Neutron absorption cross section of uranium-236
U-236 neutron absorption was measured as a function of neutron time-of-flight from 20 eV to 1 MeV. The neutron flux was monitored with a 6Li glass scintillator. Average cross sections from 3 keV to 1 MeV were derived. Estimated uncertainties were less than 5% below 600 keV and increased to 9.5% at 1 MeV. Resonance parametrization from 20 eV to a few keV remains to be done. 17 refs., 5 figs., 3 tabs
Temperature dependence of the HNO3 UV absorption cross sections
Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan
1993-01-01
The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.
Mid-infrared absorption cross sections for acetone (propanone)
Infrared absorption cross sections for acetone (propanone) have been determined in the 830-1950 cm-1 spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125HR) and a multipass cell with a maximum optical path length of 19.3 m. The spectra of mixtures of acetone with dry synthetic air were recorded at 0.015 cm-1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution) at a number of temperatures between 194 and 251 K and pressures appropriate for atmospheric conditions. Intensities were calibrated using three acetone spectra (recorded at 278, 293 and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database. The new absorption cross sections have been combined with previous high spectral resolution results to create a more complete set of acetone absorption cross sections appropriate for atmospheric remote sensing. These cross sections will provide an accurate basis for upper tropospheric/lower stratospheric retrievals of acetone in the mid-infrared spectral region from ACE and MIPAS satellite data.
Mid-IR Absorption Cross-Section Measurements of Hydrocarbons
Alrefae, Majed Abdullah
2013-05-01
Laser diagnostics are fast-response, non-intrusive and species-specific tools perfectly applicable for studying combustion processes. Quantitative measurements of species concentration and temperature require spectroscopic data to be well-known at combustion-relevant conditions. Absorption cross-section is an important spectroscopic quantity and has direct relation to the species concentration. In this work, the absorption cross-sections of basic hydrocarbons are measured using Fourier Transform Infrared (FTIR) spectrometer, tunable Difference Frequency Generation laser and fixed wavelength helium-neon laser. The studied species are methane, methanol, acetylene, ethylene, ethane, ethanol, propylene, propane, 1-butene, n-butane, n-pentane, n-hexane, and n-heptane. The Fourier Transform Infrared (FTIR) spectrometer is used for the measurements of the absorption cross-sections and the integrated band intensities of the 13 hydrocarbons. The spectral region of the spectra is 2800 – 3400 cm-1 (2.9 – 3.6 μm) and the temperature range is 673 – 1100 K. These valuable data provide huge opportunities to select interference-free wavelengths for measuring time-histories of a specific species in a shock tube or other combustion systems. Such measurements can allow developing/improving chemical kinetics mechanisms by experimentally determining reaction rates. The Difference Frequency Generation (DFG) laser is a narrow line-width, tunable laser in the 3.35 – 3.53 μm wavelength region which contains strong absorption features for most hydrocarbons due to the fundamental C-H vibrating stretch. The absorption cross-sections of propylene are measured at seven different wavelengths using the DFG laser. The temperature range is 296 – 460 K which is reached using a Reflex Cell. The DFG laser is very attractive for kinetic studies in the shock tube because of its fast time response and the potential possibility of making species-specific measurements. The Fixed wavelength
Updated ozone absorption cross section will reduce air quality compliance
Sofen, E. D.; Evans, M. J.; Lewis, A. C.
2015-12-01
Photometric ozone measurements rely upon an accurate value of the ozone absorption cross section at 253.65 nm. This has recently been re-evaluated by Viallon et al. (2015) as 1.8 % smaller than the accepted value (Hearn, 1961) used for the preceding 50 years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross-section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.
Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation.
Simpson, Peter V; Watson, Laurance A; Barlow, Adam; Wang, Genmiao; Cifuentes, Marie P; Humphrey, Mark G
2016-02-12
Large increases in molecular two-photon absorption, the onset of measurable molecular three-photon absorption, and record molecular four-photon absorption in organic π-delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl-containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near-infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π-framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π-electrons. The four-photon absorption cross-section of the most metal-rich dendrimer is an order of magnitude greater than the previous record value. PMID:26797727
Cross sections for the reaction 197Au(γ, chin)(chi<=12) have been measured for bremsstrahlung end-point energies in the range 60-340 MeV. From these dominant cross sections, the total photon absorption cross section is determined using a cascade-evaporation calculation to account for the missing reaction channels. The enhancement factor for the classical E1 sum rule is found to be 0.93+-0.10. (orig.)
ZHANG QingLi; YIN ShaoTang; SUN DunLu; WAN SongMing
2008-01-01
Segregation during crystal growth from melt under two conditions is studied by using crystal mass, which can be measured easily, as an independent variable, and a method to determine the effective segregation coefficient and absorption cross section of optical dopant is given. When the segregated solute disperses into the whole or just a part of melt homogenously, the concentration Cs in solid interface will change by different formulas. If the crystal growth interface is conical and segregated solute disperses into melt in total or part, the solute concentration at r=2/3R, where r is the distance from the growth cross section center and R the crystal radius, is independent on the shape of the crystal growth interface, and its variation at r=2/3R can be regarded as the result from crystal growth in flat interface. With Cs variation formula in solid and absorption cross section σ for optical dopant, the absorption coefficients along the crystal growth direction can be calculated, and the corresponding experimental value can be obtained through the crystal optical absorption spectra. By minimizing the half sum, whose independent variables are k, △W or σ, of the difference square between the calculated and experimental absorp-tion coefficients from one or more absorption peaks along the crystal growth di-rection, k and σ, or k and △W, can be determined at the same time through the Levenberg-Marquardt iteration method. Finally, the effective segregation coefficient k, △W and absorption cross sections of Nd:GGG were determined, the results fitted by two formula gave more closed effective segregation coefficient, and the value △W also indicates that the segregated dopant had nearly dispersed into the whole melt. Experimental results show that the method to determine effective segregation coefficient k, △W and absorption cross sections σ is convenient and reliable, and the two segregation formulas can describe the segregation during the crystal growth from
The photonuclear absorption cross section of Pb, σ(TOT:Esub(γ), is studied in the 145-440 MeV Δ resonance range using a quasi-monochromatic photon beam obtained by monoenergetic positon in-flight annihilation. This study is deduced of the cross section measurement for at least j neutron emission σsup(j))Esub(γ). The cross sections of reactions with 1 or 0 neutron are evaluated as the same values as the experimental errors. The variation of the photonuclear absorption cross section for a nuclear σ(TOT:Esub(γ)/A is mass independent for A<=4-6. It seems that the damping between σ(TOT:Esub(γ)/A and the cross section of the free nucleon is caused by the Fermi movement of the nucleons. In conclusion: it seems that the excitation of the nucleus in the Δ resonance region is produced on free nucleons and there are no collective states
Neutrino absorption cross sections in 16O and 40Ar
Recently the study of total cross sections in the neutrino (antineutrino) - nucleus reactions has been done for the lepton detection particularly for the nuclear targets used in various ongoing atmospheric neutrino experiments at IMB, Superkamiokande, and ICARUS. The inclusive cross sections have been studied for these reactions using local density approximations (LDA) for the neutrinos moving in the nuclear medium and taking into account the renormalization of weak coupling constants due to the presence of strongly interacting nucleons in the nuclear medium and compared with the calculations done in Fermi gas model (FGM)
Zheng, Haiming; Yao, Penghui
2015-08-01
With the method of ultraviolet absorption spectrum, the exact absorption cross-section with the light source of the low-pressure mercury lamp was determined, during which the optimum wavelength for mercury concentrations inversion was 253.69 nm, the highest detection limit was 0.177 μg/cm3, and the lowest detection limit was 0.034 μg/cm3. Furthermore, based on the differential optical absorption spectroscopy(DOAS), the relationship between the integral parameters (IP) and the concentration as well as the signal-noise ration (SNR) under the conditions of gas flow was determined and the lowest detection limit was figured out to be 0.03524 μg/cm3, providing a method of DOAS to de-noise through the comparison between the mercury concentration values produced by DOAS and that produced by the wavelet de-noising method (db5). It turned out that the differential optical absorption spectroscopy had a strong anti-interference ability, while the wavelet de-noising method was not suitable for measuring the trace concentration change.
A measurement methodology for polarization and angle of incidence averaged electromagnetic absorption cross-section using a reverberation chamber is presented. The method is optimized for simultaneous rapid and accurate determination of average absorption cross-section over the frequency range 1–15 GHz, making it suitable for use in human absorption and exposure studies. The typical measurement time of the subject is about 8 min with a corresponding statistical uncertainty of about 3% in the measured absorption cross-section. The method is validated by comparing measurements on a spherical phantom with Mie series calculations. The efficacy of the method is demonstrated with measurements of the posture dependence of the absorption cross-section of a human subject and an investigation of the effects of clothing on the measured absorption which are important considerations for the practical design of experiments for studies on human subjects. (paper)
Temperature-dependent absorption cross-sections of perfluorotributylamine
Godin, Paul J.; Cabaj, Alex; Conway, Stephanie; Hong, Angela C.; Le Bris, Karine; Mabury, Scott A.; Strong, Kimberly
2016-05-01
Cross-sections of perfluorotributylamine (PFTBA) were derived from Fourier transform spectroscopy at 570-3400 cm-1 with a resolution of 0.1 cm-1 over a temperature range of 298-344 K. These results were compared to theoretical density functional theory (DFT) calculations and to previous measurements of PFTBA made at room temperature. DFT calculations were performed using the B3LYP method and the 6-311G(d,p) basis set. We find good agreement between our experimentally derived results, DFT calculations, and previously published data. No significant temperature dependence in the PFTBA cross-sections was observed for the temperature range studied. We calculate an average integrated band strength of 7.81 × 10-16 cm/molecule for PFTBA over the spectral range studied. Radiative efficiencies (RE) and global warming potentials (GWP) for PFTBA were also derived. The calculated radiative efficiencies show no dependence on temperature and agree with prior publications. We find an average RE of 0.77 Wm-2 ppbv-1 and a range of GWP from 6874 to 7571 depending on the lifetime used. Our findings are consistent with previous studies and increase our confidence in the value of the GWP of PFTBA.
Absorption Cross Section of Static Einstein-Maxwell Dilation Axion Black Hole for Scalar Particles
LIU Chang-Qing; JING Ji-Liang
2007-01-01
The absorption cross section of the static Einstein-Maxwell dilaton axion (EMDA) black hole for scalar particles is investigated.It is shown that the ratio of the absorption cross section of the EMDA black hole to that of the Schwarzschild black hole decreases as the absolute value of the dilaton increases,and it becomes zero as the dilaton tends to its extremal value.It is also shown that the absorption cross section decreases as both the v and the absolute value of the dilaton increase,and it decreases as the mass of the particle decreases.
We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)
Gonzalez, P.A. [Universidad Central de Chile, Escuela de Ingenieria Civil en Obras Civiles, Facultad de Ciencias Fisicas y Matematicas, Santiago (Chile); Universidad Diego Portales, Santiago (Chile); Moncada, Felipe; Vasquez, Yerko [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria, Ciencias y Administracion, Temuco (Chile)
2012-12-15
We study scalar perturbations in the background of a topological Lifshitz black hole in four dimensions. We compute analytically the quasinormal modes and from these modes we show that topological Lifshitz black hole is stable. On the other hand, we compute the reflection and transmission coefficients and the absorption cross section and we show that there is a range of modes with high angular momentum which contributes to the absorption cross section in the low frequency limit. Furthermore, in this limit, we show that the absorption cross section decreases if the scalar field mass increases, for a real scalar field mass. (orig.)
Computer-aided determinatio of absorption cross section of multicomponent alloys
For U alloys with Cu, Mo and Hf, the results are given of computer calculations of changes in the effective absorption cross section for thermal neutrons with composition of the alloys. The program was written in Algol 68 for the TESLA 200 computer. The program may be used for calculating the effective absorption cross section of any alloy consisting of a maximum of 6 components. (E.S.)
Experimental determination of resonance absorption cross sections for Zircaloy-2 and zirconium
The integral absorption cross section for the neutron spectrum and the thermal absorption cross section for zircaloy-2 have been determined using the pile oscillator technique. Using both values and a measured ratio of the epithermal to the thermal flux, the effective resonance integrals were obtained. After subtraction of the contributions for alloy and impurity elements, the effective resonance integrals for zirconium were evaluated. An extrapolated value of 0.91±0.10 was obtained for the dilute integral. (author)
Comment on "Giant absorption cross section of ultracold neutrons in Gadolinium"
Felber, J.; Gaehler, R.; Golub, R.
2000-01-01
Rauch et al (PRL 83, 4955, 1999) have compared their measurements of the Gd cross section for Ultra-cold neutrons with an exptrapolation of the cross section for thermal neutrons and interpreted the discrepancy in terms of coherence properties of the neutron. We show the extrapolation used is based on a misunderstanding and that coherence properties play no role in absorption.
Emission and absorption cross section of thulium doped silica fibers
Agger, Søren Dyøe; Povlsen, Jørn Hedegaard
2006-01-01
A thorough investigation of the emission and absorption spectra of the (F-3(4),H-3(6)) band in thulium doped silica fibers has been performed. All the basic parameters of thulium in silica have been extracted with the purpose of further analysis in laser and amplifier simulations. The experimental...
VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres
Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck
2015-01-01
Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm....
Measurements of the effective thermal neutron absorption cross-section in multi-grain models
The effective macroscopic absorption cross-section Σaeff of thermal neutrons in a grained medium differs from the corresponding cross-section Σahom in the homogeneous medium consisting of the same components, contributing in the same amounts. The ratio of these cross-sections defines the grain parameter, G, which is a measure of heterogeneity of the system for neutron absorption. Heterogeneous models have been built as two- or three-component systems (Ag, Cu and Co3O4 grains distributed in a regular grid in Plexiglas, in various proportions between them). The effective absorption cross-section has been measured and the experimental grain parameter has been found for each model. The obtained values are in the interval 0.34 < G < 0.58, while G = 1 means the homogeneous material. (author)
Effect of Pressure Broadening on Molecular Absorption Cross Sections in Exoplanetary Atmospheres
Hedges, Christina
2016-01-01
Spectroscopic observations of exoplanets are leading to unprecedented constraints on their atmospheric compositions. However, molecular abundances derived from spectra are degenerate with the absorption cross sections which form critical input data in atmospheric models. Therefore, it is important to quantify the uncertainties in molecular cross sections to reliably estimate the uncertainties in derived molecular abundances. However, converting line lists into cross sections via line broadening involves a series of prescriptions for which the uncertainties are not well understood. We investigate and quantify the effects of various factors involved in line broadening in exoplanetary atmospheres - the profile evaluation width, pressure versus thermal broadening, broadening agent, spectral resolution, and completeness of broadening parameters - on molecular absorption cross sections. We use H$_2$O as a case study as it has the most complete absorption line data. For low resolution spectra (R$\\lesssim$100) for re...
A Note on the Total Absorption Cross-section of Galaxies
Cirkovic, M M; Ilic, D; Petrovic, J
1997-01-01
In this work we shall sketch a further piece of evidence for the plausibility of hypothesis of galactic origin of Ly-$\\alpha$ forest absorption systems. Two basic premises of our discussion are (1) HDF redshift surface densities in the redshift interval 0
Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures
Alrefae, Majed
2014-09-01
Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene. © 2014 Elsevier Inc. All rights reserved.
Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures
Alrefae, Majed; Es-sebbar, Et-touhami; Farooq, Aamir
2014-09-01
Mid-IR absorption cross-sections are measured for methane, ethane, ethylene and methanol over 2800-3400 cm-1 (2.9-3.6 μm) spectral region. Measurements are carried out using a Fourier-Transform-Infrared (FTIR) spectrometer with temperatures ranging 296-1100 K and pressures near atmospheric. As temperature increases, the peak cross-sections decrease but the wings of the bands increase as higher rotational lines appear. Integrated band intensity is also calculated over the measured spectral region and is found to be a very weak function of temperature. The absorption cross-sections of the relatively small fuels studied here show dependence on the bath gas. This effect is investigated by studying the variation of absorption cross-sections at 3.392 μm using a HeNe laser in mixtures of fuel and nitrogen, argon, or helium. Mixtures of fuel with He have the highest value of absorption cross-sections followed by Ar and N2. Molecules with narrow absorption lines, such as methane and methanol, show strong dependence on bath gas than molecules with relatively broader absorption features i.e. ethane and ethylene.
Preparation of rock samples for the measurement of the thermal neutron macroscopic absorption cross-section in small cylindrical two-region systems by a pulsed technique is presented. Requirements which should be fulfilled during the preparation of the samples due to physical assumptions of the method are given. A cylindrical vessel is filled with crushed rock and saturated with a medium strongly absorbing thermal neutrons. Water solutions of boric acid of well-known macroscopic absorption cross-section are used. Mass contributions of the components in the sample are specified. This is necessary for the calculation of the thermal neutron macroscopic absorption cross-section of the rock matrix. The conditions necessary for assuring the required accuracy of the measurement are given and the detailed procedure of preparation of the rock sample is described. (author)
VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres
Venot Olivia; Fray Nicolas; Bénilan Yves; Gazeau Marie-Claire; Hébrard Eric; Larcher Gwenaelle; Schwell Martin; Dobrijevic Michel; Selsis Franck
2014-01-01
Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are se...
Derivation of water vapour absorption cross-sections in the red region
Lal, M.; Chakrabarty, D. K.
1994-01-01
Absorption spectrum in 436 to 448 nm wavelength region gives NO2 and O3 column densities. This spectrum can also give H2O column density. The spectrum in the range of 655 to 667 nm contains absorption due to NO3 and H2O. Combining the absorption spectra in the wavelength ranges of 436 to 448 and 655 to 667 nm, water vapor absorption cross-sections in this range comes out to be of the order of 2.0 x 10(exp -24) cm(exp -2).
Measurement of Two-Photon Absorption Cross Section of Metal Ions by a Mass Sedimentation Approach.
Ma, Zhuo-Chen; Chen, Qi-Dai; Han, Bing; Liu, Xue-Qing; Song, Jun-Feng; Sun, Hong-Bo
2015-01-01
The photo-reduction of metal ions in solution induced by femtosecond laser is an important and novel method for fabricating three-dimensional metal microstructures. However, the nonlinear absorption cross section of metal ions remains unknown because its measurement is difficult. In the present study, a method based on Two-Photon Excited Sedimentation (TPES) is proposed to measure the two-photon absorption cross section (TPACS) of metal ions in solution. The power-squared dependence of the amount of sediment on the excitation intensity was confirmed, revealing that 800 nm femtosecond laser induced reduction of metal ions was a two photon absorption process. We believe that the proposed method may be applied to measure the TPACS of several metal ions, thereby opening a new avenue towards future analysis of two-photon absorption materials. PMID:26657990
Absolute Absorption Cross Sections from Photon Recoil in a Matter-Wave Interferometer
Eibenberger, Sandra; Cheng, Xiaxi; Cotter, J. P.; Arndt, Markus
2014-06-01
We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates many problems related to photon cycling, state mixing, photobleaching, photoinduced heating, fragmentation, and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters, and nanoparticles.
Absolute absorption cross sections from photon recoil in a matter-wave interferometer
Eibenberger, Sandra; Cotter, J P; Arndt, Markus
2014-01-01
We measure the absolute absorption cross section of molecules using a matter-wave interferometer. A nanostructured density distribution is imprinted onto a dilute molecular beam through quantum interference. As the beam crosses the light field of a probe laser some molecules will absorb a single photon. These absorption events impart a momentum recoil which shifts the position of the molecule relative to the unperturbed beam. Averaging over the shifted and unshifted components within the beam leads to a reduction of the fringe visibility, enabling the absolute absorption cross section to be extracted with high accuracy. This technique is independent of the molecular density, it is minimally invasive and successfully eliminates all problems related to photon-cycling, state-mixing, photo-bleaching, photo-induced heating, fragmentation and ionization. It can therefore be extended to a wide variety of neutral molecules, clusters and nanoparticles.
VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres
Venot Olivia
2014-02-01
Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.
UV absorption cross-sections of phenol and naphthalene at temperatures up to 500 degrees C
Grosch, Helge; Sárossy, Zsuzsa; Egsgaard, Helge;
2015-01-01
Absorption cross-sections and their temperature dependency, especially in the UV spectral range, of organic compounds such as phenol and naphthalene are of great interest in atmospheric research and high temperature processes. Due to the challenges of producing premixed gases of known concentration...
Cross section calculations of astrophysical interest. [for theories of absorption and emission lines
Gerjuoy, E.
1974-01-01
Cross sections are discussed for rotational excitation associated with theories of absorption and emission lines from molecules in space with emphasis on H2CO, CO, and OH by collisions with neutral particles such H, H2, and He. The sensitivity of the Thaddeus equation for the H2CO calculation is examined.
Estimation of neutron energy for first resonance from absorption cross section for thermal neutrons
Bogart, Donald
1951-01-01
Examination of published data for some 52 isotopes indicates that the neutron energy for which the first resonance occurs is related to the magnitude of the thermal absorption cross section. The empirical relation obtained is in qualitative agreement with the results of a simplified version of the resonance theory of the nucleus of Breit-Wigner.
Energy-dependent parameterization of heavy-ion absorption cross sections
Townsend, L. W.; Wilson, J. W.
1986-01-01
An energy-dependent parameterization of the total absorption (reaction) cross sections for heavy ion (Z equal to or greater than 2) collisions at energies above 25 MeV per nucleon is presented. The formula will be especially useful in heavy-ion transport applications.
High spectral resolution ozone absorption cross-sections – Part 2: Temperature dependence
A. Serdyuchenko
2013-07-01
Full Text Available We report on the temperature dependence of ozone absorption cross-sections measured in our laboratory in the spectral range 213–1100 nm with a spectral resolution of 0.02–0.24 nm (Full Width Half Maximum, FWHM in the atmospherically relevant temperature range from 193 to 293 K. The temperature dependence of ozone absorption cross-sections was established using measurements at eleven temperatures. The methodology of the absolute broadband measurements, experimental procedures and spectra processing were described in our companion paper together with the associated error budget. In this paper, we report in detail on our data below room temperature and compare them with literature data using direct comparisons as well as the standard approach using a quadratic polynomial in temperature fitted to the cross-section data.
Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres
Hedges, Christina; Madhusudhan, Nikku
2016-05-01
Spectroscopic observations of exoplanets are leading to unprecedented constraints on their atmospheric compositions. However, molecular abundances derived from spectra are degenerate with the absorption cross-sections which form critical input data in atmospheric models. Therefore, it is important to quantify the uncertainties in molecular cross-sections to reliably estimate the uncertainties in derived molecular abundances. However, converting line lists into cross-sections via line broadening involves a series of prescriptions for which the uncertainties are not well understood. We investigate and quantify the effects of various factors involved in line broadening in exoplanetary atmospheres - the profile evaluation width, pressure versus thermal broadening, broadening agent, spectral resolution and completeness of broadening parameters - on molecular absorption cross-sections. We use H2O as a case study as it has the most complete absorption line data. For low-resolution spectra (R ≲ 100) for representative temperatures and pressures (T ˜ 500-3000 K, P ≲ 1 atm) of H2-rich exoplanetary atmospheres, we find the median difference in cross-sections (δ) introduced by various aspects of pressure broadening to be ≲1 per cent. For medium resolutions (R ≲ 5000), including those attainable with James Webb Space Telescope, we find that δ can be up to 40 per cent. For high resolutions (R ˜ 105), δ can be ≳100 per cent, reaching ≳1000 per cent for low temperatures (T ≲ 500 K) and high pressures (P ≳ 1 atm). The effect is higher still for self-broadening. We generate a homogeneous data base of absorption cross-sections of molecules of relevance to exoplanetary atmospheres for which high-temperature line lists are available, particularly H2O, CO, CH4, CO2, HCN, and NH3.
Medium effects on the double-Δ production and absorption cross section
The explicit expressions for calculating the in-medium N+N→Δ+Δ and Δ+Δ→N+N cross section have been derived within the framework of the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck approach in which the deltas and nucleons are treated on an equal footing. The obtained cross sections are consistent with the other integrands of the transport model. The theoretical prediction of the free double-Δ production cross section is in good agreement with the experimental data. All the medium effects on the double-Δ production and absorption cross section are studied systematically, and strong medium corrections are found. Our numerical results show that it would be important to take the N+N→Δ+Δ and Δ+Δ→N+N channel into account in the study of relativistic heavy-ion collisions at intermediate and high energies. copyright 1997 The American Physical Society
Absolute absorption cross sections have been measured for 232Th and 197Au for 252Cf spontaneous fission neutrons. Irradiations were performed in an exceptionally low mass source-foil arrangement, providing a ''pure'' spectrum with few corrections. Calibration of the activation detector was achieved by irradiating identical foils in the National Bureau of Standards (NBS) Standard Thermal Flux. A simple ratio technique was also used to obtain an independent estimate of the relative 232Th to 197Au integral cross sections, yielding a value in good agreement with that above. This technique was extended to 181Ta, 98Mo, and 63Cu. (5 tables, 3 figures) (U.S.)
Nucleon and heavy-ion total and absorption cross section for selected nuclei
Approximate solutions of the coupled-channel equations for high-energy composite particle scattering are obtained and are applied to the nuclear scattering problem. Relationships between several approximation procedures are established and discussed. The eikonal formalism is used with a small-angle approximation to calculate the coherent elastic scattering amplitude from which total and absorption cross sections are derived. Detailed comparisons with nucleon--nucleus experiments show agreement within 5 percent, except at lower energies, where the eikonal approximation is of questionable accuracy. Even at these lower energies, agreement is within 15 percent. Tables of cross sections required for cosmic heavy-ion transport and shielding studies are presented
Nucleon and heavy-ion total and absorption cross section for selected nuclei
Wilson, J. W.; Costner, C. M.
1975-01-01
Approximate solutions of the coupled-channel equations for high-energy composite particle scattering are obtained and are applied to the nuclear scattering problem. Relationships between several approximation procedures are established and discussed. The eikonal formalism is used with a small-angle approximation to calculate the coherent elastic scattered amplitude from which total and absorption cross sections are derived. Detailed comparisons with nucleon-nucleus experiments show agreement within 5 percent except at lower energies where the eikonal approximation is of questionable accuracy. Even at these lower energies, agreement is within 15 percent. Tables of cross sections required for cosmic heavy-ion transport and shielding studies are presented.
Mid- and long-wave infrared absorption cross sections for acetonitrile
Infrared absorption cross sections for acetonitrile (methyl cyanide; CH3CN) have been determined in the 880-1700 cm-1 spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125 HR) and a multipass cell with a maximum optical pathlength of 19.3 m. Spectra of acetonitrile/dry synthetic air mixtures were recorded at 0.015 cm-1 resolution (calculated as the Bruker instrument resolution of 0.9/MOPD) at a number of temperatures between 203 and 297 K and pressures appropriate for atmospheric conditions. Intensities were calibrated using three composite acetonitrile spectra recorded at the Pacific Northwest National Laboratory. These absorption cross sections will provide an accurate basis for upper tropospheric/lower stratospheric retrievals of acetonitrile in the mid-infrared spectral region from ACE satellite data.
Scattering and absorption differential cross sections for double photon Compton scattering
B S Sandhu; M B Saddi; B Singh; B S Ghumman
2001-10-01
The scattering and absorption differential cross sections for nonlinear QED process such as double photon Compton scattering have been measured as a function of independent ﬁnal photon energy. The incident gamma photons are of 0.662 MeV in energy as produced by an 8 Ci137Cs radioactive source and thin aluminum foils are used as scatterer. The two simultaneously emitted photons in this process are detected in coincidence using two NaI(T1) scintillation detectors and a slow-fast coincidence set-up of 30 nsec resolving time. The measured values of scattering and absorption differential cross sections agree with theory within experimental estimated error.
Absolute absorption cross-section and photolysis rate of I2
J. M. C. Plane
2004-05-01
Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295 K, 760 Torr was therefore measured between 182 and 750 nm using a Fourier Transform spectrometer at a resolution of 4 cm−1 (0.1 nm at λ=500 nm. The maximum absorption cross-section in the visible region was observed at λ=533.0 nm to be σ=(4.84±0.60×10−18cm2 molecule−1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03 s−1 for the lower troposphere. This agrees well with the value of 0.15±0.03 s−1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.
Absolute absorption cross-section and photolysis rate of I2
A. Saiz-Lopez
2004-01-01
Full Text Available Following recent observations of molecular iodine (I2 in the coastal marine boundary layer (MBL (Saiz-Lopez and Plane, 2004, it has become important to determine the absolute absorption cross-section of I2 at reasonably high resolution, and also to evaluate the rate of photolysis of the molecule in the lower atmosphere. The absolute absorption cross-section (σ of gaseous I2 at room temperature and pressure (295K, 760Torr was therefore measured between 182 and 750nm using a Fourier Transform spectrometer at a resolution of 4cm-1 (0.1nm at λ=500nm. The maximum absorption cross-section in the visible region was observed at λ=533.0nm to be σ=(4.24±0.50x10-18cm2molecule-1. The spectrum is available as supplementary material accompanying this paper. The photo-dissociation rate constant (J of gaseous I2 was also measured directly in a solar simulator, yielding J(I2=0.12±0.03s-1 for the lower troposphere. This is in excellent agreement with the value of 0.12±0.015s-1 calculated using the measured absorption cross-section, terrestrial solar flux for clear sky conditions and assuming a photo-dissociation yield of unity. A two-stream radiation transfer model was then used to determine the variation in photolysis rate with solar zenith angle (SZA, from which an analytic expression is derived for use in atmospheric models. Photolysis appears to be the dominant loss process for I2 during daytime, and hence an important source of iodine atoms in the lower atmosphere.
Absorption Cross-section and Decay Rate of Rotating Linear Dilaton Black Holes
Sakalli, I
2016-01-01
We analytically study the scalar perturbation of non-asymptotically flat (NAF) rotating linear dilaton black holes (RLDBHs) in 4-dimensions. We show that both radial and angular wave equations can be solved in terms of the hypergeometric functions. The exact greybody factor (GF), the absorption cross-section (ACS), and the decay rate (DR) for the massless scalar waves are computed for these black holes (BHs). The results obtained for ACS and DR are discussed through graphs.
Absorption cross section of RN and SdS extremal black hole
Sini, R; Kuriakose, V C
2008-01-01
The nature of scalar wave functions near the horizon of Reissner Nordstrom (RN) extremal and Schwarzschild-de Sitter (SdS) extremal black holes are found using WKB approximation and the effect of reflection of waves from the horizon. The absorption cross section $\\sigma_{abs}$ when RN extremal and SdS extremal black holes placed in a Klein-Gordon field is calculated.
Yoshino, K.; Esmond, J. R.; Freeman, D. E.; Parkinson, W. H.
1993-01-01
Laboratory measurements of the relative absorption cross sections of ozone at temperatures 195, 228, and 295 K have been made throughout the 185 to 254 nm wavelength region. The absolute absorption cross sections at the same temperatures have been measured at several discrete wavelengths in the 185 to 250 nm region. The absolute cross sections of ozone have been used to put the relative cross sections on a firm absolute basis throughout the 185 to 255 nm region. These recalibrated cross sections are slightly lower than those of Molina and Molina (1986), but the differences are within a few percent and would not be significant in atmospheric applications.
We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data. - Highlights: • Compute the values of mass attenuation coefficients (μ/ρ) of some carbohydrates. • The values of (μen/ρ) i.e. mass energy-absorption coefficient are calculated. • Effective atomic energy-absorption cross sections (σa,en). • Comparison of all (μ/ρ), (μen/ρ), (σa,en) values with XCOM program. • The measured data for carbohydrates are useful in radiation dosimetry and other fields
Measuring the absorption mean cross section in 6Li relative to 235U fission
Due to the fact that the neutron absorption cross section in 6Li is used as one of standards for determinaton of neutron-physical characteristics of fast reactors the ratio of mean cross sections for absorption by 6Li (A6) and 235U fission F25 are experimentalli investigated. The measurements have been performed in the KBR-8, KBR-10,BFS/39/1 bfs-44, BFS/45a-1 and BFS-46 critical assemblies which are characterized by various neutron spectra by means of a lithium counter with semiconductor detectors. Ratios A6/F25 for investigated assemblies constituted respectively 0.605+-0.009; 0.604+-0.004; 0.581+-0.009; 0.590+-0.574+-0.005. The values of 235U diffusion mean cross sections obtained on the base of these fata and calculated using the CRAB-1 program (given in brackets) are equal respectively 1.53+-0.005 (1.51) 2.38+-0.08 (2.42); 1.935+-0.060 (1.95); 1.89+-0.08 (1.95); 1.780+-0.11 (1.69); 1.90+-0.06 (1.89)
Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.
2016-04-01
Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.
Acetonitrile (CH3CN) infrared absorption cross sections in the 3 μm region
High resolution infrared absorption cross sections of acetonitrile have been determined from spectra recorded in the 3 μm spectral region using a Bruker IFS 125 HR Fourier transform spectrometer (FTS) and a multipass White cell. The eleven synthetic air-broadened acetonitrile spectra were recorded at a resolution of 0.015 cm-1 (calculated as 0.9/MOPD (Maximum Optical Path Difference), the Bruker definition of resolution) over a range of different temperatures and pressures that are representative of conditions in the Earth's atmosphere (50-760 Torr and 207-296 K). Intensities were calibrated using infrared spectra recorded at the Pacific Northwest National Laboratory (PNNL). These new cross sections will enable satellite retrievals of acetonitrile in the 3 μm region from atmospheric spectra recorded by satellite instruments, such as the ACE (Atmospheric Chemistry Experiment)-FTS.
Visible-ultraviolet absorption cross sections for NO2 as a function of temperature
Davidson, J. A.; Cantrell, C. A.; Mcdaniel, A. H.; Shetter, R. E.; Madronich, S.
1988-01-01
A redetermination of the temperature dependence of the absorption cross-section (sigma) of NO2 in the visible-ultraviolet region was made in order to provide a more reliable data base for the calculation of NO2 photolysis rates in the atmosphere. Experiments over a wide range of temperatures and NO2 concentrations were conducted. The integral of a plot of sigma versus the inverse of the wavelength was essentially independent of temperature. Increasing temperature produced a shift of the spectrum toward longer wavelengths, resulting in a small negative temperature dependence of sigma over the 264-400 nm range and a small positive dependence over the 450-649 nm range. Increasing temperature produced broadening of individual spectral features, resulting in a systematic lowering of peaks and filling of valleys. Recommended cross sections are presented for use in tropospheric NO2 photolysis rate calculations.
R. Wagner
2011-09-01
Full Text Available We present computational results on the shape dependency of the extinction and absorption cross sections of dustlike aerosol particles that were modeled as randomly oriented spheroids. Shape dependent variations in the extinction cross sections are largest in the size regime that is governed by the interference structure. Elongated spheroids best fitted measured extinction spectra of re-dispersed Saharan dust samples. For dust particles smaller than 1.5 μm in diameter and low absorption potential, shape effects on the absorption cross sections are very small.
Ladhaf, Bibifatima M.; Pawar, Pravina P.
2015-04-01
We measured here the mass attenuation coefficients (μ/ρ) of carbohydrates, Esculine (C15H16O9), Sucrose (C12H22O11), Sorbitol (C6H14O6), D-Galactose (C6H12O6), Inositol (C6H12O6), D-Xylose (C5H10O5) covering the energy range from 122 keV up to 1330 keV photon energies by using gamma ray transmission method in a narrow beam good geometry set-up. The gamma-rays were detected using NaI(Tl) scintillation detection system with a resolution of 8.2% at 662 keV. The attenuation coefficient data were then used to obtain the total attenuation cross-section (σtot), molar extinction coefficients (ε), mass-energy absorption coefficients (μen/ρ) and effective (average) atomic energy-absorption cross section (σa,en) of the compounds. These values are found to be in good agreement with the theoretical values calculated based on XCOM data.
Pile oscillator measurements of thermal absorption cross sections of Al, Mg, Fe and Cu
The phase oscillation technique used at ZOE has the property of reducing of a marked factor the effect of neutron scattering by the sample. The absorption cross sections of poorly absorbing and highly scattering materials have been measured; for neutrons of 2,200 m/s, the following values are obtained: 229 ± 3 mb for Al; 64.2 ± 1.5 mb for Mg, 2.53 ± 0.03 b for Fe and 3.74 ± 0.04 b for Cu. (authors)
νe(ν-bare)-40Ar absorption cross sections for supernova neutrinos
The calculations for the neutrino absorption cross sections for supernova neutrinos in 40Ar have been done in the local density approximation (LDA) taking into account Pauli blocking and Fermi motion effects. The renormalization of weak transition strengths in the nuclear medium and the effect of Coulomb distortion of the lepton produced in charged current reactions are taken into account. The expected event rates for electrons (positrons) have been calculated for a 3 kT liquid argon detector for a supernova occurring at 10 kpc from earth
Heavy-ion total and absorption cross sections above 25 MeV/nucleon
Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.
1983-01-01
Within the context of a double-folding optical potential approximation to the exact nucleus-nucleus multiple-scattering series, eikonal scattering theory is used to generate tables of heavy ion total and absorption cross sections at incident kinetic energies above 25 MeV/nucleon for use in cosmic ray high-energy heavy ion transport and shielding studies. Comparisons of predictions with nucleus-nucleus experimental data show excellent agreement except at the lowest energies, where the eikonal approximation may not be completely valid. Even at the lowest energies, however, agreement is typically within 20 percent.
Mega three-photon absorption cross-section enhancement in pseudoisocyanine J-aggregates.
Cohanoschi, Ion; Barbot, Amel; Belfield, Kevin D; Yao, Sheng; Hernandez, Florencio E
2005-12-15
Herein we report an extraordinary three-photon absorption cross-section (sigma'3) enhancement in J-aggregates supramolecular systems. The much higher value of sigma'3 in PIC J-aggregate (2.5 x 10(-71) cm6 s2 ph(-2)) compared to typical values obtained in organic molecules (10(-80) cm6 s2 ph(-2)) is attributed to the strong molecular transition dipole moment coupling in the supramolecular assembly. Three-photon absorption of PIC J-aggregates and monomer aqueous solutions were measured using the well known open aperture Z-scan technique pumping with a 25 ps pulse laser-OPG system at 1720 nm. This novel result opens new expectations for applications of supramolecular systems in bioimaging and medicine. PMID:16392906
Absorption cross-sections of small quasi-spherical black holes: the massless scalar case
Moskalets, Tatiana
2016-01-01
We consider effects of non-uniformity of quasi-spherical small black hole horizons on scattering massless spineless particles in the long-wave approximation. Focusing on 4D flat and AdS neutral black hole backgrounds with conformally spherical geometry of the horizon, we observe the notable differences in compare to the scattering process on the spherically-symmetric black holes. In particular, the absorption cross-section becomes dependent on both, polar and azimuthal, spherical angles, projections of the angular momentum do not keep anymore and the angular momentum operator by itself, though remains quantised, is not quantised in integers. However, within the long-wave approximation, the main conclusion of previously obtained results on scattering on the spherically-symmetric black holes remains the same: the total absorption cross-section is proportional to the area of the black hole. The proportionality coefficient does not depend on the scalar wave frequency in the flat space black hole background, and i...
