WorldWideScience

Sample records for absorption cooling system

  1. The Role of Absorption Cooling for Reaching Sustainable Energy Systems

    Lindmark, Susanne

    2005-07-01

    This thesis focuses on the role and potential of absorption cooling in future energy systems. Two types of energy systems are investigated: a district energy system based on waste incineration and a distributed energy system with natural gas as fuel. In both cases, low temperature waste heat is used as driving energy for the absorption cooling. The main focus is to evaluate the absorption technology in an environmental perspective, in terms of reduced CO{sub 2} emissions. Economic evaluations are also performed. The reduced electricity when using absorption cooling instead of compression cooling is quantified and expressed as an increased net electrical yield. The results show that absorption cooling is an environmentally friendly way to produce cooling as it reduces the use of electrically driven cooling in the energy system and therefore also reduces global CO{sub 2} emissions. In the small-scale trigeneration system the electricity use is lowered with 84 % as compared to cooling production with compression chillers only. The CO{sub 2} emissions can be lowered to 45 CO{sub 2}/MWh{sub c} by using recoverable waste heat as driving heat for absorption chillers. However, the most cost effective cooling solution in a district energy system is a combination between absorption and compression cooling technologies according to the study. Absorption chillers have the potential to be suitable bottoming cycles for power production in distributed systems. Net electrical yields over 55 % may be reached in some cases with gas motors and absorption chillers. This small-scale system for cogeneration of power and cooling shows electrical efficiencies comparable to large-scale power plants and may contribute to reducing peak electricity demand associated with the cooling demand.

  2. Steam Driven Triple Effect Absorption Solar Cooling System

    Yabase, Hajime; Makita, Kazuyuki

    2012-01-01

    The authors propose a solar cooling system employing a steam-driven triple effect absorption chiller as a new technique for saving CO2 emission in the air conditioning field. The absorption chiller is a cooling machine using thermal energy as a drive source, and it is ideal for utilizing solar heat. In addition, by employing a triple effect absorption chiller of high efficiency, a high energy saving effect and a significant CO2 saving effect can be expected. As a result of studies, it has bee...

  3. Economic Performance Optimization of an Absorption Cooling System under Uncertainty

    Gebreslassie, Berhane H.; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Boer, Dieter

    2009-01-01

    Abstract Many of the strategies devised so far to address the optimization of energy systems are deterministic approaches that rely on estimated data. However, in real world applications there are many sources of uncertainty that introduce variability into the decision-making problem. Within this general context, we propose a novel approach to address the design of absorption cooling systems under uncertainty in the energy cost. As opposed to other approaches that optimize the expe...

  4. Economic performance optimization of an absorption cooling system under uncertainty

    Many of the strategies devised so far to address the optimization of energy systems are deterministic approaches that rely on estimated data. However, in real world applications there are many sources of uncertainty that introduce variability into the decision-making problem. Within this general context, we propose a novel approach to address the design of absorption cooling systems under uncertainty in the energy cost. As opposed to other approaches that optimize the expected performance of the system as a single objective, in our method the design task is formulated as a stochastic bi-criteria non-linear optimization problem that simultaneously accounts for the minimization of the expected total cost and the financial risk associated with the investment. The latter criterion is measured by the downside risk, which avoids the need to define binary variables thus improving the computational performance of the model. The capabilities of the proposed modeling framework and solution strategy are illustrated in a case study problem that addresses the design of a typical absorption cooling system. Numerical results demonstrate that the method presented allows to manage the risk level effectively by varying the area of the heat exchangers of the absorption cycle. Specifically, our strategy allows identifying the optimal values of the operating and design variables of the cycle that make it less sensitive to fluctuations in the energy price, thus improving its robustness in the face of uncertainty.

  5. Performance of a compact solar absorption cooling system

    This paper describes the performance of a compact solar absorption system. Purpose of compact solar is collector, generator and condenser in one unit. At present, two types of absorption cooling systems are marketed: the lithium bromide-water system and the ammonia-water system. In the lithium bromide-water system, water vapor is the refrigerant and ammonia water system where ammonia is the refrigerant. In addition, the ammonia-water system requires higher generator temperature 120oC to 150oC than a flat-plate solar collector can provide without special techniques. The lithium bromide-water system operates satisfactorily at a generator temperature of 75oC to 100oC, achievable by a flat-plate collector. The lithium bromide-water system also has a higher COP than the ammonia-water system. The disadvantage of the lithium bromide-water systems is that the evaporators cannot operate at temperature below 0oC since the refrigerant is water. The Coefficient of Performance (COP) system is 0.62 and the concentration of LiBr-H2O is 50%

  6. Absorption solar cooling systems using optimal driving temperatures

    The optimum instantaneous driving temperature of a solar cooling facility is determined along a day. The chillers compared use single effect cycles working with NH3/LiNO3, either conventional or hybridised by incorporating a low pressure booster compressor. Their performances are compared with a H2O/LiBr single effect absorption chiller as part of the same solar system. The results of a detailed thermodynamic cycle for the absorption chillers allow synthesizing them in a modified characteristic temperature difference model. The day accumulated solar cold production is determined using this optimum temperature during two sunny days in mid-July and mid-September, located in Madrid, Spain. The work shows the influences of operational variables and a striking result: selection of a time-constant temperature during all the day does not necessarily imply a substantial loss, being the temperature chosen a key parameter. The results indicate that the NH3/LiNO3 option with no boosting offers a smaller production above-zero Celsius degrees temperatures, but does not require higher hot water driving temperatures than H2O/LiBr. The boosted cycle offers superior performance. Some operational details are discussed. - Highlights: • Instantaneous optimum driving temperature tg,op for solar cooling in Madrid. • 3 absorption cycles tested: H2O/LiBr and NH3/LiNO3 single effect and hybrid. • The tg,op of the hybrid cycle is 16 °C lower than both single effect cycles. • The best fixed driving temperature can reach almost the same behaviour than tg,op

  7. The role of absorption cooling for reaching sustainable energy systems

    Lindmark, Susanne

    2005-01-01

    The energy consumption is continuous to increase around the world and with that follows the demand for sustainable solutions for future energy systems. With growing energy consumption from fossil based fuels the threat of global warming through release of CO2 to the atmosphere increases. The demand for cooling is also growing which would result in an increased consumption of electricity if the cooling demand was to be fulfilled by electrically driven cooling technology. A more sustainable sol...

  8. Conversion of industrial compression cooling to absorption cooling in an integrated district heating and cooling system

    Vilafranca Manguán, Ana

    2008-01-01

    Astra Zeneca plant in Gärtuna has many compression cooling machines for comfort that consume about 11.7 GWh of electricity per year. Many of the cooling machines are old; due to the increase of production of the plant, cooling capacity was limited and new machines have been built. Now, the cooling capacity is over-sized. Söderenergi is the district heating plant that supplies heating to Astra Zeneca plant. Due to the strict environmental policy in the energy plant, last year, a bio-fuelled CH...

  9. Solar-driven ejector-absorption cooling system

    The usage possibility of ejector-absorption cooling systems (EACSs) in Turkey using meteorological data has been investigated. This study also determines whether or not the required heat for the generator of an EACS can be obtained from solar energy in Turkey. There are two important reasons for the usage of EACSs in Turkey. One of them is that the production and use of the CFCs and HCFCs will be phased out a few years according to the Montreal Protocol, signed in 1987. The other is that Turkey is located between 36 deg. and 42 deg. N latitudes and has a typical Mediterranean climate. Therefore, Turkey has a high solar-energy potential, and the yearly average solar-radiation and the total yearly radiation period are 3.6 kW h/m2 day and ∼2610 h, respectively. Sixteen cities (Ordu, Tekirdag, Sakarya, Corum, Erzincan, Bursa, Balikesir, Afyon, Bingoel, Burdur, Konya, Nigde, Adiyaman, Hakkari, Anamur, Finike) were selected in Turkey for which the radiation data and sunshine-duration information have been collected since 2000. The required optimum collector-surface area was identified by using the meteorological data for maximum coefficient-of-performance (COPmax) conditions of the EACS operated with aqua-ammonia. In addition, the required minimum energy for the auxiliary heater was also calculated so that the system can be used throughout the year. It is shown that the heat-gain factor (HGF) varies in the range from 1.34 to 2.85 for all the seasons in the selected cities. The maximum HGF is 2.85 for Finike. According to the results obtained in this study, for 8 → 9 months (March-October), it is sufficient to have a collector surface-area of 4 m2 with high-performance refrigeration all over of Turkey. This study will provide guidance for the efficient utilisation of renewable energy sources in Turkey, which is heavily dependent upon imported energy sources, i.e. natural gas

  10. Central cooling: absorptive chillers

    Christian, J.E.

    1977-08-01

    This technology evaluation covers commercially available single-effect, lithium-bromide absorption chillers ranging in nominal cooling capacities of 3 to 1,660 tons and double-effect lithium-bromide chillers from 385 to 1,060 tons. The nominal COP measured at operating conditions of 12 psig input steam for the single-effect machine, 85/sup 0/ entering condenser water, and 44/sup 0/F exiting chilled-water, ranges from 0.6 to 0.65. The nominal COP for the double-effect machine varies from 1.0 to 1.15 with 144 psig entering steam. Data are provided to estimate absorption-chiller performance at off-nominal operating conditions. The part-load performance curves along with cost estimating functions help the system design engineer select absorption equipment for a particular application based on life-cycle costs. Several suggestions are offered which may be useful for interfacing an absorption chiller with the remaining Integrated Community Energy System. The ammonia-water absorption chillers are not considered to be readily available technology for ICES application; therefore, performance and cost data on them are not included in this evaluation.

  11. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    Fong, K.F., E-mail: bssquare@cityu.edu.hk [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China); Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S. [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China)

    2011-08-15

    Highlights: {yields} A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. {yields} An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. {yields} Year-round cooling and energy performances were evaluated through dynamic simulation. {yields} Its annual primary energy consumption was lower than conventional system up to 36.5%. {yields} The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual

  12. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  13. Experimental results of a direct air-cooled ammonia–lithium nitrate absorption refrigeration system

    Absorption thermal cooling systems driven by renewable energy are a viable option in order to reduce fossil fuel consumption and the associated emissions. This work shows the results of an air cooled absorption cooling prototype working with an ammonia–lithium nitrate mixture at high ambient temperatures. An absorption refrigeration system was designed and built. The prototype is a one stage ammonia–lithium nitrate air cooled chiller. The experimental system was instrumented to evaluate each component. This paper shows the operation conditions in the experimental unit as well as some of the heat loads encountered at different operating conditions. The system was operated successfully at ambient temperatures in the range of 25–35 °C. A series of test showed that even at ambient temperatures it can be operated at evaporator temperatures below 10 °C producing chilled water for air conditioning applications such as radiative cooling panels. The system proved to stabilize very quickly and no risk of crystallization was encountered so the first results are promising in order to continue with the development of a more advanced prototype. - Highlights: •Experimental results of a direct air-cooled ammonia–lithium nitrate system. •The prototype is a one stage ammonia–lithium nitrate air cooled chiller. •The absorption system was operated successfully at ambient temperatures. •Cooling loads of 4.5 kW were reached in the chilled water side

  14. Residential solar air conditioning: Energy and exergy analyses of an ammonia–water absorption cooling system

    Large scale heat-driven absorption cooling systems are available in the marketplace for industrial applications but the concept of a solar driven absorption chiller for air-conditioning applications is relatively new. Absorption chillers have a lower efficiency than compression refrigeration systems, when used for small scale applications and this restrains the absorption cooling system from air conditioning applications in residential buildings. The potential of a solar driven ammonia–water absorption chiller for residential air conditioning application is discussed and analyzed in this paper. A thermodynamic model has been developed based on a 10 kW air cooled ammonia–water absorption chiller driven by solar thermal energy. Both energy and exergy analyses have been conducted to evaluate the performance of this residential scale cooling system. The analyses uncovered that the absorber is where the most exergy loss occurs (63%) followed by the generator (13%) and the condenser (11%). Furthermore, the exergy loss of the condenser and absorber greatly increase with temperature, the generator less so, and the exergy loss in the evaporator is the least sensitive to increasing temperature. -- Highlights: • 10 kW solar thermal driven ammonia–water air cooled absorption chiller is investigated. • Energy and exergy analyses have been done to enhance the thermal performance. • Low driving temperature heat sources have been optimized. • The efficiencies of the major components have been evaluated

  15. Performance evaluation of an active solar cooling system utilizing low cost plastic collectors and an evaporatively-cooled absorption chiller

    Lof, G. O.; Westhoff, M. A.; Karaki, S.

    1984-02-01

    During the summer of 1982, air conditioning in Solar House 3 at Colorado State University was provided by an evaporatively-cooled absorption chiller. The single-effect lithium bromide chiller is an experimental three-ton unit from which heat is rejected by direct evaporative cooling of the condenser and absorber walls, thereby eliminating the need for a separate cooling tower. Domestic hot water was also provided by use of a double-walled heat exchanger and 80-gal hot water tank. A schematic of the system is given. Objectives of the project were: (1) evaluation of system performance over the course of one cooling season in Fort Collins, Colorado; (2) optimization of system operation and control; (3) development of a TRNSYS compatible model of the chiller; and (4) determination of cooling system performance in several U.S. climates by use of the model.

  16. Simulation of Solar Powered Absorption Cooling System for Buildings in Pakistan

    Asim, Muhammad

    2016-01-01

    This research investigates the potential of a solar powered cooling system for single family houses in Pakistan. The system comprises water heating evacuated tube solar collectors, a hot water storage tank, and an absorption chiller.A literature review was carried out covering:• Energy situation, climate, and renewable energy potential in Pakistan;• Energy and thermal comfort in buildings, particularly for hot climates;• Solar collectors and solar cooling systems, particularly for hot climate...

  17. Performance analysis of solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city

    Highlights: • The meteorological data during the working period of air conditioning was measured. • The suitable working range of collector temperature of system was gotten. • The characteristic of hourly and monthly total efficiency of system were obtained. • The yearly performance of system was calculated. - Abstract: Due to the absence of cooling tower and independent on water, the air cooled solar double effect LiBr/H2O absorption cooling system is more convenient to be used in commercial building and household use. The performance with collector temperature is an important field for such system. The paper mainly deals with the performance with collector temperature for the solar air cooled double effect LiBr/H2O absorption cooling system in subtropical city. The parameters of system are: aperture area of collector array is 27 m2, tilted angle of collector with respect to the horizontal plane is 20 toward to south evaporator temperature is 5 °C and the cooling capacity is 20 kW. The simulation is based on the meteorological data of monthly typical day which was summarized from a year round measured data. A corresponding parametric model was developed. The hourly and average performance with the collector temperature for monthly typical day was obtained and discussed. It was found that the suitable working range of inlet temperature of collector is 110–130 °C to improve performance and lower the risk of crystallization. The difference of hourly total efficiency in 9:00–16:00 is less, and the monthly total efficiency from May to October is approximate. The yearly performance of system including total efficiency, cooling capacity per area of collector and solar fraction was given. Furthermore, the effect of effectiveness of heat exchanger and pressure drop on total efficiency and solar fraction was studied and compared. The paper can serve as a preliminary investigation of solar air cooled double effect LiBr/H2O absorption cooling system in

  18. Thermodynamic performance analysis of gas-fired air-cooled adiabatic absorption refrigeration systems

    In China, the application of small size gas-fired air-cooled absorption refrigeration systems as an alternative for electric compression air conditioning systems has shown broad prospects due to occurrence of electricity peak demand in Chinese big cities and lack of water resources. However, for conventional air-cooled absorption refrigeration systems, it is difficult to enhance the heat and mass transfer process in the falling film absorber, and may cause problems, for example, remarkable increase of pressure, temperature and concentration in the generators, risk of crystallization, acceleration of corrosion, degradation of performance, and so on. This paper presents a gas-fired air-cooled adiabatic absorption refrigeration system using lithium bromide-water solutions as its working fluid, which is designed with a cooling capacity of 16 kW under standard conditions. The system has two new features of waste heat recovery of condensed water from generator and an adiabatic absorber with an air cooler. Performance simulation and characteristic analysis are crucial for the optimal control and reliability of operation in extremely hot climates. A methodology is presented to simulate thermodynamic performance of the system. The influences of outdoor air temperature on operation performances of the system are investigated

  19. Performance modelling and simulation of an absorption solar cooling system for Malaysia

    Solar radiation contains huge amounts of energy and is required for almost all the natural processes on earth. Solar-powered air-conditioning has many advantages when compared to normal electricity system. This paper presents a solar cooling system that has been designed for Malaysia and other tropical regions using evacuated tube solar collector and LiBr absorption system. A modelling and simulation of absorption solar cooling system is modeled in Transient System Simulation (TRNSYS) environment. The typical meteorological year file containing the weather parameters is used to simulate the system. Then a system optimization is carried out in order to select the appropriate type of collector, the optimum size of storage tank, the optimum collector slope and area and the optimum thermostat setting of the auxiliary boiler

  20. Thermal design of lithium bromide-water solution vapor absorption cooling system for indirect evaporative cooling for IT pod

    Sawant, Digvijay Ramkrishna

    Nowadays with increase use of internet, mobile there is increase in heat which ultimately increases the efficient cooling system of server room or IT POD. Use of traditional ways of cooling system has ultimately increased CO2 emission and depletion of CFC's are serious environmental issues which led scientific people to improve cooling techniques and eliminate use of CFC's. To reduce dependency on fossil fuels and 4environmental friendly system needed to be design. For being utilizing low grade energy source such as solar collector and reducing dependency on fossil fuel vapour absorption cooling system has shown a great driving force in today's refrigeration systems. This LiBr-water aabsorption cooling consists of five heat exchanger namely: Evaporator, Absorber, Solution Heat Exchanger, Generator, Condenser. The thermal design was done for a load of 23 kW and the procedure was described in the thesis. There are 120 servers in the IT POD emitting 196 W of heat each on full load and some of the heat was generated by the computer placed inside the IT POD. A detailed procedure has been discussed. A excel spreadsheet was to prepared with varying tube sizes to see the effect on flows and ultimately overall heat transfer coefficient.

  1. Experimental assessment of an absorption cooling system operating with the ammonia/lithium nitrate mixture

    This paper reports the experimental results of a single effect absorption cooling system of 3 kW of nominal cooling capacity operating with ammonia–lithium nitrate solution. The system was designed and built in the Instituto de Energías Renovables of the Universidad Nacional Autónoma de México and can be used for food conservation or air conditioning. The absorber and generator are falling film heat exchangers. The condenser, evaporator and solution heat exchanger are compact plate heat exchangers. The heat was supplied to the generator at temperatures between 85 °C and 105 °C, while the cooling water temperatures to remove the heat produced during the condensation and absorption varied between 18 °C and 36 °C. The results showed that the system can produce up to 2.7 kW of cooling capacity at heating water temperatures of 95 °C and can achieve evaporator temperatures as low as 1 °C. The experimental coefficients of performance varied between 0.45 and 0.70. Because of the developed system do not need a rectifier and reasonable good coefficients of performance were achieved, the developed system seems to be a good alternative to be used for food conservation or air conditioning. - Highlights: • An absorption cooling system was developed using NH3–LiNO3. • The achieved COP (coefficients of performance) are the highest reported for a system using NH3–LiNO3. • Evaporator temperatures as low as 1 °C were achieved. • COP varied between 0.45 and 0.7. • The developed system seems to be a good alternative for food conservation and air conditioning

  2. Simulation of solar lithium bromide-water absorption cooling system with parabolic trough collector

    Ahwaz is one of the sweltering cities in Iran where an enormous amount of energy is being consumed to cool residential places in a year. The aim of this research is to simulate a solar single effect lithium bromide-water absorption cooling system in Ahwaz. The solar energy is absorbed by a horizontal N-S parabolic trough collector and stored in an insulated thermal storage tank. The system has been designed to supply the cooling load of a typical house where the cooling load peak is about 17.5 kW (5 tons of refrigeration), which occurs in July. A thermodynamic model has been used to simulate the absorption cycle. The working fluid is water, which is pumped directly to the collector. The results showed that the collector mass flow rate has a negligible effect on the minimum required collector area, but it has a significant effect on the optimum capacity of the storage tank. The minimum required collector area was about 57.6 m2, which could supply the cooling loads for the sunshine hours of the design day for July. The operation of the system has also been considered after sunset by saving solar energy

  3. Properties of the Carrol system and a machine design for solar-powered, air cooled, absorption space cooling

    1981-05-01

    The name Carrol was selected as a convenient shorthand designation for a prime candidate chemical system comprising ethylene glycol-lithium bromide as an absorbent mixture with water as a refrigerant. The instrumentation, methods of handling data and numerical results from a systematic determination of Carrol property data required to design an air cooled absorption machine based on this chemical system are described. These data include saturation temperature, relative enthalpy, density, specific heat capacity, thermal conductivity, viscosity and absorber film heat transfer coefficient as functions of solution temperature and Carrol concentration over applicable ranges. For each of the major components of the absorption chiller, i.e., generator, chiller, absorber, condenser, heat exchanger, purge and controls, the report contains an assembly drawing and the principal operating characteristics of that component.

  4. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  5. Investigation of the potential of application of single effect and multiple effect absorption cooling systems

    Gomri, Rabah [Laboratory of ' ' Genie Climatique' ' , Faculty of Engineering - Department of ' ' Genie Climatique' ' , University of Constantine, 25000 Constantine (Algeria)

    2010-08-15

    Owing to the serious environmental problems and the price of the traditional energy resources the use of industrial waste heat or the renewable energy, especially the solar energy, as the driving force for vapour absorption cooling systems is continuously increasing. A particular attention was given to single effect cycle. The main objective of higher effect cycle is to increase system performance when high temperature heat source is available. The purpose of the present study was to investigate the potential for the application of single effect double effect and triple effect absorption cooling cycles for production chilled water. For the three systems identical cold output of 300 kW is used. Simulation results were used to study the influence of the various operating parameters on the performance coefficient, exergetic efficiency and the ratio of mass flow rate of refrigerant generated to the heat supplied of the three systems. It is concluded that the COP of double effect system is approximately twice the COP of single effect system and that the COP of triple effect system is slightly less than thrice the COP of single effect system. The exergetic efficiency of double effect system and triple effect system increase slightly compared to the exergetic efficiency of single effect system. It is found that for each condenser and evaporator temperature, there is an optimum generator temperature. At this point the COP and exergetic efficiency of the systems become maximum. Triple effect system generates more vapour refrigerant per unit heat supplied as compared with single effect and double effect systems. (author)

  6. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

    Namkoong, D.

    1976-01-01

    A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

  7. Solar absorption cooling

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still remains a challenge to the academic and industrial communities. In an effort to meet this challenge, this thesis reports the R&D activities carried out for the development of a new solar cooling machine,...

  8. Solar absorption cooling

    Kim, D.-S.

    2007-01-01

    As the world concerns more and more on global climate changes and depleting energy resources, solar cooling technology receives increasing interests from the public as an environment-friendly and sustainable alternative. However, making a competitive solar cooling machine for the market still remain

  9. Air cooled absorption chillers for solar cooling applications

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    The chemical composition of a 'best' absorption refrigerant system is identified, and those properties of the system necessary to design hot water operated, air cooled chilling equipment are determined. Air cooled chillers from single family residential sizes into the commercial rooftop size range are designed and operated.

  10. Small capacity absorption systems for cooling and power with a scroll expander and ammonia based working fluids

    Up to now, the use of ammonia/water absorption cycles has been mainly limited to the production of refrigeration or air conditioning but due to the relatively high generator pressure some authors have proposed the integration in parallel of an expander to produce cooling and power simultaneously. This feature could provide many benefits in the future such as the use of solar thermal energy to partially cover the heating, cooling and electricity demand of a building. In the other hand the life cycle cost of the absorption system is improved because of the increase in the number of running hours in periods in which there is no demand for cooling but the demand for electrical power is still important. This paper shows a new combined absorption system using a scroll expander and three different working fluids using ammonia as refrigerant: ammonia/water, ammonia/lithium nitrate and ammonia/sodium thiocyanate. The scroll expander performance maps were obtained experimentally and modeled to predict the power production, rotational speed and exhaust temperature of the expander and included in the complete absorption cycle model build using Engineering Equation Solver (EES) Software. This system produces different amounts of cooling and power at the desired power/cooling ratio to cover varying demand profiles. - Highlights: • New combined absorption system using a scroll expander and three different working fluids. • Characterization the scroll expander with ammonia as working fluid. • Sensitivity to the heat source, sink and chilled water temperatures on the new combined absorption system

  11. Integrated energy, economic, and environmental assessment for the optimal solar absorption cooling and heating system

    Hang, Yin

    Buildings in the United States are responsible for 41% of the primary energy use and 30% of carbon dioxide emissions. Due to mounting concerns about climate change and resource depletion, meeting building heating and cooling demand with renewable energy has attracted increasing attention in the energy system design of green buildings. One of these approaches, the solar absorption cooling and heating (SACH) technology can be a key solution to addressing the energy and environmental challenges. SACH system is an integration of solar thermal heating system and solar thermal driven absorption cooling system. So far, SACH systems still remain at the demonstration and testing stage due to not only its high cost but also complicated system characteristics. This research aims to develop a methodology to evaluate the life cycle energy, economic and environmental performance of SACH systems by high-fidelity simulations validated by experimental data. The developed methodology can be used to assist the system design. In order to achieve this goal, the study includes four objectives as follows: * Objective 1: Develop the evaluation model for the SACH system. The model includes three aspects: energy, economy, and environment from a life cycle point of view. * Objective 2: Validate the energy system model by solar experiments performance data. * Objective 3: Develop a fast and effective multi-objective optimization methodology to find the optimal system configuration which achieves the maximum system benefits on energy, economy and environment. Statistic techniques are explored to reveal the relations between the system key parameters and the three evaluation targets. The Pareto front is generated by solving this multi-objective optimization problem. * Objective 4: Apply the developed assessment methodology to different building types and locations. Furthermore, this study considered the influence of the input uncertainties on the overall system performance. The sensitivity

  12. Prospects for utilisation of solar driven ejector-absorption cooling system in Turkey

    Solar assisted refrigeration appears to be a promising alternative to the conventional electrical driven units. The main advantages of solar assisted refrigeration systems concern the reduction of peak loads for electricity utilities, the use of zero ozone depletion impact refrigerants, the decreased primary energy consumption and decreased global warming impact. The main focus of this study is to investigate usage possibility of ejector-absorption cooling system (EACS) in Turkey. This study determines whether or not required heat for generator of EACS can be obtained from solar energy in Turkey. There are two important reasons for the utilisation of EACSs in Turkey. One of them is that the production and use of the CFCs and HCFCs will be phased out in a few years according to Montreal Protocol, adopted in 1987. The other is that Turkey has high solar energy potential because of its location in the northern hemisphere with latitudes 36-42 deg. N and longitudes 26-45 deg. E and the yearly average solar radiation is 3.6 kW h/m2 day, and the total yearly radiation period is ∼2610 h. For analysis, 17 cities were selected in different regions of Turkey in which the radiation data and sunshine duration information have been collected since 2000. By using the meteorological data, it was aimed that required optimum collector surface area for maximum coefficient of performance (COPmax) conditions of EACSs operated with aqua-ammonia was defined. In addition, required minimum energy for auxiliary heater was calculated so that the system can be used throughout the year. It was found that the heat gain factor (HGF) varies in the range from 0.5 to 2.68 for the all the seasons in the selected cities. The maximum HGF of about 2.68 was obtained for Van in July. This study shows that there is a great potential for utilisation of solar cooling system for domestic heating/cooling applications in Turkey

  13. Optimization of the Geometrical Parameters of a Solar Bubble Pump for Absorption-Diffusion Cooling Systems

    N. Dammak

    2010-01-01

    Full Text Available Problem statement: The objective of this study was to optimize the geometrical parameters of a bubble pump integrated in a solar flat plate collector. Approach: This solar bubble pump was part of an ammonia/water/helium (NH3/H2O/He absorption-diffusion cooling system. Results: An empirical model was developed on the basis of momentum, mass, material equations and energy balances. The mathematical model was solved using the simulation tool “Engineering Equation Solver (EES”. Conclusion/Recommendations: Using metrological data from Gabes (Tunisia various parameters were geometrically optimized for maximum bubble pump efficiency which was best for a bubble pump tube diameter of 6 mm, a tube length of 1.5 m, an inclination to the horizontal between 30 and 50° of the solar flat plate collector and a submergence ratio between 0.2 and 0.3.

  14. Thermodynamic optimization of a solar system for cogeneration of water heating/purification and absorption cooling

    Hovsapian, Zohrob O.

    This dissertation presents a contribution to understanding the behavior of solar powered air conditioning and refrigeration systems with a view to determining the manner in which refrigeration rate; mass flows, heat transfer areas, and internal architecture are related. A cogeneration system consisting of a solar concentrator, a cavity-type receiver, a gas burner, and a thermal storage reservoir is devised to simultaneously produce water heating/purification and cooling (absorption refrigerator system). A simplified mathematical model, which combines fundamental and empirical correlations, and principles of classical thermodynamics, mass and heat transfer, is developed. An experimental setup was built to adjust and validate the numerical results obtained with the mathematical model. The proposed model is then utilized to simulate numerically the system transient and steady state response under different operating and design conditions. A system global optimization for maximum performance (or minimum exergy destruction) in the search for minimum pull-down and pull-up times, and maximum system second law efficiency is performed with low computational time. Appropriate dimensionless groups are identified and the results presented in normalized charts for general application. The numerical results show that the three way maximized system second law efficiency, etaII,max,max,max, occurs when three system characteristic mass flow rates are optimally selected in general terms as dimensionless heat capacity rates, i.e., (Psisps , Psiwxwx, PsiHs)opt ≅ (1.43, 0.17, 0.19). The minimum pull-down and pull-up times, and maximum second law efficiencies found with respect to the optimized operating parameters are sharp and, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar energy systems in the context of distributed power generation.

  15. Thermodynamic analysis of an ejector-flash tank-absorption cooling system

    The performance of a combined ejector-absorption cooling cycle has the potential for further investigation. Improving the performance of the system can be achieved by adding a flash tank to the combined cycle. In this study, an analysis based on the second law of thermodynamics is used to evaluate the cycle before and after modification. A mathematical model is developed to calculate the entropy generation in each component and the total entropy generation of the system, as well as to evaluate the exergy losses. Under operating conditions that match the ambient conditions and a certain application in Malaysia (Tgen = 85 °C; Tcond = Tabs = 30 °C; and Tevp = 0 °C), the coefficient of performance (COP) and exergetic efficiency (COPexe) values before and after modification are (0.844, 0.875) and (0.459, 0.476), respectively. The maximum exergy loss is found in the evaporator in both cycles, followed by the condenser and the absorber. A statistical t-test is carried out to establish the significance of the differences in the COP and the COPexe before and after modification. It is found that there is significant improvement in combined cycle performance after modification. Overall, adding the flash tank to the combined cycle can be considered a novel enhancement. -- Highlights: • A modified combined ejector-absorption cycle by adding flash tank is proposed. • The performance of the combined cycle is compared before and after modification. • Exergy analysis is used to evaluate the performance of both cases. • Higher COP and COPexe is shown for the combined cycle after the modification. • Statistical T-test ensured significant improvement on modified cycle performance

  16. Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: Case study of a sewage treatment plant

    Bruno, Joan Carles; Ortega-Lopez, Victor; Coronas, Alberto [Universitat Rovira i Virgili, Department of Mechanical Engineering, CREVER, Avda. Paisos Catalans, 26, 43007 Tarragona (Spain)

    2009-06-15

    Absorption chillers can help to increase the performance of biogas-driven micro gas turbine (MGT) cogeneration plants. In this paper we analyse various integrated configurations of several types of commercially available absorption cooling chillers and MGT cogeneration systems driven by biogas. MGTs are fuelled with biogas and their waste heat is used to drive absorption chillers and other thermal energy users. The chillers considered in this study include single- and double-effect water/LiBr and ammonia/water chillers. The exhaust gas from the MGT can be used directly to drive the chiller or indirectly to produce hot water to drive the chiller. In this paper we conduct a case study for an existing sewage treatment plant. Chilled water is used to reduce humidity in the biogas pre-treatment process and cool the combustion air of the MGT. We identify the most interesting integrated configurations for trigeneration systems that use biogas and micro gas turbines. We analyse these configurations and compare them with conventional configurations using operational data from an existing sewage treatment plant. The best configurations are those that completely replace the existing system with a trigeneration plant that uses all the available biogas and additional natural gas to completely meet the heating demands of the sewage treatment plant. (author)

  17. Use of process steam in vapor absorption refrigeration system for cooling and heating applications: An exergy analysis

    S. Anand

    2016-12-01

    Full Text Available The exponential increase in cost of conventional fuels shifts the interest toward the use of alternative as well waste energy sources for the operation of refrigeration and air-conditioning units. The present study therefore analyzes the performance of a process steam-operated vapor absorption system for cooling and heating applications using ammonia and water as working fluids based on first and second laws of thermodynamics. A mathematical model has been developed based on exergy analysis to investigate the performance of the system. The different performance parameters such as coefficient of performance (COP and exergetic efficiency of absorption system for cooling and heating applications are also calculated under different operating conditions. The results obtained show that cooling and heating COP along with second law efficiency (exergy efficiency increases with the heat source temperature at constant evaporator, condenser, and absorber temperature. Also, COP as well as exergy efficiency increases with an increase in the evaporator temperature at constant generator, condenser, and absorber temperature. The effect of ambient temperature on the exergetic efficiency for cooling and heating applications is also studied. The results obtained from the simulation studies can be used to optimize different components of the system so that the performance can be improved significantly.

  18. Modeling and experimental validation of the solar loop for absorption solar cooling system using double-glazed collectors

    Solar cooling applied to buildings is without a doubt an interesting alternative for reducing energy consumption in traditional mechanical steam compression air conditioning systems. The study of these systems should have a closely purely fundamental approach including the development of numerical models in order to predict the overall installation performance. The final objective is to estimate cooling capacity, power consumption, and overall installation performance with relation to outside factors (solar irradiation, outside temperature...). The first stage in this work consists of estimating the primary energy produced by the solar collector field. The estimation of this primary energy is crucial to ensure the evaluation of the cooling capacity and therefore the cooling distribution and thermal comfort in the building. Indeed, the absorption chiller performance is directly related to its heat source. This study presents dynamic models for double glazing solar collectors and compares the results of the simulation with experimental results taken from our test bench (two collectors). In the second part, we present an extensive collector field model (36 collectors) from our solar cooling installation at The University Institute of Technology in St Pierre, Reunion Island as well as our stratified tank storage model. A comparison of the simulation results with real scale solar experimental data taken from our installation enables validation of the double glazing solar collector and stratified tank dynamic models.

  19. Economic-environmental performance indexes for solar-powered absorption cooling system in Mediterranean area

    N. Cardinale, G. Rospi, F. Ruggiero

    2010-07-01

    Full Text Available The most recent European (Directive 2006/32/CE of April 5/2006 relating to the efficiency of the final uses of the energy and the energetic services and national (Decree 311/06 normatives impose the use of energetic systems more efficient that minimize the use of fossil fuels in comparison to the use of renewable energy. In this research a comparison was developed between the traditional electric equipments (which use vapour compression and the absorption equipments (powered by solar thermal energy. This comparison was implemented considering the energetic, economic and environmental aspects. This research explores the technical - economic potentialities of solar HVAC systems, with particular reference to those based on the absorption cycles, verifying the possible applications in regions of the Mediterranean area (in particular Madrid, Palermo and Athens. In particular we define an economic index and an environmental-energetic index.

  20. Development of a single-family absorption chiller for use in a solar heating and cooling system, phase 3, volume 2

    Reimann, R. C.; Biermann, W. J.

    1984-10-01

    Supporting information is presented on: properties of a chemical system for solar fired, air-cooled absorption equipment, air-side performance of a one-inch tube, absorber plate-fin coil, listings of the programs used for simulation and data reduction, and evaluation of the Carrier three-tone chiller in an integrated heating and cooling system.

  1. Self operating absorption cooling system using solar energy: Small power experimental plant

    Velluet, P.; Dehausse, R.

    This study deals with a solar system for refrigeration specially designed for remote areas conditions. So, it must be very simple and reliable, and in addition it must be also mechanically self-operating. The thermodynamic cycle used is an ammonia-water absorption one. It consumes only thermal energy, which is easily and cheaply converted directly from solar radiation. In order to make a self-operating system, an engine is located between the boiler (at high pressure) and the absorber (at low pressure). It expands ammonia vapor and produces mechanical energy to run the solution pump.

  2. Improvement of the raw gas drying process in olefin plants using an absorption cooling system driven by quench oil waste heat

    The raw gas (RG) in olefin plants is usually dried by triethyleneglycol absorption of the gas humidity. As low temperatures favour the absorption process, a tower cooling water system is conventionally used to reduce the raw gas temperature. However, in this case, the ambient temperature heavily influences the RG temperature, and at very high ambient temperatures, the efficiency of the drying process is too low. The objective of this paper is to propose a new cooling system that recovers part of the waste heat contained in the quench oil to improve the drying process of raw gas in olefin plants. This cooling system consists of a single effect water/LiBr absorption system, which produces chilled water at 10 deg C, and an additional chilled water/raw gas heat exchanger. The cooling water is used in parallel to dissipate heat in the absorption chiller and also as the first stage for cooling the raw gas before the chilled water is used. The technical performance of the new raw gas cooling system is compared with that of the conventional system using a cooling system design for a typical size olefin plant. The proposed system can run the drying process at the required optimised temperature, eliminate the dependence of the process on ambient temperature and use waste heat that would otherwise be dissipated in some form, as it is not useful for other applications inside the plant

  3. Simulating Single-Effect Absorption Cooling Lithium Bromide A Solar System With Flat Plate Collector And Contribute To An Office Building

    MIRI, Mohadaseh

    2015-01-01

    Use solar energy to provide hot water consumption, space heating and cooling in recent decades is considered. In this article a model varies with time, a solar adsorption cooling system consists of a single effect lithium bromide absorption system, a flat plate collector and a storage tank or linear or parabolic simulated separately. The system for cooling an office building for hours of operation from 7 am to 18 pm is considered.About 7 kW peak cooling load occurs in July. Results obtained s...

  4. Simulating Single-Effect Absorption Cooling Lithium Bromide A Solar System With Flat Plate Collector And Contribute To An Office Building

    MIRI, Mohadaseh

    2015-01-01

     Abstract. Use solar energy to provide hot water consumption, space heating and cooling in recent decades is considered. In this article a model varies with time, a solar adsorption cooling system consists of a single effect lithium bromide absorption system, a flat plate collector and a storage tank or linear or parabolic simulated separately. The system for cooling an office building for hours of operation from 7 am to 18 pm is considered.About 7 kW peak cooling load occurs in July. Results...

  5. Overview-absorption/Rankine solar cooling program

    Wahlig, M.; Heitz, A.; Boyce, B.

    1980-03-01

    The tasks being performed in the absorption and Rankine program areas run the gamut from basic work on fluids to development of chillers and chiller components, to field and reliability testing of complete cooling systems. In the absorption program, there are six current and five essentially completed projects. In the Rankine program, there are five current projects directly supported by DOE, and three projects funded through and managed by NASA/MSFC (Manned Space Flight Center, Huntsville, Alabama). The basic features of these projects are discussed. The systems under development in five of these current projects were selected for field testing in the SOLERAS program, a joint US-Saudi Arabian enterprise. Some technical highlights of the program are presented.

  6. Experimental diagnosis of the influence of operational variables on the performance of a solar absorption cooling system

    Venegas, M.; Rodriguez-Hidalgo, M.C.; Lecuona, A.; Rodriguez, P.; Gutierrez, G. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Salgado, R. [Dpto. Ingenieria Mecanica, Universidad Interamericana de Puerto Rico, Recinto de Bayamon, 500 Carretera Dr. John Will Harris Bayamon, PR 00957-6257 (United States)

    2011-04-15

    This paper presents the analysis of the performance of a solar cooling facility along one summer season using a commercial single-effect water-lithium bromide absorption chiller aiming at domestic applications. The facility works only with solar energy using flat plate collectors and it is located at Universidad Carlos III de Madrid, Spain. The statistical analysis performed with the gathered data shows the influence of five daily operational variables on the system performance. These variables are solar energy received along the day (H) and the average values, along the operating period of the solar cooling facility (from sunrise to the end of the cold-water production), of the ambient temperature (anti T), the wind velocity magnitude (V), the wind direction ({theta}) and the relative humidity (RH). First order correlation functions are given. The analysis of the data allows concluding that the most influential variables on the daily cooling energy produced and the daily averaged solar COP are H, V and {theta}. The period length of cold-water production is determined mainly by H and anti T. (author)

  7. Experimental diagnosis of the influence of operational variables on the performance of a solar absorption cooling system

    This paper presents the analysis of the performance of a solar cooling facility along one summer season using a commercial single-effect water-lithium bromide absorption chiller aiming at domestic applications. The facility works only with solar energy using flat plate collectors and it is located at Universidad Carlos III de Madrid, Spain. The statistical analysis performed with the gathered data shows the influence of five daily operational variables on the system performance. These variables are solar energy received along the day (H) and the average values, along the operating period of the solar cooling facility (from sunrise to the end of the cold-water production), of the ambient temperature (T-bar), the wind velocity magnitude (V), the wind direction (θ) and the relative humidity (RH). First order correlation functions are given. The analysis of the data allows concluding that the most influential variables on the daily cooling energy produced and the daily averaged solar COP are H, V and θ. The period length of cold-water production is determined mainly by H and T-bar.

  8. A Cooling System for an Automobile Based on Vapour Absorption Refrigeration Cycle Using Waste Heat of an Engine.

    Satish K. Maurya

    2014-03-01

    Full Text Available Now a days the air conditioning system of cars is mainly uses “Vapour Compression Refrigerant System” (VCRS which absorbs and removes heat from the interior of the car that is the space to be cooled and rejects the heat to atmosphere. In vapour compression refrigerant system, the system utilizes power from engine shaft as the input power to drive the compressor of the refrigeration system, hence the engine has to produce extra work to run the compressor of the refrigerating system utilizing extra amount of fuel. This loss of power of the vehicle for refrigeration can be neglected by utilizing another refrigeration system i.e. a “Vapour Absorption Refrigerant System”. As well known thing about VAS that these machines required low grade energy for operation. Hence in such types of system, a physicochemical process replaces the mechanical process of the Vapour Compression Refrigerant System by using energy in the form of heat rather than mechanical work. This heat obtained from the exhaust of high power internal combustion engines.

  9. New absorption chiller and control strategy for the solar assisted cooling system at the german federal enviroment agency

    Albers, Jan

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] Typically the cooling capacity of absorption chillers is controlled by adjusting the driving hot water temperature according to the load. Meanwhile the cooling water temperature is contr...

  10. Solar heating and cooling with absorption refrigeration

    Montlló Casabayó, Gerard

    2010-01-01

    This project is focused on solar heating and cooling installations that use solar thermal energy to produce heat for domestic hot water or space heating, and cooling for air conditioning through absorption refrigeration cycle. The first part of the project is a literature review of said technology. The main components of such installations are described and results and conclusions from existing installations are reviewed. The second part is focused on designing, modelling and simula...

  11. Design and Economic Analysis of a Heating/Absorption Cooling System Operating with Municipal Solid Waste Digester: A Case Study of Gazi University

    Coşar, Gökhan; Pooyanfar, Mirparham; Amirabedin, Ehsan; Topal, Hüseyin

    2013-12-01

    Recovering energy from municipal solid waste (MSW) is one of the most important issues of energy management in developed countries. This raises even more interest as world fossil fuel reserves diminish and fuel prices rise. Being one of main processes of waste disposal, anaerobic digestion can be used as a means to reduce fossil fuel and electricity consumption as well as reducing emissions. With growing demand for cooling in Turkey, especially during warm seasons and considering the energy costs, utilizing heat-driven absorption cooling systems coupled with an anaerobic digester for local cooling purposes is a potentially interesting alternative for electricity driven compression cooling. The aim of this article is to study the viability of utilizing biogas obtained from MSW anaerobic digestion as the main fuel for heating facilities of Gazi University, Turkey and also the energy source for an absorption cooling system designed for the central library of the aforementioned campus. The results prove that the suggested system is sustainably and financially appealing and has the potential to replace the conventional electricity driven cooling systems with a reasonable net present worth; moreover, it can notably reduce carbon dioxide emissions.

