WorldWideScience

Sample records for absorbent hydrogels based

  1. Synthesis and Characterization of Super absorbent Hydrogels Based on Natural Polymers Using Ionizing Radiations

    Radiation processing technology is a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, novel super absorbent hydrogels was prepared with biodegradable and eco-friendly properties by graft copolymerization of chitosan and different synthetic monomers (AAc, DEAEMA, HEMA, HPMA and HEA) using gamma irradiation to examine the potential use of these hydrogels in the controlled drug release systems. The different chitosan hydrogels were characterized using FTIR spectroscopy, scanning electron microscopy and thermal analysis techniques. The effects of the preparation conditions on the gelation process of the synthesized copolymer were investigated. The influence of variables such as feed concentration, irradiation dose, composition ratio, ph and temperature on the swelling of the prepared hydrogels was also examined. The water absorbency of these hydrogels in various ph and salt solutions was studied. The swelling kinetics of the prepared hydrogels and in vitro release dynamics of model drug (Chlortetracycline hydrochloride) from these hydrogels has been studied for the evaluation of swelling mechanism and drug release mechanism from the hydrogels. The adsorption and in vitro release profiles of Chlortetracycline HCl from the prepared gels were also estimated in different ph buffers. The amount of drug released from CS/ (AAc-DEAEMA) hydrogels was higher than that released from other modified CS/AAc hydrogels. This preliminary investigation of chitosan based hydrogels showed that they may be exploited to expand the utilization of these systems in drug delivery applications

  2. Hydrogel based occlusion systems

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a target occlusion location. The hydrogel is configured to permanently occlude the target occlusion location in the swollen state. The hydrogel may be an electro-activated hydrogel (EAH) which could be ...

  3. Hydrogel based occlusion systems

    Stam, F.A.; Jackson, N.; Dubruel, P.; Adesanya, K.; Embrechts, A.; Mendes, E.; Neves, H.P.; Herijgers, P.; Verbrugghe, Y.; Shacham, Y.; Engel, L.; Krylov, V.

    2013-01-01

    A hydrogel based occlusion system, a method for occluding vessels, appendages or aneurysms, and a method for hydrogel synthesis are disclosed. The hydrogel based occlusion system includes a hydrogel having a shrunken and a swollen state and a delivery tool configured to deliver the hydrogel to a tar

  4. Super absorbent hydrogel composites as water retentive in soil

    Super absorbent hydrogels (SAP) were synthesized at room temperature, by the use of potassium persulfate as initiator, N,N'-methylene bis acrylamide (MBA) as crosslinking agent, and N,N,N',N'- tetramethylethylenediamine. Gels at the same conditions were prepared with 10% of minerals (bentonite or dolomite). The materials of bentonite series were obtained from acrylamide followed by hydrolysis with NaOH. The gels of dolomite series were prepared from the two co-monomers (acrylamide and acrylate). All SAPs were characterized by elemental microanalysis, FTIR, x-ray diffraction, SEM, and by swelling measurements in water. An intercalated composite was obtained with bentonite hydrogel. After hydrolysis an exfoliated nanocomposite was formed. The dolomite mineral was dispersed in the polymeric matrix. The swelling degrees of the SAPs with mineral were higher than those gels without it. This degree was 1,000 times the dry gel weight. Taking into account the amount of water needed to the process, the gel with dolomite is the most promising as soil conditioner. (author)

  5. Synthesis and characterization of super absorbent poly (acrylamide-co-potassium acrylate) hydrogels by radiation technique

    A series of super absorbent hydrogels were prepared from acrylamide (AAm) and potassium acrylate (KA) by gamma irradiation technique at room temperature. The solution containing potassium acrylate 15% and different concentrations of AAm (10-16%) were irradiated by gamma rays (20-40 kGy). The hydrogels produced by irradiation were characterized by fourier transform infra red spectroscopy (FT-IR). The gel fraction, kinetics of swelling and the equilibrium degree of swelling (EDS) were studied. Under irradiation dose of 20 kGy and concentration of AAM 10 %), poly(AAm-co-KA) hydrogel with high gel fraction (99.08%) and very high EDS (420 g/g) were obtained. The capacity of hydrogel to adsorb metal ion Cu2+and Fe3+were investigated. It is shown than 10 minutes the hydrogel could adsorb Cu2+ ion up to 95 %, and Fe3+ ion up to 55 % in 80 minutes. This hydrogel has a potential to be used for soil conditioning and ion metal absorbent. (author)

  6. Soy-Based Hydrogels for Biomedical Applications

    Soy based hydrogels were prepared by ring-opening polymerization of epoxidized soybean oil, flowing hydrolysis of formed polymer. The hydrogels were evaluated loading and release water-soluble anticancer drug doxorubin (Dox). The results suggested that this new system may offer great potential to ...

  7. Biocatalytic synthesis of highly ordered degradable dextran-based hydrogels

    Ferreira, Lino; Gil, Maria H.; Cabrita, António M. S.; Dordick, Jonathan S.

    2005-01-01

    We have prepared unique macroporous and ordered dextran-based hydrogels using a single-step biocatalytic transesterification reaction between dextran and divinyladipate in neat dimethylsulfoxide. These hydrogels show a unimodal distribution of interconnected pores with average diameters from 0.4 to 2.0 [mu]m depending on the degree of substitution. In addition, the hydrogels show a higher elastic modulus for a given swelling ratio than chemically synthesized dextran-based hydrogels. In vivo s...

  8. Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications.

    Giri, Tapan Kumar; Thakur, Deepa; Alexander, Amit; Ajazuddin; Badwaik, Hemant; Tripathi, Dulal Krishna

    2012-11-01

    Alginate is a non-toxic, biocompatible and biodegradable natural polymer with a number of peculiar physicochemical properties for which it has wide applications in drug delivery and cell delivery systems. Hydrogel formation can be obtained by interactions of anionic alginates with multivalent inorganic cations by simple ionotropic gelation method. Hydrophilic polymeric network of three dimensional cross linked structures of hydrogels absorb substantial amount of water or biological fluids. Among the numerous biomaterials used for hydrogel formation alginate has been and will continue to be one of the most important biomaterial. Therefore, in view of the vast literature support, we focus in this review on alginate - based hydrogel as drug delivery and cell delivery carriers for biomedical applications. Various properties of alginates, their hydrogels and also various techniques used for preparing alginate hydrogels have been reviewed. PMID:22998675

  9. Hydrogel-based piezoresistive biochemical microsensors

    Guenther, Margarita; Schulz, Volker; Gerlach, Gerald; Wallmersperger, Thomas; Solzbacher, Florian; Magda, Jules J.; Tathireddy, Prashant; Lin, Genyao; Orthner, Michael P.