Rao, D V; Brunetti, A; Gigante, G E
2003-01-01
Total Compton, individual shell and Compton energy-absorption scattering cross-sections are evaluated in the energy region 0.005 to 10 MeV for H, C. N, O. P and Ca. Compton energy absorption cross-sections deviate numerically with available values. The cause of the numerical discrepancies are not fully understood but can be attributed to Doppler broadening of the Compton scattered photons through a given angle. (authors)
Yoshino, K.; Freeman, D. E.; Esmond, J. R.; Parkinson, W. H.
1988-01-01
The absolute absorption cross-section of ozone has been experimentally determined at the temperatures 195, 228, and 295 K at several discrete wavelengths in the 238-335-nm region. The present results for ozone at 295 K are found to be in agreement with those of Hearn (1961). Absolute cross-section measurements of ozone at 195 K have confirmed previous (Freeman et al., 1984) relative cross-section measurements throughout the 240-335-nm region.
Calculations of the mass absorption cross sections for carbonaceous nanoparticles modeling soot
In this paper we use an atomistic model to calculate the mass specific absorption cross section coefficient (MAC) of carbonaceous particles of nanometer size. The carbonaceous particles are built numerically to reproduce most of the structural characteristics of typical primary nanoparticles that are agglomerated in soot emitted in the Troposphere from combustion sources. Our model is based on the knowledge of the atomic positions and polarizabilities inside the primary nanoparticles and is used to study the influence of these atomistic characteristics on the optical properties of these nanoparticles. The results indicate that the atomistic composition of the soot primary nanoparticles may have a sufficiently strong impact on the mass specific absorption cross section coefficient curves to allow detection of differences between nanoparticles by using UV–visible spectroscopic measurements, in a well-suited wavelength range, i.e., typically between 200 and 350 nm. In a more general way, our calculations show that MAC values as well as differences between MAC curves corresponding to different primary nanoparticles may strongly vary with wavelength. As a consequence, measurements at a given wavelength only are certainly not representative of the absorption properties of these nanoparticles and thus should be considered with caution. Moreover, our approach clearly shows significant differences with classical macroscopic electromagnetic theory when calculating the optical properties of realistic primary soot nanoparticles that, in fact, cannot be considered as homogeneous spherical particles due to the presence of defects in their atomistic structure. - Highlights: • We calculate the MAC curves of carbonaceous particles. • Relation between atomistic characteristics and MAC curves is characterized. • We show that MAC curves depend on the atomistic composition of the nanoparticles • Difference between nanoparticles may be characterized by spectroscopic
Tunable diode laser measurements of CH sub 3 OOH absorption cross-sections near 1320 cm sup minus 1
Becker, K.H.; Brockmann, K.J.; Bechara, J. (Bergische Universitaet-GH Wuppertal (West Germany))
1989-12-01
Infrared absorption spectra and absorption cross-sections in the C-H deformation band of Ch{sub 3}OOH near 1,320 cm{sup {minus}1} have been measured with a tunable diode laser spectrometer. Methylhydroperoxide concentrations in a slowly flowing gas mixture were determined by UV absorption. Peak absorption cross-sections of the strongest lines observed were found to lie in the range (0.5-1.5) {times} 10{sup {minus}18} cm{sup 2} under near Doppler-limited conditions. The dependence of the peak absorption cross-sections on total air pressure in the range 2.5-90 torr was also investigated, and the possibility of CH{sub 3}OOH atmospheric mixing ratio measurement with a tunable diode laser assessed.
Absorption cross-section (ACS) of silicon nanocrystals (SiNCs) is determined via two completely independent approaches: (i) Excitation-intensity-dependent photoluminescence (PL) kinetics under modulated (long square pulses) pumping and (ii) absorbance measured by the photothermal deflection spectroscopy combined with morphology information obtained by the high-resolution transmission electron microscopy. This unique comparison reveals consistent ACS values around 10−15 cm2 for violet excitation of SiNCs of about 3–5 nm in diameter and this value is comparable to most of direct band-gap semiconductor nanocrystals; however, it decreases steeply towards longer wavelengths. Moreover, we analyze the PL-modulation technique in detail and propose an improved experimental procedure which enables simpler implementation of this method to determine ACS of various (nano)materials in both solid and liquid states
Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M. [Department of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2 (Czech Republic); Remeš, Z. [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, Prague 6 (Czech Republic); Gutsch, S.; Hiller, D.; Zacharias, M. [Faculty of Engineering, IMTEK, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany)
2016-01-11
Absorption cross-section (ACS) of silicon nanocrystals (SiNCs) is determined via two completely independent approaches: (i) Excitation-intensity-dependent photoluminescence (PL) kinetics under modulated (long square pulses) pumping and (ii) absorbance measured by the photothermal deflection spectroscopy combined with morphology information obtained by the high-resolution transmission electron microscopy. This unique comparison reveals consistent ACS values around 10{sup −15} cm{sup 2} for violet excitation of SiNCs of about 3–5 nm in diameter and this value is comparable to most of direct band-gap semiconductor nanocrystals; however, it decreases steeply towards longer wavelengths. Moreover, we analyze the PL-modulation technique in detail and propose an improved experimental procedure which enables simpler implementation of this method to determine ACS of various (nano)materials in both solid and liquid states.
This document first proposes a table of absorption and diffusion cross-sections for thermal neutrons. The table contains several indications (atomic mass, specific mass, and absorption cross-section, fission cross-section and activation cross-section in different units). Another table indicates measurement conditions, methods, references and results for moderators (light water, heavy water, beryllium, beryllium oxide, carbon)
Cruz-Diaz, G A; Chen, Y -J; Yih, T -S
2014-01-01
The VUV absorption cross sections of most molecular solids present in interstellar ice mantles with the exception of H2O, NH3, and CO2 have not been reported yet. Models of ice photoprocessing depend on the VUV absorption cross section of the ice to estimate the penetration depth and radiation dose, and in the past, gas phase cross section values were used as an approximation. We aim to estimate the VUV absorption cross section of molecular ice components. Pure ices composed of CO, H2O, CH3OH, NH3, or H2S were deposited at 8 K. The column density of the ice samples was measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. We provide VUV absorption cross sections of the reported molecular ices. Our results agree with those previously reported for H2O and NH3 ices. Vacuum-UV absorption cross section of CH3OH, CO, and H2S in solid phase are reported for the first...
Cheung, A. S.-C.; Yoshino, K.; Parkinson, W. H.; Freeman, D. E.; Guberman, S. L.
1986-01-01
The continuous absorption cross section of oxygen in the region 205-241 nm is studied as a function of path length and oxygen pressure. The technique used to study the continuous absorption cross section is described. Cross section measurements of oxygen in the wavelength region 193-205 nm obtained by Cheung et al. (1984) are applied in this experiment. The measured cross section is analyzed in terms of a Herzberg continuum and a pressure-dependent continuum. The total measured continuum cross section, the cross section involving two molecules of O2, and the Herzberg continuum absorption cross section values are calculated. It is observed that the Herzberg continuum cross section of oxygen values measured at 1 nm intervals in the region 195-241 nm, increase from 6.3 x 10 to the -24th sq cm at 195 nm to a maximum of 6.6 x 10 to the -24th sq cm at 201 nm and then decrease to 0.85 x 10 to the -24th sq cm at 241 nm. The Herzberg values are compared with data from previous investigations and the values correlate well.
Infrared absorption cross sections for acetone (propanone) in the 3 μm region
Infrared absorption cross sections for acetone (propanone), CH3C(O)CH3, have been determined in the 3 μm spectral region from spectra recorded using a high-resolution FTIR spectrometer (Bruker IFS 125 HR) and a multipass cell with a maximum optical path length of 19.3 m. The spectra of mixtures of acetone with dry synthetic air were recorded at 0.015 cm-1 resolution (calculated as 0.9/MOPD using the Bruker definition of resolution) at a number of temperatures and pressures (50-760 Torr and 195-296 K) appropriate for atmospheric conditions. Intensities were calibrated using three acetone spectra (recorded at 278, 293 and 323 K) taken from the Pacific Northwest National Laboratory (PNNL) IR database.
ZZ SIGMNA-A, Photon Interaction and Absorption Cross-Section Library
1 - Description of program or function: - Format: special format; - Number of groups: Photon interaction and absorption coefficients covering the energy range 1 KeV to 100 MeV. - Nuclides: Materials: A150TE PLAST (H, C, N, O, F, Ca); Ac; Air (N, O, Ar); Sb; Ar; As; At; Bakelite (C, H, O); Ba; BARSO4; Be; Bk; Bi; Bone (H, C, N, O, Mg, P, S, Ca); B; Br; C552SHONKA P (H, C, O, F, Si); Cd; Ca; Cf; CAPINTEC (H, C, O, F, Si); C; Ce; Cs; Cl; Cr; Co; Concrete (H, O, Na, Mg, Al, Si, S, K, Ca, Fe); Cu; Cm; Delrin (C, H, O); Dy; Er; Eu; Fat (H, C, N, O, S); F; Fr; FRICK8 (H, O, Na, S, Cl, Fe); Gd; Ga; Ge; Au; Hf; He; Ho; H; ICRP Cortical bone (H, C, N, O, Mg, P, S, Ca, Zn); ICRP Tissue (H, C, N, O, S, Mg, P, S, Cl, K, Ca, Fe, Zn); ICRU Tissue (H, C, N, O); In; I; Ir; Fe; Kr; Pb; LIFTLD (Li, F); Li; Lucite (C, H, O); Lu; Mg; Mn; Hg; Mo; Muscle (H, C, N, O, S, Mg, P, S, K, Ca); Nd; Ne; Np; Ni; Nb; N; Nylon (H, C, N, O); O; Pd; P; Pt; Pu; Po; Polyethylene (C, H); Polystyrene (C, H); K; Pr; Pm; Pa; Ra; Re; Rh; Rb; Ru; Sm; Sc; Se; Si; Ag; Sodium-iodide; Na; SOLWA1; SOLWA2; Sr; S; Ta; Te; Tb; Tl; Th; Tm; Sn; Ti; W; U; V; Water (H, O); Xe; Yb; Y; Zn; Zr. - Origin: Howerton, JRC. An extensive library of photon interaction coefficients has been developed by the Ontario Cancer Institute, Toronto, Ontario, Canada, based on the compilation of Plechaty, Cullen, and Howerton. In addition to partial cross section data, the following are given: mass attenuation coefficients, mass energy transfer coefficients, mass energy absorption coefficients, average energy transferred to electrons, average energy absorbed per interaction, and average stopping power of electrons. Partial interaction coefficients and absorption coefficients are useful in any radiation transport or other radiation analysis application. The data from the Ontario Cancer Institute are given for 94 elements and 25 composite materials covering the energy range 1 KeV to 100 MeV. The reactions considered are coherent and
Thermal neutron absorption cross-section measurements on three samples supplied by the International Atomic Energy Agency are reported. The absorption cross-section was measured using a method developed at the Institute of Nuclear Physics in Krakow, Poland. The method consists of irradiation by a pulsed fast neutron beam of the system containing the investigated sample surrounded by an outer moderator. The decay constant of the thermal neutron flux in the system is measured as a function of the thickness of the moderator. The absorption cross-section of the sample is obtained by combining the experimental results with a theoretical calculation. Several independent assays were performed for each sample. The average values of the mass absorption cross-section (in units 10-3 cm2/g) are 2.45 + - 0.23 for Ottawa Sand, 2.71 + - 0.42 and 1.93 + - 0.28 for Royer Dolomite, and 3.72 + - 0.22 for Dunite Sand (at the 95% confidence level). The paper contains individual results of the mass and linear absorption cross-sections and the densities of the rocks for each assay. (author)
Venot, O.; Fray, N.; Bénilan, Y.; Gazeau, M.-C.; Hébrard, E.; Larcher, G.; Schwell, M.; Dobrijevic, M.; Selsis, F.
2013-01-01
Context. Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section da...
Photo-absorption cross sections have been measured for methyl iodide, CF3I (310 nm>λ>110 nm) and dichlorodifluoromethane, CCl2F2 (225 nm>λ>110 nm) using synchrotron radiation. Electron energy loss spectroscopy was also used to probe the electronic and vibronic excitation of CF3I. Electronic states have been assigned to each of the observed absorption bands incorporating both valence and Rydberg transitions. The measured VUV cross sections are used to derive the photolysis rates in the terrestrial atmosphere and hence determine the potential importance of each gas in global warming and ozone depletion
The data available up to the end of November 1968 on the thermal neutron absorption cross-sections, resonance absorption integrals, and resonance parameters of silicon and its stable isotopes are collected and discussed. Estimates are given of the mean spacing of the energy levels of the compound nuclei near the neutron binding energy. It is concluded that the thermal neutron absorption cross-section and resonance absorption integral of natural silicon are not well established. The data on these two parameters are somewhat correlated, and three different assessments of the resonance integral are presented which differ over-all by a factor of 230. Many resonances have been detected by charged particle reactions which have not yet been observed in neutron cross-section measurements. One of these resonances of Si28, at En = 4 ± 5 keV might account for the large resonance integral which is derived, very uncertainly, from integral data. The principal source of the measured resonance integral of Si30 has not yet been located. The thermal neutron absorption cross-section of Si28 appears to result mainly from a negative energy resonance, possibly the resonance at En = - 59 ± 5 keV detected by the Si28 (d,p) reaction. (author)
Measurement of macroscopic neutron absorption cross sections and other macroparameters of rocks
The present state of the art in experimental techniques for determination of neutron parameters of rocks is presented. For thermal neutrons the methods of determination of absorption cross section of the rock matrix samples are reviewed in three main groups: when the nuclear reactors are used, when the pulsed neutron generators are applied, and for the steady state neutron source technique. The experimental results obtained for different rocks are given for all the above mentioned methods together with the discussion of the standard deviations involved in each method. Among other neutron parameters experimental methods and results obtained for the slowing down and diffusion length measurements are given. Lack of experimental techniques which could be applied for determination of other rock neutron parameters is evident from this short review. The importance of the experimental determination of rock neutron parameters is discussed. Prospects for future development required in the field of rock neutron parameters are presented from the point of view of the very deep borehole projects under way, where the experimental data for rock neutron parameters compatible with the high temperature existing in deep boreholes should be studied. 29 refs., 2 figs., 14 tabs. (author)
Xu, Bin; Zhang, Jibo; Fang, Honghua; Ma, Suqian; Chen, Qidai; Sun, Hongbo; Im, Chan; Tian, Wenjing
2014-01-01
Organic nonlinear optical materials combining high luminescence quantum yields and large two-photon absorption cross-sections are attractive for both fundamental research and practical applications, such as up-converted lasers and two-photon fluorescence microscopy. Herein, we reported a series of c
Venot, Olivia; Bénilan, Yves; Gazeau, Marie-Claire; Hébrard, Eric; Larcher, Gwenaelle; Schwell, Martin; Dobrijevic, Michel; Selsis, Franck; 10.1051/0004-6361/201220945
2013-01-01
UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Aims. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We also investigate the influence of these new data on the photochemistry of some exoplanets. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We implemented the mea...
Zhao, Hui; Chou, Dean-Yi
2016-05-01
The solar acoustic waves are modified by the interaction with sunspots. The interaction can be treated as a scattering problem: an incident wave propagating toward a sunspot is scattered by the sunspot into different modes. The absorption cross section and scattering cross section are two important parameters in the scattering problem. In this study, we use the wavefunction of the scattered wave, measured with a deconvolution method, to compute the absorption cross section σ ab and the scattering cross section σ sc for the radial order n = 0-5 for two sunspots, NOAA 11084 and NOAA 11092. In the computation of the cross sections, the random noise and dissipation in the measured acoustic power are corrected. For both σ ab and σ sc, the value of NOAA 11092 is greater than that of NOAA 11084, but their overall n dependence is similar: decreasing with n. The ratio of σ ab of NOAA 11092 to that of NOAA 11084 approximately equals the ratio of sunspot radii for all n, while the ratio of σ sc of the two sunspots is greater than the ratio of sunspot radii and increases with n. This suggests that σ ab is approximately proportional to the sunspot radius, while the dependence of σ sc on radius is faster than the linear increase.
Yoshino, K.; Cheung, A. S.-C.; Esmond, J. R.; Parkinson, W. H.; Freeman, D. E.
1988-01-01
The laboratory values of the Herzberg continuum absorption cross-section of oxygen at room temperature from Cheung et al. (1986) and Jenouvrier et al. (1986) are compared and analyzed. It is found that there is no discrepancy between the absolute values of these two sets of independent measurements. The values are combined in a linear least-squares fit to obtain improved values of the Herzberg continuum cross-section of oxygen at room temperature throughout the wavelength region 205-240 nm. The results are compared with in situ and other laboratory measurements.
Yu, Dong; Jiang, Lan; Wang, Feng; Qu, Liangti; Lu, Yongfeng
2016-05-01
Time-dependent density functional theory-based first-principles calculations have been used to study the ionization process and electron excitation. The results show that the number of excited electrons follows the power law σ k I k at peak intensities of I employing the calculated cross section value in the plasma model, the damage threshold fluences are theoretically estimated, being consistent with the experimental data, which validates the calculated value of multiphoton absorption cross section. The preliminary multiscale model shows great potential in the simulation of laser processing.
Formulas which are needed to calculate transmission coefficients for the adiabatic coupled-channel approximation method are described. In terms of these coefficients, nuclear absorption cross sections may be obtained. First, derivations are given of various cross sections for a system of coupled inelastic channels in terms of the S matrix. The adiabatic approximation method is discussed for a rotational band, and the dynamical nuclear S matrix is obtained from the S matrix for scattering from a static rotor. The formulas are valid for a spheroidal rotor, with or without an extra-core particle, which does not interact with the projectile but does provide angular momentum to the target
Ceymann, Harald; Rosspeintner, Arnulf; Schreck, Maximilian H; Mützel, Carina; Stoy, Andreas; Vauthey, Eric; Lambert, Christoph
2016-06-28
The linear and nonlinear optical properties of a series of oligomeric squaraine dyes were investigated by one-photon absorption spectroscopy (1PA) and two-photon absorption (2PA) induced fluorescence spectroscopy. The superchromophores are based on two indolenine squaraine dyes with transoid (SQA) and cisoid configuration (SQB). Using these monomers, linear dimers and trimers as well as star-shaped trimers and hexamers with benzene or triphenylamine cores were synthesised and investigated. The red-shifted and intensified 1PA spectra of all superchromophores could well be explained by exciton coupling theory. In the linear chromophore arrangements we also found superradiance of fluorescence but not in the branched systems. Furthermore, the 2PA showed enhanced cross sections for the linear oligomers but only additivity for the branched systems. This emphasizes that the enhancement of the 2PA cross section in the linear arrangements is probably caused by orbital interactions of higher excited configurations. PMID:27264847
Kaya, Sarp; Sellberg, Jonas A.; Segtnan, Vegard H.; Chen, Chen; Tyliszczak, Tolek; Ogasawara, Hirohito; Nordlund, Dennis; Pettersson, Lars G. M.; Nilsson, Anders
2014-01-01
The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in ...
Cruz-Diaz, G A; Chen, Y -J; Yih, T -S
2014-01-01
Dust grains in cold circumstellar regions and dark-cloud interiors at 10-20 K are covered by ice mantles. A nonthermal desorption mechanism is invoked to explain the presence of gas-phase molecules in these environments, such as the photodesorption induced by irradiation of ice due to secondary ultraviolet photons. To quantify the effects of ice photoprocessing, an estimate of the photon absorption in ice mantles is required. In a recent work, we reported the vacuum-ultraviolet (VUV) absorption cross sections of nonpolar molecules in the solid phase. The aim was to estimate the VUV-absorption cross sections of nonpolar molecular ice components, including CH4, CO2, N2, and O2. The column densities of the ice samples deposited at 8 K were measured in situ by infrared spectroscopy in transmittance. VUV spectra of the ice samples were collected in the 120-160 nm (10.33-7.74 eV) range using a commercial microwave-discharged hydrogen flow lamp. We found that, as expected, solid N2 has the lowest VUV-absorption cros...
Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR
Es-sebbar, Et-touhami
2013-01-01
Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296-529K. The VUV measurements are performed between 115 and 205nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25μm (~6500-400cm-1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A\\'→X1A\\') around 150-205nm is determined to be 0.32±0.01.The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03. kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. © 2012 Elsevier Ltd.
Reengineering the optical absorption cross-section of photosynthetic reaction centers.
Dutta, Palash K; Lin, Su; Loskutov, Andrey; Levenberg, Symon; Jun, Daniel; Saer, Rafael; Beatty, J Thomas; Liu, Yan; Yan, Hao; Woodbury, Neal W
2014-03-26
Engineered cysteine residues near the primary electron donor (P) of the reaction center from the purple photosynthetic bacterium Rhodobacter sphaeroides were covalently conjugated to each of several dye molecules in order to explore the geometric design and spectral requirements for energy transfer between an artificial antenna system and the reaction center. An average of 2.5 fluorescent dye molecules were attached at specific locations near P. The enhanced absorbance cross-section afforded by conjugation of Alexa Fluor 660 dyes resulted in a 2.2-fold increase in the formation of reaction center charge-separated state upon intensity-limited excitation at 650 nm. The effective increase in absorbance cross-section resulting from the conjugation of two other dyes, Alexa Fluor 647 and Alexa Fluor 750, was also investigated. The key parameters that dictate the efficiency of dye-to-reaction center energy transfer and subsequent charge separation were examined using both steady-state and time-resolved fluorescence spectroscopy as well as transient absorbance spectroscopy techniques. An understanding of these parameters is an important first step toward developing more complex model light-harvesting systems integrated with reaction centers. PMID:24568563
The effect of crystal growth conditions on the O K-edge x-ray absorption spectra of ice is investigated through detailed analysis of the spectral features. The amount of ice defects is found to be minimized on hydrophobic surfaces, such as BaF2(111), with low concentration of nucleation centers. This is manifested through a reduction of the absorption cross-section at 535 eV, which is associated with distorted hydrogen bonds. Furthermore, a connection is made between the observed increase in spectral intensity between 544 and 548 eV and high-symmetry points in the electronic band structure, suggesting a more extended hydrogen-bond network as compared to ices prepared differently. The spectral differences for various ice preparations are compared to the temperature dependence of spectra of liquid water upon supercooling. A double-peak feature in the absorption cross-section between 540 and 543 eV is identified as a characteristic of the crystalline phase. The connection to the interpretation of the liquid phase O K-edge x-ray absorption spectrum is extensively discussed
Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR
Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296–529 K. The VUV measurements are performed between 115 and 205 nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25 μm (∼6500–400 cm−1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A′→X1A′) around 150–205 nm is determined to be 0.32±0.01. The gas temperature has a strong effect on both VUV and IR spectra. Measurements made in the VUV region show that the peak value of the band cross-section decreases and the background continuum increases with increasing gas temperature. This behavior is due to a change in the rotational and vibrational population distribution of 1-butene molecule. Similar changes in rotational population are observed in the IR spectra. Moreover, variation of the IR spectra with temperature is used to measure the enthalpy difference between syn and skew conformations of 1-butene and is found to be 0.24±0.03 kcal/mol, which is in excellent agreement with values reported in the literature. The measurements reported in this work will provide the much-needed spectroscopic information for the development of high-temperature quantitative diagnostics in combustion applications and validation of atmospheric chemistry models of extra-solar planets. -- Highlights: ► Temperature dependence of VUV and IR absorption cross-sections of 1-C4H8. ► The temperature has a strong effect on VUV and IR spectra of 1-C4H8. ► The oscillator strength over 150–205 nm electronic transition is 0.32±0.01. ► The enthalpy difference between syn and skew of 1-C4H8
Goss, Natasha R; Waxman, Eleanor M; Coburn, Sean C; Koenig, Theodore K; Thalman, Ryan; Dommen, Josef; Hannigan, James W; Tyndall, Geoffrey S; Volkamer, Rainer
2015-05-14
The trace gas glyoxal (CHOCHO) forms from the atmospheric oxidation of hydrocarbons and is a precursor to secondary organic aerosol. We have measured the absorption cross section of disubstituted (13)CHO(13)CHO ((13)C glyoxal) at moderately high (1 cm(-1)) optical resolution between 21 280 and 23 260 cm(-1) (430-470 nm). The isotopic shifts in the position of absorption features were found to be largest near 455 nm (Δν = 14 cm(-1); Δλ = 0.29 nm), whereas no significant shifts were observed near 440 nm (Δν DOAS) in a series of sensitivity tests using synthetic spectra, and laboratory measurements of mixtures containing (12)C and (13)C glyoxal, nitrogen dioxide, and other interfering absorbers. We find the changes in apparent spectral band shapes remain significant at the moderately high optical resolution typical of CE-DOAS (0.55 nm fwhm). CE-DOAS allows for the selective online detection of both isotopes with detection limits of ∼200 pptv (1 pptv = 10(-12) volume mixing ratio), and sensitivity toward total glyoxal of few pptv. The (13)C absorption cross section is available for download from the Supporting Information. PMID:25551419
An analysis of the photofission reactions in the quasi-deuteron energy range of photonuclear absorption (∼ 30-140 MeV) has been performed for 209 Bi and 238 U nuclei. Experimental cross section data available in the literature have been compared with calculated values obtained from a model in which the incoming photon is assumed to be absorbed by a neutron-proton pair (Levinger's quasi-deuteron photoabsorption), followed by a mechanism of evaporation-fission competition for the excited residual nuclei. The model has been shown to reproduce the main experimental features of 209 Bi and 238 U photofission cross section, although unexplained differences still remain in the case of 238 U-fission by 30-50 MeV incident photons. (author). 49 refs, 10 figs, 2 tabs
Redondas, A.; Evans, R.; Stuebi, R.; Köhler, U.; Weber, M.
2013-09-01
The primary ground-based instruments used to report total column ozone (TOC) are Brewer and Dobson Spectrophotometers, in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process a TOC value is produced. Inherent in the algorithm is the use of a laboratory determined cross-section data set. We used five ozone cross section data sets: three Bass and Paur, Daumont, Malicet and Brion (DMB) and a new Institute of Environmental Physics (IUP), University of Bremen, set. The three Bass and Paur (1985) sets are: quadratic temperature coefficients from IGACO web page (IGQ4), the Brewer network operational calibration set (BOp), and the set used by Bernhard et al. (2005), in the reanalysis of the Dobson absorption coefficient values (B05). The ozone absorption coefficients for Brewer and Dobson are then calculated using the normal Brewer operative method which is essentially the same as used on Dobson. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments: we find the UIP data set changes the calculated TOC by -0.5%, the DBM data set changes the calculate TOC by -3.2%, and the IGQ4 data set at -45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. The application of a common Langley calibration and the IUP cross section the differences between Brewer and Dobson vanish whereas using Bass and Paur and DBM produce differences of 1.5% and 2% respectively. A
A. Redondas
2013-09-01
Full Text Available The primary ground-based instruments used to report total column ozone (TOC are Brewer and Dobson Spectrophotometers, in separate networks. These instruments make measurements of the UV irradiances, and through a well-defined process a TOC value is produced. Inherent in the algorithm is the use of a laboratory determined cross-section data set. We used five ozone cross section data sets: three Bass and Paur, Daumont, Malicet and Brion (DMB and a new Institute of Environmental Physics (IUP, University of Bremen, set. The three Bass and Paur (1985 sets are: quadratic temperature coefficients from IGACO web page (IGQ4, the Brewer network operational calibration set (BOp, and the set used by Bernhard et al. (2005, in the reanalysis of the Dobson absorption coefficient values (B05. The ozone absorption coefficients for Brewer and Dobson are then calculated using the normal Brewer operative method which is essentially the same as used on Dobson. Considering the standard TOC algorithm for the Brewer instruments and comparing to the Brewer standard operational calibration data set, using the slit functions for the individual instruments: we find the UIP data set changes the calculated TOC by −0.5%, the DBM data set changes the calculate TOC by −3.2%, and the IGQ4 data set at −45 °C changes the calculated TOC by +1.3%. Considering the standard algorithm for the Dobson instruments, and comparing to results using the official 1992 ozone absorption coefficients values and the single set of slit functions defined for all Dobson instruments, the calculated TOC changes by +1%, with little variation depending on which data set is used We applied the changes to the European Dobson and Brewer reference instruments during the Izaña 2012 Absolute Calibration Campaign. The application of a common Langley calibration and the IUP cross section the differences between Brewer and Dobson vanish whereas using Bass and Paur and DBM produce differences of 1.5% and 2
Badhrees, I; Kreslo, I; Messina, M; Moser, U; Rossi, B; Weber, M S; Zeller, M; Altucci, C; Amoruso, S; Bruzzese, R; Velotta, R
2010-01-01
This paper reports on laser-induced multiphoton ionization at 266 nm of liquid argon in a time projection chamber (LAr TPC) detector. The electron signal produced by the laser beam is a formidable tool for the calibration and monitoring of next-generation large-mass LAr TPCs. The detector that we designed and tested allowed us to measure the two-photon absorption cross-section of LAr with unprecedented accuracy and precision: $\\sigma_ex$=(1.24$\\pm$0.10stat $\\pm$0.30syst)$\\times$10^{-56} cm$^4$s{-1}.
A calibration method for the determination of the thermal neutron macroscopic mass absorption cross section for rock samples is presented. The standard deviation of the final results is discussed in detail. A big advantage of the presented method is that the calibration curves have been found using the results obtained for a variety of natural rock samples of different stratigraphies and lithologies measured by Czubek's methods. An important part of the paper is a through analysis of the standard deviation of the final result. (author). 13 refs, 11 figs, 5 tabs
{nu}{sub e}({nu}-bar{sub e})-{sup 40}Ar absorption cross sections for supernova neutrinos
Athar, M. Sajjad; Singh, S.K
2004-07-01
The calculations for the neutrino absorption cross sections for supernova neutrinos in {sup 40}Ar have been done in the local density approximation (LDA) taking into account Pauli blocking and Fermi motion effects. The renormalization of weak transition strengths in the nuclear medium and the effect of Coulomb distortion of the lepton produced in charged current reactions are taken into account. The expected event rates for electrons (positrons) have been calculated for a 3 kT liquid argon detector for a supernova occurring at 10 kpc from earth.
Valenta, J.; Greben, M.; Remeš, Zdeněk; Gutsch, S.; Hiller, D.; Zacharias, M.
2016-01-01
Roč. 102, č. 2 (2016), "023102-1"-"023102-5". ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LD14011 Institutional support: RVO:68378271 Keywords : photoluminescence * absorption spectroscopy * photothermal spectroscopy * semiconductors * nanocrystals Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014
Empirical line lists and absorption cross sections for methane at high temperature
Hargreaves, Robert J; Bailey, Jeremy; Dulick, Michael
2015-01-01
Hot methane is found in many "cool" sub-stellar astronomical sources including brown dwarfs and exoplanets, as well as in combustion environments on Earth. We report on the first high-resolution laboratory absorption spectra of hot methane at temperatures up to 1200 K. Our observations are compared to the latest theoretical spectral predictions and recent brown dwarf spectra. The expectation that millions of weak absorption lines combine to form a continuum, not seen at room temperature, is confirmed. Our high-resolution transmittance spectra account for both the emission and absorption of methane at elevated temperatures. From these spectra, we obtain an empirical line list and continuum that is able to account for the absorption of methane in high temperature environments at both high and low resolution. Great advances have recently been made in the theoretical prediction of hot methane, and our experimental measurements highlight the progress made and the problems that still remain.
Chirality dependence of the absorption cross-section of carbon nanotubes.
Vialla, Fabien; Roquelet, Cyrielle; Langlois, Benjamin; Delport, Géraud; Santos, Sylvia,; Deleporte, Emmanuelle; Roussignol, Philippe; Delalande, Claude; Voisin, Christophe; Lauret, Jean-Sébastien
2013-01-01
The variation of the optical absorption of carbon nanotubes with their geometry has been a long standing question at the heart of both metrological and applicative issues, in particular because optical spectroscopy is one of the primary tools for the assessment of the chiral species abundance of samples. Here, we tackle the chirality dependence of the optical absorption with an original method involving ultra-efficient energy transfer in porphyrin/nanotube compounds that allows uniform photo-...
Yoshino, K.; Esmond, J. R.; Cheung, A. S.-C.; Freeman, D. E.; Parkinson, W. H.
1992-01-01
Results are presented on measurements, conducted in the wavelength region 180-195 nm, and at different pressures of oxygen (between 2.5-760 torr) in order to separate the pressure-dependent absorption from the main cross sections, of the absorption cross sections of the Schumann-Runge bands in the window region between the rotational lines of S-R bands of O2. The present cross sections supersede the earlier published cross sections (Yoshino et al., 1983). The combined cross sections are presented graphically; they are available at wavenumber intervals of about 0.1/cm from the National Space Science Data Center. The Herzberg continuum cross sections are derived after subtracting calculated contributions from the Schumann-Runge bands. These are significantly smaller than any previous measurements.
Integrated infrared cross-sections and wavenumber positions for the vibrational modes of a range of hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs) have been calculated. Spectra were determined using a density functional method with an empirically derived correction for the wavenumbers of band positions. Radiative efficiencies (REs) were determined using the Pinnock et al. method and were used with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). For the HFEs and the majority of the molecules in the HG series HFPEs, theoretically determined absorption cross-sections and REs lie within ca. 10% of those determined using measured spectra. For the larger molecules in the HG series and the HG' series of HFPEs, agreement is less good, with theoretical values for the integrated cross-sections being up to 35% higher than the experimental values; REs are up to 45% higher. Our method gives better results than previous theoretical approaches, because of the level of theory chosen and, for REs, because an empirical wavenumber correction derived for perfluorocarbons is effective in predicting the positions of C-F stretching frequencies at around 1250 cm-1 for the molecules considered here.
Absorption and scattering cross-section extinction values of silver nanoparticles
Hlaing, May; Gebear-Eigzabher, Bellsabel; Roa, Azael; Marcano, Aristides; Radu, Daniela; Lai, Cheng-Yu
2016-08-01
We determine the extinction values of silver nanoparticles as a function of their diameter for three different wavelengths (405 nm, 532 nm, and 671 nm) from the values of absorbance and their photothermal lens response. We show that for particles of small diameters (nanoparticles confirming the scattering free character of this absorption technique and validating the results of the absorbance experiment.
Highlights: ► Present glasses have high thermal stability. ► The glass sample C has the effective emission cross section bandwidth (64 nm). It has large stimulated emission cross-section (0.89 × 10−20 cm2). ► The optical gain coefficient to the population inversion of the 4I13/2 level is 8.87 cm−1. -- Abstract: Three samples of tellurite glasses within system 46TeO2⋅15ZnO⋅9.0P2O5⋅30LiNbO3 doped with xEr2O3 ions (where x = 4000, 8000 and 10,000 ppm) have been prepared by using the conventional melt-quenching method. These glasses have high thermal stability proved by using differential thermal analysis (DTA) measurements. Elastic properties of the glasses were investigated by measuring both longitudinal and shear velocities using the pulse-echo overlap technique at 5 MHz. Elastic moduli such as: longitudinal (λ), shear (μ), Bulk (B) and Young’s (Y) increased with the Er3+ concentration in the prepared glasses matrix. The optical properties of the glasses were estimated by measuring UV–vis-NIR spectroscopy. The Judd–Ofelt parameters, Ωt (t = 2, 4, 6) of Er3+ were evaluated from optical absorption spectra. The oscillator strength type transition probabilities, spectroscopic quality factors, branching ratio and radiative lifetimes of several excited states of Er3+ have been predicted using intensity Judd–Ofelt parameters. Gain cross-section for the Er3+ laser transition 4I13/2 → 4I15/2 was obtained. The results show 46TeO2⋅15ZnO⋅9.0P2O5⋅30LiNbO3⋅10,000 ppm Er2O3 glass has the effective emission cross section bandwidth (64 nm) and large stimulated emission cross-section (0.89 × 10−20 cm2). The thermal stability, elastic and spectroscopic properties indicate that this glass doped with Er3+ is a promising candidate for optical applications and may be suitable for optical fiber lasers and amplifiers
Froidevaux, L.; Yung, Y. L.
1982-01-01
It is suggested that the discrepancies between observed and modeled vertical profiles of such halocarbons as CFCl3, as well as the problem of simultaneously fitting N2O, CH4, CF2Cl2 and CFCl3 profiles with a single eddy diffusion model, are due to an overestimation of the molecular oxygen absorption cross sections in the 200-220 nm spectral region. The replacement of current O2 cross sections in this range with values that are in better agreement with results for the compounds cited leads to N2O, CF2Cl2 and CFCl3 concentration reductions of factors 0.70, 0.62 and 0.19, respectively. Profiles of CH4, H2 and CO remain unchanged, and the predicted concentration of HNO3 above 30 km is reduced by about 50% for yet another improved fit with observations. It is noted that the correction proposed produces a 30% ozone increase near the 20-25 km peak.
In consecutive measurements the rock sample (having a fixed and well known shape -in our case it is a sphere or a cylinder and the sample is powdered or liquid) is enveloped in shells of a plexiglass moderator (the neutron parameters of which are known) of variable thickness and irradiated with the pulsed beam of fast neutrons. The die-away rate of thermal neutrons escaping from the whole system is measured. The absorption cross-section of the sample is found as the intersection of the experimental curve (i.e. die -away rate vs thickness of the moderator) with the theoretical one. The theoretical curve is calculated for a given moderator under the assumption of a constant value of the neutron flux inside the sample. This method is independent of the value of the transport cross-section of the sample. It has been checked on artificial materials with a well known elemental composition (liquid or solid) and on the natural brines and rock samples (basalts and dolomite). A special method of calculation of the variance of the measurement has been established. It is based on the multiple computer simulations of all experimental data used in the computation. The one standard deviation of our methods is of the order of 1 up to 3 capture units (1 c.u. = 10-3 cm-1). The volume of the sample needed is of the order of 500ccm. (author)
Quantitative infrared absorption cross-sections of isoprene for atmospheric measurements
C. S. Brauer
2014-04-01
Full Text Available Isoprene (C5H8, 2-methyl-1,3-butadiene is a volatile organic compound (VOC that is one of the primary contributors to annual global VOC emissions. Produced by vegetation as well as anthropogenic sources, the OH- and O3-initiated oxidations of isoprene are a major source of atmospheric oxygenated organics. Few quantitative infrared studies have been reported for isoprene, however, limiting the ability to quantify isoprene emissions via stand-off infrared or in situ detection. We thus report absorption coefficients and integrated band intensities for isoprene in the 600–6500 cm−1 region. The pressure-broadened (1 atmosphere N2 spectra were recorded at 278, 298 and 323 K in a 19.94 cm path length cell at 0.112 cm−1 resolution, using a Bruker 66v FTIR. Composite spectra are derived from a minimum of seven isoprene sample pressures at each temperature and the number densities are normalized to 296 K and 1 atmosphere.
XCOM: Photon Cross Sections Database
SRD 8 XCOM: Photon Cross Sections Database (Web, free access) A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.
