National Aerial Radiometric Reconnaissance program, which is in turn a part of the National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer having a large crystal volume, and a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration pads and the Lake Mead Dynamic Test range. Data quality was ensured throughout the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted and contoured to produce anomaly maps based on the radiometric response of individual geological units. These maps were interpreted and an anomaly interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data processing procedures, the data display format, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  12. Absorption of Very High Energy Gamma Rays in the Milky Way

    Vernetto, Silvia

    2016-01-01

    Galactic Gamma ray astronomy at very high energy (E > 30 TeV) is a vital tool in the study of the non-thermal universe. The interpretation of the observations in this energy region requires the precise modeling of the attenuation of photons due to pair production interactions, where the targets are the radiation fields present in interstellar space. For gamma rays with energy E > 300 TeV the attenuation is mostly due to the photons of the Cosmic Microwave Background Radiation (CMBR). At lower energy the most important target are infrared photons with wavelengths in the range 50-500 micron emitted by dust. The evaluation of the attenuation requires a good knowledge of the density, and energy and angular distributions of the target photons for all positions in the Galaxy. In this work we discuss a simple model for the infrared radiation that depends on only few parameters associated to the space and temperature distributions of the emitting dust. The model allows to compute with good accuracy the effects of abs...

  13. Development and Building of Radioactive Concrete Pads for calibration of the airborne and ground gamma-ray spectrometers, used in mineral exploration and hydrocarbons

    Eight transportable calibration pads were built in to be used as concentration standards for portable and airborne gamma-ray spectrometers calibrations. The pads construction procedure is described in full detail. The pads, with dimensions of 1 m x 1 m x 0,30 m and masses between 593 kg and 673 kg were made radioactive by the addition of different amounts of k-feldspar, caldasite and monazitic sand to the concrete masses. The potassium, uranium and thorium concentration vary significantly in the pads, reaching maximum values of 5,7% of K, 45,6 ppm eU and 137 ppm eTh. The distribution of the gamma radiation flux from the pads surfaces and the heterogeneity magnitudes of the radioactive elements concentration were experimentally established. An example of gamma-ray spectrometer calibration is presented. (author)

  14. Cosmic gamma ray detection and discovery potential with the AMS-2 spectrometer

    Yet designed to measure charged component of the cosmic rays, the foreseen Alpha Magnetic Spectrometer (AMS-02) could also release γ-ray studies, in the energy range from GeV to TeV, using the tracker system, for γ-rays converted in e+e- pair, and the electromagnetic calorimeter. In the first part of the thesis are described the calibrations and the performances of the engineering model of the calorimeter, obtained from the analysis of data taken during a test-beam performed at CERN in July 2002. In the second part of the thesis, the AMS-02 discovery potential for γ-astrophysics is presented. While exposure maps of the γ--sky are computed for one year of data taking with the γ--detectors, the acceptance of the calorimeter is obtained from Monte-Carlo simulations. The AMS-02 potential is then estimated for signals from the Vela pulsar and for some supersymmetric signals from the Galactic Center. (author)

  15. Gamma-ray nuclear resonance absorption (γ-NRA) for explosives detection in air cargo

    The γ-NRA method has been utilized to detect explosives concealed in aviation containers loaded with a variety of cargo. In γ-NRA, gamma-rays at an energy of 9.17 MeV undergo a resonant nuclear attenuation component proportional to the integrated density of 14N nuclei along the line of sight from source to detector. When inspecting objects in transmission mode, projected images of nitrogen density of their contents can be generated. In an experiment performed earlier this year at the Dynamitron accelerator lab. of Birmingham Univ., U.K., diverse items such as passenger bags, electronic equipment, paper goods and mixed cargo were scanned along with explosives simulants. The results from this run will be presented and anticipated performance ratings of an operational explosives detection system (EDS) discussed

  16. Gamma-ray nuclear resonance absorption (γ-NRA) for explosives detection in air cargo

    Vartsky, D.; Goldberg, M. B.; Engler, G.; Goldschmidt, A.; Feldman, G.; Bar, D.; Sayag, E.; Katz, D.; Krauss, R. A.

    1999-06-01

    The γ-NRA method has been utilized to detect explosives concealed in aviation containers loaded with a variety of cargo. In γ-NRA, gamma-rays at an energy of 9.17 MeV undergo a resonant nuclear attenuation component proportional to the integrated density of 14N nuclei along the line of sight from source to detector. When inspecting objects in transmission mode, projected images of nitrogen density of their contents can be generated. In an experiment performed earlier this year at the Dynamitron accelerator lab. of Birmingham Univ., U.K., diverse items such as passenger bags, electronic equipment, paper goods and mixed cargo were scanned along with explosives simulants. The results from this run will be presented and anticipated performance ratings of an operational explosives detection system (EDS) discussed.

  17. A comparative study of LaBr3(Ce3+) and CeBr3 based gamma-ray spectrometers for planetary remote sensing applications

    Kozyrev, A.; Mitrofanov, I.; Owens, A.; Quarati, F.; Benkhoff, J.; Bakhtin, B.; Fedosov, F.; Golovin, D.; Litvak, M.; Malakhov, A.; Mokrousov, M.; Nuzhdin, I.; Sanin, A.; Tretyakov, V.; Vostrukhin, A.; Timoshenko, G.; Shvetsov, V.; Granja, C.; Slavicek, T.; Pospisil, S.

    2016-08-01

    The recent availability of large volume cerium bromide crystals raises the possibility of substantially improving gamma-ray spectrometer limiting flux sensitivities over current systems based on the lanthanum tri-halides, e.g., lanthanum bromide and lanthanum chloride, especially for remote sensing, low-level counting applications or any type of measurement characterized by poor signal to noise ratios. The Russian Space Research Institute has developed and manufactured a highly sensitive gamma-ray spectrometer for remote sensing observations of the planet Mercury from the Mercury Polar Orbiter (MPO), which forms part of ESA's BepiColombo mission. The Flight Model (FM) gamma-ray spectrometer is based on a 3-in. single crystal of LaBr3(Ce3+) produced in a separate crystal development programme specifically for this mission. During the spectrometers development, manufacturing, and qualification phases, large crystals of CeBr3 became available in a subsequent phase of the same crystal development programme. Consequently, the Flight Spare Model (FSM) gamma-ray spectrometer was retrofitted with a 3-in. CeBr3 crystal and qualified for space. Except for the crystals, the two systems are essentially identical. In this paper, we report on a comparative assessment of the two systems, in terms of their respective spectral properties, as well as their suitability for use in planetary mission with respect to radiation tolerance and their propensity for activation. We also contrast their performance with a Ge detector representative of that flown on MESSENGER and show that: (a) both LaBr3(Ce3+) and CeBr3 provide superior detection systems over HPGe in the context of minimally resourced spacecraft and (b) CeBr3 is a more attractive system than LaBr3(Ce3+) in terms of sensitivities at lower gamma fluxes. Based on the tests, the FM has now been replaced by the FSM on the BepiColombo spacecraft. Thus, CeBr3 now forms the central gamma-ray detection element on the MPO spacecraft.

  18. GEANT4 Monte Carlo simulations of sources measured with the GSI total absorption spectrometer

    Algora, A; Taín, J L; Nacher, E; Rubio, B; Cano-Ott, D; Gadea, A

    2003-01-01

    Beta decay experiments are a primary source of information for nuclear structure studies and at the same time complementary to in-beam investigations far from stability. Although both types of experiment are mainly based on gamma-ray spectroscopy, they face different experimental problems. The solution to these experimental problems is to create a device, a Total Absorption Gamma Spectrometer (TAGS), which ideally is sensitive to the beta population of the nuclear levels rather than to the individual gamma rays. A TAGS can be constructed using a big scintillator crystal (4 pi geometry), which acts as a calorimeter for gamma-ray cascades that follow the beta-decay process. (R.P.)

  19. Helium in natal HII regions: the origin of the X-ray absorption in gamma-ray burst afterglows

    Watson, Darach; Andersen, Anja C; Fynbo, Johan P U; Gorosabel, Javier; Hjorth, Jens; Jakobsson, Páll; Krühler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele

    2012-01-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that He in the GRB's host HII region is responsible for most of the absorption. We show that the X-ray absorbing column density (N_Hx) is correlated with both the neutral gas column density and with the optical afterglow extinction (Av). This correlation explains the connection between dark bursts and bursts with high N_Hx values. From these correlations we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e. the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this we conclude that the column density of the X-ray absorpt...