    2010-04-01

    This work is motivated by a demand for inexpensive, robust and reliable biochemical sensors with high signal reproducibility and long-term-stable sensitivity, especially for medical applications. Micro-fabricated sensors can provide continuous monitoring and on-line control of analyte concentrations in ambient aqueous solutions. The piezoresistive biochemical sensor containing a special biocompatible polymer (hydrogel) with a sharp volume phase transition in the neutral physiological pH range near 7.4 can detect a specific analyte, for example glucose. Thereby the hydrogel-based biochemical sensors are useful for the diagnosis and monitoring of diabetes. The response of the glucosesensitive hydrogel was studied at different regimes of the glucose concentration change and of the solution supply. Sensor response time and accuracy with which a sensor can track gradual changes in glucose was estimated. Additionally, the influence of various recommended sterilization methods on the gel swelling properties and on the mechano-electrical transducer of the pH-sensors has been evaluated in order to choose the most optimal sterilization method for the implantable sensors. It has been shown that there is no negative effect of gamma irradiation with a dose of 25.7 kGy on the hydrogel sensitivity. In order to achieve an optimum between sensor signal amplitude and sensor response time, corresponding calibration and measurement procedures have been proposed and evaluated for the chemical sensors.

  10. Preparation of bacterial cellulose based hydrogels and their viscoelastic behavior

    Shah, Rushita; Vyroubal, Radek; Fei, Haojei; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-04-01

    Bacterial cellulose (BC) based hydrogels have been prepared in blended with carboxymethylcellulose and polyvinyl pyrrolidone by using heat treatment. The properties of BC-CMC and BC-PVP hydrogels were compared with pure BC, CMC and PVP hydrogels. These hydrogels were investigated by measuring their structural, morphological and viscoelastic properties. Through the morphological images, alignment of the porous flake like structures could be seen clearly within the inter-polymeric network of the hydrogels. Also, the detail structure analysis of the polymers blended during the hydrogel formation confirms their interactions with each other were studied. Further, the viscoelastic behavior of all the hydrogels in terms of elastic and viscous property was studied. It is observed that at 1% strain, including CMC and PVP hydrogels, all the BC based hydrogels exhibited the linear trend throughout. Also the elastic nature of the material remains high compared to viscous nature. Moreover, the changes could be noticed in case of blended polymer based hydrogels. The values of complex viscosity (η*) decreases with increase in angular frequency within the range of ω = 0.1-100 rad.s-1.

  11. Piezoresistive Chemical Sensors Based on Functionalized Hydrogels

    Margarita Guenther

    2014-06-01

    Full Text Available Thin films of analyte-specific hydrogels were combined with microfabricated piezoresistive pressure transducers to obtain chemomechanical sensors that can serve as selective biochemical sensors for a continuous monitoring of metabolites. The gel swelling pressure has been monitored in simulated physiological solutions by means of the output signal of piezoresistive sensors. The interference by fructose, human serum albumin, pH, and ionic concentration on glucose sensing was studied. With the help of a database containing the calibration curves of the hydrogel-based sensors at different values of pH and ionic strength, the corrected values of pH and glucose concentration were determined using a novel calibration algorithm.

  12. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels. PMID:27230478

  13. Force-compensated hydrogel-based pH sensor

    Deng, Kangfa; Gerlach, Gerald; Guenther, Margarita

    2015-04-01

    This paper presents the design, simulation, assembly and testing of a force-compensated hydrogel-based pH sensor. In the conventional deflection method, a piezoresistive pressure sensor is used as a chemical-mechanical-electronic transducer to measure the volume change of a pH-sensitive hydrogel. In this compensation method, the pH-sensitive hydrogel keeps its volume constant during the whole measuring process, independent of applied pH value. In order to maintain a balanced state, an additional thermal actuator is integrated into the close-loop sensor system with higher precision and faster dynamic response. Poly (N-isopropylacrylamide) (PNIPAAm) with 5 mol% monomer 3-acrylamido propionic acid (AAmPA) is used as the temperature-sensitive hydrogel, while poly (vinyl alcohol) with poly (acrylic acid) (PAA) serves as the pH-sensitive hydrogel. A thermal simulation is introduced to assess the temperature distribution of the whole microsystem, especially the temperature influence on both hydrogels. Following tests are detailed to verify the working functions of a sensor based on pH-sensitive hydrogel and an actuator based on temperature-sensitive hydrogel. A miniaturized prototype is assembled and investigated in deionized water: the response time amounts to about 25 min, just half of that one of a sensor based on the conventional deflection method. The results confirm the applicability of t he compensation method to the hydrogel-based sensors.

  14. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    2015-01-01

    Hyaluronic acid (HA) hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS) based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injec...

  15. Biodegradable HEMA-based hydrogels with enhanced mechanical properties.

    Moghadam, Mohamadreza Nassajian; Pioletti, Dominique P

    2016-08-01

    Hydrogels are widely used in the biomedical field. Their main purposes are either to deliver biological active agents or to temporarily fill a defect until they degrade and are followed by new host tissue formation. However, for this latter application, biodegradable hydrogels are usually not capable to sustain any significant load. The development of biodegradable hydrogels presenting load-bearing capabilities would open new possibilities to utilize this class of material in the biomedical field. In this work, an original formulation of biodegradable photo-crosslinked hydrogels based on hydroxyethyl methacrylate (HEMA) is presented. The hydrogels consist of short-length poly(2-hydroxyethyl methacrylate) (PHEMA) chains in a star shape structure, obtained by introducing a tetra-functional chain transfer agent in the backbone of the hydrogels. They are cross-linked with a biodegradable N,O-dimethacryloyl hydroxylamine (DMHA) molecule sensitive to hydrolytic cleavage. We characterized the degradation properties of these hydrogels submitted to mechanical loadings. We showed that the developed hydrogels undergo long-term degradation and specially meet the two essential requirements of a biodegradable hydrogel suitable for load bearing applications: enhanced mechanical properties and low molecular weight degradation products. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1161-1169, 2016. PMID:26061346

  16. Synthesis and Swelling Properties of Thermosensitive Hydrogels based on Terpolymerization

    Cai Hua NI; Xian Yu ZENG; He HUANG

    2005-01-01

    Novel thermosensitive hydrogels based on polymerization of N-isopropyl acrylamide,Sodium acrylate, and diacetone acrylamide were synthesized. The swelling ratio and dynamic swelling were investigated. The results indicated that the hydrogels exhibited high water uptake and themosensitivity. The swelling properties and volume phase transition temperature could be adjusted by contents of the comonomers in the gels.