Meiring, J. D.; Tripp, T. M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Werk, J. K.; Prochaska, J. X. [University of California Observatories-Lick Observatory, UC Santa Cruz, CA 95064 (United States); Howk, J. C. [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Jenkins, E. B. [Princeton University Observatory, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Lehner, N.; Sembach, K. R. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2013-04-10
Using high-resolution, high signal-to-noise ultraviolet spectra of the z{sub em} = 0.9754 quasar PG1148+549 obtained with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope, we study the physical conditions and abundances of Ne VIII+O VI absorption line systems at z{sub abs} = 0.68381, 0.70152, 0.72478. In addition to Ne VIII and O VI, absorption lines from multiple ionization stages of oxygen (O II, O III, O IV) are detected and are well aligned with the more highly ionized species. We show that these absorbers are multiphase systems including hot gas (T Almost-Equal-To 10{sup 5.7} K) that produces Ne VIII and O VI, and the gas metallicity of the cool phase ranges from Z = 0.3 Z{sub Sun} to supersolar. The cool ( Almost-Equal-To 10{sup 4} K) phases have densities n{sub H} Almost-Equal-To 10{sup -4} cm{sup -3} and small sizes (<4 kpc); these cool clouds are likely to expand and dissipate, and the Ne VIII may be within a transition layer between the cool gas and a surrounding, much hotter medium. The Ne VIII redshift density, dN/dz{approx}7{sup +7}{sub -3}, requires a large number of these clouds for every L > 0.1 L* galaxy and a large effective absorption cross section ({approx}> 100 kpc), and indeed, we find a star-forming {approx}L {sup *} galaxy at the redshift of the z{sub abs} = 0.72478 system, at an impact parameter of 217 kpc. Multiphase absorbers like these Ne VIII systems are likely to be an important reservoir of baryons and metals in the circumgalactic media of galaxies.
Minnesota Department of Natural Resources — FEMA Cross Sections are required for any Digital Flood Insurance Rate Map database where cross sections are shown on the Flood Insurance Rate Map (FIRM). Normally...
Felix C. Difilippo
2012-09-01
Within the context of general relativity theory we calculate, analytically, scattering signatures around a gravitational singularity: angular and time distributions of scattered massive objects and photons and the time and space modulation of Doppler effects. Additionally, the scattering and absorption cross sections for the gravitational interactions are calculated. The results of numerical simulations of the trajectories are compared with the analytical results.
Mével, R.; Catoire, L.; M. Fikri; Roth, P.
2013-01-01
Atomic resonance absorption spectroscopy coupled with a shock tube is a powerful technique for studying high temperature dynamics of reactive systems. Presently, high temperature pyrolysis of SiCl_4–Ar mixtures has been studied behind reflected shock waves. Using time-resolved absorption profiles at 121.6 nm and a detailed reaction model, the absorption cross sections of SiCl_4, SiCl_3, SiCl_2 and Cl have been measured. Results agree well with available data for SiCl_4 and constitute, to our ...
Wright, T; Billowes, J; Ware, T; Cano-Ott, D; Mendoza, E; Massimi, C; Mingrone, F; Gunsing, F; Berthoumieux, E; Lampoudis, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Giubrone, G; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mengoni, A; Milazzo, P M; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Weigand, M; Weiß, C; Žugec, P
2014-01-01
The neutron capture cross section of U-238 is fundamental to the design and operation of current reactors and future fast nuclear reactors, and thus must be measured to a high level of accuracy. An experiment has been performed at the CERN n TOF facility using a 4 pi Total Absorption Calorimeter (TAC) to measure the capture cross section in the resolved resonance region between 1 eV and 25 keV. A preliminary analysis of the TAC data is presented with particular emphasis to the experimental background in this energy region of interest.
Wang, J.; Wang, S.; Hua, Y.; Jiang, J.; Zhao, B.; Xing, J.; Jiang, S.; Cai, R.; Hao, J.
2015-12-01
Black carbon (BC), as one of the most important climate-warming agent, has been the focus of extensive studies in recent years. Mass absorption cross section (MAC) is a key parameter to assess the radiative forcing by linking the mass concentration with the radiation effect. In this study, we conducted a two-month field campaign in Beijing, the capital city of China, in a October and November, a period that severe PM2.5 pollution occurred. PM2.5 offline samples were collected daily onto quartz fiber filters by a Partisol 2300 Speciation Sampler. Size-segregated aerosol samples of the size ranged from 0.056 - 10 µm with 11 bins were collected onto quartz fiber filters by a cascade impactor developed by National Chiao Tung University (NCTU). A DRI Model 2001 thermal/optical carbon analyzer were used to analyze the samples. The MAC of BC is measured by a thermal-optical carbon analyzer. In contrast to previous studies, we found that after "shadow effect" has been corrected, the MAC is reduced from 14 m2/g to 5 m2/g with the increase of BC concentrations. There was no significant correlation between MAC with secondary inorganic aerosols. Such unexpected reduction in MAC of BC is possibly associated with the microphysical property of BC modulated under serious pollution condition. The study of size-segregated species concentrations shows that the size distribution of BC is unimodal, with the peak around 0.56-1.8 µm. The results also show the proportion of BC larger than 0.56 µm is significant increased. Additionally, "soot superaggregate", as distinct from conventional sub-micron aggregates, was found in the bins of BC with size ranged from 1 to1.8 µm. Such high carbon aerosol proportion and large BC size distribution suggests that emissions from residential biomass burning is dominant during this episode. This study suggests that the optical property for BC from different emission sectors should be considered in the estimation of radiative forcing.
We present an atomic-level and quantitative study of the absorption properties in Si/Ge and Ge/Si core/shell nanowires (CSNWs) along [110] direction with different cross-sectional geometries using the atomic bond relaxation method. We find that the strain existing in self-equilibrium state of CSNWs and associated with elastic energy originating from interface mismatch and surface relaxation affect the band shift and absorption properties. Compared to the CSNWs with tetragonal, hexagonal and circular shapes, the triangular CSNWs have the largest band gap shift at a fixed strain and the smallest absorption coefficient at a determinate incident light wavelength. The tunable absorption property, realized by controlling the size and geometry structure, could be helpful for nanoelectronic applications. (paper)
The X-ray production (XRP) cross sections, σLk (k = l, η, α, β6, β1, β3, β4, β9,10, γ1,5, γ2,3) have been evaluated at incident photon energies across the Li(i=1-3) absorption edge energies of 35Br using theoretical data sets of different physical parameters, namely, the Li(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies
W. Chehade
2012-10-01
Full Text Available The Global Ozone Monitoring Experiment (GOME-2 Flight Model (FM absorption cross section spectra of ozone were measured under representative atmospheric conditions in the laboratory setup at temperatures between 203 K and 293 K in the wavelength range of 230–790 nm at a medium spectral resolution of 0.24 to 0.54 nm. Since the exact ozone amounts were unknown in the gas flow system used, the measured ozone cross sections were required to be scaled to absolute cross section units using published literature data. The Hartley, Huggins and Chappuis bands were recorded simultaneously and their temperature dependence is in good agreement with previous studies (strong temperature effect in the Huggins band and weak in the Hartley and Chappuis bands. The overall agreement of the GOME-2 FM cross sections with the literature data is well within 3%. The total ozone column retrieved from the GOME-2/MetOp-A satellite using the new cross section data is within 1% compared to the ozone amounts retrieved routinely from GOME-2.
V. Gorshelev
2013-07-01
Full Text Available In this paper we discuss the methodology of taking broadband relative and absolute measurements of ozone cross-sections including uncertainty budget, experimental set-ups, and methods for data analysis. We report on new ozone absorption cross-section measurements in the solar spectral region using a combination of Fourier transform and echelle spectrometers. The new cross-sections cover the spectral range 213–1100 nm at a spectral resolution of 0.02–0.06 nm in the UV-vis and 0.12–0.24 nm in the IR at eleven temperatures from 193 to 293 K in steps of 10 K. The absolute accuracy is better than three percent for most parts of the spectral region and wavelength calibration accuracy is better than 0.005 nm. The new room temperature cross-sections data are compared in detail with previously available literature data. The temperature dependence of our cross-sections is described in a companion paper.
The integrated thermal neutron flux method of determining the macroscopic thermal neutron absorption cross-section of samples consisting of approx. 400 kg of unconsolidated geologic material, saturated with fresh water, to be used in borehole models, is reported. One advantage of this method is that bulk cross-section determinations are made relative to a single standard, with fresh (distilled) water being used as the standard in this work. The values of matrix Σ determined for unconsolidated sand, limestone, and dolomite for the particular samples measured fall within the range of previously reported measurements of similar type samples. The method was checked using 50,000 ppm NaCl for which a value of 39.1 ± 0.5 c.u. was determined. (author)
CHEN Kai; CUI Ming-Qi; ZHENG Lei
2008-01-01
The photo-absorption cross section of aluminum was obtained from the ratio of transmission of aluminum thin-films with different area densities from 50 to 250 eV with synchrotron radiation monochromatic beam.Two samples with different area densities were used to minimize the uncertainty caused by the sample surface oxidation and systematic factors of the X-ray source,beamline,and detector.The experimental results are in good agreement with the published data and FEFF program calculations in general.
L. Kritten; Butz, A.; Chipperfield, MP; Dorf, M.; Dhomse, S.; R. Hossaini; H. Oelhaf; C. Prados-Roman; G. Wetzel; K. Pfeilsticker
2014-01-01
The absorption cross-section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 +BrONO2 + HNO3) photochemistry. Simula...
Subramanian, R.; Kok, G. L.; Baumgardner, Darrel; Clarke, A. D.; Shinozuka, Y.; Campos, Teresa; Heizer, CG; Stephens, Britton; de Foy, B.; Voss, Paul B.; Zaveri, Rahul A.
2010-01-13
A single particle soot photometer (SP2) was operated on the NCAR C-130 during the MIRAGE campaign (part of MILAGRO), sampling black carbon (BC) over Mexico. The highest BC concentrations were measured over Mexico City (sometimes as much as 2 Fg/m34 ) and over hill fires to the south of the city. The age of plumes outside of Mexico City was determined using a combination of HYSPLIT trajectories, WRF-FLEXPART modeling and CMET balloon tracks. As expected, older, diluted air masses had lower BC concentrations. A comparison of carbon monoxide (CO) and BC suggests a CO background of around 65 ppbv, and a backgroundcorrected BC/COnet ratio of 2.89±0.89 (ng/m39 -STP)/ppbv (average ± standard deviation). This ratio is similar for fresh emissions over Mexico City, as well as for aged airmasses. Comparison of light absorption measured with a particle soot absorption photometer (PSAP) and the SP2 BC suggests a BC mass-normalized absorption cross-section (MAC) of 10.9±2.1 m212 /g at 660 nm (or 13.1 m213 /g @ 550 nm, assuming MAC is inversely dependent on wavelength). This appears independent of aging and similar to the expected absorption cross-section for aged BC, but values, particularly in fresh emissions, could be biased high due to instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated BC mode over the Mexico City Metropolitan Area (MCMA), while older air masses show both thinly-coated and thickly-coated BC. Some 2-day-old plumes do not show a prominent thickly-coated BC mode, possibly due to preferential wet scavenging of the likely-hydrophilic thickly-coated BC.
R. Subramanian
2009-04-01
Full Text Available A single particle soot photometer (SP2 was operated on the NCAR C-130 during the MIRAGE campaign (part of MILAGRO, sampling black carbon (BC over Mexico. The highest BC concentrations were measured over Mexico City (sometimes as much as 2μg/m^{3} and over hill-fires to the south of the city. As expected, older, diluted air masses had lower BC concentrations. A comparison of carbon monoxide (CO and BC suggests a CO background of around 65 ppbv, and a background-corrected BC/CO_{net} ratio of 3.1 (ng/m^{3} STP/ppbv (±25%. This ratio is similar for fresh emissions over Mexico City, as well as for aged airmasses. Comparison of light absorption measured with a particle soot absorption photometer (PSAP and the SP2 BC suggests a BC mass-normalized absorption cross-section (MAC of 10.3 m^{2}g^{−1} (±30% at 660 nm (or 12.4 m^{2}g^{−1} @ 550 nm, assuming MAC is inversely dependent on wavelength. This appears independent of aging and similar to the expected absorption cross-section for aged BC, but values, particularly in fresh emissions, could be biased high due to instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated BC mode over the Mexico City Metropolitan Area (MCMA, while older air masses show both thinly-coated and thickly-coated BC. BC mass per particle of the thinly-coated mode appears to increase as the air mass ages, possibly due to coagulation and/or increased coating of the particles containing smaller BC masses. Differences in the coating indicator patterns for similarly-aged air masses may be due to differences in atmospheric processing on each day, including mixing with non-MCMA air masses.
R. Subramanian
2010-01-01
Full Text Available A single particle soot photometer (SP2 was operated on the NCAR C-130 during the MIRAGE campaign (part of MILAGRO, sampling black carbon (BC over Mexico. The highest BC concentrations were measured over Mexico City (sometimes as much as 2 μg/m^{3} and over hill-fires to the south of the city. The age of plumes outside of Mexico City was determined using a combination of HYSPLIT trajectories, WRF-FLEXPART modeling and CMET balloon tracks. As expected, older, diluted air masses had lower BC concentrations. A comparison of carbon monoxide (CO and BC suggests a CO background of around 65 ppbv, and a background-corrected BC/CO_{net} ratio of 2.89±0.89 (ng/m^{3}-STP/ppbv (average ± standard deviation. This ratio is similar for fresh emissions over Mexico City, as well as for aged airmasses. Comparison of light absorption measured with a particle soot absorption photometer (PSAP and the SP2 BC suggests a BC mass-normalized absorption cross-section (MAC of 10.9±2.1 m^{2}/g at 660 nm (or 13.1 m^{2}/g @ 550 nm, assuming MAC is inversely dependent on wavelength. This appears independent of aging and similar to the expected absorption cross-section for aged BC, but values, particularly in fresh emissions, could be biased high due to instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated BC mode over the Mexico City Metropolitan Area (MCMA, while older air masses show both thinly-coated and thickly-coated BC. Some 2-day-old plumes do not show a prominent thickly-coated BC mode, possibly due to preferential wet scavenging of the likely-hydrophilic thickly-coated BC.
G. GiacomelliBologna University and INFN
2014-01-01
The measurements of the hadron-hadron total cross sections are the first measurements performed when a new hadron accelerator opens up a new energy region; the measurements were made as function of the incoming beam momentum or c.m. energy and have often been repeated with improved accuracy and finer energy spacing.
1-photon (382 nm) and 2-photon (752 nm) excitations to the S1 state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S1 → Sn due to resonant absorption of a third pump photon. Subsequent Sn → S1 internal conversion (with τ1 = 1 ps) prepares a very hot S1 state which cools down with τ2 = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ(2) = 32 ⋅ 10−50 cm4 s at 752 nm are evaluated from the bleach signal
Puri, Sanjiv [Department of Basic & Applied Sciences, Punjabi University, Patiala-147002, Punjab, India. E-mail address: sanjivpurichd@yahoo.com (India)
2015-08-28
The X-ray production (XRP) cross sections, σ{sub Lk} (k = l, η, α, β{sub 6}, β{sub 1}, β{sub 3}, β{sub 4}, β{sub 9,10}, γ{sub 1,5}, γ{sub 2,3}) have been evaluated at incident photon energies across the L{sub i}(i=1-3) absorption edge energies of {sub 35}Br using theoretical data sets of different physical parameters, namely, the L{sub i}(i=1-3) sub-shell the X-ray emission rates based on the Dirac-Fock (DF) model, the fluorescence and Coster Kronig yields based on the Dirac-Hartree-Slater (DHS) model, and two sets of the photoionisation cross sections based on the relativistic Hartree-Fock-Slater (RHFS) model and the Dirac-Fock (DF) model, in order to highlight the importance of electron exchange effects at photon energies in vicinity of absorption edge energies.
A novel two-photon initiator, 4,4'-bis[4-(di-n-butylamino)styryl]-benzene with the side-group methyl (Me) (abbreviated as Chromophore 1), was synthesized in comparison with the chromophore with the side group methoxy (MeO) (abbreviated as Chromophore 2). Femtosecond laser-induced fluorescence intensity was used to evaluate two-photon absorption (TPA) cross section, δ, by means of a charge-coupled device, USB-2000 (abbreviated as CCD). Results showed that changing the side group from Me to MeO led to a significant red-shift of the two-photon absorption (2λmax). However, the microstructures obtained by two-photon-induced polymerization (TPIP) demonstrated that the sensitivities of Chromophore 1 increased despite a two-fold decrease in the two-photon cross section δmax, relative to Chromophore 2. Correlated with the appearance that the long-lived charge transfer emission of the chromophore in the monomer bulk, we suggest that the intramolecular charge transfer (intra-CT) takes place within the excited dye. Then intermolecular charge transfer was successive as a result of the formation of an exciplex between the dye and the monomer. The Me group was favorable for the intra-CT, relative to MeO, which contributed to the enhancement of the sensitivity of TPIP
Krynicka, E. [The H. Niewodniczanski Inst. of Nuclear Physics, Cracow (Poland)
1997-12-31
The problem of accuracy of the thermal neutron macroscopic absorption cross section determination is discussed on examples of selected measurement methods which use non-stationary neutron fields. The computer simulation method elaborated by the author is presented as a procedure for estimating the standard deviation of the measured absorption cross section. The computer simulation method presented can be easily utilized to estimate the accuracy of measurement of various physical magnitudes. (author) 46 refs, 3 figs, 1 tab
Amyloid diseases such as Alzheimer's and spongiform encephalopathies evolve from aggregation of proteins due to misfolding of the protein structure. Early disease handling require sophisticated but yet simple techniques to follow the complex properties of the aggregation process. Conjugated polyelectrolytes (CPEs) have shown promising capabilities acting as optical biological sensors, since they can specifically bind to polypeptides both in solution and in solid phase. The structural changes in biomolecules can be monitored by changes of the optical spectra of the CPEs, both in absorption and emission modes. Notably, the studied CPEs possess multi-photon excitation capability, making them potential for in vivo imaging using laser scanning microscopy. Aggregation of proteins depends on concentration, temperature and pH. The optical effect on the molecular probe in various environments must also be investigated if applied in these environments. Here we present the results of quantum efficiency and two-photon absorption cross-section of three CPEs: POMT, POWT and PTAA in three different pH buffer systems. The extinction coefficient and quantum efficiency were measured. POMT was found to have the highest quantum efficiency being approximately 0.10 at pH 2.0. The two-photon absorption cross-section was measured for POMT and POWT and was found to be more than 18-25 times and 7-11 times that of Fluorescein, respectively. We also show how POMT fluorescence can be used to distinguish conformational differences between amyloid fibrils formed from reduced and non-reduced insulin in spectrally resolved images recorded with a laser scanning microscope using both one- and two-photon excitation
Dini, Danilo; Calvete, Mario J F; Hanack, Michael; Amendola, Vincenzo; Meneghetti, Moreno
2008-09-17
A series of five hemiporphyrazines (Hps) with different coordinating central atoms (H2, GeCl2, InCl, Pt, Pb), and the acyclic derivative 1,3-bis-(6'-amino-4'-butoxy-2'-pyridylimino)-1,3-dihydroisoindoline have been synthesized and their multiphoton absorption properties examined at the second harmonic frequency of the Nd:YAG laser in the nanosecond time regime. Metal-free and platinum Hps display saturation of optical transmittance within incident fluence values of 6 J cm(-2). Comparison with other similar molecular structures like phthalocyanines and related molecules shows that Hps are strong nonlinear absorbers. The experimental curves of nonlinear transmission at 532 nm have been fitted by means of a three-level model with the occurrence of simultaneous two-photon absorption from an excited state. In the sole case of the InCl complex we found that a five-level model is needed because of the participation of triplet states. Contrary to phthalocyanines, naphthalocyanines, and porphyrins, a heavy central atom does not improve the nonlinear absorption properties since a different excited states dynamic is involved. The large nonlinear absorption of Hps combined with the very small absorption in the visible spectral range makes these molecules a very interesting class of molecules for nonlinear optical applications. PMID:18722439
Asylkhan Rakhymzhan; Alexey Chichinin
2013-01-01
A calculation of the absorption cross section of some molecules (NH3, C2H4, CO2, O3, NO2, PH3, HNO3, SF6, CH3OH, HCOOH, OCS, CH3CN, C2H6, SO2, and H2O) at the wavelengths transmitted by a CO2 laser filled with different isotopes (12C16O2, 13C16O2, 12C18O2, 14C16O2, 14C18O2, 13C18O2, and 12C16O18O) is presented. The spectroscopical parameters for the molecules from GEISA database have been used. Hence the selection of the molecules was substantially based on the availability of the parameters ...
More, Chaitali V.; Lokhande, Rajkumar M.; Pawar, Pravina. P.
2016-05-01
Mass attenuation coefficients of amino acids such as n-acetyl-l-tryptophan, n-acetyl-l-tyrosine and d-tryptophan were measured in the energy range 0.122-1.330 MeV. NaI (Tl) scintillation detection system was used to detect gamma rays with a resolution of 8.2% at 0.662 MeV. The measured attenuation coefficient values were then used to determine the mass energy-absorption coefficients (σa,en) and average atomic energy-absorption cross sections (μen/ρ) of the amino acids. Theoretical values were calculated based on XCOM data. Theoretical and experimental values are found to be in good agreement.
N. Yoshida
2011-07-01
Full Text Available We report measurements of the ultraviolet absorption cross sections of OC32S, OC33S, OC34S and O13CS from 195 to 260 nm. The OCS isotopologues were synthesized from isotopically-enriched elemental sulfur by reaction with carbon monoxide. The measured cross section of OC32S is consistent with literature spectra recorded using natural abundance samples. Relative to the spectrum of the most abundant isotopologue, substitution of heavier rare isotopes has two effects. First, as predicted by the reflection principle, the Gaussian-based absorption envelope becomes slightly more narrow and blue-shifted. Second, as predicted by Franck-Condon considerations, the weak vibrational structure is red-shifted. Sulfur isotopic fractionation constants (33ε, 34ε as a function of wavelength are not highly structured, and tend to be close to zero on average on the high energy side and negative on the low energy side. Since OCS photolysis occurs in the lower stratosphere, the integrated photolysis rate of each isotopologue at 20 km was calculated. Sulfur isotopic fractionation constants at 20 km altitude are (−3.7 ± 4.5 ‰ and (1.1 ± 4.2 ‰ for 33ε and 34ε, respectively, which is inconsistent with the previously estimated large fractionation of over 73 ‰ in 34ε. This demonstrates that OCS photolysis does not produce sulfur isotopic fractionation of more than ca. 5 ‰, suggesting OCS may be the source of background stratospheric sulfate aerosols. Finally, the predicted isotopic fractionation constant for 33S excess (33E in OCS photolysis is (−4.2 ± 6.6 ‰, and thus photolysis of OCS is not expected to be the source of the non-mass-dependent signature observed in modern and Archaean samples.
Gollapinni, Sowjanya
2016-01-01
The study of neutrino-nucleus interactions has recently received renewed attention due to their importance in interpreting the neutrino oscillation data. Over the past few years, there has been continuous disagreement between neutrino cross section data and predictions due to lack of accurate nuclear models suitable for modern experiments which use heavier nuclear targets. Also, the current short and long-baseline neutrino oscillation experiments focus in the few GeV region where several distinct neutrino processes come into play resulting in complex nuclear effects. Despite recent efforts, more experimental input is needed to improve nuclear models and reduce neutrino interaction systematics which are currently dominating oscillation searches together with neutrino flux uncertainties. A number of new detector concepts with diverse neutrino beams and nuclear targets are currently being developed to provide necessary inputs required for next generation oscillation experiments. This paper summarizes these effor...
Group cross sections calculations
Just a few methods have been developped to compute multigroup cross-sections from ENDF data. We have developped an original method in order to get accuracy and to reduce the number of discretization points in the same time; this is why we have tried to use polynomial integration. In this paper, we describe this method: in the first part, we recall some physical hypothesis generally used to solve the linear Boltzmann equation: that is the frame in which the numerical method has been developped. Polynomial methods are really powerfull only if discretization points are suitably chosen. This choice is explained in the next part of this paper. In conclusion, some numerical results are given to illustrate our method
Chaudhary, A K; Rao, K S; Sudheer Kumar, A
2016-02-01
This paper reports the investigation of thermal decomposition mechanisms and evaluation of thermally released NO2 from two newly synthesized high-energy materials named 1-(4-nitrophenyl)-1H-1,2,3-triazole (S8) and 2,6-bis ((4-(nitromethyl)-1H-1,2,3-triazol-1-yl)methyl) pyridine (S9) using time-resolved pulsed photoacoustic (PA) pyrolysis technique. The PA spectra were recorded between the 30°C and 350°C range and by varying the pressure of compounds vapor using 532 nm wavelength of pulse duration 7 ns at 10 Hz repetition rate obtained from Q-switched Nd:YAG laser pulses. The PA results were cross verified with thermogravimetric-differential thermal analysis data. The quality factor "&=&Q"&=& of the PA cavity was measured to test the thermal stability of the compound. In addition, we have ascertained the molecular density, absorption cross sections of high-energy materials vapor in terms of NO2. The corresponding values are of the order of 0.1-1.2×10(20) cm-3 and 0.5-6 kilobarn, respectively. These results once again confirm the close agreement between the radiative and nonradiative transitions data and established the role of NO2 during the thermal decomposition process. PMID:26836085
Diffractive and rising cross sections
The energy dependence of the diffractive component of the proton-proton cross section is discussed and its contribution to the rise of the total cross section at high energies is examined. 17 refs., 9 figs
[Fast neutron cross section measurements
This paper discusses the following topics: 14 MeV pulsed neutron facility; detection and measurement system; 238U capture cross sections at 23 and 964 keV using photon neutron sources; capture cross sections of Au-197 at 23 and 964 keV; and yttrium nuclear cross section measurement
Recommended evaluation procedure for photonuclear cross section
Lee, Young-Ouk; Chang, Jonghwa; Fukahori, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-03-01
In order to generate photonuclear cross section library for the necessary applications, data evaluation is combined with theoretical evaluation, since photonuclear cross sections measured cannot provide all necessary data. This report recommends a procedure consisting of four steps: (1) analysis of experimental data, (2) data evaluation, (3) theoretical evaluation and, if necessary, (4) modification of results. In the stage of analysis, data obtained by different measurements are reprocessed through the analysis of their discrepancies to a representative data set. In the data evaluation, photonuclear absorption cross sections are evaluated via giant dipole resonance and quasi-deutron mechanism. With photoabsorption cross sections from the data evaluation, theoretical evaluation is applied to determine various decay channel cross sections and emission spectra using equilibrium and preequilibrium mechanism. After this, the calculated results are compared with measured data, and in some cases the results are modified to better describe measurements. (author)
The 42Ca photoneutron cross section
The measurement of the 42Ca(γ,nsub(t)) is reported here over the energy range 10.5 - 28 MeV. Bremsstrahlung radiation from the 35 MeV Betatron at this University was used to measure a yield curve of photoneutrons, from which the (γ,nsub(t)) cross section was derived. Since proton and neutron emission are the major decay modes of the giant dipole resonance, summing these cross sections approximates the photo-absorption cross section. With this information the theoretical predictions can be checked
The electromagnetic absorption cross-section (ACS) averaged over polarization and angle-of-incidence of 60 ungrounded adult subjects was measured at microwave frequencies of 1–12 GHz in a reverberation chamber. Average ACS is important in non-ionizing dosimetry and exposure studies, and is closely related to the whole-body averaged specific absorption rate (WBSAR). The average ACS was measured with a statistical uncertainty of less than 3% and high frequency resolution for individuals with a range of body shapes and sizes allowing the statistical distribution of WBSAR over a real population with individual internal and external morphologies to be determined. The average ACS of all subjects was found to vary from 0.15 to 0.4 m2; for an individual subject it falls with frequency over 1–6 GHz, and then rises slowly over the 6–12 GHz range in which few other studies have been conducted. Average ACS and WBSAR are then used as a surrogate for worst-case ACS/WBSAR, in order to study their variability across a real population compared to literature results from simulations using numerical phantoms with a limited range of anatomies. Correlations with body morphological parameters such as height, mass and waist circumference have been investigated: the strongest correlation is with body surface area (BSA) at all frequencies above 1 GHz, however direct proportionality to BSA is not established until above 5 GHz. When the average ACS is normalized to the BSA, the resulting absorption efficiency shows a negative correlation with the estimated thickness of subcutaneous body fat. Surrogate models and statistical analysis of the measurement data are presented and compared to similar models from the literature. The overall dispersion of measured average WBSAR of the sample of the UK population studied is consistent with the dispersion of simulated worst-case WBSAR across multiple numerical phantom families. The statistical results obtained allow the calibration of human
Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.
2014-09-01
The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2 observations. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding - Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.
Kritten, L.; Butz, A.; Chipperfield, M. P.; Dorf, M.; Dhomse, S.; Hossaini, R.; Oelhaf, H.; Prados-Roman, C.; Wetzel, G.; Pfeilsticker, K.
2014-02-01
The absorption cross-section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in JPL-2011, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 +BrONO2 + HNO3) photochemistry. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding-Balloon) observations in similar air masses at nighttime, and all other relevant species from simulations of the SLIMCAT chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200-260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260-350 nm), compared to current recommendations. In consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5 (λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2-0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone.
Most of the fission products and a few of the actinides in ENDF/B-V do not have (n,2n) cross sections. A complete set of these cross sections is presented in the multigroup structure defined. These were constructed for future use in the DANDE Code System
Cross Sections and Lorentz Violation
Colladay, Don; Kostelecky, Alan
2001-01-01
The derivation of cross sections and decay rates in the Lorentz-violating standard-model extension is discussed. General features of the physics are described, and some conceptual and calculational issues are addressed. As an illustrative example, the cross section for the specific process of electron-positron pair annihilation into two photons is obtained.
Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.
2014-06-01
This paper presents a TEmperature SEnsitivity Method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS) ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). The direct result of the DOAS spectral fitting retrieval is NO2 differential slant column density (Δ SCD) at the actual atmospheric NO2 T. Atmospheric NO2 T is determined from the DOAS fitting results after SCD in the reference spectrum is estimated using the Minimum Langley Extrapolation method (MLE). Since NO2 is mostly distributed between the lower troposphere and middle stratosphere and direct sun measurements have almost equal sensitivity to stratospheric and tropospheric absorption at solar zenith angles chemistry-transport model (CTM) simulations to evaluate diurnal and seasonal variability of stratospheric and tropospheric NO2 T over two northern middle latitude sites in 2011. GMI simulations reveal that stratospheric NO2 T over northern middle latitudes can be estimated with an error of less than 3 K by the simulated temperature at 27 km from April to October. During November-March months the error can reach as high as 10 K. The tropospheric NO2 T can be approximated by the surface temperature within 3-5 K according to GMI simulations. Traditionally, either σ (NO2) is fitted at a single estimated NO2 T, or two predetermined (stratospheric and tropospheric) temperatures. Use of a single T requires prior knowledge of the tropospheric-stratospheric NO2 columns partitioning in the measurement. In addition, it assumes that this partitioning is constant throughout the measurement period (sometimes months). Fitting of two σ (NO2) at fixed temperatures, typically 220 and 298 K
Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.
2014-06-01
This paper presents a TEmperature SEnsitivity Method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS) ground-based measurements using the retrieved T. TESEM is based on Differential Optical Absorption Spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). The direct result of the DOAS spectral fitting retrieval is NO2 differential slant column density (Δ SCD) at the actual atmospheric NO2 T. Atmospheric NO2 T is determined from the DOAS fitting results after SCD in the reference spectrum is estimated using the Minimum Langley Extrapolation method (MLE). Since NO2 is mostly distributed between the lower troposphere and middle stratosphere and direct sun measurements have almost equal sensitivity to stratospheric and tropospheric absorption at solar zenith angles NO2 T can be represented as a sum of the NO2 stratospheric and tropospheric Ts multiplied by the corresponding stratospheric and tropospheric fractions of the total SCDNO2. We use Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations to evaluate diurnal and seasonal variability of stratospheric and tropospheric NO2 T over two northern middle latitude sites in 2011. GMI simulations reveal that stratospheric NO2 T over northern middle latitudes can be estimated with an error of less than 3 K by the simulated temperature at 27 km from April to October. During November-March months the error can reach as high as 10 K. The tropospheric NO2 T can be approximated by the surface temperature within 3-5 K according to GMI simulations. Traditionally, either σ (NO2) is fitted at a single estimated NO2 T, or two predetermined (stratospheric and tropospheric) temperatures. Use of a single T requires prior knowledge of the tropospheric-stratospheric NO2 columns
Optical Model and Cross Section Uncertainties
Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.
2009-10-05
Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.
Measurement of fission cross sections
A review is presented on the recent progress in the experiment of fission cross section measurement, including recent activity in Japan being carried out under the project of nuclear data measurement. (author)
R. Vogt
2007-01-01
We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that due to the small charm quark mass, which amplifies the effect of the other parameters in the calculation, the uncertainty on the total charm cross section is difficult to quantify.
Photoproton cross section for 14C
Using bremsstrahlung, the 14C(γ,p) reaction cross section has been measured from threshold to 29 MeV. The integrated cross section up to 30 MeV is 18±3 MeV mb. Above 23.5 MeV, the reported cross section includes a contribution, estimated at 3.5 MeV mb, due to the 14C(γ,d) and 14Cγ,pn) reactions. Essentially the entire 14C(γ,p) cross section results from decay of T> dipole states. From knowledge of other decay channels estimates of the cross section, integrated to 30 MeV for the T and T> components of the giant resonance (GDR) of 81 MeV mb and 43 MeV mb are obtained. The splitting of the mean energies of the GDR isospin components is 8.5 MeV. Comparisons with several shell-model calculations are made with the data, and general agreement is found. A comparison of photonuclear absorption cross sections for 12,1314C and 16,17,18 O shows dramatic redistribution of dipole strength as neutrons are added to the core nuclei. 41 refs., 1 tab., 7 figs
Neutron capture cross section measurement techniques
A review of currently-used techniques to measure neutron capture cross sections is presented. Measurements involving use of total absorption and Moxon-Rae detectors are based on low-resolution detection of the prompt γ-ray cascades following neutron captures. In certain energy ranges activation methods are convenient and useful. High resolution γ-ray measurements with germanium detectors can give information on the parameters of resonance capture states. The use of these techniques is described. (U.S.)
Atomic-process cross section data, 1
Compiled by the Data Study Group, the data are intended for fusion plasma physics research. Cross sections of the latest experimental and theoretic studies cover the processes involving H,D,T as principal plasma materials as well as photons and electrons: emission and absorption of electromagnetic wave, electron collision, ion collision, recombination, neutral atom mutual collision, etc. Edition is so made to enable the future renewal by users. (J.P.N.)
Proton-nucleus cross section at high energies
Wibig, Tadeusz; Sobczynska, Dorota
1998-01-01
Cross sections for proton inelastic collision with different nuclei are described within the Glauber and multiple scattering approximations. A significant difference between approximate `Glauber' formula and exact calculations with a geometrical scaling assumption for very high-energy cross section is shown. Experimental values of proton-proton cross sections obtained using extensive air shower data are based on the relationship of proton-proton and respective proton-air absorption cross sect...
Revolutionizing Cross-sectional Imaging
Fan, Yifang; Luo, Liangping; Lin, Wentao; Li, Zhiyu; Zhong, Xin; Shi, Changzheng; Newman, Tony; Zhou, Yi; Lv, Changsheng; Fan, Yuzhou
2014-01-01
Cross-sectional imaging is so important that, six Nobel Prizes have been awarded to the field of nuclear magnetic resonance alone because it revolutionized clinical diagnosis. The BigBrain project supported by up to 1 billion euro each over a time period of 10 years predicts to "revolutionize our ability to understand internal brain organization" (Evan 2013). If we claim that cross-sectional imaging diagnosis is only semi-quantitative, some may believe because no doctor would ever tell their patient that we can observe the changes of this cross-sectional image next time. If we claim that BigBrain will make no difference in clinical medicine, then few would believe because no doctor would ever tell their patient to scan this part of the image and compare it with that from the BigBrain. If we claim that the BigBrain Project and the Human Brain Project have defects in their key method, one might believe it. But this is true. The key lies in the reconstruction of any cross-sectional image along any axis. Using Ga...
Terahertz radar cross section measurements
Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd
2010-01-01
We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar...
Cross sections for nuclear astrophysics
General properties of low-energy cross sections and of reaction rates are presented. We describe different models used in nuclear astrophysics: microscopic models, the potential model, and the R-matrix method. Two important reactions, 7Be(p,γ)8B and 12C(α,γ)16O, are then briefly discussed. (author)
The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increase parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins
Modelisation of the fission cross section
The neutron cross sections of four nuclear systems (n+235U, n+233U, n+241Am and n+237Np) are studied in the present document. The target nuclei of the first case, like 235U and 239Pu, have a large fission cross section after the absorption of thermal neutrons. These nuclei are called 'fissile' nuclei. The other type of nuclei, like 237Np and 241Am, fission mostly with fast neutrons, which exceed the fission threshold energy. These types of nuclei are called 'fertile'. The compound nuclei of the fertile nuclei have a binding energy higher than the fission barrier, while for the fissile nuclei the binding energy is lower than the fission barrier. In this work, the neutron induced cross sections for both types of nuclei are evaluated in the fast energy range. The total, reaction and shape-elastic cross sections are calculated by the coupled channel method of the optical model code ECIS, while the compound nucleus mechanism are treated by the statistical models implemented in the codes STATIS, GNASH and TALYS. The STATIS code includes a refined model of the fission process. Results from the theoretical calculations are compared with data retrieved from the experimental data base EXFOR. (author)
Metonymy and Cross Section Demand
Evstigneev, Igor V.; Hildenbrand, Werner; Jerison, Michael
1996-01-01
Cross section consumer expenditure data are frequently used to make conclusions about consumer demand behavior. Such conclusions, however, can only be justified under certain assumptions, which are often left unstated in the empirical demand literature. An assumption of this type, the metonymy hypothesis, was stated rigorously and then exploited by Hardle, Hildenbrand and Jerison when analyzing the monotonicity property of aggregate demand functions. The purpose of the present paper is to exa...
Wind Turbine Radar Cross Section
David Jenn; Cuong Ton
2012-01-01
The radar cross section (RCS) of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axi...
New activation cross section data
New nuclear cross section libraries (known as USACT92) have been created for activation calculations. A point-wise file was created from merging the previous version of the activation library, the U.S. Nuclear Data Library (ENDF/B-VI), and the European Activation File (EAF-2). 175 and 99 multi-group versions were also created. All the data are available at the National Energy Research Supercomputer Center
Mendoza, E; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Becvár, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krticka, M; Kroll, J; Langer, C; Lampoudis, C; Leal-Cidoncha, E; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T; Zugec, P
2014-01-01
Actual and future nuclear technologies require more accurate nuclear data on the (n, $\\gamma$) cross sections and $\\alpha$-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission $\\gamma$-ray background competing with the weaker $\\gamma$-ray cascades used as the experimental signature of the (n, $\\gamma$) process. A specific setup has been used at the CERN n_TOF facility in 2012 for the measurement of the (n,$\\gamma$ ) cross section and $\\alpha$- ratios of fissile isotopes and used for the case of the $^{235}$U isotope. The setup consists in a set of micromegas fission detectors surrounding $^{235}$U samples and placed inside the segmented BaF$_2$ Total Absorption Calorimeter.