  20. TESTING GRAVITATIONAL LENSING AS THE SOURCE OF ENHANCED STRONG Mg II ABSORPTION TOWARD GAMMA-RAY BURSTS

    Rapoport, Sharon; Onken, Christopher A.; Schmidt, Brian P.; Tucker, Brad E. [Research School of Astronomy and Astrophysics, Australian National University, Weston Creek, ACT 2611 (Australia); Wyithe, J. Stuart B. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Levan, Andrew J. [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2012-08-01

    Sixty percent of gamma-ray bursts (GRBs) reveal strong Mg II absorbing systems, which is a factor of {approx}2 times the rate seen along lines of sight to quasars. Previous studies argue that the discrepancy in the strong Mg II covering factor is most likely to be the result of either quasars being obscured due to dust or the consequence of many GRBs being strongly gravitationally lensed. We analyze observations of quasars that show strong foreground Mg II absorption. We find that GRB lines of sight pass closer to bright galaxies than would be expected for random lines of sight within the impact parameter expected for strong Mg II absorption. While this cannot be explained by obscuration in the GRB sample, it is a natural consequence of gravitational lensing. Upon examining the particular configurations of galaxies near a sample of GRBs with strong Mg II absorption, we find several intriguing lensing candidates. Our results suggest that lensing provides a viable contribution to the observed enhancement of strong Mg II absorption along lines of sight to GRBs, and we outline the future observations required to test this hypothesis conclusively.

  1. Searching for narrow absorption and emission lines in XMM-Newton spectra of gamma-ray bursts

    Campana, S; D'Avanzo, P; Ghirlanda, G; Melandri, A; Pescalli, A; Salafia, O S; Salvaterra, R; Tagliaferri, G; Vergani, S D

    2016-01-01

    We present the results of a spectroscopic search for narrow emission and absorption features in the X-ray spectra of long gamma-ray burst (GRB) afterglows. Using XMM-Newton data, both EPIC and RGS spectra, of six bright (fluence >10^{-7} erg cm^{-2}) and relatively nearby (z=0.54-1.41) GRBs, we performed a blind search for emission or absorption lines that could be related to a high cloud density or metal-rich gas in the environ close to the GRBs. We detected five emission features in four of the six GRBs with an overall statistical significance, assessed through Monte Carlo simulations, of <3.0 sigma. Most of the lines are detected around the observed energy of the oxygen edge at ~0.5 keV, suggesting that they are not related to the GRB environment but are most likely of Galactic origin. No significant absorption features were detected. A spectral fitting with a free Galactic column density (N_H) testing different models for the Galactic absorption confirms this origin because we found an indication of an...

  2. An united method calculating neutron fluence attenuation and gamma-ray self-absorption in a large cylindrical sample for (n,xγ) experiment

    An united formula calculating neutron fluence attenuation and gamma-ray self-absorption in a large cylindrical sample was proposed, which can be used in measurements of gamma-ray production cross sections from fast neutron induced (n,xγ) reactions. The position correlation of these two effects was taken into account in the deduction. The formula has obvious physical meaning. The preliminary calculations were completed at a IBM-PC microcomputer, the comparisons with some other methods were made, and satisfactory results were obtained. (author)

  3. Multifractal modelling and spectrum analysis: Methods and applications to gamma ray spectrometer data from southwestern Nova Scotia, Canada

    CHENG; Qiuming

    2006-01-01

    Multifractal spectrum, autocorrelation/semivariogram and power spectrum are three dif- ferent functions characterizing a field or measure from different aspects. These functions are interre- lated in such that the autocorrelation/semivariogram and power spectrum are related to the low order statistical moments (0 to 2 nd) which may determine the local multifractality (τ"(1)) of a multifractal measure. A better understanding of the interrelationships among these three functions is important because, on one hand, the multifractal modelling characterizes a multifractal measure in a more de- tailed manner since it involves moments of all orders. On the other hand, the commonly used semivariogram and power spectrum functions can be used as alternatives to study the dominant mul- tifractal properties around the mean measure. Moreover, semivariogram and power-spectrum func- tions provide spatial and spectral information, which is highly valued in geological applications. A new fractal relation found between area and power-spectrum will be useful for investigation of new meth- ods of spatial-spectral analysis for pattern recognition, anomaly separation, classification, etc. These results have been demonstrated with the case study of modelling gamma ray spectrometer data from the mineral district, southwestern Nova Scotia, Canada. The results have shown that the values of uranium (U), thorium (Th) and potassium (K) may possess monofractal properties whereas the ratios of these values show high multifractality. The values of the ratios U/K and U/Th show relatively large variances and may provide more information for distinguishing the distinct phases of the granites, country rocks as well as possible gold mineralization-associated regional hydrothermal alteration zones. In addition, the power spectra for U, Th, K, U/Th and U/K consistently show two distinct power-law relationships for two ranges of wave number 12≤ω≤160 km and 0≤ω≤12 km. These properties might

  4. Self-absorption correction factors of gamma-rays in environmental samples

    Self-absorption correction factors were investigated by using Cs-137 contaminated tea and lichen samples by Chernobyl accident. Samples were placed in polyethylene tube (60 mm height, 30 mm diameter) in different densities and the results were found by comparing photo-peak areas per gram of loose and pressed samples. Self-absorption correction factors were also investigated by using three different density Marinelli-beaker reference source set of Amersham; (Volume=1000 cm''3, r=0.7 g/cm''3, r=2 g/cm''3), and self-absorption correction factors were found for the gamma energy (range 88-1332keV)

  5. Photoelectron, nuclear gamma-ray and infrared absorption spectroscopic studies of neptunium in sodium silicate glass

    The valence state of neptunium ions in sodium silicate glasses prepared under reducing and oxidizing conditions has been investigated by the x-ray photoelectron, Moessbauer and optical absorption spectroscopic techniques. Results indicate that the Np ions are tetravalent in glasses prepared under reducing conditions and pentavalent in glasses prepared under oxidizing conditions

  6. Charge collection efficiency characterization of a HgI2 Frisch collar spectrometer with collimated high energy gamma rays

    In this study, a 2.1x2.1x4.1 mm3 HgI2 Frisch collar device was characterized through probing the device with a highly collimated 662 keV gamma rays (137Cs check source) along the length and width of the device. In a systematic series of experiments, the detector was probed along its central line under different operating voltages of 1600, 1300, 1000, 800, 600 and 500 V. The experimental results were confirmed through a simulation of the charge collection for a device with the same size and operating conditions. It is shown that the HgI2 Frisch collar device has a uniform response to gamma rays over two-thirds of the detector volume. The HgI2 crystals and the Frisch collar detectors were grown and fabricated within the S.M.A.R.T Laboratory at Kansas State University.

  7. A transportable high-resolution gamma-ray spectrometer and analysis system applicable to mobile, autonomous or unattended applications

    Buckley, W.M.; Neufeld, K.W.

    1995-07-01

    The Safeguards Technology Program at the Lawrence Livermore National Laboratory is developing systems based on a compact electro-mechanically cooled high-purity germanium (HPGe) detector. This detector system broadens the practicality of performing high- resolution gamma-ray spectrometry in the field. Utilizing portable computers, multi-channel analyzers and software these systems greatly improve the ease of performing mobile high-resolution gamma-ray spectrometry. Using industrial computers, we can construct systems that will run autonomously for extended periods of time without operator input or maintenance. These systems can start or make decisions based on sensor inputs rather than operator interactions. Such systems can provide greater capability for wider domain of safeguards, treaty verification application, and other unattended, autonomous or in-situ applications.

  8. Gamma-ray background induced in a double Ge (Li) spectrometer at ballon altitudes in the hemisphere

    A double coaxil Ge(li) spetrometer has been flown for the first time in December, from the Southern Hemisphere and the induced background at ceiling in the diodes was studied. During the flight, different anti-coincidence modes were operated to estimate the gamma-ray lines. The results of 511 Kev line show that the fluxes detected by the upper diode are in good agreement with previous measurements, and indicate a probable contamination of the lower diode. (Author)

  9. A new method to make gamma-ray self-absorption correction

    This paper is devoted to discuss a new method to directly extract the information of the geometric self-absorption correction through the measurement of characteristic γ radiation emitted spontaneously from nuclear fissile material. The numerical simulation tests show that this method can extract the purely original information needed for nondestructive assay method by the γ-ray spectra to be measured, even though the geometric shape of the sample and materials between sample and detector are not known in advance. (author)

  10. Self-absorption corrections in gamma-ray spectrometry applied to norm industrial samples

    High resolution gamma spectrometry is a versatile non-destructive radiometric technique that makes simultaneous determination of several radionuclides possible with little sample preparation. However, application of self-absorption corrections is a must, especially in the low energy range, if one hopes to obtain correct values of activity concentrations. Usually, NORM samples feature a wide variety of densities and composition, as opposed to the standards used in efficiency calibration, which are often water-based solutions. For that reason self-absorption effects must be considered individually in every sample. In this work an experimental and a semi-empirical method of self-absorption correction were applied to NORM samples and compared with each other in order to establish best practice in relation to the circumstances of an individual laboratory. Following the experimental methodology, transmission measurements of absorption factors with point sources were carried out, while the semi-experimental methodology involved the application of the EFFTRAN code, based on the 'efficiency transfer' principle. Both methods were validated by applying them to a set of spiked NORM matrices coming from the TiO2 industry located in the south-west of Spain in order to determine the flow of several radionuclides from the Uranium and Thorium series though the production process. The main advantages and disadvantages of the two approaches used are highlighted, focusing on the low energy range (46-200 keV). EFFTRAN qualities are its ease of use, its short-run time and good performance with samples of a well-known composition, while the transmission technique can be applied almost under any circumstances, providing that a suitable set of point sources covering the energy range of interest is at hand. (authors)

  11. Planetary gamma-ray spectroscopy

    Reedy, R.C.