  12. Thermal and economic assessment of hot side sensible heat and cold side phase change storage combination fo absorption solar cooling system

    Choi, M. K.; Morehouse, J. H.

    An analysis of a solar assisted absorption cooling system which employs a combination of phase change on the cold side and sensible heat storage on the hot side of the cooling machine for small commercial buildings is given. The year-round thermal performance of this system for space cooling were determined by simulation and compared against conventional cooling systems in three geographic locations: Phoenix, Arizona; Miami, Florida and Washington, D.C. The results indicate that the hot-cold storage combination has a considerable amount of energy and economical savings over hot side sensible heat storage. Using the hot-cold storage combination, the optimum collector areas for Washington, D.C., Phoenix and Miami are 355 m squared, 250 m squared and 495 m squared, respectively. Compared against conventional vapor compression chiller, the net solar fractions are 61, 67 and 69 percent, respectively.

  13. Cooling systems

    Progress on the thermal effects project is reported with regard to physiology and distribution of Corbicula; power plant effects studies on burrowing mayfly populations; comparative thermal responses of largemouth bass from northern and southern populations; temperature selection by striped bass in Cherokee Reservoir; fish population studies; and predictive thermoregulation by fishes. Progress is also reported on the following; cause and ecological ramifications of threadfin shad impingement; entrainment project; aquaculture project; pathogenic amoeba project; and cooling tower drift project

  14. A Cooling System for an Automobile Based on Vapour Absorption Refrigeration Cycle Using Waste Heat of an Engine.

    Satish K. Maurya; Saurabh Awasthi

    2014-01-01

    Now a days the air conditioning system of cars is mainly uses “Vapour Compression Refrigerant System” (VCRS) which absorbs and removes heat from the interior of the car that is the space to be cooled and rejects the heat to atmosphere. In vapour compression refrigerant system, the system utilizes power from engine shaft as the input power to drive the compressor of the refrigeration system, hence the engine has to produce extra work to run the compressor of the refrigerating s...

  15. A very cool cooling system

    Antonella Del Rosso

    2015-01-01

    The NA62 Gigatracker is a jewel of technology: its sensor, which delivers the time of the crossing particles with a precision of less than 200 picoseconds (better than similar LHC detectors), has a cooling system that might become the precursor to a completely new detector technique.   The 115 metre long vacuum tank of the NA62 experiment. The NA62 Gigatracker (GTK) is composed of a set of three innovative silicon pixel detectors, whose job is to measure the arrival time and the position of the incoming beam particles. Installed in the heart of the NA62 detector, the silicon sensors are cooled down (to about -20 degrees Celsius) by a microfluidic silicon device. “The cooling system is needed to remove the heat produced by the readout chips the silicon sensor is bonded to,” explains Alessandro Mapelli, microsystems engineer working in the Physics department. “For the NA62 Gigatracker we have designed a cooling plate on top of which both the silicon sensor and the...

  16. Experiences in solar cooling systems

    Ward, D. S.

    The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.

  17. 基于辐射供冷的太阳能吸收式空调试验研究%Investigation of solar absorption cooling system based on cooling ceiling

    李悦; 翟晓强; 尹亚领; 王如竹

    2012-01-01

    对基于辐射供玲的太阳能吸收式空调系统进行了试验.该系统采用96 m2的U型管式真空管太阳能集热器驱动额定制冷量为8 kW的吸收式制冷机组,吸收式制冷机产生的冷冻水被输送到辐射吊顶中,为50 m2的实验室提供夏季空调.吸收式制冷机运行在度季晴朗天气时,平均制冷量为4.5 kW.辅助独立除湿机组与辐射吊顶联合运行.试验房间的热舒适指标PMV为-0.29~0.32,可满足热舒适要求.%Experiments were carried out to study a solar powered absorption cooling system based on cooling ceiling. The 96 m2 U-type vacuum tube collectors were employed to drive the absorption chiller with nominal refrigeration capacity of 8 kW. The chilled water from the absorption chiller was delivered to cooling ceiling, providing cooling capacity to the 50 m2 test room. Under sunshiny weather conditions, the average cooling output was 4.5 kW. An independent dehumidification unit was installed to work together with cooling ceiling. The PMV inside the test room ranged from -0.29 to 0.32, which met the indoor thermal comfort.

  18. Site-dependent factors affecting the economic feasibility of solar powered absorption cooling

    Bartlett, J. C.

    1977-01-01

    A procedure has been developed which can be used to determine the economic feasibility of solar powered absorption cooling systems. This procedure has been used in a study to investigate the influence of the site-dependent parameters on the economic feasibility of solar absorption cooling. The purpose of this study was to make preliminary site selections for solar powered absorption cooling systems. This paper summarizes the results of that study.

  19. Candidate chemical systems for air cooled, solar powered, absorption air conditioner design. Part II. Solid absorbents, high latent heat refrigerants

    Biermann, W. J.

    1978-04-01

    Work done in attempting to qualify absorption refrigeration systems based on refrigerants with intermediate latent heats of vaporization is summarized. In practice, these comprise methanol, ammonia, and methylamine. A wide variety of organic substances, salts, and mixtures were evaluated in as systematic a manner as possible. Several systems of interest are described. The system, LiClO/sub 3/--LiBr--H/sub 2/O, is a good back up system to our first choice of an antifreeze additive system, and thermodynamically promising but subject to some inconvenient materials limitations. The system, LiBr/ZnBr/sub 2/--methanol, is thermodynamically promising but requires additional kinetic qualification. Chemical stability of the system, LiCNS--ammonia/methylamine with various other third components, does not appear to be adequate for a long-lived system.

  20. Water cooled absorption chillers for solar cooling applications

    Biermann, W. J.; Reimann, R. C.

    1982-03-01

    A broad line of absorption chillers designed to operate with hot fluids at as low a temperature as practical while rejecting heat to a stream of water was developed. A packaging concept for solar application in which controls, pumps, valves and other system components could be factor assembled into a unitary solar module was investigated.

  1. Analysis of the Solar Radiation Impact on Cooling Performance of the Absorption Chiller

    Fedorčák, Pavol; Košičanová, Danica; Nagy, Richard; Mlynár, Peter

    2014-11-01

    Absorption cooling at low power is a new technology which has not yet been applied to current conditioning elements. This paper analyzes the various elements of solar absorption cooling. Individual states were simulated in which working conditions were set for the capability of solar absorption cooling to balance heat loads in the room. The research is based on an experimental device (absorption units with a performance of 10kW) developed at the STU in Bratislava (currently inputs and outputs of cold sources are being measured). Outputs in this paper are processed so that they connect the entire scheme of the solar absorption cooling system (i.e. the relationship between the solar systems hot and cold storage and the absorption unit). To determine the size of the storage required, calculated cooling for summer months is considered by the ramp rate of the absorption unit and required flow rate of the collectors.

  2. During air cool process aerosol absorption detection with photothermal interferometry

    Li, Baosheng; Xu, Limei; Huang, Junling; Ma, Fei; Wang, Yicheng; Li, Zhengqiang

    2014-11-01

    This paper studies the basic principle of laser photothermal interferometry method of aerosol particles absorption coefficient. The photothermal interferometry method with higher accuracy and lower uncertainty can directly measure the absorption coefficient of atmospheric aerosols and not be affected by scattered light. With Jones matrix expression, the math expression of a special polarization interferometer is described. This paper using folded Jamin interferometer, which overcomes the influence of vibration on measuring system. Interference come from light polarization beam with two orthogonal and then combine to one beam, finally aerosol absorption induced refractive index changes can be gotten with four beam of phase orthogonal light. These kinds of styles really improve the stability of system and resolution of the system. Four-channel detections interact with interference fringes, to reduce the light intensity `zero drift' effect on the system. In the laboratory, this device typical aerosol absorption index, it shows that the result completely agrees with actual value. After heated by laser, cool process of air also show the process of aerosol absorption. This kind of instrument will be used to monitor ambient aerosol absorption and suspended particulate matter chemical component. Keywords: Aerosol absorption coefficient; Photothermal interferometry; Suspended particulate matter.

  3. Design and Economic Potential of an Integrated High-Temperature Fuel Cell and Absorption Chiller Combined Cooling, Heat, and Power System

    Hosford, Kyle S.

    Clean distributed generation power plants can provide a much needed balance to our energy infrastructure in the future. A high-temperature fuel cell and an absorption chiller can be integrated to create an ideal combined cooling, heat, and power system that is efficient, quiet, fuel flexible, scalable, and environmentally friendly. With few real-world installations of this type, research remains to identify the best integration and operating strategy and to evaluate the economic viability and market potential of this system. This thesis informs and documents the design of a high-temperature fuel cell and absorption chiller demonstration system at a generic office building on the University of California, Irvine (UCI) campus. This work details the extension of prior theoretical work to a financially-viable power purchase agreement (PPA) with regard to system design, equipment sizing, and operating strategy. This work also addresses the metering and monitoring for the system showcase and research and details the development of a MATLAB code to evaluate the economics associated with different equipment selections, building loads, and economic parameters. The series configuration of a high-temperature fuel cell, heat recovery unit, and absorption chiller with chiller exhaust recirculation was identified as the optimal system design for the installation in terms of efficiency, controls, ducting, and cost. The initial economic results show that high-temperature fuel cell and absorption chiller systems are already economically competitive with utility-purchased generation, and a brief case study of a southern California hospital shows that the systems are scalable and viable for larger stationary power applications.

  4. Radiant Floor Cooling Systems

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floo...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented....

  5. Experimental studies on heat and mass transfer performance of a coiled tube absorber for R134a-DMAC based absorption cooling system

    Mohideen, S.T. [Institute of Road and Transport Technology, Erode, Tamil Nadu (India); Renganarayanan, S. [Institute for Energy Studies, Anna University, Chennai, Tamil Nadu (India)

    2008-11-15

    Absorber is an important component in vapor absorption refrigeration system and its performance has greater influence in overall efficiency of absorption machines. Falling film heat and mass transfer in an absorber is greatly influenced by fluid properties, geometry of heat exchanger and its operating parameters. This paper presents on the results of experimental studies on the heat and mass transfer characteristics of a coiled tube falling film absorber, using 1,1,1,2-Tetrafluroethane(R-134a) and N-N Dimethyl Acetamide (DMAC) as working fluids. The effects of film Reynolds number, inlet solution temperature and cooling water temperature on absorber heat load, over all heat transfer coefficient and mass of refrigerant absorbed are presented and discussed. Normalized solution and coolant temperature profiles and refrigerant mass absorbed along the height of absorber are also observed from the experimental results. The optimum over all heat transfer coefficient for R-134a-DMAC solution found to be 726 W/m{sup 2}K for a film Reynolds number of 350. The R-134a vapour absorption rate is maximum in the normalized coil height of 0.6 to 1. (orig.)

  6. Air cooling system

    A procedure for cooling the steam from a turbine used in conjunction with a power nuclear reactor has been described in the main patent. According to said procedure, use is made of a circuit where a two-phase mixture is circulated, said closed circuit connecting the turbine condenser to a cooling tower. According to the present addition patent, the cooling structure is provided with cooling fins previously hollowed in view of increasing the interface between the fluid and said structure, which improves the performance of the system

  7. Cooling System Analysis

    Almeida, Fernando Jorge Gonçalves; Cruz, João Pedro Brás da

    2012-01-01

    ABSTRACT This master thesis report describes the behavior of a cooling system based on the power consumption and power losses during the velocity range. The thesis is a report of the behavior of the cooling system to understand were we having more needs to cold down the system. It was used a excel sheet to describe the values of power, losses and efficiencies of the various components of the cooling. With the excel sheets built we studied various cases in the system to show ...

  8. Radiant Floor Cooling Systems

    Olesen, Bjarne W.

    2008-01-01

    In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floo...... cooling system that includes such considerations as thermal comfort of the occupants, which design parameters will influence the cooling capacity and how the system should be controlled. Examples of applications are presented.......In many countries, hydronic radiant floor systems are widely used for heating all types of buildings such as residential, churches, gymnasiums, hospitals, hangars, storage buildings, industrial buildings, and smaller offices. However, few systems are used for cooling.This article describes a floor...

  9. Overview of Resources for Geothermal Absorption Cooling for Buildings

    Liu, Xiaobing [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gluesenkamp, Kyle R [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehdizadeh Momen, Ayyoub [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-01

    This report summarizes the results of a literature review in three areas: available low-temperature/coproduced geothermal resources in the United States, energy use for space conditioning in commercial buildings, and state of the art of geothermal absorption cooling.

  10. Personal Cooling System

    1986-01-01

    Cool Head, a personal cooling system for use in heat stress occupations, is a spinoff of a channeled cooling garment for space wear. It is portable and includes a heat exchanger, control display unit, liquid reservoir and temperature control unit. The user can eliminate 40 to 60 percent of his body's heat storage and lower heart rate by 50 to 80 beats a minute. The system is used by the Army, Navy, crop dusting pilots, heavy equipment operators and auto racing drivers and is marketed by Life Enhancement Technologies, LLC. Further applications are under consideration.

  11. Superconductor rotor cooling system

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  12. Numerical and experimental analysis of a thin liquid film on a rotating disk related to development of a spacecraft absorption cooling system

    Faghri, Amir; Swanson, Theodore D.

    1989-01-01

    The numerical and experimental analysis of a thin liquid film on a rotating and a stationary disk related to the development of an absorber unit for a high capacity spacecraft absorption cooling system, is described. The creation of artificial gravity by the use of a centrifugal field was focused upon in this report. Areas covered include: (1) One-dimensional computation of thin liquid film flows; (2) Experimental measurement of film height and visualization of flow; (3) Two-dimensional computation of the free surface flow of a thin liquid film using a pressure optimization method; (4) Computation of heat transfer in two-dimensional thin film flow; (5) Development of a new computational methodology for the free surface flows using a permeable wall; (6) Analysis of fluid flow and heat transfer in a thin film in the presence and absence of gravity; and (7) Comparison of theoretical prediction and experimental data. The basic phenomena related to fluid flow and heat transfer on rotating systems reported here can also be applied to other areas of space systems.

  13. Alternative Room Cooling System

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available The rapidly growing population results in an increasing demand for much more residential and commercial buildings, which leads to vertical growth of the buildings and needs proper ventilation of those buildings. Natural air ventilation system is not sufficient for conventional building structures. Hence fans and air-conditioners are must to meet the requirement of proper ventilation as well as space conditioning. Globally building sector consumes largest energy in heating, cooling, ventilation and space conditioning. This load can be minimized by the application of solar chimney and modification in building structure for heating, cooling, ventilation and space conditioning. Passive solar cooling is a subject of interest to provide cooling by using the sun, a powerful energy source. This is done for ensuring human comfort in hot climates. ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers defines Comfort as ‘that state of mind which expresses satisfaction with the thermal environment.’ The present paper describes the development of a solar passive cooling system, which can provide thermal cooling throughout the summer season in hot and humid climates. The constructed passive system works on natural convection mode of air. Such system reduces the inside temperature of up to 5°C from the atmospheric temperature. Temperature can further be reduced by the judicious use of night ventilation.

  14. Core cooling systems

    The reactor cooling system transports the heat liberated in the reactor core to the component - heat exchanger, steam generator or turbine - where the energy is removed. This basic task can be performed with a variety of coolants circulating in appropriately designed cooling systems. The choice of any one system is governed by principles of economics and natural policies, the design is determined by the laws of nuclear physics, thermal-hydraulics and by the requirement of reliability and public safety. PWR- and BWR- reactors today generate the bulk of nuclear energy. Their primary cooling systems are discussed under the following aspects: 1. General design, nuclear physics constraints, energy transfer, hydraulics, thermodynamics. 2. Design and performance under conditions of steady state and mild transients; control systems. 3. Design and performance under conditions of severe transients and loss of coolant accidents; safety systems. (orig./RW)

  15. Monitoring Cray Cooling Systems

    Maxwell, Don E [ORNL; Ezell, Matthew A [ORNL; Becklehimer, Jeff [Cray, Inc.; Donovan, Matthew J [ORNL; Layton, Christopher C [ORNL

    2014-01-01

    While sites generally have systems in place to monitor the health of Cray computers themselves, often the cooling systems are ignored until a computer failure requires investigation into the source of the failure. The Liebert XDP units used to cool the Cray XE/XK models as well as the Cray proprietary cooling system used for the Cray XC30 models provide data useful for health monitoring. Unfortunately, this valuable information is often available only to custom solutions not accessible by a center-wide monitoring system or is simply ignored entirely. In this paper, methods and tools used to harvest the monitoring data available are discussed, and the implementation needed to integrate the data into a center-wide monitoring system at the Oak Ridge National Laboratory is provided.

  16. Waveguide cooling system

    Chen, B. C. J.; Hartop, R. W. (Inventor)

    1981-01-01

    An improved system is described for cooling high power waveguides by the use of cooling ducts extending along the waveguide, which minimizes hot spots at the flanges where waveguide sections are connected together. The cooling duct extends along substantially the full length of the waveguide section, and each flange at the end of the section has a through hole with an inner end connected to the duct and an opposite end that can be aligned with a flange hole in another waveguide section. Earth flange is formed with a drainage groove in its face, between the through hole and the waveguide conduit to prevent leakage of cooling fluid into the waveguide. The ducts have narrowed sections immediately adjacent to the flanges to provide room for the installation of fasteners closely around the waveguide channel.

  17. Passive containment cooling system

    Billig, Paul F.; Cooke, Franklin E.; Fitch, James R.

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  18. Energy analysis of a diffusion absorption cooling system using lithium nitrate, sodium thiocyanate and water as absorbent substances and ammonia as the refrigerant

    A diffusion absorption cooling system is analyzed to determine the appropriate fluid for the unit, based on the coefficient of performance (COP) and operating conditions, by comparing lithium nitrate (LiNO3), sodium thiocyanate (NaSCN) and water (H2O) as absorbent substances and by using ammonia (NH3) as the refrigerant. The presence of crystallization in the system is analyzed as a function of the generator and absorber temperatures. Additionally, the effects on the efficiency of the system from adding the inert gas helium (He) or hydrogen (H2) are studied. A mathematical model is developed and compared to experimental studies reported in the literature. At an evaporator temperature of −15 °C, a generator temperature of 120 °C and absorber and condenser temperatures of 40 °C, the results show that the best performance is achieved by the NH3–LiNO3–He mixture, with a COP of 0.48. This mixture performs 27–46% more efficient than the NH3–NaSCN mixture. The NH3–H2O mixture is 52–69% less efficient than the NH3–LiNO3 mixture. However, when the evaporator runs at 7.5 °C, the NH3–H2O–He mixture achieves a more efficient COP than does the NH3–LiNO3–He mixture, and the NH3–NaSCN–He and NH3–LiNO3–He mixtures achieve the same COP when the evaporator is at 10 °C. At temperatures below 7.5 °C, the NH3–NaSCN–He mixture achieves a higher COP than does the NH3–H2O–He mixture. The NH3–LiNO3 mixture shows crystallization at higher temperatures in the generator than does the NH3–NaSCN mixture. Moreover, at the same evaporator temperature, the NH3–LiNO3 mixture works at activation temperatures lower than does the NH3–NaSCN mixture. -- Highlights: ► We studied a diffusion absorption cooling system with different working mixtures. ► The NH3–LiNO3 mixture showed more efficiency than NH3–H2O mixture and NH3–NaSCN mixture. ► The generator and absorber temperature influences on crystallization of the system. ► The NH3–H2O

  19. Water-lithium bromide double-effect absorption cooling analysis

    Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

    1980-12-01

    A numerical model was developed for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very-important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy.

  20. Cooling of Ethanol Fermentation Process Using Absorption Chillers

    Sergio Colle

    2010-09-01

    Full Text Available

    Ethanol fermentation is an exothermic process, where the kinetics depends on temperature. This study proposes an alternative cooling system for use in ethanol fermentation using a single-eect water/lithium bromide absorption chiller, powered by waste heat from sugar and ethanol production processes, with a temperature range of 80 to 100 oC. The aim of this study is to model, simulate and analyze the behavior of an absorption refrigeration machine, according to the required cooling capacity of the fermentation system. A comparative analysis with and without the chiller is performed. The introduction of a chiller allowed a reduction in the temperature of the medium of around 1 oC and an increase of around 0.8 % in the fermentation efficiency. Under these conditions less cellular stress occurs and cellular viability is kept at higher levels. The results show that this reduction in temperature can increase the ethanol content of the wine. In the recovery of ethanol, a lower thermal load will be needed at the distillation, with a smaller amount of vinasse produced and consequently the energy efficiency of the plant will increase.

  1. ATLAS - Liquid Cooling Systems

    Bonneau, P.

    1998-01-01

    Photo 1 - Cooling Unit - Side View Photo 2 - Cooling Unit - Detail Manifolds Photo 3 - Cooling Unit - Rear View Photo 4 - Cooling Unit - Detail Pump, Heater and Exchanger Photo 5 - Cooling Unit - Detail Pump and Fridge Photo 6 - Cooling Unit - Front View

  2. Site dependent factors affecting the economic feasibility of solar powered absorption cooling

    Bartlett, J. C.

    1978-01-01

    A procedure was developed to evaluate the cost effectiveness of combining an absorption cycle chiller with a solar energy system. A basic assumption of the procedure is that a solar energy system exists for meeting the heating load of the building, and that the building must be cooled. The decision to be made is to either cool the building with a conventional vapor compression cycle chiller or to use the existing solar energy system to provide a heat input to the absorption chiller. Two methods of meeting the cooling load not supplied by solar energy were considered. In the first method, heat is supplied to the absorption chiller by a boiler using fossil fuel. In the second method, the load not met by solar energy is net by a conventional vapor compression chiller. In addition, the procedure can consider waste heat as another form of auxiliary energy. Commercial applications of solar cooling with an absorption chiller were found to be more cost effective than the residential applications. In general, it was found that the larger the chiller, the more economically feasible it would be. Also, it was found that a conventional vapor compression chiller is a viable alternative for the auxiliary cooling source, especially for the larger chillers. The results of the analysis gives a relative rating of the sites considered as to their economic feasibility of solar cooling.

  3. Hybrid radiator cooling system

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  4. Rotary engine cooling system

    Jones, Charles (Inventor); Gigon, Richard M. (Inventor); Blum, Edward J. (Inventor)

    1985-01-01

    A rotary engine has a substantially trochoidal-shaped housing cavity in which a rotor planetates. A cooling system for the engine directs coolant along a single series path consisting of series connected groups of passages. Coolant enters near the intake port, passes downwardly and axially through the cooler regions of the engine, then passes upwardly and axially through the hotter regions. By first flowing through the coolest regions, coolant pressure is reduced, thus reducing the saturation temperature of the coolant and thereby enhancing the nucleate boiling heat transfer mechanism which predominates in the high heat flux region of the engine during high power level operation.

  5. Thermodynamic analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle driven by low grade energy

    Graphical abstract: To improve the performance of the air-cooled type absorption refrigeration, a novel non-adiabatic absorber has been applied in the cycle. Simulation results show that low grade energy is applicable for NH3/NaSCN and NH3/LiNO3 absorption refrigeration system under air cooling condition and relatively high system performance can be obtained. - Highlights: • We analyze an absorption refrigeration cycle driven by low grade energy. • Working fluids thermophysical property correlations are corrected. • Influence of non-adiabatic absorber on system performance is investigated. • We propose system operation parameters under air-cooled condition. - Abstract: An air-cooled type absorption refrigeration cycle using ammonia–lithium nitrate and ammonia–sodium thiocyanate solutions as working fluids are thermodynamically studied in this paper. In the case of many occasions especially small cooling capacity occasion where water cooling is restricted or inconvenient, application of conventional adiabatic absorbers in air-cooled type absorption refrigeration system has been studied by many investigators. Comparing to the adiabatic absorber, a novel air-cooled non-adiabatic absorber is applied to the absorption refrigeration system in this study to improve system performance. It is shown that, system performance has a significant improvement when temperatures of rich ammonia solution at the outlet of absorber decrease under the effect of the heat dissipation capacity of the non-adiabatic absorber. Another advantage is that heat load of the system heat exchangers including generator, solution heat exchanger and air-cooler, decreases with the solution temperature decrease at the outlet of the absorber under the same system cooling capacity condition, which brings benefits to the system cost reduction. Variation of system performance and other system operation parameters with generator temperature, absorption temperature and absorption efficiency has

  6. ASHRAE`s new application guide for absorption cooling/refrigeration using recovered heat

    Dorgan, C.B.; Dorgan, C.E.; Leight, S.P. [Dorgan Associates, Inc., Madison, WI (United States)

    1995-12-31

    ASHRAE has a new publication, Application Guide for Absorption Cooling/Refrigeration Using Recovered Heat. This guide is a comprehensive reference manual for the application of indirect-fired absorption machines. An indirect-fired absorption machine uses heat recovered from another process or heat cycle machine versus a direct-fired absorption machine, which uses a primary fuel source. The Guide is designed to help engineers, owners, developers, and marketing personnel to become familiar with the requirements of an absorption system, evaluate indirect-fired absorption machines for specific requirements, evaluate the potential of available recovered heat sources, select the most economical system, and understand both lithium bromide (LiBr) and ammonia absorption machines. The Guide provides information on the application and economics of absorption machines. Detailed design of an absorption system is covered in other publications, which are listed in the Guide. The Guide introduces absorption technology through comparison with and using the terminology of vapor-compression technology. This information is then expanded to enable the reader to apply absorption technology to many situations where recovered heat is available.

  7. Analysis of the Solar Radiation Impact on Cooling Performance of the Absorption Chiller

    Fedorčák Pavol

    2014-11-01

    Full Text Available Absorption cooling at low power is a new technology which has not yet been applied to current conditioning elements. This paper analyzes the various elements of solar absorption cooling. Individual states were simulated in which working conditions were set for the capability of solar absorption cooling to balance heat loads in the room.

  8. Modelization of cooling system components

    In the site evaluation study for licensing a new nuclear power facility, the criteria involved could be grouped in health and safety, environment, socio-economics, engineering and cost-related. These encompass different aspects such as geology, seismology, cooling system requirements, weather conditions, flooding, population, and so on. The selection of the cooling system is function of different parameters as the gross electrical output, energy consumption, available area for cooling system components, environmental conditions, water consumption, and others. Moreover, in recent years, extreme environmental conditions have been experienced and stringent water availability limits have affected water use permits. Therefore, modifications or alternatives of current cooling system designs and operation are required as well as analyses of the different possibilities of cooling systems to optimize energy production taking into account water consumption among other important variables. There are two basic cooling system configurations: - Once-through or Open-cycle; - Recirculating or Closed-cycle. In a once-through cooling system (or open-cycle), water from an external water sources passes through the steam cycle condenser and is then returned to the source at a higher temperature with some level of contaminants. To minimize the thermal impact to the water source, a cooling tower may be added in a once-through system to allow air cooling of the water (with associated losses on site due to evaporation) prior to returning the water to its source. This system has a high thermal efficiency, and its operating and capital costs are very low. So, from an economical point of view, the open-cycle is preferred to closed-cycle system, especially if there are no water limitations or environmental restrictions. In a recirculating system (or closed-cycle), cooling water exits the condenser, goes through a fixed heat sink, and is then returned to the condenser. This configuration

  9. MULTIFUNCTIONAL SOLAR SYSTEMS FOR HEATING AND COOLING

    Doroshenko A.V.

    2010-12-01

    Full Text Available The basic circuits of multifunctional solar systems of air drainage, heating (hot water supply and heating, cooling and air conditioning are developed on the basis of open absorption cycle with a direct absorbent regeneration. Basic decisions for new generation of gas-liquid solar collectors are developed. Heat-mass-transfer apparatus included in evaporative cooling system, are based on film interaction of flows of gas and liquid and in them, for the creation of nozzle, multi-channel structures from polymeric materials and porous ceramics are used. Preliminary analysis of multifunctional systems possibilities is implemented.

  10. Automotive Cooling and Lubricating Systems.

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide new mechanics with a source of study materials to assist them in becoming more proficient in their jobs. The course contains four study units covering automotive cooling system maintenance, cooling system repair, lubricating systems, and lubrication…

  11. Investigation of Absorption Cooling Application Powered by Solar Energy in the South Coast Region of Turkey

    Babayigit, O.; Aksoy, M. H.; Ozgoren, M.; Solmaz, O.

    2013-04-01

    In this study, an absorption system using ammonia-water (NH3-H2O) solution has been theoretically examined in order to meet the cooling need of a detached building having 150 m2 floor area for Antalya, Mersin and Mugla provinces in Turkey. Hourly dynamic cooling load capacities of the building were determined by using Radiant Time Series (RTS) method in the chosen cities. For the analysis, hourly average meteorological data such as atmospheric air temperature and solar radiation belonging to the years 1998-2008 are used for performance prediction of the proposed system. Thermodynamic relations for each component of absorption cooling system is explained and coefficients of performance of the system are calculated. The maximum daily total radiation data were calculated as 7173 W/m2day on July 15, 7277 W/m2 day on July 19 and 7231 W/m2day on July 19 for Mersin, Antalya and Mugla, respectively on the 23° toward to south oriented panels from horizontal surface. The generator operating temperatures are considered between 90-130°C and the best result for 110°C is found the optimum degree for maximum coefficient of performance (COP) values at the highest solar radiation occurred time during the considered days for each province. The COP values varies between 0.521 and 0.530 for the provinces. In addition, absorber and condenser capacities and thermal efficiency for the absorption cooling system were calculated. The necessary evacuated tube collector area for the different provinces were found in the range of 45 m2 to 47 m2. It is shown that although the initial investment cost is higher for the proposed absorption cooling system, it is economically feasible because of its lower annual operation costs and can successfully be operated for the considered provinces.

  12. Investigation of Absorption Cooling Application Powered by Solar Energy in the South Coast Region of Turkey

    Ozgoren M.

    2013-04-01

    Full Text Available In this study, an absorption system using ammonia-water (NH3-H2O solution has been theoretically examined in order to meet the cooling need of a detached building having 150 m2 floor area for Antalya, Mersin and Mugla provinces in Turkey. Hourly dynamic cooling load capacities of the building were determined by using Radiant Time Series (RTS method in the chosen cities. For the analysis, hourly average meteorological data such as atmospheric air temperature and solar radiation belonging to the years 1998-2008 are used for performance prediction of the proposed system. Thermodynamic relations for each component of absorption cooling system is explained and coefficients of performance of the system are calculated. The maximum daily total radiation data were calculated as 7173 W/m2day on July 15, 7277 W/m2 day on July 19 and 7231 W/m2day on July 19 for Mersin, Antalya and Mugla, respectively on the 23° toward to south oriented panels from horizontal surface. The generator operating temperatures are considered between 90-130°C and the best result for 110°C is found the optimum degree for maximum coefficient of performance (COP values at the highest solar radiation occurred time during the considered days for each province. The COP values varies between 0.521 and 0.530 for the provinces. In addition, absorber and condenser capacities and thermal efficiency for the absorption cooling system were calculated. The necessary evacuated tube collector area for the different provinces were found in the range of 45 m2 to 47 m2. It is shown that although the initial investment cost is higher for the proposed absorption cooling system, it is economically feasible because of its lower annual operation costs and can successfully be operated for the considered provinces.

  13. Matching heat sources cooling load and heat rejection capability with an absorption machine

    Dorgan, C.E. [Wisconsin Univ., Madison, WI (United States); Dorgan, C.B. [Dorgan Associates, Inc., Madison, WI (United States)

    1996-11-01

    The new `Application Guide for Absorption Cooling/Refrigeration Using Recovered Heat` was described. The objective of this Guide is to assist in the design and application of absorption systems by providing detailed background information and selection criteria. Topics covered include basic principles of operation, methods of heat recovery, application procedures and example selections. In this paper, the organization of the Guide was reviewed, the application procedure was presented, and two example selections were detailed. The examples correspond to a lithium bromide system and an aqueous ammonia refrigeration system. 7 refs., 2 figs., 2 tabs.

  14. 46 CFR 153.432 - Cooling systems.

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cooling systems. 153.432 Section 153.432 Shipping COAST... Control Systems § 153.432 Cooling systems. (a) Each cargo cooling system must have an equivalent standby... cooling system. (b) Each tankship that has a cargo tank with a required cooling system must have a...

  15. Solar Cooling System Using Solar-Driven Hybrid Chiller

    HIRAI, Akira

    2012-01-01

    We developed an appropriate Absorption chiller to "Solar cooling system" in 2010. In addition, we added the improvement to the machine. "Solar cooling system" can be easily constructed with the machine. and, we constructed the demonstration plant, and verified the utility

  16. Optimum hot water temperature for absorption solar cooling

    Lecuona, A.; Ventas, R.; Venegas, M.; Salgado, R. [Dpto. Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganes, Madrid (Spain); Zacarias, A. [ESIME UPA, IPN, Av. de las Granjas 682, Col. Santa Catarina, 02550, D.F. Mexico (Mexico)

    2009-10-15

    The hot water temperature that maximizes the overall instantaneous efficiency of a solar cooling facility is determined. A modified characteristic equation model is used and applied to single-effect lithium bromide-water absorption chillers. This model is based on the characteristic temperature difference and serves to empirically calculate the performance of real chillers. This paper provides an explicit equation for the optimum temperature of vapor generation, in terms of only the external temperatures of the chiller. The additional data required are the four performance parameters of the chiller and essentially a modified stagnation temperature from the detailed model of the thermal collector operation. This paper presents and discusses the results for small capacity machines for air conditioning of homes and small buildings. The discussion highlights the influence of the relevant parameters. (author)

  17. Feasibility limits and performance of an absorption cooling machine using light alkane mixtures

    The performance of a heat-driven vapor absorption chiller with various alkane mixtures as working pairs was studied. A Thermodynamic analysis showed that under specified operating conditions and with a generator temperature below 130 °C, temperature achievable with a simple flat plate collector when solar energy is expected as the driving heat source, the application of some of the proposed alkane mixtures is not feasible. Simulations using ASPEN Plus flow sheeting program are then done with the selected working pairs. All simulations were done specifying the Peng-Robinson equation of state as the property method. A parametric study was carried out allowing the investigation of the generator temperature effect on the system performance and the comparison between performances released with each working pair. Results revealed that a water-cooled absorption machine using the C3H8/n-C9H20 pair as working fluid releases the best performances from a heat driving temperature level of about 100 °C. - Highlights: • Performance of an absorption chiller with various alkane mixtures was studied. • Some of the proposed alkane mixtures is not feasible. • Only the n-C4/n-C6 mixture may be considered for air-cooled machine. • In case of water cooling, C3/n-C9 and n-C4/n-C9 give the best COP

  18. Potential of solar cooling systems for peak demand reduction

    Pesaran, A A [National Renewable Energy Lab., Golden, CO (United States); Neymark, J [Neymark (Joel), Golden, CO (United States)

    1994-11-01

    We investigated the technical feasibility of solar cooling for peak demand reduction using a building energy simulation program (DOE2.1D). The system studied was an absorption cooling system with a thermal coefficient of performance of 0.8 driven by a solar collector system with an efficiency of 50% with no thermal storage. The analysis for three different climates showed that, on the day with peak cooling load, about 17% of the peak load could be met satisfactorily with the solar-assisted cooling system without any thermal storage. A performance availability analysis indicated that the solar cooling system should be designed for lower amounts of available solar resources that coincide with the hours during which peak demand reduction is required. The analysis indicated that in dry climates, direct-normal concentrating collectors work well for solar cooling; however, in humid climates, collectors that absorb diffuse radiation work better.

  19. Design and Economic Analysis of a Heating/Absorption Cooling System Operating with Municipal Solid Waste Digester: A Case Study of Gazi University

    Coşar, G; Pooyanfar, M; Amirabedin, E; Topal, H

    2013-01-01

    Recovering energy from municipal solid waste (MSW) is one of the most important issues of energy management in developed countries. This raises even more interest as world fossil fuel reserves diminish and fuel prices rise. Being one of main processes of waste disposal, anaerobic digestion can be used as a means to reduce fossil fuel and electricity consumption as well as reducing emissions. With growing demand for cooling in Turkey, especially during warm seasons and ...

  20. System for cooling a cabinet

    Smith, Anders; Bahl, Christian; Linderoth, Søren

    2015-01-01

    The present disclosure relates to a cooling system comprising an active magnetic regenerator having a cold side and a hot side, a hot side heat exchanger connected to the hot side of the magnetic regenerator, one or more cold side heat exchangers, and a cold store reservoir comprising a volume of heat transfer fluid and connected between said one or more cold side heat exchangers and the cold side of the magnetic regenerator, wherein the cooling system is configured to provide a first flow cy...

  1. Compressor bleed cooling fluid feed system

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  2. Cooling system for electronic components

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  3. Cooling system for electronic components

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  4. Engine Auxiliary System Guideline: Cooling Systems

    Kela, Suvi

    2015-01-01

    The thesis was done for Wärtsilä Technical Services organization. The assignment was to consolidate a guideline for cooling systems as an engine auxiliary system covering the Wärtsilä 4-stroke engines currently in production. The guideline was to include information considering both marine and power plants installations. The sources of information were internal documentation from Wärtsilä, literature review and discussions with Wärtsilä cooling system experts. The guideline includes informati...

  5. Performance evaluation of combined ejector LiBr/H2O absorption cooling cycle

    Hasan Sh. Majdi

    2016-03-01

    Full Text Available The objective of this work is to develop a computer simulation program to evaluate the performance of solar-assited combined ejector absorption (single-effect cooling system using LiBr/H2O as a working fluid and operating under steady-state conditions. The ejector possess no moving parts and is simple and reliable, which makes it attractive for combination with single-stage absorption cycle for further improvement to the system's performance. In this research, improvement to the system is achieved by utilizing the potential kinetic energy of the ejector to enhance refrigeration efficiency. The effects of the entrainment ratio of the ejector, operating temperature, on the thermal loads, and system performance have been investigated. The results showed that the evaporator and condenser loads, post-addition of the ejector, is found to be permanently higher than that in the basic cycle, which indicates a significant enhancement of the proposed cycle and the cooling capacity of the system increasing with the increase in evaporator temperature and entrainment ratio. The COP of the modified cycle is improved by up to 60 % compared with that of the basic cycle at the given condition. This process stabilizes the refrigeration system, enhanced its function, and enabled the system to work under higher condenser temperatures.

  6. An active cooling system for photovoltaic modules

    The electrical efficiency of photovoltaic (PV) cell is adversely affected by the significant increase of cell operating temperature during absorption of solar radiation. A hybrid photovoltaic/thermal (PV/T) solar system was designed, fabricated and experimentally investigated in this work. To actively cool the PV cells, a parallel array of ducts with inlet/outlet manifold designed for uniform airflow distribution was attached to the back of the PV panel. Experiments were performed with and without active cooling. A linear trend between the efficiency and temperature was found. Without active cooling, the temperature of the module was high and solar cells can only achieve an efficiency of 8–9%. However, when the module was operated under active cooling condition, the temperature dropped significantly leading to an increase in efficiency of solar cells to between 12% and 14%. A heat transfer simulation model was developed to compare to the actual temperature profile of PV module and good agreement between the simulation and experimental results is obtained.

  7. Gas hydrate cool storage system

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  8. Cooling with solar heat. Absorption refrigerator; Mit Sonnenwaerme kuehlen. Absorptionskaeltemaschine

    Anon.

    2009-04-15

    Absorption and adsorption techniques make it possible to provide cold water at a typical air conditioning level by means of solar heat. Often, absorption refrigerators using lithium bromide dissolved in water as absorption agent and water as refrigerant are used for this purpose. (orig.)

  9. Cooling system for reactor container

    Purpose: To effectively cool a reactor container upon reactor shutdown with no intrusion of metal corrosion products in coolants into the main steam pipe in a BWR type reactor. Constitution: A clean up system comprising a pipeway, a recycling pump, a non-regenerative heat exchanger and a primary coolant purifier and a regenerative heat exchanger is provided branched from a residual heat removing system and the clean up system is connected by way of a valve to a feedwater pipeway, as well as connected by way of the pipeway to the main steam pipeway at the midway of two main steam separation valves outside of the reactor container. This enables to prevent metal corrosion products floating on the surface of reactor water from introducing into the main steam pipe when the pressure vessel is filled with water. Then, since the pressure vessel is filled with primary coolants, the pressure vessel can be cooled uniformly in a short time. (Ikeda, J.)

  10. Analysis of crystallization risk in double effect absorption refrigeration systems

    Absorption refrigeration systems are an alternative to vapor compression ones in cooling and refrigeration applications. In comparison with single effect absorption units, double effect systems have improved performance. Also, they are more available commercially than the other multi effect absorption cycles. An important challenge in the operation of such systems is the possibility of crystallization within them. This is especially true in developing air-cooled absorption systems, which are attractive because cooling tower and associated installation and maintenance issues can be avoided. Therefore, distinguishing the working conditions that may cause crystallization can be useful in the design and control of these systems. In this paper a computational model has been developed to study and compare the effects of operating parameters on crystallization phenomena in three classes of double effect lithium bromide-water absorption refrigeration systems (series, parallel and reverse parallel) with identical refrigeration capacities. It is shown that the range of operating conditions without crystallization risks in the parallel and the reverse parallel configurations is wider than those of the series flow system. - Highlights: → We study crystallization of double effect absorption refrigeration systems. → We consider series, parallel and reverse parallel cycles. → We study the effect of operating conditions on crystallization. → We choose optimum distribution ratio for parallel and reverse parallel systems. → Crystallization possibility is low in parallel and reverse parallel cycles.

  11. Information technology equipment cooling system

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  12. Cooling Tower Overhaul of Secondary Cooling System in HANARO

    HANARO, an open-tank-in-pool type research reactor of 30 MWth power in Korea, has been operating normally since its initial criticality in February, 1995. For the last about ten years, A cooling tower of a secondary cooling system has been operated normally in HANARO. Last year, the cooling tower has been overhauled for preservative maintenance including fills, eliminators, wood support, water distribution system, motors, driving shafts, gear reducers, basements, blades and etc. This paper describes the results of the overhaul. As results, it is confirmed that the cooling tower maintains a good operability through a filed test. And a cooling capability will be tested when a wet bulb temperature is maintained about 28 .deg. C in summer and the reactor is operated with the full power

  13. Experimental evaluation of a direct air-cooled lithium bromide-water absorption prototype for solar air conditioning

    González-Gil, A.; Izquierdo, M.; Marcos, J.D.; Palacios, E.

    2011-01-01

    Abstract A new direct air-cooled single-effect LiBr-H2O absorption prototype is described and proposed for use in solar cooling. As distinguishing aspects, it presents: an adiabatic absorber using flat-fan sheets; an air-cooling system that directly refrigerates both the condenser and the absorber and; the possibility of being operated also as a double-effect unit. A solar facility comprising a 48m2 field of flat-plate collectors was used to test the single-effect operation mode of...

  14. Cooling system for superconducting magnet

    Gamble, B.B.; Sidi-Yekhlef, A.

    1998-12-15

    A cooling system is configured to control the flow of a refrigerant by controlling the rate at which the refrigerant is heated, thereby providing an efficient and reliable approach to cooling a load (e.g., magnets, rotors). The cooling system includes a conduit circuit connected to the load and within which a refrigerant circulates; a heat exchanger, connected within the conduit circuit and disposed remotely from the load; a first and a second reservoir, each connected within the conduit, each holding at least a portion of the refrigerant; a heater configured to independently heat the first and second reservoirs. In a first mode, the heater heats the first reservoir, thereby causing the refrigerant to flow from the first reservoir through the load and heat exchanger, via the conduit circuit and into the second reservoir. In a second mode, the heater heats the second reservoir to cause the refrigerant to flow from the second reservoir through the load and heat exchanger via the conduit circuit and into the first reservoir. 3 figs.

  15. Cooling system for modern trunk diesel locomotives

    Мошенцев, Ю. Л.; Гогоренко, А. А.; Минчев, Д. С.

    2011-01-01

    The existing and alternative schemes of engine cooling system for modern trunk diesel locomotives are considered. The method for comparison of various schemes of cooling system with the purpose to find the most compact and effective of them is offered. Slow flow systems are the most appropriate as it is shown. The optimal scheme of cooling system, that permits to increase supercharging air-cooling efficiency to 0,94…0,96 it is been selected.