Balibrea, J; Cano-Ott, D; Guerrero, C; Berthoumieux, E; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kawano, T; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lampoudis, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Stetcu, I; Sabaté, M; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P
Current and future nuclear technologies require more accurate nuclear data on (n,γ) cross sections and the α-ratios of fissile isotopes. Their measurement presents several difficulties, mainly related to the strong fission γ-ray background competing with the weaker γ-ray cascades used as the experimental signature of the (n,γ) process. A specific setup was used at the CERN n_TOF facility in 2012 for the measurement of the (n,γ) cross section and α-ratios of fissile isotopes and used for the case of the 235U isotope. The setup consists of a set of micromegas fission detectors surrounding the 235U samples all placed inside a segmented BaF2 Total Absorption Calorimeter.
Microscopic cross sections: An utopia?
Hilaire, S. [CEA Bruyeres-le-Chatel, DIF 91 (France); Koning, A.J. [Nuclear Research and Consultancy Group, PO Box 25, 1755 ZG Petten (Netherlands); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP 226, 1050 Brussels (Belgium)
2010-07-01
The increasing need for cross sections far from the valley of stability poses a challenge for nuclear reaction models. So far, predictions of cross sections have relied on more or less phenomenological approaches, depending on parameters adjusted to available experimental data or deduced from systematical relations. While such predictions are expected to be reliable for nuclei not too far from the experimentally known regions, it is clearly preferable to use more fundamental approaches, based on sound physical bases, when dealing with very exotic nuclei. Thanks to the high computer power available today, all major ingredients required to model a nuclear reaction can now be (and have been) microscopically (or semi-microscopically) determined starting from the information provided by a nucleon-nucleon effective interaction. We have implemented all these microscopic ingredients in the TALYS nuclear reaction code, and we are now almost able to perform fully microscopic cross section calculations. The quality of these ingredients and the impact of using them instead of the usually adopted phenomenological parameters will be discussed. (authors)
Cross-section analysis for TRADE fuel
The TRIGA core includes bounded hydrogen in Zirconium hydride in its fuel meat allowing for fast reactivity transients. The inherent safety mechanism is based on the immediate increase of neutron up-scattering by the hydrogen as a result of a fuel temperature increase. The temperature dependent resonance absorption is the second safety feature. The special fuel type together with the introduction of an external source within it for the TRADE project necessitates an accurate evaluation of the bounded hydrogen cross section generation technique as well as of the resonance treatment. By comparing deterministic tools and Monte Carlo solution methods the generated bounded isotopes cross sections are analysed. Further, the importance of the Doppler and the thermal up-scattering effects are quantified and the sensitivities to the solution method are discussed. (authors)
This study first describes a bent crystal monochromator developed for the production of monochromatic beams in a continuous energy range from 30 to 250 keV; it is completed by a metrological application of the device (determination of K absorption edge energy of Au, Th, U, Pu). A method and the associated experimental procedure were developed to measure the photo-electric cross section for high-Z elements; the results are presented with a relative uncertainty ranging between 3 and 6%. Finally, the experimental values are compared with values calculated from theories using self-consistent potential models
Danielache, Sebastian Oscar; Eskebjerg, Carsten; Johnson, Matthew Stanley; Ueno, Yuichiro; Yoshida, Naohiro
2008-01-01
[1] We report measurements of the ultraviolet absorption cross sections of 32SO2, 33SO2, and 34SO2, recorded from 30,300 to 52,500 cm1 (330 to 190 nm) at 293 K with a resolution of 25 cm1. The 33SO2 sample was produced by the combustion of isotopically enriched 33S while the 34SO2 and natural...... abundance samples were obtained from commercial manufacturers. The spectrum of the natural abundance sample is in agreement with previously published spectra. The spectra of the isotopically pure species were retrieved using the isotopic composition of the samples. The 32SO2, 33SO2, and 34SO2 absorption...
[Fast neutron cross section measurements
In this report, we outline the progress achieved in two distinct under the DOE-sponsored cross section project: the initial results obtained from the pulsed 14 MeV neutron facility, and a cooperative effort with Argonne National Laboratory in the measurement of fast neutron cross sections in yttrium. In the 14 MeV neutron laboratory, this year has seen the maturation of the project into one in which initial scattering measurements are now underway. We have improved the accelerator and ion source in several significant ways, so that neutron intensities have now been proven to be adequate for our series of elastic scattering angular distribution measurements outlined in our initial proposal of two years ago. We have successfully tested all components of the time-of-flight spectrometer and recorded initial neutron spectra from the ring targets that we have obtained for our first angular distribution measurements. Examples of the time-of-flight spectra that have been obtained are given later in this report. At the present time, the accelerator is operating with the highest degree of reliability that we have experienced since installing the pulsing system. Improvements made over the past year have not only increased the available neutron intensity, but also increased our capability to deal with inevitable component failures that require repair or replacement. The measurements carried out in conjunction with Argonne have contributed significantly to the available database on fast neutron interactions in yttrium. Results indicate that the cross section for the 89 Y(n,p)89Sr reaction is substantially higher than represented in ENDF/B-VI
Wind Turbine Radar Cross Section
David Jenn
2012-01-01
Full Text Available The radar cross section (RCS of a wind turbine is a figure of merit for assessing its effect on the performance of electronic systems. In this paper, the fundamental equations for estimating the wind turbine clutter signal in radar and communication systems are presented. Methods of RCS prediction are summarized, citing their advantages and disadvantages. Bistatic and monostatic RCS patterns for two wind turbine configurations, a horizontal axis three-blade design and a vertical axis helical design, are shown. The unique electromagnetic scattering features, the effect of materials, and methods of mitigating wind turbine clutter are also discussed.
A calculation for double scattering and absorption corrections in fast neutron scattering experiments using Monte-Carlo method is given. Application to cylindrical target is presented in FORTRAN symbolic language. (author)
Parametric equations for calculation of macroscopic cross sections
Botelho, Mario Hugo; Carvalho, Fernando, E-mail: mariobotelho@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2015-07-01
Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)
[Fast neutron cross section measurements
In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months
Electron-Impact Ionization Cross Section Database
SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access) This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.
Polynomial parameterized representation of macroscopic cross section for PWR reactor
Fiel, Joao Claudio B., E-mail: fiel@ime.eb.br [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear
2015-07-01
The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and {sup 235} U {sub 92} enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K{sub inf}, generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)
Evaluation of cross section for 103Rh
A completely new evaluation for the neutron cross sections is presented. The experimental data mainly referred to EXFOR, and the recommended cross sections are compared with ENDF/B-6, BROND-2, JENDL-3.2 and JEF-2
Photoproduction total cross section and shower development
Cornet, F.; García Canal, C. A.; Grau, A.; Pancheri, G.; Sciutto, S. J.
2015-12-01
The total photoproduction cross section at ultrahigh energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.
Photoproduction total cross section and shower development
Cornet, F; Grau, A; Pancheri, G; Sciutto, S J
2015-01-01
The total photoproduction cross section at ultra-high energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air-showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.
JENDL gas-production cross section file
The JENDL gas-production cross section file was compiled by taking cross-section data from JENDL-3 and by using the ENDF-5 format. The data were given to 23 nuclei or elements in light nuclei and structural materials. Graphs of the cross sections and brief description on their evaluation methods are given in this report. (author)
Pagsberg, P.; Bjergbakke, E.; Ratajczak, E.;
1997-01-01
The reaction OH + NO(+ M) --> HONO(+ M) with M = SF6 as a third body has been employed as a clean source for recording the near-ultraviolet absorption spectrum of HONO without interference from other absorbing species. The reaction was initiated by the pulse radiolysis of SF6/H2O/NO mixtures with...... total pressures in the range 10-1000 mbar at 298 K. The pressure dependence of the rate coefficient was studied by time-resolved UV and IR spectroscopy. By analysis of the fall-off curve we have derived a value for the limiting low pressure rate constant k(0)/[SF6] = (1.5 +/- 0.1) X 10(-30) cm(6...
[Fast neutron cross section measurements
From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ''clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ''data production'' phase
SNL RML recommended dosimetry cross section compendium
Griffin, P.J.; Kelly, J.G.; Luera, T.F. [Sandia National Labs., Albuquerque, NM (United States); VanDenburg, J. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)
1993-11-01
A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.
Recent fission cross section standards measurements
Wasson, O.A.
1985-01-01
The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.
Recent fission cross section standards measurements
The 235U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to 235U. However, the more difficult 235U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the 235U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs
Plasma-based radar cross section reduction
Singh, Hema; Jha, Rakesh Mohan
2016-01-01
This book presents a comprehensive review of plasma-based stealth, covering the basics, methods, parametric analysis, and challenges towards the realization of the idea. The concealment of aircraft from radar sources, or stealth, is achieved through shaping, radar absorbing coatings, engineered materials, or plasma, etc. Plasma-based stealth is a radar cross section (RCS) reduction technique associated with the reflection and absorption of incident electromagnetic (EM) waves by the plasma layer surrounding the structure. A plasma cloud covering the aircraft may give rise to other signatures such as thermal, acoustic, infrared, or visual. Thus it is a matter of concern that the RCS reduction by plasma enhances its detectability due to other signatures. This needs a careful approach towards the plasma generation and its EM wave interaction. The book starts with the basics of EM wave interactions with plasma, briefly discuss the methods used to analyze the propagation characteristics of plasma, and its generatio...
Osthoff, Hans D; Pilling, Michael J; Ravishankara, A R; Brown, Steven S
2007-11-21
The reaction NO3 + NO2 N2O5 was studied over the 278-323 K temperature range. Concentrations of NO3, N2O5, and NO2 were measured simultaneously in a 3-channel cavity ring-down spectrometer. Equilibrium constants were determined over atmospherically relevant concentration ranges of the three species in both synthetic samples in the laboratory and ambient air samples in the field. A fit to the laboratory data yielded Keq = (5.1 +/- 0.8) x 10(-27) x e((10871 +/- 46)/7) cm3 molecule(-1). The temperature dependence of the NO3 absorption cross-section at 662 nm was investigated over the 298-388 K temperature range. The line width was found to be independent of temperature, in agreement with previous results. New data for the peak cross section (662.2 nm, vacuum wavelength) were combined with previous measurements in the 200 K-298 K region. A least-squares fit to the combined data gave sigma = [(4.582 +/- 0.096) - (0.00796 +/- 0.00031) x T] x 10(-17) cm2 molecule(-1). PMID:19462574
Background-cross-section-dependent subgroup parameters
A new set of subgroup parameters was derived that can reproduce the self-shielded cross section against a wide range of background cross sections. The subgroup parameters are expressed with a rational equation which numerator and denominator are expressed as the expansion series of background cross section, so that the background cross section dependence is exactly taken into account in the parameters. The advantage of the new subgroup parameters is that they can reproduce the self-shielded effect not only by group basis but also by subgroup basis. Then an adaptive method is also proposed which uses fitting procedure to evaluate the background-cross-section-dependence of the parameters. One of the simple fitting formula was able to reproduce the self-shielded subgroup cross section by less than 1% error from the precise evaluation. (author)
Vertically stabilized elongated cross-section tokamak
Sheffield, George V.
1977-01-01
This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.
Measurements of neutron capture cross sections
A review of measurement techniques for the neutron capture cross sections is presented. Sell transmission method, activation method, and prompt gamma-ray detection method are described using examples of capture cross section measurements. The capture cross section of 238U measured by three different prompt gamma-ray detection methods (large liquid scintillator, Moxon-Rae detector, and pulse height weighting method) are compared and their discrepancies are resolved. A method how to derive the covariance is described. (author)
Compilation of cross-sections. Pt. 2
A compilation of integrated cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross sections versus incident laboratory momentum are also given. This volume II contains cross-sections for K+ and K- induced reactions. (orig.)
Cross Sections for Electron Collisions with Methane
Song, Mi-Young, E-mail: mysong@nfri.re.kr; Yoon, Jung-Sik [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Osikdo-dong, Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Cho, Hyuck [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Itikawa, Yukikazu [Institute of Space and Astronautical Science, Sagamihara 252-5210 (Japan); Karwasz, Grzegorz P. [Faculty of Physics, Astronomy and Applied Informatics, University Nicolaus Copernicus, Grudziadzka 5, 87100 Toruń (Poland); Kokoouline, Viatcheslav [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Nakamura, Yoshiharu [6-1-5-201 Miyazaki, Miyamae, Kawasaki 216-0033 (Japan); Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
2015-06-15
Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.
Ion and electron impact ionization cross sections
Several current projects are described in which cross sections of interest to radiation physics are being measured. These include total and multiple ionization cross sections for protons on several gases covering a wide energy range, the measurement of cross sections differential in the angle and energy of ejected electrons for several gases including water vapor, and a review of proton ionization data. The work on water vapor has also been extended to electron and neutral hydrogen impact. A brief discussion is also given of some systematics of ionization cross sections. 13 references
Improved Empirical Parametrization of Fragmentation Cross Sections
Sümmerer, Klaus
2012-01-01
A new version is proposed for the universal empirical formula, EPAX, which describes fragmentation cross sections in high-energy heavy-ion reactions. The new version, EPAX 3, can be shown to yield cross sections that are in better agreement with experimental data for the most neutron-rich fragments than the previous version. At the same time, the very good agreement of EPAX 2 with data on the neutron-deficient side has been largely maintained. Comparison with measured cross sections show that the bulk of the data is reproduced within a factor of about 2, for cross sections down to the pico-barn range.
Damage cross section library (DAMSIG77)
The damage cross sections of various materials are converted to a data format, which can be used as library for the program SAND-II. The materials available in this library are graphite, stainless steel, aluminium, silicium, chromium, iron, nickel, copper, zirconium, molybdenum, tungsten, vanadium and niobium. A number of these materials have more than one cross section set, originating from different evaluations. Cross sections for some activation reactions, commonly used to determine thermal and fast neutron fluences have been included too. Moreover, also some artificial cross sections are introduced in this library which can be used to derive values for some physical quantities which may characterize neutron spectra
Multiple scattering Xα bound state and continuum calculations are used to study low energy elastic electron scattering cross sections and pre-edge features in the x-ray absorption spectra (XAS) of (C,Si)X4, X = H,F,Cl. Maxima in the electron scattering cross section are predicted to occur at energies below 4 eV in the t2 channel for CF4, CCl4, SiH4, and SiCl4. These maxima can be assigned to final state orbitals which are bound in XAS and well localized in space and a quantitative correspondence of such scattering ''resonance'' energies and XAS energies may be obtained using the transition state approach. For CH4 and SiF4 even those bound state orbitals giving the greatest XAS intensity are very diffuse, being essentially of Rydberg character. Broad electron scattering maxima are found at energies above 4 eV in these molecules which cannot be directly associated with the bound state orbitals dominating the XAS. The results thus establish that low energy electron scattering resonances and pre-edge XAS are closely related only for orbitals bound and reasonably well localized in XAS. The MS-Xα results almost always reproduce experimental trends along the molecular series but quantitative discrepancies from experiment are sometimes substantial, particularly for the broad high energy scattering maxima in CH4. The narrow t2 resonance calculated for CF4 is found to vary greatly in position and intensity as the C--F distance is varied by small amounts but the stronger, broader t2 resonance in SiH4 is little affected by bond distance variation
Compilation of cross-sections. Pt. 4
This is the fourth volume in our series of data compilations on integrated cross-sections for weak, electromagnetic, and strong interaction processes. This volume covers data on reactions induced by photons, neutrinos, hyperons, and KL0. It contains all data published up to June 1986. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)
Compilation of cross-sections. Pt. 1
A compilation of integral cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. (orig.)
Nucleon-XcJ Dissociation Cross Sections
冯又层; 许晓明; 周代翠
2002-01-01
Nucleon-XcJ dissociation cross sections are calculated in a constituent interexchange model in which quark-quark potential is derived from the Buchmüller-Tye quark-anti-quark potential. These new cross sections for dominant reaction channels depend on the centre-of-mass energy of the nucleon and the charmonium.
Fission cross section calculations for Pa isotopes
Based on the recently measured cross-section values for the neutron-induced fission of 231Pa and our experience gained with other isotopes, new self consistent neutron cross section calculations for n+231Pa have been performed up to 30 MeV. The results are quite different to the existing evaluations, especially above the first chance fission threshold. (authors)
The neutron cross-sections of Xe135
Measurements of the total and absorption cross-sections of Xe135 reviewed briefly. The low-energy cross-section is very large and dominated by a single resonance at 0.084 eV; the spin state for this level is not known, this being one of the major uncertainties in the data. The resonance parameters given in the literature were found to give a good fit to the total cross-section but failed to reproduce the preferred 2200 m/sec. value of σγ. A new set of parameters was therefore deduced, by a least-squares analysis, which gave this preferred value of σγ and fitted the shape of the total cross section curve. To obtain this fit it was necessary to re-normalise the curve of σT by 4%. The new parameters are listed, and a discussion of the probable accuracy of the data is included. (author)
Comparative analysis among several cross section sets
Critical parameters were calculated using the one dimensional multigroup transport theory for several cross section sets. Calculations have been performed for water mixtures of uranium metal, plutonium metal and uranium-thorium oxide, and for metallics systems, to determine the critical dimensions of geometries (sphere and cylinder). For this aim, the following cross section sets were employed: 1) multigroup cross section sets obtained from the GAMTEC-II code; 2) the HANSEN-ROACH cross section sets; 3) cross section sets from the ENDF/B-IV, processed by the NJOY code. Finally, we have also calculated the corresponding critical radius using the one dimensional multigroup transport DTF-IV code. The numerical results agree within a few percent with the critical values obtained in the literature (where the greatest discrepancy occured in the critical dimensions of water mixtures calculated with the values generated by the NJOY code), a very good results in comparison with similar works. (Author)
Photoproton cross section for 17O
The measurement of the 17O(γ,p)16N reaction from threshold to an excitation energy of 44 MeV is presented. These results have been summed with the previously measured total photoneutron cross section to provide an approximation to the total photoabsorption cross section of 17O. The magnitude of the 17O photoabsorption cross section at the peak of the Giant Dipole Resonance is considerably less than the equivalent value for the photoabsorption cross sections of 16O and 18O. In addition, the integrated total photoabsorption cross section for 17O (up to 40 MeV) exhausts only about 58% of the sum rule; the values for the cases of 16O and 18O are significantly larger than this. The present data along with results from other reaction channels of this nucleus, were used to make spin, parity, and isospin assignments for several states in 17O. 48 refs., 4 tabs., 7 figs
Spinei, E.; Cede, A.; Swartz, W. H.; Herman, J.; Mount, G. H.
2014-12-01
This paper presents a temperature sensitivity method (TESEM) to accurately calculate total vertical NO2 column, atmospheric slant NO2 profile-weighted temperature (T), and to separate stratospheric and tropospheric columns from direct-sun (DS), ground-based measurements using the retrieved T. TESEM is based on differential optical absorption spectroscopy (DOAS) fitting of the linear temperature-dependent NO2 absorption cross section, σ (T), regression model (Vandaele et al., 2003). Separation between stratospheric and tropospheric columns is based on the primarily bimodal vertical distribution of NO2 and an assumption that stratospheric effective temperature can be represented by temperature at 27 km ± 3 K, and tropospheric effective temperature is equal to surface temperature within 3-5 K. These assumptions were derived from the Global Modeling Initiative (GMI) chemistry-transport model (CTM) simulations over two northern midlatitude sites in 2011. TESEM was applied to the Washington State University Multi-Function DOAS instrument (MFDOAS) measurements at four midlatitude locations with low and moderate NO2 anthropogenic emissions: (1) the Jet Propulsion Laboratory's Table Mountain Facility (JPL-TMF), CA, USA (34.38° N/117.68° W); (2) Pullman, WA, USA (46.73° N/117.17° W); (3) Greenbelt, MD, USA (38.99° N/76.84° W); and (4) Cabauw, the Netherlands (51.97° N/4.93° E) during July 2007, June-July 2009, July-August and October 2011, November 2012-May 2013, respectively. NO2 T and total, stratospheric, and tropospheric NO2 vertical columns were determined over each site.
Photoneutron cross sections for the silicon isotopes
The photoneutron cross sections for 28Si, 29Si, and 30Si have been measured up to 33 MeV with monoenergetic photons from the annihilation in flight of fast positrons, using neutron multiplicity counting. Average neutron energies were obtained simultaneously with the cross-section data by the ring-ratio technique. The giant dipole resonance for 28Si and 30Si exhibit appreciable fragmentation; that for 29Si does not. The (γ,2n) cross section for 30Si is large; that for 29Si is consistent with zero. The (γ,1n) cross section for 30Si decreases sharply with energy to values near zero as the (γ,2n) cross section grows, then increases to appreciable values as the (γ,2n) cross section diminishes; this extreme behavior, although never seen before, is attributable to the competition between the (γ,n), (γ,2n), and (γ,pn) decay channels. Some properties of the isospin components of the giant resonance are inferred. Other features of the data, including the integrated cross sections, are found to be similar in many respects to corresponding results for the oxygen and magnesium isotopes. The 28Si nucleus is found to be a better core for 29Si and 30Si than might have been expected from previous descriptions of its open-shell character
Compilation of cross-sections. Pt. 3
A compilation of integrated cross-sections for hadronic reactions is presented. This is an updated version of CERN/HERA 79-1, 79-2, 79-3. It contains all data published up to the beginning of 1982, but some more recent data, particularly those from the CERN Collider, have also been included. Plots of the cross-sections versus incident laboratory momentum are also given. This volume III contains cross-sections for p and anti p induced reactions. (orig.)
Screening corrections to the Rutherford cross section
Differential cross sections for elastic p-Au scattering were measured in the energy range between 0.2 and 0.8 MeV for scattering angles from 300 to 1500 in order to determine corrections to the Rutherford cross section due to the screening of the nuclear charge by the atomic electrons. Furthermore, differential cross sections have been calculated in the weakly screening region using various screening functions. A simple analytical expression has been derived for the representation of both experimental and theoretical results. (orig.)
A nuclear cross section data handbook
Fisher, H.O.M.
1989-12-01
Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.
Differential cross sections of positron hydrogen collisions
于荣梅; 濮春英; 黄晓玉; 殷复荣; 刘旭焱; 焦利光; 周雅君
2016-01-01
We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed.
Systematics of (n,2n) Cross Sections
2008-01-01
<正>The experimental data of (n, 2n) cross sections were collected and evaluated as complete as possible. There are 640 sets of experimental data for 130 nuclei. The data were fitted to the expressions that describe the
Photoneutron cross section of 34S
Using an enriched 34S target, the reaction 34S(γ,sn)33S has been measured from below threshold (10.4 MeV) to 28 MeV by directly counting the photoneutrons as a function of bremsstrahlung energy. The resultant cross section shows gross splitting in the GDR region. The integrated cross section is discussed in the light of the systematics of similar nuclei having two neutrons outside a doubly closed shell/sub-shell core
Photoneutron cross section of 34S
Using an enriched 34S target, the reaction 34S(γ, sn) has been measured from below threshold (10.4 MeV) to 28 MeV by directly counting the photoneutrons as a function of bremsstrahlung energy. The resultant cross section shows gross splitting in the GDR region. The integrated cross section is discussed in the light of the systematics of similar nuclei having two neutrons outside a doubly closed shell/sub-shell core. (orig.)
Neutron capture cross sections from Surrogate measurements
Scielzo N.D.; Dietrich F.S.; Escher J.E.
2010-01-01
The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.
Neutron capture cross sections from Surrogate measurements
Scielzo N.D.
2010-03-01
Full Text Available The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications.
Evaluation methods for neutron cross section standards
Methods used to evaluate the neutron cross section standards are reviewed and their relative merits, assessed. These include phase-shift analysis, R-matrix fit, and a number of other methods by Poenitz, Bhat, Kon'shin and the Bayesian or generalized least-squares procedures. The problems involved in adopting these methods for future cross section standards evaluations are considered, and the prospects for their use, discussed. 115 references, 5 figures, 3 tables
Methods for calculating anisotropic transfer cross sections
The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)
Status of pseudo-fission-product cross-sections for fast reactors
Within the framework of the Subgroup 17 (SG17) benchmark organized by a Working Party of the Nuclear Science Committee of the Nuclear Energy Agency (FR), a comparison of lumped or pseudo-fission-product cross-sections for fast reactors has been made. Several parameters have been compared: the one- group cross-sections and reactivity worths of the lumped nuclide for several partial absorption and scattering cross-sections, and the one-group cross sections of individual fission products. Graphs of the multi-group cross-sections and those of capture cross-sections for 27 nuclides have also been compared. (R.P.)
Unified approach to the multilevel parametrization of resonance cross sections
A combined method of parametrization in the resolved resonance region and an approach to modelling the resonance structure in the unresolved region are suggested. The most typical case for the resonances of the non fissile nuclei with one neutron channel (s-wave resonances or resonances of an arbitrary l and a zero spin of the target nucleus) are considered. It is shown that for such systems the total cross section as well as the absorption cross section can be expressed as ratios of sums of pole terms with respect to energy. The modeling of the resonance structure in the unresolved region is needed for the examination of the resonance self-shielding effects in reactor physics. In this region the analysis of the experimental data (average cross sections and average transmissions) permits the determination of only the average resonance parameters - the strength functions Sn, Sγ. And it is necessary to model the resonance cross sections structure and such models should give the correct average cross section and also conserve the information for the cross sections minima to which the values of the transmissions data are very sensitive
abo-cross: Hydrogen broadening cross-section calculator
Barklem, P. S.; Anstee, S. D.; O'Mara, B. J.
2015-07-01
Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O'Mara (1995), Barklem & O'Mara (1997) and Barklem, O'Mara & Ross (1998) for s-p, p-s, p-d, d-p, d-f and f-d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.
A Pebble Bed Reactor cross section methodology
A method is presented for the evaluation of microscopic cross sections for the Pebble Bed Reactor (PBR) neutron diffusion computational models during convergence to an equilibrium (asymptotic) fuel cycle. This method considers the isotopics within a core spectral zone and the leakages from such a zone as they arise during reactor operation. The randomness of the spatial distribution of fuel grains within the fuel pebbles and that of the fuel and moderator pebbles within the core, the double heterogeneity of the fuel, and the indeterminate burnup of the spectral zones all pose a unique challenge for the computation of the local microscopic cross sections. As prior knowledge of the equilibrium composition and leakage is not available, it is necessary to repeatedly re-compute the group constants with updated zone information. A method is presented to account for local spectral zone composition and leakage effects without resorting to frequent spectrum code calls. Fine group data are pre-computed for a range of isotopic states. Microscopic cross sections and zone nuclide number densities are used to construct fine group macroscopic cross sections, which, together with fission spectra, flux modulation factors, and zone buckling, are used in the solution of the slowing down balance to generate a new or updated spectrum. The microscopic cross-sections are then re-collapsed with the new spectrum for the local spectral zone. This technique is named the Spectral History Correction (SHC) method. It is found that this method accurately recalculates local broad group microscopic cross sections. Significant improvement in the core eigenvalue, flux, and power peaking factor is observed when the local cross sections are corrected for the effects of the spectral zone composition and leakage in two-dimensional PBR test problems.
Photoionization cross section of 1s orthoexcitons in cuprous oxide
Frazer, Laszlo; Chang, Kelvin B.; Poeppelmeier, Kenneth R.; Ketterson, John B.
2014-01-01
We report measurements of the attenuation of a beam of orthoexciton-polaritons by a photoionizing optical probe. Excitons were prepared in a narrow resonance by two photon absorption of a 1.016 eV, 54 ps pulsed light source in cuprous oxide (Cu2O) at 1.4 K. A collinear, 1.165 eV, 54 ps probe delayed by 119 ps was used to measure the photoionization cross section of the excitons. Two photon absorption is quadratic with respect to the intensity of the pump and leads to polariton formation. Ioni...
Reduction Methods for Total Reaction Cross Sections
Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.
2016-03-01
The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.
Neutron method and apparatus for determining total cross-section
This invention relates to the determination of the macroscopic neutron absorption cross section of the geological formation surrounding a borehole. The method comprises passing a logging sonde through the borehole while continuously irradiating the formation with neutrons. The radiation emanating from the formation is monitored to generate a first signal indicative of thermal neutrons and a second signal indicative of epithermal neutrons. Output signals are generated indicative of the spatial distribution of thermal and epithermal neutrons, and are combined to generate a signal representative of the macroscopic neutron absorption cross section of the formation. The apparatus comprises a logging sonde adapted for movement through the borehole and carrying a neutron source; detector means on the sonde for monitoring radiation emanating from the formation to generate signals indicative of thermal and epithermal neutrons; means for generating output signals indicative of the spatial distribution of thermal and epithermal neutrons; and means for combining the two output signals to generate a signal indicative of the macroscopic neutron absorption cross section of the material
Neutron cross section of methane hydrate
Kiyanagi, Y.; Date, S.; Horikawa, T.; Takamine, J.; Iwasa, H.; Kamiyama, T. [Graduate School of Eng., Hokkaido Univ., Sapporo (Japan); Uchida, T.; Ebinuma, T.; Narrita, H. [National Inst. of Advanced Industrial Science, Tsukisamu, Sapporo (Japan); Bennington, S.M. [ISIS Dept., Rutherford Appleton, Chilton, Didcot, Oxon (United Kingdom)
2004-03-01
To estimate the neutronic characteristics of methane hydrate and also to synthesize cross section data for simulation we need neutron scattering data ranging wide energy and momentum region. We performed inelastic neutron scattering experiments to get information about the neutron cross section on methane hydrate. It was found that at high momentum transfer region rotational mode as well as vibration mode showed recoil like behavior. On the other hand, at low momentum region, as well known, free rotation like energy levels were observed. The energy level of ice in methane hydrate was very similar to normal ice. The results suggest that the rough expression of the cross section of the methane hydrate is presented by linear combination of the methane and ice. (orig.)
Prospects for Precision Neutrino Cross Section Measurements
Harris, Deborah A. [Fermilab
2016-01-28
The need for precision cross section measurements is more urgent now than ever before, given the central role neutrino oscillation measurements play in the field of particle physics. The definition of precision is something worth considering, however. In order to build the best model for an oscillation experiment, cross section measurements should span a broad range of energies, neutrino interaction channels, and target nuclei. Precision might better be defined not in the final uncertainty associated with any one measurement but rather with the breadth of measurements that are available to constrain models. Current experience shows that models are better constrained by 10 measurements across different processes and energies with 10% uncertainties than by one measurement of one process on one nucleus with a 1% uncertainty. This article describes the current status of and future prospects for the field of precision cross section measurements considering the metric of how many processes, energies, and nuclei have been studied.
Radiation pressure cross section for fluffy aggregates
We apply the discrete dipole approximation (DDA) to estimate the radiation pressure cross section for fluffy aggregates by computing the asymmetry parameter and the cross sections for extinction and scattering. The ballistic particle-cluster aggregate and the ballistic cluster-cluster aggregate consisting of either dielectric or absorbing material are considered to represent naturally existing aggregates. We show that the asymmetry parameter perpendicular to the direction of wave propagation is maximized where the wavelength is comparable to the aggregate size, which may be characterized by the area-equivalent radius or the radius of gyration rather than the volume-equivalent radius. The asymmetry parameter for the aggregate depends on the morphology of the particle, but not on the constituent material. Therefore, the dependence of the radiation pressure cross section on the material composition arises mainly from that of the extinction and scattering cross sections, in other words, the single-scattering albedo. We find that aggregates consisting of high-albedo material show a large deviation of radiation pressure from the direction of incident radiation. When the aggregates are illuminated by blackbody radiation, the deviation of the radiation pressure increases with increasing temperature of the blackbody. Since the parallel component of the radiation pressure cross section for the aggregates is smaller than that for the volume-equivalent spheres at the size parameter close to unity, the Planck-mean radiation pressure cross section for the aggregates having radius comparable to the effective wavelength of radiation shows a lower value, compared with the volume-equivalent sphere. Consequently, the slope of the radiation pressure force per mass of the particle as a function of particle mass shows a lower maximum for the aggregates than for compact spherical particles. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Charged particle reaction cross sections and nucleosynthesis
The role of proton and α-particle induced reactions in carbon, neon, oxygen and silicon burning in massive stars is surveyed. The problems associated with determining thermonuclear reaction rates for reactions with widely spaced resonances and with closely spaced or overlapping resonances are discussed and the associated experimental approaches are reviewed. Experimental techniques which have been used in the measurement of reaction cross sections are discussed and their strengths and weaknesses are identified. Recent developments in attempts to establish reliable statistical-model codes for calculation of reaction cross sections are presented and discussed. The results of experimental tests of statistical model codes are summarised and evaluated
Neutron capture cross sections from surrogate measurements
The prospects for determining cross sections for compound-nuclear neutron-capture reactions from Surrogate measurements are investigated. Calculations as well as experimental results are presented that test the Weisskopf-Ewing approximation, which is employed in most analyses of Surrogate data. The method is applied to the 155Gd(n,γ) reaction. It is concluded that, in general, one has to go beyond this approximation in order to obtain (n,γ) cross sections of sufficient accuracy for most astrophysical and nuclear-energy applications. (authors)
Precise neutron inelastic cross section measurements
Negret, Alexandru
2012-11-01
The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.
Saturation Effects in Hadronic Cross Sections
Shoshi, Arif I.; Steffen, Frank D.
2002-01-01
We compute total and differential elastic cross sections of high-energy hadronic collisions in the loop-loop correlation model that provides a unified description of hadron-hadron, photon-hadron, and photon-photon reactions. The impact parameter profiles of pp and gamma*p collisions are calculated. For ultra-high energies the hadron opacity saturates at the black disc limit which tames the growth of the hadronic cross sections in agreement with the Froissart bound. We compute the impact param...
Covariance Evaluation Methodology for Neutron Cross Sections
Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.
2008-09-01
We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.
Atlas of neutron capture cross sections
This report describes neutron capture cross sections in the range 10-5 eV - 20 MeV as evaluated and compiled in recent activation libraries. The selected subset comprise the (n,γ) cross sections for a total of 739 targets for the elements H (Z = 1, Z = 1) to Cm (Z = 96, A = 238) totaling 972 reactions. Plots of the point-wise data are shown and comparisons are made with the available experimental values at thermal energy, 30 keV and 14.5 MeV. 10 refs, 7 tabs
Verification of important cross section data
Full text: Continuing efforts in nuclear data development have made the design of a fusion power system less uncertain. The fusion evaluated nuclear data library (FENDL) development effort since 1987 under the leadership of the IAEA Nuclear Data Section has provided a credible international library for the investigation and design of the International Thermonuclear Engineering Reactor (ITER). Integral neutronics experiments are being carried out for ITER and fusion power plant blanket and shield assemblies to validate the available nuclear database and to identify deficiencies for further improvement. Important cross section data need experimental verifications if these data are evaluated based on physics model calculations and there are no measured data points available. A particular reaction cross section is Si28(n,x)Al27, which is the important cross section to determine whether the low activation SiC composite structure can be qualified as low level nuclear waste after life time exposure in the first wall neutron environment in a fusion power plant. Measurements of helium production data for candidate fusion materials are also needed, particularly at energies above 14 MeV for the assessment of materials damage in the IFMIF neutron spectrum. To a less extent, it appears that V51(n,x)Ti50 reaction cross section also needs to be measured to further confirm a recent new evaluation of vanadium for ENDF/B-VII. (author)
Fusion cross sections and the new dynamics
The prediction of the need for an extra push over the interaction barrier in order to make the heavier nuclei fuse is made the basis of a simple algebraic theory for the energy-dependence of the fusion cross-section. A comparison with recent experiments promises to provide a quantitative test of the New Dynamics
LSP-Nucleus Elastic Scattering Cross Sections
Vergados, J. D.; Kosmas, T. S.
1997-01-01
We calculate LSP-nucleus elastic scattering cross sections using some representative input in the restricted SUSY parameter space. The coherent matrix elements are computed throughout the periodic table while the spin matrix elements for the proposed $^{207}Pb$ target which has a rather simple nuclear structure. The results are compared to those given from other cold dark matter detection targets.
Electron impact excitation cross sections for carbon
Ganas, P. S.
1981-04-01
A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p 2( 3P O) valence state.
Electron impact excitation cross sections for carbon
A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p2(3P0) valence state. (orig.)
Top quark cross sections and differential distributions
Kidonakis, Nikolaos
2011-01-01
I present results for the top quark pair total cross section and the top quark transverse momentum distribution at Tevatron and LHC energies. I also present results for single top quark production. All calculations include NNLO corrections from NNLL threshold resummation.
Neutron cross sections of importance to astrophysics
Neutron reactions of importance to the various stellar burning cycles are discussed. The role of isomeric states in the branched s-process is considered for particular cases. Neutron cross section needs for the 187Re-187Os, 87Rb-87Sr clocks for nuclear cosmochronology are discussed. Other reactions of interest to astrophysical processes are presented. 35 references
Neutron Capture Cross Sections for Radioactive Nuclei
Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas
2015-10-01
Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.
Symmetric charge transfer cross section of uranium
Symmetric charge transfer cross section of uranium was calculated under consideration of reaction paths. In the charge transfer reaction a d3/2 electron in the U atom transfers into the d-electron site of U+(4I9/2) ion. The J value of the U atom produced after the reaction is 6, 5, 4 or 3, at impact energy below several tens eV, only resonant charge transfer in which the product atom is ground state (J=6) takes place. Therefore, the cross section is very small (4-5 x 10-15 cm2) compared with that considered so far. In the energy range of 100-1000eV the cross section increases with the impact energy because near resonant charge transfer in which an s-electron in the U atom transfers into the d-electron site of U+ ion. Charge transfer cross section between U+ in the first excited state (289 cm-1) and U in the ground state was also obtained. (author)
Measurement cross sections for radioisotopes production
New radioactive isotopes for nuclear medicine can be produced using particle accelerators. This is one goal of Arronax, a high energy - 70 MeV - high intensity - 2*350 μA - cyclotron set up in Nantes. A priority list was established containing β- - 47Sc, 67Cu - β+ - 44Sc, 64Cu, 82Sr/82Rb, 68Ge/68Ga - and α emitters - 211At. Among these radioisotopes, the Scandium 47 and the Copper 67 have a strong interest in targeted therapy. The optimization of their productions required a good knowledge of their cross-sections but also of all the contaminants created during irradiation. We launched on Arronax a program to measure these production cross-sections using the Stacked-Foils' technique. It consists in irradiating several groups of foils - target, monitor and degrader foils - and in measuring the produced isotopes by γ-spectrometry. The monitor - natCu or natNi - is used to correct beam loss whereas degrader foils are used to lower beam energy. We chose to study the natTi(p,X)47Sc and 68Zn(p,2p)67Cu reactions. Targets are respectively natural Titanium foil - bought from Goodfellow - and enriched Zinc 68 deposited on Silver. In the latter case, Zn targets were prepared in-house - electroplating of 68Zn - and a chemical separation between Copper and Gallium isotopes has to be made before γ counting. Cross-section values for more than 40 different reactions cross-sections have been obtained from 18 MeV to 68 MeV. A comparison with the Talys code is systematically done. Several parameters of theoretical models have been studied and we found that is not possible to reproduce faithfully all the cross-sections with a given set of parameters. (author)
HF field absorption by turbulent plasma in crossed fields
The paper studies the absorption of HF electromagnetic radiation by plasma with ion-sound turbulence excited by electrons which drift in constant crossed electric and magnetic fields. A strong absorption anisotropy is revealed in the last case for linearly polarized radiation, which anisotropy depends on field strength vector orientation relative to the electron to the electron drift direction
A New Neutrino Cross Section Data Ressource
Whalley, M R
2005-01-01
We describe a new web based data resource being developed to provide access to accurate and validated cross sections of low energy neutrino and antineutrino interactions. The proposed content of this database are outlined which cover total and differential cross from inclusive, quasi-elastic and exclusive pion production processes from charged and neutral current interactions. Efforts to obtain these data, which come mainly from old bubble chamber experiments, are described as well as the implementation of an embryonic web site to make the resource generally accessible.