    1978-01-01

    The chemical composition of a planet can be inferred from the gamma rays escaping from its surface and can be used to study its origin and evolution. The measured intensities of certain gamma rays of specific energies can be used to determine the abundances of a number of elements. The major sources of these gamma-ray lines are the decay of natural radionuclides, reactions induced by energetic galactic-cosmic-ray particles, capture of low energy neutrons, and solar-proton-induced radioactivities. The fluxes of the more intense gamma-ray lines emitted from 30 elements were calculated using current nuclear data and existing models. The source strengths for neutron-capture reactions were modified from those previously used. The fluxes emitted from a surface of average lunar composition are reported for 288 gamma-ray lines. These theoretical fluxes have been used elsewhere to convert the data from the Apollo gamma-ray spectrometers to elemental abundances and can be used with results from future missions to map the concentrations of a number of elements over a planet's surface. Detection sensitivities for these elements are examined and applications of gamma-ray spectroscopy for future orbiters to Mars and other solar-system objects are discussed.

  12. Planetary gamma-ray spectroscopy

    The chemical composition of a planet can be inferred from the gamma rays escaping from its surface and can be used to study its origin and evolution. The measured intensities of certain gamma rays of specific energies can be used to determine the abundances of a number of elements. The major sources of these gamma-ray lines are the decay of natural radionuclides, reactions induced by energetic galactic-cosmic-ray particles, capture of low energy neutrons, and solar-proton-induced radioactivities. The fluxes of the more intense gamma-ray lines emitted from 30 elements were calculated using current nuclear data and existing models. The source strengths for neutron-capture reactions were modified from those previously used. The fluxes emitted from a surface of average lunar composition are reported for 288 gamma-ray lines. These theoretical fluxes have been used elsewhere to convert the data from the Apollo gamma-ray spectrometers to elemental abundances and can be used with results from future missions to map the concentrations of a number of elements over a planet's surface. Detection sensitivities for these elements are examined and applications of gamma-ray spectroscopy for future orbiters to Mars and other solar-system objects are discussed

  13. Study and validation of a gamma-ray spectrometer for the remote analysis of the chemical composition of planetary surfaces: application to a mission to the planet Mercury

    This work deals with the design of a gamma-ray spectrometer for the remote analysis of the chemical composition of planetary surfaces and was performed in the frame of a mission scenario to explore the planet Mercury. The research studies consisted first in characterizing the detection performances of a gamma-ray spectrometer using a high-purity germanium crystal cooled actively at cryogenic temperatures. The high energy resolution of the detector allows an accurate measurement of the chemical composition for the main elements from oxygen to uranium. Thereafter the studies dealt with the critical issues addressed for the use of such a detector onboard a mission to the inner solar system. The radiation damage caused by solar protons in germanium crystals was investigated by experimental and numerical means. It has been shown that the detector resolution begins getting damaged for proton fluences over 5*108 p/cm2. An annealing session where the crystal is heated up to 80 C degrees for a 4-day period allows the detector to get back a sufficient resolution. Annealing over 100 C degrees gives back the detector its initial resolution. Finally, a numerical thermal model of the instrument as well as some tests on a thermal mockup were performed to validate the thermal design of the instrument

  14. Response of doped alkali iodides measured with gamma-ray absorption and Compton electrons

    Relative light yield and intrinsic energy resolution of NaI:Tl, CsI:Na and CsI:Tl crystals were investigated by means of the wide angle Compton coincidence technique in wide energy range from several keV up to 1 MeV. The experimental setup consisted of a high purity germanium (HPGe) detector and the tested scintillators were put at a close separation from the HPGe detector. The tested samples were cylinders of 25 mm diameter and height coupled to a photomultiplier. Compton electron responses were compared to the results obtained with γ-ray absorption peaks. A correlation between intrinsic resolution of the tested scintillation materials and their nonproportionality was observed. Substantial differences in intrinsic resolution measured for γ-ray absorption peaks and Compton electrons were registered in the energy range between 50 keV and 200 keV. The results were discussed in terms of electron scattering, pointing to δ-ray production as an important contribution for determination of scintillator intrinsic resolution

  15. Monte Carlo simulation of muon-induced background of an anti-Compton gamma-ray spectrometer placed in a surface and underground laboratory

    Vojtyla, P

    2005-01-01

    Simulations of cosmic ray muon induced background of an HPGe detector placed inside an anti-Compton shield on the surface and in shallow underground is described. Investigation of several model set-ups revealed some trends useful for design of low-level gamma-ray spectrometers. It has been found that background spectrum of an HPGe detector can be scaled down with the shielding depth. No important difference is observed when the same set-up of the anti-Compton spectrometer is positioned horizontally or vertically. A cosmic-muon rejection factor of at least 40 (at around 1 MeV) can be reached when the anti-Compton suppression is operational. The cosmicmuon background can be reduced to such a level that other background components prevail, like those from the residual contamination of the detector and shield materials and/or from radon, especially for the underground facilities.

  16. Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption

    Perley, Daniel A; Tanvir, Nial R; Vergani, Susanna D; Fynbo, Johan P U

    2016-01-01

    The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the propert...

  17. Long-Duration Gamma-Ray Burst Host Galaxies in Emission and Absorption

    Perley, Daniel A.; Niino, Yuu; Tanvir, Nial R.; Vergani, Susanna D.; Fynbo, Johan P. U.

    2016-03-01

    The galaxy population hosting long-duration GRBs provides a means to constrain the progenitor and an opportunity to use these violent explosions to characterize the nature of the high-redshift universe. Studies of GRB host galaxies in emission reveal a population of star-forming galaxies with great diversity, spanning a wide range of masses, metallicities, and redshifts. However, as a population GRB hosts are significantly less massive and poorer in metals than the hosts of other core-collapse transients, suggesting that GRB production is only efficient at metallicities significantly below Solar. GRBs may also prefer compact galaxies, and dense and/or central regions of galaxies, more than other types of core-collapse explosion. Meanwhile, studies of hosts in absorption against the luminous GRB optical afterglow provide a unique means of unveiling properties of the ISM in even the faintest and most distant galaxies; these observations are helping to constrain the chemical evolution of galaxies and the properties of interstellar dust out to very high redshifts. New ground- and space-based instrumentation, and the accumulation of larger and more carefully-selected samples, are continually enhancing our view of the GRB host population.

  18. A balloon-borne high-resolution spectrometer for observations of gamma-ray emission from solar flares

    The design, development, and balloon-flight verification of a payload for observations of gamma-ray emission from solar flares are reported here. The payload incorporates a high-purity germanium semiconductor detector, standard NIM and CAMAC electronics modules, a thermally stabilized pressure housing, and regulated battery power supplies. The flight system is supported on the ground with interactive data-handling equipment comprised of similar electronics hardware. The modularity and flexibility of the payload, together with the resolution and stability obtained throughout a 30 h flight, make it readily adaptable for high-sensitivity, long-duration balloon flight applications. (orig.)