  16. ASHRAE`s new application guide for absorption cooling/refrigeration using recovered heat

    Dorgan, C.B.; Dorgan, C.E.; Leight, S.P. [Dorgan Associates Inc., Madison, WI (United States)

    1995-07-01

    This article is a brief overview of the Guide for Absorption Cooling/Refrigeration Using Recovered Heat. The overview examines the applications of the guide, it`s format and topics on a chapter basis. The authors report that ASHRAE`s purpose for developing this manual is to encourage more engineers and owners to consider using recovered heat for cooling and refrigeration.

  17. Turbine airfoil with ambient cooling system

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  18. Analysis of a New Dissipation System for a Solar Cooling Installation

    Fernando Palacín Arizón; Sergio Alonso Garcés; Carlos Monné Bailo

    2010-01-01

    This paper describes a solar absorption cooling installation located at the University of Zaragoza (Spain). The installation is based on the performance of an absorption chiller. The solar cooling system consists of 37,5 m2 of flat plate collector, a 4.5 kW, single-effect LiBr-H2O absorption chiller, and a dry cooling tower. The installation provides cooling to a gymnasium belonging to the sports center of the university. To carry out the installation analysis, the system was continuously mon...

  19. Environmental effects of cooling systems

    Since the International Atomic Energy Agency published in 1974 Thermal Discharges at Nuclear Power Stations (Technical Reports Series No.155), much progress has been made in the understanding of phenomena related to thermal discharges. Many studies have been performed in Member States and from 1973 to 1978 the IAEA sponsored a co-ordinated research programme on 'Physical and Biological Effects on the Environment of Cooling Systems and Thermal Discharges from Nuclear Power Stations'. Seven laboratories from Canada, the Federal Republic of Germany, India and the United States of America were involved in this programme, and a lot of new information has been obtained during the five years' collaboration. The progress of the work was discussed at annual co-ordination meetings and the results are presented in the present report. It complements the previous report mentioned above as it deals with several questions that were not answered in 1974. With the conclusion of this co-ordinated programme, it is obvious that some problems have not yet been resolved and that more work is necessary to assess completely the impact of cooling systems on the environment. It is felt, however, that the data gathered here will bring a substantial contribution to the understanding of the subject

  20. New materials for cooling systems

    New materials based on rubber-vulcanite compounds and used for manufacturing cooling tower elements and coating's of hydraulic structure surfaces are proposed and their production technology is described. A series of studies on physicomechanical and chemical characteristics and hydroaerothermal parameters of cooling tower elements and coatings revealed an obvious advantage of these materials over existing ones. The materials proposed provide high efficiency of cooling tower elements, hydraulic structures and the cooling tower as a whole

  1. Solar-powered cooling system

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  2. Heat Driven Cooling in District Energy Systems; Vaermedriven Kyla

    Rydstrand, Magnus; Martin, Viktoria; Westermark, Mats [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2004-07-01

    high costs. However heat sinks are unavoidable from a system perspective and there are potential cost savings since a low-pressure steam turbines will not be required if heat driven cooling is implemented. The fuel utilization for some technologies (not necessarily the best technology) was evaluated in two different scenarios: 1) with electricity production from coal; and 2) with electricity production from natural gas. It is shown in the scenarios that the heat driven cooling technologies give lower fuel consumption as compared producing electricity as an intermediate product before cooling is produced. Further it should be noted that electricity is produced, not consumed, if heat is used directly for the production of cooling. We claim that cost effective solutions for district heat driven chillers and/or combined production of electricity and district cooling can be found in all climates with high enough density of heating and cooling demands. It was found that district heat driven chillers can be very energy efficient in warm and humid climates since desiccant systems are an effective way of handling latent cooling loads. In dry climates, with low latent loads, water distributed cooling has a large potential and absorption cooling will give high fuel utilization seen from a system perspective. In climates where water shortage is a problem it is possible that the temperature lift of the conventional absorption chiller has to be increased in order to be able to use dry cooling towers. The temperature lift can be increased by changing the chiller design or by using a different working pair. Heat driven cooling can be integrated into an energy system in different ways. In USA and Japan, district heating is not well developed. Instead small, distributed combined heat and power (CHP) plants with high exhaust temperatures are widespread. Cooling is often produced, in these regions, through absorption cooling (using heat from CHP) or compression chillers depending on

  3. Simulation study on the performance of solar/natural gas absorption cooling chillers

    Highlights: ► The overall performance of the solar/natural gas chillers is analysed and discussed. ► The system operates in regions with abundant solar energy and cheap natural gas. ► The maximum daily cover of solar energy (between time of day 8 and 17) is about 58%. ► An optimum generator temperature gives a minimum number of flat plate collectors. ► This system compensates the peak-valley load difference and reduces CO2 gas emissions. - Abstract: Solar radiation is a clean form of energy and solar cooling systems is one of the technologies which allow obtaining an important energy saving. Natural gas is a cheaper fuel than oil. It also burns cleaner than oil. Natural gas and renewable energy are complementary and in the future, the alignment of natural gas and renewable energy may be the most effective way to service the demand for clean energy. This paper presents a numerical study of solar/natural gas single effect lithium bromide absorption chillers. The development of this system is based on hot water chiller. As auxiliary power, fire from the natural gas burners is used to heat the hot water on its way to the generator. The overall performance of the absorption chiller system is analysed and discussed. For an evaporator temperature of 5 °C and when the condenser temperature is varied from 28 °C to 36 °C and generator temperatures is varied from 54 to 83 °C the maximum COP is 0.82 and the maximum exergetic efficiency is about 30%. For a given condenser temperature there is an optimum generator temperature for which the number of flat plate collectors is minimum. This optimum generator temperature corresponds to the generator temperature giving the maximum COP and exergy efficiency of the absorption cooling system. The solar/natural gas single effect lithium bromide absorption chillers, using solar energy as the energy source with only limited amount of gas as auxiliary power, not only reduces greatly the cost for electricity and operates in

  4. European lead cooled system (ELSY)

    The international Generation IV (GEN IV) initiative has once more highlighted that fast reactors are indispensable for a sustainable development of the Nuclear Energy. Europe has historically a large experience in the field of sodium-cooled fast reactors and recently has made a big effort in the development of the Lead-Bismuth Eutectic (LBE) technology for use in the sub-critical reactors, starting from the Russian technology for the submarine propulsion programme. The evolution from the LBE technology towards the pure lead technology is a natural and logical way because lead is less expensive, less corrosive and of lesser radiological concern. Lead has chemical and neutronic characteristics which are unique for a safe fast reactor. Molten lead, namely, operates at low pressure and high temperature, is relatively inert to air and water. The ELSY consortium intends to design a Lead-cooled Fast Reactor (LFR) system that complies with all GEN IV goals and gives assurance of investment protection. The EC FP6-ELSY project aims to demonstrate that it is possible to design a competitive and safe fast critical reactor using simple engineered technical features. ELSY is a 36-months project (starting September 1, 2006) partially funded as a Specific Targeted Research Project entitled to the European Commission

  5. Water-lithium bromide double-effect absorption cooling analysis. Final report

    Vliet, G.C.; Lawson, M.B.; Lithgow, R.A.

    1980-12-01

    This investigation involved the development of a numerical model for the transient simulation of the double-effect, water-lithium bromide absorption cooling machine, and the use of the model to determine the effect of the various design and input variables on the absorption unit performance. The performance parameters considered were coefficient of performance and cooling capacity. The sensitivity analysis was performed by selecting a nominal condition and determining performance sensitivity for each variable with others held constant. The variables considered in the study include source hot water, cooling water, and chilled water temperatures; source hot water, cooling water, and chilled water flow rates; solution circulation rate; heat exchanger areas; pressure drop between evaporator and absorber; solution pump characteristics; and refrigerant flow control methods. The performance sensitivity study indicated in particular that the distribution of heat exchanger area among the various (seven) heat exchange components is a very important design consideration. Moreover, it indicated that the method of flow control of the first effect refrigerant vapor through the second effect is a critical design feature when absorption units operate over a significant range of cooling capacity. The model was used to predict the performance of the Trane absorption unit with fairly good accuracy. The dynamic model should be valuable as a design tool for developing new absorption machines or modifying current machines to make them optimal based on current and future energy costs.

  6. HIRFL-CSR electron cooling system

    Electron cooling technique will be applied to the proposed Lanzhou heavy ion cooler-storage ring (HIRFL-CSR). A electron cooling device with a maximum electron energy of 165 keV and maximum current density of 0.244 A/cm2 is planned to cool heavy ions up to energies of 300 MeV/u. The preliminary design for the cooling system is presented

  7. Open cycle lithium chloride cooling system

    Lenz, T. G.; Loef, G. O. G.; Iyer, R.; Wenger, J.

    1983-05-01

    A lithium chloride open cycle absorption chiller has been designed, built and tested. Solution reconcentration takes place in a small counter current packed column supplied with solar heated air. Removal of noncondensable gases that enter the chiller dissolved in the strong solution and the make-up refrigerant streams is accomplished by a liquid-jet ejector and a small vacuum pump. Cooling capacities approaching 1.4 tons and COP levels of 0.58 have been achieved at non-optimum operating conditions. Test results from preliminary system operation suggest that mass transfer processes in both the packed column reconcentrator and the absorber are controlled by concentration gradients in the lithium chloride solution. Liquid phase controlled mass transfer dictates an operating strategy different from the previously assumed gas phase controlled process to obtain maximum rates of evaporation in the packed column. Determination of optimal operating conditions leading to decreased electrical power consumption and improved cooling capacity and coefficient of performance will require further analysis and testing.

  8. Enhancement of LNG plant propane cycle through waste heat powered absorption cooling

    In liquefied natural gas (LNG) plants utilizing sea water for process cooling, both the efficiency and production capacity of the propane cycle decrease with increasing sea water temperature. To address this issue, several propane cycle enhancement approaches are investigated in this study, which require minimal modification of the existing plant configuration. These approaches rely on the use of gas turbine waste heat powered water/lithium bromide absorption cooling to either (i) subcool propane after the propane cycle condenser, or (ii) reduce propane cycle condensing pressure through pre-cooling of condenser cooling water. In the second approach, two alternative methods of pre-cooling condenser cooling water are considered, which consist of an open sea water loop, and a closed fresh water loop. In addition for all cases, three candidate absorption chiller configurations are evaluated, namely single-effect, double-effect, and cascaded double- and single-effect chillers. The thermodynamic performance of each propane cycle enhancement scheme, integrated in an actual LNG plant in the Persian Gulf, is evaluated using actual plant operating data. Subcooling propane after the propane cycle condenser is found to improve propane cycle total coefficient of performance (COPT) and cooling capacity by 13% and 23%, respectively. The necessary cooling load could be provided by either a single-effect, double-effect or cascaded and single- and double-effect absorption refrigeration cycle recovering waste heat from a single gas turbine operated at full load. Reducing propane condensing pressure using a closed fresh water condenser cooling loop is found result in propane cycle COPT and cooling capacity enhancements of 63% and 22%, respectively, but would require substantially higher capital investment than for propane subcooling, due to higher cooling load and thus higher waste heat requirements. Considering the present trend of short process enhancement payback periods in the

  9. Near-UV absorption in very cool DA white dwarfs

    Saumon, D; Kowalski, P M

    2014-01-01

    The atmospheres of very cool, hydrogen-rich white dwarfs (Teff <6000 K) are challenging to models because of the increased complexity of the equation of state, chemical equilibrium, and opacity sources in a low-temperature, weakly ionized dense gas. In particular, many models that assume relatively simple models for the broadening of atomic levels and mostly ideal gas physics overestimate the flux in the blue part of their spectra. A solution to this problem that has met with some success is that additional opacity at short wavelengths comes for the extreme broadening of the Lyman alpha line of atomic H by collisions primarily with H2. For the purpose of validating this model more rigorously, we acquired Hubble Space Telescope STIS spectra of 8 very cool white dwarfs (5 DA and 3 DC stars). Combined with their known parallaxes, BVRIJHK and Spitzer IRAC photometry, we analyze their entire spectral energy distribution (from 0.24 to 9.3 micron) with a large grid of model atmospheres and synthetic spectra. We f...

  10. Optimization of Solar Cooling System in Latvia

    Shipkovs, Janis; Shipkovs, Peteris; Snegirjovs, Andrejs; Ļebedeva, Kristina; Kashkarova, Galina; Migla, Lana; Lekavicius, Vidas

    2015-01-01

    The paper presents optimization of Solar Cooling System in Latvia using the modelling of solar cooling system which was created by dynamic simulation program. The model is similar to the existing real solar cooling system in the Institute of Physical Energetics. The precision of the model was tested by comparing it with real equipment. Simulations were carried out using metrological data of different European countries. Simulation results, dependency of heat carrier average temperature and pr...

  11. Analysis of a New Dissipation System for a Solar Cooling Installation

    Carlos Monné Bailo

    2010-01-01

    Full Text Available This paper describes a solar absorption cooling installation located at the University of Zaragoza (Spain. The installation is based on the performance of an absorption chiller. The solar cooling system consists of 37,5 m2 of flat plate collector, a 4.5 kW, single-effect LiBr-H2O absorption chiller, and a dry cooling tower. The installation provides cooling to a gymnasium belonging to the sports center of the university. To carry out the installation analysis, the system was continuously monitored. In 2007, 2008 and 2009, several studies have been performed in order to analyze the full system operation. The measured data showed the strong influence of the cooling water temperature and the generator driving temperature on the COP. Due to the experimental evidence of the influence of the cooling water temperature, a new heat rejection system based on a geothermal heat sink has been installed and studied.

  12. Increasing utilisation of district heating through absorption cooling technology; Oekat fjaerrvaermeutnyttjande med hjaelp av absorptionstekniken

    Bjurstroem, Henrik; Ingvarsson, Paul; Zinko, Heimo

    2010-10-15

    The purpose of the research project presented in this report was to find ways to return a lower temperature from the generator of the chillers in a supply/return connection. The initial target is 40 deg C. Ideally, the absorption chiller and possible ulterior uses of the remaining heat in the heat carrier (the water flowing through the generator) should be as close as possible to a pure heat load. The hot-water driven absorption chillers used today to produce cooling in DH networks are exclusively so-called single-effect (Sweden) chillers with water and lithium bromide as working pair. This study aims at raising as much as possible the upper bounds on the absorption chiller capacity that may be connected to a DH network, by lowering the temperature at the outlet. To this end, several approaches have been used: - A search for alternative designs of the absorption chiller, focusing on commercially available and tested technology, both those yielding a large temperature decrease over the generator and those that may be operated at lower temperatures than the conventional solutions; - An examination of the impact of further uses of the remaining heat on temperature in the return line. larger. Smaller units are considered only if they can be used to illustrate a principle. As a complement to this investigation, a few other issues have been treated: - What temperature levels should a system actually be designed for? - The LAVA method to calculate the impact of supply and return temperatures in the DH network on the economics of power production is presented; - Interesting technical solutions using desiccant-aided evaporative cooling are shortly described; - The modern developments in the field of working pairs (refrigerant and absorbent) are reviewed. Assumptions made here are that there is a significant demand for cooling, and that the demand is large enough to justify operating the cogeneration plant at a load level exceeding its lowest acceptable part load rather than

  13. Rankine-cycle heating and cooling systems

    1979-01-01

    Design for domestic or commercial solar heating and cooling system based on rankine heat pump cycle includes detailed drawings, performance data, equipment specifications, and other pertinent information.

  14. Optimal Cooling Load and COP Relationship of a Four-Heat-Reservoir Endoreversible Absorption Refrigeration Cycle

    Chih Wu; Fengrui Sun; Tong Zheng; Lingen Chen

    2004-01-01

    Abstract: On the basis of a four-heat-reservoir endoreversible absorption refrigeration cycle model, another linear heat transfer law [i.e., the heat-flux] is adopted, the fundamental optimal relation between the coefficient of performance (COP) and the cooling load, as well as the maximum cooling load and the corresponding COP of the cycle coupled to constant-temperature heat reservoirs are derived by using finite-time thermodynamics or thermodynamic optimization. The optimal distribution of...

  15. Analytical evaluation of effective parameters leading to design limitation of solar cooling system

    In solar absorption cooling system, the hot water supplied to a single effect absorption chiller comes from a solar collector heat storage. On the other hand, chilled water of the chiller is stored in reservoir and then is supplied to the cooling system due to the daily demand. The size of cooling system components depends on solar daily insulation, daily cooling load and effective working time of the system. In order to optimize the working condition of the system these factors together with their economic aspects should be kept in mind to reach a logical and rational design. In the mentioned parameters to the optimum working condition of an solar absorption cooling system. By using this approach the optimum design of the system would be obtained

  16. Solar cooling with concentrating photovoltaic/thermal (CPVT) systems

    Simultaneous production of electrical and high grade thermal energy is proposed with a concentrating photovoltaic/thermal (CPVT) system operating at elevated temperature. CPVT collectors may operate at temperatures above 100 oC, and the thermal energy can drive processes such as refrigeration, desalination and steam production. The performance and cost of a CPVT system with single effect absorption cooling are investigated in detail. The results show that under a wide range of economic conditions, the combined solar cooling and power generation plant can be comparable to, and sometimes even significantly better than, the conventional alternative

  17. Comparative analysis of thermally activated, environmentally friendly cooling systems

    This paper compares the relative performances of three different thermally activated, environmentally friendly cooling systems, e.g. a silica-gel-water adsorption system, a LiBr-H2O absorption system and a desiccant air system. The adsorption and absorption systems in the current study employ water as the refrigerant, while the desiccant system cools atmospheric air directly. Each of these systems can be utilized at relatively low heat source temperatures such as achieved by flat plate solar collectors, but it is unclear which of these systems is best suited to what range of heat source temperature. Our study explores answers to this question by generating quantitative results comparing their relative thermal performance, i.e. COP and refrigeration capacity, and a qualitative comparison based on the size, maturity of technology, safe operation etc. In order to provide a fair comparison between the fundamentally different systems, a UA (overall heat transfer coefficient multiplied by the heat transfer area) value of 1.0 kW deg. C-1 is considered for the heat exchanger that transfers heat from the supplied hot water. Furthermore, to compare systems of similar size, the mass of silica-gel in the adsorption and desiccant systems and the mass of LiBr-H2O solution in the absorption system were specified such that each system provides the same amount of refrigeration (8.0 kW) at a source temperature of 90 deg. C. It is found that the absorption and adsorption cooling systems have a higher refrigeration capacity at heat source temperatures below 90 deg. C, while the desiccant air system outperforms the others at temperatures above 90 deg. C

  18. Advances in Solar Heating and Cooling Systems

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  19. A versatile energy management system for large integrated cooling systems

    Du Plessis, Gideon Edgar; Liebenberg, Leon; Mathews, Edward Henry; Du Plessis, Johan Nicolaas

    2013-01-01

    Large, energy intensive cooling systems are found on deep level mines to supply chilled service water and cool ventilation air to the mine. The need exists for a simple, real-time energy management tool for large, integrated cooling systems. A versatile energy management system was developed for the large cooling systems of deep mines as a typical example of a generic systems-based energy management tool. The system connects to the SCADA systems of mines and features a hierarchica...

  20. A combined capillary cooling system for cooling fuel cells

    Silva, Ana Paula; Pelizza, Pablo Rodrigo; Galante, Renan Manozzo; Bazzo, Edson [Universidade Federal de Santa Catarina (LabCET/UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Engenharia de Sistemas Termicos], Emails: ana@labcet.ufsc.br, pablo@labcet.ufsc.br, renan@labcet.ufsc.br, ebazzo@emc.ufsc.br

    2010-07-01

    The operation temperature control has an important influence over the PEMFC (Proton Exchange Membrane Fuel Cell) performance. A two-phase heat transfer system is proposed as an alternative for cooling and thermal control of PEMFC. The proposed system consists of a CPL (Capillary Pumped Loop) connected to a set of constant conductance heat pipes. In this work ceramic wick and stainless mesh wicks have been used as capillary structure of the CPL and heat pipes, respectively. Acetone has been used as the working fluid for CPL and deionized water for the heat pipes. Experimental results of three 1/4 inch stainless steel outlet diameter heats pipes and one CPL have been carried out and presented in this paper. Further experiments are planned coupling the proposed cooling system to a module which simulates the fuel cell. (author)

  1. Energetic and economic evaluation of solar thermal and photovoltaic cooling system in Cuban hotel

    The present paper discusses the energetic and economic feasibility of using two configurations of solar cooling in a Cuban Hotel. The air conditioning hybrid system schemes are: conventional system (Chiller) interconnected in parallel with a solar- powered absorption cooling system (SACS); and a photovoltaic cooling system (PCS). There were analyzed by methodologies and thermodynamic principles governing these technologies. The results show that their uses are alternatives for reducing energy consumption and environmental impact. (full text)

  2. Artificial neural network analysis of triple effect absorption refrigeration systems

    Hajizadeh Aghdam, A. [Department of Mechanical Engineering, Islamic Azad University (Iran, Islamic Republic of)], email: a.hajizadeh@iaukashan.ac.ir; Nazmara, H.; Farzaneh, B. [Department of Mechanical Engineering, University of Tabriz (Iran, Islamic Republic of)], email: h.nazmara@nioec.org, email: b_farzaneh_ms@yahoo.com

    2011-07-01

    In this study, artificial neural networks are utilized to predict the performance of triple effect series and parallel flow absorption refrigeration systems, with lithium bromide/water as the working fluid. Important parameters such as high generator and evaporator temperatures were varied and their effects on the performance characteristics of the refrigeration unit were observed. Absorption refrigeration systems make energy savings possible because they can use heat energy to produce cooling, in place of the electricity used for conventional vapour compression chillers. In addition, non-conventional sources of energy (such as solar, waste heat, and geothermal) can be utilized as their primary energy input. Moreover, absorption units use environmentally friendly working fluid pairs instead of CFCs and HCFCs, which affect the ozone layer. Triple effect absorption cycles were analysed. Results apply for both series and parallel flow systems. A relative preference for parallel-flow over series-flow is also shown.

  3. Craft-joule project: air-cooled water LiBr absorption cooling machine of low capacity for air conditioning (ACABMA)

    Oliva, A; Castro, J; Perez Segarra, C.D [Universitat Politecnica de Catalunya, Barcelona (Spain); Lucena, M.A [Instituto Nacional de Tecnica Aeroespecial (Spain)] (and others)

    2000-07-01

    The ACABMA (Air-Cooled water-LiBr Absorption cooling Machine of low capacity for Air- conditioning) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The basic objective of this project is the development of a new air-cooled absorption cooling machine for air-conditioning, in the low power sector market. Making use of water-LiBr technology together with the air-cooling feature, it is possible to reach a better relationship between quality (in terms of performance, ecology, etc.) and price of such absorption machines, than the ones existing on the market. Air-cooling instead of water cooling saves installation costs specially in small systems and removes the demand for cooling water (an important aspect in Southern-European countries), thus increasing the possible application range. The main interest for the SME proposers is to take advantage of the increasing cooling demand in Europe, specially in southern countries. Another point of interest for the SME proposers is the development of a cheaper cooling and heating system in terms of energy and installation costs. In this moment the solar cooling systems are approx. 30% more expensive than the conventional ones. A cheaper absorption machine due to the air-cooling feature together with the possibility of energy savings due to low generator temperatures, that allow the absorption machine for solar applications or waste heat, will lead to solar cooling and heating systems more competitive to the conventional ones. In order to achieve the above mentioned goal, the following step are necessary and will be carried out in this project: i)solution of the air-cooling of the water-LiBr machine, the main problem that up to now has not allowed commercialization, ii)reduction of the size of the air-cooled elements of the machine in order to reduce the machine costs, iii)development of an efficient control

  4. A parametric study of solar operated cooling system

    Because of energy for air conditioning has been the fastest-growing segment of energy of consumption market in Libya and generally in north Africa, and with the realization depleting nature of fossil fuel, solar cooling of buildings which leads to the improvement of human comfort represents a potentially significant application of solar energy where the availability of solar radiation meets with the cooling load demand. This application has been shown to be technically feasible but the equipment needs further investigative research to improve its performance and feasibility. A solar operated absorption cooling system with energy storage is selected. A latent heat storage would be a space saver for such application for solar energy. A system modeling is an essential activity in order to go for system simulation. A complete solar cooling system to be modeled through the thermodynamic analysis of each system components. Resulting a package of equations used directly to the system simulation in order to predict the system performance to obtain the optimum working conditions for the selected cooling system. A computer code which is used to simulate a series of calculations was written in Fortran language according to the constructed information flow diagram and simulation program flow char. For a typical input data a set of results are reported and discussed and shows that the selected system promises to be a good choice for air conditioning application in Libya specially for large building as storehouses, shopping centers, public administrative.(Author)

  5. Optimal Cooling Load and COP Relationship of a Four-Heat-Reservoir Endoreversible Absorption Refrigeration Cycle

    Chih Wu

    2004-06-01

    Full Text Available Abstract: On the basis of a four-heat-reservoir endoreversible absorption refrigeration cycle model, another linear heat transfer law [i.e., the heat-flux] is adopted, the fundamental optimal relation between the coefficient of performance (COP and the cooling load, as well as the maximum cooling load and the corresponding COP of the cycle coupled to constant-temperature heat reservoirs are derived by using finite-time thermodynamics or thermodynamic optimization. The optimal distribution of the heat-transfer surface areas is also obtained. Moreover, the effects of the cycle parameters on the COP and the cooling load of the cycle are studied by detailed numerical examples. The results obtained herein are of importance to the optimal design and performance improvement of an absorption refrigeration cycle.

  6. The development of air cooled condensation systems

    EGI - Contracting/Engineering has had experience with the development of air cooled condensing systems since the 1950's. There are two accepted types of dry cooling systems,the direct and the indirect ones. Due to the fact that the indirect system has several advantages over the direct one, EGI's purpose was to develop an economic, reliable and efficient type of indirect cooling system, both for industrial and power station applications. Apart from system development, the main components of dry cooling plant have been developed as well. These are: the water-to-air heat exchangers; the direct contact (DC, or jet) condenser; the cooling water circulating pumps and recovery turbines; and the peak cooling/preheating units. As a result of this broad development work which was connected with intensive market activity, EGI has supplied about 50% of the dry cooling plants employed for large power stations all over the world. This means that today the cumulated capacity of power units using Heller type dry cooling systems supplied and contracted by EGI is over 6000 MW

  7. Biomedical Application of Aerospace Personal Cooling Systems

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which are used by astronauts to alleviate thermal stress during extravehicular activity have been applied to the therapeutic management of multiple sclerosis. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 10 male and female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.22C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. In general, the male and female subjects' oral and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (Pcooling and recovery periods.

  8. A numerical investigation of a diffusion-absorption refrigeration cycle based on R124-DMAC mixture for solar cooling

    Ben Ezzine, N.; Garma, R.; Bellagi, A. [U.R. Thermique et Thermodynamique des Procedes Industriels, Ecole Nationale d' Ingenieurs de Monastir, Av. Ibn Jazzar, 5060 Monastir (Tunisia)

    2010-05-15

    Research on new working fluid for uses in absorption systems has been continued. The feasibility of a solar driven DAR using the mixture R124/DMAC as working fluid is investigated by numerical simulation. The cycle is simulated for two cooling medium temperatures, 27 C and 35 C, and four driving heat temperatures in the range [90 C-180 C]. The performance characteristics of this system is analyzed parametrically by computer simulation for a design cooling capacity of 1 kW. The results show that the system performance and the lowest (minimum) evaporation temperature reached are largely dependent upon the absorber efficiency and the driving temperature. It is shown that for solar applications this fluid mixture has a higher COP and may constitute an alternative to the conventional ammonia-water system. (author)

  9. Biomedical Application of Aerospace Personal Cooling Systems

    Ku, Yu-Tsuan E.; Lee, Hank C.; Montgomery, Leslie D.; Webbon, Bruce W.; Kliss, Mark (Technical Monitor)

    1997-01-01

    Personal thermoregulatory systems which are used by astronauts to alleviate thermal stress during extravehicular activity have been applied to the therapeutic management of multiple sclerosis. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objectives of this study were to compare the effectiveness of two passive and two active cooling vests and to measure the body temperature and circulatory changes produced by each cooling vest configuration. The MicroClimate Systems and the Life Enhancement Tech(LET) lightweight liquid cooling vests, the Steele Vest and LET's Zipper Front Garment were used to cool the chest region of 10 male and female subjects (25 to 55 yr.) in this study. Calf, forearm and finger blood flows were measured using a tetrapolar impedance rheograph. The subjects, seated in an upright position at normal room temperature (approx.22C), were tested for 60 min. with the cooling system operated at its maximum cooling capacity. Blood flows were recorded continuously using a computer data acquisition system with a sampling frequency of 250 Hz. Oral, right and left ear temperatures and cooling system parameters were logged manually every 5 min. Arm, leg, chest and rectal temperatures; heart rate; respiration; and an activity index were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. In general, the male and female subjects' oral and ear temperature responses to cooling were similar for all vest configurations tested. Oral temperatures during the recovery period were significantly (P<0.05) lower than during the control period, approx. 0.2 - 0.5C, for both men and women wearing any of the four different garments. The corresponding ear temperatures were significantly (P<0.05) decreased approx.0.2 - 0.4C by the end of the recovery period. Compared to the control period, no significant differences were found in rectal temperatures during cooling and

  10. Filter for reactor emergency cooling system

    The invention describes the design of a filter for the emergency cooling system. The new type of filter can be rinsed by flushing water backwards through the filter. The arrangement will prevent the filter from being silt up

  11. The ATLAS IBL CO2 Cooling System

    Verlaat, Bartholomeus; The ATLAS collaboration

    2016-01-01

    The Atlas Pixel detector has been equipped with an extra B-layer in the space obtained by a reduced beam pipe. This new pixel detector called the ATLAS Insertable B-Layer (IBL) is installed in 2014 and is operational in the current ATLAS data taking. The IBL detector is cooled with evaporative CO2 and is the first of its kind in ATLAS. The ATLAS IBL CO2 cooling system is designed for lower temperature operation (<-35⁰C) than the previous developed CO2 cooling systems in High Energy Physics experiments. The cold temperatures are required to protect the pixel sensors for the high expected radiation dose up to 550 fb^-1 integrated luminosity. This paper describes the design, development, construction and commissioning of the IBL CO2 cooling system. It describes the challenges overcome and the important lessons learned for the development of future systems which are now under design for the Phase-II upgrade detectors.

  12. Control device for emergency core cooling systems

    Purpose: To prevent erroneous operations due to repeated start and stop of emergency core cooling systems, as well as control the reactor water level to an appropriate position in the reactor of a BWR type nuclear power plants, in case of loss of coolants accident, in particular, stick open troubles of a releaf valve, by appropriately maintaining the reactor water level. Constitution: Water either from a condensate storage tank or from a pressure suppression chamber is sprayed into a reactor by an emergency core cooling system pump by way of a feedwater line. In the emergency core cooling system, signals prepared by the addition of the flow rate measured by a flowmeter mounted to the releaf valve air exhaust pipe and the flow rate in other exhaust pipe measured by other flowmeter and signals obtained by the flowmeter for the pump exit are inputted into a comparator circuit. The signals therefrom are transmitted to the control device for the emergency core cooling system pump to control the flow rate in the emergency core cooling system. If the flow rate in the relief valve is decreased, the flow rate in the emergency core cooling system is also decreased to equalize the flow rates from and into the core. Thus, the core liquid level can be kept constant, whereby the water inventry is maintained and the safety of the cladding tube is maintained even if the water level system is failed to make the level monitor impossible. (Seki, T.)

  13. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    Harber, H.

    1981-01-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  14. Solar cooling system performance, Frenchman's Reef Hotel, Virgin Islands

    Harber, H.

    1981-09-01

    The operational and thermal performance of a variety of solar systems are described. The Solar Cooling System was installed in a hotel at St. Thomas, U. S. Virgin Islands. The system consists of the evacuated glass tube collectors, two 2500 gallon tanks, pumps, computerized controller, a large solar optimized industrial sized lithium bromide absorption chiller, and associated plumbing. Solar heated water is pumped through the system to the designed public areas such as lobby, lounges, restaurant and hallways. Auxiliary heat is provided by steam and a heat exchanger to supplement the solar heat.

  15. Solar heating and cooling system installed at Leavenworth, Kansas

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  16. Effectiveness-weighted control of cooling system components

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  17. Effectiveness-weighted control method for a cooling system

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  18. Absorption-line profiles in a companion spectrum of a mass-losing cool supergiant

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1992-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10 (exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  19. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  20. Coherence-assisted single-shot cooling by quantum absorption refrigerators

    Mitchison, Mark T.; Woods, Mischa P.; Prior, Javier; Huber, Marcus

    2015-01-01

    The extension of thermodynamics into the quantum regime has received much attention in recent years. A primary objective of current research is to find thermodynamic tasks which can be enhanced by quantum mechanical effects. With this goal in mind, we explore the finite-time dynamics of absorption refrigerators composed of three qubits. The aim of this finite-time cooling is to reach low temperatures as fast as possible and subsequently extract the cold particle to exploit it for information ...

  1. Thermodynamic analysis of waste heat recovery for cooling systems in hybrid and electric vehicles

    In this paper, the recovered heat is examined for cabin cooling for ejector and absorption cooling cycles. Energy and exergy analyses are conducted to study the role of various design parameters on the cooling capacity. Waste heat from the battery pack, as well from exhaust gases in the Internal Combustion Engine (ICE) mode, are the inputs for the boiler and generator. In a city driving mode, waste heat of 15.4 kW will be available. Results show that transferring this waste heat to the boiler in the ejector cooling system leads to a cooling effect of 7.23 kW, with energetic and exergetic Coefficients of Performance (COPs) of 0.48 and 0.2 respectively. In the absorption cycle, the energetic COP of the system is 0.53 with a coolant capacity of 7.93 kW. Results also show that, for the electric mode, the cooling capacity is lower than 2 kW, which is insufficient to provide cooling. While recovered heat from Hybrid Electric Vehicles (HEV) can be used for vehicle cabin cooling by both ejector and absorption systems, the analysis shows that the latter system has a better coefficient of performance and cooling capacity than the ejector system.

  2. Small quantum absorption refrigerator in the transient regime: Time scales, enhanced cooling, and entanglement

    Brask, Jonatan Bohr; Brunner, Nicolas

    2015-12-01

    A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the steady state. These results are of relevance to future implementations of quantum thermal machines.

  3. Understanding aging in containment cooling systems

    A study has been performed to assess the effects of aging in nuclear power plant containment cooling systems. Failure records from national databases, as well as plant specific data were reviewed and analyzed to identify aging characteristics for this system. The predominant aging mechanisms were determined, along with the most frequently failed components and their associated failure modes. This paper discusses the aging mechanisms present in the containment spray system and the containment fan cooler system, which are two systems used to provide the containment cooling function. The failure modes, along with the relative frequency of each is also discussed

  4. Temporary cooling system for critical loads during Recirculation Cooling Water (RCW) system outage

    As part of the Point Lepreau Refurbishment Project, Recirculation Cooling Water (RCW) system will be shutdown for maintenance activity. During the RCW outage, alternate cooling flow for critical heat loads such as Spent Fuel Bay (SFB), D2O vapour dryers and Instrument Air Compressor Coolers will be provided through a temporary cooling system to remove approximately 3MW of heat. This paper describes a practical strategy to build in the temporary cooling system for this project. Major equipment involved, piping modifications required and system reliability analysis are also addressed. (author)

  5. Cooling system with automated seasonal freeze protection

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  6. Solar heating and cooling system installed at Columbus, Ohio

    1980-01-01

    The Solar Energy System was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4,096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5,000 gallon steel tank below ground storage system. Hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building.

  7. Solar heating and cooling system installed at Columbus, Ohio

    1980-09-01

    The Solar Energy System was installed as a part of a new construction of a college building. The building will house classrooms and laboratories, administrative offices and three lecture halls. The Solar Energy System consists of 4,096 square feet (128 panels) Owens/Illinois Evacuated Glass Tube Collector Subsystem, and a 5,000 gallon steel tank below ground storage system. Hot water is circulated between the collectors and storage tank, passing through a water/lithium bromide absorption chiller to cool the building.

  8. Simulation on Cooling System of Automotive Waste Heat Thermoelectric Generator

    Xiaohong Yuan; Sufen Yuan; Changsheng Chen; Yadong Deng

    2013-01-01

    The cooling system of automobile waste heat Thermoelectric Generator (TEG) is researched in the study. Integrated model of cooling system and vehicle is built based on GT-Cool, analysis of the different cooling ways shows that when using independent cooling system, the ratio between power consumption and output is high and system performance is poor; By using integrated cooling system, the expectation of keep constant engine warm up time and synchronous change of water temperature between dif...

  9. Rust Inhibitor And Fungicide For Cooling Systems

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  10. Performance of active solar space-cooling systems: The 1980 cooling season

    Blum, D.; Frock, S.; Logee, T.; Missal, D.; Wetzel, P.

    1980-12-01

    Solar cooling by an absorption chiller is not a cost effective method to use solar heat. This statement is substantiated by careful analysis of each subsystem and equipment component. Good designs and operating procedures are identified. The problems which reduce cost effectiveness are pointed out. There are specific suggestions for improvements. Finally, there is a comparison of solar cooling by absorption chilling and using photovoltaic cells.

  11. France uses the sun to cool its wine: the Banyuls winery solar cooling system

    Anon.

    2003-12-01

    The engineering consultancy Tecsol was asked to design a cooling system for a winery that would limit the variations in temperature during the year. Tecsol proposed a solar system. The total investment cost amounted to nearly two million French Francs (300,000 euros), almost double the cost of a conventional air-conditioning system. However, because the solar system reduced the conventional energy needs of the warehouse by about 40%, the French Agency for Environment and Energy Management (ADEME) provided a 37% subsidy for its rational use of energy. The 'Solarclim' solar installation has three functions: it produces hot water via 693 vacuum tube collectors with a useful surface of 130 m{sup 2}. The collectors are fixed to the roof of the wine cellar, which has an angle of 15 deg. Heat from the collectors is transferred to a 1000-litre hot water storage tank; it produces chilled water using a lithium bromide absorption plant with a nominal cooling capacity of 52 kW. This is housed in the technical premises on the lowest level and is used in conjunction with a 180 kW open-circuit cooling tower on the north facade; and the third function combines air-conditioning and, when necessary, space heating. The installation has been operating for 12 years with no particular problems. The equipment is environmentally friendly. The solar heat source avoids CO{sub 2} emissions, the absorption machine does not use CFCs or HCFCs, and the system is totally silent. (UK)

  12. Residential solar-heating/cooling system

    1980-01-01

    Report documents progress of residential solar-heating and cooling system development program at 5-month mark of anticipated 17-month program. System design has been completed, and development and component testing has been initiated. Report includes diagrams, operation overview, optimization studies of subcomponents, and marketing plans for system.

  13. Prototype solar heating and cooling systems

    1978-01-01

    A collection of monthly status reports are given on the development of eight prototype solar heating and cooling systems. This effort calls for the development, manufacturing, test, system installation, maintenance, problem resolution, and performance evaluation. The systems are 3-, 25-, and 75-ton size units.

  14. Preoperational test report, recirculation condenser cooling systems

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  15. Preoperational test report, recirculation condenser cooling systems

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  16. Experimental Test of the Concept of Long-term Passive Cooling System of Emergency Cooling Tank

    Recently emergency cooling tank is a great concern of passive cooling system for the safety of nuclear reactor. For the long-term operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger due to exhausted water supply. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection at tubes of the steam cooling heat exchanger. In this study, an experimental setup was figure out by measuring water level inside emergency cooling tank for the validation of the concept of long-term passive cooling system of emergency cooling tank. An experimental setup was figure out by measuring water level inside emergency cooling tank for the validation of the concept of long-term passive cooling system of emergency cooling tank. Natural circulation of condensing flow was identified by passive cooling system of emergency cooling tank experimentally

  17. Controlled cooling of an electronic system for reduced energy consumption

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  18. Analysis of cooling systems for hypersonic aircraft

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1991-01-01

    A computer program has been written to analyze cooling systems of hypersonic aircraft. This computer program called NASP/SINDA is written into the SINDA'85 command structure and uses the SINDA'85 finite difference subroutines. Both internal fluid flow and heat transfer must be analyzed, because increased heating causes a decrease in the flow of the coolant. Also local hot spots will cause a redistribution of the coolant in the system. Both steady state and transient analyses have been performed. Details of empirical correlations are presented. Results for two cooling system applications are given.

  19. Methodology to determine cost and performance goals for active solar cooling systems

    Warren, M. L.; Wahlig, M.

    1981-11-01

    Systems analysis is used to calculate the 20 yr. present value of energy savings of solar cooling systems located in Texas, Arizona, Florida, and Washington, DC, and methods of solar system development to meet the cost goals of economic operation are outlined. Solar cooling systems are projected to begin commercial entry in 1986 and reach 20% of the total cooling market by the year 2000, producing 0.14 quads of displaced energy. A numerical simulation was carried out for both residential and commercial solar cooling units with consideration for system cost goals, cost goals per unit collector area, and the cost goals per ton of cooling. System size was targeted as a 3 ton residential chiller and a 25 ton commercial absorption cooling unit. The costs for volume production are provided, along with trends for an incrementally decreasing need for tax incentives, ending in about 1994

  20. Co-production of pyrolysis oil and district cooling in biomass-based CHP plants: Utilizing sequential vapour condensation heat as driving force in an absorption cooling machine

    The ever-increasing demand for cooling requires new and sustainable ways of producing it. Absorption cooling is one such well-known technique that can be employed, the driving force in which is heat. When a flash pyrolysis process, with sequential vapour condensation, is integrated into a biomass-based combined heat and power plant (CHP plant), excess heat may arise in the condensers. This study demonstrates the utilization of this excess heat in an absorption cooling machine for producing district cooling. The maximum boiler load in the used CHP plant was 80 MW: the excess condenser heat created during the period June–August was 6.4 MW, which resulted in the production of 5 MW district cooling. The production of electrical power increased by 8.6% on a yearly basis, with a base load production during June–August of 2.8 MW. Using an absorption cooling machine increases the energy conversion efficiency of the CHP plant with an integrated pyrolysis process by 1.3% on a yearly basis; the energy efficiency of the pyrolysis process alone increases by 6%. An increased utilization of the condenser heat for district cooling is possible at an almost constant overall energy conversion efficiency and is demonstrated with two additional cases. - Highlights: • Energy enhancement of a biomass-based CHP plant with integrated pyrolysis process. • Simulation of a single-stage absorption cooling cycle in CHEMCAD. • Utilizing waste condenser heat for district cooling production in three cases. • Simulation of a plant with productions of heat, power, cooling and bio-oil

  1. Radiant Heating and Cooling Systems. Part two

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain/loss of...

  2. New SPS cooling system "The day after"

    Arduini, Gianluigi; CERN. Geneva. ST Division

    2002-01-01

    During the shutdown from November 2000 until May 2001, major modifications of the cooling system of SPS have been carried out in the frame of the refurbishment and restructuring of the water network on CERN sites (Water Project). Since the new configuration is based on a closed circuit loop, the most important consequence is the increase of the cooling water temperature from 11°C to a reference temperature of 25 °C on the primary circuit. After a brief overview of the performance statistics in 2001 of the new cooling system, a preliminary analysis of the impact of the new temperature working point will be given. Special attention will be focused on those aspects that proved to be critical for reliable equipment operation as well as on the observed consequences on reproducibility of machine parameters and finally the capability of the system for future expansions. Recommendations and possible improvements will also be outlined.