Cross section library based discrepancies in MCNP criticality calculations
In nuclear engineering several reactor physics problems can be approached using Monte Carlo neutron transport techniques, which usually give reliable results when properly used. The quality of the results is largely determined by the accuracy of the geometry model and the statistical uncertainty of the Monte Carlo calculation. There is, however, another potential source of error, namely the cross section data used with the Monte Carlo codes. It has been shown in several studies that there may be significant discrepancies between results calculated using cross section libraries based on different evaluated nuclear data files. These discrepancies are well known to the evaluators of nuclear data but less acknowledged by reactor physicists, who often rely on a single cross section library in their calculations. In this study, discrepancies originating from base nuclear data were investigated in a systematic manner using the MCNP4C code. Calculations on simplified UOX and MOX fuelled LWR lattices were carried out using cross section libraries based on ENDF/B-VI.8, JEFF-3.0, JENDL-3.3, JEF-2.2 and JENDL-3.2 evaluated data files. The neutron spectrum of the system was varied over a wide range by changing the ratio of hydrogen to heavy metal atoms. The essential isotopes underlying the discrepancies were identified and the roles of fission and absorption cross sections of the most important nuclides assessed. The results confirm that there are large systematic differences up to a few per cent in the multiplication factors of LWR lattices. The discrepancies are strongly dependent on material compositions and neutron spectra, and largely originate from U-238 and the primary fissile isotopes. It is concluded that these discrepancies should be taken into account in all reactor physics calculations, and that reactor physicists should not rely on results based on a single cross section library. (author)
We are developing a method of (n,α) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the 12C(n,α0)9Be measurement. We applied this method to the 16O(n,α)13C cross section around 14.1 MeV. (author)
Sanami, Toshiya; Baba, Mamoru; Saito, Keiichiro; Ibara, Yasutaka; Hirakawa, Naohiro [Tohoku Univ., Sendai (Japan). Faculty of Engineering
1997-03-01
We are developing a method of (n,{alpha}) cross section measurement using gaseous samples in a gridded ionization chamber (GIC). This method enables cross section measurements in large solid angle without the distortion by the energy loss in a sample, but requires a method to estimate the detection efficiency. We solve this problem by using GIC signals and a tight neutron collimation. The validity of this method was confirmed through the {sup 12}C(n,{alpha}{sub 0}){sup 9}Be measurement. We applied this method to the {sup 16}O(n,{alpha}){sup 13}C cross section around 14.1 MeV. (author)
Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S
2002-01-01
Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...
Structured ion impact: Doubly differential cross sections
The electron emission in coincidence with a projectile that has been ionized has been measured, thus making it possible to separate and identify electrons resulting from these various mechanisms. In 1985, coincidence doubly differential cross sections were measured for 400 to 750 keV/atomic mass unit (amu) He+ impact on He, Ne, Ar, Kr, and H2O. Cross sections were measured for selected angles and for electron energies ranging from 10 to 1000 eV. Because of the coincidence mode of measurement, the total electron emission was subdivided into its target emission and its projectile emission components. The most interesting findings were that target ionization does not account for the electron emission spectrum at lower electron energies. A sizable percentage of these low-energy electrons were shown to originate as a result of simultaneous projectile/target ionizations. Similar features were observed for all targets and impact energies that were studied
Elliptical cross section fuel rod study II
In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab
Jet cross sections and PDF constraints
CMS Collaboration
2012-01-01
A measurement of inclusive jet and dijet production cross sections is presented. Data from LHC proton-proton collisions at $\\sqrt{s}=7\\TeV$, corresponding to $4.67\\fbinv$ of integrated luminosity, have been collected with the CMS detector. Jets are reconstructed with the anti-$k_T$ clustering algorithm of size parameter $R=0.7$, extending to rapidity $|y|=2.5$, transverse momentum $\\pt=2\\TeV$, and dijet invariant mass $M_{JJ}=5\\TeV$. The measured cross sections are corrected for detector effects and compared to perturbative QCD predictions at next-to-leading order, using various sets of parton distribution functions.
The photoneutron cross section of 20Ne
The photoneutron cross section of 20Ne has been measured over a photon energy range 16 to 29 MeV in steps of 100 keV. The giant dipole resonance is resolved into three strong peaks below 21 MeV and at least two broader resonances at higher excitations. This structure is consistent with earlier measurements of poorer resolution and shows a correlation with the recent calculations of Schmid and Do Dang. Comparisons with high resolution neutron time-of-flight and electron scattering data indicate that there appear to exist in the giant resonance of 20Ne, regions of structure roughly 2-3 MeV wide which exhibit localised characteristics related to the excitation mechanisms. The role of deformation and configuration splitting effects in the cross section are discussed and possible directions of further study are noted which might clarify the situation more fully
Electron capture cross sections for stellar nucleosynthesis
Giannaka, P G
2015-01-01
In the first stage of this work, we perform detailed calculations for the cross sections of the electron capture on nuclei under laboratory conditions. Towards this aim we exploit the advantages of a refined version of the proton-neutron quasi-particle random-phase approximation (pn-QRPA) and carry out state-by-state evaluations of the rates of exclusive processes that lead to any of the accessible transitions within the chosen model space. In the second stage of our present study, we translate the above mentioned $e^-$-capture cross sections to the stellar environment ones by inserting the temperature dependence through a Maxwell-Boltzmann distribution describing the stellar electron gas. As a concrete nuclear target we use the $^{66}Zn$ isotope, which belongs to the iron group nuclei and plays prominent role in stellar nucleosynthesis at core collapse supernovae environment.
Measurements of neutron spallation cross section. 2
Kim, E.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Imamura, M.; Nakao, N.; Shibata, S.; Uwamino, Y.; Nakanishi, N.; Tanaka, Su.
1997-03-01
Neutron spallation cross section of {sup 59}Co(n,xn){sup 60-x}Co, {sup nat}Cu(n,sp){sup 56}Mn, {sup nat}Cu(n,sp){sup 58}Co, {sup nat}Cu(n,xn){sup 60}Cu, {sup nat}Cu(n,xn){sup 61}Cu and {sup nat}Cu(n,sp){sup 65}Ni was measured in the quasi-monoenergetic p-Li neutron fields in the energy range above 40 MeV which have been established at three AVF cyclotron facilities of (1) INS of Univ. of Tokyo, (2) TIARA of JAERI and (3) RIKEN. Our experimental data were compared with the ENDF/B-VI high energy file data by Fukahori and the calculated cross section data by Odano. (author)
Reinforced concrete columns of variable cross section
Brant, N.F.A.
1984-01-01
The results of a series of 19 full scale tests carried out on pin-ended reinforced concrete columns are reported. The columns tested had either tapered rectangular sections along the length or octagonal cross sections. All columns, except the last 6, were subjected to uniaxial eccentricities at one of the ends (the stronger end), and a nominally concentric load at the other end. For the case of the last six columns the loading applied at the stronger end was biaxially eccentric. For each of t...
Fusion cross sections at deep subbarrier energies
Hagino, K.; Rowley, N.; Dasgupta, M
2003-01-01
A recent publication reports that heavy-ion fusion cross sections at extreme subbarrier energies show a continuous change of their logarithmic slope with decreasing energy, resulting in a much steeper excitation function compared with theoretical predictions. We show that the energy dependence of this slope is partly due to the asymmetric shape of the Coulomb barrier, that is its deviation from a harmonic shape. We also point out that the large low-energy slope is consistent with the surprisi...
How to calculate colourful cross sections efficiently
Gleisberg, Tanju; Krauss, Frank
2008-01-01
Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.
Jet cross sections in leptoproduction from QCD
We have calculated the longitudinal and other polarization dependent cross sections for jet production in deep inelastic ep, νp and anti νp scattering up to order αsub(s) of the quark-gluon coupling constant. Fragmentation of final state partons into hadrons is taken into account. Distributions in thrust, p2sub(Tin) and p2sub(Tout) are predicted for all three reactions and various values of W and Q. (orig.)
Measurements of Fission Cross Sections of Actinides
Wiescher, M; Cox, J; Dahlfors, M
2002-01-01
A measurement of the neutron induced fission cross sections of $^{237}$Np, $^{241},{243}$Am and of $^{245}$Cm is proposed for the n_TOF neutron beam. Two sets of fission detectors will be used: one based on PPAC counters and another based on a fast ionization chamber (FIC). A total of 5x10$^{18}$ protons are requested for the entire fission measurement campaign.
Neutron cross section standards and instrumentation
1992-09-01
This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.
Electron collision cross sections and radiation chemistry
A survey is given of the cross section data needs in radiation chemistry, and of the recent progress in electron impact studies on dissociative excitation of molecules. In the former some of the important target species, processes, and collision energies are presented, while in the latter it is demonstrated that radiation chemistry is a source of new ideas and information in atomic collision research. 37 references, 4 figures
Cross section of the CMS solenoid
Tejinder S. Virdee, CERN
2005-01-01
The pictures show a cross section of the CMS solenoid. One can see four layers of the superconducting coil, each of which contains the superconductor (central part, copper coloured - niobium-titanium strands in a copper coating, made into a "Rutherford cable"), surrounded by an ultra-pure aluminium as a magnetic stabilizer, then an aluminium alloy as a mechanical stabilizer. Besides the four layers there is an aluminium mechanical piece that includes pipes that transport the liquid helium.
Neutron cross section standards and instrumentation
This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the 10B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for 10B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards 237Np(n,f) and 239Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program
The Pa-233 fission cross section
The energy dependent neutron-induced fission cross section of 233Pa has for the first time been measured directly with mono-energetic neutrons. This isotope is produced in the thorium fuel cycle and serves as an intermediate step between the 232Th source material and the 233U fuel material. Four neutron energies between 1.0 and 3.0 MeV have been measured in a first campaign. Some preliminary results are presented and compared to literature. (author)
Fusion cross sections measurements with MUSIC
Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.
2014-09-01
The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.
Inclusive jet cross section at D0
Bhattacharjee, M. [Delhi Univ. (India). Dept. of Physics and Astrophysics
1996-09-01
Preliminary measurement of the central ({vert_bar}{eta}{vert_bar} {<=} 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D{null} based on the 1992-1993 (13.7 {ital pb}{sup -1}) and 1994-1995 (90 {ital pb}{sup -1}) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made.
Total neutron cross section for 181Ta
Schilling K.-D.
2010-10-01
Full Text Available The neutron time of flight facility nELBE, produces fast neutrons in the energy range from 0.1 MeV to 10 MeV by impinging a pulsed relativistic electron beam on a liquid lead circuit [1]. The short beam pulses (∼10 ps and a small radiator volume give an energy resolution better than 1% at 1 MeV using a short flight path of about 6 m, for neutron TOF measurements. The present neutron source provides 2 ⋅ 104 n/cm2s at the target position using an electron charge of 77 pC and 100 kHz pulse repetition rate. This neutron intensity enables to measure neutron total cross section with a 2%–5% statistical uncertainty within a few days. In February 2008, neutron radiator, plastic detector [2] and data acquisition system were tested by measurements of the neutron total cross section for 181Ta and 27Al. Measurement of 181Ta was chosen because lack of high quality data in an anergy region below 700 keV. The total neutron cross – section for 27Al was measured as a control target, since there exists data for 27Al with high resolution and low statistical error [3].
Cross-section reconstruction during uniaxial loading
The inelastic response of materials to applied uniaxial loading is typically measured using tensile or compressive specimens of an initially circular cross-section. Under deformation, this cross-section may become elliptical due to anisotropic material behaviour. An optical technique for measuring the elliptical deformation of anisotropic, homogeneous cylindrical specimens undergoing uniaxial deformation is presented. It enables the quantification of anisotropic deformation in situ and provides data for material characterization. Three or more silhouette views of a specimen are obtained using multiple cameras or mirrored views. The positions of the edges are computed using a sub-pixel edge detection method, and 3D tangent rays from the camera through these positions are calculated. These bounding tangents are used as the basis for an elliptical fit by least squares at cross-sections along the length of the specimen. Stochastic error estimates are performed by simulation of the experiment. Error estimates, for the experimental set-up used, are also calculated by reconstructing elliptical prisms of precisely measured dimensions. Example reconstructions from specimens of rolled titanium deformed plastically in tension at quasi-static (7 × 10−4 s−1) and high strain rates (3 × 103 s−1) are presented
Radar Cross Section measurements on the stealth metamaterial objects
Iwaszczuk, Krzysztof; Fan, Kim; Strikwerda, Andrew C.; Zhang, Xi; Averitt, Richard D.; Jepsen, Peter Uhd
have been realized in the form of thin, flexible metallized films of polyimide [1]. Here we apply a near-unity absorbing MM as a way to reduce the radar cross section of an object, and consider the real-life situation where the probe beam is significantly larger than the MM film and the object under...... investigation. We use a terahertz radar cross section (RCS) setup [2] for the characterization of the RCS of a real object covered with an absorbing MM film designed for high absorption in the THz frequency range, specifically at 0.8 THz. The results are in a form of 2D maps (sinograms), from which the RCS is...
Simulation of cross sections for practical ALCHEMI
Full text: Precisely known atomic scattering factors are essential for accurate atom location by channeling enhanced microanalysis (ALCHEMI) based on inner-shell ionization. For ALCHEMI using energy dispersive x-ray analysis (EDX), first principles calculations of ionization cross sections, realistically modelling the 'delocalization' of the ionization interaction, give excellent agreement with experiment. Such calculations are complex and computationally intensive. Hence, simple analytic forms are often assumed to describe the ionization potential. Such an approach assumes that the precise shape of the ionization potential is not important but that at least the half width at half maximum (HWHM) should be accurately estimated, for example using estimates of the HWHM from root-mean-square impact parameters for ionization. However this is generally not a good approximation and we have provided more realistic estimates. These are based on accurate atomic scattering form factors for ionization that have been calculated from first principles using relativistic Hartree-Fock wave functions for bound states and Hartree-Slater wave functions for the continuum states. The effective ionization interaction may be approximated by an equivalent local potential. The scattering factors have been calculated for K-shell ionization for elements in the range Z= 6 (carbon) to Z = 50 (tin) and for Z-shell ionization in the range Z = 20 (calcium) to Z = 60 (neodymium). Accurate values of the scattering factors can be obtained by interpolation for incident electron energies between 50 and 400 keV. The utility of these form factors is illustrated, using some data obtained by Matsumura and coworkers during their project to investigate radiation-induced disordering in magnesium aluminate spinel. High angular resolution electron channeling x-ray spectroscopy was employed to investigate ion displacements in MgOnAl2O3 (n = 1.0 and 2.4) irradiated with 1 MeV Ne+ ions or 900 keV electrons at 873
SU-E-I-43: Photoelectric Cross Section Revisited
Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (bound electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock
Neutron cross-section determination in geological samples (U)
The Prompt Gamma Neutron Activation Analysis (PGAA) technique yields elemental composition data which can be used to calculate the macroscopic cross section for any sample. The Small Sample Reactivity Measurements (SSRM) technique yields the macroscopic thermal absorption directly. Experimentally, PGAA is somewhat more difficult because of the calibration and data handling than is SSRM. However, SSRM requires a mathematical model of the reactor which means a rather complicated analysis. Once the model and calibration are completed, data analysis is routine. The SSRM technique is production oriented. 9 figures
Averaging cross section data so we can fit it
Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States). NNDC
2014-10-23
The ^{56}Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
Averaging cross section data so we can fit it
The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).
Nuclear interaction cross sections for proton radiotherapy
Chadwick, M B; Arendse, G J; Cowley, A A; Richter, W A; Lawrie, J J; Newman, R T; Pilcher, J V; Smit, F D; Steyn, G F; Koen, J W; Stander, J A
1999-01-01
Model calculations of proton-induced nuclear reaction cross sections are described for biologically-important targets. Measurements made at the National Accelerator Centre are presented for double-differential proton, deuteron, triton, helium-3 and alpha particle spectra, for 150 and 200 MeV protons incident on C, N, and O. These data are needed for Monte Carlo simulations of radiation transport and absorbed dose in proton therapy. Data relevant to the use of positron emission tomography to locate the Bragg peak are also described.
Neutron capture cross section of $^{93}$Zr
We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.
Charge changing cross sections of relativistic uranium
We report equilibrium charge state distributions of uranium at energies of 962 MeV/nucleon, 437 MeV/nucleon and 200 MeV/nucleon in low Z and high Z targets and the cross sections for U92+ reversible U91+ and U91+ reversible U90+ at 962 MeV/nucleon and 437 MeV/nucleon. Equilibrium thickness Cu targets produce approx. = 5% bare U92+ at 200 MeV/nucleon and 85% U92+ at 962 MeV/nucleon. 7 references, 5 figures
Fission cross section measurements for minor actinides
Fursov, B. [IPPE, Obninsk (Russian Federation)
1997-03-01
The main task of this work is the measurement of fast neutron induced fission cross section for minor actinides of {sup 238}Pu, {sup 242m}Am, {sup 243,244,245,246,247,248}Cm. The task of the work is to increase the accuracy of data in MeV energy region. Basic experimental method, fissile samples, fission detectors and electronics, track detectors, alpha counting, neutron generation, fission rate measurement, corrections to the data and error analysis are presented in this paper. (author)
LEP vacuum chamber, cross-section
1983-01-01
Cross-section of the final prototype for the LEP vacuum chamber. The elliptic main-opening is for the beam. The small channel to the left is for the cooling water, to carry away the heat deposited by the synchrotron radiation. The square channel to the right houses the Non-Evaporable Getter (NEG) pump. The chamber is made from extruded aluminium. Its outside is clad with lead, to stop the synchrotron radiation emitted by the beam. For good adherence between Pb and Al, the Al chamber was coated with a thin layer of Ni. Ni being slightly magnetic, some resulting problems had to be overcome. See also 8301153.
Critical behavior of cross sections at LHC
Dremin, I M
2016-01-01
Recent experimental data on elastic scattering of high energy protons show that the critical regime has been reached at LHC energies. The approach to criticality is demonstrated by increase of the ratio of elastic to total cross sections from ISR to LHC energies. At LHC it reaches the value which can result in principal change of the character of proton interactions. The treatment of new physics of hollowed toroid-like hadrons requires usage of another branch of the unitarity condition. Its further fate is speculated and interpreted with the help of the unitarity condition in combination with present experimental data. The gedanken experiments to distinguish between different possibilities are proposed.
30 CFR 779.25 - Cross sections, maps, and plans.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 779.25 Section... RESOURCES § 779.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps..., maps and plans included in a permit application as required by this section shall be prepared by,...
Possibility of neutron transport cross section measurement in a sphere surrounded by moderation
The possibility of an estimation of the neutron macroscopic transport cross section for a medium with known adsorption cross section is presented. A two-region spherical system is used with the sample of interest as the inner sphere. The fundamental decay constant of the thermal neutron flux is calculated on the basis of diffusion theory for such a system as a function of the dimensions of the external sphere and/or the macroscopic absorption cross section of the inner medium. The influence of the diffusion cooling coefficient and the hydrogen content in the inner sphere on the transport cross section estimation is discussed. (author)
Windowed multipole for cross section Doppler broadening
Josey, C.; Ducru, P.; Forget, B.; Smith, K.
2016-02-01
This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.
The Elusive p-air Cross Section
Block, Martin M
2006-01-01
For the $\\pbar p$ and $pp$ systems, we have used all of the extensive data of the Particle Data Group[K. Hagiwara {\\em et al.} (Particle Data Group), Phys. Rev. D 66, 010001 (2002).]. We then subject these data to a screening process, the ``Sieve'' algorithm[M. M. Block, physics/0506010.], in order to eliminate ``outliers'' that can skew a $\\chi^2$ fit. With the ``Sieve'' algorithm, a robust fit using a Lorentzian distribution is first made to all of the data to sieve out abnormally high $\\delchi$, the individual i$^{\\rm th}$ point's contribution to the total $\\chi^2$. The $\\chi^2$ fits are then made to the sieved data. We demonstrate that we cleanly discriminate between asymptotic $\\ln s$ and $\\ln^2s$ behavior of total hadronic cross sections when we require that these amplitudes {\\em also} describe, on average, low energy data dominated by resonances. We simultaneously fit real analytic amplitudes to the ``sieved'' high energy measurements of $\\bar p p$ and $pp$ total cross sections and $\\rho$-values for $\\...
Cross-section measurements for radioactive samples
The measurement of (n,p), (n,α) and (n,γ) cross sections for radioactive nuclei is of interest to both nuclear physics and astrophysics. For example, using these reactions, properties of levels in nuclei at high excitation energies, which are difficult or impossible to study using other reactions, can be investigated. Also, reaction rates for both big-bang and stellar nucleosynthesis can be obtained from these measurements. In the past, the large background associated with the sample activity limited these types of measurements to radioisotopes with very long half-lives. The advent of the low-energy, high-intensity neutron source at the Los Alamos Neutron Scattering CEnter (LANSCE) has greatly increased the number of nuclei which can be studied. Examples of (n,p) measurements on samples with half lives as short as fifty-three days will be given. The nuclear physics and astrophysics to be learned from these data will be discussed. Additional difficulties are encountered when making (n,γ) rather than (n,p) or (n,α) measurements. However, with a properly-designed detector, and the high peak neutron intensities now available, (n,γ) measurements can be made for nuclei with half lives as short as several months. Progress on the Los Alamos (n,γ) cross-section measurement program for radioactive samples will be discussed. 39 refs., 7 figs
Calculation of cross sections for heavy isotopes
In the present work an integrated system of codes for basic neutron data evaluation were assembled and built. Complete evaluations for the isotopes 240Pu, 241Pu, 242Pu and 238Pu were performed. The following cross sections: total, elastic, radiative capture, fission, total inelastic, partial inelastic, (n,2n), (n,3n) and differential elastic were evaluated as well as the average number of neutrons per neutron-induced fission and the average elastic scattering cosine in the lab system.The data for the plutonium isotopes were incorporated into the German KEDAK file. A method was developed for calculating the energy distributions of the second and third secondary neutrons from the A(n,2n) and (n,3n) reactions in the framework of the compound nucleus theory, and utilizing the nuclear data of the nuclei A, A-1, A-2. This method was used to generate the 238U secondary neutron energy distributions in the incident neutron energy range of 6 to 15 MeV. A nuclear data evaluation for 237U in the resolved inelastic scattering range (10-700 keV) was performed. The compound elastic and partial inelastic scattering cross sections were used in the 238U secondary neutron energy distribution calculations. (B.G.)
Cross sections for meson-meson nonresonant reactions
Li, Yu-Qi
2007-01-01
Meson-meson nonresonant reactions governed by the quark-interchange mechanism are studied in a potential that is derived from QCD. S-wave elastic phase shifts for I=2 \\pi\\pi and I=3/2 K \\pi scattering are obtained with wave functions determined by the central spin-independent term of the potential. The reactions include inelastic scatterings of two mesons in the ground-state pseudoscalar octet and the ground-state vector nonet. Cross sections for reactions involving pion, rho, K and K^* indicate that mesonic interactions in matter consisting of only K and K^* can be stronger than mesonic interactions in matter consisting of only pions and rhos and the reaction of I=3/2 \\pi K^* \\to \\rho K is most important among the endothermic nonresonant reactions. By the quark-interchange mechanism we can offer \\sqrt s-dependences of phi absorption cross sections in collisions with pion and rho and relevant average cross sections what are very small for the reaction of I=1 \\pi \\phi \\to K^* K^* and remarkably large for the r...
Propionaldehyde infrared cross-sections and band strengths
The use of oxygenated biofuels reduces the greenhouse gas emissions; however, they also result in increased toxic aldehyde by-products, mainly formaldehyde, acetaldehyde, acrolein, and propionaldehyde. These aldehydes are carcinogenic and/or toxic and therefore it is important to understand their formation and destruction pathways in combustion and atmospheric systems. Accurate information about their infrared cross-sections and integrated strengths are crucially needed for development of quantitative detection schemes and modeling tools. Critical to the development of such diagnostics are accurate characterization of the absorption features of these species. In this study, the gas phase infrared spectra of propionaldehyde (also called propanal, CH3–CH2–CHO), a saturated three carbon aldehyde found in the exhaust emissions of biodiesel or diesel fuels, was studied using high resolution Fourier Transform Infrared (FTIR) spectroscopy over the wavenumber range of 750−3300 cm−1 and at room temperature 295 K. The absorption cross sections of propionaldehyde were recorded at resolutions of 0.08 and 0.096 cm−1 and at seven different pressures (4−33 Torr). The calculated band-strengths were reported and the integrated band intensity results were compared with values taken from the Pacific Northwest National Laboratory (PNNL) database (showing less than 2% discrepancy). The peak positions of the 19 different vibrational bands of propionaldehyde were also compared with previous studies taken at a lower resolution of 1 cm−1. To the best of our knowledge, the current FTIR measurements provide the first highest resolution infrared cross section data for propionaldehyde. - Highlights: • High resolution IR spectra of propionaldehyde were measured by FTIR spectrometer. • The discrepancy between the present study and PNNL database was less than 2%. • The fundamental vibrational frequencies were reported at high resolution. • The rovibrational Q transitions
30 CFR 783.25 - Cross sections, maps, and plans.
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Cross sections, maps, and plans. 783.25 Section... ENVIRONMENTAL RESOURCES § 783.25 Cross sections, maps, and plans. (a) The application shall include cross sections, maps, and plans showing— (1) Elevations and locations of test borings and core samplings;...
Elastic cross sections in an RSIIp scenario
The elastic differential cross section is calculated at low energies (below 100 MeV) for the elements 3He, 20Ne, 40Ar, 14N, 12C, and for the 208Pb using a finite electromagnetic potential, which is obtained by considering a Randall–Sundrum II scenario modified by the inclusion of p compact extra-dimensions. The length scale is adjusted in the potential to compare with known experimental data and to set bounds for the parameter of the model. The effective four-dimensional (4D) electromagnetic potential is produced by a point charge, as seen from the three-brane that contains it, in uniform motion in an RSIIp scenario. (paper)
Lunar Radar Cross Section at Low Frequency
Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.
2002-01-01
Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.
Calculated medium energy fission cross sections
An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission
Partial cross sections in H- photodetachment
This dissertation reports experimental measurements of partial decay cross sections in the H- photodetachment spectrum. Observed decays of the 1P0 H-**(n) doubly-excitedresonances to the H(N=2) continuum are reported for n=2,3, and 4 from 1990 runs in which the author participated. A recent analysis of 1989 data revealing effects of static electric fields on the partial decay spectrum above 13.5 eV is also presented. The experiments were performed at the High Resolution Atomic Beam Facility. the Los Alamos Meson Physics Facility, with a relativistic H-beam (β=0.842)intersecting a ND:YAG laser. Variation of the intersection angle amounts to Doppler-shifting the photon energy, allowing continuous tuning of the laser energy as viewed from the moving ions' frame
Radar Cross Section of Moving Objects
Gholizade, H
2013-01-01
I investigate the effects of movement on radar cross section calculations. The results show that relativistic effects (the constant velocity case) can change the RCS of moving targets by changing the incident plane wave field vectors. As in the Doppler effect, the changes in the fields are proportional to $\\frac{v}{c}$. For accelerated objects, using the Newtonian equations of motion yields an effective electric field (or effective current density) on the object due to the finite mass of the conducting electrons. The results indicate that the magnetic moment of an accelerated object is different from that of an un-accelerated object, and this difference can change the RCS of the object. Results for moving sphere and non-uniformly rotating sphere are given and compared with static (\\textbf{v}=0) case.
Single-level resonance parameters fit nuclear cross-sections
Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.
1970-01-01
Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.
Residual diagnostics for cross-section time series regression models
Baum, Christopher F
2001-01-01
These routines support the diagnosis of groupwise heteroskedasticity and cross-sectional correlation in the context of a regression model fit to pooled cross-section time series (xt) data. Copyright 2001 by Stata Corporation.
Photoneutron cross sections measured by Saclay and Livermore
The differences between the Saclay and Livermore photoneutron cross sections are discussed. It is shown that the differences between Saclay and Livermore (γ,n) and (γ,2n) cross sections arise from the neutron multiplicity sorting. (Author)
Employee Engagement within the NHS: A Cross-Sectional Study
Yadava Bapurao Jeve
2015-02-01
Full Text Available Background Employee engagement is the emotional commitment of the employee towards the organisation. We aimed to analyse baseline work engagement using Utrecht Work Engagement Scale (UWES at a teaching hospital. Methods We have conducted a cross-sectional study within the National Health Service (NHS Teaching Hospital in the UK. All participants were working age population from both genders directly employed by the hospital. UWES has three constituting dimensions of work engagement as vigor, dedication, and absorption. We conducted the study using UWES-9 tool. Outcome measures were mean score for each dimension of work engagement (vigor, dedication, absorption and total score compared with control score from test manual. Results We found that the score for vigor and dedication is significantly lower than comparison group (P< 0.0001 for both. The score for absorption was significantly higher than comparison group (P< 0.0001. However, total score is not significantly different. Conclusion The study shows that work engagement level is below average within the NHS employees. Vigor and dedication are significantly lower, these are characterised by energy, mental resilience, the willingness to invest one’s effort, and persistence as well as a sense of significance, enthusiasm, inspiration, pride, and challenge. The NHS employees are immersed in work. Urgent need to explore strategies to improve work engagement as it is vital for improving productivity, safety and patient experience.
Electron Elastic-Scattering Cross-Section Database
SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge) This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).
Total cross sections for neutron-nucleus scattering
Suryanarayana, S. V.; H. Naik; Ganesan, S; Kailas, S; Choudhury, R. K.; Kim, Guinyum
2010-01-01
Systematics of neutron scattering cross sections on various materials for neutron energies up to several hundred MeV are important for ADSS applications. Ramsauer model is well known and widely applied to understand systematics of neutron nucleus total cross sections. In this work, we examined the role of nuclear effective radius parameter (r$_0$) on Ramsauer model fits of neutron total cross sections. We performed Ramsauer model global analysis of the experimental neutron total cross section...
Finite sum expressions for elastic and reaction cross sections
Nuclear cross section calculations are often performed by using the partial wave method or the Eikonal method through Glauber theory. The expressions for the total cross section, total elastic cross section, and total reaction cross section in the partial wave method involve infinite sums and do not utilize simplifying approximations. Conversely, the Eikonal method gives these expressions in terms of integrals but utilizes the high energy and small angle approximations. In this paper, by using the fact that the lth partial wave component of the T-matrix can be very accurately approximated by its Born term, the infinite sums in each of the expressions for the differential cross section, total elastic cross section, total cross section, and total reaction cross section are re-written in terms of finite sums plus closed form expressions. The differential cross sections are compared to the Eikonal results for 16O+16O,12C+12C, and p+12C elastic scattering. Total cross sections, total reaction cross sections, and total elastic cross sections are compared to the Eikonal results for 12C+12C scattering
Cross sections for electron impact excitation of molecules
The discussion in this chapter is restricted to elastic scattering, rotational, vibrational, and electronic excitation and total scattering cross sections in electron molecule collisions. Experimental data on differential, integral and momentum transfer cross sections are surveyed and short remarks are made on experimental techniques and theoretical approaches used for generating cross section data. 11 references, 3 figures
Radar Cross-section Measurement Techniques
V.G. Borkar
2010-03-01
Full Text Available Radar cross-section (RCS is an important study parameter for defence applications specially dealing with airborne weapon system. The RCS parameter guides the detection range for a target and is therefore studied to understand the effectiveness of a weapon system. It is not only important to understand the RCS characteristics of a target but also to look into the diagnostic mode of study where factors contributing to a particular RCS values are studied. This further opens up subject like RCS suppression and stealth. The paper discusses the RCS principle, control, and need of measurements. Classification of RCS in terms of popular usage is explained with detailed theory of RF imaging and inverse synthetic aperture radar (ISAR. The various types of RCS measurement ranges are explained with brief discussion on outdoor RCS measurement range. The RCS calibration plays a critical role in referencing the measurement to absolute values and has been described.The RCS facility at Reseach Centre Imarat, Hyderabad, is explained with some details of different activities that are carried out including RAM evaluation, scale model testing, and diagnostic imaging.Defence Science Journal, 2010, 60(2, pp.204-212, DOI:http://dx.doi.org/10.14429/dsj.60.341
Resonance capture cross section of 207Pb
Domingo-Pardo, C; Aerts, G; Alvarez-Pol, H; Alvarez-Velarde, F; Andrzejewski, J; Andriamonje, Samuel A; Assimakopoulos, P A; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Bisterzo, S; Calviño, F; Cano-Ott, D; Capote, R; Carrapico, C; Chepel, V; Cennini, P; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Gallino, R; Gonçalves, I; González-Romero, E M; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Käppeler, F K; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; Oshima, M; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente6, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K
2006-01-01
The radiative neutron capture cross section of 207Pb has been measured at the CERN neutron time of flight installation n_TOF using the pulse height weighting technique in the resolved energy region. The measurement has been performed with an optimized setup of two C6D6 scintillation detectors, which allowed us to reduce scattered neutron backgrounds down to a negligible level. Resonance parameters and radiative kernels have been determined for 16 resonances by means of an R-matrix analysis in the neutron energy range from 3 keV to 320 keV. Good agreement with previous measurements was found at low neutron energies, whereas substantial discrepancies appear beyond 45 keV. With the present results, we obtain an s-process contribution of 77(8)% to the solar abundance of 207Pb. This corresponds to an r-process component of 23(8)%, which is important for deriving the U/Th ages of metal poor halo stars.
Production cross sections from phenomenological constraints
Hadronic production cross sections ν sub(n) (s) satisfying exactly the high energy empirical laws known for the first, second and third multiplicity moments are determined. The result is obtained in the form of a second order linear differential equation for ν sub(n) (s) which allows one to calculate explicitly all successive moments. In particular, the fourth moment is in excellent agreement with the data. The asymptotic solution of the equation for ν sub(n) (s) is given analytically. KNO scaling turns out to be an asymptotic property of the solution. The full solution for ν sub(n) (s) is studied numerically and the KNO plot is compared with the data. No free parameters are left to be adjusted except for an overall normalization constant. As expected, KNO scaling sets in rather quickly with increasing n and the agreement with the data is progressively good. This agreement becomes excellent for the whole interval of n/ for which data exist (O) approximately equal to 2. It turns out that the asymptotic solution, given in analytic terms, is an excellent approximation to the data and can thus be used for practical purposes instead of the full solution for calculating ν sub(n) (s). (author)
Differential cross section and related integrals for the Moliere potential
The Moliere potential is widely used in radiation damage simulation studies. It is not much used in analytical transport theory calculations because of the awkward expression for the differential cross section corresponding to the potential. A two step process is followed to obtain a useful cross section: adopting the Lindhard, Nielsen and Scharff (LNS) approximations in order to generate a simpler form of the Moliere cross section and then creating a simple, easy-to-use, fit to that approximate form. Within the framework of the LNS treatment of atomic cross sections, our fit is accurate to 6%. Simple forms for the total cross section and several related quantities are presented. (author)
Graphs of all neutron cross sections and photon production cross sections on the Alternate Monte Carlo Cross Section (AMCCS) library have been plotted along with local neutron heating numbers. The values of ν-bar, the average number of neutrons per fission, are also plotted for appropriate isotopes
First Regge parameterisation of polarized DIS cross section
The first Regge description of the virtual photon absorption cross section difference Δσ(γ*, N) = [σ1/2(γ*,N) - σ((3)/(2))(γ*, N)] was obtained from a global fit of all the data collected by the experiments measuring spin asymmetries in polarized lepton - polarized nucleon deep inelastic scattering. This work present a phenomenological and a numerical description of all the polarized deep inelastic data (Δσ(γ*, N), gl spin structure function) on the whole measured kinematical range (0.3 GeV2 2 2, 4 GeV2 2 2). The fit also provide reliable predictions for the photo-production limit through a smooth Q2-transition
Reference solution for cross section parametrization
Core calculations of nuclear reactors are usually performed by core physics codes (e.g. with NEM or FDM solvers) in diffusion or SP3 approximation of the transport equation. For each fuel type parameterized data libraries are prepared by means of a lattice code. The data libraries are burnup dependent, and the parameterization covers the hyperspace of admissible values of all operational parameters (fuel temperature, moderator density, boron concentration etc.) This approach has two weak spots. The first is, that it is difficult to make perfect parameterization of the data library because of relatively broad range of the parameter values and the fact that the parameters' effect on the macroscopic cross-sections are not mutually independent. The second is that even for perfect parameterizations with precise approximations of the data changes with respect to the feedback parameters the so-called history effects are neglected. It is generally difficult to assess the cumulative errors arising due to the approximative parameterization of the data libraries and due to the history effects. It is as well difficult to assess the efficiency of techniques developed in order to incorporate the history effect in the data library (such as time integration). In this paper we present a tool for reference core calculations in which the above stated approximations are eliminated. This paper presents the solution method, its implementation, as well as the results of a demonstration calculation showing the improvement of the calculation results over the traditional approach, assessing the magnitude of history and parameterization effects importance. The most important feature of the presented method is that it provides the perfect parameterization of macroscopic data, allowing the core physics code developers to understand sources of modeling uncertainties by completely removing the parameterization error (including, unlike other approaches, a complete representation of the
Color dipole cross section and inelastic structure function
Jeong, Yu Seon; Reno, Mary Hall
2014-01-01
Instead of starting from a theoretically motivated form of the color dipole cross section in the dipole picture of deep inelastic scattering, we start with a parametrization of the deep inelastic structure function for electromagnetic scattering with protons, and then extract the color dipole cross section. Using the Donnachie-Landshoff parametrization of $F_2(x,Q^2)$, we find the dipole cross section from an approximate form of the presumed dipole cross section convoluted with the perturbative photon wave function for virtual photon splitting into a color dipole with massless quarks. The color dipole cross section determined this way works quite well in the massive case, reproducing the original Donnachie-Landshoff structure function for $0.1$ GeV$^2\\leq Q^2\\leq 10$ GeV$^2$. We discuss the large and small form of the dipole cross section and compare with other parameterizations.