  19. Methods for fitting of efficiency curves obtained by means of HPGe gamma rays spectrometers; Metodos de ajuste de curvas de eficiencia obtidas por meio de espectrometros de HPGe

    Cardoso, Vanderlei

    2002-07-01

    The present work describes a few methodologies developed for fitting efficiency curves obtained by means of a HPGe gamma-ray spectrometer. The interpolated values were determined by simple polynomial fitting and polynomial fitting between the ratio of experimental peak efficiency and total efficiency, calculated by Monte Carlo technique, as a function of gamma-ray energy. Moreover, non-linear fitting has been performed using a segmented polynomial function and applying the Gauss-Marquardt method. For the peak area obtainment different methodologies were developed in order to estimate the background area under the peak. This information was obtained by numerical integration or by using analytical functions associated to the background. One non-calibrated radioactive source has been included in the curve efficiency in order to provide additional calibration points. As a by-product, it was possible to determine the activity of this non-calibrated source. For all fittings developed in the present work the covariance matrix methodology was used, which is an essential procedure in order to give a complete description of the partial uncertainties involved. (author)

  20. Cosmic gamma ray detection and discovery potential with the AMS-2 spectrometer; Detection de rayons {gamma} cosmiques et potentiel de decouvertes avec le spectrometre AMS-02

    Girard, L

    2004-12-15

    Yet designed to measure charged component of the cosmic rays, the foreseen Alpha Magnetic Spectrometer (AMS-02) could also release {gamma}-ray studies, in the energy range from GeV to TeV, using the tracker system, for {gamma}-rays converted in e{sup +}e{sup -} pair, and the electromagnetic calorimeter. In the first part of the thesis are described the calibrations and the performances of the engineering model of the calorimeter, obtained from the analysis of data taken during a test-beam performed at CERN in July 2002. In the second part of the thesis, the AMS-02 discovery potential for {gamma}-astrophysics is presented. While exposure maps of the {gamma}--sky are computed for one year of data taking with the {gamma}--detectors, the acceptance of the calorimeter is obtained from Monte-Carlo simulations. The AMS-02 potential is then estimated for signals from the Vela pulsar and for some supersymmetric signals from the Galactic Center. (author)

  1. THE COUPLING OF A DETERMINISTIC TRANSPORT FIELD SOLUTION TO A MONTE CARLO BOUNDARY CONDITION FOR THE SIMULATION OF LARGE GAMMA-RAY SPECTROMETERS

    Monte Carlo methods are typically used for simulating radiation fields around gamma-ray spectrometers and pulse-height tallies within those spectrometers. Deterministic codes that discretize the linear Boltzmann transport equation can offer significant advantages in computational efficiency for calculating radiation fields, but stochastic codes remain the most dependable tools for calculating the response within spectrometers. For a deterministic field solution to become useful to radiation detection analysts, it must be coupled to a method for calculating spectrometer response functions. This coupling is done in the RADSAT toolbox. Previous work has been successful using a Monte Carlo boundary sphere around a handheld detector. It is desirable to extend this coupling to larger detector systems such as the portal monitors now being used to screen vehicles crossing borders. Challenges to providing an accurate Monte Carlo boundary condition from the deterministic field solution include the greater possibility of large radiation gradients along the detector and the detector itself perturbing the field solution, unlike smaller detector systems. The method of coupling the deterministic results to a stochastic code for large detector systems can be described as spatially defined rectangular patches that minimize gradients. The coupled method was compared to purely stochastic simulation data of identical problems, showing the methods produce consistent detector responses while the purely stochastic run times are substantially longer in some cases, such as highly shielded geometries. For certain cases, this method has the ability to faithfully emulate large sensors in a more reasonable amount of time than other methods.

  2. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    Sun Dunlu [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal)], E-mail: dlsun@aiofm.ac.cn; Luo Jianqiao; Zhang Qingli [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China); Xiao Jingzhong [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro 3810-193 (Portugal); Xu Jiayue [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jiang Haihe; Yin Shaotang [Crystal Lab, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shushanhu Road 350, PO Box 1125, Hefei, Anhui 230031 (China)

    2008-12-15

    Laser crystals Nd{sup 3+}:Gd{sub 3}Ga{sub 5}O{sub 12} (Nd:GGG) and Nd{sup 3+}:Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space.

  3. Gamma-ray irradiation effect on the absorption and luminescence spectra of Nd:GGG and Nd:GSGG laser crystals

    Laser crystals Nd3+:Gd3Ga5O12 (Nd:GGG) and Nd3+:Gd3Sc2Ga3O12 (Nd:GSGG) were grown by Czochralski method. The influence of gamma-ray irradiation on their absorption and luminescence spectra has been investigated. Two additional absorption (AA) bands induced by gamma-ray irradiation appear in the spectra of Nd:GGG crystal while only a very weak AA band appears for the Nd:GSGG crystal. This indicated that Nd:GSGG crystal has stronger ability to resist the color center formation by irradiation. The intensity of the excitation and emission spectra of Nd:GGG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, a luminescence strengthening effect was observed in Nd:GSGG crystal after exposure to the same irradiation dose. The results showed that the Nd:GSGG crystal is a promising candidate used under radiation environments such as in outer space

  4. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+:Y3A15O12 (Nd:YAG) and Yb3+:Y3A15O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340 nm. The former is contributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100Mrad gamma-ray In contrast, the same dose irradiation does not impair the fluorescent properties of Yb:YAG crystal. These results indicate that Yb:YAG crystal possesses the advantage over Nd:YAG crystal that has better reliability for applications in harsh radiant environment. (fundamental areas of phenomenology (including applications))

  5. Application of a CdTe gamma-ray spectrometer to remote characterization of high-level radioactive waste tanks

    Keele, B.D.; Addleman, R.S.; Blewett, G.R.; McClellan, C.S.; Subrahmanyam, V.B.; Troyer, G.L.

    1991-10-01

    Small, shielded cadmium telluride (CdTe) semiconductor gamma-ray detectors have been used for in situ radiological characterization of underground high-level radioactive waste tanks. Remote measurements up to 700 R/h have been made in gamma radiation fields. Spectral data have been used to generate qualitative and quantitative radionuclide profiles of high-level radioactive waste tanks. Two electronic spectral enhancement techniques (pulse risetime discrimination and pulse risetime compensation) have been used in order to measure trace isotopes in the presence of large amounts of {sup 137}Cs. Spectral resolution better than 1.5% FWHM for the {sup 137}Cs 662 keV photopeak has been obtained. 4 refs., 7 figs.

  6. International comparison of interpolation procedures for the efficiency of germanium gamma-ray spectrometers (GAM83 exercise)

    Results are presented for the outcome of an international intercomparison of a particular gamma-ray spectrometric procedure. Laboratories were asked to determine full energy peak efficiencies and activities by means of their own procedures, starting from supplied peak-efficiency data. Four data sets for four different conditions of germanium detectors were distributed. The sets comprised: a high accuracy- (uncertainty > 1%) data set with a relatively large number of measured data (SET 1); a low accuracy- (uncertainty 3-5%) data set with a relatively small number of measured data (SET 2); a low energy-data set (SET 3); a high accuracy-data set with a relatively small number of measured data (SET 4). The intercomparison (coded GAM83) was organized and analyzed under auspices of the International Committee for Radionuclide Metrology (ICRM). The results comprise the analysis of the contributions of 41 participants

  7. Spectral analysis and compositing techniques for the Near Earth Asteroid Rendezvous (NEAR Shoemaker), X-ray and Gamma-Ray Spectrometers (XGRS)

    An X-ray and Gamma-Ray Spectrometer (XGRS) is on board the Near Earth Asteroid Rendezvous (NEAR) spacecraft to determine the elemental composition of the surface of the asteroid 433 Eros. The Eros asteroid is highly oblate and irregular in shape. As a result, analysis methodologies are in many ways a divergence from comparable techniques. Complex temporal, spatial and instrument performance relationships must be accounted for during the analysis process. Field of view and asteroid surface geometry measurements must be modeled and then combined with real measurements of solar, spectral and instrument calibration information to derive scientific results. NEAR is currently orbiting 433 Eros and is in the initial phases of its primary data integration and mapping phases. Initial results have been obtained and bulk chemistry assessments have been obtained through specialized background assessment and data reduction techniques

  8. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples

  9. Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin

    Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)

    1996-08-01

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

  10. Final report of the environmental measurement-while-drilling-gamma ray spectrometer system technology demonstration at the Savannah River Site F-Area Retention Basin

    The environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes passed near previously sampled vertical borehole locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRs system during drilling are compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples

  11. Lunar Elemental Abundances from Gamma-Ray and Neutron Measurements

    Reedy, R. C.; Vaniman, D. T.