  3. Technological innovations for FBR reactor cooling system

    The fast breeder reactor (FBR) is expected to be commercialized early in the 21st century. In order to realize this goal, technological innovations are desired in order to extensively enhance economic performance, and improvement of the reactor cooling system is of primary importance in this regard. Over the past 10 years, Toshiba has developed a succession of new technologies in the field of reactor cooling systems, including a compact type intermediate heat exchanger (IHX), an integral once-through type steam generator (SG), a double-wall-tube type steam generator, and a sodium-immersed high-temperature type electromagnetic pump (EMP). As a synthesis of the fruits of such research and development we have formulated innovative concepts for a reactor cooling system and its constituent components. These advances in research and development activities will significantly contribute to the commercialization of FBRs. (author)

  4. Emergency core cooling system simplification

    Studies and development programs at AECL over the last several years have been directed at simplification of the ECC system, with the objective of increasing reliability, reducing cost, and reducing maintenance and testing costs. This work has resulted in a substantial simplification of the ECC system for CANDU 9, including a reduction in the number of valves of over 50% relative to previous plants. This paper reviews the CANDU 9 ECC system design, and reviews the ''one-way'' rupture disc and floating ball seal development programs

  5. Strategies for controlling residential combined cooling, heating and power systems

    Ferguson, A. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre

    2004-07-01

    Residential cogeneration technologies are considered to be excellent candidates for combined cooling, heating and power (CCHP) technology. The characteristics of CCHP technology were outlined in this paper along with control strategies required for meeting concurrent cooling, heating and electrical loads. The integration of these control strategies into a CCHP system controller model was also discussed. In particular, a model of a thermally-activated cooling (TAC) unit was developed at the CANMET Energy Technology Centre. The model was integrated into the ESP-r/HOT3000 residential simulation modelling tool. The TAC unit model was then combined with a previously developed fuel cell model in a residential HVAC network. The study showed that if a cogeneration system was coupled to a TAC unit such as an absorption chiller, any surplus heat could be exploited during the summer months to deliver useful cooling to the building using CCHP technology. The modelling results suggest that a CCHP controller can be compatible with improved, dynamic fuel-cells models. Future work will focus on including electrical storage systems and on-site renewable technologies such as photovoltaic panels. 6 refs., 2 tabs., 8 figs.

  6. Passive cooling systems in power reactors

    This paper reviews several R and D activities associated with the subject of passive cooling systems, conducted by the N.R.C.Negev thermohydraulic group. A short introduction considering different types of thermosyphons and their applications is followed by a detailed description of the experimental work, its results and conclusions. An ongoing research project is focused on the evaluation of the external dry air passive containment cooling system (PCCS) in the AP-600 (Westinghouse advanced pressurized water reactor). In this context some preliminary theoretical results and planned experimental research are for the fature described

  7. Systemic Absorption of Nanomaterials by Oral Exposure

    Binderup, Mona-Lise; Bredsdorff, Lea; Beltoft, Vibe Meister;

    This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches.......This report and accompanying database systematically evaluates the reliability and relevance of the existing scientific literature regarding systemic absorption of nanomaterials by oral exposure and makes specific recommendations for future testing approaches....

  8. Atmospheric impacts of evaporative cooling systems

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  9. Operational cost minimization in cooling water systems

    Castro M.M.

    2000-01-01

    Full Text Available In this work, an optimization model that considers thermal and hydraulic interactions is developed for a cooling water system. It is a closed loop consisting of a cooling tower unit, circulation pump, blower and heat exchanger-pipe network. Aside from process disturbances, climatic fluctuations are considered. Model constraints include relations concerning tower performance, air flowrate requirement, make-up flowrate, circulating pump performance, heat load in each cooler, pressure drop constraints and climatic conditions. The objective function is operating cost minimization. Optimization variables are air flowrate, forced water withdrawal upstream the tower, and valve adjustment in each branch. It is found that the most significant operating cost is related to electricity. However, for cooled water temperatures lower than a specific target, there must be a forced withdrawal of circulating water and further makeup to enhance the cooling tower capacity. Additionally, the system is optimized along the months. The results corroborate the fact that the most important variable on cooling tower performance is not the air temperature itself, but its humidity.

  10. A cooling water system copper corrosion study

    Pulkrabek, J.W.

    1998-07-01

    The plant has four units that have been operating normally for 12--33 years. Two of the units are 70 MW sister units that have copper alloy once-through condensers. The other two units are 350 MW and 500 MW units with copper alloy condensers and cooling towers. No cooling water related tube leaks had been experienced. Until 1993, the only chemicals used were sulfuric acid for pH control of the cooling tower systems and chlorine for biological control. The units were chlorinated for one hour per day per condenser. In early July 1992, their copper grab sample at the plant discharge to the river exceeded the weekly environmental limit. In fact, it was so high that there was a slim chance of coming in under their monthly average copper limit unless something was done quickly. The result of this incident was an extensive study of their plant wastewater and cooling systems. The study revealed that the elevated copper problem had existed sporadically for several years. Initially, copper control was achieved by altering the wastewater treatment processes and cooling tower blowdown flow path. Two extended trials, one with tolyltriazole (TTA) and one with a chemically modified benzotriazole (BZT) were performed. Optimal control of copper corrosion was eventually achieved by the application of a TTA treatment program in which the feed rates are adjusted based on on-line corrosion monitoring measurements. This report documents experiences and results over the past six years.

  11. Experimental studies on bubble pump operated diffusion absorption machine based on light hydrocarbons for solar cooling

    Ben Ezzine, N.; Garma, R.; Bellagi, A. [U.R. Thermique et Thermodynamique des Procedes Industriels, Ecole Nationale d' Ingenieurs de Monastir, Av. Ibn Jazzar, 5060 Monastir (Tunisia); Bourouis, M. [Center CREVER, Universitat Rovira i Virgili, 43006 Tarragona (Spain)

    2010-02-15

    An experimental investigation of an air-cooled diffusion absorption machine operating with a binary light hydrocarbon mixture (C{sub 4}H{sub 10}/C{sub 9}H{sub 20}) as working fluids and helium as pressure equalizing inert gas is presented in this paper. The machine, made of copper an available and very good heat conducting metal, is intended to be solar powered heat from flat plate or common evacuated tube collectors. The cooling capacity is 40-47 W respectively for 9 and 11 C chilled water temperature. Cold is produced at temperatures between -10 and +10 C for a driving temperature in the range of 120-150 C. (author)

  12. PCM Passive Cooling System Containing Active Subsystems

    Blanding, David E.; Bass, David I.

    2005-01-01

    A multistage system has been proposed for cooling a circulating fluid that is subject to intermittent intense heating. The system would be both flexible and redundant in that it could operate in a basic passive mode, either sequentially or simultaneously with operation of a first, active cooling subsystem, and either sequentially or simultaneously with a second cooling subsystem that could be active, passive, or a combination of both. This flexibility and redundancy, in combination with the passive nature of at least one of the modes of operation, would make the system more reliable, relative to a conventional cooling system. The system would include a tube-in-shell heat exchanger, within which the space between the tubes would be filled with a phase-change material (PCM). The circulating hot fluid would flow along the tubes in the heat exchanger. In the basic passive mode of operation, heat would be conducted from the hot fluid into the PCM, wherein the heat would be stored temporarily by virtue of the phase change.

  13. 40 CFR 91.307 - Engine cooling system.

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine cooling system. 91.307 Section... cooling system. An engine cooling system is required with sufficient capacity to maintain the engine at... maintain sufficient engine cooling during dynamometer operation....

  14. 40 CFR 90.307 - Engine cooling system.

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine cooling system. 90.307 Section... Provisions § 90.307 Engine cooling system. An engine cooling system is required with sufficient capacity to... fan(s) may be used to maintain sufficient engine cooling during engine dynamometer operation....

  15. Absorber-evaporator unit for an absorption-refrigeration system

    Hallatt, R.J.; Rorschach, R.L.

    1965-01-26

    This low temperature absorption-refrigeration system uses an absorber-evaporator. A conduit is connected between the upper portion of the absorber and the lower portion of the evaporator to conduct inert gas from the absorber to the evaporator. A second conduit connects the upper portion of the evaporator to the lower portion of the absorber and a blower in this conduit circulates the inert gas through the closed system. By placing the blower between the evaporator ad the absorber, the pressure in the evaporator is maintained at a minimum so that the working temperature is as low as possible. The medium to be cooled by the refrigerant is circulated through a heat exchanger located within the evaporator, whereby the latent heat of vaporization of the liquid refrigerant is employed to cool the outside medium. (2 claims)

  16. Indirect Evaporative Pre-Cooled Compressor Cooling System Performance under Various Outdoor Air Humidity Conditions

    Brahmanis, A; Lešinskis, A

    2013-01-01

    The present study is devoted to efficiency evaluation of a combined indirect evaporative – compressor cooling system under various outdoor air humidity conditions of temperate climate. The investigated system is located in the recently restored historical building, The Art Museum Riga Bourse, which was initially built in the middle of the 19th century. The indirect adiabatic chiller supplies cooled fluid to the conventional cooling system, consisting of ventilation cooling coils and fan-coil ...

  17. Evaluation of Active Cooling Systems for Non-Residential Buildings

    M.A. Othuman Mydin

    2014-01-01

    Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air...

  18. Solar evacuated tube collector: absorption chiller systems simulation

    Leflar, J.A.; Duff, W.S.

    1977-12-01

    A residential air conditioning system incorporating an Arkla Solaire absorption chiller and Corning Glass Works evacuated tube collectors is simulated and the design parameters studied. Mathematical models of the evacuated tube collector and Arkla absorption chiller based on experimental results of the components have been created and incorporated into a complete system simulation. The chiller model includes transient start-up effects and the evacuated tube collector model includes numerous optical effects. A standard Arkla chiller in a humid climate (Washington, D.C.) and an Arkla unit with a modified charge for dry climates (Fort Collins, Colorado) are studied. Design parameters considered include the use of chilled water storage to reduce transient start-up effects of the absorption unit, the effects of removing heat from the solar system for preheating service hot water, the use of a tempering valve to prevent over-firing of the absorption unit in dry climates, and solar storage sizing considerations. The study results and conclusions are used to specify a cooling system design.

  19. Molecular hydrogen absorption systems in SDSS

    Balashev, S A; Ivanchik, A V; Varshalovich, D A; Petitjean, P; Noterdaeme, P

    2014-01-01

    We present a systematic search for molecular hydrogen absorption systems at high redshift in quasar spectra from the Sloan Digital Sky Survey (SDSS) II Data Release 7 and SDSS-III Data Release 9. We have selected candidates using a modified profile fitting technique taking into account that the Ly$\\alpha$ forest can effectively mimic H$_2$ absorption systems at the resolution of SDSS data. To estimate the confidence level of the detections, we use two methods: a Monte-Carlo sampling and an analysis of control samples. The analysis of control samples allows us to define regions of the spectral quality parameter space where H$_2$ absorption systems can be confidently identified. We find that H$_2$ absorption systems with column densities $\\log {\\rm N_{H_2}} > 19$ can be detected in only less than 3% of SDSS quasar spectra. We estimate the upper limit on the detection rate of saturated H$_2$ absorption systems ($\\log {\\rm N_{H_2}} > 19$) in Damped Ly-$\\alpha$ (DLA) systems to be about 7%. We provide a sample of ...

  20. Turbine airfoil with laterally extending snubber having internal cooling system

    Scribner, Carmen Andrew; Messmann, Stephen John; Marsh, Jan H.

    2016-09-06

    A turbine airfoil usable in a turbine engine and having at least one snubber with a snubber cooling system positioned therein and in communication with an airfoil cooling system is disclosed. The snubber may extend from the outer housing of the airfoil toward an adjacent turbine airfoil positioned within a row of airfoils. The snubber cooling system may include an inner cooling channel separated from an outer cooling channel by an inner wall. The inner wall may include a plurality of impingement cooling orifices that direct impingement fluid against an outer wall defining the outer cooling channel. In one embodiment, the cooling fluids may be exhausted from the snubber, and in another embodiment, the cooling fluids may be returned to the airfoil cooling system. Flow guides may be positioned in the outer cooling channel, which may reduce cross-flow by the impingement orifices, thereby increasing effectiveness.

  1. The effect of cooling rate of cooling system on centrifuge machine performance

    In this paper, the effect of cooling rate of a cooling system on performance of a centrifuge machine has been studied experimentally. The cooling rate is increased by temperature variation and volumetric flow rate of the inlet water to the cooling system. The results showed that the effect of cooling rate on separative work unit, heads and tails separation factors i.e. α and β are negligible. Also, if the cooling rate is less than a minimum value, the heat produced by moving machine elements cannot be dissipated and some elements of machine may be destroyed.

  2. Solar cooling and trigeneration. Monitoring results of the absorption chiller Wegracal SE 15; Solare Kuehlung und Kraft-Waerme-Kaelte-Kopplung. Betriebserfahrungen mit der Absorptionskaeltemaschine Wegracal SE 15

    Safarik, Mathias [Institut fuer Luft- und Kaeltetechnik (ILK), Dresden (Germany)

    2008-10-15

    A water/lithium bromide absorption chiller with a nominal capacity of 15 kW was used in combination with solar thermal collectors and a dry re-cooler in the first installation and with a cogeneration unit and an evaporative re-cooler in the second installation. The systems were monitored by the Institute for Air-Conditioning and Refrigeration. The results confirm the successful application of the low capacity absorption chiller in solar cooling and trigeneration systems. Potentials for an optimised system integration are presented. (orig.)

  3. Invastigate of Theoretical Ejector Cooling System

    Yilmaz, Fatih; SELBAŞ, Reşat; İbrahim ÜÇGÜL

    2014-01-01

    Conventional cooling systems, a large majority, working with electrical energy from fossil fuels and uses huge amounts of energy to drive these systems. In addition, thermal power plants, food industry, such as chemical plants and motor vehicles back into the environment that can be used in many industrial process produces waste heat energy. Alternative sources of energy such as heat exhausted from both the energies used, the drive uses energy as a new research on the mechanical compressio...

  4. SOLAR REFRIGERATION SYSTEMS BASED ON THE ABSORBER WITH INTERNAL EVAPORATIVE COOLING

    Дорошенко, O.В.; Людницький, К.В.

    2015-01-01

    The paper presents the developed schematics for alternative refrigeration systems and air conditioning systems based on the use of heat-absorption cycle and solar energy for regeneration (recovery) of the absorbent solution. Cascade principle of construction of the drying and cooling circuits with absorbent concentration increasing on the steps of the cascade is used. The absorber with internal evaporative cooling that eliminates a separate evaporative cooler, typically comprised after the co...

  5. Sensitivity Studies of a Low Temperature Low Approach Direct Cooling Tower for Building Radiant Cooling Systems

    Nasrabadi, Mehdi; Finn, Donal; Costelloe, Ben

    2012-01-01

    Recent interest in cooling towers as a mechanism for producing chilled water, together with the evolution of radiant cooling, have prompted a review of evaporative cooling in temperate maritime climates. The thermal efficiency of such systems is a key parameter, as a measure of the degree to which the system has succeeded in exploiting the cooling potential of the ambient air. The feasibility of this concept depends largely however, on achieving low approach water temperatures within an appro...

  6. LiBr absorption systems integrated with high–efficiency IGSG plant

    Rokni, Masoud; Bellomare, Filippo

    2015-01-01

    vapor compression inverse cycles; waste heat from other systems can in fact be used as an efficient input instead of electrical energy. The opportunity to integrate Li-Br absorption systems with a high-efficiency energy plant was studied; rejected heat from a Municipal Solid Waste Gasification Plant......Over the last few years, the energy demand for cooling systems is increasing; different solutions in fact have been proposed in order to minimize the energetic and environmental impact of this trend. In this direction, absorption cooling systems are recognized as a valid alternative to traditional...... Integrated with Solid Oxide Fuel Cell and Gas Turbine, called IGSG (Integrated Gasification SOFC and GT), was in fact considered to feed absorption cooling units. Two different possible integrations of heat fluxes were investigated; variations of the most critical parameters have been studied and analyzed in...

  7. Exergy and Structural Analysis of an Absorption Cooling Cycle and the Effect of Efficiency Parameters

    Miquel Nogués

    2005-12-01

    Full Text Available

    Absorption cycles are an alternative to compression cycles in cooling and refrigeration applications. Our analysis of an absorption cycle is based on the exergy and the structural analysis. Once the exergy analysis has been achieved, the coefficients of structural bonds (CSBs of the main heat and mass exchangers can be determined by a structural analysis. The CSBs show how the modification of the irreversibility of one component, by means of a variation of its efficiency, affects the whole cycle. It will be wise to put much of the design effort in improving the efficiency of a component, knowing that a slight decrease of the irreversibility of that component, thanks to a higher efficiency, results in an important improvement in the total irreversibility of the cycle. This methodology is applied to a single effect ammonia-water absorption cooling cycle. We also study how the selection of efficiency parameters affects the results comparing CSBs of heat exchangers obtained from the minimum temperature differences or the UA-values.

    Results show that the UA is a more suitable parameter than the minimum temperature difference. Concerning the CSB values, we obtain very high values for the refrigerant heat exchanger. Values above one are also observed for the absorber, condenser and generator.

    Lower values are found for the generator and the solution heat exchanger. A more detailed analysis should investigate the dependence of the CSB values on the range of efficiencies. As a further step, these results could be used in the thermoeconomic analysis and economical optimization.

  8. Nuclear Reactor RA Safety Report, Vol. 5, Reactor cooling systems

    RA reactor cooling system enable cooling during normal operation and under possible accidental conditions and include: technical water system, heavy water system, helium gas system, system for heavy water purification and emergency cooling system. Primary cooling system is a closed heavy water circulation system. Heavy water system is designed to enable permanent circulation and twofold function of heavy water. In the upward direction of cooling it has a coolant role and in the downward direction it is the moderator. Separate part of the primary coolant loop is the system for heavy water purification. This system uses distillation and ion exchange processes

  9. ABSORPTIONS IN THE VISIBLE OF PROTONATED PYRENE COLLISIONALLY COOLED TO 15 K

    Hardy, F.-X.; Gause, O.; Rice, C. A.; Maier, J. P., E-mail: j.p.maier@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstr. 80, 4056-CH Basel (Switzerland)

    2013-12-01

    Protonated polycyclic hydrocarbons have been added to the list of suggested carriers of diffuse interstellar absorptions. To test this proposition requires laboratory spectra measured under interstellar conditions, in particular with the rotational and vibrational degrees of freedom equilibrated to low temperatures. This has been achieved for protonated pyrene with absorption bands in the visible, using an ion trap and collisional cooling to ≈15 K. A two-photon excitation-dissociation scheme was employed to record the (1) {sup 1} A' ← X {sup 1} A' electronic spectrum on around 10{sup 5} ions per duty cycle. The origin band of the absorption spectrum of this relatively large polycyclic aromatic species with 27 atoms is located at 4858.86 Å. Two further comparably intense spectral features are present at 4834.48 and 4809.32 Å. This is one of the largest protonated aromatics studied in the gas phase and compared to astronomical observations; however, it is not a carrier of known diffuse interstellar bands.

  10. Anomalous saturated absorption providing a stable laser lock for $^{171}$Yb laser cooling

    McFerran, J J

    2016-01-01

    We identify an inverted Lamb dip in the saturated absorption spectroscopy of the $(6s^{2})$ $^{1}S_{0}$ $-$ $(6s6p)$ $^{3}P_{1}$ transition in $^{171}$Yb. The signal has only been observed with the two hyperfine lines of this spin $I=\\frac{1}{2}$ isotope. For both lines the application of a dc magnetic field transforms a two-level scheme into a four-level scheme, with degeneracy only marginally lifted in the ground state. The atoms are excited through $\\pi$ transitions, while the de-excitation process completes a simple optical pumping scheme. However, the full explanation of the enhanced absorption is yet to be determined. The anomalous absorption signal is used to generate a dispersive curve for 556 nm laser stabilisation and the stabilised light cools $^{171}$Yb atoms in a two-stage magneto-optical trap, achieving temperatures below 50 $\\mu$K. The Doppler-free spectroscopy scheme is further used to measure isotopic frequency shifts and hyperfine separations for the intercombination line in Yb.

  11. Desiccant Cooling System for Thermal Comfort: A Review

    HEMANT PARMAR; D.A. HINDOLIYA

    2011-01-01

    Desiccant cooling system (DCS) is alternate suitable option against conventional cooling system in humid climates. A typical system combines a dehumidifier that uses dry desiccant wheel, with direct or indirect evaporative systems and a sensible cooling system. DCS is the environmental protection technique for cooling purpose of the building. This system reduces the CFC level in the environment because it restricts the use of conventional refrigerant. In this paper, all the working principles...

  12. Optimized Performance of One-Bed Adsorption Cooling System

    Miyazaki, Takahiko; El-Sharkawy, Ibrahim I.; Saha, Bidyut Baran; Koyama, Shigeru

    2014-01-01

    Adsorption cooling system can be driven by solar energy or waste heat, so it will effectively reduce fossil fuel consumptions when total system is well-designed. On the other hand, the system tends to have a large size, which will be an obstacle to install adsorption cooling systems to small to medium scale cooling demands, such as automobiles, houses, or shops. The study was aiming at the reduction of system size of adsorption cooling systems for refrigeration and air-conditioning applicatio...

  13. Personal cooling systems: Possibilities and limitations

    Nunneley, Sarah A.

    1994-01-01

    Personal thermal control by means of gas- or liquid-conditioned garments was developed during the 1960s and has been applied in a variety of aerospace and industrial settings. Both USAF fighter pilots and astronauts are required to wear heavy protective clothing which insulates them from the environment and thus creates stress through storage of metabolic heat. The problem is particularly severe in astronauts who perform heavy physical work during extra-vehicular activity (EVA); without artificial cooling they could reach incapacitating hyperthermia in a matter of minutes. This paper reviews the factors which influence the design of personal cooling systems. An important early step is determination of acceptable heat stress level, taking into account possible interactions of heat stress with other physiological problems such as motion sickness, diminished plasma volume, decompression sickness and acceleration tolerance. Other factors which require consideration include the work schedule, the area to be covered by the cooling garment, and the practicalities of a fixed or body-mounted heat sink and its power source. Nearly every imaginable heat sink has been proposed or tried over the past 30 years, including direct gas systems, phase-change systems with open or closed loops and thermoelectric heat sinks. The latter are now the system of choice for aircraft.

  14. Cooling system for high speed aircraft

    Lawing, P. L.; Pagel, L. L. (Inventor)

    1981-01-01

    The system eliminates the necessity of shielding an aircraft airframe constructed of material such as aluminum. Cooling is accomplished by passing a coolant through the aircraft airframe, the coolant acting as a carrier to remove heat from the airframe. The coolant is circulated through a heat pump and a heat exchanger which together extract essentially all of the added heat from the coolant. The heat is transferred to the aircraft fuel system via the heat exchanger and the heat pump. The heat extracted from the coolant is utilized to power the heat pump. The heat pump has associated therewith power turbine mechanism which is also driven by the extracted heat. The power turbines are utilized to drive various aircraft subsystems, the compressor of the heat pump, and provide engine cooling.

  15. Absolute Dynamical Limit to Cooling Weakly-Coupled Quantum Systems

    X. Wang; Vinjanampathy, Sai; Strauch, Frederick W.; Jacobs, Kurt

    2012-01-01

    Cooling of a quantum system is limited by the size of the control forces that are available (the "speed" of control). We consider the most general cooling process, albeit restricted to the regime in which the thermodynamics of the system is preserved (weak coupling). Within this regime, we further focus on the most useful control regime, in which a large cooling factor, and good ground-state cooling can be achieved. We present a control protocol for cooling, and give clear structural argument...

  16. "Cooling system for a hybrid powertrain provided with an EGR"

    Brunetti, Gianmarco

    2011-01-01

    A cooling system comprises a high temperature cooling circuit 20, a low temperature cooling circuit 30 and a motor generator unit (MGU) cooler 36 for a motor generator unit 10 which is connected along the low temperature cooling circuit 30 of an exhaust gas recirculation system (EGR) 300. The MGU 10 is connected downstream of a low temperature radiator 33 and upstream of a low temperature cooler 31 in the low temperature cooling circuit 30. A hybrid powertrain has an internal combustion engin...

  17. Simulation on Cooling System of Automotive Waste Heat Thermoelectric Generator

    Xiaohong Yuan

    2013-06-01

    Full Text Available The cooling system of automobile waste heat Thermoelectric Generator (TEG is researched in the study. Integrated model of cooling system and vehicle is built based on GT-Cool, analysis of the different cooling ways shows that when using independent cooling system, the ratio between power consumption and output is high and system performance is poor; By using integrated cooling system, the expectation of keep constant engine warm up time and synchronous change of water temperature between different tanks is realized after water tanks are improved.

  18. Preliminary design package for solar heating and cooling systems

    1978-01-01

    Summarized preliminary design information on activities associated with the development, delivery and support of solar heating and cooling systems is given. These systems are for single family dwellings and commercial applications. The heating/cooling system use a reversible vapor compression heat pump that is driven in the cooling mode by a Rankine power loop, and in the heating mode by a variable speed electric motor. The heating/cooling systems differ from the heating-only systems in the arrangement of the heat pump subsystem and the addition of a cooling tower to provide the heat sink for cooling mode operation.

  19. Operating experience with ESCAR magnet cooling system

    The ESCAR magnet cooling system has been successfully demonstrated. This two-phase helium cooling system includes a CTI-Sulzer gas-bearing turbine refrigerator with two-stage compression by oil-lubricated screw compressors, 120 m of 5-cm-diameter vacuum-insulated transfer line and twelve series-connected magnet cryostats with weirs for liquid level control. The refrigeration plant provides up to 1900 w of refrigeration at 4.5 K with a mass flow of 113 g/s. Heat load within the transfer line has been measured at 0.25 w/m in sub-system testing. Cool-down times to 4.5 K for the 12 warm-iron magnets with a cold mass of 2500 kg have been about 12 hours. The magnet cryostats separate the liquid by gravitational extraction and fill in sequence at a rate of up to 400 l/hr. A heater in the transfer line allows adjustment of the inlet coolant quality (ratio of gas to liquid) to the cryostats. Pressure levels in the cold bore, beam orbit space were below -10 torr

  20. A study on cooling efficiency using 1-d analysis code suitable for cooling system of thermoforming

    Thermoforming is one of the most versatile and economical processes available for polymer products, but cycle time and production cost must be continuously reduced in order to improve the competitive power of products. In this study, water spray cooling was simulated to apply to a cooling system instead of compressed air cooling in order to shorten the cycle time and reduce the cost of compressed air used in the cooling process. At first, cooling time using compressed air was predicted in order to check the state of mass production. In the following step, the ratio of removed energy by air cooling or water spray cooling among the total removed energy was found by using 1-D analysis code of the cooling system under the condition of checking the possibility of conversion from 2-D to 1-D problem. The analysis results using water spray cooling show that cycle time can be reduced because of high cooling efficiency of water spray, and cost of production caused by using compressed air can be reduced by decreasing the amount of the used compressed air. The 1-D analysis code can be widely used in the design of a thermoforming cooling system, and parameters of the thermoforming process can be modified based on the recommended data suitable for a cooling system of thermoforming

  1. Low pressure cooling seal system for a gas turbine engine

    Marra, John J

    2014-04-01

    A low pressure cooling system for a turbine engine for directing cooling fluids at low pressure, such as at ambient pressure, through at least one cooling fluid supply channel and into a cooling fluid mixing chamber positioned immediately downstream from a row of turbine blades extending radially outward from a rotor assembly to prevent ingestion of hot gases into internal aspects of the rotor assembly. The low pressure cooling system may also include at least one bleed channel that may extend through the rotor assembly and exhaust cooling fluids into the cooling fluid mixing chamber to seal a gap between rotational turbine blades and a downstream, stationary turbine component. Use of ambient pressure cooling fluids by the low pressure cooling system results in tremendous efficiencies by eliminating the need for pressurized cooling fluids for sealing this gap.

  2. Controlled cooling of an electronic system based on projected conditions

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  3. Controlled cooling of an electronic system based on projected conditions

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-05-17

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  4. Electromechanically cooled germanium radiation detector system

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  5. Application of waste heat powered absorption refrigeration system to the LNG recovery process

    Kalinowski, Paul; Hwang, Yunho; Radermacher, Reinhard [Center for Environmental Energy Engineering, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States); Al Hashimi, Saleh; Rodgers, Peter [The Petroleum Institute, Abu Dhabi (United Arab Emirates)

    2009-06-15

    The recovery process of the liquefied natural gas requires low temperature cooling, which is typically provided by the vapor compression refrigeration systems. The usage of an absorption refrigeration system powered by waste heat from the electric power generating gas turbine could provide the necessary cooling at reduced overall energy consumption. In this study, a potential replacement of propane chillers with absorption refrigeration systems was theoretically analyzed. From the analysis, it was found that recovering waste heat from a 9 megawatts (MW) electricity generation process could provide 5.2 MW waste heat produced additional cooling to the LNG plant and save 1.9 MW of electricity consumption. Application of the integrated cooling, heating, and power is an excellent energy saving option for the oil and gas industry. (author)

  6. Potassium emission absorption system. Topical report 12

    Bauman, L.E.

    1995-04-01

    The Potassium Emission Absorption System is one of the advanced optical diagnostics developed at Mississippi State University to provide support for the demonstration of prototype-scale coal-fired combustion magnetohydrodynamic (MHD) electrical power generation. Intended for application in the upstream of an MHD flow, the system directly measures gas temperature and neutral potassium atom number density through spectroscopic emission absorption techniques. From these measurements the electron density can be inferred from a statistical equilibrium calculation and the electron conductivity in the MHD channel found by use of an electron mobility model. The instrument has been utilized for field test measurements on MHD facilities for almost a decade and has been proven to provide useful measurements as designed for MHD nozzle, channel, and diffuser test sections. The theory of the measurements, a system description, its capabilities, and field test measurement results are reported here. During the development and application of the instrument several technical issues arose which when addressed advanced the state of the art in emission absorption measurement. Studies of these issues are also reported here and include: two-wavelength measurements for particle-laden flows, potassium D-line far wing absorption coefficient, bias in emission absorption measurements arising from dirty windows and misalignments, non-coincident multiwavelength emission absorption sampling errors, and lineshape fitting for boundary layer flow profile information. Although developed for NLHD application, the instrument could be applied to any high temperature flow with a resonance line in the 300 to 800 nm range, for instance other types of flames, rocket plumes or low temperature plasmas.

  7. Design study of cooling system for tokamak fusion reactor

    Design study of the reactor cooling system for a tokamak fusion reactor has been carried out. In the cooling system of an experimental 150 MWt fusion reactor, to grasp the plant concept and clarify the R and D items the main cooling system and the tritium recovery system were designed and the auxiliary system was examined. In the cooling system of a commercial 2000 MWt fusion reactor, to study the plant and environment safety the main cooling system and the tritium recovery system were designed, including the evaluation of water leakage and tritium penetration in the steam generators. (auth.)

  8. Emergency reactor cooling systems for the experimental VHTR

    Performances and design of the panel cooling system which has been proposed to be equipped as an emergency reactor cooling system for the experimental multi purpose very high temperature gas-cooled reactor are explained. Effects of natural circulation flow which would develop in the core and temperature transients of the panel in starting have been precisely investigated. Conditions and procedures for settling accidents with the proposed panel cooling system have been also studied. Based on these studies, it has been shown that the panel cooling system is effective and useful for the emergency reactor cooling of the experimental VHTR. (author)

  9. The heller system. The economical substitute for wet cooling

    Balogh, Andras; Szabo, Zoltan [GEA EGI Contracting/Engineering Co. Ltd., Budapest (Hungary)

    2009-11-15

    As a result of growing environmental awareness - at least in the form of verbal statements - there is a consensus about the importance of applying water conservation type cooling systems. In practice, however, their application is still far behind that of the water-thirsty cooling methods. This paper introduces one of the proven dry cooling: the advanced Heller system (an indirect dry cooling) and its dry/wet derivatives. Besides giving a basic technical and environmental review, results of some economic case studies are also presented. These show how a natural draft Heller system can extend the economic viability of water conservation type cooling systems as compared to wet cooling. (orig.)

  10. Coherence-assisted single-shot cooling by quantum absorption refrigerators

    Mitchison, Mark T.; Woods, Mischa P.; Prior, Javier; Huber, Marcus

    2015-11-01

    The extension of thermodynamics into the quantum regime has received much attention in recent years. A primary objective of current research is to find thermodynamic tasks which can be enhanced by quantum mechanical effects. With this goal in mind, we explore the finite-time dynamics of absorption refrigerators composed of three quantum bits (qubits). The aim of this finite-time cooling is to reach low temperatures as fast as possible and subsequently extract the cold particle to exploit it for information processing purposes. We show that the coherent oscillations inherent to quantum dynamics can be harnessed to reach temperatures that are colder than the steady state in orders of magnitude less time, thereby providing a fast source of low-entropy qubits. This effect demonstrates that quantum thermal machines can surpass classical ones, reminiscent of quantum advantages in other fields, and is applicable to a broad range of technologically important scenarios.

  11. The development of a solar-powered residential heating and cooling system

    1974-01-01

    Efforts to demonstrate the engineering feasibility of utilizing solar power for residential heating and cooling are described. These efforts were concentrated on the analysis, design, and test of a full-scale demonstration system which is currently under construction at the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama. The basic solar heating and cooling system under development utilizes a flat plate solar energy collector, a large water tank for thermal energy storage, heat exchangers for space heating and water heating, and an absorption cycle air conditioner for space cooling.

  12. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles: Active cooling system analysis

    Stone, J. E.

    1975-01-01

    The effects of fuselage cross section and structural arrangement on the performance of actively cooled hypersonic cruise vehicles are investigated. An active cooling system which maintains the aircraft's entire surface area at temperatures below 394 K at Mach 6 is developed along with a hydrogen fuel tankage thermal protection system. Thermodynamic characteristics of the actively cooled thermal protection systems established are summarized. Design heat loads and coolant flowrate requirements are defined for each major structural section and for the total system. Cooling system weights are summarized at the major component level. Conclusions and recommendations are included.

  13. Techno-economic studies on hybrid energy based cooling system for milk preservation in isolated regions

    Highlights: • Performance studies on biomass and biogas based milk cooling systems in remote areas. • Economic analysis of milk cooling system operated with locally available renewable energy sources. • Payback period for replacing conventional milk cooling systems with renewable energy based cooling system. • Identification of the suitable combination of locally available renewable energy sources for milk cooling. • Hybrid energy based milk cooling system for regions that have rubber and paddy cultivation, in India. - Abstract: In developing countries like India, about 70% of the population is engaged in the production of milk, fruits and vegetables. Due to the lack of proper storage and transit facilities, the agricultural produce, in remote areas loses its value. This spoilage could be prevented at the local village level, by providing cooling units for short term preservation. In this paper, the possibility of a hybrid energy based thermally operated cold storage has been considered to meet the cooling needs of the villages in the southern parts of India, where biomass, biogas and gobar gas are available in abundance. A milk cooling system that uses various combinations of locally available renewable energy sources to operate an aqua ammonia vapour absorption cooling system has been analysed using the Matlab software. The impact of various combinations of renewable energy sources on the Coefficient of Performance (COP), Net Present Value (NPV) and payback period of the total cooling system has been studied. The analysis shows that the COP and payback period of the proposed hybrid renewable energy based milk cooling system are 0.16–0.23 and 4–6 years respectively

  14. Cooling load differences between radiant and air systems

    Feng, Jingjuan Dove; Schiavon, Stefano; Bauman, Fred

    2013-01-01

    Unlike the case of air systems where the cooling load is purely convective, the cooling load for radiant systems consists of both convective and radiant components. The main objectives of this energy simulation study were to investigate whether the same design cooling load calculation methods can be used for radiant and air systems by studying the magnitude of the cooling load differences between radiant and air systems over a range of configurations and to suggest potential improvem...

  15. Automotive cooling systems based on metal hydrides

    Linder, Marc

    2010-01-01

    The present work focuses on metal hydride sorption systems as an alternative technology for automotive air-conditioning systems. Although this technology offers the possibility to increase the energy efficiency of a car (by utilising waste heat) and consequently reduces the CO2 emissions, its weight specific cooling power has so far been the main obstacle for an automotive application. Based on investigations of various metal hydrides, two alloys (LmNi4.91Sn0.15 and Ti0.99Zr0.01V0.43Fe0.09Cr0...

  16. The Selection of Cooling Systems of Giant Hydro-Generators

    2010-01-01

    The selection of cooling system for hydro-generator in Ertan Hydropower Station is reviewed in this paper. The new viewpoint on air-cooled system of hydraulic generator of recent years is analyzed and described. That is, "Full air-cooled system is always preferred to inner

  17. 40 CFR 89.329 - Engine cooling system.

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine cooling system. 89.329 Section 89.329 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Provisions § 89.329 Engine cooling system. An engine cooling system is required with sufficient capacity...

  18. Emergency cooling system for nuclear reactors

    Upon the occasion of loss of coolant in a nuclear reactor as when a coolant supply or return line breaks, or both lines break, borated liquid coolant from an emergency source is supplied in an amount to absorb heat being generated in the reactor even after the control rods have been inserted. The liquid coolant flows from pressurized storage vessels outside the reactor to an internal manifold from which it is distributed to unused control rod guide thimbles in the reactor fuel assemblies. Since the guide thimbles are mounted at predetermined positions relative to heat generating fuel elements in the fuel assemblies, holes bored at selected locations in the guide thimble walls, sprays the coolant against the reactor fuel elements which continue to dissipate heat but at a reduced level. The cooling water evaporates upon contacting the fuel rods thereby removing the maximum amount of heat (970 BTU per pound of water) and after heat absorption will leave the reactor in the form of steam through the break which is the cause of the accident to help assure immediate core cooldown

  19. Solar-powered single-and double-effect directly air-cooled LiBr–H2O absorption prototype built as a single unit

    Highlights: • This work presents a novel solar cooling air-cooled absorption prototype for buildings. • The solution (LiBr–H2O) and the refrigerant (H2O) are cooled directly by air. • The cooling is produced from solar energy when operates in single-effect mode. • If the demand is not met the prototype is able to operate in double-effect mode. - Abstract: This work describes an installation in Madrid, Spain, designed to test a new solar-powered air-cooled absorption refrigeration system. This installation essentially consists of a-48 m2 field of flat-plate solar collectors, a 1500-L hot water storage tank and a single and-double effect air-cooled lithium bromide absorption prototype. Designed and built by our research group, this prototype is able to operate either as a single-effect unit (4.5 kW) or as a double-effect unit (7 kW). In operation as single-effect mode, the prototype is driven by solar energy, whereas in operation as a double effect mode, an external energy source may be used. The prototype’s evaporator is connected to a fan-coil placed inside an 80-m2 laboratory that represent the average size of a Spanish housing unit. In August 2009, the cooling system was tested in the single-effect operation mode. The results show that the system is able to meet approximately 65% of the laboratory’s seasonal cooling demand, although 100% may be reached for a few days. The prototype can also operate in double-effect mode to meet the cooling demand. In that case, the prototype is fed by thermal oil, which is warmed until it reaches the process temperature in the high-temperature generator. The prototype can operate in either single-effect mode or in double-effect mode or can also operate simultaneously both modes using the components common to both modes, namely, the absorber, evaporator, condenser, solution pumps and control equipment. This paper reports the experimental results from the prototype operating separately in single-effect and double

  20. Pre-Analysis of Triga Mark II Reactor Cooling System

    AKAY, Orhan Erdal

    2012-01-01

    In this study, work of the reactor cooling system is divided into two time zone. The second cooling circuit has been that the conditions required operating. Cooling system which is the center of the heat exchanger total heat transfer coefficient correlations were calculated using the theoretical. The design values were compared with results obtained by calculation.

  1. Solar heating and cooling systems design and development

    1977-01-01

    The development and delivery of eight prototype solar heating and cooling systems for installation and operational test was reported. Two heating and six heating and cooling units will be delivered for single family residences, multiple family residences and commercial applications.

  2. Integrated exhaust gas recirculation and charge cooling system

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  3. New Possibilities with Old Technique : a Feasibility Study of Absorption Cooling in Örebro District Cooling Network

    Jönsson, Yvette; Magnusson, Erik

    2008-01-01

    E.ON Värme in Örebro produces electricity and delivers heat and cooling to customers in the region. The Åby Plant operates as a combined heat and power (CHP) plant and runs mostly on different biofuels. A new boiler and turbine is projected for the plant and will start operating fully during year 2012. This creates new possibilities for the existing small scale district cooling production. The number of cooling subscribers is today low and the power output is approximately 7.7 MW but has a gr...

  4. Misting-cooling systems for microclimatic control in public space

    Nunes, Joao; Zoilo, Inaki; Jacinto, Nuno; Nunes, Ana; Torres-Campos, Tiago; Pacheco, Manuel; Fonseca, David

    2011-01-01

    Misting-cooling systems have been used in outdoor spaces mainly for aesthetic purposes, and punctual cooling achievement. However, they can be highly effective in outdoor spaces’ bioclimatic comfort, in terms of microclimatic control, as an evaporative cooling system. Recent concerns in increasing bioclimatic standards in public outdoor spaces, along with more sustainable practices, gave origin to reasoning where plastic principles are combined with the study of cooling efficacy, in order to ...

  5. Theoretical Analysis of Radiative Cooling for Mobile and Embedded Systems

    De Vogeleer, Karel; Memmi, Gerard; Jouvelot, Pierre,; Coelho, Fabien

    2014-01-01

    A new global analytical model of the heat dissipation process that occurs in passively-cooled embedded systems is introduced, and we explicit under what circumstances the traditional assumption that exponential cooling laws apply in such context is valid. Since the power consumption and reliability of microprocessors are highly dependent on temperature, management units need accurate thermal models. Exponential cooling models are justified for actively-cooled systems. Here, we analyze the tra...

  6. The Scroll Compressor With Internal Cooling System In Cryogenics Applications

    Rak, Józef; Pietrowicz, S?awomir; Gnutek, Zbigniew

    2014-01-01

    In order to decrease the energy cost of a compression process the cooling system has to be applied. Based on the modified vanes geometry the new cooling system for the scroll machines was proposed. The distinctive trait of the new vane is a significant space where the cooling apparatus is possible to install. Applying internal cooling may contribute to decreasing outlet temperature thus increase the efficiency of the process. Based on the initial CFD results a large heat extraction scroll com...

  7. New Directions for Evaporative Cooling Systems.

    Robison, Rita

    1981-01-01

    New energy saving technology can be applied to older cooling towers; in addition, evaporative chilling, a process that links a cooling tower to the chilling equipment, can reduce energy use by 80 percent. (Author/MLF)

  8. Experimental study on a transpiration cooling thermal protection system

    2010-01-01

    Transpiration cooling thermal protection systems (TPS) are investigated for potential applications in hypersonic and re-entry vehicles,which are subjected to the severe aerodynamic heating environment. In this paper a transpiration cooling thermal protection system was designed and manufactured,and an experiment platform with radiant heating at the bottom as heat source was developed. The cooling capacity of the transpiration cooling TPS was experimentally investigated. By combining transpiration cooling method with traditional TPS,the heat load capability of the TPS can be improved. The structure temperature with active cooling applied was much lower than that without active cooling applied under the same heat load as well as the heat load increased with active cooling than the one without active cooling for the same structure temperature. The experimental results showed that at 5800 s,the temperature of inner structure was 100°C with active cooling applied compared to 500°C without active cooling applied,then the temperature increased and reached to 360°C at 8300 s. Heat load of this transpiration cooling TPS can be increased by over 70% as compared to the passion one and the cooling capability of the transpiration TPS was about 1700 kJ/kg. The results can provide fundamental data for developing the transpiration cooling TPS.

  9. System technology improves the chances of solar cooling

    This article takes a look at the increasing range of products on offer in the solar cooling area. Such an increase applies in particular to products in the low and medium power ranges under 30 kilowatts. Several hindrances to the expansion of the solar air-conditioning (SAC) market are named, both in the technological as well as in the operational area. The author states that a considerable amount of optimisation work is still to be done. Market offerings using absorption and adsorption techniques are examined, as are silica gel-based systems. Companies in the German-speaking parts of Europe active in the area are listed and their work is reviewed. The opinions of various experts that were presented at a congress on the subject are noted. Planning tools made available by the International Energy Agency's Task 38 'Solar air-conditioning and refrigeration' are mentioned.