Resonance Averaged Photoionization Cross Sections for Astrophysical Models
Bautista, M A; Pradhan, A K
1997-01-01
We present ground state photoionization cross sections of atoms and ions averaged over resonance structures for photoionization modeling of astrophysical sources. The detailed cross sections calculated in the close-coupling approximation using the R-matrix method, with resonances delineated at thousands of energies, are taken from the Opacity Project database TOPbase and the Iron Project, including new data for the low ionization stages of iron Fe I--V. The resonance-averaged cross sections are obtained by convolving the detailed cross sections with a Gaussian distribution over the autoionizing resonances. This procedure is expected to minimize errors in the derived ionization rates that could result from small uncertainties in computed positions of resonances, while preserving the overall resonant contribution to the cross sections in the important near threshold regions. The detailed photoionization cross sections at low photon energies are complemented by new relativistic distorted-wave calculations for Z1...
Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation
Norbury, John W.; Adamczyk, Anne; Dick, Frank
2008-01-01
Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.
LINX-1: a code for linking polynomial cross section files
The capabilities of the LINX-1 code are described. It was developed for the purpose of linking seperate fuel assembly and reflector node polynomial cross section files, obtained by the POLX-1 code, together into a single reactor polynomial cross section library. The output of the polynomial cross section library can be in either binary or fixed (BCD) format. Input data requirements and the format of the output file generated by LINX-1 are also described. 2 refs
Theoretical estimates of cross sections for neutron-nucleus collisions
Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.
2010-01-01
We construct an analytical model derived from nuclear reaction theory and having a simple functional form to demonstrate the quantitative agreement with the measured cross sections for neutron induced reactions. The neutron-nucleus total, reaction and scattering cross sections, for energies ranging from 5 to 700 MeV and for several nuclei spanning a wide mass range are estimated. Systematics of neutron scattering cross sections on various materials for neutron energies upto several hundred Me...
Neutron-capture Cross Sections from Indirect Measurements
Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J
2011-10-18
Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.
Fano interference and cross-section fluctuations in molecular photodissociation
We derive an expression for the total photodissociation cross section of a molecule incorporating both direct and indirect processes that proceed through excited resonances, and show that it exhibits generalized Beutler-Fano line shapes. Assuming that the closed system can be modeled by random-matrix theory, we derive the statistical properties of the photodissociation cross section and find that they are significantly affected by the direct processes. In the limit of isolated resonances, we find that direct processes suppress the correlation hole of the cross-section autocorrelation function and lead to a maximum in the cross-section distribution
Positive Scattering Cross Sections using Constrained Least Squares
A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented
Systematics of fission cross sections at the intermediate energy region
Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1997-03-01
The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)
Positive Scattering Cross Sections using Constrained Least Squares
Dahl, J.A.; Ganapol, B.D.; Morel, J.E.
1999-09-27
A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented.
Measurement of K Shell Photoelectric Cross Sections at a K Edge--A Laboratory Experiment
Nayak, S. V.; Badiger, N. M.
2007-01-01
We describe in this paper a new method for measuring the K shell photoelectric cross sections of high-Z elemental targets at a K absorption edge. In this method the external bremsstrahlung (EB) photons produced in the Ni target foil by beta particles from a weak[superscript 90]Sr-[superscript 90]Y beta source are passed through an elemental target…
Cross Sections for Inner-Shell Ionization by Electron Impact
An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements
Ni elemental neutron induced reaction cross-section evaluation
A completely new evaluation of the nickel neutron induced reaction cross sections was undertaken as a part of the ENDF/B-V effort. (n,xy) reactions and capture reaction time from threshold to 20 MeV were considered for 5860616264Ni isotopes to construct the corresponding reaction cross section for natural nickel. Both experimental and theoretical calculated results were used in evaluating different partial cross sections. Precompound effects were included in calculating (n,xy) reaction cross sections. Experimentally measured total section data extending from 0.7 MeV to 20 MeV were used to generate smooth cross section. Below 0.7 to MeV elastic and capture cross sections are represented by resonance parameters. Inelastic angular distributions to the discrete isotopic levels and elemental elastic angular distributions are included in the evaluated data file. Gamma production cross sections and energy distribution due to capture and the (n,xy) reactions were evaluated from experimental data. Finally, error files are constructed for all partial cross sections
Modeling and analysis of ground target radiation cross section
SHI Xiang; LOU GuoWei; LI XingGuo
2008-01-01
Based on the analysis of the passive millimeter wave (MMW) radiometer detection, the ground target radiation cross section is modeled as the new token for the target MMW radiant characteristics. Its ap-plication and actual testing are discussed and analyzed. The essence of passive MMW stealth is target radiation cross section reduction.
Analysis of cross sections using various nuclear potential
The relevant astrophysical reaction rates which are derived from the reaction cross sections are necessary input to the reaction network. In this work, we analyse several theoretical models of the nuclear potential which give better prediction of the cross sections for some selected reactions
Total Cross Sections at High Energies - An Update
Fazal-e-Aleem; Sohail Afzal Tahir; M. Alam Saeed; M. Qadeer Afzal
2002-01-01
Current and future measurements for the total cross sections at E-811, PP2PP, CSM, FELIX, and TOTEMhave been analyzed using various models. In the light of this study an attempt has been made to focus on the behaviorof total cross section at very high energies.
Surrogate reaction methods for neutron induced cross-sections
A brief discussion on surrogate reaction methods and some of the recent results on neutron induced fission cross-section measurements carried out by our group and the possibility of extending the measurements for determining (n,g), (n,2n) and (n,p) reaction cross-sections by surrogate reaction method are presented
Cross Sections for Electron Collisions with Carbon Monoxide
Cross section data are collected and reviewed for electron collisions with carbon monoxide. Collision processes included are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational and electronic states, ionization, and dissociation. For each process, recommended values of the cross sections are presented, when possible. The literature has been surveyed through to the end of 2013
Applications of the BEam Cross section Analysis Software (BECAS)
Blasques, José Pedro Albergaria Amaral; Bitsche, Robert; Fedorov, Vladimir;
2013-01-01
A newly developed framework is presented for structural design and analysis of long slender beam-like structures, e.g., wind turbine blades. The framework is based on the BEam Cross section Analysis Software – BECAS – a finite element based cross section analysis tool. BECAS is used for the...
Learning of Cross-Sectional Anatomy Using Clay Models
Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon
2009-01-01
We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…
On the scattering cross section of passive linear arrays
Solymar, L.
1973-01-01
A general formula is derived for the scattering cross section of a passiven-element linear array consisting of isotropic radiators. When all the reactances are tuned out and scattering in the mirror direction is investigated, it is found thatA_{sr}, the relative scattering cross section is equal to...
Simplified polynomial representation of cross sections for reactor calculation
It is shown a simplified representation of a cross section library generated by transport theory using the cell model of Wigner-Seitz for typical PWR fuel elements. The effect of burnup evolution through tables of reference cross sections and the effect of the variation of the reactor operation parameters considered by adjusted polynomials are presented. (M.C.K.)
Cross section probability tables in multi-group transport calculations
The use of cross section probability tables in multigroup transport calculations is presented. Emphasis is placed on how probability table parameters are generated in a multigroup cross section processor and how existing transport codes must be modifed to use them. In order to illustrate the accuracy obtained by using probability tables, results are presented for a variety of neutron and photon transport problems
Possibility of spin mechanism of total cross section growth
The possibility of existence of the spin mechanism of total cross section growth is considered. A nucleon-nucleon scattering is studied. The energy dependence of scattering amplitude and possible effects related with the spin mechanism of total cross section growth are studied. It is shown that the considered mechanism can play a great role at high energies
Nuclear characteristics of Pu fueled LWR and cross section sensitivities
Takeda, Toshikazu [Osaka Univ., Suita (Japan). Faculty of Engineering
1998-03-01
The present status of Pu utilization to thermal reactors in Japan, nuclear characteristics and topics and cross section sensitivities for analysis of Pu fueled thermal reactors are described. As topics we will discuss the spatial self-shielding effect on the Doppler reactivity effect and the cross section sensitivities with the JENDL-3.1 and 3.2 libraries. (author)
The effect of the decay data on activation cross section
The effect of the decay data on evaluation of activation cross section is investigated. Present work shows that these effects must be considered carefully when activation cross section is evaluated. Sometime they are main reason for causing the discrepancies among the experimental data
Minijets, soft gluon resummation and photon cross-sections
Godbole, R. M.; Grau, A.; Pancheri, G.; Srivastava, Y. N.
2008-01-01
We compare the high energy behaviour of hadronic photon-photon cross-sections in different models. We find that the photon-photon cross-section appears to rise faster than the purely hadronic ones (proton-proton and proton-antiproton).
ZZ XCOM, Photon Cross-Section Library for Personal Computer
1 - Description of program or function: Format: The input file FDAT produces the binary file UDAT (direct access un-formatted). This file is then used by the program XCOM1 to retrieve and display the photon cross-sections and attenuation coefficients. Number of groups: Photon cross-section data files (partial interaction coefficients and total attenuation coefficients) for 100 elements in the energy range 1 KeV to 100 GeV. Materials:H, He, Li, Be, B, C, N, O, F, Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn, Fr, Ra, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm. Origin: Several sources. It is based on an experimental data base consisting of 21000 data points from 512 literature sources. Same sources as DLC-136/PHOTX. Weighting spectrum: The weighting factors, i.e., the fractions by weights of the atomic constituents, are calculated from the chemical formula entered by the user. The National Institute of Standards and Technology, through its Office of Standard Reference Data, has long maintained and published compilations of measured and evaluated photon cross sections. This compilation of XCOM Version 1.2, released on personal computer media, represents best values as determined in 1987. XCOM1 (Version 1.3, copyright 1991) is similar to XCOM but uses the direct-access un-formatted database file UDAT. 2 - Method of solution: The data from the National Institute of Standards and Technology are in binary files for 100 elements covering the energy range 1 keV to 100 GeV. The reactions considered are coherent and incoherent scattering, photoelectric absorption, and pair production. The XCOM data are derived from the same source as DLC-0136/ZZ-PHOTX
CADE, Multiple Particle Emission Cross-Sections by Weisskopf-Ewing Theory
1 - Description of program or function: CADE calculates reaction cross sections for multi-particle emission. The total cross section for the emission of a particle at any particular stage is calculated together with the cross section as a function of energy. The probability of leaving the final nucleus in a state of any particular energy is also obtained. 2 - Method of solution: The program performs compound nucleus calculations using the Weisskopf-Ewing formalism. Multi-particle emissions are treated as a series of stages in a cascade. The relevant compound nucleus absorption cross sections for particle channels are calculated with built-in optical model routines. The gamma-ray emission is described by the giant dipole resonance formalism
Total cross sections values of (p,n)-reaction for intermediate mass nuclei
On the basis of information about values of cross sections of elastic scattering of protons through a compound nucleus, about experimental cross sections of inelastic scattering of protons as well as reactions (p,α),(p,γ) and calculational total cross sections of absorption, the estimation of values of total cross sections of reaction (p,n) δ (p,x) on 36 nuclei of average atomic weight (A=23-110) at proton energy ∼ 6 MeV is carried out. Isotopic dependence, δ(p,n) on neutron excess is confirmed. The presence of some specific features caused by the influence of input and output channels of (p,n) reaction is established in dependence of values δ(p,n) falling at an excess neutron from Z and A
Measurement of the fission cross section of 238Pu
The fission cross sections of 238Pu have been measured from 0.1 eV to 80 keV energy range using the Rensselaer Intense Neutron Spectrometer. The cross sections were normalized to the 235U ENDF/B-V data broadened to the resolution of the Rensselaer Intense Neutron Spectrometer system. The fission areas and widths were determined for the resolved low-energy resonances. The ENDF/B-V fission cross sections for the 238Pu isotope are, in general, not in good agreement with the measured cross sections and a new evaluation is recommended. The observations of structure in the unresolved fission cross sections is suggestive of the existence of intermediate structure. 18 refs., 1 fig., 1 tab
Capture cross-section of threading dislocations in thin films
Highlights: ► We study the effect of film stress on capture cross-section of interacting threads. ► Capture cross-section area diverges near film channeling stress. ► Thread interactions are much more likely when local stress is near critical stress. - Abstract: The capture cross section for annihilation of two threads with opposite Burgers vectors moving on orthogonal slip planes in a thin film is examined using a numerical model. The initial configurations of threads that lead to annihilation are mapped out for a range of applied film stresses. The area of the region of initial configurations that lead to annihilation at a given stress and thickness is the capture cross-section. The size of the capture cross-section is shown to be highly sensitive to the applied stress relative to the critical stress for dislocation motion imposed by the film thickness.
Anomalously large neutron capture cross sections: a random phenomenon?
Carlson, B V; Kerman, A K
2015-01-01
We discuss the existence of huge thermal neutron capture cross sections in several nuclei. The values of the cross sections are several orders of magnitude bigger than expected at these very low energies. We lend support to the idea that this phenomenon is random in nature and is similar to what we have learned from the study of parity violation in the actinide region. The idea of statistical doorways is advanced as a unified concept in the delineation of large numbers in the nuclear world. The average number of maxima per unit mass, $$ in the capture cross section is calculated and related to the underlying cross section correlation function and found to be $ = \\frac{3}{\\pi \\sqrt{2}\\gamma_{A}}$, where $\\gamma_{A}$ is a characteristic mass correlation width which designates the degree of remnant coherence in the system. We trace this coherence to nucleosynthesis which produced the nuclei whose neutron capture cross sections are considered here.
Crushing characteristics of composite tubes with 'near-elliptical' cross sections
Farley, Gary L.; Jones, Robert M.
1992-01-01
An experimental investigation was conducted to determine whether the energy-absorption capability of near-elliptical cross-section composite tubular specimens is a function of included angle. Each half of the near-elliptical cross-section tube is a segment of a circle. The included angle is the angle created by radial lines extending from the center of the circular segment to the ends of the circular segment. Graphite- and Kevlar-reinforced epoxy material was used to fabricate specimens. Tube internal diameters were 2.54, 3.81, and 7.62 cm, and included angles were 180, 160, 135, and 90 degrees. Based upon the test results from these tubes, energy-absorption capability increased between 10 and 30 percent as included angle decreased between 180 and 90 degrees for the materials evaluated. Energy-absorption capability was a decreasing nonlinear function of the ratio of tube internal diameter to wall thickness.
Resonance analysis and evaluation of the 235U neutron induced cross sections
Neutron cross sections of fissile nuclei are of considerable interest for the understanding of parameters such as resonance absorption, resonance escape probability, resonance self-shielding,and the dependence of the reactivity on temperature. In the present study, new techniques for the evaluation of the 235U neutron cross sections are described. The Reich-Moore formalism of the Bayesian computer code SAMMY was used to perform consistent R-matrix multilevel analyses of the selected neutron cross-section data. The Δ3-statistics of Dyson and Mehta, along with high-resolution data and the spin-separated fission cross-section data, have provided the possibility of developing a new methodology for the analysis and evaluation of neutron-nucleus cross sections. The results of the analysis consists of a set of resonance parameters which describe the 235U neutron cross sections up to 500 eV. The set of resonance parameters obtained through a R-matrix analysis are expected to satisfy statistical properties which lead to information on the nuclear structure. The resonance parameters were tested and showed good agreement with the theory. It is expected that the parametrization of the 235U neutron cross sections obtained in this dissertation represents the current state of art in data as well as in theory and, therefore, can be of direct use in reactor calculations. 44 refs., 21 figs., 8 tabs
Nelson, R; R. Vogt; Frawley, A. D.
2012-01-01
We explore the available parameter space that gives reasonable fits to the total charm cross section to make a better estimate of its true uncertainty. We study the effect of the parameter choices on the energy dependence of the J/\\psi\\ cross section.
Meeting cross-section requirements for nuclear-energy design
Current requirements in cross-section data that are essential to nuclear-energy programmes are summarized and explained and some insight into how these data might be obtained is provided. The six sections of the paper describe: design parameters and target accuracies; data collection, evaluation and analysis; determination of high-accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; identification of important cross sections and inferred needs. (U.K.)
Meeting cross section requirements for nuclear energy design
The purpose of this report is to summarize and explain current requirements in cross section data that are essential to nuclear energy programs and to provide some insight into how these data might be obtained. The report is divided into six sections that describe: design parameters and target accuracies; data collection, evaluation, and analysis; determination of high accuracy differential nuclear data for technological applications; status of selected evaluated nuclear data; analysis of benchmark testing; and identification of important cross sections and inferred needs
Reaction cross-section predictions for nucleon induced reactions
Nobre, G P A; Escher, J E; Dietrich, F S
2010-01-01
A microscopic calculation of the optical potential for nucleon-nucleus scattering has been performed by explicitly coupling the elastic channel to all the particle-hole (p-h) excitation states in the target and to all relevant pickup channels. These p-h states may be regarded as doorway states through which the flux flows to more complicated configurations, and to long-lived compound nucleus resonances. We calculated the reaction cross sections for the nucleon induced reactions on the targets $^{40,48}$Ca, $^{58}$Ni, $^{90}$Zr and $^{144}$Sm using the QRPA description of target excitations, coupling to all inelastic open channels, and coupling to all transfer channels corresponding to the formation of a deuteron. The results of such calculations were compared to predictions of a well-established optical potential and with experimental data, reaching very good agreement. The inclusion of couplings to pickup channels were an important contribution to the absorption. For the first time, calculations of excitatio...
Neutron standard cross sections in reactor physics - Need and status
The design and improvement of nuclear reactors require detailed neutronics calculations. These calculations depend on comprehensive libraries of evaluated nuclear cross sections. Most of the cross sections that form the data base for these evaluations have been measured relative to neutron cross-section standards. The use of these standards can often simplify the measurement process by eliminating the need for a direct measurement of the neutron fluence. The standards are not known perfectly, however; thus the accuracy of a cross-section measurement is limited by the uncertainty in the standard cross section relative to which it is measured. Improvements in a standard cause all cross sections measured relative to that standard to be improved. This is the reason for the emphasis on improving the neutron cross-section standards. The continual process of measurement and evaluation has led to improvements in the accuracy and range of applicability of the standards. Though these improvements have been substantial, this process must continue in order to obtain the high-quality standards needed by the user community
The total collision cross section in the glory region
Chapter 1 presents a calculation of approximate total cross sections in the glory region from noble gas potentials. The relations between the main features of the total cross section and the properties of the potential to which these are sensitive are extensively investigated in chapter II. A beam apparatus has been developed, which allows for accurate measurements on the total cross section. All effects due to the finite angular and velocity resolution of the apparatus can be eliminated from the data to yield actual total cross sections as a function of the relative velocity. This facilitates a comparison to total cross sections predicted by potentials available in the literature. A brief description of the apparatus and of the data reduction is given in chapter III. The total cross section data obtained for various noble gas combinations are presented and analysed in chapter IV, where also a large number of potentials proposed in the literature is tested. In chapter V the quenching of the glories in the case of a non-spherical interaction is analysed. Subsequently, total cross section data for some atom-molecule systems are discussed. (Auth.)
Cross-Sectional Drawing Techniques And The Artist
Berry, William A.
1980-07-01
Although Democritus, a Greek pholosopher of the fifth century B.C. described the use of cross-sections in analyzing a solid form, this method was not extensively developed in art until the Renaissance. The earliest treatise documenting the integration of the cross-section and linear perspective is Piero della Francesca's De prospective pingendi (c. 1480), in which a drawing of the human head is mathematically conceived and plotted by means of cross-section contours. Piero's method anticipates contemporary biostereometric techniques and current theories of visual perception. Outside of theoretical treatises the complete cross-section rarely occurs in art, though certain pictorial elements such as the religious halo can be interpreted as cross-sections. The chan-ging representation of the halo in art of the Medieval, Renaissance and Baroque periods parallels the development of the artist's concepts and techniques for representing form and space. During the Renaissance and Baroque periods the widespread use of contour hatching, a drawing technique based on the cross-section, indicates that the cross-section concept has played a greater role in pictorial representation than has generally been recognized.
Electron impact ionization cross sections of beryllium-tungsten clusters*
Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael
2016-01-01
We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7
Neutron inelastic cross section measurements for 24Mg
OLACEL A.; Borcea, C.; DESSAGNE Philippe; Kerveno, M.; NEGRET A.; PLOMPEN Arjan
2014-01-01
The gamma production cross sections from the neutron inelastic scattering on 24Mg were measured for neutron energies up to 18 MeV at GELINA (Geel Linear Accelerator), the neutron source operated by EC-JRC-IRMM, Belgium. The level cross section and the total inelastic cross section were determined. We used the GAINS (Gamma Array for Inelastic Neutron Scattering) spectrometer with 7 large volume HPGe detectors placed at 110◦ and 150◦ with respect to the beam direction. The neutron flux was dete...
Thermal neutron capture cross-sections and neutron separation energies
Thermal radiative neutron capture cross-sections have been re-evaluated as part of an ongoing project at the National Nuclear Data Center at Brookhaven National Laboratory at Upton, New York, to update the Neutron Cross-sections compendia, Vol. 1, Parts A and B, Neutron Resonance Parameters and Thermal Capture Cross-sections, published by Academic Press in 1981 and 1984, respectively. Neutron separation energies are evaluated as part of an ongoing project at the Atomic Mass Data Center in Orsay, France. The adopted data are compared with new results derived from this evaluation
Neutron activation cross section measurements and evaluations in CIAE
The cross sections of 28 reactions have been measured by the activation method since 1995 in CIAE. At the same time the cross sections of 40 reactions which we have measured since 1989 have been compiled and evaluated. A brief description of experimental measurement of activation cross sections is given. The data measured after 1995 by ourselves are listed in Table 4 and our evaluations for 40 reactions are listed in Table 5, respectively. A graphical intercomparison with available experimental data isi given in appendix. (author)
Testing of cross section libraries for TRIGA criticality benchmark
Influence of various up-to-date cross section libraries on the multiplication factor of TRIGA benchmark as well as the influence of fuel composition on the multiplication factor of the system composed of various types of TRIGA fuel elements was investigated. It was observed that keff calculated by using the ENDF/B VII cross section library is systematically higher than using the ENDF/B-VI cross section library. The main contributions (∼220 pcm) are from 235U and Zr. (author)
Neutron total scattering cross sections of elemental antimony
Neutron total cross sections are measured from 0.8 to 4.5 MeV with broad resolutions. Differential-neutron-elastic-scattering cross sections are measured from 1.5 to 4.0 MeV at intervals of 50 to 200 keV and at scattering angles distributed between 20 and 160 degrees. Lumped-level neutron-inelastic-scattering cross sections are measured over the same angular and energy range. The exPerimental results are discussed in terms of an optical-statistical model and are compared with respective values given in ENDF/B-V
A method for measuring light ion reaction cross-sections
An experimental procedure for measuring reaction cross-sections of light ions in the energy range 20-50 MeV/nucleon, using a modified attenuation technique, is described. The detection method incorporates a forward detector that simultaneously measures the reaction cross-sections for five different sizes of the solid angle in steps from 99.1% to 99.8% of the total solid angle. The final reaction cross-section values are obtained by extrapolation to the full solid angle
Evaluation of neutron induced reaction cross sections on Rh isotopes
Evaluations of neutron nuclear data on 101,102,103,105Rh in the incident energies up to 20 MeV were performed, using theoretical nuclear reaction model code CCONE. The calculated cross sections of stable 103Rh are in good agreement with measured inelastic scattering, capture, (n, 2n), (n, p), (n, α) and (n, nα) reaction cross sections. The production cross section for the meta-state of 99Tc with half-life of 6.0 h was evaluated for the estimation of nuclear medicine use and resulted in 2.4 mb at a maximum. (author)
Resonance interaction effects in photonucleon reaction cross sections
The fine structure of a giant dipole resonance in the photonuclear reaction cross section is investigated. Developed is a diagram of parametrization of cross sections, angular distribution and polarization for two resonances, one of which is directly excited by gamma-quantum, the second - due to internal and external mixing with the first state. It is shown, that for several reaction channels the interaction effects significantly the energy dependence of the cross sections and results in qualitative effects in the photonuclear angular distributions and polarization of photonucleons
Comparison of fission and capture cross sections of minor actinides
Nakagawa, T
2003-01-01
The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals.
Neutron-induced fission cross-section of 231Pa
A first series of fission cross-section measurements for incident neutron energies between 0.6 and 3.4 MeV has confirmed a first chance threshold value around 1b. In contrast to our findings for the fission cross-section in 233Pa, both the direct and the surrogate cross-section data lead to the same result. This seems to support the assumption, that only in cases, where ingoing and outgoing particle are similar, particle-transfer reactions give results that are in agreement with those obtained from direct compound nuclear reactions
Total cross sections of beauty and charmed mesons on protons
Using a simple scaling law we predict the values of the total cross sections σ(B±p), σBd,s0, σ(bar Bd,s0P), σ(Dd,s±P), σ(D0p), σ(bar D0p) from known total Kp cross sections. We assume that mesons with the same light valence quark, q, and differing only by their heavy valence quark content, Q, have total cross sections on protons which scale as the inverse of the nth power of the reduced mass of the meson. We predict that σ(Q bar q)p > σ(bar Qq)p
Comparison of fission and capture cross sections of minor actinides
The fission and capture cross sections of minor actinides given in JENDL-3.3 are compared with other evaluated data and experimental data. The comparison was made for 32 nuclides of Th-227, 228, 229, 230, 233, 234, Pa-231, 232, 233, U-232, 234, 236, 237, Np-236, 237, 238, Pu-236, 237, 238, 242, 244, Am-241, 242, 242m, 243, Cm-242, 243, 244, 245, 246, 247 and 248. Given in the present report are figures of these cross sections and tables of cross sections at 0.0253 eV and resonance integrals. (author)
Measurements of fission cross-sections. Chapter 4
The steps involved in the measurement of fission cross sections are summarized and the range of techniques available are considered. Methods of fission detection are described with particular emphasis on the neutron energy dependent properties of the fission process and the details of fragment energy loss which can lead to energy-dependent changes in detector efficiency. Selected examples of fission cross-section measurements are presented and methods of data reduction, storage, analysis and evaluation, are examined. Finally requested accuracies for fission cross section data are compared to estimated available accuracies. (U.K.)
Photodetachment cross-section of the negatively charged hydrogen ion
Frolov, Alexei M.
2015-01-01
Photodetachment cross-section $\\sigma_{ph}(p_e)$ of the negatively charged hydrogen ion H$^{-}$ is determined with the use of highly accurate variational wave functions constructed for this ion. Photodetachment cross-sections of the H$^{-}$ ion are also studied for very small and very large values of the photo-electron momentum $p_e$. Maximum of this cross-section and its location have been evaluated to high accuracy. In particular, we have found that $[\\sigma_{ph}(p_e)]_{\\max} \\approx$ 3.862...
Cross Section to Multiplicity Ratios at Very High Energy
Block, M M
2014-01-01
Recent data from the LHC makes it possible to examine an old speculation that at very high energy the total multiplicity and the cross section in elementary particle interactions vary in parallel with energy. Using fits incorporating the new data, it appears that the ratios of the total, elastic, and inelastic cross sections to the average multiplicity N can in fact approach constants at very high energy. The approach to the limit is however quite slow for the total and inelastic cross sections and is not yet reached at LHC energies. The elastic ratio sigma^{el}/N at 7 TeV, however, is not far from its asymptotic value.
XNWLUP, Graphical user interface to plot WIMS-D library multigroup cross sections
1 - Description of program or function: XnWlup is a computer program with user-friendly graphical interface to help the users of WIMS-D library to enable quick visualisation of the plots of the energy dependence of the multigroup cross sections of any nuclide of interest. This software enables the user to generate and view the histogram of 69 multi-group cross sections as a function of neutron energy under Microsoft Windows environment. This software is designed using Microsoft Visual C++ and Microsoft Foundation Classes Library. IAEA1395/05: New features of version 3.0: - Plotting absorption and fission cross sections of resonant nuclide after applying the self-shielding cross section. - Plotting the data of Resonant Integral table, as a function of dilution cross section for a selected temperature and for a given energy group. - Plotting the data of Resonant Integral table, as a function of temperature for a selected background dilution cross section and for a given energy group. - Clearing all the graphs except one graph from the display screen is easily done by using a tool bar button. - Displaying the coordinate of the cursor point with appropriate units. 2 - Methods: XnWlup helps to obtain histogram plots of the values of cross section data of an element/isotope available as 69-group WIMS-D library as a function of energy bins. The software XnWlup is developed with this graphical user interface in order to help those users who frequently refer to the WIMS-D library cross section data of neutron-nuclear reactions. The software also helps to produce handbook of WIMS-D cross sections
Cross polarization caused by perturbed circular cross sections of waveguides and horn antennas
Lier, Erik
1987-03-01
The cross polarization caused by a perturbed cross section of the conical hybrid-mode horn is analyzed. The perturbed cross section is assumed to be slightly elliptical. The theory of Lier and Bergh (1986) for cross polarization in a smooth-walled waveguide supporting the TE11-mode is referred and applied to the HE11 mode as well. Simple analytical formulas which are sufficiently accurate for small ellipticites of the cross-section ellipse are presented. These show that the tolerances on the waveguide diameter are extremely strong, typically on the order of 0.02-0.04 mm in the horn throat for typical horn geometries at 12 GHz.
A genetic algorithm to reduce stream channel cross section data
Berenbrock, C.
2006-01-01
A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.
Sensitivity analysis of U238 cross section in thermal nuclear systems
A sensitivity analysis system is developed for assessing the implication of uncertainties in nuclear data and related computational methods for light water power reactor. Sensitivies, at equilibrium cycle condition, are carried out for the few group macroscopic cross section of the U238 with respect to their 35 group microscopic absorption cross section using the batch depletion code SENTEAV similar to those calculation methods used in the industry. This investigation indicates that improvements are requested on specific range of energy. These results point out the direction for worth while experimental measurements based on an analysis of costs and economic benefits. (Author)
Anisotropy of cross sections of X-ray Raman scattering in carbon
Anisotropy of differential cross section of X-ray Raman scattering was detected in high-ordered pyrographite (HOPG). The most intensive value of this effect is observed near Raman scattering excitation threshold. Variations of the shape and energy position of Raman band edge are explained by dependence of π* and σ* contribution of vacant electron states into scattering differential cross section on direction of pulse transferred to 1s-electron. Thus, spectroscopy of inelastic X-ray Raman scattering gives, like absorption polarization spectroscopy, information on space distribution of electron vacant states. 7 refs.; 3 figs
Expected anomalies of the neutron cross section near the liquid-glass transition
In the frameworks of a microscopic theory the anomalies of the neutron cross section near the liquid-glass transition are discussed. The central concept of the theory is the correlation function for density fluctuations of wave vector q and frequency ω. Its absorptive part is proportional to the dynamical structure factor S(q, ω), this is the scattering law for coherent neutron scattering. Tagged particle motion is evaluated as well and it yields the incoherent neutron scattering cross section Si(q, ω) in. The predictions of the theory for S(q, ω) and Si (q, ω) a q-ω domain are given
The cross sections for (n, x) nuclear reactions on terbium and lutetium isotopes
Neutron cross sections have been measured for Lu and Tb isotopes with neutron activation method. Foils of natural lutetium and terbium were irradiated by neutrons produced by neutron generator NG-300/15. To ensure results accuracy and precision the coincidence summing and self-absorption effects have been taken into account. Calculations of efficiency and corrections have been performed with Monte Carlo simulations. The cross section results obtained for 175Lu(n, alpha)172Tm reactions were reported for the first time. Theoretical calculations of excitation functions were conducted with the Talys-1.0 code
Local Deplanation Of Double Reinforced Beam Cross Section Under Bending
Baltov, Anguel; Yanakieva, Ana
2015-12-01
Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).
Electronic stopping cross sections for use in ion range calculation
Theoretical and empirical methods of determining the electronic stopping cross sections are discussed. The values used by various authors in ion range calculations are outlined. Recommendations are made for future range calculations. (author)
Nonelastic-scattering cross sections of elemental nickel
Neutron total cross sections of elemental nickel were measured from 1.3 to 4.5 MeV, at intervals of approx. 50 keV, with resolutions of 30 to 50 keV and to accuracies of 1 to 2.5%. Neutron differential-elastic-scattering cross sections were measured from 1.45 to 3.8 MeV, at intervals and with resolutions comparable to those of the total cross sections, and to accuracies of 3 to 5%. The nonelastic-scattering cross section is derived from the measured values to accuracies of greater than or equal to 6%. The experimental results are compared with previously reported values as represented by ENDF/B-V, and areas of consistency and discrepancy, noted. The measured results are shown to be in good agreement with the predictions of a model previously reported by the authors. 4 figures, 1 table
Longitudinal Vibrations of Rheological Rod With Variable Cross Section
Katica（Stevanovic）HEDRIH; AleksandarFILIPOVSKI
1999-01-01
Longitudinal vibrations of rheological rod with variable cross section are examined.Particular solutions and eigenfunction are accomplished for natural vibrations of the rod with hereditary material of standard hereditary body.Some examples are given.
Fission cross section for 242Am.met
The neutron-induced fission cross section for 242Am.met (152y) was measured at the Livermore 100-MeV electron linac in the neutron energy range of 0.01 eV to 20 MeV. Fission fragments were detected using a hemispherical fission chamber. The neutron flux was measured below 10 keV using lithium glass scintillators. Above 10 keV, the 242Am.met fission cross section was measured relative to the 235U fission cross section. Below 20 eV, the data were fit with a sum of single-level Breit-Wigner resonances. Results for the distribution of fission widths, the average fission width, and the average level spacing are presented. The fission cross section in the 100 keV to 20 MeV range is compared with previous measurements
Differential cross sections of positron–hydrogen collisions
Rong-Mei, Yu; Chun-Ying, Pu; Xiao-Yu, Huang; Fu-Rong, Yin; Xu-Yan, Liu; Li-Guang, Jiao; Ya-Jun, Zhou
2016-07-01
We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed. Project supported by the Nanyang Normal University Science Foundation of China (Grant No. ZX2013017) and the National Natural Science Foundation of China (Grant Nos. 11174066, 61306007, and U1304114).
Local Deplanation Of Double Reinforced Beam Cross Section Under Bending*
Baltov Anguel
2015-12-01
Full Text Available Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model’s plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB.
Absolute cross sections for dissociative electron attachment to HCCCN
New absolute cross sections for dissociative electron attachment to HCCCN (cyanoacetylene or propiolonitrile) in the range of 0–10 eV electron energy are presented here, which have been determined from a new analysis of previously reported data (Graupner et al 2006 New J. Phys. 8 117). The highest cross sections are observed for the formation of CN− at 5.3 eV and CCCN− at 5.1 eV; approximately 0.06 Å2 and 0.05 Å2 respectively. As part of the re-analysis, it was necessary to determine absolute cross sections for electron-impact ionization of HCCCN with the binary-encounter Bethe method. These electron-impact ionization absolute cross sections for HCCCN are also presented here; the maximum value was found to be ∼6.6 Å2 at ∼80 eV. (paper)
Scaling of Cross Sections for Ion-atom Impact Ionization
The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions
Radiative neutron capture cross sections on 176Lu at DANCE
Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.
2016-03-01
The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.
Macroscopic cross section measurements in materials by neutron radiography technique
Macroscopic cross-section of materials play an important role in the study of material properties. Number of materials are used for shielding against penetrating radiation like X-rays, gamma rays and neutrons and exhibit different attenuation cross-sections. Neutron radiography technique is a multi discipline non-destructive technique with a large number of applications. The technique was applied to study and analyze the behavior of different shielding materials against thermal neutrons. Samples as step wedges of graphite, copper, brass and acrylic etc. were fabricated. The test samples were exposed to a beam of thermal neutrons at neutron radiography facility and the transmittance of neutrons through different materials was measured. Gamma-ray contribution and scattered radiation were subtracted from the observed neutron intensities to calculate the neutron macroscopic cross-section. Calculated values of the macroscopic cross-section were compared with the values given in the literature. (author)
Scaling of Cross Sections for Ion-atom Impact Ionization
Kaganovich, I D; Startsev, E
2003-01-01
The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.
Models for Photon-photon Total Cross-sections
Godbole, RM; Grau, A.; Pancheri, G.
1999-01-01
We present here a brief overview of recent models describing the photon-photon cross-section into hadrons. We shall show in detail results from the eikonal minijet model, with and without soft gluon summation.
Electron Swarm Parameters and Electron Collision Cross Sections
Electron collision cross section data for atoms and molecules and electron swarm data in respective gases are important for quantitative modeling of related plasmas. This fact and wide application of plasmas in various fields boos data collection and evaluation activities worldwide. We have been measuring electron swarm parameters (drift velocity, longitudinal diffusion coefficient, ionization/attachment coefficients, and so on) over a wide E/N range (where E is the electric field and N the gas number density) in a number of gases. We also derived a set of electron collision cross sections for each gas so that the set was consistent with our experimental swarm data. Our speciality in studying molecular target is to measure swarm parameters not only in the pure molecular gas but also in dilute molecular gas-argon gas mixtures, the mix rations of the molecule are 0.5-5.0%. The swarm parameters in pure molecular gas depend primarily on the elastic momentum transfer cross section of the molecule and its vibrational excitation cross sections. Those in the mixtures, on the other hand, depend mainly on the elastic momentum transfer cross section of major argon atom and the vibrational cross sections of minor admixed molecule. Alternative use of swarm parameters in pure molecular gas and those in the mixtures enable us to derive the momentum transfer cross section and vibrational cross sections for the molecule separately. Combination of the Ramsauer-Townsend minimum of argon atom and sharp structures in vibrational cross sections of the molecule frequently gives rise prominent E/N dependences in swarm parameters, which can be used to determine the position and magnitude of resonances in the vibrational excitation cross sections. Detailed accounts of the procedure, including estimated uncertainty in our electron swarm data and also in the resultant set of electron collision cross sections, will be given in the presentation by referring to our recent results. Stress will be
Total cross-section measurements progress in nuclear physics
Giacomelli, G; Mulvey, J H
2013-01-01
Total Cross-Section Measurements discusses the cross-sectional dimensions of elementary hadron collisions. The main coverage of the book is the resonance and high energy area of the given collision. A section of the book explains in detail the characteristic of a resonance region. Another section is focused on the location of the high energy region of collision. Parts of the book define the meaning of resonance in nuclear physics. Also explained are the measurement of resonance and the identification of the area where the resonance originates. Different experimental methods to measure the tota
Absolute Total np and pp Cross Section Determinations
Arndt, R A; Laptev, A B; Strakovsky, I I; Workman, R L
2008-01-01
Absolute total cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses of NN scattering data. These cross sections are compared with most recent ENDF/B and JENDL data files, and the Nijmegen partial-wave analysis. Systematic deviations from the ENDF/B and JENDL evaluations are found to exist in the low-energy region.