  17. Metallic glass nanofibers in future hydrogel-based scaffolds.

    Sadeghian, Ramin Banan; Ahadian, Samad; Yaginuma, Shin; Ramón-Azcón, Javier; Liang, Xiaobin; Nakajima, Ken; Shiku, Hitoshi; Matsue, Tomokazu; Nakayama, Koji S; Khademhosseini, Ali

    2014-01-01

    Electrically conductive reinforced hydrogels offer a wide range of applications as three-dimensional scaffolds in tissue engineering. We report electrical and mechanical characterization of methacrylated gelatin (GelMA) hydrogel, containing palladium-based metallic glass nanofibers (MGNF). Also we show that the fibers are biocompatible and C2C12 myoblasts in particular, planted into the hybrid hydrogel, tend to attach to and elongate along the fibers. The MGNFs in this work were created by gas atomization. Ravel of fibers were embedded in the GelMA prepolymer in two different concentrations (0.5 and 1.0 mg/ml), and then the ensemble was cured under UV light, forming the hybrid hydrogel. The conductivity of the hybrid hydrogel was proportional to the fiber concentration. PMID:25571184

  18. Planar Metamaterial Absorber Based on Lumped Elements

    GU Chao; QU Shao-Bo; PEI Zhi-Bin; ZHOU Hang; XU Zhuo; BAI Peng; PENG Wei-Dong; LIN Bao-Qin

    2010-01-01

    @@ We present the design of a planar metamaterial absorber based on lumped elements,which shows a wide-band polarization-insensitive and wide-angle strong absorption.This absorber consists of metal electric resonators,the dielectric substrate,the metal film and lumped elements.The simulated absorbances under two different loss conditions indicate that high absorbance in the absorption band is mainly due to lumped resistances.The simulated absorbances under three different load conditions indicate that the local resonance circuit(lumped resistance and capacitance)could boost up the resonance of the whole RLC circuit.The simulated voltage in lumped elements indicates that the transformation efficiency from electromagnetic energy to electric energy in the absorption band is high,and electric energy is subsequently consumed by lumped resistances.This absorber may have potential applications in many military fields.

  19. Flexible hydrogel-based functional composite materials

    Song, Jie; Saiz, Eduardo; Bertozzi, Carolyn R; Tomasia, Antoni P

    2013-10-08

    A composite having a flexible hydrogel polymer formed by mixing an organic phase with an inorganic composition, the organic phase selected from the group consisting of a hydrogel monomer, a crosslinker, a radical initiator, and/or a solvent. A polymerization mixture is formed and polymerized into a desired shape and size.

  20. Bioresponsive systems based on polygalacturonate containing hydrogels.

    Schneider, Konstantin P; Rollett, Alexandra; Wehrschuetz-Sigl, Eva; Hasmann, Andrea; Zankel, Armin; Muehlebach, Andreas; Kaufmann, Franz; Guebitz, Georg M

    2011-04-01

    Polysaccharide acid (PSA) based devices (consisting of alginic acid and polygalacturonic acid) were investigated for the detection of contaminating microorganisms. PSA-CaCl(2) hydrogel systems were compared to systems involving covalent cross-linking of PSA with glycidylmethacrylate (PSA-GMA) which was confirmed with Fourier Transformed Infrared (FTIR) analysis. Incubation of PSA-CaCl(2) and PSA-GMA beads loaded with Alizarin as a model ingredient with trigger enzymes (polygalacturonases or pectate lyases) or bacteria lead to a smoothening of the surface and exposure of Alizarin according to Environmental Scanning Electron Microscopy (ESEM) analysis. Enzyme triggered release of Alizarin was demonstrated for a commercial enzyme preparation from Aspergillus niger and with purified polygalacturonase and pectate lyase from S. rolfsii and B. pumilus, respectively. In contrast to the PSA-CaCl(2) beads, cross-linking (PSA-GMA beads) restricted the release of Alizarin in absence of enzymes. There was a linear relation between release of Alizarin (5-348 μM) and enzyme activity in a range of 0-300 U ml(-1) dosed. In addition to enzymes, both PSA-CaCl(2) and PSA-GMA beads were incubated with Bacillus subtilis and Yersinia entercolitica as model contaminating microorganism. After 72 h, a release between 10 μM and 57 μM Alizarin was detected. For protection of the hydrogels, an enzymatically modified PET membrane was covalently attached onto the surface. This lead to a slower release and improve long term storage stability based on less than 1% release of dye after 21 days. Additionally, this allowed simple detection by visual inspection of the device due to a colour change of the white membrane to orange upon enzyme triggered release of the dye. PMID:22112943

  1. Radiation synthesis and characterization of super absorbent hydrogels for controlled release of some agrochemicals

    Superabsorbent copolymers of carboxymethyl cellulose/polyacrylamide (CMC/PAM) and carboxymethyl celullose/polyacrylamide/silica (CMC/PAM/Si) were synthesized using a γ-irradiation technique. The effects of irradiation dose, content of CMC, AM, and Si on swelling percentage of the produced hydrogels were evaluated. It was found that the maximum swelling percent increased dramatically up to 12,000 % at pH 12 with increasing content of silica up to 5 % in the CMC/PAM/Si composite hydrogel. The prepared copolymers were characterized by FTIR, and SEM techniques. In order to evaluate their controlled release potentials, different hydrogels were loaded with potassium nitrate (KNO3), and the release of the KNO3 was studied and evaluated at various pH values. (author)

  2. Mussel-mimetic protein-based adhesive hydrogel.

    Kim, Bum Jin; Oh, Dongyeop X; Kim, Sangsik; Seo, Jeong Hyun; Hwang, Dong Soo; Masic, Admir; Han, Dong Keun; Cha, Hyung Joon

    2014-05-12

    Hydrogel systems based on cross-linked polymeric materials which could provide both adhesion and cohesion in wet environment have been considered as a promising formulation of tissue adhesives. Inspired by marine mussel adhesion, many researchers have tried to exploit the 3,4-dihydroxyphenylalanine (DOPA) molecule as a cross-linking mediator of synthetic polymer-based hydrogels which is known to be able to achieve cohesive hardening as well as adhesive bonding with diverse surfaces. Beside DOPA residue, composition of other amino acid residues and structure of mussel adhesive proteins (MAPs) have also been considered important elements for mussel adhesion. Herein, we represent a novel protein-based hydrogel system using DOPA-containing recombinant MAP. Gelation can be achieved using both oxdiation-induced DOPA quinone-mediated covalent and Fe(3+)-mediated coordinative noncovalent cross-linking. Fe(3+)-mediated hydrogels show deformable and self-healing viscoelastic behavior in rheological analysis, which is also well-reflected in bulk adhesion strength measurement. Quinone-mediated hydrogel has higher cohesive strength and can provide sufficient gelation time for easier handling. Collectively, our newly developed MAP hydrogel can potentially be used as tissue adhesive and sealant for future applications. PMID:24650082