  10. Deposit control in process cooling water systems

    In order to achieve efficient heat transfer in cooling water systems, it is essential to control the fouling of heat exchanger surfaces. Solubilities of scale forming salts, their growth into crystals, and the nature of the surfaces play important roles in the deposition phenomenon. Condensed phosphates, organic polymers and compounds like phosphates are effective in controlling deposition of scale forming salts. The surface active agents inhibit crystal growth and modify the crystals of the scale forming salts, and thus prevent deposition of dense, uniformly structured crystalline mass on the heat transfer surface. Understanding the mechanism of biofouling is essential to control it by surface active agents. Certain measures taken in the plant, such as back flushing, to control scaling, sometimes may not be effective and can be detrimental to the system itself. (author)

  11. Appropriate heat load ratio of generator for different types of air cooled lithium bromide–water double effect absorption chiller

    Highlights: • Effect of heat load ratio of generator on the performance was analyzed. • The performance is sensitive to heat load ratio of generator. • The appropriate heat load ratio of generator for four systems was obtained. • The change of appropriate heat load ratio of generator for four systems was studied. - Abstract: The lower coefficient of performance and higher risk of crystallization in the higher surrounding temperature is the primary disadvantage of air cooled lithium bromide–water double effect absorption chiller. Since the coefficient of performance and risk of crystallization strongly depend on the heat load ratio of generator, the appropriate heat load ratio of generator can improve the performance as the surrounding temperature is higher. The paper mainly deals with the appropriate heat load ratio of generator of air cooled lithium bromide–water double effect absorption chiller. Four type systems named series, pre-parallel, rear parallel and reverse parallel flow configuration were considered. The corresponding parametric model was developed to analyze the comprehensive effect of heat load ratio of generator on the coefficient of performance and risk of crystallization. It was found that the coefficient of performance goes up linearly with the decrease of heat load ratio of generator. Simultaneously, the risk of crystallization also rises slowly at first but increases fast finally. Consequently, the appropriate heat load ratio of generator for the series and pre-parallel flow type systems is suggested to be 0.02 greater than the minimum heat load ratio of generator and that for the rear parallel and reverse parallel flow chillers should be 0.01 higher than the minimum heat load ratio of generator. Besides, the changes of minimum heat load ratio of generator for different type systems with the working condition were analyzed and compared. It was found that the minimum heat load ratio of generator goes up with the increase of

  12. The Proposed Heating and Cooling System in the CH2 Building and Its Impact on Occupant Productivity

    Lu Aye

    2012-11-01

    Full Text Available Melbourne's climatic conditions demand that its buildings require both heating and cooling systems. In a multi-storey office building , however, cooling requirements will dominate. How the internal space is cooled and ventilation air is delivered will significantly impact on occupant comfort. This paper discusses the heating and cooling systems proposed for the CH2building. The paper critiques the proposed systems against previous experience, both internationally and in Australia. While the heating system employs proven technologies, less established techniques are proposed for the cooling system. Air movement in the shower towers, for example, is to be naturally induced and this has not always been successful elsewhere. Phase change material for storage of "coolth" does not appear to have been demonstrated previously in a commercial building, so the effectiveness of the proposed system is uncertain. A conventional absorption chiller backs up the untried elements of the cooling system, so that ultimately occupant comfort should not be compromised .

  13. Extended Cooling System for High Power Reactors

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants (NPPs) and proposed for advanced light water reactors (LWRs). However, it is not clear that currently proposed external reactor vessel cooling (ERVC) could provide sufficient heat removal for higher power reactors. This paper proposes a dual retention strategy to realize fail-proof defense-in-depth in the APR1400 (Advanced Power Reactor 1400 MWe) and the OPR 1000 (Optimized Power Reactor 1000 MWe). The dual retention has the advantage of IVR-ERVC as well as ex-vessel cooling (EVC) strategies. The multilateral, multidisciplinary project calls for national and international cutting-edge technologies to research and produce (R and P) the D2R2 (Duel Retention Demonstration Reactor) equipped with OASIS (Optimized Advanced Safety Injection System) and ROSIS (Reactor Outer Safety Injection System) to cope with design-basis accidents and beyond in a coherent, continual, comprehensive manner. The enterprise aims to develop the design-basis and severe accident engineering solutions. The enterprise aims to develop the design-basis and severe accident engineering solutions. The former embraces ISAIAH (Injection System Annular Interactive Aero Hydrodynamics) and MESIAH (Methodical Evaluation System Interactive Aero Hydrodynamics). The latter comprises GODIVA (Geo metrics of Direct Injection Versatile Arrangement), SONATA (Simulation of Narrow Annular Thermomechanical Arrest or), TOCATA (Termination of Corium Ablation Thermal Attack) and STRADA (Solution to Reactor Advanced Design Alternatives). D2R2 will contribute to enhancement of both safety and economics for an advanced high power particular and nuclear power in general

  14. Evaporative Cooling and Dehumidification Garment for Portable Life Support Systems

    Izenson, Michael; Chen, Weibo; Bue, Grant

    2013-01-01

    This paper describes the design and development of an innovative thermal and humidity control system for future space suits. The system comprises an evaporation cooling and dehumidification garment (ECDG) and a lithium chloride absorber radiator (LCAR). The ECDG absorbs heat and water vapor from inside the suit pressure garment, while the LCAR rejects heat to space without venting water vapor. The ECDG is built from thin, flexible patches with coversheets made of non-porous, water-permeable membranes that -enclose arrays of vapor flow passages. Water vapor from inside the spacesuit diffuses across the water permeable membranes, enters the vapor flow channels, and then flows to the LCAR, thus dehumidifying the internal volume of the space suit pressure garment. Additional water evaporation inside the ECDG provides cooling for sensible heat loads. -The heat released from condensation and absorption in the LCAR is rejected to the environment by thermal radiation. We have assembled lightweight and flexible ECDG pouches from prototypical materials and measured their performance in a series of separate effects tests under well-controlled, prototypical conditions. Sweating hot plate tests at typical space suit pressures show that ECDG pouches can absorb over 60 W/ft of latent heat and 20 W/ft of sensible heat from the pressure garment environment. These results are in good agreement with the predictions of our analysis models.

  15. Solar cooling systems. Classification and energetic evaluation; Solare Kuehlsysteme. Klassifizierung und energetische Bewertung

    Hennig, Jakob [Technische Univ. Bergakademie Freiberg (Germany); Hafner, Armin [SINTEF Energy Research, Trondheim (Norway); Eikevik, Trygve M. [NTNU, Trondheim (Norway)

    2012-07-01

    The investigation of alternative, sustainable concepts for cold production is worthwhile in times of increasing energy demand for cooling and air conditioning applications. Energy sources such as solar radiation can help to reduce the burden on the environment and energy networks. Solar electricity from photovoltaic cells or solar power from solar collectors can be used in refrigerating equipment (such as cold vapor compression chiller, absorption chiller, adsorption chillers, open systems, thermo-mechanical systems or ejector-based systems) are fed in order to produce the desired coldness. In many cases, the temporal coincidence of radiation supply and cooling requirements makes the solar cooling to a promising concept, especially at sites with a high solar radiation, large cooling demand, high energy prices, or insufficient access to public power grids. A model-based investigation of different solar cooling systems with an equivalent cooling capacity was carried out. The results show that the performance potential strongly depends on the selected technology and the site of the system. A balanced daily energy balance can be achieved with an appropriately dimensioned solar power plant with cooling concept. Depending on the system and interpretation, primary energy savings or a primary energy overhead can be achieved within a year in comparison to a conventional system.

  16. Load calculations of radiant cooling systems for sizing the plant

    Bourdakis, Eleftherios; Kazanci, Ongun Berk; Olesen, Bjarne W.

    2015-01-01

    The aim of this study was, by using a building simulation software, to prove that a radiant cooling system should not be sized based on the maximum cooling load but at a lower value. For that reason six radiant cooling models were simulated with two control principles using 100%, 70% and 50% of t...

  17. TEVA new cooling system from the point of view electric

    The objective of the project is to ensure that TEVA temperature reservoir discharge cooling Arrocampo the Torrejon-Tajo does not exceed the limit value 30 degree centigrade. To do this, we have installed a cooling system based on a cooling tower to which water is supplied by four main pumps 1100kW.

  18. CoolPack – Simulation tools for refrigeration systems

    Jakobsen, Arne; Rasmussen, Bjarne D.; Andersen, Simon Engedal

    1999-01-01

    CoolPack is a collection of programs used for energy analysis and optimisation of refrigeration systems. CoolPack is developed at the Department of Energy Engineering at the Technical University of Denmark. The Danish Energy Agency finances the project. CoolPack is freeware and can be downloaded...

  19. The concept of passive cooling systems for inherently safe BWRs

    The Fukushima Daiichi Nuclear Power Plant accident and its consequences have led to extensive rethinking about the safety technologies used in boiling water reactors (BWRs). As one of the options of the safety technologies, we have been developing passive cooling systems consisting of a water-cooling system and an infinite-time air-cooling system. These systems achieve core cooling without electricity and are intended to cope with a long-term station blackout (SBO). Both these cooling systems remove relatively high decay heat for the initial 10 days after an accident, and then the infinite-time air-cooling system continues to remove attenuated decay heat after this period. To obtain heat transfer data for the design of the water-cooling system, we conducted heat transfer tests using a full-scale U-shaped single tube. The data were obtained at a system pressure of 0.2 to 3.0 MPa (absolute) and inlet steam velocity of 5 to 56 m/s. To enhance heat transfer of the air-cooling system, we successfully implemented some air-cooling enhancing technologies. The performance was evaluated by heat transfer data obtained from the element heat transfer tests. The heat transfer performance increased at least 100% with the enhancement technologies compared with a bare tube. From these test results, we confirmed good feasibility for application of the cooling systems. (author)

  20. Solar thermally driven cooling systems: Some investigation results and perspectives

    Highlights: ► Two types of solar thermally driven absorption refrigeration machines (ARMs) have been investigated. ► We investigated the influence of the operating conditions on the effectiveness of the ARMs. ► The influence of the flow rate of the work solution on the effectiveness of the ARMs has been tested. ► Two laboratory test plants have been built and tested under different operating conditions. - Abstract: A big increase in the number of solar thermal cooling installations and research efforts could be seen over the last years worldwide. Especially the producers of solar thermal collectors and systems have been looking for thermal chillers in the small capacity range to provide air conditioning for one or two family houses. Furthermore, many developments aim to increase the efficiency of the system and to decrease the specific costs of the produced refrigeration capacity. The growth in the use of solar thermal cooling systems amounted about 860% from 52 units in 2004 to 450 units in 2009 [1]. This tendency is expected to be continuously in the next years. The practical examinations on solar thermally driven absorption machines with refrigeration capacity of 15, 10 and 5 kW have shown that this technology has a good chance to be standardized and to replace partly the conventional one. These systems can save more primary energy at high fraction of solar thermally driving by suitable control and regulation of the system. The investing costs still higher as the conventional one, however, the operating costs are less than the conventional one. The Coefficient of Performance (COP) depends on the kind of the system, work temperatures and conditions as well as the refrigeration capacity of the systems. It lies between 0.4 and 1.2. In the framework of the research on this field, we built, tested and measured two prototypes. After measuring the first prototype, the chillers were redesigned to reduce internal heat losses and make the heat and mass transfer

  1. Thermal Sizing of Heat Exchanger Tubes for Air Natural Convective Cooling System of Emergency Cooling Tank

    For the long operation of secondary passive cooling system, however, water level goes down by evaporation in succession at emergency cooling tank. At the end there would be no place to dissipate heat from condensation heat exchanger. Therefore, steam cooling heat exchanger is put on the top of emergency cooling tank to maintain appropriate water level by collecting evaporating steam. Steam cooling heat exchanger is installed inside an air chimney and evaporated steam is cooled down by air natural convection. In this study, thermal sizing of steam cooling heat exchanger under air natural convection was conducted by TSCON program for the design of experimental setup as shown in Fig. 2. Thermal sizing of steam cooling heat exchanger tube under air natural convection was conducted by TSCON program for the design of experimental setup. 25 - 1' tubes which has a length 1687 mm was determined as steam cooling heat exchanger at 2 kW heat load and 100 liter water pool in emergency cooling tank (experimental limit condition). The corresponding width of two tubes is 50 mm and has 5 by 5 tube array for heat exchanger

  2. Effect of Internal Heat Recovery in Ammonia-Water Absorption Cooling Cycles: Exergy and Structural Analysis

    Miquel Nogués

    2009-03-01

    Full Text Available First and second law analysis have been conducted for three low temperature driven ammonia-water absorption cooling cycles with increasing internal heat recovery. Based on the results of exergy analysis the structural analysis has been achieved. The obtained Coefficients of Structural Bonds (CSB consider how the irreversibility of the whole cycle is affected by a change in the irreversibility related to an efficiency improvement of a single component. Trends for the different configurations are similar, while quantitative differences among the main heat exchangers are considerable. The highest values of the CSB are found for the refrigerant heat exchanger. Also the evaporator, the condenser, the generator and the absorber show values higher than unity. The lowest CSB’s are obtained in the solution heat exchanger. In general, CSB’s decrease with increasing efficiency. That means that for very efficient heat exchangers, a further improvement looks less attractive. The dephlegmator is an exception as it shows a singularity of the CSB value due to its complex interactions with the other components. Once the CSB’s are obtained for the main components, they can be used in the structural method of the thermoeconomic optimisation. This method enables us to find the optimum design of a component in a straightforward calculation.

  3. Thermodynamic Modeling of an Ammonia-Water Absorption System Associated with a Microturbine

    Edson Bazzo

    2009-03-01

    Full Text Available Thermodynamic modeling and Second Law analysis of a small-scale cogeneration system consisting of a 5 refrigerant ton absorption chiller connected by a thermosyphon heat exchanger to a 28 kWe natural gas microturbine are presented. The proposed configuration changes the heat source of the absorption chiller, replacing the original natural gas burning system. A computational algorithm was programmed to analyze the global efficiency of the combined cooling and power plant and the coefficient of performance of the absorption chiller. The results show the consistency of the proposed model and a good performance of the cogeneration system. The thermal efficiency of the combined cooling and power plant is approximately 41%, which represents a 67% increase relative to a single natural-gas microturbine.

  4. Theoretical model for Sub-Doppler Cooling with EIT System

    He, Peiru; Tengdin, Phoebe; Anderson, Dana; Rey, Ana Maria; Holland, Murray

    2016-05-01

    We propose a of sub-Doppler cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the so-called Electromagnetically Induced Transparency (EIT) effect, a destructive quantum interference phenomenon experienced by atoms with Lambda-shaped energy levels when illuminated by two light fields with appropriate frequencies. By detuning the probe lasers slightly from the ``dark resonance'', we observe that atoms can be significantly cooled down by the strong viscous force within the transparency window, while being just slightly heated by the diffusion caused by the small absorption near resonance. In contrast to polarization gradient cooling or EIT sideband cooling, no external magnetic field or external confining potential are required. Using a semi-classical method, analytical expressions, and numerical simulations, we demonstrate that the proposed EIT cooling method can lead to temperatures well below the Doppler limit. This work is supported by NSF and NIST.

  5. Technoeconomic evaluation of trigeneraton plant: Gas turbine performance, absorption cooling and district heating

    Polyzakis, Apostolos

    2006-01-01

    This PhD thesis is a demand led study taking into account changes in ambient conditions and power settings of a tri-generation power plant. Includes an evaluation tool for combined heat, cooling and power generation plant. The thesis is based on an overall technical-economic analysis of the tri-generation system, including: 1. Energy demand analysis and evaluation of actual tri-generation case studies. 2. Modelling of the prime mover (Gas Turbine, GT) 3. Modelling of the abs...

  6. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  7. An objective method for screening and selecting personal cooling systems based on cooling properties.

    Elson, John; Eckels, Steve

    2015-05-01

    A method is proposed for evaluation and selection of a personal cooling system (PCS) incorporating PCS, subject, and equipment weights; PCS run time; user task time; PCS cooling power; and average metabolic rate. The cooling effectiveness method presented is derived from first principles and allows those who select PCSs for specific applications to compare systems based on their projected use. This can lower testing costs by screening for the most applicable system. Methods to predict cooling power of PCSs are presented and are compared to data taken through standard manikin testing. The cooling effectiveness ranking is presented and validated against human subject test data. The proposed method provides significant insight into the application of PCS on humans. However, the interaction a humans with a PCS is complex, especially considering the range of clothing ensembles, physiological issues, and end use scenarios, and requires additional analysis. PMID:25683529

  8. Simulation of an adsorption solar cooling system

    A more realistic theoretical simulation model for a tubular solar adsorption refrigerating system using activated carbon-methanol (AC/M) pair has been introduced. The mathematical model represents the heat and mass transfer inside the adsorption bed, the condenser, and the evaporator. The simulation technique takes into account the variations of ambient temperature and solar radiation along the day. Furthermore, the local pressure, and local thermal conductivity variations in space and time inside the tubular reactor are investigated as well. A C++ computer program is written to solve the proposed numerical model using the finite difference method. The developed program covers the operations of all the system components along the cycle time. The performance of the tubular reactor, the condenser, and the evaporator has been discussed. Time allocation chart and switching operations for the solar refrigeration system processes are illustrated as well. The case studied has a 1 m2 surface area solar flat plate collector integrated with a 20 stainless steel tubes containing the AC/M pair and each tube has a 5 cm outer diameter. In addition, the condenser pressure is set to 54.2 kpa. It has been found that, the solar coefficient of performance and the specific cooling power of the system are 0.211 and 2.326 respectively. In addition, the pressure distribution inside the adsorption bed has been found nearly uniform and varying only with time. Furthermore, the AC/M thermal conductivity is shown to be constant in both space and time.

  9. The Selection of Cooling systems of Giant Hydro-Generators

    Li Dingzhong

    2010-01-01

    @@ The selection of cooling system for hydro-generator in Ertan Hydropower Station is reviewed in this pap(ar) The new viewpoint on air-cooled system of hydraul(is)generator of recent years is analyzed and described. That is, "Full air-cooled system is always preferred to inner water cooling system in hydro-generator." Moreov() the decision process and corresponding actions of aircooled system design for hydro-generator in Longtan Hydropower Station, Xiaowan Hydropower Station and Laxiwa Hydropower Station are introduced.

  10. Natural circulating passive cooling system for nuclear reactor containment structure

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  11. Passive cooling system for nuclear reactor containment structure

    Gou, Perng-Fei; Wade, Gentry E.

    1989-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  12. Modelling and analysis of a desiccant cooling system using the regenerative indirect evaporative cooling process

    Bellemo, Lorenzo; Elmegaard, Brian; Reinholdt, Lars O.;

    2013-01-01

    This paper focuses on the numerical modeling and analysis of a Desiccant Cooling (DEC) system with regenerative indirect evaporative cooling, termed Desiccant Dewpoint Cooling (DDC) system. The DDC system includes a Desiccant Wheel (DW), Dew Point Coolers (DPCs), a heat recovery unit and a heat...... source. Heat is used for dehumidification, whereas water is used for cooling and electricity for auxiliaries. An empirical DW model is built based on polynomial fits to manufacturer data. The DPC model is based on first principles, implementing heat and mass transfer using a 1D finite volume scheme and...... in different climates: temperate in Copenhagen and Mediterranean in Venice. Cheap and clean heat sources (e.g. solar energy) strongly increase the attractiveness of the DDC system. For the Mediterranean climate the DDC system represents a convenient alternative to chiller-based systems in terms of...

  13. GOTHIC Simulation of Passive Containment Cooling System

    Ha, Huiun; Kim, Hangon [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2013-05-15

    The performance of this system depends on the condensation of steam moving downward inside externally cooled vertical tubes. AES-2006: During a DBA, heat is removed by internally cooled vertical tubes, which are located in containment. We are currently developing the conceptual design of Innovative PWR, which is will be equipped with various passive safety features, including PCCS. We have plan to use internal heat exchanger (HX) type PCCS with concrete containment. In this case, the elevation of HXs is important to ensure the heat removal during accidents. In general, steam is lighter than air mixture in containment. So, steam may be collected at the upper side of containment. It means that higher elevation of HXs, larger heat removal efficiency of those. So, the aim of the present paper is to give preliminary study on variation of heat removal performance according to elevation of HXs. With reference to the design specification of the current reactors including APR+, we had determined conceptual design of PCCS. Using it, we developed a GOTHIC model of the APR1400 containment was adopted PCCS. This calculation model is described herein and representative results of calculation are presented. APR 1400 GOTHIC model was developed for PCCS performance calculation and sensitivity test according to installation elevation of PCCXs. Calculation results confirm that PCCS is working properly. It is found that the difference due to the installation elevation of PCCXs is insignificant at this preliminary analysis, however, further studies should be performed to confirm final performance of PCCS according to the installation elevation. These insights are important for developing the PCCS of Innovative PWR.

  14. Desiccant Cooling System for Thermal Comfort: A Review

    HEMANT PARMAR,

    2011-05-01

    Full Text Available Desiccant cooling system (DCS is alternate suitable option against conventional cooling system in humid climates. A typical system combines a dehumidifier that uses dry desiccant wheel, with direct or indirect evaporative systems and a sensible cooling system. DCS is the environmental protection technique for cooling purpose of the building. This system reduces the CFC level in the environment because it restricts the use of conventional refrigerant. In this paper, all the working principles and expected research areashave been discussed. Through detailed literature survey it has been observed that a desiccant cooling system may be a suitable option for thermal comfort in the climate where the humidity is higher. Thedesiccant cooling system (DCS has proven their feasibility and cost saving in the field of air conditioning. This review provides a brief overview on the development of desiccant cooling system in different fields. Finally, concluding remarks regarding further development of desiccant cooling for thermal comfort are also provided. This technology is economically feasible and optimizes with low cost. This review is useful for making opportunities to further research in different areas of desiccant cooling system.

  15. Optimisation of the cooling systems in industry in CHP production

    Ahtila, P.; Hippinen, I.; Ruohonen, P. (Helsinki Univ. of Technology, Industrial Energy Engineering, Espoo (Finland)) (and others)

    2009-07-01

    By optimisating of cooling systems and their integrating them into heating systems we can achieve a significant reduction in total energy consumption and green house gas emissions. Integrating the production of cooling into the combined heat and power generation, i.e. trigeneration, improves the efficiency combined energy production. The aim of the study is to rationalise the production and the use of heat and cooling by integrating the systems in industry and between industry and local municipalities. (orig.)

  16. Computational study of metal hydride cooling system

    Satheesh, A.; Muthukumar, P.; Dewan, Anupam [Department of Mechanical Engineering, Indian Institute of Technology, Guwahati, Guwahati 781039 (India)

    2009-04-15

    A computational study of a metal hydride cooling system working with MmNi{sub 4.6}Al{sub 0.4}/MmNi{sub 4.6}Fe{sub 0.4} hydride pair is presented. The unsteady, two-dimensional mathematical model in an annular cylindrical configuration is solved numerically for predicting the time dependent conjugate heat and mass transfer characteristics between coupled reactors. The system of equations is solved by the fully implicit finite volume method (FVM). The effects of constant and variable wall temperature boundary conditions on the reaction bed temperature distribution, hydrogen concentration, and equilibrium pressures of the reactors are investigated. A dynamic correlation of the pressure-concentration-temperature plot is presented. At the given operating temperatures of 363/298/278 K (T{sub H}/T{sub M}/T{sub C}), the cycle time for the constant and variable wall temperature boundary conditions of a single-stage and single-effect metal hydride system are found to be 1470.0 s and 1765.6 s, respectively. The computational results are compared with the experimental data reported in the literature for LaNi{sub 4.61}Mn{sub 0.26}Al{sub 0.13}/La{sub 0.6}Y{sub 0.4}Ni{sub 4.8}Mn{sub 0.2} hydride pair and a good agreement between the two was observed. (author)

  17. Laboratory research on combined cooling, heating and power (CCHP) systems

    Fu, L.; Zhao, X.L.; Zhang, S.G.; Jiang, Y.; Li, H.; Yang, W.W. [Department of Building Science, School of Architecture, Tsinghua University, Beijing (China)

    2009-04-15

    Combined cooling, heating and power (CCHP) systems offer the potential for a significant increase in fuel use efficiency by generating electricity onsite and recycling the exhaust gas for heating, cooling, or dehumidifying. A challenge for CCHP system is the efficient integration of distributed generation (DG) equipment with thermally-activated (TA) technologies. The China Ministry of Science and Technology and Tsinghua University launched the 863 Hi-Tech Program in 2007 to focus on laboratory and demonstration research to study the critical issues of CCHP systems, advance the technology and accelerate its application. The research performed at the Building Energy Research Center (BERC) Laboratory focuses on assessing the operational performance and energy efficiency of the integration of current DG and TA technologies; developing and verifying mathematical models of the individual devices and all the systems. The test laboratory is a flexible test-bed for the configuration of DG (presently a 70-kW natural gas-fired internal combustion engine (ICE) with various heat recovery units, such as an flue gas-to-water heat recovery unit (FWRU), a jacket water heat recovery unit (JRU), liquid desiccant dehumidification systems (LDS), an exhaust-gas-driven double-effect absorption heat pump (EDAHP), and a condensation heat recovery unit (CRU)). In the winter, the exhaust gas from the ICE is used in the FWRU or used to drive the EDAHP directly, and the exhaust gas from the EDAHP is used in the CRU. The water flows from the CRU can be directed to the evaporator side of the EDAHP as the low-grade heat source. The water flows from the condensation side of the EDAHP, in conjunction with the jacket water flows from the JRU, is used for heating. In the summer, the exhaust gas from the ICE is used to drive the EDAHP for cooling directly, the exhaust gas from the EDAHP is bypassed to the exit via automated damper controls. The waste heat of the jacket water is used to drive the

  18. Performance of evacuated tubular solar collectors in a residential heating and cooling system

    Duff, W. S.; Loef, G. O. G.

    1981-03-01

    Operation of CSU Solar House I during the heating season of 1978-1979 and during the 1979 cooling season is discussed. The systems comprised an experimental evacuated tubular solar collector, a nonfreezing aqueous collection medium, heat exchange to an insulated conventional vertical cylindrical storage tank and to a built up rectangular insulated storage tank, heating of circulating air by solar heated water and by electric auxiliary in an off peak heat storage unit, space cooling by lithium bromide absorption chiller, and service water heating by solar exchange and electric auxiliary. The system is compared with CSU Solar Houses I, II and III. The experimental collector provides solar heating and cooling with minimum operational problems. Improved performance, particularly for cooling, resulted from the use of a very well insulated heat storage tank. Day time electric auxiliary heating is avoided by use of off peak electric heat storage.

  19. Analysis of a solar powered absorption system

    Highlights: • Conventional absorption system modified to increase COP. • Results indicated increase of 10% in COP due to dephlegmator heat recovery. • Results indicated increase of 8% in COP due to refrigerant storage unit. • Results indicated increase of 18% in COP due to combined effect of modifications. • Simulation results indicated a very good agreement with the measured results. - Abstract: Today, fossil fuel is the primary extensively used source of energy. However, its negative impact on the environment have forced the energy research continuity to seriously consider renewable sources of energy. Solar energy, in particular, has been the main focus in this regard because it is a source of clean energy and naturally available. This study presents the design and analysis of a solar powered absorption refrigeration system modified to increase its coefficient of performance (COP). The modifications include recovering of waste heat from a dephlegmator and utilization of a refrigerant storage unit. The simulation results indicate an increase of 10% in the COP of the conventional design using dephlegmator heat recovery and an increase of 8% in the COP of the conventional design due to the use of a refrigerant storage. The analysis for the combined effect of modifications indicates an increase of 18% in the COP compared to conventional design. Calculated values of coefficient of performance indicate a very good agreement with the ones obtained based on measurement

  20. Solar space heating and cooling by selective use of the components of a desiccant cooling system

    Abbud, Ihsan Aladdin

    The economic advantages of by-passing various components of a desiccant cooling system under conditions not requiring their use are estimated by evaluating the annual costs of heating and cooling a commercial building in three representative U.S. cities. Life-cycle costs of systems employing solar heat for space heating and desiccant regeneration are compared with those using electric heat. The costs of purchasing and operating heating and desiccant cooling systems, with and without solar heat supply, are compared with those employing conventional heating and vapor compression cooling. The conditions under which commercial buildings can be cooled with desiccant systems at costs competitive with conventional systems are identified. A commercially available vapor compression air conditioner is used as a standard of comparison for energy consumption and room comfort. Heating and cooling requirements of the building are determined by use of the BLAST computer model in a simulation of long term system operation. Performance of the desiccant cooling system and life cycle savings obtained by its use are determined by simulation employing the TRNSYS computer model. TRNSYS compatible subroutines are developed to simulate operation of the desiccant equipment, the building, and the controllers that operate and monitor the system components. The results are presented in tabular and graphical form. This study shows that in the widely different climates represented in Los Angeles, New York, and Miami, by-passing various components in the desiccant cooling system when they are not needed is economically advantageous. Operation cost of the complete system decreased by 47.3% in Los Angeles, by 30.9% in New York City, and by 23.9% in Miami by not operating the desiccant wheel and other elements. The ventilation desiccant cooling system has major economic advantage over conventional systems under conditions of moderate humidity, as in Los Angeles and New York City. In Miami, however

  1. Performance assesment of solar heating and cooling systems

    Thermal performance of the solar thermal systems are estimated using numerical methods and software since the solar processes are transitient in nature been driven by time dependent forcing functions and loads. The system components are defined with mathematical relationships that describe how components function. They are based on the first principles (energy balances, mass balances, rate equations and equilibrium relationships) at one extreme or empirical curve fits to operating data from specific machines such as absorption chillers. The component models are programed, i.e. they represent written subroutines which are simultaneously solved with the executive program. In this paper for executive program is chosen TRNSYS containing library with solar thermal system component models. Validation of the TRNSYS components models is performed, i.e. the simulation results are compared with experimental measurements. Analysis is performed for solar assisted cooling system in order to determine the solar fractions and efficiencies for different collector types, areas and storage tanks. Specific indicators are derived in order to facilitate the techno-economic analysis and design of solar air-conditioning systems. (Author)

  2. Biofouling problems in freshwater cooling systems

    In aqueous environments, microorganisms (bacteria, algae, fungi etc.,) are attracted towards surfaces, which they readily colonise resulting in the formation of biofilms. The implications of biofouling are energy losses due to increased fluid frictional resistance and increased heat transfer resistance. The temperatures prevalent inside the condenser system provide a favorable environment for the rapid growth of microorganisms. This results in thick slime deposit, which is responsible for heat transfer losses, thereby enhancing aggregation of deposits on the material surface and induces localised corrosion. There have been instances of increased capital costs due to premature replacement of equipment caused by severe under deposit corrosion due to biofouling. Moreover, fouling of service water systems of nuclear power plants is of concern, because it reduces the heat transfer capacity during an emergency or an accident. The growth of microbial films (slimes) a few tens of microns thick, in a condenser tube is sufficient to induce microbiologically influenced corrosion and cause irreparable damage to the condenser tubes and other structural materials. The down time costs to power plant due to condenser fouling and corrosion are quite large. This paper presents the author's experience in biofouling and corrosion problems in various power plants cooled by freshwater. (author)

  3. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    None

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  4. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    1981-01-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  5. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    1981-03-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  6. PRELIMINARYANALYSIS OF DIFFERENT COOLING SYSTEMS OF SOWS IN FARROWING ROOM

    Matteo Barbari

    2007-03-01

    Full Text Available A preliminary evaluation of different cooling systems for farrowing - lactating sows was conducted in a pig farm in the North of Italy. In an experimental farrowing room 16 crates were used to study different cooling solutions during three cycles of observations. The evaluated systems were: drip cooling (five crates, drip and snout cooling (six crates, drip cooling and a full steel sheet placed under the body of the sow (five crates. Rectal and skin temperatures were measured during hot hours of the day. Fat thickness was measured and body condition score of the sows was estimated at the beginning and at the end of the lactating period. A closed-circuit television system was also installed to collect information about the behaviour of the sows cooled with the drip system or with both drip and snout cooling system. While differences concerning body and skin temperatures as well as BCS and fat thickness were not significant, the behavioural patterns showed how the sows appreciated the contemporaneous use of the drip and snout cooling methods. The sows preferred to lie with the snout towards the air outlet especially during the hottest hours of the day. In order to obtain the best thermal conditions inside the farrowing crate, the drip system had to be coupled with the snout cooling system and the full metal floor placed under the head of the sows. Further studies are necessary to confirm the preliminary obtained results.

  7. Cooling power costs from a trigeneration system in a hospital

    Žiher, Dejan; Poredoš, Alojz

    2015-01-01

    Hospitals with high needs for electric, heat and cooling power for the whole year seem to be a promising customer interested in introducing a so-called trigeneration system. The goal of the paper is to calculate the costs of thesethree energy forms produced from such a system taking the energy and exergy approach. The emphasis was placed on the costs of cooling energy and its variation during peak and off-peak periods when using different types of cooling devices.

  8. Design development of aggregates cooling systems for hot weather concreting

    Ahmed, Khaled I. E.; A.M.S. HAMOUDA; Gadala, M.S.

    2015-01-01

    Using hot aggregates, in concrete production, results in a drop in compressive strength of the produced concrete. Various methods have been proposed for cooling concrete aggregates. This paper proposes new two designs for aggregates cooling systems for various production rate demands. Conveyor system for small to moderate production rates and rotating drum for high production rates. Simulation of the heat flow during the cooling process over the conveyor and through the drum are analyzed with...

  9. Potential for Absorption Cooling Generated from Municipal Solid Waste in Bangkok : A Comparison between Waste Incineration & Biogas Production with Combustion

    Hedberg, Erika; Danielsson, Helén

    2010-01-01

    This master’s thesis has been performed in Bangkok, Thailand at the company Eco Design Consultant Co., Ltd. The aim is to investigate the possibilities to generate absorption cooling from municipal solid waste in the Bangkok area. The investigation includes a comparison between waste incineration and biogas production with combustion to see which alternative is preferable. During the investigation, a Swedish perspective has been used. The research for the report mainly consisted of published ...

  10. Exergy analysis of a novel air-cooled non-adiabatic absorption refrigeration cycle with NH3–NaSCN and NH3–LiNO3 refrigerant solutions

    Graphical abstract: A methodology based on the second law of thermodynamic has been carried out in the analysis of an air-cooled type ammonia/salt absorption refrigeration system. Simulation results show that Low grade energy is applicable for NH3/NaSCN and NH3/LiNO3 absorption refrigeration system under air cooling condition and relatively high exergetic efficiency can be obtained. - Highlights: • We analyze an absorption refrigeration cycle driven by low grade energy. • Modified Methodology in entropy calculation is presented. • New exergy calculation method of ammonia/salt solution is presented. • Exergy analysis under air-cooled condition is carried out. • Influence of non-adiabatic absorber to exergetic efficiency is analyzed. - Abstract: This paper presents a methodology of exergy analysis for ammonia-lithium nitrate and ammonia-sodium thiocyanate absorption refrigeration cycle which applies a novel air-cooled type non-adiabatic absorber to improve both the coefficient of performance and exegetic efficiency of the system under air cooling condition. A modified entropy calculation method for NH3/NaSCN and NH3/LiNO3 solutions is presented in this literature and different results are obtained comparing to previous research. In addition to the variation of solution temperature and pressure from specific working state to the reference state, the variation of solution concentration, which was always neglected by previous researchers in ammonia/salt solution exergy calculation, has been taken into account while analyzing the least potential of ammonia/salt solution for doing useful work, and a corresponding approach for specific exergy calculation is presented. The effects of generator temperature, absorber outlet temperature, absorber efficiency and other system parameters on system exergetic efficiency have been discussed in this study. Analysis results indicate that relatively high system performance can be obtained by air-cooled type ammonia

  11. Preliminary design activities for solar heating and cooling systems

    1978-01-01

    Information on the development of solar heating and cooling systems is presented. The major emphasis is placed on program organization, system size definition, site identification, system approaches, heat pump and equipment design, collector procurement, and other preliminary design activities.

  12. Exergy and Exergoenvironmental Analysis of a CCHP System Based on a Parallel Flow Double-Effect Absorption Chiller

    Ali Mousafarash

    2016-01-01

    A combined cooling, heating, and power (CCHP) system which produces electricity, heating, and cooling is modeled and analyzed. This system is comprised of a gas turbine, a heat recovery steam generator, and a double-effect absorption chiller. Exergy analysis is conducted to address the magnitude and the location of irreversibilities. In order to enhance understanding, a comprehensive parametric study is performed to see the effect of some major design parameters on the system performance. The...

  13. Venus Surface Power and Cooling System Design

    Landis, Geoffrey A.; Mellott, Kenneth D.

    2004-01-01

    A radioisotope power and cooling system is designed to provide electrical power for the a probe operating on the surface of Venus. Most foreseeable electronics devices and sensors simply cannot operate at the 450 C ambient surface temperature of Venus. Because the mission duration is substantially long and the use of thermal mass to maintain an operable temperature range is likely impractical, some type of active refrigeration may be required to keep certain components at a temperature below ambient. The fundamental cooling requirements are comprised of the cold sink temperature, the hot sink temperature, and the amount of heat to be removed. In this instance, it is anticipated that electronics would have a nominal operating temperature of 300 C. Due to the highly thermal convective nature of the high-density atmosphere, the hot sink temperature was assumed to be 50 C, which provided a 500 C temperature of the cooler's heat rejecter to the ambient atmosphere. The majority of the heat load on the cooler is from the high temperature ambient surface environment on Venus. Assuming 5 cm radial thickness of ceramic blanket insulation, the ambient heat load was estimated at approximately 77 watts. With an estimated quantity of 10 watts of heat generation from electronics and sensors, and to accommodate some level of uncertainty, the total heat load requirement was rounded up to an even 100 watts. For the radioisotope Stirling power converter configuration designed, the Sage model predicts a thermodynamic power output capacity of 478.1 watts, which slightly exceeds the required 469.1 watts. The hot sink temperature is 1200 C, and the cold sink temperature is 500 C. The required heat input is 1740 watts. This gives a thermodynamic efficiency of 27.48 %. The maximum theoretically obtainable efficiency is 47.52 %. It is estimated that the mechanical efficiency of the power converter design is on the order of 85 %, based on experimental measurements taken from 500 watt power

  14. Rankine-cycle solar-cooling systems

    Weathers, H. M.

    1979-01-01

    Report reviews progress made by three contractors to Marshall Space Flight Center and Department of Energy in developing Rankine-cycle machines for solar cooling and testing of commercially available equipment involved.

  15. Analysis of combined cooling, heating, and power systems based on source primary energy consumption

    Fumo, Nelson; Chamra, Louay M. [Department of Mechanical Engineering, Mississippi State University, 210 Carpenter Engineering Building, P.O. Box ME, Mississippi State, MS 39762-5925 (United States)

    2010-06-15

    Combined cooling, heating, and power (CCHP) is a cogeneration technology that integrates an absorption chiller to produce cooling, which is sometimes referred to as trigeneration. For building applications, CCHP systems have the advantage to maintain high overall energy efficiency throughout the year. Design and operation of CCHP systems must consider the type and quality of the energy being consumed. Type and magnitude of the on-site energy consumed by a building having separated heating and cooling systems is different than a building having CCHP. Therefore, building energy consumption must be compared using the same reference which is usually the primary energy measured at the source. Site-to-source energy conversion factors can be used to estimate the equivalent source energy from site energy consumption. However, building energy consumption depends on multiple parameters. In this study, mathematical relations are derived to define conditions a CCHP system should operate in order to guarantee primary energy savings. (author)

  16. Analysis of combined cooling, heating, and power systems based on source primary energy consumption

    Combined cooling, heating, and power (CCHP) is a cogeneration technology that integrates an absorption chiller to produce cooling, which is sometimes referred to as trigeneration. For building applications, CCHP systems have the advantage to maintain high overall energy efficiency throughout the year. Design and operation of CCHP systems must consider the type and quality of the energy being consumed. Type and magnitude of the on-site energy consumed by a building having separated heating and cooling systems is different than a building having CCHP. Therefore, building energy consumption must be compared using the same reference which is usually the primary energy measured at the source. Site-to-source energy conversion factors can be used to estimate the equivalent source energy from site energy consumption. However, building energy consumption depends on multiple parameters. In this study, mathematical relations are derived to define conditions a CCHP system should operate in order to guarantee primary energy savings.

  17. Control of Non-linear Marine Cooling System

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non...

  18. Modeling of Nonlinear Marine Cooling Systems with Closed Circuit Flow

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of constructing a mathematical model for a specific type of marine cooling system. The system in question is used for cooling the main engine and main engine auxiliary components, such as diesel generators, turbo chargers and main engine air coolers for certain classes of ...

  19. Solar heating and cooling systems design and development. [prototype development

    1977-01-01

    The development of twelve prototype solar heating/cooling systems, six heating and six heating and cooling systems, two each for single family, multi-family, and commercial applications, is reported. Schedules and technical discussions, along with illustrations on the progress made from April 1, 1977 through June 30, 1977 are detailed.

  20. Extracting interstellar diffuse absorption bands from cool star spectra: Application to bulge clump giants in Baade's window

    Chen, Hui-Chen; Babusiaux, Carine; Puspitarini, Lucky; Bonifacio, Piercarlo; Hill, Vanessa

    2012-01-01

    Interstellar diffuse bands are usually extracted from hot star spectra because they are characterized by smooth continua. It introduces a strong limitation on the number of available targets, and reduces potential studies of the IS matter and the use of absorptions for cloud mapping. We have developed a new automatic fitting method appropriate to interstellar absorptions in spectra of cool stars that possess stellar atmospheric parameters. We applied this method to the extraction of three DIBs in high resolution VLT FLAMES/GIRAFFE spectra of red clump stars from the bulge. By combining all stellar synthetic spectra, HITRAN-LBLRTM atmospheric transmission spectra and diffuse band empirical absorption profiles, we determine the 6196, 6204, and 6284 A DIB strength toward the 219 target stars and discuss the sources of uncertainties. In order to test the sensitivity of the DIB extraction, we intercompare the three results and compare the DIB equivalent widths with the reddening derived from an independent extinct...

  1. Experiments on novel solar heating and cooling system

    Solar heating and nocturnal radiant cooling techniques are united to produce a novel solar heating and cooling system. The radiant panel with both heating and cooling functions can be used as structural materials for the building envelope, which realizes true building integrated utilization of solar energy. Based on the natural circulation principle, the operation status can be changed automatically between the heating cycle and the cooling cycle. System performances under different climate conditions using different covers on the radiant panel are studied. The results show that the novel solar heating and cooling system has good performance of heating and cooling. For the no cover system, the daily average heat collecting efficiency is 52% with the maximum efficiency of 73%, while at night, the cooling capacity is about 47 W/m2 on a sunny day. On a cloudy day, the daily average heat collecting efficiency is 47% with the maximum of 84%, while the cooling capacity is about 33 W/m2. As a polycarbonate (PC) panel or polyethylene film are used as covers, the maximum heat collecting efficiencies are 75% and 72% and the daily average heat collecting efficiencies are 61% and 58%, while the cooling capacities are 50 W/m2 and 36 W/m2, respectively

  2. Optimization of environmentally friendly solar assisted absorption cooling systems

    Gebreslassie, Berhane Hagos

    2010-01-01

    La optimización de los sistemas de conversión de energía gana cada vez más importancia debido a su impacto ambiental y los limitados recursos de combustibles fósiles. Entre estos sistemas los de refrigeración tienen una contribución creciente en el consumo total de energía y en las emisiones de CO2. Los sistemas de absorción operados con energía solar son una de las alternativas más sostenibles frente a los sistemas de refrigeración convencionales. Por lo tanto, este trabajo se centra en su m...

  3. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  4. Solar heating and cooling technical data and systems analysis

    Christensen, D. L.

    1977-01-01

    The research activities described herein were concentrated on the areas of economics, heating and cooling systems, architectural design, materials characteristics, climatic conditions, educational information packages, and evaluation of solar energy systems and components.

  5. Prototype solar heating and combined heating cooling systems

    1978-01-01

    The design and development of eight prototype solar heating and combined heating and cooling systems is discussed. The program management and systems engineering are reported, and operational test sites are identified.

  6. Case Study of Indirect Adiabatic Cooling System in Historical Building

    Brahmanis, A; Lešinskis, A; Krūmiņš, A

    2013-01-01

    The objective of the present study is to investigate the efficiency of indirect adiabatic chiller-based cooling system efficiency dependence of outdoor air humidity. The system is located in historical building, in temperate climate of Latvia.