    1999-01-01

    The determination of elemental abundances is one of the highest science objectives of most lunar missions. Such multi-element abundances, ratios, or maps should include results for elements that are diagnostic or important in lunar processes, including heat-producing elements (such as K and Th), important incompatible elements (Th and rare earth elements), H (for polar deposits and regolith maturity), and key variable elements in major lunar provinces (such as Fe and Ti in the maria). Both neutron and gamma-ray spectroscopy can be used to infer elemental abundances; the two complement each other. These elemental abundances need to be determined with high accuracy and precision from measurements such as those made by the gamma-ray spectrometer (GRS) and neutron spectrometers (NS) on Lunar Prospector. As presented here, a series of steps, computer codes, and nuclear databases are needed to properly convert the raw gamma-ray and neutron measurements into good elemental abundances, ratios, and/or maps. Lunar Prospector (LP) is the first planetary mission that has measured neutrons escaping from a planet other than the Earth. The neutron spectrometers on Lunar Prospector measured a wide range of neutron energies. The ability to measure neutrons with thermal (E return, being especially sensitive to both H (using epithermal neutrons) and thermal-neutron-absorbing elements. Neutrons are made in the lunar surface by the interaction of galactic-cosmic-ray (GCR) particles with the atomic nuclei in the surface. Most neutrons are produced with energies above about 0.1 MeV. The flux of fast neutrons in and escaping from the Moon depends on es the intensity of the cosmic rays (which vary with solar activity) and the elemental composition of the surface. Variations in the elemental composition of the lunar surface can affect the flux of fast neutrons by about 25% , with Ti and Fe emitting more fast neutrons than light elements like O and Si. Most elements moderate neutrons to

  12. Use of microcontroller in gamma-ray spectrometer construction using NaI(Tl) sensor, with emphasis in multichannel analyzer, to applications in nuclear and environmental geophysics

    In this work of nuclear geophysical instrumentation the main purpose was the development of a gamma-ray spectrometer prototype with multi channel analyzer, since the spectroscopic amplifier until your firmware. The heart of the digital part was an ATMEL 8 bits microcontroller (AT89S8252). All circuits were made and assembled in the Laboratory of Applied Geophysical Instrumentation (LIGA) of IAG-USP. A microcontroller software was completely developed in C ANSI language using the Small Device C Compiler version 2.4.8, that is a free software distributed under General Public License (GPL). At first, microcontroller was used to change all digital circuit of one classic SCINTREX GAD-6 differential gamma-ray spectrometer. Measurement times with order of 2 days became possible, and it could work in non climate ambient. Then, after this stage, had been started the development of a multichannel analyzer (MCA) working in pulse height analyzer mode with 4096 channels capacity, to use in many kinds of nuclear detection. Besides it, was developed an automatic gain system for photopeak stabilization, by the use of one radioactive source (133Ba). This automatic gain system is very important in the case of NaI(Tl) scintillometric detectors, due PMT sensitivity with temperature and aging of some laboratory electronic circuits. Two power supplies with high stability, using pulse width modulation (PWM) techniques were developed, in order to all system became free of electrical line break off. One PWM power polarizes a photo multiplier tube (PMT) with high voltage and another supplies remaining developed circuits. Calibration in energy using standards sources 137Cs and 60Co showed that gamma detector developed has a good linearity and low thermal drift, even working in absent of air-conditioned. Concentrations measurements of K, U and Th were made in samples of soils, vegetables, etc. (author)'

  13. A fast neutron and dual-energy gamma-ray absorption method (NEUDEG) for investigating materials using a 252Cf source

    DEXA (dual-energy X-ray absorption) is widely used in airport scanners, industrial scanners and bone densitometers. DEXA determines the properties of materials by measuring the absorption differences of X-rays from a bremsstrahlung tube source with and without filtering. Filtering creates a beam with a higher mean energy, which causes lower material absorption. The absorption difference between measurements (those with a filter subtracted from those without a filter) is a positive number that increases with the effective atomic number of the material. In this paper, the concept of using a filter to create a dual beam and an absorption difference in materials is applied to radiation from a 252Cf source, called NEUDEG (neutron and dual-energy gamma absorption). NEUDEG includes absorptions for fast neutrons as well as the dual photon beams and thus an incentive for developing the method is that, unlike DEXA, it is inherently sensitive to the hydrogen content of materials. In this paper, a model for the absorption difference and absorption sum in NEUDEG is presented using the combined gamma ray and fast neutron mass attenuation coefficients. Absorption differences can be either positive or negative in NEUDEG, increasing with increases in the effective atomic number and decreasing with increases in the hydrogen content. Sample sets of absorption difference curves are calculated for materials with typical gamma-ray and fast neutron mass attenuation coefficients. The model, which uses tabulated mass attenuated coefficients, agrees with experimental data for porcelain tiles and polyethylene sheets. The effects of “beam hardening” are also investigated. - Highlights: • Creation of a dual neutron/gamma beam from 252Cf is described. • An absorption model is developed using mass attenuation coefficients. • A graphical method is used to show sample results from the model. • The model is successfully compared with experimental results. • The importance of

  14. Recommended standards for gamma ray intensities

    Bé, Marie-Martine, E-mail: mmbe@cea.fr [LNHB, CEA LIST Saclay, 91191 Gif-sur-Yvette Cedex (France); Chechev, Valery P. [KRI, V.G. Khlopin Radium Institute, St. Petersburg 194021 (Russian Federation)

    2013-11-11

    Gamma ray data are used in more and more areas of application, and so over the years the demand for recommended gamma ray energies and intensities has increased. This paper proposes a list of gamma rays whose intensity is sufficiently well-known and they can be used for the calibration of gamma ray spectrometers and other applications; it is based on studies carried out by an international group of evaluators: the Decay Data Evaluation Project. One goal of this paper is to gather this set of data together in order to facilitate and generalize their use. In the first part, a brief description of the methodology followed throughout the evaluations is given, different methods of gamma ray intensity evaluation are presented, some typical examples of evaluations are shown; in the second part, the list of chosen nuclides is given along with their applications, and finally a list of recommended gamma ray intensities is presented.

  15. Using the Active Collimator and Shield Assembly of an EXIST-Type Mission as a Gamma-Ray Burst Spectrometer

    Krawczynski, H; Fishman, G J; Wilson, C A

    2006-01-01

    The Energetic X-ray Imaging Survey Telescope (EXIST) is a mission design concept that uses coded masks seen by Cadmium Zinc Telluride (CZT) detectors to register hard X-rays in the energy region from 10 keV to 600 keV. A partially active or fully active anti-coincidence shield/collimator with a total area of between 15 and 35 square meters will be used to define the field of view of the CZT detectors and to suppress the background of cosmic-ray-induced events. In this paper, we describe the use of a sodium activated cesium iodide shield/collimator to detect gamma-ray bursts (GRBs) and to measure their energy spectra in the energy range from 100 keV up to 10 MeV. We use the code GEANT4 to simulate the interactions of photons and cosmic rays with the spacecraft and instrument and the code DETECT2000 to simulate the optical properties of the scintillation detectors. The shield collimator achieves a nu-F-nu sensitivity of 3 x 10^(-9) erg cm^(-2) s^(-1) and 2 x 10^(-8) erg cm^(-2) s^(-1) at 100 keV and 600 keV, re...

  16. High resolution gamma-ray spectroscopy applied to bulk sample analysis

    A high resolution Ge(Li) gamma-ray spectrometer has been installed and made operational for use in routine bulk sample analysis by the Bendix Field Engineering Corporation (BFEC) geochemical analysis department. The Ge(Li) spectrometer provides bulk sample analyses for potassium, uranium, and thorium that are superior to those obtained by the BFEC sodium iodide spectrometer. The near term analysis scheme permits a direct assay for uranium that corrects for bulk sample self-absorption effects and is independent of the uranium/radium disequilibrium condition of the sample. A more complete analysis scheme has been developed that fully utilizes the gamma-ray data provided by the Ge(Li) spectrometer and that more properly accounts for the sample self-absorption effect. This new analysis scheme should be implemented on the BFEC Ge(Li) spectrometer at the earliest date

  17. Gamma-ray methods

    Bulk analysis techniques using gamma radiation are described. The methods include gamma-ray induced reactions, selective gamma-ray scattering and methods which rely on natural radioactivity. The gamma-ray resonance scattering technique can be used for the determination of copper and nickel in bulk samples and drill cores. The application of gamma-gamma methods to iron ore analysis is outlined

  18. Performance of digital gamma ray spectrometer for loss free counting and its application in NAA for quantification of aluminum

    A digital spectrometer loss-free counting system (DSPECPLUS) based was used for high resolution γ-ray spectrometry with rapidly varying dead time. This spectrometer is designed for radioactive assay of samples at high dead time and very useful for short lived radionuclides. Performance of the system was tested with both constant as well as varying dead times using 57Co and 60Co (long lived) and 28Al, 52V and 128I (short lived: 2 to 25 min.) radionuclides in the dead time ranges of 80- 2%. The DSPECPLUS was used for counting of short lived activation products obtained in neutron activation analysis (NAA) of a few standards and samples, neutron irradiated at PCF, Dhruva reactor. Aluminum concentrations were determined in two reference materials (RMs) and five samples. (author)

  19. Modeling of gamma ray energy-absorption buildup factors for thermoluminescent dosimetric materials using multilayer perceptron neural network: A comparative study

    In this work, multilayered perceptron neural networks (MLPNNs) were presented for the computation of the gamma-ray energy absorption buildup factors (BA) of seven thermoluminescent dosimetric (TLD) materials [LiF, BeO, Na2B4O7, CaSO4, Li2B4O7, KMgF3, Ca3(PO4)2] in the energy region 0.015–15 MeV, and for penetration depths up to 10 mfp (mean-free-path). The MLPNNs have been trained by a Levenberg–Marquardt learning algorithm. The developed model is in 99% agreement with the ANSI/ANS-6.4.3 standard data set. Furthermore, the model is fast and does not require tremendous computational efforts. The estimated BA data for TLD materials have been given with penetration depth and incident photon energy as comparative to the results of the interpolation method using the Geometrical Progression (G-P) fitting formula. - Highlights: ► Gamma-ray energy absorption buildup factors estimation in TLD materials. ► The ANN approach can be alternative to G-P fitting method for BA calculations. ► The applied model is not time-consuming and easily predicted

  20. Gamma-ray astronomy

    Pohl, Martin

    2001-01-01

    This paper summarizes recents results in gamma-ray astronomy, most of which were derived with data from ground-based gamma-ray detectors. Many of the contributions presented at this conference involve multiwavelength studies which combine ground-based gamma-ray measurements with optical data or space-based X-ray and gamma-ray measurements. Besides measurements of the diffuse emission from the Galaxy, observations of blazars, gamma-ray bursts, and supernova remnants this paper also covers theo...