  3. Multi-responsive hydrogel based on lotus root starch.

    Zhu, Baodong; Ma, Dongzhuo; Wang, Jian; Zhang, Jianwei; Zhang, Shuang

    2016-08-01

    The lotus root starch-based hydrogel was synthesized by free radical copolymerization. Fourier Transform Infrared Spectroscopy (FTIR) demonstrated that the formation of target product. X-ray diffraction (XRD) analysis showed the change of the starch's crystallization. The morphology and pore structure of the hydrogel were evaluated by Field Emission Scanning Electron Microscope (FESEM) and Biomicroscope. Thermogravimetric analysis revealed the better thermal stability of hydrogel. Furthermore, the swelling in CaCl2 and AlCl3 solutions/temperature (25°C-65°C) displayed the "overshooting effect" swelling-deswelling phenomenon with prolonging the swelling time. The hydrogel can rapidly response to various pH value as well. PMID:27177459

  4. Perfectly matched layer based multilayer absorbers

    Stefaniuk, Tomasz; Stolarek, Marcin; Pastuszczak, Anna; Wróbel, Piotr; Wieciech, Bartosz; Antosiewicz, Tomasz J.; Kotyński, Rafał

    2015-05-01

    Broadband layered absorbers are analysed theoretically and experimentally. A genetic algorithm is used to opti- mize broadband and wide-angle of incidence metal-dielectric layered absorbers. An approximate representation of the perfectly matched layer with a spatially varied absorption strength is discussed. The PML is realised as a stack of uniform and isotropic metamaterial layers with permittivieties and permeabilities given from the effective medium theory. This approximate representation of PML is based on the effective medium theory and we call it an effective medium PML (EM-PML).1 We compare the re ection properties of the layered absorbers to that of a PML material and demonstrate that after neglecting gain and magnetic properties, the absorber remains functional.

  5. Hyaluronic Acid Based Hydrogels for Regenerative Medicine Applications

    Assunta Borzacchiello

    2015-01-01

    Full Text Available Hyaluronic acid (HA hydrogels, obtained by cross-linking HA molecules with divinyl sulfone (DVS based on a simple, reproducible, and safe process that does not employ any organic solvents, were developed. Owing to an innovative preparation method the resulting homogeneous hydrogels do not contain any detectable residual cross-linking agent and are easier to inject through a fine needle. HA hydrogels were characterized in terms of degradation and biological properties, viscoelasticity, injectability, and network structural parameters. They exhibit a rheological behaviour typical of strong gels and show improved viscoelastic properties by increasing HA concentration and decreasing HA/DVS weight ratio. Furthermore, it was demonstrated that processes such as sterilization and extrusion through clinical needles do not imply significant alteration of viscoelastic properties. Both SANS and rheological tests indicated that the cross-links appear to compact the network, resulting in a reduction of the mesh size by increasing the cross-linker amount. In vitro degradation tests of the HA hydrogels demonstrated that these new hydrogels show a good stability against enzymatic degradation, which increases by increasing HA concentration and decreasing HA/DVS weight ratio. Finally, the hydrogels show a good biocompatibility confirmed by in vitro tests.

  6. Super absorbent hydrogel composites as water retentive in soil; Hidrogeis compositos superabsorventes como retentores de agua no solo

    Magalhaes, Antonio Savio G. [Faculdade de Educacao de Itapipoca, Curso de Quimica, UECE, Itapipoca, Ceara (Brazil); Almeida Neto, Manuel P. [Instituto Federal de Educacao, Ciencia e Tecnologia do RN - IFRN, Caico, RN (Brazil); Bezerra, Maslandia N.; Feitosa, Judith P.A., E-mail: judith@dqoi.ufc.br [Departamento de Quimica Organica e Inorganica, UFC, Fortaleza, Ceara (Brazil)

    2011-07-01

    Super absorbent hydrogels (SAP) were synthesized at room temperature, by the use of potassium persulfate as initiator, N,N'-methylene bis acrylamide (MBA) as crosslinking agent, and N,N,N',N'- tetramethylethylenediamine. Gels at the same conditions were prepared with 10% of minerals (bentonite or dolomite). The materials of bentonite series were obtained from acrylamide followed by hydrolysis with NaOH. The gels of dolomite series were prepared from the two co-monomers (acrylamide and acrylate). All SAPs were characterized by elemental microanalysis, FTIR, x-ray diffraction, SEM, and by swelling measurements in water. An intercalated composite was obtained with bentonite hydrogel. After hydrolysis an exfoliated nanocomposite was formed. The dolomite mineral was dispersed in the polymeric matrix. The swelling degrees of the SAPs with mineral were higher than those gels without it. This degree was 1,000 times the dry gel weight. Taking into account the amount of water needed to the process, the gel with dolomite is the most promising as soil conditioner. (author)

  7. Hydrogel-based supports: design and synthesis

    Horák, Daniel; Hlídková, Helena

    Oakville : Apple Academic Press Inc, 2014 - (Liu, L.; Ballada, A.), s. 1-18 ISBN 978-1-926895-86-4 R&D Projects: GA ČR GAP304/11/0731 Institutional support: RVO:61389013 Keywords : hydrogel * 2-hydroxyethyl methacrylate * porosity Subject RIV: FH - Neurology http://www.appleacademicpress.com/title.php?id=9781926895864

  8. Circular polarization sensitive absorbers based on graphene

    Yang, Kunpeng; Wang, Min; Pu, Mingbo; Wu, Xiaoyu; Gao, Hui; Hu, Chenggang; Luo, Xiangang

    2016-01-01

    It is well known that the polarization of a linearly polarized (LP) light would rotate after passing through a single layer graphene under the bias of a perpendicular magnetostatic field. Here we show that a corresponding phase shift could be expected for circularly polarized (CP) light, which can be engineered to design the circular polarization sensitive devices. We theoretically validate that an ultrathin graphene-based absorber with the thickness about λ/76 can be obtained, which shows efficient absorption >90% within incident angles of ±80°. The angle-independent phase shift produced by the graphene is responsible for the nearly omnidirectional absorber. Furthermore, a broadband absorber in frequencies ranging from 2.343 to 5.885 THz with absorption over 90% is designed by engineering the dispersion of graphene. PMID:27034257

  9. Self-Healing Hydrogels Based on Carboxymethyl Chitosan and Acryloyl-6-aminocaproic Acid

    Jiufang Duan

    2015-01-01

    Once cracks have formed within hydrogel materials, the integrity of the structure is signifcantly compromised, regardless of the application. Here, we demonstrate cross-linked CMCS hydrogels can be engineered to exhibit self-healing under mild conditions. CMCS hydrogels based on CMCS and acryloyl-6-aminocaproic acid (A6ACA) were synthesized by free radical aqueous copolymerization using ammonium persulfate as initiator. A series of hydrogels was synthesized varying the percentage of A6ACA. T...