  7. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  8. PARAMETERS OF WATER CIRCULATION NETWORK FOR A DISTRICT HEATING AND COOLING SYSTEM

    2000-01-01

    In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, supply water of high temperature from the network drives absorption chillers for air-conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperature in the network, has a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper.

  9. RF and Stochastic Cooling System of the HESR

    Stassen, R; Schug, G; Stockhorst, H; Katayama, T; Thorndahl, L

    2012-01-01

    The High-Energy Storage Ring HESR (1.5-15 GeV/c) for antiprotons at the FAIR complex (Facility for Antiprotons and Ion Research) in Darmstadt (GSI) will have a dedicated stochastic cooling system not only during the experiments to fulfill the beam requirements, but also during the accumulation due to the postponed RESR. Here the cooperation of stochastic cooling with different barrier-bucket configurations is necessary for high accumulation efficiency. The latest hardware configurations and recent tests results of both the RFsystem with air-cooled cavities and the stochastic cooling based on slot-ring couplers will be presented.

  10. Solar residential heating and cooling system development test program

    Humphries, W. R.; Melton, D. E.

    1974-01-01

    A solar heating and cooling system is described, which was installed in a simulated home at Marshall Space Flight Center. Performance data are provided for the checkout and initial operational phase for key subsystems and for the total system. Valuable information was obtained with regard to operation of a solar cooling system during the first summer of operation. Areas where improvements and modifications are required to optimize such a system are discussed.

  11. Design Requirements of an Advanced HANARO Reactor Core Cooling System

    An advanced HANARO Reactor (AHR) is an open-tank-type and generates thermal power of 20 MW and is under conceptual design phase for developing it. The thermal power is including a core fission heat, a temporary stored fuel heat in the pool, a pump heat and a neutron reflecting heat in the reflector vessel of the reactor. In order to remove the heat load, the reactor core cooling system is composed of a primary cooling system, a primary cooling water purification system and a reflector cooling system. The primary cooling system must remove the heat load including the core fission heat, the temporary stored fuel heat in the pool and the pump heat. The purification system must maintain the quality of the primary cooling water. And the reflector cooling system must remove the neutron reflecting heat in the reflector vessel of the reactor and maintain the quality of the reflector. In this study, the design requirement of each system has been carried out using a design methodology of the HANARO within a permissible range of safety. And those requirements are written by english intend to use design data for exporting the research reactor

  12. Study of the circulation theory of the cooling system in vertical evaporative cooling generator

    YU; Shunzhou; CAI; Jing; GUO; Chaohong

    2006-01-01

    The article briefly states the current development of evaporative cooling generator and its advantages comparing with generators of traditional cooling. Vertical evaporative cooling generator, which adopts Close-Loop-Self-Cycle with no-pump and free convection boil in the hollow stator bar, is one of the great developments in generator design. This article emphasizes the importance of cooling system in generator; expatiates the circulation theory in two aspects, energy and flow; and analyzes the essential reason,motivity and stability of Close-Loop-Self-Cycle. The article points out that the motivity of the circulation is the heat absorbed by coolant. After absorbing heat the coolant will have the ability of doing work because of the phase change. In another words, it is the buoyancy causing by density difference leads to the Close-Loop-Self-Cycle. This conclusion is validated by experimental data.

  13. Evaluation of two cooling systems under a firefighter coverall

    Teunissen, L.P.J.; Wang, L.C.; Chou, S.N.; Huang, C.; Jou, G.T.; Daanen, H.A.M.

    2014-01-01

    Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10

  14. The role of district cooling systems in reducing the emission of ozone depleting substances and greenhouse gases

    Some existing and emerging technologies that can be applied in the near term to eliminate or reduce ozone depleting substances (ODS) and greenhouse gases were discussed. A large fraction of the total ODS emissions can be attributed to the cooling (air conditioning) of buildings. From an ecological point of view, the preferred solution to the problem of CFC-elimination in buildings is to connect to a district cooling system where cold energy storage can be applied in a cost effective manner. Ice slurry- based district cooling systems were reviewed, as well as seasonal energy storage such as deep lake water cooling, aquifer energy storage, abandoned mine thermal storage, and ice ponds. Integrated energy systems such as trigeneration, absorption chillers and combined heat and power, were outlined. The advantages of ice slurry based district cooling systems were identified. 15 refs., 10 figs

  15. The Computer Simulation Of RSG-GAS Secondary Cooling System

    The safety operation of RSG-GAS extremely depends on the reliability of the system and its components. Since the RSG-GAS operation age has an enough old, the cooling system components have been degrading. In this age condition, the operation plan that burdening the cooling system should be carefully evaluated before the plan is executed. The safety way to evaluate the heavy burden operation plan is utilize the computer simulation. In the current study, computer simulation of secondary cooling system of RSG-GAS has been carried out by the CATHENA (Canadian Algorithm for THErmalhydraulics Network Analysis) code. The result of this simulation is the performance of the secondary cooling system as the thermal-hydraulics characteristics of the system at the burdening operation plan

  16. Exergy analysis of a gas-hydrate cool storage system

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  17. Computer aided engineering for injection mould cooling system design

    Moran, Niall

    1998-01-01

    The time taken in the cooling stage, of a typical injection moulding cycle, is a large factor in the productivity and efficiency of a plastic manufacturing process, and for this reason, must be minimised. In order to do this a cooling system is employed throughout the mould core. This thesis describes the development and implementation of a PC based analysis system that can be used to optimise the size and position of injection mould cooling systems. The software is fully ‘32-Bit’, operat...

  18. Design, evaluation and recommedation effort relating to the modification of a residential 3-ton absorption cycle cooling unit for operation with solar energy

    Merrick, R. H.; Anderson, P. P.

    1973-01-01

    The possible use of solar energy powered absorption units to provide cooling and heating of residential buildings is studied. Both, the ammonia-water and the water-lithium bromide cycles, are considered. It is shown that the air cooled ammonia water unit does not meet the criteria for COP and pump power on the cooling cycle and the heat obtained from it acting as a heat pump is at too low a temperature. If the ammonia machine is water cooled it will meet the design criteria for cooling but can not supply the heating needs. The water cooled lithium bromide unit meets the specified performance for cooling with appreciably lower generator temperatures and without a mechanical solution pump. It is recommeded that in the demonstration project a direct expansion lithium bromide unit be used for cooling and an auxiliary duct coil using the solar heated water be employed for heating.

  19. Mini Vapour Cycle System For High Density Electronic Cooling Applications

    Mancin, Simone; Zilio, Claudio; Rossetto, Luisa

    2012-01-01

    This paper reports the preliminary experimental results of a mini Vapour Cycle System (VCS) for electronic thermal management applications. The water cooled miniature scale refrigeration system uses R134a as working fluid and implements a new concept oil-free linear compressor prototype. In the range of operating test conditions investigated, the cooling capacity of the system varied from 46 to 310 W while the coefficient of performance (COP) ranged between 1.05 and 5.54. Particular attention...

  20. Prototype solar heating and cooling systems, including potable hot water

    Bloomquist, D.; Oonk, R. L.

    1977-01-01

    Progress made in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water is reported. The system consists of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition. A comparison of the proposed Solaron Heat Pump and Solar Desiccant Heating and Cooling Systems, installation drawings, data on the Akron House at Akron, Ohio, and other program activities are included.

  1. Investigation of the optical absorption characteristics of slow-cooled LiF:Mg,Ti (TLD-100)

    The optical absorption (OA) spectrum of LiF:Mg,Ti has been studied as a function of dose at two different cooling rates following the 400 oC pre-irradiation anneal in order to further investigate the role of cooling rate in the thermoluminescence (TL) mechanisms of this material. 'Slow-cooling' following the pre-irradiation 400 oC anneal substantially decreases the OA bands at 3.25 eV and 4.0 eV, in agreement with the overall loss in TL peaks 2-5 intensity using slow-cooling routines. Slow-cooling appears to shift the maximum intensity of peak 5 to lower temperatures (a behaviour which has been attributed to an enhanced intensity of peak 5a), however, no difference in the shape of the 4.0 eV OA band is detected following 'slow-cooling'. Apparently the OA band related to peak 5a is too close in energy to the peak 5 OA band to be observed due to lack of sufficient resolution and spectral deconvolution process or it is not present at room temperature (RT) and formed during heating of the sample. The intensity of the 4.0 eV OA band does not change if the sample (prior to irradiation to a standard dose of 200 Gy) is irradiated to 4 kGy followed by a 500 oC/1 h post-irradiation anneal. This result demonstrates that the loss of intensity at high levels of dose (so-called radiation damage) of TL glow peak 5 results from alteration of the LCs or to the creation of additional competitive centers and is not correlated with the dose behaviour of the TCs.

  2. Comparison of cooling units (Peltier, absorber, compressor) combined with a PV system; Gegenueberstellung von verschiedenen Kuehlgeraeten (Peltier, Absorber, Kompressor) im Betrieb an einer PV-Anlage

    Kuhn, R.; Zimmermann, A. [Phocos AG, Illerkirchberg (Germany)

    2004-07-01

    We have compared the costs caused by different cooling systems for use in fridges in Off-Grid-PV-Systems. Three types of cooling systems: (a) Peltier-System; (b) Compressor-System; (c) Absorber-System. You can see in Picture 2 that the total cost of the system will go up if the difference between ambient temperature and temperature in the fridge is rising. For temperature difference up to 19 C the Peltier-Cooling-System causes the lowest system-cost. For higher difference the Compressor-System will cause lower costs than the Peltier-System. The Absorption-System causes for all temperatures higher costs. (orig.)

  3. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and absorption heat pump

    Cachorro, Irene Albacete; Daraban, Iulia Maria; Lainé, Guillaume;

    2013-01-01

    . The heat pump is a heat driven system and is running with the heat recovered by a heat exchanger from the exhausted gases from SOFC. The working fluid pair is NH3-H2O and is driven in two evaporators which are working at two different pressures. Thus, the heat pump will operate at tree pressure level......In this paper a system consisting of an SOFC system for cogeneration of heat and power and vapour absorption heat pump for cooling and freezing is assessed and performance is evaluated. Food industry where demand includes four forms of energy simultaneously is a relevant application such a system...... in order to meet the bought cooling and freezing demands. This is an innovative configuration for absorption heat pumps because the cascade is implemented only in vapour compression heat pumps. A smaller ratio of the exhausted gases supplies the energy demand for space heating. The SOFC is fuelled...

  4. Thermodynamic Analysis of an Absorption/Compression Refrigeration System Using Geothermal Energy

    L. Kairouani

    2005-01-01

    Full Text Available This article presents the potential use and exploration of geothermal energy for cooling applications using a combined absorption/compression system. The considered system uses R134a for the compression part and the cool water-ammonia for the absorption part of the installation. The geothermal temperature source is in the range 343-349K, the condensation temperature is 308 K, and in order to produce ice, the R134a evaporation temperature is 263 K. The COP is about 5.4. Therefore, based on the typical geothermal energy sources in Tunisia which present a refrigeration potential power of 9.1 MW, the quantity of ice that could be produced is about 82 tons per hour. The greenhouse gas emissions should thus be reduced by about 5884 tons of CO2 per year, which represents (59%.

  5. Cooling of advanced aircraft actuation systems

    Gilson, Gareth M.

    2012-01-01

    Electrical machines for aerospace applications often operate close to the allowable thermal limits due to high power density requirements. The power density of electrical machines is generally dependent on the machine and thermal management design. At flight level, a reduced pressure exists which in turn results in more challenging thermal management. Aerospace electric machine manufacturers are often limited with respect to the implemented cooling mechanisms. That is, natural convection syst...

  6. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  7. Preoperational test report, primary ventilation condenser cooling system

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  8. Preoperational test report, primary ventilation condenser cooling system

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  9. CAREM 25: Suppression pool cooling and purification system

    The suppression pool cooling and purification system has the following main functions: purify and cool water from the suppression pool, cool and send water to the residual heat extraction system, and transfer water to the fuel element transference channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the suppression pool to the spray network, thus cooling and reducing pressure in the primary containment. The system has been designed in accordance with the requirements of the following standards: ANSI/ANS 52.1; ANSI/ANS 57.2; ANSI/ANS 56.2; ANSI/ANS 59.1; ANSI/ANS 58.3; ANSI/ANS 58.9; and ANSI/ANS 56.5. The design of the system fulfils all the assigned functions. (author)

  10. CAREM-25. Suppression Pool Cooling and Purification System

    The Suppression Pool Cooling and Purification System has the following main functions: purify and cool water from the Suppression Pool, cool and send water to the Residual Heat Extraction System, and transfer water to the Fuel Element Transference Channel. In case of Loss of Coolant Accident (LOCA), the system sends water from the Suppression Pool to the spray network, thus cooling and reducing pressure in the primary containment.The system has been designed in accordance with the requirements of the following standards ANSI/ANS 52.1 [1], ANSI/ANS 57.2 [2], ANSI/ANS 56.2 [3], ANSI/ANS 59.1 [4] ANSI/ANS 58.3 [5], ANSI/ANS 58.9 [6], and ANSI/ANS 56.5 [7]. The design of the system fulfils all the assigned functions

  11. Energetic and exergetic performance analyses of a combined heat and power plant with absorption inlet cooling and evaporative aftercooling

    In this paper, exergy method is applied to analyze the gas turbine cycle cogeneration with inlet air cooling and evaporative aftercooling of the compressor discharge. The exergy destruction rate in each component of cogeneration is evaluated in detail. The effects of some main parameters on the exergy destruction and exergy efficiency of the cycle are investigated. The most significant exergy destruction rates in the cycle are in combustion chamber, heat recovery steam generator and regenerative heat exchanger. The overall pressure ratio and turbine inlet temperature have significant effect on exergy destruction in most of the components of cogeneration. The results obtained from the analysis show that inlet air cooling along with evaporative aftercooling has an obvious increase in the energy and exergy efficiency compared to the basic gas turbine cycle cogeneration. It is further shown that the first-law efficiency, power to heat ratio and exergy efficiency of the cogeneration cycle significantly vary with the change in overall pressure ratio and turbine inlet temperature but the change in process heat pressure shows small variation in these parameters. -- Highlights: → Application of exergy analysis along with energy analysis of gas turbine cogeneration is essential in order to observe its complete thermodynamic view. → We adopt absorption inlet cooling along with evaporative aftercooling in gas turbine cogeneration which results in significant performance improvement. → Analysis of the results concluded that the major option to improve the global thermal efficiency of gas turbine cogeneration is to reduce the local irreversibility rates in the combustion chamber. → Evaporative aftercooling along with absorption inlet cooling results in higher optimum pressure ratios. → It is recognized that experimental studies are needed to establish the practical usefulness of this proposed cycle.

  12. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs)

    Daniel Maraver; Sylvain Quoilin; Javier Royo

    2014-01-01

    This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs), coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP) generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling deman...

  13. SOLAR MULTI-STAGE ABSORPTION REFRIGERATION SYSTEMS BASED ON FILM TYPE HEAT-MASS EXCHANGE APPARATUSES

    Дорошенко, О.В.; Антонова, А.Р.; Людницький, К.В.

    2015-01-01

    The paper presents the developed circuit solutions for alternative refrigeration systems based on the of heat-absorption cycle and solar energy utilization for regeneration (recovery) of the absorbent solution. Cascade principle of heat-mass exchange apparatuses construction was applied, of drying and cooling loops with varying of  temperature level and increasing  of absorbent concentration on the cascade steps. Film type heat and mass transfer equipment, which is the part of the drying and ...

  14. Evaluation of Active Cooling Systems for Non-Residential Buildings

    M.A. Othuman Mydin

    2014-05-01

    Full Text Available Cooling systems are an essential element in many facets of modern society including cars, computers and buildings. Cooling systems are usually divided into two types: passive and active. Passive cooling transfers heat without using any additional energy while active cooling is a type of heat transfer that uses powered devices such as fans or pumps. This paper will focus on one particular type of passive cooling: air-conditioning systems. An air-conditioning system is defined as controlled air movement, temperature, humidity and cleanliness of a building area. Air conditioning consists of cooling and heating. Therefore, the air-conditioning system should be able to add and remove heat from the area. An air-conditioning system is defined as a control or treatment of air in a confined space. The process that occurs is the air-conditioning system absorbs heat and dust while, at the same time, cleaning the air breathed into a closed space. The purpose of air-conditioning is to maintain a comfortable atmosphere for human life and to meet user requirements. In this paper, air-conditioning systems for non-residential buildings will be presented and discussed.

  15. Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system

    Graphical abstract: - Highlights: • An integrated thermoelectric generation-cooling system is analyzed numerically. • The system performance is improved through the geometric design. • The effects of contact resistance and heat convection on performance are considered. • With varied TEG length, the system performance depends on boundary conditions. • The study provides a useful insight into the design of integrated TEG–TEC systems. - Abstract: Geometric design of an integrated thermoelectric generation-cooling system is performed numerically using a finite element method. In the system, a thermoelectric cooler (TEC) is powered directly by a thermoelectric generator (TEG). Two different boundary conditions in association with the effects of contact resistance and heat convection on system performance are taken into account. The results suggest that the characteristics of system performance under varying TEG length are significantly different from those under altering TEC length. When the TEG length is changed, the entire behavior of system performance depends highly on the boundary conditions. On the other hand, the maximum distributions of cooling power and coefficient of performance (COP) are exhibited when the TEC length is altered, whether the hot surface of TEG is given by a fixed temperature or heat transfer rate. The system performance will be reduced once the contact resistance and heat convection are considered. When the lengths of TEG and TEC vary, the maximum reduction percentages of system performance are 12.45% and 18.67%, respectively. The numerical predictions have provided a useful insight into the design of integrated TEG–TEC systems

  16. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  17. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    1980-11-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  18. A model for radionuclide transport in the Cooling Water System

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA

  19. Experimental investigation on charging and discharging performance of absorption thermal energy storage system

    Highlights: • A prototype of ATES using LiBr/H2O was designed and built. • Charging and discharging performances of ATES system were investigated. • ESE and ESD for cooling, domestic hot water and heating were obtained. - Abstract: Because of high thermal storage density and little heat loss, absorption thermal energy storage (ATES) is known as a potential thermal energy storage (TES) technology. To investigate the performance of the ATES system with LiBr–H2O, a prototype with 10 kW h cooling storage capacity was designed and built. The experiments demonstrated that charging and discharging processes are successful in producing 7 °C chilled water, 65 °C domestic hot water, or 43 °C heating water to meet the user’s requirements. Characteristics such as temperature, concentration and power variation of the ATES system during charging and discharging processes were investigated. The performance of the ATES system for supplying cooling, heating or domestic hot water was analyzed and compared. The results indicate that the energy storage efficiencies (ESE) for cooling, domestic hot water and heating are 0.51, 0.97, 1.03, respectively, and the energy storage densities (ESD) for cooling, domestic hot water and heating reach 42, 88, 110 kW h/m3, respectively. The performance is better than those of previous TES systems, which proves that the ATES system using LiBr–H2O may be a good option for thermal energy storage

  20. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    2010-07-01

    ... Cooling Systems § 749.68 Hexavalent chromium-based water treatment chemicals in cooling systems. (a... distribution in commerce of hexavalent chromium-based water treatment chemicals for use in cooling systems. (d... holds hexavalent chromium-based water treatment chemicals for use in cooling systems. (6) Cooling...

  1. Preliminary design package for prototype solar heating and cooling systems

    1978-01-01

    A summary is given of the preliminary analysis and design activity on solar heating and cooling systems. The analysis was made without site specific data other than weather; therefore, the results indicate performance expected under these special conditions. Major items include a market analysis, design approaches, trade studies and other special data required to evaluate the preliminary analysis and design. The program calls for the development and delivery of eight prototype solar heating and cooling systems for installation and operational test. Two heating and six heating and cooling units will be delivered for Single Family Residences, Multiple-family Residences and commercial applications.

  2. Costs and cost algorithms for dry cooling tower systems

    Ard, P.A.; Henager, C.H.; Pratt, D.R.; Wiles, L.E.

    1976-09-01

    Costs were obtained and cast models prepared for the major components beyond the turbine exhaust flange of a dry cooling system using either water or ammonia as the intermediate heat exchange fluid. (LCL)

  3. Gas-cooled Generation IV systems. VHTR and GFR

    In this presentation author deals with the development of nuclear reactor type of The Very High Temperature system (VHTR), the Gas-cooled fast reactor (GFR). Some construction parameters are presented.

  4. Design for Manufacturing for Energy Absorption Systems

    In the typical scenario of a helicopter crash, impact with the ground is preceded by a substantially vertical drop, with the result that a seated occupant of a helicopter experiences high spinal loads and pelvic deceleration during such crash due to the sudden arresting of vertical downward motion. It has long been recognized that spinal injuries to occupants of helicopters in such crash scenario can be minimized by seat arrangements which limit the deceleration to which the seated occupant is subjected, relative to the helicopter, to a predetermined maximum, by allowing downward movement of the seated occupant relative to the helicopter, at the time of impact with the ground, under a restraining force which, over a limited range of such movement, is limited to a predetermined maximum. In practice, significant benefits, in the way of reduced injuries and reduced seriousness of injuries, can be afforded in this way in such crash situations even where the extent of such controlled vertical movement permitted by the crashworthy seat arrangement is quite limited. Important increase of accident safety is reached with the installation of crashworthy shock absorbers on the main landing gear, but this solution is mostly feasible on military helicopters with long fixed landing gear. Seats can then give high contribution to survivability. Commonly, an energy absorber is a constant load device, if one excludes an initial elastic part of the load-stroke curve. On helicopter seats, this behavior is obtained by plastic deformation of a metal component or scraping of material. In the present work the authors have studied three absorption systems, which differ in relation to their shape, their working conditions and their constructive materials. All the combinations have been analyzed for applications in VIP helicopter seats.

  5. Evaluation of cooling performance of thermally activated building system with evaporative cooling source for typical United States climates

    Feng, Jingjuan; Bauman, Fred

    2013-01-01

    Thermally activated building systems (TABS) are gaining popularity as a potentially energy efficient strategy for conditioning buildings. These systems can use large surfaces for heat exchange, and the temperature of the cooling water can be only a few degrees lower than the room air temperature. This small temperature difference allows the use of alternative cooling sources, for example, indirect/direct evaporative cooling, to possibly eliminate refrigerant cooling to reduce energy consumpti...

  6. Cooling systems addendum: capital and total generating cost studies

    These studies present the capital and total generating costs for alternate cooling systems designed for six power plants--1200 MWe (pressurized water reactor, boiling water reactor, high sulfur coal-fired, low sulfur coal-fired) plants and 800 MWe (low-sulfur coal-fired and high-sulfur coal-fired) plants. In these base-capital cost studies, all of the plants are designed using mechanical-draft evaporate towers. Alternate cooling systems evaluated include: once-through, fan-assisted natural-draft towers, and natural-draft towers. These alternative cooling systems represent viable designs from both an economic and engineering standpoint. The estimated total base construction costs for the six plants incorporating the alternate cooling systems are summarized. Capital cost and fuel cost vary with each cooling system as compared to the base case; i.e., mechanical-draft evaporative towers. The once-through cooling systems have the lowest capital cost of the alternate systems evaluated

  7. Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling)

    Solar driven rotary desiccant cooling systems have been widely recognized as alternatives to conventional vapor compression systems for their merits of energy-saving and being eco-friendly. In the previous paper, the basic performance features of desiccant wheel have been discussed. In this paper, a solar driven two-stage rotary desiccant cooling system and a vapor compression system are simulated to provide cooling for one floor in a commercial office building in two cities with different climates: Berlin and Shanghai. The model developed in the previous paper is adopted to predict the performance of the desiccant wheel. The objectives of this paper are to evaluate and compare the thermodynamic and economic performance of the two systems and to obtain useful data for practical application. Results show that the desiccant cooling system is able to meet the cooling demand and provide comfortable supply air in both of the two regions. The required regeneration temperatures are 55 deg. C in Berlin and 85 deg. C in Shanghai. As compared to the vapor compression system, the desiccant cooling system has better supply air quality and consumes less electricity. The results of the economic analysis demonstrate that the dynamic investment payback periods are 4.7 years in Berlin and 7.2 years in Shanghai.

  8. Water cooling system for sintering furnaces of nuclear fuel pellets

    This work has as a main objective to develop a continuous cooling water system, which is necessary for the cooling of the sintering furnaces. This system is used to protect them as well as for reducing the water consumption, ejecting the heat generated into this furnaces and scattering it into the atmosphere in a fast and continuous way. The problem was defined and the reference parameters established, making the adequate research. The materials were selected as well as the length of the pipeline which will carry the secondary refrigerant fluid (water). Three possible solutions were tried,and evaluated, and from these, the thermal and economically most efficient option was selected. The layout of the solution was established and the theoretical construction of a cooling system for liquids using dichlorofluoromethane (R-22), as a refrigerant and a air cooled condenser, was accomplished. (Author)

  9. Adsorption Cooling System Using Metal-Impregnated Zeolite-4A

    Somsuk Trisupakitti

    2016-01-01

    Full Text Available The adsorption cooling systems have been developed to replace vapor compression due to their benefits of being environmentally friendly and energy saving. We prepared zeolite-4A and experimental cooling performance test of zeolite-water adsorption system. The adsorption cooling test-rig includes adsorber, evaporator, and condenser which perform in vacuum atmosphere. The maximum and minimum water adsorption capacity of different zeolites and COP were used to assess the performance of the adsorption cooling system. We found that loading zeolite-4A with higher levels of silver and copper increased COP. The Cu6%/zeolite-4A had the highest COP at 0.56 while COP of zeolite-4A alone was 0.38. Calculating the acceleration rate of zeolite-4A when adding 6% of copper would accelerate the COP at 46%.

  10. A microspray-based cooling system for high powered LEDs

    Highlights: • Microspray-based cooling system for the thermal management of LEDs. • The spray exited the nozzle using piezo-electric micropumping. • The effect of cooling in a non-boiling regime was quantitatively studied. - Abstract: We propose a microspray-based cooling system for the thermal management of high-power, light emitting diodes (LEDs). Experiments were performed by applying a single microspray to a single and a four LED system. The spray exited the nozzle using piezo-electric micropumping. The effect of cooling in a non-boiling regime was quantitatively studied within a range of relevant operating parameters. Furthermore, both μPIV flow visualizations, infrared thermal image observation and flow field measurements were first made to investigate the heat transfer mechanisms involved in this complex process

  11. Simulation Analysis of the Four Configurations of Solar Desiccant Cooling System Using Evaporative Cooling in Tropical Weather in Malaysia

    Dezfouli, M. M. S.; Mat, S.; G. Pirasteh; Sahari, K. S. M.; K. Sopian; M.H. Ruslan

    2014-01-01

    A high demand for air conditioning systems exists in hot and humid regions because of the warm climate during the year. The high energy consumption of conventional air conditioning system is the reason for our investigation of the solar desiccant cooling system as an energy-efficient cooling system. Four model configurations were considered to determine the best configuration of a solar desiccant cooling system: one-stage ventilation, one-stage recirculation, two-stage ventilation, and two-st...

  12. Solar heating and cooling system design and development

    1979-01-01

    The design and development of marketable solar heating and cooling systems for single family and commercial applications is described. The delivery, installation, and monitoring of the prototype systems are discussed. Seven operational test sites are discussed in terms of system performance. Problems encountered with equipment and installation were usually due to lack of skills required for solar system installation.

  13. Active noise canceling system for mechanically cooled germanium radiation detectors

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  14. Cooling Panel Optimization for the Active Cooling System of a Hypersonic Aircraft

    Youn, B.; Mills, A. F.

    1995-01-01

    Optimization of cooling panels for an active cooling system of a hypersonic aircraft is explored. The flow passages are of rectangular cross section with one wall heated. An analytical fin-type model for incompressible flow in smooth-wall rectangular ducts with coupled wall conduction is proposed. Based on this model, the a flow rate of coolant to each design minimum mass flow rate or coolant for a single cooling panel is obtained by satisfying hydrodynamic, thermal, and Mach number constraints. Also, the sensitivity of the optimal mass flow rate of coolant to each design variable is investigated. In addition, numerical solutions for constant property flow in rectangular ducts, with one side rib-roughened and coupled wall conduction, are obtained using a k-epsilon and wall function turbulence model, these results are compared with predictions of the analytical model.

  15. Numerical simulation and performance assessment of an absorption solar air-conditioning system coupled with an office building

    Thomas, Sébastien; Andre, Philippe

    2010-01-01

    To minimize environmental impact and CO2 production associated with air-conditioning, it is reasonable to evaluate the prospects of a clean energy source. Solar energy, via thermal collectors can provide a part of the heating needs. Moreover, it can drive absorption chiller in order to satisfy the cooling needs of buildings. The objective of the work is to evaluate accurately the energy consumption of an air conditioning system including a solar driven absorption chiller. The c...

  16. Simulation of an active cooling system for photovoltaic modules

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  17. Thermodynamic analysis of an absorption system using [bmim]Zn2Cl5/NH3 as the working pair

    Highlights: • Thermodynamic analysis of [bmim]Zn2Cl5/NH3 absorption system was conducted. • Performance of [bmim]Zn2Cl5/NH3 system was compared with NaSCN/NH3 system. • COP and ηex are higher than NaSCN/NH3 system when TG is high and TG and TG are low. • [bmim]Zn2Cl5/NH3 system can be well used in both cooling and heating applications. - Abstract: The thermodynamic performance of an absorption system using [bmim]Zn2Cl5/NH3 as working pair for cooling and heating applications was numerically analyzed. Changes in the coefficient of performance (COP) and exergetic efficiency for [bmim]Zn2Cl5/NH3 absorption refrigeration with varying generation temperature, absorption temperature and condensation temperature were simulated and compared with that of the NaSCN/NH3 system. It was observed that the COP and exergetic efficiency of the [bmim]Zn2Cl5/NH3 system are slightly higher than that of the NaSCN/NH3 system when the generation temperature is high and the condensing temperature and absorption temperature are low. The effects of the generation temperature on the COP and the circulation ratio for cooling were investigated and analyzed. The results indicate that the [bmim]Zn2Cl5/NH3 system is suitable for use in cooling applications. The effects of the generation temperature on the COP, exergy efficiency and circulation ratio for heating were evaluated and discussed. The findings indicate that the [bmim]Zn2Cl5/NH3 absorption system exhibits good thermal performance for heating applications

  18. Broad absorption line quasars have the same cool dust emission as quasars without BALs

    Willott, Chris J.; Rawlings, Steve; Grimes, Jennifer A.

    2003-01-01

    The results of a sub-millimeter survey of SDSS broad CIV absorption line quasars is discussed. It is found that the sub-millimeter flux distribution of BAL quasars is similar to that of non-BAL quasars. This is consistent with the idea that all quasars contain broad absorption line regions, but only a fraction of them are visible along our line-of-sight. The observations are inconsistent with BAL quasars being observed at a special evolutionary epoch co-inciding with a high star-formation rat...

  19. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures

  20. Evaluation of an Absorption Heat Pump to Mitigate Plant Capacity Reduction Due to Ambient Temperature Rise for an Air-Cooled Ammonia and Water Cycle: Preprint

    Bharathan, D.; Nix, G.

    2001-08-06

    Air-cooled geothermal plants suffer substantial decreases in generating capacity at increased ambient temperatures. As the ambient temperature rises by 50 F above a design value of 50 F, at low brine-resource temperatures, the decrease in generating capacity can be more than 50%. This decrease is caused primarily by increased condenser pressure. Using mixed-working fluids has recently drawn considerable attention for use in power cycles. Such cycles are more readily amenable to use of absorption ''heat pumps.'' For a system that uses ammonia and water as the mixed-working fluid, this paper evaluates using an absorption heat pump to reduce condenser backpressure. At high ambient temperatures, part of the turbine exhaust vapor is absorbed into a circulating mixed stream in an absorber in series with the main condenser. This steam is pumped up to a higher pressure and heated to strip the excess vapor, which is recondensed using an additional air-cooled condenser. The operating conditions are chosen to reconstitute this condensate back to the same concentration as drawn from the original system. We analyzed two power plants of nominal 1-megawatt capacity. The design resource temperatures were 250 F and 300 F. Ambient temperature was allowed to rise from a design value of 50 F to 100 F. The analyses indicate that using an absorption heat pump is feasible. For the 300 F resource, an increased brine flow of 30% resulted in a net power increase of 21%. For the 250 F resource, the increase was smaller. However, these results are highly plant- and equipment-specific because evaluations must be carried out at off-design conditions for the condenser. Such studies should be carried out for specific power plants that suffer most from increased ambient temperatures.

  1. New adsorption chillers for CHCP or solar cooling system technology

    Petersen, Stefan; Beil, Alexander; Hennrich, Christian; Lanser, Wolfgang; Hüls, Walther Guido; Stefan, Natzer

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] Sorption cooling technologies are well known as best practice energy efficient cooling supplying apparatus where heat as driving source is delivered by waste heat, trigeneration systems,...

  2. Integrated numerical methods for hypersonic aircraft cooling systems analysis

    Petley, Dennis H.; Jones, Stuart C.; Dziedzic, William M.

    1992-01-01

    Numerical methods have been developed for the analysis of hypersonic aircraft cooling systems. A general purpose finite difference thermal analysis code is used to determine areas which must be cooled. Complex cooling networks of series and parallel flow can be analyzed using a finite difference computer program. Both internal fluid flow and heat transfer are analyzed, because increased heat flow causes a decrease in the flow of the coolant. The steady state solution is a successive point iterative method. The transient analysis uses implicit forward-backward differencing. Several examples of the use of the program in studies of hypersonic aircraft and rockets are provided.

  3. Evaluation of two cooling systems under a firefighter coverall.

    Teunissen, Lennart P J; Wang, Li-Chu; Chou, Shih-Nung; Huang, Chin-Hsien; Jou, Gwo-Tsuen; Daanen, Hein A M

    2014-11-01

    Firemen often suffer from heat strain. This study investigated two chest cooling systems for use under a firefighting suit. In nine male subjects, a vest with water soaked cooling pads and a vest with water perfused tubes were compared to a control condition. Subjects performed 30 min walking and 10 min recovery in hot conditions, while physiological and perceptual parameters were measured. No differences were observed in heart rate and rectal temperature, but scapular skin temperature and fluid loss were lower using the perfused vest. Thermal sensation was cooler for the perfused vest than for the other conditions, while the cool pad vest felt initially cooler than control. However, comfort and RPE scores were similar. We conclude that the cooling effect of both tested systems, mainly providing a (temporally) cooler thermal sensation, was limited and did not meet the expectations. PMID:24798511

  4. The RF System for the International Muon Ionisation Cooling Experiment

    Ronald, K.; Dick, A.J.; Speirs, D.C.; Moss, A.; Grant, A.; White, C.; Griffiths, S.; Stanley, T.; Li, D.; DeMello, A.J.; Virostek, S.; Moretti, A.; Pasquinelli, R.; Peterson, D.; Schultz, R.; Volk, J.; Popovic, M.; Torun, Y.; Hanlet, P.; Alsari, S.; Long, K.; Pasternak, J.; Hunt, C.; Summers, D.; Luo, T.; Smith, P.J.

    2014-01-01

    The International Muon Ionisation Cooling Experiment (MICE) is designed to demonstrate the effectiveness of ionisation cooling to reduce the phase space footprint of a charged particle beam, principally to allow the subsequent acceleration of muons for next generation colliders and/or neutrino factories. The experiment (and indeed any subsequent accelerator cooling channel based on the same principles) poses certain unusual requirements on its RF system, whilst the precision measurement of the ionisation cooling process demands special diagnostics. This paper shall outline the key features of the RF system, including the low level RF control, the power amplifier chain, distribution network, cavities, tuners and couplers, many parts of which are required to operate in a high magnetic field environment. The RF diagnostics which, in conjunction with the other MICE diagnostics, shall allow detailed knowledge of the amplitude and phase of the acceleration field during the transit of each individual muon will also ...

  5. Passive ventilation systems with heat recovery and night cooling

    Hviid, Christian Anker; Svendsen, Svend

    University of Denmark. Through building integration in high performance offices the system is optimized to incorporate multiple functions like heating, cooling and ventilation, thus saving the expenses of separate cooling and heating systems. The simulation results are derived using the state......In building design the requirements for energy consumption for ventilation, heating and cooling and the requirements for increasingly better indoor climate are two opposing factors. This paper presents the schematic layout and simulation results of an innovative multifunc-tional ventilation concept...... with little energy consumption and with satisfying indoor climate. The concept is based on using passive measures like stack and wind driven ventilation, effective night cooling and low pressure loss heat recovery using two fluid coupled water-to-air heat exchangers developed at the Technical...

  6. Comparative Assessment of an Innovative Dry-Cooled CSP System

    Poullikkas, Andreas; Hadjipaschalis, Ioannis; Kourtis, George

    2013-01-01

    A comparative optimization assessment is carried out in order to identify the competitiveness of an innovative modular air-cooled condenser (MACC) system in relation to conventional water- or air-cooled condensers. Specifically, the technoeconomic performance of the combined cycle gas turbine (CCGT) technology, the parabolic trough concentrated solar power (CSP) technology, and the solar tower CSP technology are compared when all are integrated (a) with a MACC condenser of an optimum tube geo...

  7. Cooling systems for the lu-10 accelerating section

    Parameters and design of the cooling system of the accelerating section for industrial high power linac are given. It is shown that the heating of the outer surface of the accelerating section constitutes 1 degree C at average r.f.-power of 30 kW and cooling water flow of 80 l/min. Thermal deformations have little effect on the microwave-characteristics of the accelerating structure

  8. Thermal management systems for cooling nuclear reactor during emergency

    This paper discusses two different thermal management systems for nuclear reactor during emergency situation. First system will provide safer and reliable heat pipe based emergency core cooling system (ECCS) for nuclear-reactor, with initial 10 sec gravity feed water for accelerated cooling response. The designed loop type heat pipe ECCS is composed of cylindrical evaporator with 62 vertical tubes, each 150 mm diameter and 6 m length, mounted around the circumference of nuclear fuel assembly and 21 m x 10 m x 5 m naturally cooled finned condenser installed outside the primary containment. Proposed ECCS will be able to cool down core after reactor shutdown from 282degC to below 250degC within 4.3 hours of shutdown thereby providing safer environment to nuclear power plants. Second system proposes debris cooling system for nuclear reactor chamber, based on open air Bryton cycle. Such a system will provide cleaner and safer system for the nuclear reactor chamber after accident. (author)

  9. Effect of input power on cooling property of a thermoacoustic cooling system with diameter-expanded prime movers

    Ueno, So; Sakamoto, Shin-ichi; Orino, Yuichiro; Wada, Takahiro; Inui, Yoshitaka; Watanabe, Yoshiaki

    2016-07-01

    We studied a thermoacoustic cooling system driven at low temperatures to make practical use of the system. Aiming to reduce the driving temperature of the thermoacoustic system, we developed a loop-tube-type thermoacoustic system with diameter-expanded two-stage prime movers, i.e., a heat-to-sound transducer. The system drove at 67 °C. Additionally, we developed a prototype for a thermoacoustic cooling system with a diameter-expanded two-stage prime mover. In the experiment, the cooling point temperature was decreased by 4.4 °C from room temperature, i.e., 20 °C. To improve the cooling performance of the prototype thermoacoustic cooling system, we experimentally investigated the effect of increasing the input power on the cooling performance.

  10. A spacecraft cooling system for a charged coupled device

    Walker, Mary S.; Tulkoff, Philip

    1986-01-01

    This paper describes the thermal analysis, design, and testing of a dedicated cooling system for a Spartan spacecraft payload. A simple reliable design that requires minimum power consumption and minimum weight was developed. The payload has a CCD detector that must be maintained at a temperature of approximately -40 C or colder. The cooling system consists of a fin radiator, dual redundant heat pipes, and a thermal electric device (TED). The system was analytically modeled through the use of the Simplified Shuttle Payload Thermal Analyzer (SSPTA) computer program. A thermal test of the system simulating flight conditions was conducted to correlate the computer model and verify performance specifications.

  11. Inhibitor analysis for a solar heating and cooling system

    Tabony, J. H.

    1977-01-01

    A study of potential corrosion inhibitors for the NASA solar heating and cooling system which uses aluminum solar panels is provided. Research consisted of testing using a dynamic corrosion system, along with an economic analysis of proposed corrosion inhibitors. Very good progress was made in finding a suitable inhibitor for the system.

  12. Emergency reactor core cooling system of BWR type reactor

    The present invention provides an emergency reactor core cooling system which can reduce a capacity of a power source required upon occurrence of emergency, extending an start-up time of an emergency reactor core cooling system (ECCA) to provide a plant endurable to a common factor accident and can provide time margin up to the start-up time. Namely, the system of the present invention comprises a division I equipped with an isolation condenser (IC), an after-heat removing system (low pressure system)(LPFL/RHR) and an emergency gas turbine generator (GT), a division II equipped with a diesel driving water injection system (high pressure system)(HDIS), LPFL/RHR, and GT, and a division III equipped with a reactor isolation time cooling system (high pressure system)(ARCIC), LPFL/RHR and GT. With such a constitution, since the IC, HDIS and ARCIC are used in combination as a high pressure system, an electromotive pump required to be operated upon high pressure state can be saved. In addition, if a static reactor cooling system (PCCS) is adopted and is provided with a back-up function for LPFL/RHR with respect to heat removal of the container upon occurrence of an accident, the countermeasure for occurrence of severe accidents can be enhanced. (I.S.)

  13. Solar radiation and cooling load calculation for radiant systems: Definition and evaluation of the Direct Solar Load

    Causone, Francesco; Corgnati, Stefano P.; Filippi, Marco;

    2010-01-01

    The study of the influence of solar radiation on the built environment is a basic issue in building physics and currently it is extremely important because glazed envelopes are widely used in contemporary architecture. In the present study, the removal of solar heat gains by radiant cooling systems...... is investigated. Particular attention is given to the portion of solar radiation converted to cooling load, without taking part in thermal absorption phenomena due to the thermal mass of the room. This specific component of the cooling load is defined as the Direct Solar Load. A simplified procedure...... to correctly calculate the magnitude of the Direct Solar Load in cooling load calculations is proposed and it is implemented with the Heat Balance method and the Radiant Time Series method. The F ratio of the solar heat gains directly converted to cooling load, in the case of a low thermal mass...

  14. Use of a temperature-initiated passive cooling system (TIPACS) for the modular high-temperature gas-cooled reactor cavity cooling system (RCCS)

    A new type of passive cooling system has been invented (Forsberg 1993): the Temperature-Initiated Passive Cooling System (TIPACS). The characteristics of the TIPACS potentially match requirements for an improved reactor-cavity-cooling system (RCCS) for the modular high-temperature gas-cooled reactor (MHTGR). This report is an initial evaluation of the TIPACS for the MHTGR with a Rankines (steam) power conversion cycle. Limited evaluations were made of applying the TIPACS to MHTGRs with reactor pressure vessel temperatures up to 450 C. These temperatures may occur in designs of Brayton cycle (gas turbine) and process heat MHTGRs. The report is structured as follows. Section 2 describes the containment cooling issues associated with the MHTGR and the requirements for such a cooling system. Section 3 describes TIPACS in nonmathematical terms. Section 4 describes TIPACS's heat-removal capabilities. Section 5 analyzes the operation of the temperature-control mechanism that determines under what conditions the TIPACS rejects heat to the environment. Section 6 addresses other design and operational issues. Section 7 identifies uncertainties, and Section 8 provides conclusions. The appendixes provide the detailed data and models used in the analysis

  15. Theoretical thermodynamics analysis of cooling cycle bu advanced gas absorption using solar energy; Analisis teorico-experimental de un ciclo de refrigeracion por absorcion avanzado gax, operando con energia solar

    Gomez, V. E.; Vidal, A. S.; Garcia, C. A.; Garcia-Valladares, O.; Best, R. B.; Hernandez, J. G.; Velazquez, N. L.