  1. Airborne gamma-ray spectrometer and magnetometer survey: Forsyth quadrangle, Round Up quadrangle, Hardin quadrangle (Montana), Sheridan quadrangle, (Wyoming). Final report

    An airborne combined radiometric and magnetic survey was performed for the Department of Energy (DOE) over the area covered by the Forsyth, Hardin, and Sheridan, and Roundup, 1:250,000 National Topographic Map Series (NTMS), quadrangle maps. The survey was part of DOE's National Uranium Resource Evaluation (NURE) program. Data were collected by a helicopter equipped with a gamma-ray spectrometer with a large crystal volume, and with a high sensitivity proton precession magnetometer. The radiometric system was calibrated at the Walker Field Calibration Pads and the Lake Mead Dynamic Test Range. Data quality was ensured during the survey by daily test flights and equipment checks. Radiometric data were corrected for live time, aircraft and equipment background, cosmic background, atmospheric radon, Compton scatter, and altitude dependence. The corrected data were statistically evaluated, plotted, and contoured to produce anomaly maps based on the radiometric response of individual geological units. The anomalies were interpreted and an interpretation map produced. Volume I contains a description of the systems used in the survey, a discussion of the calibration of the systems, the data collection procedures, the data processing procedures, the data presentation, the interpretation rationale, and the interpretation methodology. A separate Volume II for each quadrangle contains the data displays and the interpretation results

  2. Integration and Evaluation of a Position Sensor with Continuous Read-Out for use with the Environmental Measurement-While-Drilling Gamma Ray Spectrometer System

    The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site (SRS) F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled waste retention basin. These boreholes passed near previously sampled locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRS system during drilling were compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples. The demonstration of the EMWD-GRS was a complete success. The results show general agreement between the soil sampling and EMWD-GRS techniques for CS-137. It was recognized that the EMWD-GRS tool would better satisfy our customers' needs if the instrument location could be continuously monitored. During the demonstration at SRS, an electromagnetic beacon with a walkover monitor (Subsiteregsign) was used to measure bit location at depth. To use a beacon locator drilling must be stopped, thus it is normally only used when a new section of pipe was added. The location of contamination could only be estimated based on the position of the EMED-GRS package and the distance between locator beacon readings. A continuous location system that would allow us to know the location of each spectrum as it is obtained is needed

  3. Exploring the Capabilities of the Anti-Coincidence Shield of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) Spectrometer to Study Solar Flares

    Rodríguez-Gasén, R.; Kiener, J.; Tatischeff, V.; Vilmer, N.; Hamadache, C.; Klein, K.-L.

    2014-05-01

    The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is a European Space Agency hard X-ray/ γ-ray observatory for astrophysics, covering photon energies from 15 keV to 10 MeV. It was launched in 2002, and since then the Bismuth Germanate (BGO) detectors of the Anti-Coincidence Shield (ACS) of the Spectrometer on INTEGRAL (SPI) have detected many hard X-ray (HXR) bursts from the Sun, producing light curves at photon energies above ≈ 100 keV. The spacecraft has a highly elliptical orbit, providing long uninterrupted observing (about 90 % of the orbital period) with nearly constant background due to the shorter time needed to cross Earth's radiation belts. However, because of technical constraints, INTEGRAL cannot be pointed at the Sun, and high-energy solar photons are always detected in nonstandard observation conditions. To make the data useable for solar studies, we have undertaken a major effort to specify the observing conditions through Monte Carlo simulations of the response of ACS for several selected flares. We checked the performance of the model employed for the Monte Carlo simulations using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations for the same sample of solar flares. We conclude that although INTEGRAL was not designed to perform solar observations, ACS is a useful instrument for solar-flare research. In particular, its relatively large effective area allows determining good-quality HXR/ γ-ray light curves for X- and M-class solar flares and, in some cases, probably also for C-class flares.

  4. Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry

    Gamma-ray self-attenuation corrections in the energy range 60-2000 keV were evaluated by means of Monte Carlo calculations for environmental samples in a cylindrical measuring geometry. The dependence of the full-energy peak efficiency on the sample density was obtained for some particular photon energies and, as a result, the corresponding self-attenuation correction factors were obtained. The calculations were performed by assuming that natural materials have mass attenuation coefficients very similar to those of water in the energy range studied. Three different HpGe coaxial detectors were considered: an n-type detector with 44.3% relative efficiency and two p-type detectors of relative efficiencies 20.0% and 30.5%. Our calculations were in very good agreement with the self-attenuation correction factors obtained experimentally by other workers for environmental samples of different densities. This work demonstrates the reliability of Monte Carlo calculations for correcting photon self-attenuation in natural samples. The results also show that the corresponding correction factors are essentially unaffected by the specific coaxial detector used

  5. Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry.

    Vargas, M Jurado; Timón, A Fernández; Díaz, N Cornejo; Sánchez, D Pérez

    2002-12-01

    Gamma-ray self-attenuation corrections in the energy range 60-2000 keV were evaluated by means of Monte Carlo calculations for environmental samples in a cylindrical measuring geometry. The dependence of the full-energy peak efficiency on the sample density was obtained for some particular photon energies and, as a result, the corresponding self-attenuation correction factors were obtained. The calculations were performed by assuming that natural materials have mass attenuation coefficients very similar to those of water in the energy range studied. Three different HpGe coaxial detectors were considered: an n-type detector with 44.3% relative efficiency and two p-type detectors of relative efficiencies 20.0% and 30.5%. Our calculations were in very good agreement with the self-attenuation correction factors obtained experimentally by other workers for environmental samples of different densities. This work demonstrates the reliability of Monte Carlo calculations for correcting photon self-attenuation in natural samples. The results also show that the corresponding correction factors are essentially unaffected by the specific coaxial detector used. PMID:12406634

  6. X-ray absorption evolution in Gamma-Ray Bursts: intergalactic medium or evolutionary signature of their host galaxies?

    Starling, R L C; Tanvir, N R; Scott, A E; Wiersema, K; O'Brien, P T; Levan, A J; Stewart, G C

    2013-01-01

    The intrinsic X-ray emission of Gamma-Ray Bursts (GRBs) is often found to be absorbed over and above the column density through our own galaxy. The extra component is usually assumed to be due to absorbing gas lying within the host galaxy of the GRB itself. There is an apparent correlation between the equivalent column density of hydrogen, N(H,intrinsic) (assuming it to be at the GRB redshift), and redshift, z, with the few z>6 GRBs showing the greatest intrinsic column densities. We investigate the N(H,intrinsic) - z relation using a large sample of Swift GRBs, as well as active galactic nuclei (AGN) and quasar samples, paying particular attention to the spectral energy distributions of the two highest redshift GRBs. Various possible sample biases and systematics that might produce such a correlation are considered, and we conclude that the correlation is very likely to be real. This may indicate either an evolutionary effect in the host galaxy properties, or a contribution from gas along the line-of-sight, ...

  7. Gamma-Ray Burst afterglows as probes of environment and blastwave physics I: absorption by host galaxy gas and dust

    Starling, R L C; Wiersema, K; Rol, E; Curran, P A; Kouveliotou, C; Van der Horst, A J; Heemskerk, M H M

    2006-01-01

    We use a new approach to obtain limits on the absorbing columns towards an initial sample of 10 long Gamma-Ray Bursts observed with BeppoSAX and selected on the basis of their good optical and nIR coverage, from simultaneous fits to nIR, optical and X-ray afterglow data, in count space and including the effects of metallicity. In no cases is a MW-like extinction preferred, when testing MW, LMC and SMC extinction laws. The 2175A bump would in principle be detectable in all these afterglows, but is not present in the data. An SMC-like gas-to-dust ratio or lower value can be ruled out for 4 of the hosts analysed here (assuming SMC metallicity and extinction law) whilst the remainder of the sample have too large an error to discriminate. We provide a more accurate estimate of the line-of-sight extinction and improve upon the uncertainties for the majority of the extinction measurements made in previous studies of this sample. We discuss this method to determine extinction values in comparison with the most common...