  10. Hydrogel based drug carriers for controlled release of hydrophobic drugs and proteins

    Ke Peng,

    2011-01-01

    The aim of this study is to prepare in situ forming hydrogels based on biocompatible polymers for the controlled release of hydrophobic drug and proteins. In order to load hydrophobic drug to the hydrophilic hydrogel matrix, beta-cyclodextrin and human serum albumin was introduced to the hydrogel ne

  11. Interpenetrating polymer network hydrogels based on polysaccharides for biomedical applications

    Pescosolido, L.

    2011-01-01

    The main theme of this thesis is the development and the characterization of interpenetrating polymer network hydrogels (IPNs) based on biodegradable and biocompatible polysaccharides, in particular alginate, hyaluronic acid and dextran. The suitability of these novel systems as pharmaceutical and b

  12. On-Demand Dissolution of a Dendritic Hydrogel-based Dressing for Second-Degree Burn Wounds through Thiol-Thioester Exchange Reaction.

    Konieczynska, Marlena D; Villa-Camacho, Juan C; Ghobril, Cynthia; Perez-Viloria, Miguel; Tevis, Kristie M; Blessing, William A; Nazarian, Ara; Rodriguez, Edward K; Grinstaff, Mark W

    2016-08-16

    An adhesive yet easily removable burn wound dressing represents a breakthrough in second-degree burn wound care. Current second-degree burn wound dressings absorb wound exudate, reduce bacterial infections, and maintain a moist environment for healing, but are surgically or mechanically debrided from the wound, causing additional trauma to the newly formed tissues. We have developed an on-demand dissolvable dendritic thioester hydrogel burn dressing for second-degree burn care. The hydrogel is composed of a lysine-based dendron and a PEG-based crosslinker, which are synthesized in high yields. The hydrogel burn dressing covers the wound and acts as a barrier to bacterial infection in an in vivo second-degree burn wound model. A unique feature of the hydrogel is its capability to be dissolved on-demand, via a thiol-thioester exchange reaction, allowing for a facile burn dressing removal. PMID:27410669

  13. Synthesis of poly (acrylamide-co-metacrylic acid) hydrogels By means of gamma irradiation techniques: influence of Absorbed dose on the swelling process

    In this report gamma radiation techniques were performed a double function of proceeding the processes of polymerization and crosslinking with the advantage of avoid the uses of chemicals crosslinks. The influence of absorbed dose on the swelling ratio as a function of pH have been presented. For these hydrogels, swelling studies indicated that swelling decrease with the increase of the absorbed dose from 10 to 50 kGy. It was confirmed that at the firsts stages (100-150 min) the diffusion studies were in accordance with Fickian behavior and the diffusion coefficients were obtained, whereas the latest stages were in good agreement with second-order diffusion kinetics proposed by Schott 1 .These news hydrogels exhibit a higher degree of swelling, a factor that, a priori, assures high biocompatibility because it increases the similarity with living tissues

  14. Highly swelling hydrogels from ordered galactose-based polyacrylates.

    Martin, B D; Linhardt, R J; Dordick, J S

    1998-01-01

    High swelling galactose-based hydrogels have been prepared using a chemoenzymatic procedure. Regioselective acylation of beta-O-methyl-galactopyranoside in nearly anhydrous pyridine with lipase from Pseudomonas cepacia yields the 6-acryloyl derivative (Compound I). Further lipase-catalysed acylation of the monoacrylate derivative in nearly anhydrous acetone yielded 2,6-diacryloyl-beta-O-methyl galactopyranoside (Compound II) that can act as a cross-linker with a structure similar to that of the sugar-based monomer. The high selectivity of enzyme catalysis yielded apparently highly regular hydrogel networks with swelling ratios at equilibrium ranging from 170 to 1100. elastic moduli ranging from 0.005 to 0.088 MPa and calculated mesh sizes ranging from 1160 to 6600 A. These values are far higher than conventional uncharged or lightly charged hydrogels at similar elastic moduli. Gel swelling was fast, with 75% of the equilibrium swelling value reached in a fractional time of 0.17. Non-selective chemical acryloylation of beta-O-methyl galactopyranoside followed by polymerization yielded a far lower-swelling hydrogel than that obtained using selective enzyme catalysis. These results indicate that the highly regular polymer structure achieved by regioselective enzyme-catalysed acylation yields relatively strong and highly swellable materials. Sugar-based hydrogels, such as those described herein, may find particular use as biomaterials because of their high water content, homogeneity, stability and expected non-toxicity. A wide range of pore sizes can be attained, suggesting that they may also be especially useful as matrices for enzyme immobilization and controlled delivery of biological macromolecules. PMID:9678852

  15. Injectable biopolymer based hydrogels for drug delivery applications.

    Atta, Sadia; Khaliq, Shaista; Islam, Atif; Javeria, Irtaza; Jamil, Tahir; Athar, Muhammad Makshoof; Shafiq, Muhammad Imtiaz; Ghaffar, Abdul

    2015-09-01

    Biopolymer based pH-sensitive hydrogels were prepared using chitosan (CS) with polyethylene glycol (PEG) of different molecular weights in the presence of silane crosslinker. The incorporated components remain undissolved in different swelling media as they are connected by siloxane linkage which was confirmed by Fourier transform infrared spectroscopy. The swelling in water was enhanced by the addition of higher molecular weight PEG. The swelling behaviour of the hydrogels against pH showed high swelling in acidic and basic pH, whereas, low swelling was examined at pH 6 and 7. This characteristic pH responsive behaviour at neutral pH made them suitable for injectable controlled drug delivery. The controlled release analysis of Cefixime (CFX) (model drug) loaded CS/PEG hydrogel exhibited that the entire drug was released in 30 min in simulated gastric fluid (SGF) while in simulated intestinal fluid (SIF), 85% of drug was released in controlled manner within 80 min. This inferred that the developed hydrogels can be an attractive biomaterial for injectable drug delivery with physiological pH and other biomedical applications. PMID:26118484

  16. Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo

    Biocompatible keratin-based hydrogels prepared by electron beam irradiation (EBI) were examined in wound healing. As the EBI dose increased to 60 kGy, the tensile strength of the hydrogels increased, while the percentage of elongation of the hydrogels decreased. After 7 days, the dehydrated wool-based hydrogels show the highest mechanical properties (the % elongation of 1341 and the tensile strength of 6030 g/cm2 at an EBI dose of 30 kGy). Excision wound models were used to evaluate the effects of human hair-based hydrogels and wool-based hydrogels on various phases of healing. On post-wounding days 7 and 14, wounds treated with either human hair-based or wool-based hydrogels were greatly reduced in size compared to wounds that received other treatments, although the hydrocolloid wound dressing-treated wound also showed a pronounced reduction in size compared to an open wound as measured by a histological assay. On the 14th postoperative day, the cellular appearances were similar in the hydrocolloid wound dressing and wool-based hydrogel-treated wounds, and collagen fibers were substituted with fibroblasts and mixed with fibroblasts in the dermis. Furthermore, the wound treated with a human hair-based hydrogel showed almost complete epithelial regeneration, with the maturation of immature connective tissue and hair follicles and formation of a sebaceous gland. - Highlights: • Biocompatible keratin-based hydrogels were examined for wound healing process. • Human hair-based hydrogel is superior to wool-based hydrogel in wound healing. • Discarded keratin-based hydrogels are expected more eco-friendly therapeutic agents