    2004-07-01

    In this article a solar system of refrigeration by absorption with heat exchange generator absorber (GAX) was analyzed. A theoretical thermodynamic analysis of the energetic behavior of the GAX absorption system was made. Experimental results were obtained with generation temperatures of 190 and 220 C, the evaporation temperature was set at 9 C and temperatures of cooling fluids (air and water) were set at 30 C and 28 C, respectively. It was possible to appreciate that the GAX effect decrease whether absorber, type falling film, is operated in option of parallel flow and it was increased when the absorber was operated in option of counterflow. (Author)

  16. Enhancing efficiency and power output of gas turbines using either renewable energy or heat recovery cooling system

    Nasser, A.E.M. [Higher Technological Inst., Tenth of Ramadan (Egypt). Dept. of Mechanical Engineering

    2006-07-01

    An absorption system to cool intake air to the compressor of an air conditioning system was presented. The system used both solar energy and the waste heat of the exhaust gases to obtain higher temperatures during the summer months. The lithium bromide-water absorption system increased power output by more than 20 per cent during the summer months without consuming more fuel. The system was designed to conserve energy and output power in gas turbine power stations. The system operated by using hot effluent gases leaving the turbine and entered the flue stacks, where heat exchangers recovered the heat energy. Excess electricity produced by the turbine was then used to cool the ambient air before it entered the compressor. Studies have confirmed that the system is financially viable and suited for use in Arabian Gulf countries where temperatures regularly exceed 40 degrees C. 6 refs., 6 figs.

  17. Replacement inhibitors for tank farm cooling coil systems

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems

  18. The Straw Cooling System in the ATLAS TRT

    Godlewski, J

    2002-01-01

    This technical note deals with the straw cooling system for the TRT End-caps in the ATLAS detector. The combination of a high gas flow requirement and small gas volumes yield unfavourable properties in terms of control stability. Early experiments on a prototype of the final cooling system, showed that pressure losses in the gas distribution lines must be decreased to fulfil the pressure control requirements. One part of this note is devoted to a cfd analysis of a critical component, an elbow duct, in the gas distribution line. To enable analyses of the overall cooling system dynamics, generic simulation components were created and applied in a simulation of the prototype cooling system. The simulation was verified by an equivalent experiment on the prototype cooling system. The manifolds that distribute and collect the gas in the group-of-wheels are dealt with in the last chapter where results from a fluid mechanical model implemented in Matlab are compared to values obtained by experiments

  19. The convection cooling system of the Yakutsk permafrost seed repository

    Vladimir N.Panin; Georgii P.Kuzmin

    2014-01-01

    Temperature is critical to maintaining seed viability under long term storage conditions. It has been common practice to use refrigeration systems to maintain required storage temperatures. A seed repository constructed in permafrost in Ya kutsk, Russia is the first seed storage facility that relies solely on natural cold. This paper describes the design and per formance of the cooling system of the repository. An innovative aspect of the cooling system is that it utilizes the patterns of temperature wave propagation in permafrost. Predicted and measured ground temperatures for the first year of operation are presented and analyzed. Results indicate that convection air cooling systems can be used to control the temperature regime in underground facilities in permafrost.

  20. Nonlinear Absorption and Refraction in Multilevel Organic Molecular System

    LI Chun-Fei; DENG Xiao-Xu; WANG Yu-Xiao

    2000-01-01

    The nonlinear absorption and refraction in a multilevel organic molecular system is described by using the density matrix theory. The total absorptive coefficient of the system in the low-density case is equal to a linear sum of contributions from each energy level. Similarly, the total refractive index is equal to a linear sum of contributions from each energy level plus the refractive index of the vacuum. The absorption coefficient or refractive index due to each level is proportional to the population of that level, where the constant of proportionality is called the absorption cross-section or the refraction volume, respectively. The relation between the absorption cross-section and the refraction volume for each level is also given.

  1. Safety analysis of reactor's cooling system

    Results of the analysis of reactor's RBMK-1500 coolant system during normal operation mode, hydrodynamic testing and in the case of earthquake are presented. Analysis was performed using RELAP5 code. Calculations showed the most vulnerable place in the reactor's coolant system. It was found that in the case of earthquake the horizontal support system of drum separator could be damaged

  2. Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints

    Lozano, Miguel A.; Ramos, Jose C.; Serra, Luis M. [Group of Thermal Engineering and Energy Systems (GITSE), Aragon Institute of Energy Research (I3A), Department of Mechanical Engineering, University of Zaragoza, CPS de Ingenieros, Maria de Luna 3, 5018 Zaragoza (Spain)

    2010-02-15

    Combined heat, cooling and power (CHCP) systems are interesting for the supply of different energy services in urban districts and in large buildings. CHCP systems utilize a fuel's energy to a greater extent, because the cogenerated heat can be used for heating in winter as well as for cooling in summer with an absorption refrigerator. The use of thermal energy storage (TES) provides the additional advantage of covering variable thermal demands while the production system operates continuously at nominal conditions. Thus, energy supply systems integrating the technologies of cogeneration, absorption refrigeration and thermal storage can provide substantial benefits from economic, energetic and environmental viewpoints. In this paper an optimization model is developed, using mixed integer linear programming (MILP), to determine the preliminary design of CHCP systems with thermal storage. The objective function to be minimized is the total annual cost. Taking into account the legal constraints imposed on cogeneration systems in Spain, the optimization model is applied to design a system providing energy services for a set of buildings constituted of 5000 apartments located in the city of Zaragoza (Spain). The effect of legal constraints in the design and operation of CHCP systems is highlighted in this study. (author)

  3. COMMIX analysis of AP-600 Passive Containment Cooling System

    COMMIX modeling and basic concepts that relate components, i.e., containment, water film cooling, and natural draft air flow systems. of the AP-600 Passive Containment Cooling System are discussed. The critical safety issues during a postulated accident have been identified as (1) maintaining the liquid film outside the steel containment vessel, (2) ensuring the natural convection in the air annulus. and (3) quantifying both heat and mass transfer accurately for the system. The lack of appropriate heat and mass transfer models in the present analysis is addressed. and additional assessment and validation of the proposed models is proposed

  4. The low-ion QSO absorption-line systems

    Various techniques are used to investigate the class of QSO absorption-line systems that exhibit low-ion absorption lines. Four separate investigations are conducted as follows: Spectroscopy of 32 QSOs at red wavelengths is presented and used to investigate intermediate-redshift MgII absorption. A total of 22 Mg II doublets are detected, from which properties of the Mg II absorbers are derived. Marginal evidence for intrinsic evolution of the number density of the Mg II absorbers with redshift is found. The data are combined with previous observations of C IV and C II seen in the same QSOs at blue wavelengths, and the properties of Mg II- and C IV-selected systems are compared. A sample is constructed of 129 QSOs for which are available published data suitable for detecting absorption-line systems that are optically thick to Lyman continuum radiation. A total of 53 such Lyman-limit systems are found, from which properties of the Lyman-limit systems are derived. It is found that the rate of incidence of the systems does not strongly evolved with redshift. This result is contrasted with the evolution found previously for systems selected on the basis of Mg II absorption. Spectroscopy at red wavelengths of eight QSOs with known damped Lyα absorption systems is presented. Spectroscopic and spectrophotometric observations aimed at detecting molecular hydrogen and dust in the z = 2.796 damped Lyα absorber toward Q1337 + 113 are presented

  5. The low-ion QSO absorption-line systems

    Lanzetta, K.M.

    1988-01-01

    Various techniques are used to investigate the class of QSO absorption-line systems that exhibit low-ion absorption lines. Four separate investigations are conducted as follows: Spectroscopy of 32 QSOs at red wavelengths is presented and used to investigate intermediate-redshift MgII absorption. A total of 22 Mg II doublets are detected, from which properties of the Mg II absorbers are derived. Marginal evidence for intrinsic evolution of the number density of the Mg II absorbers with redshift is found. The data are combined with previous observations of C IV and C II seen in the same QSOs at blue wavelengths, and the properties of Mg II- and C IV-selected systems are compared. A sample is constructed of 129 QSOs for which are available published data suitable for detecting absorption-line systems that are optically thick to Lyman continuum radiation. A total of 53 such Lyman-limit systems are found, from which properties of the Lyman-limit systems are derived. It is found that the rate of incidence of the systems does not strongly evolved with redshift. This result is contrasted with the evolution found previously for systems selected on the basis of Mg II absorption. Spectroscopy at red wavelengths of eight QSOs with known damped Ly{alpha} absorption systems is presented. Spectroscopic and spectrophotometric observations aimed at detecting molecular hydrogen and dust in the z = 2.796 damped Ly{alpha} absorber toward Q1337 + 113 are presented.

  6. Integrating Externally Developed Systems For SNS Linac Cooling And Vacuum

    Marroquin, Pilar

    2001-01-01

    External contractors are developing the local cooling and vacuum control systems for the Spallation Neutron Source (SNS) linac. Soon these systems will be integrated into the facility-wide controls system. Allen-Bradley Logix5000 series programmable controllers, populated with appropriate input/output modules, were selected as the local controllers. These controllers will be interfaced to the facility-wide control system via VME systems with PowerPC processors running the Wind River VxWorks o...

  7. Absorption of water vapour in the falling film of water-(LiBr + LiI + LiNO{sub 3} + LiCl) in a vertical tube at air-cooling thermal conditions

    Bourouis, Mahmoud; Valles, Manel; Medrano, Marc; Coronas, Alberto [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, CREVER, Universitat Rovira i Virgili, Autovia de Salou, s/n, 43006, Tarragona (Spain)

    2005-05-01

    In air-cooled water-LiBr absorption chillers the working conditions in the absorber and condenser are shifted to higher temperatures and concentrations, thereby increasing the risk of crystallisation. To develop this technology, two main problems are to be addressed: the availability of new salt mixtures with wider range of solubility than water-LiBr, and advanced absorber configurations that enable to carry out simultaneously an appropriate absorption process and an effective air-cooling. One way of improving the solubility of LiBr aqueous solutions is to add other salts to create multicomponent salt solutions. The aqueous solution of the quaternary salt system (LiBr + LiI + LiNO{sub 3} + LiCl) presents favourable properties required for air-cooled absorption systems: less corrosive and crystallisation temperature about 35 K lower than that of water-LiBr.This paper presents an experimental study on the absorption of water vapour over a wavy laminar falling film of an aqueous solution of (LiBr + LiI + LiNO{sub 3} + LiCl) on the inner wall of a water-cooled smooth vertical tube. Cooling water temperatures in the range 30-45 C were selected to simulate air-cooling thermal conditions. The results are compared with those obtained in the same experimental set-up with water-LiBr solutions.The control variables for the experimental study were: absorber pressure, solution Reynolds number, solution concentration and cooling water temperature. The parameters considered to assess the absorber performance were: absorber thermal load, mass absorption flux, degree of subcooling of the solution leaving the absorber, and the falling film heat transfer coefficient.The higher solubility of the multicomponent salt solution makes possible the operation of the absorber at higher salt concentration than with the conventional working fluid water-LiBr. The absorption fluxes achieved with water-(LiBr + LiI + LiNO{sub 3} + LiCl) at a concentration of 64.2 wt% are around 60 % higher than

  8. Design of absorption system water-ammonia by using solar radiation as thermal source

    Cavalcanti, Eduardo J. Cidade; Souza, Luiz Guilherme Meira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Centro de Tecnlogia. Dept. de Engenharia Mecanica], E-mails: educanti@gmail.com, lguilherme@dem.ufrn.br

    2010-07-01

    An absorption refrigeration system with the single effect of par ammonia water with 1.758 kW (1 / 2 RT) cooling capacity was designed. The system was operating under conditions of 5 degree C evaporation and 45 degree C condensation temperature. The absorption system has a heat exchanger to improve performance. The heat source is the cylinder parabolic solar concentrator (CPC). The design of the concentrator was estimated based on experimental data of the pilot plant built in the Solar Energy Laboratory, Federal University of Rio Grande do Norte. The thermodynamic model with heat and mass transfer was made to the project areas of heat exchange (absorber) and consequent construction of the system. The rectifying column was modeling assuming that liquid is in equilibrium with the vapor state in all plate. The results should show the dimensions of the compact and allows a future assessment of the operational cost. (author)

  9. Integrating externally developed systems for SNS Linac cooling and vacuum.

    Marroquin, P. S. (Pilar S.)

    2001-01-01

    External contractors are developing the local cooling and vacuum control systems for the Spallation Neutron Source (SNS) linac. Soon these systems will be integrated into the facility-wide controls system. Allen-Bradley Logix5000 series programmable controllers, populated with appropriate input/output modules, were selected as the local controllers. These controllers will be interfaced to the facility-wide control system via VME systems with PowerPC processors running the Wind River VxWorks operating system and Experimental Physics and Industrial Control System (EPICS) front-end controller software. This paper describes the interface and integration issues driven by project, cooling system and vacuum system requirements and hardware selections.

  10. Integrating Externally Developed Systems For SNS Linac Cooling And Vacuum

    Marroquin, F

    2001-01-01

    External contractors are developing the local cooling and vacuum control systems for the Spallation Neutron Source (SNS) linac. Soon these systems will be integrated into the facility-wide controls system. Allen-Bradley Logix5000 series programmable controllers, populated with appropriate input/output modules, were selected as the local controllers. These controllers will be interfaced to the facility-wide control system via VME systems with PowerPC processors running the Wind River VxWorks operating system and Experimental Physics and Industrial Control System (EPICS) front-end controller software. This paper describes the interface and integration issues driven by project, cooling system and vacuum system requirements and hardware selections.

  11. Integrating Externally Developed Systems for SNS Linac Cooling and Vacuum

    Marroquin, Pilar

    External contractors are developing the local cooling and vacuum control systems for the Spallation Neutron Source (SNS) linac. Soon these systems will be integrated into the facility-wide controls system. Allen-Bradley Logix5000 series programmable controllers, populated with appropriate input/output modules, were selected as the local controllers. These controllers will be interfaced to the facility-wide control system via VME systems with PowerPC processors running the Wind River VxWorks operating system and Experimental Physics and Industrial Control System (EPICS) front-end controller software. This paper describes the interface and integration issues driven by project, cooling system and vacuum system requirements and hardware selections.

  12. Problems encountered in solar heating and cooling systems

    Cash, M.

    1979-01-01

    Report discussing various experiences of workers at Marshall Space Flight Center in developing solar heating and cooling systems is presented. Presents compilation of problems and their resolutions which can assist designers of solar-energy systems and prevent repetition of errors.

  13. Prototype solar heating and cooling systems including potable hot water

    1978-01-01

    Progress is reviewed in the development, delivery, and support of two prototype solar heating and cooling systems including potable hot water. The system consisted of the following subsystems: collector, auxiliary heating, potable hot water, storage, control, transport, and government-furnished site data acquisition.

  14. A System for Cooling inside a Glove Box

    Sanz, Martial

    2010-01-01

    An easy, efficient, reliable, and low-cost method of constructing a cooling system using a simple circulating pump is described. The system is employed in conjunction with an inert atmosphere glove box to achieve the synthesis of air- and moisture-sensitive compounds inside the glove box at controlled, low temperatures without contaminating the…

  15. Transient Performance of Air-cooled Condensing Heat Exchanger in Long-term Passive Cooling System during Decay Heat Load

    In the event of a 'loss of coolant accident'(LOCA) and a non-LOCA, the secondary passive cooling system would be activated to cool the steam in a condensing heat exchanger that is immersed in an emergency cooldown tank (ECT). Currently, the capacities of these ECTs are designed to be sufficient to remove the sensible and residual heat from the reactor coolant system for 72 hours after the occurrence of an accident. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. Therefore, the tank should be refilled regularly from an auxiliary water supply system when the system is used for more than 72 hours. Otherwise, the system would fail to dissipate heat from the condensing heat exchanger due to the loss of the cooling water. Ultimately, the functionality of the passive cooling system would be seriously compromised. As a passive means of overcoming the water depletion in the tank, Kim et al. applied for a Korean patent covering the concept of a long-term passive cooling system for an ECT even after 72 hours. This study presents transient performance of ECT with installing air-cooled condensing heat exchanger under decay heat load. The cooling capacity of an air-cooled condensing heat exchanger was evaluated to determine its practicality

  16. Solar cooling system. Cooling with solar energy and hot air. Solare Kuehlanlage. Kuehlen mit Sonne und heisser Luft

    Anon.

    1999-06-01

    Engineers of Stuttgart Technical University are working on a solar cooling system with air-filled solar collectors. The first of these systems will start operation in July in a production hall in the Calw district. It will be Europe's first commercially used system for cooling and heating on the basis of solar energy and hot air.

  17. Radiant Heating and Cooling Systems. Part one

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    The use of radiant heating systems has several thousand years of history.1,2 The early stage of radiant system application was for heating purposes, where hot air from flue gas (cooking, fires) was circulated under floors or in walls. After the introduction of plastic piping water-based radiant h...

  18. Operation practice and implications of circulating cooling water system of American nuclear power plants

    In this paper, the circulating cooling water system of nuclear power plants (NPP) in United States is summarized, and the operation practices of different cooling water systems, such as once-through, natural and mechanical draft cooling tower, cooling pond, and mixed cooling mode, used by several coastal and inland NPPs are given. Also, based on the related experiences, some suggestions for use of cooling water system in China NPPs are presented. (authors)

  19. Thermotunneling Based Cooling Systems for High Efficiency Buildings

    Aimi, Marco; Arik, Mehmet; Bray, James; Gorczyca, Thomas; Michael, Darryl; Weaver, Stan

    2007-09-30

    GE Global Research's overall objective was to develop a novel thermotunneling-cooling device. The end use for these devices is the replacement of vapor cycle compression (VCC) units in residential and commercial cooling and refrigeration systems. Thermotunneling devices offer many advantages over vapor cycle compression cooling units. These include quiet, reliable, non-moving parts operation without refrigerant gases. Additionally theoretical calculations suggest that the efficiency of thermotunneling devices can be 1.5-2x that of VCC units. Given these attributes it can be seen that thermotunneling devices have the potential for dramatic energy savings and are environmentally friendly. A thermotunneling device consists of two low work function electrodes separated by a sub 10 nanometer-sized gap. Cooling by thermotunneling refers to the transport of hot electrons across the gap, from the object to be cooled (cathode) to the heat rejection electrode (anode), by an applied potential. GE Global Research's goal was to model, design, fabricate devices and demonstrate cooling base on the thermotunneling technology.

  20. Thermodynamic analysis of a combined reheat regenerative thermal power plant and water–LiBr vapor absorption refrigeration system

    Highlights: • Thermodynamic analysis of a combined power-absorption cooling system is provided. • Effect of important operating parameters on combined cycle performance is studied. • Compares performance of combined cycle with power cycle without absorption system. • Gives quantitative comparison of power cycle performance with and without water heater. • Analysis on vapor power and water–LiBr absorption refrigeration system is not available. - Abstract: Detail thermodynamic analysis of a combined reheat regenerative steam turbine (ST) based power cycle and water–LiBr vapor absorption refrigeration system (VARS) is presented in this study. The power cycle uses one open and one closed water heater (CWH) for purpose of feed water heating. A parametric analysis is performed to investigate the effects of boiler pressure, fuel flow rate, VARS evaporator cooling load and operating temperatures on performance of the topping power cycle and bottoming VARS. Further a performance comparison of the combined power and cooling plant is made with the power plant (without VARS) to quantify the performance variation due to VARS integration. Comparative performance analysis is also provided for the power plant (without VARS) with and without the CWH in the plant. The analysis indicates that the fuel flow rate and boiler pressure affects only the power cycle performance while the evaporator cooling load and VARS components’ operating temperature has its combined effect both on the power and the cooling system, the evaporator cooling load is the most crucial among them. A sensitive analysis shows that the power and efficiency of the topping cycle change very little with VARS operating temperatures. VARS coefficient of performance is more sensitive to the change in condenser and absorber temperature compared to change in generator and evaporator temperature

  1. Systems Evaluation at the Cool Energy House

    J. Williamson and S. Puttagunta

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems, this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  2. Systems Evaluation at the Cool Energy House

    Williamson, J. [Steven Winter Associates, Inc., Norwalk, CT (United States); Puttagunta, S. [Steven Winter Associates, Inc., Norwalk, CT (United States)

    2013-09-01

    Steven Winter Associates, Inc. (SWA) monitored several advanced mechanical systems within a 2012 deep energy retrofitted home in the small Orlando suburb of Windermere, FL. This report provides performance results of one of the home's heat pump water heaters (HPWH) and the whole-house dehumidifier (WHD) over a six month period. In addition to assessing the energy performance of these systems,this study sought to quantify potential comfort improvements over traditional systems. This information is applicable to researchers, designers, plumbers, and HVAC contractors. Though builders and homeowners can find useful information within this report, the corresponding case studies are a likely better reference for this audience.

  3. Design and Control of Hydronic Radiant Cooling Systems

    Feng, Jingjuan

    Improving energy efficiency in the Heating Ventilation and Air conditioning (HVAC) systems in buildings is critical to achieve the energy reduction in the building sector, which consumes 41% of all primary energy produced in the United States, and was responsible for nearly half of U.S. CO2 emissions. Based on a report by the New Building Institute (NBI), when HVAC systems are used, about half of the zero net energy (ZNE) buildings report using a radiant cooling/heating system, often in conjunction with ground source heat pumps. Radiant systems differ from air systems in the main heat transfer mechanism used to remove heat from a space, and in their control characteristics when responding to changes in control signals and room thermal conditions. This dissertation investigates three related design and control topics: cooling load calculations, cooling capacity estimation, and control for the heavyweight radiant systems. These three issues are fundamental to the development of accurate design/modeling tools, relevant performance testing methods, and ultimately the realization of the potential energy benefits of radiant systems. Cooling load calculations are a crucial step in designing any HVAC system. In the current standards, cooling load is defined and calculated independent of HVAC system type. In this dissertation, I present research evidence that sensible zone cooling loads for radiant systems are different from cooling loads for traditional air systems. Energy simulations, in EnergyPlus, and laboratory experiments were conducted to investigate the heat transfer dynamics in spaces conditioned by radiant and air systems. The results show that the magnitude of the cooling load difference between the two systems ranges from 7-85%, and radiant systems remove heat faster than air systems. For the experimental tested conditions, 75-82% of total heat gain was removed by radiant system during the period when the heater (simulating the heat gain) was on, while for air

  4. The new cooling system of the IPR-RI reactor

    A 250 Kw cooling system was designed and installed to cool the demineralized water of the IPR-RI reactor (Triga Mark I). The primary circuit is made of 304 stainless steel. The secondary circuit is made of carbon steel, and the cooling tower of fiberglass.The heat exchanger is of the shell-and-tube type with four tube passes. The demineralized water (primary side) flows through the shell and the ordinary water flows inside the tubes. This arrangement allows cleaning of the tubes (straight tubes) by simply disassembling the top of the heat exchanger. The cooling system was designed to operate at a pool temperature of 40.7 deg C. Cold water returns to the reactor tank in summer days at a maximum temperature of 33.1 deg C. The water flow in the primary side can be varied from 28 m3/h to 32 m3/h. Interlocks and protection devices coupled to pressure gauges, temperature and water level meters provide a very safe and reliable performance to the cooling system. (author)

  5. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT IV, MAINTAINING THE COOLING SYSTEM--DETROIT DIESEL ENGINES.

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE COOLING SYSTEM. TOPICS ARE PURPOSE OF THE COOLING SYSTEM, CARE MAINTENANCE OF THE COOLING SYSTEM, COOLING SYSTEM COMPONENTS, AND TROUBLESHOOTING TIPS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING…

  6. Performance of hybrid quad generation system consisting of solid oxide fuel cell system and absorption heat pump

    Cachorro, Irene Albacete; Daraban, Iulia Maria; Lainé, Guillaume; Singh, Navdeep; Liso, Vincenzo

    2013-01-01

    In this paper a system consisting of an SOFC system for cogeneration of heat and power and vapour absorption heat pump for cooling and freezing is assessed and performance is evaluated. Food industry where demand includes four forms of energy simultaneously is a relevant application such a system.The heat pump is a heat driven system and is running with the heat recovered by a heat exchanger from the exhausted gases from SOFC. The working fluid pair is NH3-H2O and is driven in two evaporators...

  7. Environmental aspects of the district cooling system application

    The use of air-conditioning equipment based on CFC and HCFC fluids has a direct influence on the occurrence of the greenhouse effect and damage of the ozone layer. Besides the obligatory shift og HCF cooling fluids, the reduction of such negative influences may also be achieved by the application of the district cooling system to the air-conditioning plants in the area. The paper includes example of the application of the district system, with positive effect regarding the ozone layer protection and greenhouse effect prevention. (Author)

  8. Vapor Jet Ejector Used To Generate Free Waste Heat Driven Cooling In Military Environmental Cooling Units

    Elbel, Stefan; Bowers, Chad D.; Reichle, Manuel; Cristiani, Jonathan M.; Hrnjak, Predrag S.

    2012-01-01

    The waste heat driven vapor jet ejector cooling cycle is a very promising approach to produce ‘free’ cooling by utilizing low-grade energy sources. The mechanism behind ejector-based waste heat cooling is very different from absorption or adsorption cooling technologies that are also aimed at producing heat driven cooling. The ejector cooling system is actually more closely related to vapor compression technology, in which an ejector, a waste heat source, and a liquid pump are used to replace...

  9. Electromagnetically induced absorption in a three-resonator metasurface system.

    Zhang, Xueqian; Xu, Ningning; Qu, Kenan; Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Agarwal, Girish S; Zhang, Weili

    2015-01-01

    Mimicking the quantum phenomena in metamaterials through coupled classical resonators has attracted enormous interest. Metamaterial analogs of electromagnetically induced transparency (EIT) enable promising applications in telecommunications, light storage, slow light and sensing. Although the EIT effect has been studied extensively in coupled metamaterial systems, excitation of electromagnetically induced absorption (EIA) through near-field coupling in these systems has only been sparsely explored. Here we present the observation of the EIA analog due to constructive interference in a vertically coupled three-resonator metamaterial system that consists of two bright and one dark resonator. The absorption resonance is one of the collective modes of the tripartite unit cell. Theoretical analysis shows that the absorption arises from a magnetic resonance induced by the near-field coupling of the three resonators within the unit cell. A classical analog of EIA opens up opportunities for designing novel photonic devices for narrow-band filtering, absorptive switching, optical modulation, and absorber applications. PMID:26023061

  10. Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system

    A hybrid system mainly consisting of a PEMFC (proton exchange membrane fuel cell) and an absorption refrigerator is proposed, where the PEMFC directly converts the chemical energy contained in the hydrogen into electrical and thermal energies, and the thermal energy is transferred to drive the bottoming absorption refrigerator for cooling purpose. By considering the existing irreversible losses in the hybrid system, the operating current density region of the PEMFC permits the absorption refrigerator to exert its function is determined and the analytical expressions for the equivalent power output and efficiency of the hybrid system under different operating conditions are specified. Numerical calculations show that the equivalent maximum power density and the corresponding efficiency of the hybrid system can be respectively increased by 5.3% and 6.8% compared to that of the stand-alone PEMFC. Comprehensive parametric analyses are conducted to reveal the effects of the internal irreversibility of the absorption refrigerator, operating current density, operating temperature and operating pressure of the PEMFC, and some integrated parameters related to the thermodynamic losses on the performance of the hybrid system. The model presented in the paper is more general than previous study, and the results for some special cases can be directly derived from this paper. - Highlights: • A CHP system composed of a PEMFC and an absorption refrigerator is proposed. • Current density region enables the absorption refrigerator to work is determined. • Multiple irreversible losses in the system are analytically characterized. • Maximum power density and corresponding efficiency can be increased by 5.3% and 6.8%. • Effects of some designing and operating parameters on the performance are discussed

  11. Wind turbine generators having wind assisted cooling systems and cooling methods

    Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  12. Dry storage systems with free convection air cooling

    Several design principles to remove heat from the spent fuel by free air convection are illustrated and described. The key safety considerations were felt to be: loss of coolant is impossible as the passive system uses air as a coolant; overheating is precluded because as the temperatures of the containers rises the coolant flow rate increases; mass of the storage building provides a large heat sink and therefore a rapid temperature rise is impossible; and lack of any active external support requirements makes the cooling process less likely to equipment or operator failures. An example of this type of storage already exists. The German HTGR is operated with spherical graphite fuel elements which are stored in canister and in storage cells. The concept is a double cooling system with free convection inside the cells and heat exchange via two side walls of the cell to the ambient air in the cooling ducts. Technical description of the TN 1300 cask is also presented

  13. Efficient energy storage in liquid desiccant cooling systems

    Hublitz, Astrid

    2008-07-18

    Liquid Desiccant Cooling Systems (LDCS) are open loop sorption systems for air conditioning that use a liquid desiccant such as a concentrated salt solution to dehumidify the outside air and cool it by evaporative cooling. Thermochemical energy storage in the concentrated liquid desiccant can bridge power mismatches between demand and supply. Low-flow LDCS provide high energy storage capacities but are not a state-of-the-art technology yet. The key challenge remains the uniform distribution of the liquid desiccant on the heat and mass transfer surfaces. The present research analyzes the factors of influence on the energy storage capacity by simulation of the heat and mass transfer processes and specifies performance goals for the distribution of the process media. Consequently, a distribution device for the liquid desiccant is developed that reliably meets the performance goals. (orig.)

  14. Prototype solar heating and cooling systems

    1979-01-01

    A combination of monthly progress reports are presented. It contains a summary of activities and progress made from November 1, 1978, to February 28, 1979. The effort calls for the development, manufacture, test, system installation, maintenance, problem resolution, and performance evaluation.

  15. Energy Integrated Lighting-Heating-Cooling System.

    Meckler, Gershon; And Others

    1964-01-01

    Energy balance problems in the design of office buildings are analyzed. Through the use of integrated systems utilizing dual purpose products, a controlled environment with minimum expenditure of energy, equipment and space can be provided. Contents include--(1) office building occupancy loads, (2) office building heating load analysis, (3) office…

  16. Multifunctional absorption technology in district heating systems; Absorptionsteknik med multifunktion i fjaerrvaermesystem

    Martin, Viktoria; Setterwall, Fredrik

    2010-05-15

    Within the framework of the IEA's implementing agreement on heat pumping technologies, a state-of-the-art assessment of absorption technology was presented the year 2000. There, barriers for increased implementation of absorption technology were pointed out as being the high investment cost, as well as lack of knowledge with engineers and other actors. The project presented herein has analyzed the situation ten years later, with a wide scope of using the absorption technology - from ice to steam production in a district energy system. The overall aim of the presented project is to provide new knowledge on the technical and economical possibilities of integrating multiple function absorption technology in district energy systems. Also, new knowledge on important design parameters for practical and cost-effective design is given, for example the influence of temperatures (heat source as well as heat sink) and desired COP. A combination of renewed state-of-the-art assessment and new calculations has been used to reach this goal. The state-of-the-art assessment show that the increased focus on combined heat and power (CHP) for resource-efficient energy conversion go hand in hand with an increased interest in thermally driven cooling (TDC) technology. This project has identified the following to be specifically district energy adapted in absorption cooling: - design for low return temperature of the heat carrier leaving the generator part - design for 'high enough' COP maintained at part load for heat source temperatures as low as 70 deg C. - cost minimization by optimal sizing of heat exchanger surfaces for district energy design criteria (as opposed to accepting 'off-the-shelf' designs intended for higher operating temperatures). The overall analysis and findings regarding trigeneration concludes that: a. a holistic view of the production of power, heat and cold should be adopted when considering absorption technology in district energy

  17. Development of hybrid solar-assisted cooling/heating system

    Huang, B.J.

    2010-08-01

    A solar-assisted ejector cooling/heating system (SACH) was developed in this study. The SACH combines a pump-less ejector cooling system (ECS) with an inverter-type heat pump (R22) and is able to provide a stable capacity for space cooling. The ECS is driven by solar heat and is used to cool the condenser of the R22 heat pump to increase its COP and reduce the energy consumption of the compressor by regulating the rotational speed of the compressor through a control system. In a complete SACH system test run at outdoor temperature 35 °C, indoor temperature 25 °C and compressor speed 20-80 Hz, and the ECS operating at generator temperature 90 °C and condensing temperature 37 °C, the corresponding condensing temperature of the heat pump in the SACH is 24.5-42 °C, cooling capacity 1.02-2.44 kW, input power 0.20-0.98 kW, and cooling COPc 5.11-2.50. This indicates that the use of ECS in SACH can effectively reduce the condensing temperature of the heat pump by 12.6-7.3 °C and reduce the power consumption by 81.2-34.5%. The SACH can also supply heat from the heat pump. At ambient temperature from 5 °C to 35 °C, the heating COPh is in the range 2.0-3.3. © 2010 Elsevier Ltd. All rights reserved.

  18. Continuous vapour adsorption cooling system with three adsorber beds

    In this paper, the design of a new solar operated adsorption cooling system with two identical small and one large adsorber beds, which is capable of producing cold continuously, has been proposed. In this system, cold energy is stored in the form of refrigerant in a separate refrigerant storage tank at ambient temperature. Silica gel–water is used as a working pair and system is driven by solar energy. The operating principle is described in details and its thermodynamic transient analysis is presented. Effect of COP and SCE for different adsorbent mass and adsorption/desorption time of smaller beds are discussed. Recommended mass and number of cycles of operation for smaller beds to attain continuous cooling with average COP and SCE of 0.63 and 337.5 kJ/kg, respectively are also discussed, at a generation, condenser and evaporator temperatures of 368 K, 303 K and 283 K, respectively. - Highlights: • A three-bed silica gel–water continuous adsorption cooling system is analyzed. • Cold energy is stored in the form of liquid refrigerant at ambient temperature. • The influence of mass of beds and cycle time on the system performance is discussed. • Sizing of the beds for a given cooling capacity is recommended

  19. Research and Development of a Small-Scale Adsorption Cooling System

    Gupta, Yeshpal

    The world is grappling with two serious issues related to energy and climate change. The use of solar energy is receiving much attention due to its potential as one of the solutions. Air conditioning is particularly attractive as a solar energy application because of the near coincidence of peak cooling loads with the available solar power. Recently, researchers have started serious discussions of using adsorptive processes for refrigeration and heat pumps. There is some success for the >100 ton adsorption systems but none exists in the solar-powered heat pump systems, an hourly building load simulation was developed for a single-family house in the Phoenix metropolitan area. Thermal as well as economic performance comparison was conducted for adsorption, absorption, and solar photovoltaic (PV) powered vapor compression systems for a range of solar collector area and storage capacity. The results showed that for a small collector area, solar PV is more cost-effective whereas adsorption is better than absorption for larger collector area. The optimum solar collector area and the storage size were determined for each type of solar system. As part of this dissertation work, a small-scale proof-of-concept prototype of the adsorption system was assembled using some novel heat transfer enhancement strategies. Activated carbon and butane was chosen as the adsorbent-refrigerant pair. It was found that a COP of 0.12 and a cooling capacity of 89.6 W can be achieved.

  20. Development of Innovative Heating and Cooling Systems Using Renewable Energy Sources for Non-Residential Buildings

    Cinzia Buratti

    2013-10-01

    Full Text Available Industrial and commercial areas are synonymous with high energy consumption, both for heating/cooling and electric power requirements, which are in general associated to a massive use of fossil fuels producing consequent greenhouse gas emissions. Two pilot systems, co-funded by the Italian Ministry for the Environment, have been created to upgrade the heating/cooling systems of two existing buildings on the largest industrial estate in Umbria, Italy. The upgrade was specifically designed to improve the system efficiency and to cover the overall energy which needs with renewable energy resources. In both cases a solar photovoltaic plant provides the required electric power. The first system features a geothermal heat pump with an innovative layout: a heat-storage water tank, buried just below ground level, allows a significant reduction of the geothermal unit size, hence requiring fewer and/or shorter boreholes (up to 60%–70%. In the other system a biomass boiler is coupled with an absorption chiller machine, controlling the indoor air temperature in both summer and winter. In this case, lower electricity consumption, if compared to an electric compression chiller, is obtained. The first results of the monitoring of summer cooling are presented and an evaluation of the performance of the two pilot systems is given.

  1. Desiccant Dewpoint Cooling System Independent of External Water Sources

    Bellemo, Lorenzo; Elmegaard, Brian; Markussen, Wiebke B.;

    2015-01-01

    This paper presents a patent pending technical solution aiming to make desiccant cooling systems independent of external water sources, hence solving problems of water availability, cost and treatment that can decrease the system attractiveness. The solution consists in condensing water from the...... air that regenerates the desiccant dehumidifier, and using it for running the evaporative coolers in the system. A closed regeneration circuit is used for maximizing the amount of condensed water. This solution is applied to a system with a desiccant wheel dehumidifier and a dew point cooler, termed...... desiccant dew-point cooling system, for demonstrating its function and applicability. Simulations are carried out for varying outdoor conditions under constant supply conditions. The results show that the system is independent of external water supply for the majority of simulated conditions. In comparison...

  2. He-3 cooling systems for space

    Kittel, P.

    1984-01-01

    The development of a space-compatible He(3) refrigerator would provide a significant improvement in several areas of research in the 0.3 to 1 K temperature range. There are several methods of achieving these temperatures on Earth: He(3) refrigeration, dilution refrigeration, and adiabatic demagnetization refrigeration. The progress of adapting He(3) refrigeration for use in space is described. Various cycles and possible embodiments of He(3) refrigerators are described. Also included is an analysis of the liquid confinement and liquid-vapor phase-separation system. A possible configuration is then analyzed. Finally, the results of ground-based experiments will be discussed.

  3. Novel single-double-effect LiBr-H₂O absorption prototype with a highly efficient direct air-cooled adiabatic absorber: characterization, simulation and experimental results

    González Gil, Arturo

    2011-01-01

    Due to unsustainable growth of air conditioning market, a great interest in solar cooling technologies has emerged. The coincidence between availability of solar irradiation and peaks of cooling demand makes solar cooling a very attractive option to replace conventional refrigeration machines based on electricity. What is more, solar cooling systems normally use natural refrigerants that are not harmful to the environment. However, an improvement of the current technology is needed for solar ...

  4. BETTER DUCT SYSTEMS FOR HOME HEATING AND COOLING.

    ANDREWS,J.

    2001-01-01

    This is a series of six guides intended to provide a working knowledge of residential heating and cooling duct systems, an understanding of the major issues concerning efficiency, comfort, health, and safety, and practical tips on installation and repair of duct systems. These guides are intended for use by contractors, system designers, advanced technicians, and other HVAC professionals. The first two guides are also intended to be accessible to the general reader.

  5. Study On A Cooling System For Rotary Compressor

    Zhang, Haifeng; Wang, Shuoyuan; Xie, Fei

    2012-01-01

    It is well known that the isothermal compression is an ideal process to consume least power for compressor. The isothermal compression can't be really reached, but can be approached by decreasing the discharge temperature during compression. For this purpose, a cooling system has been built in the paper. Firstly, an innovative circulation system has been built to absorb the heat generated by compression, which is segregated from the refrigeration circulation system. The principle and the stru...

  6. High-Temperature Gas-Cooled Reactor Critical Experiment and its Application to Thorium Absorption Rates

    In developing the concept of the HTGR and its first prototype at Peach Bottom, General Atomic made the decision that a critical experiment was required to provide adequately certain necessary input data for the nuclear analysis. The specific needs of the nuclear design theory for input data relating to thorium absorptions led to an experimental design consisting of a central lattice-type critical assembly with surrounding buffer and driver regions. This type of assembly, in which the spectrum of interest can be established in the relatively small central lattice having a desired geometry, provides a useful tool for obtaining a variety of input data for nuclear analysis surveys of new concepts. The particular advantages of this approach over that of constructing a mock-up assembly will be discussed, as well as the role of the theory in determining what experiments are most useful and how these experiments are then used in verifying design techniques. Two relatively new techniques were developed for use in the lattice assembly. These were a reactivity oscillation technique for determining the thorium Doppler coefficient, and an activation technique for determining both the resonance integral of thorium dispersed in graphite and its temperature dependence (activation Doppler coefficient). The Doppler coefficient measurement by reactivity oscillation utilized the entire central fuel element in a technique which permitted heating this fuel element to 800°F and accurately subtracting experimentally the thermal-base effects, that is, those effects not contributing to the thorium resonance capture. Comparison of results with theory for a range of conditions shows excellent agreement. The measurement of the thorium resonance integral and its temperature dependence will be described. The technique developed for measuring resonance capture makes use of gold as the standard and vanadium as die material giving the 1/v absorption rate. This technique is dictated by the fact

  7. Thermohydraulic safety issues for liquid metal cooled systems

    Gerbeth, Gunter; Stefani, Frank [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Fluid Dynamics; Eckert, Sven

    2016-05-15

    In this paper recent developments of various techniques for single-phase and two-phase flow measurements with relevance to liquid metal cooled systems will be presented. Further, the status of the DRESDYN platform for large-scale experiments with liquid sodium is sketched.

  8. Cooling Water System Monitoring by Means of Mossbauer Spectroscopy

    Mossbauer spectroscopy have been applied to the analysis of corrosion sediments formed on mild steel coupons, which were placed in the different points of the Bourgas Petrochemical Plant Recilculating Cooling Water System. It was shown that the created corrosion products can successfully reflect the ambient water medium pollution to which the coupons were exposed

  9. Performance test of solar-assisted ejector cooling system

    Huang, Bin-Juine

    2014-03-01

    A solar-assisted ejector cooling/heating system (SACH-2k) is built and test result is reported. The solar-driven ejector cooling system (ECS) is connected in series with an inverter-type air conditioner (IAC). Several advanced technologies are developed in SACH-k2, including generator liquid level control in ECS, the ECS evaporator temperature control, and optimal control of fan power in cooling tower of ECS. From the field test results, the generator liquid level control performs quite well and keeps stable performance of ejector. The ECS evaporator temperature control also performs satisfactorily to keep ejector performance normally under low or fluctuating solar radiation. The fan power control system cooling tower performs stably and reduces the power consumption dramatically without affecting the ECS performance. The test results show that the overall system COPo including power consumptions of peripheral increases from 2.94-3.3 (IAC alone) to 4.06-4.5 (SACH-k2), about 33-43%. The highest COPo is 4.5. © 2013 Elsevier Ltd and IIR. All rights reserved.

  10. Solar Heating and Cooling of Residential Buildings: Design of Systems.

    Colorado State Univ., Ft. Collins. Solar Energy Applications Lab.

    This is the second of two training courses designed to develop the capability of practitioners in the home building industry to design solar heating and cooling systems. The course is organized in 23 modules to separate selected topics and to facilitate learning. Although a compact schedule of one week is shown, a variety of formats can be…

  11. Twelve solar-heating/cooling systems: Design and development

    1980-01-01

    Two quarterly reports describe first 6 months of development on single family, multifamily, and commercial installations in Minneapolis area. Reports discuss basic requirements, and reasons for selecting specific configurations. Systems consist of liquid cooled flat plate collectors, two fluid loops, and gas-fired forced-air auxiliary heat source.

  12. Cooling System: Automotive Mechanics Instructional Program. Block 6.

    O'Brien, Ralph D.

    The last of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in the automotive cooling system at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  13. System design package for a solar heating and cooling system installed at Akron, Ohio

    1979-01-01

    Information used to evaluate the design of a solar heating, cooling, and domestic hot water system is given. A conventional heat pump provides summer cooling items as the design data brochure, system performance specification, system hazard analysis, spare parts list, and detailed design drawings. A solar system is installed in a single-family dwelling at Akron, Ohio, and at Duffield, Virginia.

  14. Analysis of an electricity–cooling cogeneration system based on RC–ARS combined cycle aboard ship

    Highlights: • A novel electricity–cooling cogeneration system was used to recover waste heat aboard ships. • Performance of such RC–ARS system was investigated theoretically. • Optimal exergy output can be obtained when the vaporization pressure of RC is 300 kPa. • The exergy efficiency of cogeneration system is 5–12% higher than that of basic Rankine cycle only. - Abstract: In this paper, an electricity–cooling cogeneration system based on Rankine–absorption refrigeration combined cycle is proposed to recover the waste heat of the engine coolant and exhaust gas to generate electricity and cooling onboard ships. Water is selected as the working fluid of the Rankine cycle (RC), and a binary solution of ammonia–water is used as the working fluid of the absorption refrigeration cycle. The working fluid of RC is preheated by the engine coolant and then evaporated and superheated by the exhaust gas. The absorption cycle is powered by the heat of steam at the turbine outlet. Electricity output, cooling capacity, total exergy output, primary energy ratio (PER) and exergy efficiency are chosen as the objective functions. Results show that the amount of additional cooling output is up to 18 MW. Exergy output reaches the maximum 4.65 MW at the vaporization pressure of 300 kPa. The study reveals that the electricity–cooling cogeneration system has improved the exergy efficiency significantly: 5–12% increase compared with the basic Rankine cycle only. Primary energy ratio (PER) decreases as the vaporization pressure increases, varying from 0.47 to 0.40

  15. Application of Hastelloy X in Gas-Cooled Reactor Systems

    Brinkman, C. R.; Rittenhouse, P. L.; Corwin, W.R.;

    1976-01-01

    Hastelloy X, an Ni--Cr--Fe--Mo alloy, may be an important structural alloy for components of gas-cooled reactor systems. Expected applications of this alloy in the High-Temperature Gas-Cooled Reactor (HTGR) are discussed, and the development of interim mechanical properties and supporting data...... extensive amount of information has been generated on this material at Oak Ridge National Laboratory and elsewhere concerning behavior in air, which is reviewed. However, only limited data are available from tests conducted in helium. Comparisons of the fatigue and subcritical growth behavior in air between...... Hastelloy X and a number of other structural alloys are given....