Singly differential cross sections with exchange for Ps-fragmentation
Ray, Hasi
2008-01-01
Ps ionization in Ps-atom scattering is of fundamental importance. The singly differential cross sections (SDCS) provides more accurate information to test a theory than integrated or total ionization cross section since the averaging over one parameter is not required. We evaluate the SDCS for Ps-ionization with respect to the longitudinal energy distribution of the break-up positron and electron in Ps-H and Ps-He scattering and compare them with the recently available experimental and theore...
Photoproduction models for total cross section and shower development
Cornet Fernando
2015-01-01
Full Text Available A model for the total photoproduction cross section, based on the ansatz that resummation of infrared gluons limits the rise induced by QCD minijets in all the total cross-sections, is used to simulate extended air showers initiated by cosmic rays with the AIRES simulation program. The impact on common shower observables, especially those related with muon production, is analysed and compared with the corresponding results obtained with previous photoproduction models.
Measurement of fusion cross section with neutron halo nuclei
Fusion cross sections of 11Be, 10Be and 9Be have been measured on 209Bi target at 30-70MeV. Due to the neutron halo effect of 11Be, a large enhancement or suppression of the fusion cross section around the Coulomb barrier was theoretically predicted. Comparing the excitation function of 11Be with 10Be at near the Coulomb barrier region, no significant difference has been observed. ((orig.))
Top Quark Pair Production Cross Section at the Tevatron
Peters, Reinhild Yvonne [Manchester U.
2015-09-25
The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab, has undergone intense studies in the last 20 years. Currently, CDF and D0 converge on their measurements of top-antitop quark production cross sections using the full Tevatron data sample. In these proceedings, the latest results on inclusive and differential measurements of top-antitop quark production cross sections at the Tevatron are reported.
Elastic cross sections for electron-carbon scattering
Liu Jun-Bo; Wang Yang; Zhou Ya-Jun
2007-01-01
We used the close-coupling optical (CCO) approach to investigate the open-shell carbon atom. The elastic cross sections have been presented at the energies below 90eV, and the present CCO results have been compared with other theoretical results. We found that polarization and the continuum states have significant contributions to the elastic cross sections. The present calculations show that the CCO method is capable of calculating electron scattering from open-shell atoms.
Thermal neutron capture cross sections of tellurium isotopes
New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given
Thermal neutron capture cross sections of tellurium isotopes
New values for thermal neutron capture cross sections of the tellurium isotopes 122Te,124Te,125Te,126Te,128Te, and 130Te are reported. These values are based on a combination of newly determined partial γ-ray cross sections obtained from experiments on targets contained natural Te and γ intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given
Thermal neutron capture cross sections of tellurium isotopes
Tomandl, I.; Honzatko, J.; von Egidy, T.; Wirth, H.-F.; Belgya, T.; Lakatos, M.; Szentmiklosi, L.; Revay, Zs.; Molnar, G.L.; Firestone, R.B.; Bondarenko, V.
2004-03-01
New values for thermal neutron capture cross sections of the tellurium isotopes 122Te, 124Te, 125Te, 126Te, 128Te, and 130Te are reported. These values are based on a combination of newly determined partial g-ray cross sections obtained from experiments on targets contained natural Te and gamma intensities per capture of individual Te isotopes. Isomeric ratios for the thermal neutron capture on the even tellurium isotopes are also given.
Evaluation of neutron reaction cross sections for astrophysics
We have developed a code system to evaluate nuclear reaction cross sections for the nucleosynthesis. The system includes an interface to Reference Input Parameter Library (RIPL), as well as some systematics to extrapolate the parameters into unstable regions. We are focusing on neutron capture processes important for s- and r-processes. The structure of the system is reviewed, and calculated capture cross sections in the fission product mass region are compared with experimental data available. (author)
Majorana Dark Matter Cross Sections with Nucleons at High Energies
Jeong, Yu Seon; Kim, C. S.; Reno, Mary Hall
2012-01-01
Non-relativistic dark matter scattering with nucleons is constrained by direct detection experiments. We use the XENON constraints on the spin-independent and spin-dependent cross section for dark matter scattering with nucleons to constrain a hypothetical Majorana fermionic dark matter particle's couplings to the Higgs boson and Z boson. In the procedure we illustrate the change in the dark matter nucleon cross section as one goes from non-relativistic, coherent scattering to relativistic, i...
Modelling of reaction cross sections and prompt neutron emission
Oberstedt S.; Tudora A.; Hambsch F.-J.
2010-01-01
Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra) as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f) and 237Np(n, f)) both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.
Measurement of distribution density of total neutron cross-sections
Problems of energy resolutions together with difficulties of multilevel analysis make desirable the application of the statistical approach to the description of total cross-section irregularities for intermediate and fast neutrons. Total neutron cross-section probability distributions were found from the analysis of the transmission nonexponentiality. The results for intervals adopted in reactor calculations are compared with recommended values and with those found from high resolution measurements
Determination of molecular ionization cross sections in an ICR spectrometer
Ionization cross sections have been determined for simple gases at 75eV in an ICR spectrometer. Results obtained using a calibrated ion gauge as a pressure indicator yield values which are consistently higher than accepted values by as much as 15%. These results suggest that a more convenient way to measure pressure in ICR experiments might be to record the total ion current and to use the tabulated ionization cross sections where available
Burnup-dependent cross section data for research reactors
Studies currently in progress consider research and test reactors which commonly have burnups of 50 atom percent in 235-U and may reach as high a 70 atom percent. At these levels of burnup changes in cross-section data with burnup become significant. Some preliminary studies of these effects lead to the development of a modified version of REBUS-2 which supports changes in cross-section data with burnup. This version of REBUS-2 allows for changes in the cross-section data only at each time sub-interval in the problem, and these cross-section changes for capture and fission are based on a least squares polynomial fit as a function of burnup. In this paper an attempt is made to evaluate the importance of burnup dependent data for the various isotopes and/or groups, and to assess the accuracy of this method by comparing the REBUS-2 results with results obtained from PDQ-7. The 10 MW IAEA benchmark problem has been selected for this study. A description of the reactor and the XY model can be found in the IAEA Guidebook. The EPRI-CELL4 code was used to generate burnup dependent cross section data for use with both REBUS-2 and PDQ-7. Cross-section data were generated at 10 time steps to a burnup of approximately 50 atom percent in 235-U. The agreement between the PDQ-7 results and the REBUS-2 results with fitted burnup dependent cross-section data are quite good. Burnup dependent cross sections are essential for accurate estimates of cycle lengths and reactivities, and low order polynomial fits of capture and fission data for selected isotopes and energy groups can provide this capability
Near-UV photolysis cross sections of CH3OOH and HOCH2OOH determined via action spectroscopy
P. O. Wennberg
2006-11-01
Full Text Available Knowledge of molecular photolysis cross sections is important for determining atmospheric lifetimes and fates of many species. A method and laser apparatus for measurement of these cross sections in the near-ultraviolet (UV region is described. The technique is based on action spectroscopy, where the yield of a photodissociation product (in this case OH is measured as a function of excitation energy. For compounds yielding OH, this method can be used to measure near-UV photodissociation cross section as low as 10−23 cm2 molecule−1. The method is applied to determine the photodissociation cross sections for methyl hydroperoxide (CH3OOH; MHP and hydroxymethyl hydroperoxide (HOCH2OOH; HMHP in the 305–365 nm wavelength range. The measured cross sections are in good agreement with previous measurements of absorption cross sections.
EJ2-MCNPlib. Contents of the JEF-2.2 based neutron cross-section library for MCNP4A
In this report a description is given of the EJ2-MCNPlib library. The EJ2-MCNPlib library is to be used for reactivity/critically calculations and general neutron/photon transport calculations with the Monte Carlo code MCNP4A. The library is based on the European JEF-2.2 nuclear data evaluation and contains data for all (i.e. 313) nuclides available on this evaluation.The cross-section data were generated using the NJOY cross-section processing code system, version 91.118. For easy reference cross-section plots are given in this report for the total, elastic and absorption cross sections for all nuclides on the EJ2-MCNPlib library. Furthermore, for verification purposes a graphical intercomparison is given of the results of standard benchmark calculations performed with JEF-2.2 cross-section data and with ENDF/B-V cross-section data (whenever available). 6 refs
Porosity effects in the neutron total cross section of graphite
Graphite has been used in nuclear reactors since the birth of the nuclear industry due to its good performance as a neutron moderator material. Graphite is still an option as moderator for generation IV reactors due to its good mechanical and thermal properties at high operation temperatures. So, there has been renewed interest in a revision of the computer libraries used to describe the neutron cross section of graphite. For sub-thermal neutron energies, polycrystalline graphite shows a larger total cross section (between 4 and 8 barns) than predicted by existing theoretical models (0.2 barns). In order to investigate the origin of this discrepancy we measured the total cross section of graphite samples of three different origins, in the energy range from 0.001 eV to 10 eV. Different experimental arrangements and sample treatments were explored, to identify the effect of various experimental parameters on the total cross section measurement. The experiments showed that the increase in total cross section is due to neutrons scattered around the forward direction. We associate these small-angle scattered neutrons (SANS) to the porous structure of graphite, and formulate a very simple model to compute its contribution to the total cross section of the material. This results in an analytic expression that explicitly depends on the density and mean size of the pores, which can be easily incorporated in nuclear library codes.
Development of automatic cross section compilation system for MCNP
A development of a code system to automatically convert cross-sections for MCNP is in progress. The NJOY code is, in general, used to convert the data compiled in the ENDF format (Evaluated Nuclear Data Files by BNL) into the cross-section libraries required by various reactor physics codes. While the cross-section library: FSXLIB-J3R2 was already converted from the JENDL-3.2 version of Japanese Evaluated Nuclear Data Library for a continuous energy Monte Carlo code MCNP, the library keeps only the cross-sections at room temperature (300 K). According to the users requirements which want to have cross-sections at higher temperature, say 600 K or 900 K, a code system named 'autonj' is under development to provide a set of cross-section library of arbitrary temperature for the MCNP code. This system can accept any of data formats adopted JENDL that may not be treated by NJOY code. The input preparation that is repeatedly required at every nuclide on NJOY execution is greatly reduced by permitting the conversion process of as many nuclides as the user wants in one execution. A few MCNP runs were achieved for verification purpose by using two libraries FSXLIB-J3R2 and the output of autonj'. The almost identical MCNP results within the statistical errors show the 'autonj' output library is correct. In FY 1998, the system will be completed, and in FY 1999, the user's manual will be published. (K. Tsuchihashi)
Asymptotic behaviour of pion-pion total cross-sections
We derive a sum rule which shows that the Froissart-Martin bound for the asymptotic behaviour of the ππ total cross sections at high energies, if modulated by the Lukaszuk-Martin coefficient of the leading log2 s behaviour, cannot be an optimal bound in QCD. We next compute the total cross sections for π+π−, π±π0 and π0π0 scattering within the framework of the constituent chiral quark model (CχQM) in the limit of a large number of colours Nc and discuss their asymptotic behaviours. The same ππ cross sections are also discussed within the general framework of Large-Nc QCD and we show that it is possible to make an Ansatz for the isospin I=1 and I=0 spectrum which satisfy the Froissart-Martin bound with coefficients which, contrary to the Lukaszuk-Martin coefficient, are not singular in the chiral limit and have the correct Large-Nc counting. We finally propose a simple phenomenological model which matches the low energy behaviours of the σπ±π0total(s) cross section predicted by the CχQM with the high energy behaviour predicted by the Large-Nc Ansatz. The magnitude of these cross sections at very high energies is of the order of those observed for the pp and pp-bar scattering total cross sections
Studies of 54,56Fe Neutron Scattering Cross Sections
Hicks S. F.
2015-01-01
Full Text Available Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.
Updating the IST-LISBON electron cross sections for nitrogen
Alves, L. L.; Sombreireiro, L.; Viegas, P.; Guerra, V.
2013-09-01
In this work we update the complete and consistent set of nitrogen (N2) electron-impact cross-section with the IST-LISBON database, available on the LXCat website. The update has extended, in energy scale up to 1 keV, the cross sections for effective momentum-transfer, excitation to electronic states and ionization. The set further accounts for excitation to rotational and vibrational excited states. Calculations using BOLSIG + with the new cross sections give swarm parameters in very good agreement with available experimental data for the reduced mobility, the characteristic energy and the reduced ionization coefficient, for a very extended E / N range up to 1000 Td. The influence of rotational excitations/de-excitations at low E / N and different rotational temperatures is discussed. A critical evaluation of similarities and differences with sets of N2 cross sections from other databases is carried out. Moreover, the procedure to de-convolute global cross sections into state-to-state vibrational level dependent cross sections is outlined and discussed. Work partially supported by FCT (Pest-OE/SADG/LA0010/2011).
Calculation of the intermediate energy activation cross section
Furihata, Shiori; Yoshizawa, Nobuaki [Mitsubishi Research Inst., Inc., Tokyo (Japan)
1997-03-01
We discussed the activation cross section in order to predict accurately the activation of soil around an accelerator with high energy and strong intensity beam. For the assessment of the accuracy of activation cross sections estimated by a numerical model, we compared the calculated cross section with various experimental data, for Si(p,x){sup 22}Na, Al(p,x){sup 22}Na, Fe(p,x){sup 22}Na, Si(p,x){sup 7}Be, O(p,x){sup 3}H, Al(p,x){sup 3}H and Si(p,x){sup 3}H reactions. We used three computational codes, i.e., quantum molecular dynamics (QMD) plus statistical decay model (SDM), HETC-3STEP and the semiempirical method developed by Silberberg et.al. It is observed that the codes are accurate above 1GeV, except for {sup 7}Be production. We also discussed the difference between the activation cross sections of proton- and neutron-induced reaction. For the incident energy at 40MeV, it is found that {sup 3}H production cross sections of neutron-induced reaction are ten times as large as those of proton-induced reaction. It is also observed that the choice of the activation cross sections seriously affects to the estimate of saturated radioactivity, if the maximum energy of neutron flux is below 100MeV. (author)
Belo, Thiago F.; Fiel, Joao Claudio B., E-mail: thiagofbelo@hotmail.com [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)
2015-07-01
Nuclear reactor core analysis involves neutronic modeling and the calculations require problem dependent nuclear data generated with few neutron energy groups, as for instance the neutron cross sections. The methods used to obtain these problem-dependent cross sections, in the reactor calculations, generally uses nuclear computer codes that require a large processing time and computational memory, making the process computationally very expensive. Presently, analysis of the macroscopic cross section, as a function of nuclear parameters, has shown a very distinct behavior that cannot be represented by simply using linear interpolation. Indeed, a polynomial representation is more adequate for the data parameterization. To provide the cross sections of rapidly and without the dependence of complex systems calculations, this work developed a set of parameterized cross sections, based on the Tchebychev polynomials, by fitting the cross sections as a function of nuclear parameters, which include fuel temperature, moderator temperature and density, soluble boron concentration, uranium enrichment, and the burn-up. In this study is evaluated the problem-dependent about fission, scattering, total, nu-fission, capture, transport and absorption cross sections for a typical PWR fuel element reactor, considering burn-up cycle. The analysis was carried out with the SCALE 6.1 code package. The results of comparison with direct calculations with the SCALE code system and also the test using project parameters, such as the temperature coefficient of reactivity and fast fission factor, show excellent agreements. The differences between the cross-section parameterization methodology and the direct calculations based on the SCALE code system are less than 0.03 percent. (author)
Photoionization cross-sections using the polarization propagator approach
It is shown that the imaginary part of the polarization propagator (PP), when computed at complex frequencies, w+i η, can be, in the limit η -> 0, directly related to the photoionization cross-section. Total photoionization cross-sections can be evaluated directly from the PP, and partial croos-sections can be computed from individual excitation frequencies and transition moments, using the spectral representation of the PP. For complex frequencies not only the real part of the PP but also its imaginary part is propotional to the complex dynamic polarizability. (Author)
Measurements of neutron cross sections of radioactive waste nuclides
Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi
1998-01-01
Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)
242Am/sup m/ fission cross section
The neutron-induced fission cross section of 242Am/sup m/ has been measured over the energy region from 10-3 eV to approx.20 MeV in a series of experiments utilizing a linac-produced ''white'' neutron source and a monoenergetic source of 14.1 MeV neutrons. The cross section was measured relative to that of 235U in the thermal (0.001 to approx.3 eV) and high energy (1 keV to approx.20 MeV) regions and normalized to the ENDF/B-V 235U(n,f) evaluated cross section. In the resonance energy region (0.5 eV to 10 keV) the neutron flux was measured using thin lithium glass scintillators and the relative cross section thus obtained was normalized to the thermal energy measurement. This procedure allowed a consistency check between the thermal and high energy data. The cross section data have a statistical accuracy of approx.0.5% at thermal energies and in the 1-MeV energy region, and a systematic uncertainty of approx.5%. We confirmed that 242Am/sup m/ has the largest thermal fission cross section known with a 2200 m/sec value of 6328 b. Results of a Breit-Wigner sum-of-single-levels analysis of 48 fission resonances up to 20 eV are presented and the connection of these resonance properties to the large thermal cross section is discussed. Our measurements are compared with previously reported results
Measurement of the 242Pu neutron capture cross section
Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration
2015-10-01
Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).
3He(γ,pp)n cross sections with tagged photons below the Δ resonance energy
Cross sections have been measured for the 3He(γ,pp)n reaction with tagged photons in the range Eγ =161 endash 208 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The protons were detected over a range of polar angles of 40 degree endash 140 degree and azimuthal angles of 0 degree endash 360 degree with an energy threshold of 40 MeV. Comparisons are made with a microscopic calculation which includes one-, two-, and three-nucleon absorption mechanisms. One- and two-nucleon processes, including final-state interactions, are unable to account for the measured cross sections. The addition of three-nucleon absorption diagrams gives roughly the right strength, but the distribution in phase space is in disagreement with the data. copyright 1996 The American Physical Society
41K(n, γ)42K thermal and resonance integral cross section measurements
We measured the 41K thermal neutron absorption and resonance integral cross sections after the irradiation of KNO3 samples near the core of the IEA-R1 IPEN pool-type research reactor. Bare and cadmium-covered targets were irradiated in pairs with Au-Al alloy flux-monitors. The residual activities were measured by gamma-ray spectroscopy with a HPGe detector, with special care to avoid the 42K decay β- emission effects on the spectra. The gamma-ray self-absorption was corrected with the help of MCNP simulations. We applied the Westcott formalism in the average neutron flux determination and calculated the depression coefficients for thermal and epithermal neutrons due to the sample thickness with analytical approximations. We obtained 1.57(4) b and 1.02(4) b, for thermal and resonance integral cross sections, respectively, with correlation coefficient equal to 0.39.
Analysis of low-energy direct reactions and the novel one-step cross section
Marcinkowski, A
1999-01-01
Inclusive non-elastic nucleon emission is usually described as a one-step direct reaction followed by gradual absorption of the remaining flux into the quasibound particle-hole states of the multistep compound reaction chain. We present a sum rule analysis of the cross sections calculated in the framework of the quantal theory of Feshbach, Kerman and Koonin which shows that the experimental data cannot be explained by one-step direct reactions only. The closed-form one-step reaction cross section is expressed as a sum of contributions due to incoherent excitation of particle-hole pairs of orbital angular momentum transfer l>4 and coherent excitation of collective vibrations of multipolarity not exceeding lambda=4. The calculation of multistep cross sections with the non-normal DWBA matrix elements is discussed.
2013-01-01
This Report summarizes the results of the activities in 2012 and the first half of 2013 of the LHC Higgs Cross Section Working Group. The main goal of the working group was to present the state of the art of Higgs Physics at the LHC, integrating all new results that have appeared in the last few years. This report follows the first working group report Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables (CERN-2011-002) and the second working group report Handbook of LHC Higgs Cross...
Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry
Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.
2014-09-01
The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are
Staple Foods Consumption and Irritable Bowel Syndrome in Japanese Adults: A Cross-Sectional Study
Zheng, Zhaoqiu; Huang, Cong; Guo, Yinting; Niu, Kaijun; Momma, Haruki; Kobayashi, Yoritoshi; Fukudo, Shin; Nagatomi, Ryoichi
2015-01-01
Background Carbohydrates can cause gastrointestinal symptoms due to incomplete absorption in the small bowel. Thus, high-carbohydrate diets may induce symptoms of irritable bowel syndrome (IBS). Objective This observational and cross-sectional study assessed the association between consumption of several carbohydrate-enriched staple foods, such as rice, Japanese wheat noodles, Chinese noodles, bread, pasta, and buckwheat noodles, and the prevalence of IBS in Japanese adults. Subjects and Meth...
EDDIX--a database of ionisation double differential cross sections.
MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H
2011-02-01
The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure. PMID:21113060
Electromagnetic Dissociation Cross Sections using Weisskopf-Ewing Theory
Adamczyk, Anne M.; Norbury, John W.
2011-01-01
It is important that accurate estimates of crew exposure to radiation are obtained for future long-term space missions. Presently, several space radiation transport codes exist to predict the radiation environment, all of which take as input particle interaction cross sections that describe the nuclear interactions between the particles and the shielding material. The space radiation transport code HZETRN uses the nuclear fragmentation model NUCFRG2 to calculate Electromagnetic Dissociation (EMD) cross sections. Currently, NUCFRG2 employs energy independent branching ratios to calculate these cross sections. Using Weisskopf-Ewing (WE) theory to calculate branching ratios, however, is more advantageous than the method currently employed in NUCFRG2. The WE theory can calculate not only neutron and proton emission, as in the energy independent branching ratio formalism used in NUCFRG2, but also deuteron, triton, helion, and alpha particle emission. These particles can contribute significantly to total exposure estimates. In this work, photonuclear cross sections are calculated using WE theory and the energy independent branching ratios used in NUCFRG2 and then compared to experimental data. It is found that the WE theory gives comparable, but mainly better agreement with data than the energy independent branching ratio. Furthermore, EMD cross sections for single neutron, proton, and alpha particle removal are calculated using WE theory and an energy independent branching ratio used in NUCFRG2 and compared to experimental data.
Experience With the SCALE Criticality Safety Cross Section Libraries
Bowman, S.M.
2000-08-21
This report provides detailed information on the SCALE criticality safety cross-section libraries. Areas covered include the origins of the libraries, the data on which they are based, how they were generated, past experience and validations, and performance comparisons with measured critical experiments and numerical benchmarks. The performance of the SCALE criticality safety cross-section libraries on various types of fissile systems are examined in detail. Most of the performance areas are demonstrated by examining the performance of the libraries vs critical experiments to show general trends and weaknesses. In areas where directly applicable critical experiments do not exist, performance is examined based on the general knowledge of the strengths and weaknesses of the cross sections. In this case, the experience in the use of the cross sections and comparisons with the results of other libraries on the same systems are relied on for establishing acceptability of application of a particular SCALE library to a particular fissile system. This report should aid in establishing when a SCALE cross-section library would be expected to perform acceptably and where there are known or suspected deficiencies that would cause the calculations to be less reliable. To determine the acceptability of a library for a particular application, the calculational bias of the library should be established by directly applicable critical experiments.
Technical study on cross section measurement with Al activation
The method of Al activation relative measurement of cross section has been studied. The cross sections of 27Al(n,α)24Na have been measured in 13.4 MeV to 14.7 MeV. The PD-300 accelerator offered D-T neutron source. The distance from sample to Tritium target is 20 cm. It spent 5 h to radiate sample with neutron. The intensity of neutron source is monitored by the α-particles from the T(d, n) 4He reaction. The induced neutron energy is determined using ratio of Nb(n,2n) and Zr(n,2n) cross section. The activated gamma ray is measured using GEM60P HPGe detector. The results of 27Al(n, α)24Na cross sections are compared with the nuclear data standard, and the deviation is less than 1%. It showed that the method of Al activation relative measurement of cross section is credible. (authors)
Penning ionization cross sections of excited rare gas atoms
Electronic energy transfer processes involving excited rare gas atoms play one of the most important roles in ionized gas phenomena. Penning ionization is one of the well known electronic energy transfer processes and has been studied extensively both experimentally and theoretically. The present paper reports the deexcitation (Penning ionization) cross sections of metastable state helium He(23S) and radiative He(21P) atoms in collision with atoms and molecules, which have recently been obtained by the authors' group by using a pulse radiolysis method. Investigation is made of the selected deexcitation cross sections of He(23S) by atoms and molecules in the thermal collisional energy region. Results indicate that the cross sections are strongly dependent on the target molecule. The deexcitation probability of He(23S) per collision increases with the excess electronic energy of He(23S) above the ionization potential of the target atom or molecule. Another investigation, made on the deexcitation of He(21P), suggests that the deexcitation cross section for He(21P) by Ar is determined mainly by the Penning ionization cross section due to a dipole-dipole interaction. Penning ionization due to the dipole-dipole interaction is also important for deexcitation of He(21P) by the target molecules examined. (N.K.)
(n,α) reactions cross sections research at IPPE
During last few years systematic studies of (n,α) reactions cross sections on a set of nuclei for wide neutron energy region was carried out in IPPE. This research was done with new spectrometer based on an ionisation chamber with Frisch grid and a wave form digitizer. Both methods for gaseous and solid targets were developed. Information extracted from digital signals allows us to significantly decrease background from parasitic reactions and reach higher reliability for obtained cross section values. The description of experiment specialities and cross section measurement results for 16O(n,α), 14N(n,α), 14N(n,t), 20Ne(n,α), 36,40Ar(n,α), 10B(n,α) and 50Cr(n,α) reactions are given in the report
Inelastic cross sections for positron scattering from atomic hydrogen
Positronium formation (Ps) cross sections for positrons impinging on atomic hydrogen were measured in the impact energy range from 13eV to 255eV at the High Intensity Positron (HIP) beam at Brookhaven National Laboratory (BNL). The Ps-formation cross section was found to rise rapidly from the threshold at 6.8eV to a maximum value of (2.98 ± 0.18) x 10-16 cm2 for ∼ 15eV positrons. By 75eV it drops below the detection limit of 0.17 x 10-16 cm2 which is the present level of statistical uncertainty. The experiment was modified to enable the measurement of doubly differential scattering cross sections
Inelastic cross sections for positron scattering from atomic hydrogen
Weber, M.; Hofmann, A.; Raith, W.; Sperber, W. [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Jacobsen, F.; Lynn, K.G. [Brookhaven National Lab., Upton, NY (United States)
1994-12-31
Positronium formation (Ps) cross sections for positrons impinging on atomic hydrogen were measured in the impact energy range from 13eV to 255eV at the High Intensity Positron (HIP) beam at Brookhaven National Laboratory (BNL). The Ps-formation cross section was found to rise rapidly from the threshold at 6.8eV to a maximum value of (2.98 {plus_minus} 0.18) {times} 10{sup {minus}16} cm{sup 2} for {approx} 15eV positrons. By 75eV it drops below the detection limit of 0.17 {times} 10{sup {minus}16} cm{sup 2} which is the present level of statistical uncertainty. The experiment was modified to enable the measurement of doubly differential scattering cross sections.
Integral test of fission-product cross sections
A test of more than 50 nuclides of the fission-product file of the JEF-1 data library has been performed, using integral data measured in Dutch, French and US facilities. Some results are given for the capture cross sections of the 40 most important fission products in a fast reactor. The inelastic scattering cross sections of many even-mass nuclides are systematically too low due to neglect of direct-collective effects. In lumped fission-product cross sections the uncertainties due to the release of gaseous products have been reduced by means of a new burn-up model with parameters tuned to leakage data of irradiated PHENIX fuel pins
High Energy Measurement of the Deuteron Photodisintegration Differential Cross Section
Elaine Schulte
2002-05-01
New measurements of the high energy deuteron photodisintegration differential cross section were made at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. Two experiments were performed. Experiment E96-003 was performed in experimental Hall C. The measurements were designed to extend the highest energy differential cross section values to 5.5 GeV incident photon energy at forward angles. This builds upon previous high energy measurements in which scaling consistent with the pQCD constituent counting rules was observed at 90 degrees and 70 degrees in the center of mass. From the new measurements, a threshold for the onset of constituent counting rule scaling seems present at transverse momentum approximately 1.3 GeV/c. The second experiment, E99-008, was performed in experimental Hall A. The measurements were designed to explore the angular distribution of the differential cross section at constant energy. The measurements were made symmetric about 90 degrees
Measurement of the ZZ production cross section with ATLAS
Ellinghaus, Frank; Schmitz, Simon; Tapprogge, Stefan [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz (Germany); Collaboration: ATLAS-Collaboration
2015-07-01
The study of the ZZ production has an excellent potential to test the electroweak sector of the Standard Model, where Z boson pairs can be produced via non-resonant processes or via Higgs decays. A deviation from the Standard Model expectation for the ZZ production cross section would be an indication for new physics. This could manifest itself in so called triple gauge couplings via ZZZ or ZZγ, which the Standard Model forbids at tree level. The measurement of the ZZ production cross section is based on an integrated luminosity of 20.3 fb{sup -1} of proton-proton collision data at √(s) = 8 TeV recorded with the ATLAS detector in 2012. Measurements of differential cross sections as well as searches for triple gauge couplings have been performed. This talk presents the measurement and analysis details of the ZZ production in the ZZ → 4l channel.
Cross section versus time delay and trapping probability
Luna-Acosta, G. A.; Fernández-Marín, A. A.; Méndez-Bermúdez, J. A.; Poli, Charles
2016-07-01
We study the behavior of the s-wave partial cross section σ (k), the Wigner-Smith time delay τ (k), and the trapping probability P (k) as function of the wave number k. The s-wave central square well is used for concreteness, simplicity, and to elucidate the controversy whether it shows true resonances. It is shown that, except for very sharp structures, the resonance part of the cross section, the trapping probability, and the time delay, reach their local maxima at different values of k. We show numerically that τ (k) > 0 at its local maxima, occurring just before the resonant part of the cross section reaches its local maxima. These results are discussed in the light of the standard definition of resonance.
Measurement of charm and beauty dijet cross sections in photoproduction
A measurement of charm and beauty dijet photoproduction cross sections at the ep collider HERA is presented. The positron data of the years 1999 and 2000 are analysed, corresponding to an integrated luminosity of 56.8 pb-1. Events are selected with two or more jets of transverse momentum ptjet1(2)>11(8) GeV in the central range of pseudo-rapidity -0.9jet1(2)γobs. Taking into account the theoretical uncertainties, the charm cross sections are consistent with a QCD calculation in next-to-leading order, while the predicted cross sections for beauty production are somewhat lower than the measurement. (orig.)
Fast-neutron total and scattering cross sections of niobium
Neutron total cross sections of niobium were measured from approx. = 0.7 to 4.5 MeV at intervals of less than or equal to 50 keV with broad resolution. Differential-elastic-scattering cross sections were measured from approx. = 1.5 to 4.0 MeV at intervals of 0.1 to 0.2 MeV and at 10 to 20 scattering angles distributed between approx. = 20 and 160 degrees. Inelastically-scattered neutrons, corresponding to the excitation of levels at: 788 +- 23, 982 +- 17, 1088 +- 27, 1335 +- 35, 1504 +- 30, 1697 +- 19, 1971 +- 22, 2176 +- 28, 2456 +- (.), and 2581 +- (.) keV, were observed. An optical-statistical model, giving a good description of the observables, was deduced from the measured differential-elastic-scattering cross sections. The experimental-results were compared with the respective evaluated quantities given in ENDF/B-V
Majorana Dark Matter Cross Sections with Nucleons at High Energies
Jeong, Yu Seon; Reno, Mary Hall
2012-01-01
Non-relativistic dark matter scattering with nucleons is constrained by direct detection experiments. We use the XENON constraints on the spin-independent and spin-dependent cross section for dark matter scattering with nucleons to constrain a hypothetical Majorana fermionic dark matter particle's couplings to the Higgs boson and Z boson. In the procedure we illustrate the change in the dark matter nucleon cross section as one goes from non-relativistic, coherent scattering to relativistic, incoherent scattering. While the Z invisible decay width excludes directly couplings of dark matter to ordinary matter, by introducing a light Z' portal to the dark sector, a relatively large dark matter nucleon cross section can be preserved even with accelerator experiment constraints for dark matter with a mass of ~10 GeV
Ionization cross sections for low energy electron transport
Seo, Hee; Saracco, Paolo; Kim, Chan Hyeong
2011-01-01
Two models for the calculation of ionization cross sections by electron impact on atoms, the Binary-Encouter-Bethe and the Deutsch-Maerk models, have been implemented; they are intended to extend and improve Geant4 simulation capabilities in the energy range below 1 keV. The physics features of the implementation of the models are described, and their differences with respect to the original formulations are discussed. Results of the verification with respect to the original theoretical sources and of extensive validation with respect to experimental data are reported. The validation process also concerns the ionization cross sections included in the Evaluated Electron Data Library used by Geant4 for low energy electron transport. Among the three cross section options, the Deutsch-Maerk model is identified as the most accurate at reproducing experimental data over the energy range subject to test.
The photon scattering cross-sections of atomic hydrogen
Grunefeld, Swaantje J; Cheng, Yongjun
2016-01-01
We present a unified view of the frequency dependence of the various scattering processes involved when a neutral hydrogen atom interacts with a monochromatic, linearly-polarized photon. A computational approach is employed of the atom trapped by a finite-sized-box due to a finite basis-set expansion, which generates a set of transition matrix elements between $E0$ pseudostates. We introduce a general computational methodology that enables the computation of the frequency-dependent dipole transition polarizability with one real and two different imaginary contributions. These dipole transition polarizabilities are related to the cross-sections of one-photon photoionization, Rayleigh, Raman, and Compton scattering. Our numerical calculations reveal individual Raman scattering cross-sections above threshold that can rapidly vanish and revive. Furthermore, our numerical Compton cross-sections do not overtly suffer from the infra-red divergence problem, and are three orders-of-magnitude higher than previous analy...
63Ni (n ,γ ) cross sections measured with DANCE
Weigand, M.; Bredeweg, T. A.; Couture, A.; Göbel, K.; Heftrich, T.; Jandel, M.; Käppeler, F.; Lederer, C.; Kivel, N.; Korschinek, G.; Krtička, M.; O'Donnell, J. M.; Ostermöller, J.; Plag, R.; Reifarth, R.; Schumann, D.; Ullmann, J. L.; Wallner, A.
2015-10-01
The neutron capture cross section of the s -process branch nucleus 63Ni affects the abundances of other nuclei in its region, especially 63Cu and 64Zn. In order to determine the energy-dependent neutron capture cross section in the astrophysical energy region, an experiment at the Los Alamos National Laboratory has been performed using the calorimetric 4 π BaF2 array DANCE. The (n ,γ ) cross section of 63Ni has been determined relative to the well-known 197Au standard with uncertainties below 15%. Various 63Ni resonances have been identified based on the Q value. Furthermore, the s -process sensitivity of the new values was analyzed with the new network calculation tool NETZ.
Proton-air and proton-proton cross sections
Ulrich Ralf
2013-06-01
Full Text Available Different attempts to measure hadronic cross sections with cosmic ray data are reviewed. The major results are compared to each other and the differences in the corresponding analyses are discussed. Besides some important differences, it is crucial to see that all analyses are based on the same fundamental relation of longitudinal air shower development to the observed fluctuation of experimental observables. Furthermore, the relation of the measured proton-air to the more fundamental proton-proton cross section is discussed. The current global picture combines hadronic proton-proton cross section data from accelerator and cosmic ray measurements and indicates a good consistency with predictions of models up to the highest energies.
Aerodynamic characteristics of bodies with rectangular cross section
Knoche, H. G.; Schamel, W.; Esch, H.; Schneider, W.
Systematic wind tunnel tests for a series of missile bodies were conducted by varying cross section shape and body length in the subsonic Mach number range and up to high angles of attack. Tests with a body-wing and a body-tail configuration were performed in order to investigate the body-wing and body-tail interference for bodies of revolution and bodies with rectangular cross section. At a constant angle of attack, the boxlike body supplies far more normal force than the body of revolution with the same cross section area. The boxlike body shows strong coupling effects between the pitch, yaw and roll. The interference effect of the wing and body can be described well, in the case of boxlike bodies with wings in high or low wing positions, by the known slender body interference factors, assuming the width of the box to be the diameter of an equivalent, axially symetrical body.
Electron impact double ionization cross sections of light elements
A simple user-friendly semiempirical model is proposed to calculate electron impact double ionization cross sections of He, Li, Li+, B+, C+, C3+, O, O2+, O3+, Ne, Ne+, Ne2+, Na, Mg, Al3+, S, and Arq+ (q equals 0 - 7) targets for the incident electron energies from threshold to 106 eV. The contributions in the total double ionization cross sections from the direct double ionization and inner-shell ionization processes are taken into account on the basis of experimental data considered. The results of the present analysis are compared with the available experimental data and theoretical calculations. The model is found successful for the description of experimental cross sections. Since, this model may be a prudent selection to meet the demand level in plasma modeling due to its simple inherent structure. (authors)
Photodetachment cross-section of the negatively charged hydrogen ion
Frolov, Alexei M
2015-01-01
Photodetachment cross-section $\\sigma_{ph}(p_e)$ of the negatively charged hydrogen ion H$^{-}$ is determined with the use of highly accurate variational wave functions constructed for this ion. Photodetachment cross-sections of the H$^{-}$ ion are also studied for very small and very large values of the photo-electron momentum $p_e$. Maximum of this cross-section has been evaluated to very high accuracy and we have found that $[\\sigma_{ph}(p_e)]_{\\max} \\approx$ 3.8627035742 $\\cdot 10^{-17}$ $cm^2$ at $p_e \\approx$ 0.113206(1) $a.u.$ Photodetachment of the H$^{-}$ ion at very small and very large $p_e$ values is also considered. Our method is based upon the Rayleigh's formula for spherical Bessel functions.
Near threshold photodetachment cross section of negative atomic oxygen ions
Wu Jian-Hua(吴建华); Yuan Jian-Min(袁建民); Vo Ky Lan
2003-01-01
A 40-target state close-coupling calculation for the photodetachment cross section of negative atomic oxygen near threshold is carried out with core-valence electron correlation by using the R-matrix method. It was shown that after considering the excitations of two electrons from the 2s shell, the electron affinity of O- (2s22p5 2po) agrees with the experimental result much better than that just considering the excitations of electrons only from the 2p shell as well as only one electron from the 2s shell. Total cross section as well as the main contribution of the ionization channels to the partial cross section are illustrated to show the structure near threshold clearly.
Differences between stellar and laboratory reaction cross sections
Rauscher, T
2010-01-01
Nuclear reactions proceed differently in stellar plasmas than in the laboratory due to the thermal effects in the plasma. On one hand, a target nucleus is bombarded by projectiles distributed in energy with a distribution defined by the plasma temperature. The most relevant energies are low by nuclear physics standards and thus require an improved description of low-energy properties, such as optical potentials, required for the calculation of reaction cross sections. Recent studies of low-energy cross sections suggest the necessity of a modification of the proton optical potential. On the other hand, target nuclei are in thermal equilibrium with the plasma and this modifies their reaction cross sections. It is generally expected that this modification is larger for endothermic reactions. We show that there are many exceptions to this rule.