  17. Effect of discarded keratin-based biocomposite hydrogels on the wound healing process in vivo

    Park, Mira [Department of Organic Materials & Fiber Engineering, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Shin, Hye Kyoung [Department of Chemistry, Inha University, 100 Inharo, Incheon 402–751 (Korea, Republic of); Kim, Byoung-Suhk [Department of BIN fusion technology, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Kim, Myung Jin; Kim, In-Shik [Department of Veterinary Anatomy, College of Veterinary Medicine and Bio-safety Research institute, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Park, Byung-Yong, E-mail: parkb@jbnu.ac.kr [Department of Veterinary Anatomy, College of Veterinary Medicine and Bio-safety Research institute, Chonbuk National University, Jeonju 561–756 (Korea, Republic of); Kim, Hak-Yong, E-mail: khy@jbnu.ac.kr [Department of BIN fusion technology, Chonbuk National University, Jeonju 561–756 (Korea, Republic of)

    2015-10-01

    Biocompatible keratin-based hydrogels prepared by electron beam irradiation (EBI) were examined in wound healing. As the EBI dose increased to 60 kGy, the tensile strength of the hydrogels increased, while the percentage of elongation of the hydrogels decreased. After 7 days, the dehydrated wool-based hydrogels show the highest mechanical properties (the % elongation of 1341 and the tensile strength of 6030 g/cm{sup 2} at an EBI dose of 30 kGy). Excision wound models were used to evaluate the effects of human hair-based hydrogels and wool-based hydrogels on various phases of healing. On post-wounding days 7 and 14, wounds treated with either human hair-based or wool-based hydrogels were greatly reduced in size compared to wounds that received other treatments, although the hydrocolloid wound dressing-treated wound also showed a pronounced reduction in size compared to an open wound as measured by a histological assay. On the 14th postoperative day, the cellular appearances were similar in the hydrocolloid wound dressing and wool-based hydrogel-treated wounds, and collagen fibers were substituted with fibroblasts and mixed with fibroblasts in the dermis. Furthermore, the wound treated with a human hair-based hydrogel showed almost complete epithelial regeneration, with the maturation of immature connective tissue and hair follicles and formation of a sebaceous gland. - Highlights: • Biocompatible keratin-based hydrogels were examined for wound healing process. • Human hair-based hydrogel is superior to wool-based hydrogel in wound healing. • Discarded keratin-based hydrogels are expected more eco-friendly therapeutic agents.

  18. Metamaterial perfect absorber based hot electron photodetection.

    Li, Wei; Valentine, Jason

    2014-06-11

    While the nonradiative decay of surface plasmons was once thought to be only a parasitic process that limits the performance of plasmonic devices, it has recently been shown that it can be harnessed in the form of hot electrons for use in photocatalysis, photovoltaics, and photodetectors. Unfortunately, the quantum efficiency of hot electron devices remains low due to poor electron injection and in some cases low optical absorption. Here, we demonstrate how metamaterial perfect absorbers can be used to achieve near-unity optical absorption using ultrathin plasmonic nanostructures with thicknesses of 15 nm, smaller than the hot electron diffusion length. By integrating the metamaterial with a silicon substrate, we experimentally demonstrate a broadband and omnidirectional hot electron photodetector with a photoresponsivity that is among the highest yet reported. We also show how the spectral bandwidth and polarization-sensitivity can be manipulated through engineering the geometry of the metamaterial unit cell. These perfect absorber photodetectors could open a pathway for enhancing hot electron based photovoltaic, sensing, and photocatalysis systems. PMID:24837991

  19. Corundum-based transparent infrared absorbers

    Schwingenschlögl, Udo

    2009-10-01

    Hypothetical corundum-based compounds are studied by electronic structure calculations. One quarter of the Al atoms in Al2O3 is replaced by a 3d transition metal from the M = Ti, ..., Zn (d1, ..., d9) series. Structure optimisations are performed for all the M-Al2O3 compounds and the electronic states are evaluated. Due to the M substitutes, narrow partially filled bands are formed at the Fermi energy. Beyond, for M = Ni and M = Cu the optical properties of Al2O3 in the visible range are conserved, while for M = Ti, ..., Co the systems form high accuracy optical filters. Since the compounds absorb the infrared radiation, the M = Ni and M = Cu systems are good candidates for heat-protective coatings. © 2009 Elsevier B.V. All rights reserved.

  20. Shock Absorbing Function Study on Denucleated Intervertebral Disc with or without Hydrogel Injection through Static and Dynamic Biomechanical Tests In Vitro

    Zhiyu Zhou

    2014-01-01

    Full Text Available Hydrogel injection has been recently proposed as a novel therapy for disc degenerative diseases, with the potential to restore the spine motion and the intervertebral disc height. However, it remains unknown whether the new technique could also maintain the shock absorbing property of the treated intervertebral disc. In this study, 18 porcine lumbar bone-disc-bone specimens were collected and randomly divided into three groups: the normal with intact intervertebral discs, the mimic for the injection of disulfide cross-linked hyaluronan hydrogels following discectomy, and the control disc with discectomy only. In the static compression test, specimens in the mimic group exhibited displacements similar to those in the normal discs, whereas the control group showed a significantly larger displacement range in the first two steps (P<0.05. With the frequency increasing, all specimens generally displayed an increasing storage modulus, decreasing loss modulus, and tanδ. At any frequency point, the control group exhibited the largest value in all the three parameters among three groups while the normal group was the lowest, with the mimic group being mostly close to the normal group. Therefore, the hydrogel injection into the intervertebral discs greatly restored their shock absorbing function, suggesting that the technique could serve as an effective approach to maintaining biomechanical properties of the degenerative intervertebral disc.