  16. Air conditioning system with supplemental ice storing and cooling capacity

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  17. The integration of cryogenic cooling systems with superconducting electronic systems

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  18. Comparison of Air Cooled and Evaporatively Cooled Refrigerartion Systems – A Review Paper

    V. V. Birangane; A.M.Patil

    2014-01-01

    The air cooled condensers are widely used as they are less costly and give satisfactory performance. But their performance is greatly affected by the temperature of cooling media which is ambient air. To deal this problem we can use water cooled condenser. But their cost and maintenance limit their use. The performance improvement of Air cooled condensers can be achieved by using evaporative cooling. This method may prove quiet effective and less costly. There are researchers ...

  19. Solar heating, cooling, and hot water systems installed at Richland, Washington

    1979-01-01

    The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

  20. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  1. Benchmark ultra-cool dwarfs in widely separated binary systems

    Jones H.R.A.

    2011-07-01

    Full Text Available Ultra-cool dwarfs as wide companions to subgiants, giants, white dwarfs and main sequence stars can be very good benchmark objects, for which we can infer physical properties with minimal reference to theoretical models, through association with the primary stars. We have searched for benchmark ultra-cool dwarfs in widely separated binary systems using SDSS, UKIDSS, and 2MASS. We then estimate spectral types using SDSS spectroscopy and multi-band colors, place constraints on distance, and perform proper motions calculations for all candidates which have sufficient epoch baseline coverage. Analysis of the proper motion and distance constraints show that eight of our ultra-cool dwarfs are members of widely separated binary systems. Another L3.5 dwarf, SDSS 0832, is shown to be a companion to the bright K3 giant η Cancri. Such primaries can provide age and metallicity constraints for any companion objects, yielding excellent benchmark objects. This is the first wide ultra-cool dwarf + giant binary system identified.

  2. Turbine airfoil with an internal cooling system having vortex forming turbulators

    Lee, Ching-Pang

    2014-12-30

    A turbine airfoil usable in a turbine engine and having at least one cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels having a plurality of turbulators protruding from an inner surface and positioned generally nonorthogonal and nonparallel to a longitudinal axis of the airfoil cooling channel. The configuration of turbulators may create a higher internal convective cooling potential for the blade cooling passage, thereby generating a high rate of internal convective heat transfer and attendant improvement in overall cooling performance. This translates into a reduction in cooling fluid demand and better turbine performance.

  3. Experimental analysis of thermal storage tank configurationin a solar cooling installation with an absorption chiller

    Salgado, Rafael; Rodríguez, Pedro; Izquierdo, Marcelo; Lecuona, Antonio

    2006-01-01

    The use of air conditioning systems in Spanish dwellings is gaining popularity, as the installed units grows by 0,8 million per year. The most popular air conditioning system today is the vapor-compression cycle. This kind of system consumes a considerable amount of electric energy as it incorporates a mechanical compressor in its cycle and utilizes refrigerants that can be dangerous to the environment. A solution to this kind of equipment can be found in Solar Facilities configured to produc...

  4. Determining the Fraction of Intrinsic CIV Absorption in Quasi-Stellar Object Absorption Line Systems

    Richards, G T; Yanny, B; Kollgaard, R I; Laurent-Mühleisen, S A; Vanden Berk, Daniel E; Richards, Gordon T.; York, Donald G.; Yanny, Brian; Kollgaard, Ronald I.; Berk, Daniel E. Vanden

    1999-01-01

    We present the results of a study of QSO Absorption Line Systems (QSOALSs) with respect to intrinsic QSO properties using an updated catalog of data in the literature. We have searched the literature for 6 and 20 cm radio flux densities and have studied 20 cm maps from the FIRST VLA Survey in order to compare the absorption properties with radio luminosity, radio spectral index and radio morphology. This work focuses particularly on the nature of CIV QSOALSs and their distribution in velocity space in light of intrinsic QSO properties. We find that the distribution of narrow, CIV absorption systems with relative velocities exceeding 5000 km/s is dependent not only on the optical luminosity of the QSOs, but also on the radio luminosity, the radio spectral index and the radio morphology of the QSOs. These observations are apparently inconsistent with the hypothesis that these systems are entirely due to intervening galaxies and it would seem that the contamination of the intervening systems (from 5000 to 75000 ...

  5. Air conditioning using an air-cooled single effect lithium bromide absorption chiller: results of a trial conducted in Madrid in August 2005

    Izquierdo, M.; Lizarte, R.; Marcos, J.D.; Gutiérrez, G.

    2008-01-01

    Air conditioning using an air-cooled single effect lithium bromide absorption chiller: results of a trial conducted in Madrid in August 2005 correspondence: Corresponding author. Tel.: + 34 91 871 32 48; fax: + 34 91 871 32 48. (Izquierdo, M.) (Izquierdo, M.) Instituto de Ciencias de la Construccion Eduardo Torroja (CSIC) c/Serrano Galvache 4 - 28033 Madrid--> - SPAIN (Izquierdo, M.) SPAIN (Izquierdo, M.)...

  6. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  7. Unlimited cooling capacity of the passive-type emergency core cooling system of the MARS reactor

    The MARS nuclear plant is a 600 MWth PWR with completely passive core safeguards. The most relevant innovative safety system is the Emergency Core Cooling System (ECCS), which is based on natural circulation, and on a passive-type activation that follows a core flow decrease, whatever was the cause (only one component, 400% redundant, is not static). The main thermal hydraulic transients occurring as a consequence of design basis accidents for the MARS plant were presented at the ICONE 3 Conference. Those transients were analyzed in the first stage, with the aim at pointing out the capability of the innovative ECCS to intervene. So, they included only a short-time analysis (extended for a few hundreds of seconds) and the well known RELAP 5 computer program was used for this purpose. In the present paper, the long-term analyses (extended for several thousands of seconds) of the same transients are shown. These analyses confirmed that the performance of the Emergency Core Cooling System of the MARS reactor is guaranteed also in long-term scenarios

  8. Leakage from biological shield cooling system in Pickering NGS A

    Over the past eight years, a number of leaks have developed in the Biological Shield Cooling (BSC) system of the Pickering NGS A reactors. The highest leak rate exists in Unit 4. The failure mechanism is not known, but corrosion and/or weld failure are suspected. This paper summarizes the concerns associated with the leaks and possible solutions. It should be noted that the BSC system is peculiar to Pickering A reactors only

  9. Method and system for powering and cooling semiconductor lasers

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  10. CLASSIFICATION OF THE MGR POOL WATER TREATMENT AND COOLING SYSTEM

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) pool water treatment and cooling system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  11. Critical review of water based radiant cooling system design methods

    Feng, Jingjuan Dove; Bauman, Fred; Schiavon, Stefano

    2014-01-01

    Interests in radiant cooling systems have increased in recent years. There is, however, no standardized method for radiant system design that is broadly accepted by the building industry. Through literature review, twelve surveys and eight interviews with leading practitioners, this paper summarizes the design methods documented in the guidelines, assesses the state of the industry, and identifies potential gaps and limitations in current design practice. The findings include: 1) design guide...

  12. Heat pipe cooling system with sensible heat sink

    Silverstein, Calvin C.

    1988-01-01

    A heat pipe cooling system which employs a sensible heat sink is discussed. With this type of system, incident aerodynamic heat is transported via a heat pipe from the stagnation region to the heat sink and absorbed by raising the temperature of the heat sink material. The use of a sensible heat sink can be advantageous for situations where the total mission heat load is limited, as it is during re-entry, and a suitable radiation sink is not available.

  13. HEAT PIPE RADIATIVE COOLING SYSTEMS FOR SPACE OPTICAL SENSORS

    Baturkin, Volodya

    2007-01-01

    The heat pipes application in passive radiative cooling system is considered on the base of the analysis of thermal balance of consecutive thermal elements in system „Sensor - heat pipe – radiator-space“. This analysis defines the points of main thermal attention – heat leakage from mounting place, heat exchange with external radiative surrounding, minimization of thermal resistance of conductors and interaction between these factors. The secularities of heat pipe application as a heat tra...

  14. Cooling the intact loop of primary heat transport system using shut down cooling system after events such as LOCA

    The purpose of this paper is to model the Shutdown Cooling System operation for CANDU 6 NPP in case of LOCA accident, using Flowmaster calculation code by delimiting models and setting calculation assumptions and input data for hydraulic analysis, and and assumptions for the calculation and input data for calculating thermal performance check heat exchangers that are part of this system. The Flowmaster V7.8 code provides system engineers with a powerful tool to investigate pressure surge, pressure drop, flow rate, temperature and system response times - removing the uncertainty from fluid flow systems. Flowmaster is a one-dimensional thermal-hydraulic calculation code for dimensioning, analyzing and verifying the pipeline systems operation. Each component of Flowmaster is a mathematical model for an equipment that is included in a facility. Selected components are connected via nodes in order to form a network, which constitutes a computerized model of the system. Analyzing the parameters of the cooling system for all cooling processes considered it was found that the values obtained for thermal-hydraulic parameters, as well as the duration up to reaching specified limits fall within the design values of the system. This document is made up of an abstract and the slides of the presentation

  15. Alkali Metal Backup Cooling for Stirling Systems - Experimental Results

    Schwendeman, Carl; Tarau, Calin; Anderson, William G.; Cornell, Peggy A.

    2013-01-01

    In a Stirling Radioisotope Power System (RPS), heat must be continuously removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. The Stirling convertor normally provides this cooling. If the Stirling convertor stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS at the cost of an early termination of the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) can be used to passively allow multiple stops and restarts of the Stirling convertor. In a previous NASA SBIR Program, Advanced Cooling Technologies, Inc. (ACT) developed a series of sodium VCHPs as backup cooling systems for Stirling RPS. The operation of these VCHPs was demonstrated using Stirling heater head simulators and GPHS simulators. In the most recent effort, a sodium VCHP with a stainless steel envelope was designed, fabricated and tested at NASA Glenn Research Center (GRC) with a Stirling convertor for two concepts; one for the Advanced Stirling Radioisotope Generator (ASRG) back up cooling system and one for the Long-lived Venus Lander thermal management system. The VCHP is designed to activate and remove heat from the stopped convertor at a 19 degC temperature increase from the nominal vapor temperature. The 19 degC temperature increase from nominal is low enough to avoid risking standard ASRG operation and spoiling of the Multi-Layer Insulation (MLI). In addition, the same backup cooling system can be applied to the Stirling convertor used for the refrigeration system of the Long-lived Venus Lander. The VCHP will allow the refrigeration system to: 1) rest during transit at a lower temperature than nominal; 2) pre-cool the modules to an even lower temperature before the entry in Venus atmosphere; 3) work at nominal temperature on Venus surface; 4) briefly stop multiple times on the Venus surface to allow scientific measurements. This paper presents the experimental

  16. Next-Generation Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Makinen, Janice V.; Anchondo, Ian; Bue, Grant C.; Campbell, Colin; Colunga, Aaron

    2012-01-01

    The development of the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is currently underway at NASA Johnson Space Center. The AEMU PLSS features two new evaporative cooling systems, the Reduced Volume Prototype Spacesuit Water Membrane Evaporator (RVP SWME), and the Auxiliary Cooling Loop (ACL). The RVP SWME is the third generation of hollow fiber SWME hardware, and like its predecessors, RVP SWME provides nominal crewmember and electronics cooling by flowing water through porous hollow fibers. Water vapor escapes through the hollow fiber pores, thereby cooling the liquid water that remains inside of the fibers. This cooled water is then recirculated to remove heat from the crewmember and PLSS electronics. Major design improvements, including a 36% reduction in volume, reduced weight, and more flight like back-pressure valve, facilitate the packaging of RVP SWME in the AEMU PLSS envelope. In addition to the RVP SWME, the Auxiliary Cooling Loop (ACL), was developed for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feed-water assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the RVP SWME, but is only 25% of the size of RVP SWME, providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a SOV reduction in size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The development of these evaporative cooling

  17. Startup time of closed loop spray cooling system

    Using water as coolant,a closed loop spray cooling system with a built-in condenser is established and the variation of startup time is measured dynamically. The optimized startup sequence for different modules is condenser, pump and heater. Under the optimized startup sequence,experimental investigation of the effect of operation parameters, such as cooling water flow rate, heating power, pump height and spray flow rate, on startup characteristics is made. The startup time decreases with the increase of the cooling water flow rate and spray flow rate. The descending order of influence of the factors is as follows: spray flow rate, cooling water flow rate, heating power, and relative height of pump. The startup time reduces by about 5 000 s when the spray flow rate increases from 10 mL/min to 35 mL/min. There exists a maximum of startup time with the variation of heating power. Under the same operation condition, the startup time of the closed loop system is 15% to 20% longer than that of the open one. (authors)

  18. Electromagnetically induced absorption in a three-resonator metasurface system

    Zhang, Xueqian; Xu, Ningning; Qu, Kenan; Tian, Zhen; Singh, Ranjan; Han, Jiaguang; Agarwal, Girish S.; Zhang, Weili

    2015-01-01

    Mimicking the quantum phenomena in metamaterials through coupled classical resonators has attracted enormous interest. Metamaterial analogs of electromagnetically induced transparency (EIT) enable promising applications in telecommunications, light storage, slow light and sensing. Although the EIT effect has been studied extensively in coupled metamaterial systems, excitation of electromagnetically induced absorption (EIA) through near-field coupling in these systems has only been sparsely ex...

  19. Kinematic Interpretation of the Centaurus A Absorption-Line System

    Eckart, A.; Wild, W.; Ageorges, N.

    1999-01-01

    The location of the gas responsible for the absorption-line system toward the nucleus of Centaurus A is a puzzle. It is generally accepted that the line features close to the systemic velocity originate in the disk. The redshifted line features in particular, however, are usually thought to be due t

  20. Energetic analysis of a diffusion–absorption system: A bubble pump under geometrical and operational conditions effects

    This paper presents an analytical model of the bubble pump in a commercial diffusion–absorption refrigerator. Moreover, the energetic analysis achieved is integrated with a heat transfer model and coupled to a thermodynamic model to evaluate the cooling capacity and the coefficient of performance of the refrigeration system, based on geometrical and operational parameters such as heat input, diameter ratio and bubble tube length as well as the ammonia fraction at the inlet of the bubble pump. The results show that the cooling capacity and COP are mainly influenced by geometrical parameters, such as diameter ratio and tube length of the bubble pump, and slightly influenced by the heat input supplied to the bubble pump. The strong concentration range, which is also considered in this work, is a parameter that does not affect the cooling capacity and COP. Moreover, the results reveal that the lowest cooling capacity and COP are obtained when the refrigerator operates at the manufacture design conditions. An increase in cooling capacity and COP of about 150% can be obtained when the diameter ratio is expanded up to 1.5 when comparing with the original configuration. It is expected that these results help researchers and manufacturers extend their analysis to increase the energy performance in diffusion–absorption refrigeration systems. - Highlights: • An analytical model of the bubble pump of a commercial diffusion–absorption refrigerator is proposed. • The analysis presents a broadly characterization of the bubble pump. • A heat transfer model was included in order to evaluate the cooling capacity of all thermostat positions. • The model was validated using several operation conditions of the experimental refrigerator. • The cooling capacity and COP are mainly influenced by the geometrical parameters

  1. Dual purpose absorption machines in an energy system based on waste incineration; Absorptionsmaskiner foer kyl- och vaermeproduktion i energisystem med avfallsfoerbraenning

    Brorsson, Maria [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2005-03-01

    The demand for district cooling in Sweden has been increasing during the recent years and is expected to increase even more. The reason for this is for example more frequent use of computers and higher demand for indoor climate control via air conditioning. During the summer there is also a surplus of heat, especially in energy systems that includes waste incineration. This surplus makes it interesting to consider heat-driven cooling as an alternative to satisfy the increasing demand of district cooling. Today many energy systems in Sweden use absorption heat pumps, for production of district heating using waste heat from the combustion units. To this point the absorption heat pumps have not been considered as chillers due to their relatively high investment cost in combination with the short cooling season. However, the surplus of heat during the summer season means that there is access to 'free' driving heat for the absorption chillers. This would be a cheap and environmentally friendly way to produce district cooling. The aim of this study was to examine the opportunities for using absorption machines for production of district heating during wintertime and district cooling during summertime. Factors to be considered were how this change would be made technically and during which months the absorption heat pumps should be used for cold and heat production, respectively. In addition a comparison between absorption cooling and other cooling techniques was made. The study was based on Vattenfall Vaerme Uppsala ABs (VVU) energy system in Uppsala. VVU has recently invested in two new absorption heat pumps that, together with four old ones, are planned to produce district heating as well as district cooling depending on the season. The results of the study are: The technical change between heat and cold production with absorption heat pumps is relatively simple. When used as a chiller the evaporator heat is taken from the district cooling return water, which

  2. Experimental exergoeconomic assessment of a desiccant cooling system

    Highlights: ► Assessing a novel desiccant cooling system exergoeconomically for the first time. ► Investigating dead state temperatures on efficiencies and irreversibilities. ► Correlating some thermoeconomic parameters with the dead state temperature. ► Changing the exergy efficiencies of the system from 36.40% to 31.08%. ► Ranging the ratio of thermodynamic loss rate to capital cost from 1.14 to 1.19 MW/USD. - Abstract: Desiccant cooling has become a well established technology in most parts of the world, especially recently in Turkey. The increased growth of the technology was caused by the contribution of refrigerants used in conventional cooling systems to the depletion of the ozone layer. This technology provides a tool to control humidity (moisture) levels in conditioned air spaces. In this study, a desiccant cooling system was designed, constructed and tested in Cukurova University, Adana, Turkey while it has been successfully operated since 2008. Exergy, cost, energy and mass (EXCEM) analysis was applied to this system for the first time to the best of the authors‘ knowledge. The relations between thermodynamic losses and capital costs were also parametrically investigated and illustrated in figures. Based on the overall system (OS) results, some components of the whole system, namely the electric heater unit, the expansion valve, the pump, the fresh air fan and the condenser fan were obtained to be inefficient. Particularly, the electric heater unit was important as its exergy loss rate (R.ex) value was 29.36 times greater than that of the OS

  3. Balancing passive and active systems for evolutionary water cooled reactors

    Advanced concepts of the water-cooled reactors are intended to improve safety, economics and public perception of nuclear power. The potential inclusion of new passive means in addition or instead of traditional active systems is being considered by nuclear plant designers to reach these goals. With respect to plant safety, application of the passive means is mainly intended to simplify the safety systems and to improve their reliability, to mitigate the effect of human errors and equipment malfunction. However, some clear drawbacks and the limited experience and testing of passive systems may raise additional questions that have to be addressed in the design process for each advanced reactor. Therefore the plant designer should find a reasonable balance of active and passive means to effectively use their advantages and compensate their drawbacks. Some considerations that have to be taken into account when balancing active/passive means in advanced water-cooled reactors are discussed in this paper. (author)

  4. Characteristics of cooling water fouling in a heat exchange system

    This study investigated the efficiency of the physical water treatment method in preventing and controlling fouling accumulation on heat transfer surfaces in a laboratory heat exchange system with tap and artificial water. To investigate the fouling characteristics, an experimental test facility with a plate type heat exchange system was newly built, where cooling and hot water moved in opposite directions forming a counter-flow heat exchanger. The obtained fouling resistances were used to analyze the effects of the physical water treatment on fouling mitigation. Furthermore, the surface tension and pH values of water were also measured. This study compared the fouling characteristics of cooling water in the heat exchange system with and without the mitigation methods for various inlet velocities. In the presence of the electrode devices with a velocity of 0.5m/s, the fouling resistance was reduced by 79% compared to that in the absence of electrode devices

  5. Energy simulation of solar assisted absorption system and examination of clearness index effects on auxiliary heating

    The smog and pollutants in the atmospheric air of heavily populated urban areas are anticipated to have substantial adverse effects on the collection of solar energy and the performance of solar energy systems. The objectives of this study are (a) to develop a simulation model for analyzing the performance of a water-LiBr solar assisted absorption system with an auxiliary heating source and (b) to examine the effects of clearness index on the auxiliary heating requirements. To achieve the objectives, a numerical model for a water-LiBr solar assisted absorption system is developed, and the influence of a reduction in the clearness index, based on actual recorded data, is investigated for constant and time varying cooling loads. Under the condition of peak solar gain on July 21, when a 1000 m2 solar collector is designed to provide 70% of the heating energy required for a constant cooling load of 1265 MJ/h (=100 refrigeration tons), as the system coefficient of performance decreases due to higher ambient temperatures, it is found that a reduction in the clearness index from 0.63 to 0.52 results in a 67% increase in auxiliary heating required of the boiler. It is concluded that accounting for clearness index data is necessary for accurate prediction of solar energy collection

  6. Conceptual design of passive containment cooling system based on APR+

    The accident of the Fukushima nuclear power plant left a profound message toward the need for a passive cooling system which can operate under the extended station blackout. These days, nuclear institutions in Korea are developing Advanced Power Reactor Plus (APR+). Its distinct characteristic lies on the passive auxiliary feed water system (PAFS) which removes decay heat to a passive condensation cooling tank (PCCT) by natural convection. Though the system is expected to work well under station blackout, the system becomes useless under the loss of coolant accident (LOCA) combined with station blackout. This paper aims at using existing heat exchangers of PAFS and PCCT under LOCA to cool the reactor as well as the containment in a fully passive way. To enhance the condensation rate of heat exchangers in PCCT, we need to produce convective flow in the PCCS heat exchangers. Therefore, the whole region of the concrete containment is divided into 3 chambers: inner, outer, PCCS chambers. An outer chamber is disposed to collect non-condensable gas. The condensate is stored in a condensate storage tank (CST) and injected into the reactor by gravity. This system makes a closed circuit to work indefinitely. A scoping analysis for the containment pressure is performed as a function of various parameters: outer chamber volume and number of tubes in heat exchangers. (author)

  7. Development of Personalized Radiant Cooling System for an Office Room

    Khare, Vaibhav [Malaviya National Institute of Technology (MNIT), Jaipur, India; Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    The building industry nowadays is facing two major challenges increased concern for energy reduction and growing need for thermal comfort. These challenges have led many researchers to develop Radiant Cooling Systems that show a large potential for energy savings. This study aims to develop a personalized cooling system using the principle of radiant cooling integrated with conventional all-air system to achieve better thermal environment at the workspace. Personalized conditioning aims to create a microclimatic zone around a single workspace. In this way, the energy is deployed only where it is actually needed, and the individual s needs for thermal comfort are fulfilled. To study the effect of air temperature along with air temperature distribution for workspace, air temperature near the vicinity of the occupant has been obtained as a result of Computational Fluid Dynamics (CFD) simulation using FLUENT. The analysis showed that personalized radiant system improves thermal environment near the workspace and allows all-air systems to work at higher thermostat temperature without compromising the thermal comfort, which in turn reduces its energy consumption.

  8. Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air-conditioning applications

    Desideri, Umberto; Proietti, Stefania; Sdringola, Paolo [Department of Industrial Engineering, University of Perugia, Via G. Duranti 67 - 06125 Perugia (Italy)

    2009-09-15

    In the last years, the growing demand for air conditioning has caused a significant increase in demand for primary energy resources. Solar-powered cooling is one of the technologies which allows to obtain, by using the renewable solar source, an important energy saving compared to traditional air conditioning plants. The paper describes different technical installations for solar cooling, their way of operation, advantages and limits. The objective of the present study has been to analyze the technical and economic feasibility of solar absorption cooling systems, designed for two different application fields: industrial refrigeration and air conditioning. The possibility to replace or integrate the existing plants is studied, by considering the refrigeration requirements of a company, which works in meat manufacturing, and the heating and cooling demands of a hotel located in a tourist town in Italy. In the first case, the system comprises an absorption chiller coupled to solar flat plate collectors, whereas the second application is about a hybrid trigeneration plant, known as thermo-solar trigeneration; this option allows having greater operational flexibility at sites with demand for energy in the form of heating as well as cooling, for example in a hotel. In this way the authors could compare different results obtained by a technical and economic experimental analysis based on existing users and evaluate the advantages and disadvantages in order to suggest the best solution for the two studied cases. (author)

  9. Solar heating and cooling system installed at Leavenworth, Kansas. Final report

    Perkins, R. M.

    1980-06-01

    The solar heating and cooling system installed at the headquarters of Citizens Mutual Savings Association in Leavenworth, Kansas, is described in detail. The project is part of the U.S. Department of Energy's solar demonstration program and became operational in March, 1979. The designer was TEC, Inc. Consulting Engineers, Kansas City, Missouri and contractor was Norris Brothers, Inc., Lawrence, Kansas. The solar system is expected to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2200 square feet. Five, 3-ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3000 gallon chilled water storage tank. Two, 3000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  10. Cryogenically Cooled Field Effect Transistors for Low-Noise Systems

    Wollack, Edward J.

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  11. Cryogenetically Cooled Field Effect Transistors for Low-Noise Systems

    Wollack, Edward J.; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  12. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  13. Interaction between retrofittable and existing emergency cooling systems in BWRs

    The concept of an autarkic and retrofittable residual heat removal system, which utilizes ambient air as the alternative ultimate heat sink, is presented with respect to boiling water reactors (BWR). The cooling system is self-propelled by an integrated Brayton cycle, which is driven by the temperature difference between the primary circuit and the ambient air. Supercritical carbon dioxide (sCO2) is employed as the working fluid of the heat removal system. Due to its specific fluid properties, the system can be designed extremely compact, which facilitates the integration into existing safety classified buildings. In addition to the self-propelling heat removal system, a Reactor Core Isolation Cooling (RCIC) system is anticipated, as standardly implemented in some BWR concepts. A typical RCIC consists of a steam-driven turbo-pump, which injects water from the wetwell into the reactor pressure vessel, powered by primary steam. The interaction and capability of the two above mentioned systems are analyzed for a loss of ultimate heat sink scenario with a concurrent station blackout. The scenario is exemplarily simulated with the thermo-hydraulic computer code ATHLET for a generic BWR with 3840 MW thermal power, for a time period of 72 hours. The synergy of steam-driven systems for coolant injection, the Reactor Core Isolation Cooling system, as well as residual heat removal, the Turbo Compressor System, is demonstrated. The systems’ performance and the influence of the overall behavior of the BWR are discussed. The presented study shows that the combination of heat removal and coolant injection ensures the fundamental safety functions even during certain beyond design basis scenarios, such as a Station Blackout (SBO) and / or Loss of Ultimate Heat Sink (LUHS) independently for at least three days. Only very slight interferences could be detected at the beginning of the scenario, as the depressurization of the primary circuit through the RCIC reduces the heat removal

  14. Theoretical Study of New Combined Absorption-Ejector Refrigeration System

    Abed, A. M.; Sopian, K.; Alghoul, M. A.; Al-Shamani, A. N.; Ruslan, M. H.; Mat, S.

    2015-09-01

    An improved system of the new combined single stage absorption cycle operated with NH3/H2O as working fluid was performed. In order to enhance performance the cycle a new configuration of absorption system was utilized. The performances of two configurations of the combined absorption cycle were compared; a) with common solution heat exchanger and b) divided the streamline of solution heat exchanger to recover the internal heat. Based on the analysis, it has been shown that the second configuration a significant reduction of the required generator and absorber loads by about 20% and 17% respectively, with increased coefficient of performance (COP) about 12% compared to the first configuration. This improvement in the overall COP is found due to improve energy utilization efficiency significantly.

  15. Application of small diameter nozzles systems for cyclotron targets cooling

    In the present work estimating calculations of cadmium targets cooling conditions under proton beam irradiation are cited. Irradiation conditions and targets parameters are as follows: a) proton initial energy - 16 MeV, beam current - 20 μA; b) metallic cadmium layer thickness - 660 μm; target diameter - 9 mm, it squire - 0.64 cm2; c) vanadium substrate thickness, on which the cadmium layer is fixed - 200 μm; d) proton energy losses in the target - 15 MeV, heat release in the cadmium layer - 300 W, heat release on the target surface - 471 W·cm-2; e) proton energy losses in the substrate - 1 MeV, heat release in vanadium - 15 W. For the calculation the system of 7 nozzles was selected. It is noted, that cooling change by single jet of nozzle systems with small diameter provides to heat transfer coefficient increase and sharply reduces (into 3 times) water flow

  16. Oil cooling system for a gas turbine engine

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  17. Method and system for providing cooling for turbine components

    Morgan, Victor John; Lacy, Benjamin Paul

    2016-08-16

    A system for providing cooling for a turbine component that includes an outer surface exposed to combustion gases is provided. A component base includes at least one fluid supply passage coupleable to a source of cooling fluid. At least one feed passage communicates with the at least one fluid supply passage. At least one delivery channel communicates with the at least one feed passage. At least one cover layer covers the at least one feed passage and the at least one delivery channel, defining at least in part the component outer surface. At least one discharge passage extends to the outer surface. A diffuser section is defined in at least one of the at least one delivery channel and the at least one discharge passage, such that a fluid channeled through the system is diffused prior to discharge adjacent the outer surface.

  18. Efficacy and decomposition of DBNPA in two cooling systems

    The purpose of this study was to evaluate efficacy vs. bacteria and concurrent decomposition of DBNPA in two field situations and to compare the results with those previously described for a laboratory situation. The data show that for the two cooling systems studied, DBNPA can be used at pH 9 with acceptable results as shown by the 3-4 orders of magnitude decrease in cfu/ml

  19. Energy Efficiency Improvements in Household Refrigeration Cooling Systems

    Björk, Erik

    2012-01-01

    This thesis is based on eight articles all related to the characteristics of the cooling system and plate evaporator of a household refrigerator. Through these articles, knowledge is provided that can be used to increase the operational efficiency in household refrigeration. Papers A, B and C focus on heat transfer and pressure drop in a commonly used free convection evaporator – the plate evaporator. Applicable correlations are suggested on how to estimate the air side heat transfer, the ref...

  20. Combined system for heating and cooling entirely using solar energy

    The paper presents an original technical solution for heating and cooling of premises using solar energy only. The main equipment is thermo-pump fed by photo-voltaic system. This combination permits the conversion of 45% of the solar energy to heat regardless of winter conditions. It is investigated the possibility for the use of an inverter air conditioning installation to maintain the conditions

  1. Modelling to predict future energy performance of solar thermal cooling systems for building applications in the North East of England

    Controlling and reducing energy consumption in buildings has been identified by policy makers and politicians as way of meeting global targets for greenhouse gas reductions and mitigating the impacts of climate change. Buildings must be designed and built to withstand harsh future weather patterns, and be energy efficient to run. In the UK, there has been an increasing demand to provide cooling in summer months and this is likely to increase in the future with global temperatures rising. While the potential of solar thermal energy to cool buildings has been investigated in warmer climates, this is not the case in the UK. An optimised solar thermal simulation model was developed using the UKCIP climate change weather prediction scenarios over the next 40 years to assess cooling effectiveness delivered by solar powered air cooling systems. This paper bridges the modern concept of solar cooling technology and future potential for new build and retrofitted commercial applications, using modern modelling concepts. -- Highlights: • Weather scenarios in 2080 demonstrate greater demand of cooling. • Cooling absorption effectiveness on building types to increase in future years. • Application in cooler climates can still save considerable amounts of carbon

  2. Design of core cooling monitoring system based on SOP

    Ling'ao phase Ⅱ nuclear power project is the first SOP adopted plant in China. According to the requirement of this procedure, Core Cooling Monitoring System (CCMS) shall perform two of six status function monitoring tasks of SOP, including primary loop coolant inventory, pressure and temperature. Inventory is monitored by reactor vessel level and the rest are monitored by saturation margin ΔTsat. To fulfill these tasks, the system design, including sensors, data processing and information display, is significantly different from EOP design. This paper gives a generally description from the system design aspect. (authors)

  3. Advancement of solar desiccant cooling system for building use in subtropical Hong Kong

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S. [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2010-12-15

    The solar desiccant cooling system (SDCS) had a saving potential of the year-round primary energy consumption as compared to the conventional air-conditioning system for full fresh air application in the subtropical Hong Kong. In order to further enhance its energy efficiency, advancement of the basic SDCS was carried out through a strategy of hybrid design. Six hybrid system alternatives of SDCS were therefore proposed, three for full fresh air design while another three for return air design for the building zone. Year-round performance evaluation of each solar hybrid desiccant cooling system was conducted for typical office application under different climatic and loading conditions. All the six hybrid system alternatives were found technically feasible, with up to 35.2% saving of year-round primary energy consumption against the conventional air-conditioning systems. Among the hybrid alternatives, recommendations were made on the SDCS hybridized with vapour compression refrigeration for full fresh air design; and the SDCS hybridized with vapour absorption refrigeration for return air design, since they had the saving potentials of both primary energy and initial cost. These two hybrid system alternatives used evacuated tubes, a more economical type of solar collectors compared to the PV or PVT panels. (author)

  4. Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report

    1979-06-01

    Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

  5. Evaluation of the performance of combined cooling, heating, and power systems with dual power generation units

    The benefits of using a combined cooling, heating, and power system with dual power generation units (D-CCHP) is examined in nine different U.S. locations. One power generation unit (PGU) is operated at base load while the other is operated following the electric load. The waste heat from both PGUs is used for heating and for cooling via an absorption chiller. The D-CCHP configuration is studied for a restaurant benchmark building, and its performance is quantified in terms of operational cost, primary energy consumption (PEC), and carbon dioxide emissions (CDE). Cost spark spread, PEC spark spread, and CDE spark spread are examined as performance indicators for the D-CCHP system. D-CCHP system performance correlates well with spark spreads, with higher spark spreads signifying greater savings through implementation of a D-CCHP system. A new parameter, thermal difference, is introduced to investigate the relative performance of a D-CCHP system compared to a dual PGU combined heat and power system (D-CHP). Thermal difference, together with spark spread, can explain the variation in savings of a D-CCHP system over a D-CHP system for each location. The effect of carbon credits on operational cost savings with respect to the reference case is shown for selected locations. - Highlights: • We investigate benefits from using combined cooling, heating, and power systems. • A dual power generation unit configuration is considered for CCHP and CHP. • Spark spreads for cost, energy, and emissions correlate with potential savings. • Thermal difference parameter helps to explain variations in potential savings. • Carbon credits may increase cost savings where emissions savings are possible

  6. Backscatter absorption gas imaging systems and light sources therefore

    Kulp, Thomas Jan; Kliner, Dahv A. V.; Sommers, Ricky; Goers, Uta-Barbara; Armstrong, Karla M.

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  7. Concept design and formation of a lithium bromide–water cooling system powered by supercritical CO2 solar collector

    Highlights: • Supercritical CO2 solar collector is proposed for double effect lithium bromide–water absorption cooling system. • Coupled system concept designs are made to provide sustainable cooling capacity. • Experimental system established and tested for supercritical fluid high pressure cycle side. • Seasonal solar power lithium bromide–water cooling system COP is identified up to 1.08. - Abstract: In this study, concept design and tests for the combination of a supercritical CO2 solar collector powered LiBr–H2O refrigeration system has been investigated. The system is basically consisted of one supercritical CO2 solar collector system and one double effect lithium bromide–water absorption refrigeration cycle. The assessment of the overall performance is based on the theoretical analysis of the refrigeration cycle and experiments on a supercritical solar collector system in Shaoxing City, Zhejiang Province of China. Energy balance and seasonal efficiency analysis are developed in this study. The maximum daily averaged COP (Coefficient of Performance) of the proposed system is estimated up to 1.08, while the averaged COP ranges from 0.53 to 0.91 for different months. The obtained results indicate considerable improvement to conventional solar-assisted cooling systems. In addition, it is also found that this system performs better than traditional systems even when the solar radiation is not at high level, which is due to the stability and high efficiency of supercritical circulation collector cycle proposed. The system feasibility and possible future directions of the proposed system are also discussed in detail in this study. It is hoped that the current results can be of help to related system designs

  8. DEVELOP A CONCENTRATED SOLAR POWER-BASED THERMAL COOLING SYSTEM VIA SIMULATION AND EXPERIMENTAL STUDIES

    A small scale CSP-based cooling system prototype (300W cooling capacity) and the system performance simulation tool will be developed as a proof of concept. Practical issues will be identified to improve our design.

  9. D0 Silicon Upgrade: D0 Silicon Cooling System

    The cooling system design is not complete. This paper lays out the general design and some of the design calculations that have been performed up to this date. Further refinement will be performed. This is especially true in the piping layout, piping insulation and detector manifold areas. The silicon detector is cooled by means of a coolant in the beryllium channels that also act as the primary supporting device for the silicon ladders and wedges. The coolant is water with ethylene glycol added as a freezing point depressant. The glycol concentration in the coolant is 30% by weight resulting in a freezing point of approximately -15 C. If the water/glycol is not sufficient for maintaining the desired detector temperature the concentration of the water/glycol may be changed or an alternative coolant may be used.

  10. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous

  11. Analysis of Steam Condensation in a Finned Tube of Air-Water Combined Cooling System

    Kwon, Taesoon; Bae, S. W.; Kim, K. H.; Park, Y. S.; Park, H. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A Passive Auxiliary Feedwater System (PAFS) is one of the passive cooling systems of the existing power plant and the operating period is 8 hours because of the limited capacity of the cooling water tank. Therefore, to increase the operating period from 8 to 72 hours for an existing PAFS, the capacity of the cooling water tank should be increased up to 3-4 times. To resolve the excessive increase of the cooling tank volume in water cooling systems, an air-water combined passive cooling system is proposed. In this combined cooling system, the core cooling during the initial stage of an accident having high decay power depends on the water cooling systems such as PAFS. For the later phase of an accident, an air-cooling system is applied to the core cooling. In the operation of the air-cooling system, the steam from the cooling water tank of the PAFS is condensed and recirculated to the cooling water tank by an air-cooling heat exchanger. In this way, the increase of the cooling water tank volume can be minimized. To design an air-water combined cooling system, the steam condensation characteristics of an air-cooling heat exchanger tube was calculated using a CFX code. The results show that the air velocities around the tube at the steam inlet/outlet regions are quite different with each other. Therefore, dense installation of thermocouples at the tube bottom region is required to measure the steam condensation in the tube. Otherwise, the detection and measurement of steam condensation at the steam inlet region may be very difficult. The velocity distribution of air is not uniform and the distributions of air temperature and velocity around the heat exchanger tube are strongly asymmetric. In the design of the measurement system of the test facility, the problems mentioned above should be considered.

  12. Analysis of Steam Condensation in a Finned Tube of Air-Water Combined Cooling System

    A Passive Auxiliary Feedwater System (PAFS) is one of the passive cooling systems of the existing power plant and the operating period is 8 hours because of the limited capacity of the cooling water tank. Therefore, to increase the operating period from 8 to 72 hours for an existing PAFS, the capacity of the cooling water tank should be increased up to 3-4 times. To resolve the excessive increase of the cooling tank volume in water cooling systems, an air-water combined passive cooling system is proposed. In this combined cooling system, the core cooling during the initial stage of an accident having high decay power depends on the water cooling systems such as PAFS. For the later phase of an accident, an air-cooling system is applied to the core cooling. In the operation of the air-cooling system, the steam from the cooling water tank of the PAFS is condensed and recirculated to the cooling water tank by an air-cooling heat exchanger. In this way, the increase of the cooling water tank volume can be minimized. To design an air-water combined cooling system, the steam condensation characteristics of an air-cooling heat exchanger tube was calculated using a CFX code. The results show that the air velocities around the tube at the steam inlet/outlet regions are quite different with each other. Therefore, dense installation of thermocouples at the tube bottom region is required to measure the steam condensation in the tube. Otherwise, the detection and measurement of steam condensation at the steam inlet region may be very difficult. The velocity distribution of air is not uniform and the distributions of air temperature and velocity around the heat exchanger tube are strongly asymmetric. In the design of the measurement system of the test facility, the problems mentioned above should be considered

  13. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  14. Parametric study on the advantages of weather-predicted control algorithm of free cooling ventilation system

    Predicted climate changes and the increased intensity of urban heat islands, as well as population aging, will increase the energy demand for the cooling of buildings in the future. However, the energy demand for cooling can be efficiently reduced by low-exergy free-cooling systems, which use natural processes, like evaporative cooling or the environmental cold of ambient air during night-time ventilation for the cooling of buildings. Unlike mechanical cooling systems, the energy for the operation of free-cooling system is needed only for the transport of the cold from the environment into the building. Because the natural cold potential is time dependent, the efficiency of free-cooling systems could be improved by introducing a weather forecast into the algorithm for the controlling. In the article, a numerical algorithm for the optimization of the operation of free-cooling systems with night-time ventilation is presented and validated on a test cell with different thermal storage capacities and during different ambient conditions. As a case study, the advantage of weather-predicted controlling is presented for a summer week for typical office room. The results show the necessity of the weather-predicted controlling of free-cooling ventilation systems for achieving the highest overall energy efficiency of such systems in comparison to mechanical cooling, better indoor comfort conditions and a decrease in the primary energy needed for cooling of the buildings. - Highlights: • Energy demand for cooling will increase due to climate changes and urban heat island • Free cooling could significantly reduce energy demand for cooling of the buildings. • Free cooling is more effective if weather prediction is included in operation control. • Weather predicted free cooling operation algorithm was validated on test cell. • Advantages of free-cooling on mechanical cooling is shown with different indicators

  15. Performance analysis of a two stage pad cooling system in broiler houses

    Petek, Metin; DİKMEN, Serdal; OĞAN, Mehmet Mustafa

    2012-01-01

    The cooling performance of a traditional (control) and two stage evaporative pad cooling system (experiment), including pad and fan with tunnel ventilation, for poultry houses and the growth performance of broilers reared in these systems was compared in a study performed during extreme summer temperatures. The experimental unit had a two stage pad cooling system, which consisted of underground tubes and a box, followed by a pad cooling system with tunnel ventilation. The control unit had a t...

  16. System Study: Reactor Core Isolation Cooling 1998–2013

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-01-31

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2013 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10-year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  17. Design Of Pump Monitoring Of Primary Cooling System

    Monitoring of 3 primary cooling pumps done visually by operator on the spot. The operator must be check oil in a sight glass, oil leakage during pump operation and water leakage. If reaktor power increase about more than 3 MW, the radiation exposure also increase in the primary cell and that's way the operator can not check the pumps. To continuing monitor all pump without delay, one system has been added I.e Closed Circuit Television (CCTV). This system using 3 video camera to monitor 3 pumps and connected to one receiver video monitor by coaxial cable located in Main Control Room. The sequence monitoring can be done by sequential switcher

  18. System Study: Reactor Core Isolation Cooling 1998-2014

    Schroeder, John Alton [Idaho National Lab. (INL), Idaho Falls, ID (United States). Risk Assessment and Management Services Dept.

    2015-12-01

    This report presents an unreliability evaluation of the reactor core isolation cooling (RCIC) system at 31 U.S. commercial boiling water reactors. Demand, run hours, and failure data from fiscal year 1998 through 2014 for selected components were obtained from the Institute of Nuclear Power Operations (INPO) Consolidated Events Database (ICES). The unreliability results are trended for the most recent 10 year period, while yearly estimates for system unreliability are provided for the entire active period. No statistically significant trends were identified in the RCIC results.

  19. Computer Simulation Performed for Columbia Project Cooling System

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  20. Seismic design of ITER component cooling water system-1 piping

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3. This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event. (author)