  8. Gamma-ray sources

    Results are presented from an analysis of the celestial gamma-ray fine-scale structure based on over half of the data which may ultimately be available from the COS-B satellite. A catalogue consisting of 25 gamma-ray sources measured at energies above 100 MeV is presented. (Auth.)

  9. Gamma ray interaction, crystallization and infrared absorption spectra of some glasses and glass-ceramics from the system Li2O.B2O3.Al2O3

    The infrared absorption spectra of some selected ternary glasses and their glass-ceramic derivatives from the system Li2OB2O3Al2O3 have been measured in the spectral range 200-4000 cm-1 before and after successive gamma rays irradiation. Vibrational and crystallization techniques are employed to investigate the structure and phases which are found in this system by controlled crystallization. The role of Al2O3 in the structure and the crystallization behaviour of the system has been discussed. The effect of gamma rays on the surface of the glasses and glass-ceramics as revealed from infrared spectroscopy is discussed. (author)

  10. Measurement of activation resonance integrals at infinite dilution with a lithium-drifted germanium gamma-ray spectrometer and comparison with calculated values

    Activation resonance integrals are cross-sections which can be used to confirm the accuracy of microscopic neutron cross-sections and neutron resonance parameters in the evaluation of reactor-neutron cross-sections. In the past the accuracy of neutron cross-sections has been frequently limited by the poor resolution of the measuring instruments used and the consequent inability to separate completely the desired activity from other activities in the sample. The high resolution attainable with a lithium-drifted germanium gamma-ray spectrometer makes it possible by activation analysis of the samples to select an energy region which is completely free from contaminants and furthermore to include the standard in the sample so as to avoid, by simultaneous measurement of photo-peaks relating to the standard and the unknown, the need for weight calibrations and corrections due to slight differences in irradiation position and counter geometry. The flux in the RA-1 reactor where the irradiations were made was sufficiently large (2 x 1012 n/cm2 s) to permit the use of samples with negligible self-shielding correction. The reactor spectrum at the irradiation site was calculated by means of multi-group diffusion theory and a correction factor allowing for the slight deviation from the 1/E spectrum was applied to the resonance integral. In consequence the systematic errors which have been common in the majority of previous resonance integral determinations, such as insufficient discrimination of spurious activities, self-shielding of epithermal neutrons and uncertain or incomplete description of the thermal spectrum at the irradiation site have been carefully avoided in the present method. This technique has been used to obtain an accurate determination of the ratio of the activation resonance integral to the thermal cross-section either by measurement of the cadmium ratio or by comparing the ratios in a reactor spectrum and in a quasi-thermal spectrum in respect of 28

  11. Gamma-ray Astronomy

    Hinton, Jim

    2007-01-01

    The relevance of gamma-ray astronomy to the search for the origin of the galactic and, to a lesser extent, the ultra-high-energy cosmic rays has long been recognised. The current renaissance in the TeV gamma-ray field has resulted in a wealth of new data on galactic and extragalactic particle accelerators, and almost all the new results in this field were presented at the recent International Cosmic Ray Conference (ICRC). Here I summarise the 175 papers submitted on the topic of gamma-ray astronomy to the 30th ICRC in Merida, Mexico in July 2007.

  12. U.S. Department Of Energy's nuclear engineering education research: highlights of recent and current research I. 3. Gamma-Ray Imager Using Three-Dimensional Position-Sensitive CdZnTe Spectrometers

    Portable gamma-ray spectrometers with imaging capability are of interest in radiation monitoring in nuclear facilities, radiation inspections, nuclear nonproliferation, medical imaging, gamma-ray astronomy, and high-energy physics. The incident direction of gamma-ray photons can be obtained based on Compton scattering if the energy depositions and their spatial coordinates in three dimensions can be recorded for each gamma-ray event. This paper reports our progress on developing the first Compton gamma-ray imaging device using three-dimensional (3-D) position-sensitive CdZnTe detectors. Each detector was built using a 1-cm cube of CdZnTe. Energy resolutions of ∼1.7% full-width at half-maximum (FWHM) for single-pixel events and position resolutions of ∼1 mm were obtained at the gamma-ray energy of 662 keV (Ref. 2). Good angular resolution of a gamma-ray imager based on Compton scattering requires good position and energy resolution of gamma-ray detectors. The position resolution of ∼1 mm in three dimensions and the measured energy resolution on our detectors provide unique advantages in constructing compact devices having good angular resolution (∼3 to 4 deg FWHM at 662 keV). In addition, the wide band-gap of the CdZnTe semiconductor allows room-temperature operation, in contrast to high-purity germanium detectors that must be cryogenically cooled. Over the last few decades, the use of wide band-gap semiconductors has been hindered primarily by problems of charge trapping and material non-uniformity, which resulted in energy resolution that was too poor to be useful. Introduced in 1994, single polarity charge sensing on semiconductor detectors has shown great promise in avoiding the hole trapping problem, and the newly demonstrated 3-D position-sensing technique can significantly mitigate the degradation of energy resolution due to the non-uniformity of detector material. As the result, it is now possible to construct portable gamma-ray imaging devices with

  13. Gamma ray camera

    An improved Anger-type gamma ray camera utilizes a proximity-type image intensifier tube. It has a greater capability for distinguishing between incident and scattered radiation, and greater spatial resolution capabilities

  14. Gamma-ray astronomy

    Ramaty, R.; Lingenfelter, R. E.

    1982-01-01

    Cosmic gamma rays, the physical processes responsible for their production and the astrophysical sites from which they were seen are reported. The bulk of the observed gamma ray emission is in the photon energy range from about 0.1 MeV to 1 GeV, where observations are carried out above the atmosphere. There are also, however, gamma ray observations at higher energies obtained by detecting the Cerenkov light produced by the high energy photons in the atmosphere. Gamma ray emission was observed from sources as close as the Sun and the Moon and as distant as the quasar 3C273, as well as from various other galactic and extragalactic sites. The radiation processes also range from the well understood, e.g. energetic particle interactions with matter, to the still incompletely researched, such as radiation transfer in optically thick electron positron plasmas in intense neutron star magnetic fields.

  15. Determination of attenuation coefficient for self-absorption correction in routine gamma ray spectrometry of environmental bulk sample

    A simple method to determine γ-ray attenuation coefficients using Ba-133 γ-rays was developed and applied to self-absorption correction in routine γ-ray spectrometry for environmental samples composed of unknown matrix elements. Experimental values of the mass attenuation coefficient obtained by the method agree well with calculated values for samples of known elemental composition which was determined by means of chemical analysis. (author)

  16. The effects of proton-beam quality on the production of gamma rays for nuclear resonance absorption in nitrogen

    The authors describe a method for performing nuclear-resonance absorption with the proton beam from a radio-frequency quadrupole (RFQ) linear accelerator. The objective was to assess the suitability of the pulsed beam from an RFQ to image nitrogen compared to electrostatic accelerators. This choice of accelerator results in trade-offs in performance and complexity, in return for the prospect of higher average current. In spite of a reduced resonance attenuation coefficient in nitrogen, they successfully produced three-dimensional tomographic images of real explosives in luggage the first time the unoptimized system was operated. The results and assessments of the initial laboratory measurements are reported

  17. Preliminary results from the high resolution gamma-ray and hard x-ray spectrometer (HIREGS) '92-'93 long duration balloon flight in Antarctica

    HIREGS consists of an array of twelve 6.7 cm diameter x 6.1 cm long liquid nitrogen-cooled segmented germanium detectors enclosed in a bismuth germanate (BGO) active anticoincidence shield. A CsI front collimator defines a 24 degree FWHM field-of-view. The energy resolution is one to several keV FWHM over the instrument energy range of 20 keV to 16 MeV. HIREGS was flown on a 10-day (31 Dec 92--10 Jan 93) circumpolar balloon flight from McMurdo Station, Antarctica. 30.5 hours of observation were obtained between 31 Dec 0400-2130 UT and 1 Jan 0600-1900 UT. Because the Sun was inactive during the flight, only one small flare was detected on 31 Dec 1933 UT. Excellent high resolution open-quotes quietclose quotes Sun hard X-ray and gamma-ray spectra were obtained. These provide stringent upper limits for solar gamma-ray line and hard X-ray and gamma-ray continuum emission, which in turn can constrain the storage and/or continuous acceleration of ions and electrons by the Sun

  18. Very high energy gamma ray astrophysics

    The Whipple Observatory High Resolution Camera will be used in a vigorous program of observations to search for new sources of very-high-energy gamma rays. In addition, a search for antimatter using the moon-earth system as an ion spectrometer will be begun. The first phase of GRANITE, the new 37-element 11-m camera, will be concluded with first light scheduled for September, 1991. The two cameras will operate in support of the Gamma Ray Observatory mission in the winter of 1991/2

  19. Nuclear forensics using gamma-ray spectroscopy

    Norman, Eric B

    2016-01-01

    Much of George Dracoulis's research career was devoted to utilizing gamma-ray spectroscopy in fundamental studies in nuclear physics. This same technology is useful in a wide range of applications in the area of nuclear forensics. Over the past several years, our research group has made use of both high- and low- resolution gamma ray spectrometers to: identify the first sample of plutonium large enough to be weighed; determine the yield of the Trinity nuclear explosion; measure fission fragment yields as a function of target nucleus and neutron energy; and observe fallout in the U. S. from the Fukushima nuclear reactor accident.