  1. Development of polyvinyl pyrrolidone (PVP) based hydrogel as cooling fever plester induced by electron beam irradiation

    The development of PVP based hydrogel as cooling fever plester using electron, beam irradiation technique has been done. The hydrogel was prepared by irradiating mixtures of PVP, PVA and another ingredients with various compositions (formula I, II, III and IV) at dose of 20 to 40 kGy. Several parameters of hydrogel such as physical properties, gel fraction, water content, tackiness and reduction time of water temperature from 40°C to 37°C were evaluated. The results showed that at irradiation dose of 20 kGy, hydrogel formula I had un appropriate physical characteristics such as brittle, the surface of hydrogel was watery and leave residues when it is applied to the skin. While hydrogel formula IV was rigid, unelastic and brittle. At 20 kGy irradiation dose, hydrogel formula II and III showed physical characteristics such as a bit brittle. At 30 kGy, it was shown appropriate physical characteristics such as no residu leave on skin, tough, the surface of hydrogel was not watery and gave pleasant feeling when it applied on the skin. But at 40 kGy, it was abit rigit. Gel fraction increase with increasing of dose from 20 to 30 kGy, further more the increase in dose was not give significant increase of gel fraction. At 20 kGy of irradiation dose, gel fraction was 83 - 87% and it was becomes 83 - 98% for irradiation dose of 30 to 40 kGy. Water content of hydrogel was depend on polymer concentration in hydrogel. It decreased by increasing of polymer concentration and it was not affected by irradiation dose. Hydrogel had water content around 73 - 84%. The tackiness of hydrogel formula II and III irradiated by 30 to 40 kGy was 8,3 - 8,9 gf. It was in proportion to tackiness of commercial hydrogel Bye Bye Fever. The ability of hydrogels in reducing water temperature from 40°C to 37°C showed that hydrogel formula I was the fastest among formulas used, that is 11 minutes. While it was 12 minutes for hydrogel formula II and III and in proportion with commercial hydrogel Bye

  2. Development and study of hydrogel-based microvalves for lab-on-a-chip systems

    Li, Ang

    2012-01-01

    Stimuli-responsive hydrogels such as poly(N-isopropylacrylamdie) (PNIPAAm) are excellent materials for microvalves due to their biocompatibility and high energy conversion efficiency. Hydrogel-based microvalves are simple to fabricate and operate compared to other actuation schemes. While many other hydrogel-based valves have been developed by other researchers, the valves presented here differ in the use of polymers as the basis for all microvalve components for increased flexibility. Thi...

  3. Microemulsion-based hydrogel formulation for transdermal delivery of dexamethasone

    Chandra Amrish

    2009-01-01

    Full Text Available The purpose of this study was to construct a microemulsion-based hydrogel formulation for the transdermal delivery of dexamethasone. Almond oil, olive oil, linseed oil, and nutmeg oil were screened as the oil phase. A microemulsion-based system was chosen due to its good solubilizing capacity and skin permeation capabilities. The pseudoternary phase diagrams for microemulsion regions were constructed using various oils, egg lecithin as the surfactant, isopropyl alcohol (IPA as the cosurfactant, and distilled water as the aqueous phase. Microemulsion gel formulations were prepared using Carbopol and filled into a reservoir-type transdermal system. The ability of various microemulsion formulations to deliver dexamethasone through the rat skin was evaluated in vitro using Keshary Chien diffusion cells. In order to enhance permeation, the skin was treated with an abrading gel (apricot seed powder in hydrogel base. The in vitro permeation data showed that microemulsions increased the permeation rate of dexamethasone compared with the control. The optimum formulation consisting of 0.1% dexamethasone, 10% olive oil, 70% egg lecithin:IPA (2:1, and water showed a permeation rate of 54.9 µg/cm 2 /h. The studied microemulsion-based hydrogel was stable toward centrifugation test and was nonirritating to the skin. The pharmacodynamic studies indicated that microemulsion based on nutmeg oil demonstrated a significantly ( P < 0.05 higher anti-inflammatory potential. The nutmeg oil-based transdermal microemulsion gel system demonstrated 73.6% inhibition in rat paw edema. Thus, microemulsion-based transdermal systems are a promising formulation for dermal delivery of dexamethasone.

  4. Evaporation-based microfluidic production of oil-free cell-containing hydrogel particles

    Fan, Rong; Naqvi, Kubra; Patel, Krishna; Sun, Jun; Wan, Jiandi

    2015-01-01

    We demonstrate an evaporation-based microfluidic strategy to produce oil-free cell containing hydrogel particles. Perfluoro-n-pentane, which is used as the continuous oil phase to generate cell-containing hydrogel (Extracel) particles, is removed at an elevated temperature. Human colon cancer cells (HCT116) encapsulated in the hydrogel particles show higher viability than cells encapsulated in particles that are produced via a non-evaporative oil phase. In addition, single HCT116 cells can be...

  5. Elastin Based Cell-laden Injectable Hydrogels with Tunable Gelation, Mechanical and Biodegradation Properties

    Fathi, Ali; Mithieux, Suzanne M.; Wei, Hua; Chrzanowski, Wojciech; Valtchev, Peter; Anthony S. Weiss; Dehghani, Fariba

    2014-01-01

    Injectable hydrogels made from extracellular matrix proteins such as elastin show great promise for various biomedical applications. Use of cytotoxic reagents, fixed gelling behavior, and lack of mechanical strength in these hydrogels are the main associated drawbacks. The aim of this study was to develop highly cytocompatible and injectable elastin-based hydrogels with alterable gelation characteristics, favorable mechanical properties and structural stability for load bearing applications. ...

  6. Synthesis and Properties of IPN Hydrogels Based on Konjac Glucomannan and Poly(acrylic acid)

    Bing LIU; Zhi Lan LIU; Ren Xi ZHUO

    2006-01-01

    Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FT-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.

  7. Multi-functions of hydrogel with bilayer-based lamellar structure

    Haque, Md. Anamul; Gong, Jian Ping

    2013-01-01

    A novel hybrid hydrogel has been developed by combining bilayer-based lamellar structure of a self-assembled polymer surfactant and polymer network of conventional hydrogel system. A wide range of lamellar structure from micro-domain up to macro-domain (cm-scale) has been successfully generated in the hydrogel. Flat, infinitely large, and perfectly aligned lamellar macro-domain was formed by applying mechanical shear to the gel forming precursor solution containing monomer, cross-linker, and ...

  8. Rheological Characterization of Cataplasm Bases Composed of Cross-Linked Partially Neutralized Polyacrylate Hydrogel

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-01-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate™), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel ...

  9. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-06-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within about 4 h in accordance with the pseudo-second-order model. The dye adsorption capacity of the hydrogel is mainly attributed to the GO sheets, whereas the PEI was incorporated to facilitate the gelation process of GO sheets. More importantly, the dye-adsorbed hydrogels can be conveniently separated from an aqueous environment, suggesting potential large-scale applications of the GO-based hydrogels for organic dye removal and wastewater treatment.

  10. A hydrogel-based enzyme-loaded polymersome reactor

    Hoog, de Hans-Peter; Arends, Isabel W.C.E.; Rowan, Alan E.; Cornelissen, Jeroen J.L.M.; Nolte, Roeland J.M.

    2010-01-01

    In this study we report the immobilization of enzyme-containing polymersomes into a macromolecular hydrogel. Whereas free enzyme shows progressive leakage from the hydrogel in a period of days, leakage of the polymersome-protected enzyme is virtually absent. The preparation of the hydrogel occurs un

  11. Physical Cross-Linking Starch-Based Zwitterionic Hydrogel Exhibiting Excellent Biocompatibility, Protein Resistance, and Biodegradability.