Total Cross Section in $\\gamma\\gamma$ Collisions at LEP
Acciarri, M; Adriani, O; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Ambrosi, G; Anderhub, H; Andreev, V P; Angelescu, T; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, L; Balandras, A; Baldew, S V; Todorova-Nová, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Bhattacharya, S; Biasini, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Buffini, A; Buijs, A; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Castellini, G; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Cesaroni, F; Chamizo-Llatas, M; Chang, Y H; Chaturvedi, U K; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Civinini, C; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; Cotorobai, F; de la Cruz, B; Csilling, Akos; Cucciarelli, S; Dai, T S; van Dalen, J A; D'Alessandro, R; De Asmundis, R; Déglon, P L; Degré, A; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Van Dierendonck, D N; Dionisi, C; Dittmar, Michael; Dominguez, A; Doria, A; Dova, M T; Duchesneau, D; Dufournaud, D; Duinker, P; El-Mamouni, H; Engler, A; Eppling, F J; Erné, F C; Ewers, A; Extermann, Pierre; Fabre, M; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gau, S S; Gentile, S; Gheordanescu, N; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hasan, A; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hidas, P; Hirschfelder, J; Hofer, H; Holzner, G; Hoorani, H; Hou, S R; Hu, Y; Iashvili, I; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Khan, R A; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, D; Kim, J K; Kirkby, Jasper; Kiss, D; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Kopp, A; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Lee, H J; Le Goff, J M; Leiste, R; Levchenko, P M; Li Chuan; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luckey, D; Lugnier, L; Luminari, L; Lustermann, W; Ma Wen Gan; Maity, M; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Marian, G; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Von der Mey, M; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Moulik, T; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Oulianov, A; Palomares, C; Pandoulas, D; Paoletti, S; Paolucci, P; Paramatti, R; Park, H K; Park, I H; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pieri, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Postema, H; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Raven, G; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Rodin, J; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Seganti, A; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Smith, B; Spillantini, P; Steuer, M; Stickland, D P; Stone, A; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Sztaricskai, T; Tang, X W; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Uchida, Y; Ulbricht, J; Valente, E; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Vorvolakos, A; Wadhwa, M; Wallraff, W; Wang, M; Wang, X L; Wang, Z M; Weber, A; Weber, M; Wienemann, P; Wilkens, H; Wu, S X; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Ye, J B; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhu, G Y; Zhu, R Y; Zichichi, A; Zilizi, G; Zimmermann, B; Zöller, M
2001-01-01
The reaction e+e- -> e+e- gamma* gamma* -> e+e- hadrons for quasi-real photons is studied using data from root(s) = 183 GeV up to 202 GeV. Results on the total cross sections sigma(e+e- -> e+e- hadrons) and sigma(+e- gamma* gamma* -> e+e- hadrons) are given for the two-photon centre-of-mass energies 5 GeV < Wgammagamma < 185 GeV. The total cross section of two real photons is described by a Regge parametrisation. We observe a steeper rise with the two-photon centre-of-mass energy as compared to the hadron-hadron and the photon-proton cross sections. The data are also compared to the expectations of different theoretical models.
The 233Pa fission cross-section measurement and evaluation
233Pa is a conspicuous example of strongly discrepant data in the accepted nuclear data evaluations. The precise knowledge of the neutron-induced reaction cross-section of this highly β-active nuclide (T1/2 = 27.0 d) is essential for the successful implementation of the thorium-based fuel cycle in advanced nuclear applications. The reactions involving 233Pa are responsible for the balance of nuclei as well as the average number of prompt fission neutrons in a contemplated reactor scenario. In an IAEA report, it is stated that there is a need to know the 233Pa(n, f) cross-section with an accuracy of 20%. The different evaluated neutron data libraries show, however, a difference of a factor of two for this cross-section. It has previously been deemed not feasible to measure this reaction directly due to its short half-life, high radioactivity and the in-growth of the daughter product 233U. Hence, the entries in the neutron libraries are based on theoretical predictions, which explains the large discrepancies. As reported recently the neutron-induced fission cross-section of 233Pa has been measured for the first time directly with mono-energetic neutrons from 1.0 to 3.0 MeV at the Van-de-Graaff facility of the IRMM. In the meantime, during two further measurement campaigns, the energy range has been extended up to 8.5 MeV. The experimental results will be presented together with recent model calculations of the fission cross-section applying the statistical model code STATIS, which improve the cross-section evaluation up to the second chance fission threshold. (authors)
Measurements of minor actinides cross sections for transmutation
The existing reactors produce two kinds of nuclear waste: the fission products and heavy nuclei beyond uranium called minor actinides (Americium and Curium isotopes). Two options are considered: storage in deep geological site and/or transmutation by fast neutron induced fission. These studies involve many neutron data. Unfortunately, these data bases have still many shortcomings to achieve reliable results. The aim of these measurements is to update nuclear data and complement them. We have measured the fission cross section of 243Am (7370 y) in reference to the (n,p) elastic scattering to provide new data in a range of fast neutrons (1-8 MeV). A statistical model has been developed to describe the reaction 243Am (n,f). Moreover, the cross sections from the following reactions have been be extracted from these calculations: inelastic scattering 243Am (n,n') and radiative capture 243Am (n,γ) cross sections. The direct measurements of neutron cross sections are often a challenge considering the short half-lives of minor actinides. To overcome this problem, a surrogate method using transfer reactions has been used to study few isotopes of curium. The reactions 243Am (3He, d)244Cm, 243Am (3He, t)243Cm and 243Am (3He, α)242Am allowed to measure the fission probabilities of 243,244Cm and 242Am. The fission cross sections of 242,243Cm (162,9 d, 28,5 y) and 241Am (431 y) have been obtained by multiplying these fission probabilities by the calculated compound nuclear neutron cross section relative to each channel. For each measurement, an accurate assessment of the errors was realized through variance-covariance studies. For measurements of the reaction 243Am(n,f), the analysis of error correlations allowed to interpret the scope of these measures within the existing measurements. (author)
Revised transport cross-sections for the WIMS library
WIMS transport cross-sections above 4 eV are formed by a column-sum correction in which an assumed current spectrum is used to weight the P1 scattering data for a given isotope. Revised weighting spectra lead to improved transport cross-sections for the principal moderators: the effect on calculations of k-infinity is small but leakage calculations, for the homogenised cell, are now in close agreement with corresponding B1 calculations using explicit P1 data. Energy condensation of the B0 (transport corrected) equations appears to be more valid than the procedure used to condense the B1 equations. (author)
Kriging approach for the experimental cross-section covariances estimation
In the classical use of a generalized χ2 to determine the evaluated cross section uncertainty, we need the covariance matrix of the experimental cross sections. The usual propagation error method to estimate the covariances is hardly usable and the lack of data prevents from using the direct empirical estimator. We propose in this paper to apply the kriging method which allows to estimate the covariances via the distances between the points and with some assumptions on the covariance matrix structure. All the results are illustrated with the 2555Mn nucleus measurements. (authors)
Testing weak cross-sectional dependence in large panels
Pesaran, Hashem
2012-01-01
This paper considers testing the hypothesis that errors in a panel data model are weakly cross sectionally dependent, using the exponent of cross-sectional dependence , introduced recently in Bailey, Kapetanios and Pesaran (2012). It is shown that the implicit null of the CD test depends on the relative expansion rates of N and T. When T = O , for some , then the implicit null of the CD test is given by , which gives , when N and T tend to infinity at the same rate such that T/N , with being...
High-mass dijet cross sections in photoproduction at HERA
Abe, T; Adamczyk, L; Adamus, M; Aghuzumtsyan, G; Ahn, S H; Antonioli, P; Antonov, A; Arneodo, M; Bailey, D S; Bamberger, A; Barakbaev, A N; Barbagli, G; Barbi, M; Bari, G; Barreiro, F; Bartsch, D; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bell, M; Bellagamba, L; Benen, A; Bertolin, A; Bhadra, S; Bodmann, B; Bokel, C; Boogert, S; Boos, E G; Borras, K; Boscherini, D; Breitweg, J; Brock, I; Brook, N H; Brugnera, R; Brümmer, N; Bruni, A; Bruni, G; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carli, T; Carlin, R; Cartiglia, N; Catterall, C D; Chapin, D; Chekanov, S; Chiochia, V; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coldewey, C; Cole, J E; Collins-Tooth, C; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cormack, C; Corradi, M; Corriveau, F; Costa, M; Crittenden, J; Cross, R; D'Agostini, Giulio; Dagan, S; Dal Corso, F; Danilov, P; Dannheim, D; De Pasquale, S; Dementiev, R K; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Doyle, A T; Drews, G; Durkin, L S; Dusini, S; Eisenberg, Y; Engelen, J; Ermolov, P F; Eskreys, Andrzej; Ferrando, J; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fourletov, S; Fourletova, J; Fox-Murphy, A; Fricke, U; Fusayasu, T; Gabareen, A; Galea, R; Gallo, E; García, G; Garfagnini, A; Geiser, A; Genta, C; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Gladkov, D; Glasman, C; Göbel, F; Goers, S; Golubkov, Yu A; Goncalo, R; González, O; Göttlicher, P; Grabowska-Bold, I; Graciani, R; Grijpink, S; Grzelak, G; Gwenlan, C; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanlon, S; Hart, J C; Hartmann, H; Hartner, G F; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Helbich, M; Heusch, C A; Hilger, E; Hillert, S; Hirose, T; Hochman, D; Holm, U; Hughes, V W; Iacobucci, G; Iga, Y; Inuzuka, M; Irrgang, P; Jakob, H P; Jelen, K; Jeoung, H Y; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Katkov, I I; Katz, U F; Kcira, D; Kerger, R; Khein, L A; Kim, C L; Kim, J Y; Kind, O; Kisielewska, D; Kitamura, S; Klimek, K; Koffeman, E; Kohno, T; Kooijman, P; Koop, T; Korotkova, N A; Korzhavina, I A; Kotanski, A; Kötz, U; Kowal, A M; Kowal, M; Kowalski, H; Kowalski, T; Krakauer, D A; Kreisel, A; Kuze, M; Kuzmin, V A; Labarga, L; Labes, H; Lammers, S; Lane, J B; Lee, J H; Lee, S B; Lee, S W; Lelas, D; Levchenko, B B; Levi, G; Levman, G M; Levy, A; Lightwood, M S; Lim, H; Lim, I T; Limentani, S; Ling, T Y; Liu, X; Löhr, B; Lohrmann, E; Long, K R; Longhin, A; Lopez-Duran Viani, A; Lukina, O Yu; Lupi, A; Ma, K J; Maddox, E; Magill, S; Mankel, R; Margotti, A; Marini, G; Markun, P; Martens, J; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Matsuzawa, K; Mattingly, M C K; McCubbin, N A; Mellado, B; Menary, S R; Metlica, F; Meyer, A; Milite, M; Miller, D B; Mindur, B; Mirea, A; Monaco, V; Moritz, M; Musgrave, B; Nagano, K; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Ochs, A; Oh, B Y; Olkiewicz, K; Pac, M Y; Padhi, S; Paganis, S; Palmonari, F; Parenti, A; Park, I H; Park, S K; Paul, E; Pavel, N; Pawlak, J M; Pelfer, P G; Pellegrino, A; Peroni, C; Pesci, A; Petrucci, M C; Plucinsky, P P; Pokrovskiy, N S; Polini, A; Posocco, M; Proskuryakov, A S; Przybycien, M B; Raach, H; Rautenberg, J; Redondo, I; Reeder, D D; Renner, R; Repond, J; Rigby, M; Robins, S; Rodrigues, E; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Salehi, H; Sar, G; Saull, P R B; Savin, A A; Saxon, D H; Schagen, S; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Sciulli, F; Scott, J; Selonke, F; Shche, L M; Skillicorn, I O; Slominski, W; Smalska, B; Smith, W H; Soares, M; Solano, A; Solomin, A N; Son, D; Sosnovtsev, V V; Saint-Laurent, M G; Staiano, A; Stairs, D G; Stanco, L; Standage, J; Stifutkin, A; Stonjek, S; Stopa, P; Straub, P B; Suchkov, S; Surrow, B; Susinno, G; Suszycki, L; Sutton, M R; Sztuk, J; Szuba, D; Szuba, J; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Tsurugai, T; Tuning, N; Turcato, M; Tymieniecka, T; Ukleja, A; Ukleja, J; Umemori, K; Vázquez, M; Velthuis, J J; Vlasov, N N; Voss, K C; Walczak, R; Walker, R; Weber, A; Wessoleck, H; West, B J; Whitmore, J J; Wichmann, R; Wick, K; Wiggers, L; Wing, M; Wolf, G; Wölfle, S; Yamada, S; Yamashita, T; Yamazaki, Y; Yoshida, R; Youngman, C; Za, L; Zakrzewski, J A; Zeuner, W; Zhautykov, B O; Zichichi, A; Ziegler, A; Zotkin, S A; De Wolf, E; Del Peso, J
2002-01-01
Dijet differential cross sections for the reaction e+p -> e+ + jet + jet + X in the photoproduction regime have been measured with the ZEUS detector at HERA using an integrated luminosity of 42.7 pb**{-1}. The cross sections are given for photon-proton centre-of-mass energies in the range 134 e+ Z0 X} < 5.9 pb. Upper limits on the photoproduction of new heavy resonances decaying into two jets are also presented for masses in the range between 60 GeV and 155 GeV.
Controlling inclusive cross sections in parton shower + matrix element merging
Plaetzer, Simon
2012-11-15
We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.
Inactivation cross section of yeast cells irradiated by heavy ions
无
1999-01-01
Inactivation cross sections for haploid yeast cell strain211a have been calculated as 1-hit detector based on the tracktheory in an extended target mode and a numerical calculation ofradial dose distribution. In the calculations, characteristic dose D0 is a fitted parameter which is obtained to be 42 Gy, and "radius"of hypothetical target a0 is chosen to be 0.5μm which is about the sizeof nucleus of yeast cells for obtaining an overall agreement withexperimental cross sections. The results of the calculations are inagreement with the experimental data in high LET (linear energy transfer) including the thindown region.
Modelling of reaction cross sections and prompt neutron emission
Oberstedt S.
2010-10-01
Full Text Available Accurate nuclear data concerning reaction cross sections and the emission of prompt fission neutrons (i.e. multiplicity and spectra as well as other fission fragment data are of great importance for reactor physics design, especially for the new Generation IV nuclear energy systems. During the past years for several actinides (238U(n, f and 237Np(n, f both the reaction cross sections and prompt neutron multiplicities and spectra have been calculated within the frame of the EFNUDAT project.
Reaction cross sections of hypernuclei and the shrinkage effect
Akaishi, T
2013-01-01
We calculate the reaction cross sections for $^6{\\rm Li}$ and $^7_{\\Lambda}{\\rm Li}$ on a $^{12}{\\rm C}$ target at $100\\,{\\rm MeV/nucleon}$ using the Glauber theory. To this end, we assume a two-body cluster structure for $^6$Li and $^7_{\\Lambda}{\\rm Li}$, and employ the few-body treatment of the Glauber theory, that is beyond the well known optical limit approximation. We show that the reaction cross section for $^7_{\\Lambda}{\\rm Li}$ is smaller than that for $^6$Li by about 4\\%, reflecting the shrinkage effect of the $\\Lambda$ particle.
Cross section inference based on PDE-constrained optimization
The problem of inferring the material properties (cross section) in noninvasive inverse problems is formulated as a PDE-constrained optimization problem, where the governing laws of the chosen physics act as a constraint. A standard Lagrangian functional, containing the objective function to be minimized and the constraints to satisfy, is formed. The resolution of the optimality conditions lead to a nonlinear problem that is tackled with a Gauss-Newton procedure. Results of cross section inference are presented in the case of 1-group 2D neutron diffusion theory. (authors)
Charged particle cross-section data and their systematization
The reaction cross-sections and the thick target yields of (α,αxn) and (α,xn), induced by the alpha particles from the Buenos Aires 60 inch synchrocyclotron for Cu, Y, Zr, Rh, Te, Ta, Au and Pb were obtained. The ''stocked foil'' method was applied. The ''nuclear spin density'' parameter was determined using a phenomenological approximation from the cross section data for 181Ta(α,n) reaction producing isomeric pairs of sup(184m)Re and sup(184g)Re. The systematic behaviour of the present result and the results of other authors were demonstrated
Electron transport in silicon nanowires having different cross-sections
Muscato Orazio
2016-06-01
Full Text Available Transport phenomena in silicon nanowires with different cross-section are investigated using an Extended Hydrodynamic model, coupled to the Schrödinger-Poisson system. The model has been formulated by closing the moment system derived from the Boltzmann equation on the basis of the maximum entropy principle of Extended Thermodynamics, obtaining explicit closure relations for the high-order fluxes and the production terms. Scattering of electrons with acoustic and non polar optical phonons have been taken into account. The bulk mobility is evaluated for square and equilateral triangle cross-sections of the wire.
Update to the R33 cross section file format
In September 1991, in response to the workshop on cross sections for Ion Beam Analysis (IBA) held in Namur (July 1991, Nuclear Instruments and Methods B66(1992)), a simple ascii format was proposed to facilitate transfer and collation of nuclear reaction cross section data for Ion Beam Analysis (IBA) and especially for Nuclear Reaction Analysis (NRA). Although intended only as a discussion document, the ascii format - referred to as the R33 (Report 33) format - has become a de facto standard. In the decade since this first proposal there have been spectacular advances in computing power and in software usability, however the cross-platform compatibility of the ascii character set has ensured that the need for an ascii format remains. Nuclear reaction cross section data for Nuclear Reaction analysis has been collected and archived on internet web sites over the last decade. This data has largely been entered in the R33 format, although there is a series of elastic cross sections that are expressed as the ratio to the corresponding Rutherford cross sections that have been entered in a format referred to as RTR (ratio to Rutherford). During this time the R33 format has been modified and added to - firstly to take into account angular distributions, which were not catered for in the first proposal, and more recently to cater for elastic cross sections expressed as the ratio-to- Rutherford, which it is useful to have for some elastic scattering programs. It is thus timely to formally update the R33 format. There also exists the large nuclear cross section data collections of the Nuclear Data Network - of which the core centres are the OECD NEA Nuclear Data Bank, the IAEA Nuclear Data Section, the Brookhaven National Laboratory National Nuclear Data Centre and CJD IPPE Obninsk, Russia. The R33 format is now proposed to become a legal computational format for the NDN. It is thus also necessary to provide an updated formal definition of the R33 format in order to provide
Photon gluon fusion cross sections at HERA energy
Engelen, J. J.; Dejong, S. J.; Poletiek, M.; Vermaseren, J. A. M.
1988-01-01
Cross sections for heavy flavor production through photon gluon fusion in electron proton collisions are presented. The electron photon vertex is taken into account explicitly, and the Q sq of the exchanged photon ranges from nearly zero (almost real photon) to the kinematically allowed maximum. The QCD scale is set by the mass of the produced quarks. The formalism is also applicable to the production of light quarks as long as the invariant mass of the pair is sufficiently high, so cross sections for u anti-u, d anti-d, and s anti-s production are also given.
Total cross section of electron scattering by fluorocarbon molecules
Yamada, T [Department of Electrical Engineering and Electronics, Daido Institute of Technology, 10-3 Takiharu-cho, Minami-ku, Nagoya 457-8530 (Japan); Ushiroda, S [Department of Electrical Engineering and Electronics, Toyota College of Technology, 2-1 Eisei-cho, Toyota-Shi 471-8525 (Japan); Kondo, Y [Kaela Research and Development Corporation, Incubation Office No 2 in Nagoya Institute of Technology, Gokiso-cho, Shouwa-ku, Nagoya 466-8555 (Japan)
2008-12-14
A compact linear electron transmission apparatus was used for the measurement of the total electron scattering cross section at 4-500 eV. Total cross sections of chlorofluorocarbon (CCl{sub 2}F{sub 2}), hydrochlorofluorocarbon (CHClF{sub 2}), perfluoropropane (C{sub 3}F{sub 8}), perfluoro-n-pentane (C{sub 5}F{sub 12}), perfluoro-n-hexane (C{sub 6}F{sub 14}) and perfluoro-n-octane (C{sub 8}F{sub 18}) were obtained experimentally and compared with the values obtained from a theoretical calculation and semi-empirical model calculation.
Evaluation of neutron resonance cross section data at GELINA
BECKER BJÖRN; Capote, R; EMILIANI FEDERICA; Guber, K. H.; HEYSE JAN; KAUWENBERGHS KIM JOSEPHA; Kopecky, Stefan; LAMPOUDIS CHRISTOS; Massimi, C.; MONDELAERS Willy; Moxon, M.; Noguere, G.; Plompen, Arjan; PRONAYEV V.; SIEGLER Peter
2013-01-01
Over the last decade, the EC–JRC–IRMM, in collaboration with other institutes such as INRNE Sofia (BG), INFN Bologna (IT), ORNL (USA), CEA Cadarache (FR) and CEA Saclay (FR), has made an intense effort to improve the quality of neutron-induced cross section data in the resonance region. These improvements relate to both the infrastructure of the facility and the measurement setup, and the data reduction and analysis procedures. As a result total and reaction cross section data in the resonanc...
Fast-neutron scattering cross sections of elemental zirconium
Differential neturon-elastic-scattering cross sections of elemental zirconium are measured from 1.5 to 4.0 MeV at intervals of less than or equal to 200 keV. Inelastic-neutron-scattering cross sections corresponding to the excitation of levels at observed energies of: 914 +- 25, 1476 +- 37, 1787 +- 23, 2101 +- 26, 2221 +- 17, 2363 +- 14, 2791 +- 15 and 3101 +- 25 keV are determined. The experimental results are interpreted in terms of the optical-statistical model and are compared with corresponding quantities given in ENDF/B-V
Evaluation of the 238U neutron total cross section
Experimental energy-averaged neutron total cross sections of 238U were evaluated from 0.044 to 20.0 MeV using regorous numerical methods. The evaluated results are presented together with the associated uncertainties and correlation matrix. They indicate that this energy-averaged neutron total cross section is known to better than 1% over wide energy regions. There are somwewhat larger uncertainties at low energies (e.g., less than or equal to 0.2 MeV), near 8 MeV and above 15 MeV. The present evaluation is compard with values given in ENDF/B-V
Top quark pair cross section measurements in CMS
Brochero Cifuentes, Javier Andres
2016-01-01
This document presents the latest results in the measurement of the top-quark pair production cross section obtained with data collected by the CMS detector at LHC accelerator. The analyses are performed in the dilepton, single lepton and full hadronic decay modes. Additionally to the inclusive measurements of $\\mathrm{\\sigma_{\\mathrm{t\\bar{t}}}}$ at 7, 8 and 13$\\mathrm{\\;TeV}$, the CMS collaboration provides for the first time the cross section at 5.02$\\mathrm{\\;TeV}$. Results are confronted with the latest and most precise theoretical calculations.
Cross Section and Experimental Data Analysis Using EViews
Agung, I Gusti Ngurah
2011-01-01
A practical guide to selecting and applying the most appropriate model for analysis of cross section data using EViews. " This book is a reflection of the vast experience and knowledge of the author. It is a useful reference for students and practitioners dealing with cross sectional data analysis ... The strength of the book lies in its wealth of material and well structured guidelines ..." Prof. Yohanes Eko Riyanto , Nanyang Technological University, Singapore. " This is superb and brilliant. Prof. Agung has skilfully transformed his best experiences into new knowledge ... creating a new way
Total photoproduction cross section at very high energy
In this paper we apply to the photoproduction total cross section a model we have proposed for purely hadronic processes and which is based on QCD mini-jets and soft gluon re-summation. We compare the predictions of our model with the HERA data as well as with other models. For cosmic rays, our model predicts substantially higher cross sections at TeV energies than models based on factorization, but lower than models based on mini-jets alone, without soft gluons. We discuss the origin of this difference. (orig.)
Precision measurement of cross sections by isomer ratio method
A possibility of determining the cross sections of isomer states measuring the ratio of yields of ground and isomer states (or σm/σg cross section ratio) by γ spectroscopy methods is investigated. Isomer ratio (IR) for 185Re(γ, n)184mgRe, 181Ta(α, n)184mgRe, 82Se(γ, n)81mSe and 39K(γ, n)38mgK reactions are studied. The IR determination error makes up several per cents. 6 refs.; 4 figs.; 1 tab
The absolute threshold photodetachment cross-section of Al-
The total absolute photodetachment cross-section of the aluminum anion, Al-, is calculated in the threshold spectral region for photons of wave numbers 3400 - 3650cm-1 using the zero-core contribution (ZCC) model. A computer least-squares curve fit is used to test the validity of the Wigner threshold law and the deviation from recent experimental measurements of the relative photodetachment cross-section. It is found that the best agreements is achieved with a smaller core radius rο=1.60 Angstrom rather than the value of 1.82 Angstrom used earlier. (authors). 22 refs., 5 figs., 1 tab
Photon-photon cross sections in the resonance region
Possible contributions to the photon-photon cross section in the region where the vector dominated thresholds are closed are evaluated. All two body processes diagonal and off diagonal are summed explicitly and the multibody processes are calculated by a method introduced previously. It is found that, excluding s-channel resonances, the cross section is very small for all channels, and purely real except for resonances. It is concluded that the possibility of studying s-channel resonances in electron colliding machines is probably far better than it was believed. These possibilities are discussed in a separate paper. (author)
Medium effects in the nucleon- nucleus reaction cross-section
The nucleon-nucleus reaction cross-section, σR , has been calculated using Gabblers multiple scattering theory in its optical limit, A medium modified nuclear phase shift function has been obtained for nucleon-nucleus scattering using a medium two body scattering amplitude. In the present calculations, the Coulomb modified Glauber model is used. Also different forms of Gaussian density distribution, for the target nucleus, are used. A comparison of medium modified calculations with the corresponding experimental data has shown that application of the medium effect in the total reaction cross- section plays an important role for low values of energy
Inactivation cross section of yeast cells irradiation by heavy ions
Inactivation cross sections for haploid yeast cell strain 211a have been calculated as 1-hit detector based on the track theory in an extended target mode and a numerical calculation of radial dose distribution. In the calculations, characteristic dose D0 is a fitted parameter which is obtained to be 42 Gy, and 'radius' of hypothetical target a0 is chosen to be 0.5 μm which is about the size of nucleus of yeast cells for obtaining an overall agreement with experimental cross sections. The results of the calculations are in agreement with the experimental data in high LET (linear energy transfer) including the thin down region
Total cross section of electron scattering by fluorocarbon molecules
A compact linear electron transmission apparatus was used for the measurement of the total electron scattering cross section at 4-500 eV. Total cross sections of chlorofluorocarbon (CCl2F2), hydrochlorofluorocarbon (CHClF2), perfluoropropane (C3F8), perfluoro-n-pentane (C5F12), perfluoro-n-hexane (C6F14) and perfluoro-n-octane (C8F18) were obtained experimentally and compared with the values obtained from a theoretical calculation and semi-empirical model calculation.
Activities of the JILA Atomic Collisions Cross Sections Data Center
The JILA Atomic Collisions Cross Sections Data Center compiles, critically evaluates, and reviews cross sections and rates for low energy (<100 keV) collisions of electrons, photons, and heavy particles with atoms, ions, and simple molecules. Reports are prepared which provide easily accessible recommended data with error limits, list the fundamental literature related to specific topics, identify regions where data are missing, and point out inconsistencies in existing data. The general methodology used in producing evaluated compilations is described. Recently completed projects and work in progress are reported
Approximate formulas for total cross section for moderately small eikonal
Kisselev, A V
2016-01-01
The eikonal representation for the total cross section is considered. The approximate formulas for a moderately small eikonal are derived. In contrast to the standard eikonal integrals, they contain no Bessel functions, and, hence, no rapidly oscillating integrands. The formulas obtained are applied to numerical evaluations of the total cross section for a number of particular expressions for the eikonal. It is shown that for pure imaginary eikonals the relative error of O(10^(-5)) can be achieved. Also two improper triple integrals are analytically calculated.
International evaluation cooperation Subgroup 7: Multigroup cross section processing
Roussin, R.W.; White, J.E. (Oak Ridge National Lab., TN (USA)); Sartori, E. (NEA Data Bank, 91 - Gif-sur-Yvette (France)); Panini, G. (ENEA, Bologna (Italy)); MacFarlane, R. (Los Alamos National Lab., NM (USA)); Muir, D. (International Atomic Energy Agency, Vienna (Austria). Nuclear Data Section); Mattes, M. (Stuttgart Univ. (Germany, F.R.). Inst. fuer Kernenergetik und Energiesysteme); Hasegawa, I
1991-01-01
The chairmen of the ENDF/B, JEF, EFF, and JENDL evaluated data files adopted a proposal to develop a fine-group processed cross section library based on the VITAMIN'' concept. The authors listed above, with support from others, are participating in this project. The end result will be a pseudo-problem-independent fine-group cross section library generated from the latest evaluated data in ENDF/B-VI, JEF-2, EFF-2, and JENDL-3. Initial applications of the library will be for shielding, fast reactor physics, and fusion neutronics. Progress made to date will be discussed. 8 refs.
Shi De-Heng; Liu Yu-Fang; Sun Jin-Feng; Zhu Zun-Lue; Yang Xiang-Dong
2005-01-01
A complex optical model potential modified by incorporating the concept of bonded atom, with the overlapping effect of electron clouds between two atoms in a molecule taken into consideration, is firstly employed to calculate the differential cross sections, elastic integral cross sections, and moment transfer cross sections for electron scattering from molecular nitrogen over the energy range 300-1000eV by using additivity rule model at Hartree-Fock level. The bondedatom concept is used in the study of the complex optical model potential composed of static, exchange, correlation polarization and absorption contributions. The calculated quantitative molecular differential cross sections, elastic integral cross sections, and moment transfer cross sections are compared with the experimental and theoretical ones wherever available, and they are found to be in good agreement with each other. It is shown that the additivity rule model together with the complex optical model potential modified by incorporating the concept of bonded atom is completely suitable for the calculations of differential cross section, elastic integral cross section and moment transfer cross section over the intermediate- and high-energy ranges.
Displacement cross sections and PKA spectra: tables and applications
Damage energy cross sections to 20 MeV are given for aluminum, vanadium, chromium, iron, nickel, copper, zirconium, niobium, molybdenum, tantalum, tungsten, lead, and 18Cr10Ni stainless steel. They are based on ENDF/B-IV nuclear data and the Lindhard energy partition model. Primary knockon atom (PKA) spectra are given for aluminum, iron, niobium, tantalum, and lead for neutron energies up to 15 MeV at approximately one-quarter lethargy intervals. The contributions of various reactions to both the displacement cross sections (taken to be proportional to the damage energy cross sections) and the PKA spectra are presented graphically. Spectral-averaged values of the displacement cross sections are given for several spectra, including approximate maps for the Experimental Breeder Reactor-II (EBR-II) and several positions in the Fast Test Reactor (FTR). Flux values are included to permit estimation of displacement rates. Graphs show integral PKA spectra for the five metals listed above for neutron spectra corresponding to locations in the EBR-II, the High Flux Isotope Reactor (HFIR), and a conceptual fusion reactor (UWMAK-I). Detailed calculations are given only for cases not previously documented. Uncertainty estimates are included
Neutron cross sections at 14 MeV
Neutron activation cross sections on Nd isotopes at 14 MeV were measured using the Ge(Li) gamma-ray spectroscopy. The nonlinear least square method was used for resolving the gamma spectra. The results obtained are discussed in detail and compared with theoretical results on other isotopes
Cross-sectional investigation of HEMS activities in Europe
Di Bartolomeo, Stefano; Gava, Paolo; Truhlář, Anatolij;
2014-01-01
OBJECTIVES: To gather information on helicopter emergency medical services (HEMSs) activities across Europe. METHODS: Cross-sectional data-collection on daily (15 November 2013) activities of a sample of European HEMSs. A web-based questionnaire with both open and closed questions was used, devel...
Elemental composition of paint cross sections by nuclear microprobe analysis
Physico-chemical characterization of pigments used in artistic painting give precious indications on age of paintings and sometimes on geographical origin of ores. After recalling the principle of protons microprobe, first results obtained by microanalysis of painting cross sections for non destructive microanalysis of impurities in white lead are given
Longitudinal cross section and asymmetries for jets in leptoproduction
We have calculated the longitudinal and other polarization dependent cross sections for jet production in deep inelastic electron-proton scattering up to order αs of the quark-gluon coupling constant and compared them with estimates of the non-perturbative contributions. (orig.)
State-selective radiative recombination cross sections of argon ions
The n-, (n,l)- and fine-structure level state-selective radiative recombinations (RR) cross sections of argon ions Ar18+,Ar13+,Ar7+ and Ar+ are obtained with the semi-classical Kramer formula, the relativistic self-consistent field (RSCF) method and the relativistic configuration interaction (RCI) method. It is found that for the highly charged ions with few electrons, the cross sections calculated with these three methods are in good agreement with each other. But as the number of electrons increases, the Kramer formula deviates from the RSCF and RCI results. For instance, when the energy of the incident electron is larger than 100 eV, the n-state selective cross sections of Ar7+ calculated from the Kramer formula are underestimated for more than 50%. The RSCF results are in general agreement with the RCI results. However, for the low charged ions, a clear distinction appears due to the strong configuration interaction, especially near the Cooper minimum. The n-resolved (n≤10) and total Maxwellian averaged rate coefficients are calculated, and the analytic fitting parameters are also provided. -- Highlights: ► The RR cross sections of Ar18+, Ar13+, Ar7+ and Ar+ are obtained. ► The Kramer formula, the relativistic self-consistent field and RCI methods are used. ► Results from three methods are compared with each other.
Measurement of antiproton-proton cross sections at low momenta
The present thesis describes an experiment which serves for the study of the antiproton-proton interaction at laboratory momenta between 150 MeV/c and 600 MeV/c. The arrangement permits the measurement of differential cross sections of the elastic scattering and the charge-exchange reaction as well as the cross section of the annihilation into charged and neutral pions. By the availability of an intense beam with low momentum uncertainty from the LEAR storage ring for low energy antiprotons at CERN a clear improvement of the measurement accuracy compared to earlier experiments at separated antiproton beams can be reached. A prototype of the antineutron calorimeter used for the measurement of the angular distribution of the charge-exchange reaction was subjected to a careful test in a separated beam. The results were compared with the results of a Monte-Carlo simulation of the antineutron detection. The cross sections measured in two beam periods in November and December 1983 are consistent with the published data in the hitherto available momentum range above about 350 MeV/c. Especially in the cross section of the annihilation into charged pions a statistically significant signal at a mass of 1937 MeV/c2 appears. However further measurements are necessary to study all systematic causes of errors. (orig.)
Annual Cross-Sectional Study of Nurse-Sensitive Problems
Færch, Jane; Tewes, Marianne; Overgaard, Dorthe;
2015-01-01
A cross-sectional evaluation of nurse-sensitive problems in hospitalized patients is conducted once per year to monitor patient problems identified by nurses, whether nurses implement interventions to overcome the problems, and if the problems are solved. This article describes a systematic metho...
Accurate momentum transfer cross section for the attractive Yukawa potential
Khrapak, S. A., E-mail: Sergey.Khrapak@dlr.de [Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen (Germany)
2014-04-15
Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.
Inelastic neutron scattering cross section in ferromagnetic nanowires
This article presents the first theoretical study of the inelastic neutron cross section in arrays of cylindrical ferromagnetic nanowires. The recently developed dipolar-exchange theory of spin-wave excitations in such wires is used. Results are represented for the few lowest bulk quantized spin-wave modes of different forms
Ratio of the hydrogen and manganese cross sections
A summary of the results of measurements of hydrogen to manganese cross section ratios are tabulated using weighted fits to the experimental data. Comparison of results using volumetric, gravimetric, and densimetric concentration measurements with and without contaminant corrections indicates that the methods are capable of equal accuracy
Systematic analysis of reaction cross sections of carbon isotopes
Horiuchi, W; Kohama, A; Suzuki, Y
2006-01-01
We systematically analyze total reaction cross sections of carbon isotopes with N=6--16 on a $^{12}$C target for wide range of incident energy. The intrinsic structure of the carbon isotope is described by a Slater determinant generated from a phenomenological mean-field potential, which reasonably well reproduces the ground state properties for most of the even $N$ isotopes. We need separate studies not only for odd nuclei but also for $^{16}$C and $^{22}$C. The density of the carbon isotope is constructed by eliminating the effect of the center of mass motion. For the calculations of the cross sections, we take two schemes: one is the Glauber approximation, and the other is the eikonal model using a global optical potential. We find that both of the schemes successfully reproduce low and high incident energy data on the cross sections of $^{12}$C, $^{13}$C and $^{16}$C on $^{12}$C. The calculated reaction cross sections of $^{15}$C are found to be considerably smaller than the empirical values observed at l...
Plots of the experimental and evaluated photoneutron cross-sections
Graphical plots of experimental data of photon induced nuclear reaction cross-sections are given for many elements and isotopes. The numerical data were taken from the international EXFOR data library which is available from the nuclear data centers. For selected nuclides evaluated data have been included in the plots. (author). Refs, 3 tabs
Absolute photoionization cross-section of the propargyl radical
Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L. [Sandia National Laboratories, Combustion Research Facility, Livermore, California 94551 (United States); Soorkia, Satchin [Institut des Sciences Moleculaires d' Orsay, Universite Paris-Sud 11, Orsay (France); Selby, Talitha M. [Department of Chemistry, University of Wisconsin, Washington County Campus, West Bend, Wisconsin 53095 (United States)
2012-04-07
Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.
Deep spallation cross sections in high energy protons - uranium interactions
Cross sections of deep spallation products - from phosphorus to hafnium - formed in uranium by high energy protons (Ep > or approx. 10 GeV) have been calculated with a simple semi-empirical formula. The results are in excellent agreement with experimental data. (orig.)
Absolute cross-section of turbojet aviation engine calculation
Ryabokon, Evgen
2012-01-01
The calculation method of three-dimensional model of turbojet aviation engine is offered, thus the form of turbine vanes with spiralling is described like parametric surface. The method allows make the calculation of absolute cross-section (ACS) of turbojet aviation engines with different geometrical parameters. The calculation results of ACS of aviation engine are presented.
Top quark production cross-section at the Tevatron Collider
Ranjan, Kirti; /Delhi U. /Fermilab
2005-06-01
We present the preliminary results of the t{bar t} pair production cross-section measurements and the single top quark exclusion limits carried out by the D0 and the CDF collaborations in Run II of the Tevatron. The dataset for the various measurements ranges from 140 pb{sup -1} to 350 pb{sup -1}.
Measurement, calculation and evaluation of photon production cross-sections
The meeting proceedings were divided into three sessions devoted to the following topics: Experimental measurement and techniques (3 papers), calculation of photon cross-sections (9 papers), and evaluation (2 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs
Total cross section of ultra-relativistic heavy ion collisions
A possible increase of nuclear cross section at ultra-relativistic energies is suggested. Such an increase is expected to start much earlier than in the case of proton-proton reactions due to more diffused nuclear surface compared to that of proton. Experimental data seem to be consistent with this picture. (author)