  20. Gamma Ray Bursts

    Gehrels, Neil; Meszaros, Peter

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day ,last typically lOs of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  1. Gamma-Ray Bursts

    Gehrels, Neil; Mészáros, Péter

    2012-08-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

  2. Gamma Ray Bursts

    Gehrels, Neil; 10.1126/science.1216793

    2012-01-01

    Gamma-ray bursts (GRBs) are bright flashes of gamma-rays coming from the cosmos. They occur roughly once per day, last typically 10s of seconds and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this review we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglows.

  3. SVOM gamma ray monitor

    2010-01-01

    The space-based multi-band astronomical Variable Object Monitor(SVOM) mission is dedicated to the detection,localization and broad-band study of gamma-ray bursts(GRBs) and other high-energy transient phenomena.The gamma ray monitor(GRM) onboard is designed to observe GRBs up to 5 MeV.With this instrument,one of the key GRB parameters,Epeak,can be easily measured in the hard X-ray band.It can achieve a detection rate of 100 GRBs per year which ensures the scientific output of SVOM.

  4. Chemist's gamma-ray table

    An edited listing of gamma-ray information has been prepared. Prominent gamma rays originating from nuclides with half lives long enough to be seen in radiochemical experiments are included. Information is ordered by nuclide in one section and by energy in a second section. This shorter listing facilitates identification of nuclides responsible for gamma rays observed in experiments

  5. Stellar Photon Archaeology with Gamma-Rays

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  6. Polarized gamma-rays with laser-Compton backscattering

    Ohgaki, H.; Noguchi, T.; Sugiyama, S. [Electrotechnical Lab., Ibaraki (Japan)] [and others

    1995-12-31

    Polarized gamma-rays were generated through laser-Compton backscattering (LCS) of a conventional Nd:YAG laser with electrons circulating in the electron storage ring TERAS at Electrotechnical Laboratory. We measured the energy, the energy spread, and the yield of the gamma-rays to characterize our gamma-ray source. The gamma-ray energy can be varied by changing the energy of the electrons circulating the storage ring. In our case, the energy of electrons in the storage ring were varied its energy from 200 to 750 MeV. Consequently, we observed gamma-ray energies of 1 to 10 MeV with 1064 run laser photons. Furthermore, the gamma-ray energy was extended to 20 MeV by using the 2nd harmonic of the Nd:YAG laser. This shows a good agreement with theoretical calculation. The gamma-ray energy spread was also measured to be 1% FWHM for -1 MeV gamma-rays and to be 4% FWHM for 10 MeV gamma-rays with a narrow collimator that defined the scattering cone. The gamma-ray yield was 47.2 photons/mA/W/s. This value is consistent with a rough estimation of 59.5 photons/mA/W/s derived from theory. Furthermore, we tried to use these gamma-rays for a nuclear fluorescence experiment. If we use a polarized laser beam, we can easily obtain polarized gamma-rays. Elastically scattered photons from {sup 208} Pb were clearly measured with the linearly polarized gamma-rays, and we could assign the parity of J=1 states in the nucleus. We should emphasize that the polarized gamma-ray from LCS is quit useful in this field, because we can use highly, almost completely, polarized gamma-rays. We also use the LCS gamma-rays to measure the photon absorption coefficients. In near future, we will try to generate a circular polarized gamma-ray. We also have a plan to use an FEL, because it can produce intense laser photons in the same geometric configuration as the LCS facility.

  7. (60)Co in cast steel matrix: A European interlaboratory comparison for the characterisation of new activity standards for calibration of gamma-ray spectrometers in metallurgy.

    Tzika, Faidra; Burda, Oleksiy; Hult, Mikael; Arnold, Dirk; Marroyo, Belén Caro; Dryák, Pavel; Fazio, Aldo; Ferreux, Laurent; García-Toraño, Eduardo; Javornik, Andrej; Klemola, Seppo; Luca, Aurelian; Moser, Hannah; Nečemer, Marijan; Peyrés, Virginia; Reis, Mario; Silva, Lidia; Šolc, Jaroslav; Svec, Anton; Tyminski, Zbigniew; Vodenik, Branko; Wätjen, Uwe

    2016-08-01

    Two series of activity standards of (60)Co in cast steel matrix, developed for the calibration of gamma-ray spectrometry systems in the metallurgical sector, were characterised using a European interlaboratory comparison among twelve National Metrology Institutes and one international organisation. The first standard, consisting of 14 disc shaped samples, was cast from steel contaminated during production ("originally"), and the second, consisting of 15 similar discs, from artificially-contaminated ("spiked") steel. The reference activity concentrations of (60)Co in the cast steel standards were (1.077±0.019) Bqg(-1) on 1 January 2013 12h00 UT and (1.483±0.022) Bqg(-1) on 1 June 2013 12h00 UT, respectively. PMID:27236833

  8. Gamma ray beam transmutation

    We have proposed a new approach to nuclear transmutation by a gamma ray beam of Compton scattered laser photon. We obtained 20 MeV gamma ray in this way to obtain transmutation rates with the giant resonance of 197Au and 129Iodine. The rate of the transmutation agreed with the theoretical calculation. Experiments on energy spectrum of positron, electron and neutron from targets were performed for the energy balance and design of the system scheme. The reaction rate was about 1.5∼4% for appropriate photon energies and neutron production rate was up to 4% in the measurements. We had stored laser photon more than 5000 times in a small cavity which implied for a significant improvement of system efficiency. Using these technologies, we have designed an actual transmutation system for 129Iodine which has a 16 million year's activity. In my presentation, I will address the properties of this scheme, experiments results and transmutation system for iodine transmutation

  9. Gamma ray camera

    An Anger gamma ray camera is improved by the substitution of a gamma ray sensitive, proximity type image intensifier tube for the scintillator screen in the Anger camera. The image intensifier tube has a negatively charged flat scintillator screen, a flat photocathode layer, and a grounded, flat output phosphor display screen, all of which have the same dimension to maintain unit image magnification; all components are contained within a grounded metallic tube, with a metallic, inwardly curved input window between the scintillator screen and a collimator. The display screen can be viewed by an array of photomultipliers or solid state detectors. There are two photocathodes and two phosphor screens to give a two stage intensification, the two stages being optically coupled by a light guide. (author)

  10. Airborne gamma-ray spectrometer and magnetometer survey: Las Vegas Quadrangle (Arizona, California, Nevada), Williams Quadrangle (Arizona), Prescott Quadrangle (Arizona), and Kingman Quadrangle (Arizona, California, Nevada). Final report. Volume I

    A total of 23,091 line miles of gamma-ray spectrometer and magnetometer data were acquired over 20 x 10 NTMS Quadrangle areas of Kingman (Arizona, California, Nevada), Las Vegas (Arizona, California, Nevada), Prescott (Arizona), and Williams (Arizona). Radiometric count rates in general are statistically adequate, with <2.0% of the potassium and thorium count being inadequate and <3% of the uranium count rates, when the data obtained over water and those obtained over the Grand Canyon are excluded. Particularly in the Prescott map area, but also in the Williams, Kingman, and Las Vegas areas, some very high thorium count rates were observed, indicating large areas that may contain up to 100 ppM e thorium or more in outcrop. Some of these regions in the Prescott and Williams Quadrangles may eventually be of economic interest if the breeder reactor becomes a reality. The high thorium content may also be an indication of other lithophile elements in possibly economic concentrations. The possibility exists further that one of the zones of high thorium response may be used for calibration of shine through/shine around in airborne systems due to terrestrial thorium. Areas of apparent anomalous concentrations of thorium and of uranium have been outlined on the interpretation maps and are discussed. The thorium anomalies appear to be related mainly to the Precambrian gneisses and granites. The uranium anomalies are mainly found in the Quaternary/Tertiary volcanics series, the Tertiary rhyolites, the Quaternary alluvial deposits and Quaternary/Tertiary lake bed deposits. In the Las Vegas quadrangle the Tertiary Horse Spring formation is also considered a favorable environment for uranium. In some areas, where the Cambrian Tonto group was not divided on the geological map into the Tapeats sandstone, Pioche/Carrara shales and Muav formation, a subdivision was attempted based on geochemical analysis of the gamma-ray spectrometer data