    Ye, Lei; Zhang, Yabin; Wang, Qiangsong; Zhou, Xin; Yang, Boguang; Ji, Feng; Dong, Dianyu; Gao, Lina; Cui, Yuanlu; Yao, Fanglian

    2016-06-22

    In this work, a novel starch-based zwitterionic copolymer, starch-graft-poly(sulfobetaine methacrylate) (ST-g-PSBMA), was synthesized via Atom Transfer Radical Polymerization. Starch, which formed the main chain, can be degraded completely in vivo, and the pendent segments of PSBMA endowed the copolymer with excellent protein resistance properties. This ST-g-PSBMA copolymer could self-assemble into a physical hydrogel in normal saline, and studies of the formation mechanism indicated that the generation of the physical hydrogel was driven by electrostatic interactions between PSBMA segments. The obtained hydrogels were subjected to detailed analysis by scanning electron microscopy, swelling ratio, protein resistance, and rheology tests. Toxicity and hemolysis analysis demonstrated that the ST-g-PSBMA hydrogels possess excellent biocompatibility and hemocompatibility. Moreover, the cytokine secretion assays (IL-6, TNF-α, and NO) confirmed that ST-g-PSBMA hydrogels had low potential to trigger the activation of macrophages and were suitable for in vivo biomedical applications. On the basis of these in vitro results, the ST-g-PSBMA hydrogels were implanted in SD rats. The tissue responses to hydrogel implantation and the hydrogel degradation in vivo were determined by histological analysis (Hematoxylin and eosin, Van Gieson, and Masson's Trichrome stains). The results presented in this study demonstrate that the physical cross-linking, starch-based zwitterionic hydrogels possess excellent protein resistance, low macrophage-activation properties, and good biocompatibility, and they are a promising candidate for an in vivo biomedical application platform. PMID:27249052

  12. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery.

    Selvam, Shivaram; Pithapuram, Madhav V; Victor, Sunita P; Muthu, Jayabalan

    2015-02-01

    Injectable in situ crosslinking hydrogels offer unique advantages over conventional prefabricated hydrogel methodologies. Herein, we synthesize poly(xylitol-co-maleate-co-PEG) (pXMP) macromers and evaluate their performance as injectable cell carriers for tissue engineering applications. The designed pXMP elastomers were non-toxic and water-soluble with viscosity values permissible for subcutaneous injectable systems. pXMP-based hydrogels prepared via free radical polymerization with acrylic acid as crosslinker possessed high crosslink density and exhibited a broad range of compressive moduli that could match the natural mechanical environment of various native tissues. The hydrogels displayed controlled degradability and exhibited gradual increase in matrix porosity upon degradation. The hydrophobic hydrogel surfaces preferentially adsorbed albumin and promoted cell adhesion and growth in vitro. Actin staining on cells cultured on thin hydrogel films revealed subconfluent cell monolayers composed of strong, adherent cells. Furthermore, fabricated 3D pXMP cell-hydrogel constructs promoted cell survival and proliferation in vitro. Cumulatively, our results demonstrate that injectable xylitol-PEG-based hydrogels possess excellent physical characteristics and exhibit exceptional cytocompatibility in vitro. Consequently, they show great promise as injectable hydrogel systems for in situ tissue repair and regeneration. PMID:25543981

  13. Radiation synthesis and characterization of gelatine category hydrogel

    The hydrogels based on gelatine cross-linked with sodium carboxymethyl cellulose (CMC-Na) and polyvinylpyrrolidone (PVP) were synthesized through 60Co γ ray irradiation, and the swelling ability, pH-sensitivity, gelatine fraction and the absorbing ability of Cr were measured by the Soxhlet extraction device, Uv-vis spectrophotometer and atomic absorption spectrometer, respectively. The result indicates that it is easy to synthesize hydrogels of gelatine/CMC-Na/PVP with monomer mass proportions of 4 : 1 : 2, 4 : 1 : 5 and 2 : 1 : 5 at the absorbed doses of 15, 25, 35 and 45 kGy at the dose rate of 83 Gy/min, respectively. It shows that the swelling behavior of hydrogels becomes different when either the monomer proportion of raw materials or the absorbed doses vary. The swelling ratio (SR) of hydrogels can be up to 56 at pH=7, while the minimal value is 7 at pH=1, which indicates that the SR of hydrogel is sensitive to pH. The hydrogel of PVP will not be degraded after many years, but the hydrogels of gelatine/CMC-Na/PVP will be degraded within one month. It indicates that the degradation of hydrogels can be accelerated as the nature polymer can be degraded into the hydrogels. The adsorptive capacity of Cr(Ⅵ) is up to 0.539 g/g. (authors)

  14. Composite hydrogel based on surface modified mesoporous silica and poly[(2-acryloyloxy)ethyl trimethylammonium chloride

    Torres, Cecilia C. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Urbano, Bruno F., E-mail: burbano@udec.cl [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Campos, Cristian H. [Department of Organic Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Rivas, Bernabé L. [Department of Polymer Chemistry, Faculty of Chemical Science, University of Concepción (Chile); Reyes, Patricio [Department of Physical Chemistry, Faculty of Chemical Science, University of Concepción (Chile)

    2015-02-15

    This work focused on the synthesis, characterization and water absorbency of a composite hydrogel based on poly[(2-acryloyloxy)ethyl trimethylammonium chloride] and mesoporous silica, MCM-41. The MCM-41 was synthesized and later surface functionalized with triethoxyvinylsilane (VTES) and 3-trimethoxysilylpropylmethacrylate (TMSPM) by a post-grafting procedure. The composite hydrogels were obtained by in-situ polymerization using a mixture of monomer, crosslinker and initiator in the presence of functionalized MCM-41. Diverse characterization techniques were used at the different stages of synthesis, namely, FT-IR, TEM, SEM, DRX, {sup 29}Si and {sup 13}C solid state NMR, and N{sub 2} adsorption isotherms at 77 K. Finally, the water uptake performance of the composites was tested as a function of time, mesoporous silica loading and coupling agent used at the functionalization. The composites using non-functionalized MCM-41 reached the highest water uptake, whereas those composite with MCM-41 TMSPM exhibited the lowest sorption. - Highlights: • Hydrophilic crosslinked polymer-mesoporous silica was obtained. • Mesoporous silica MCM-41 was synthesized and functionalized with organosilane. • Functionalization of MCM-41 affects the water uptake of composite. • Mesoporous silica is covalently bound to the polymer acting as crosslinked point.

  15. A review of cermet-based spectrally selective solar absorbers

    Cao, Feng; McEnaney, Kenneth; Chen, Gang; Ren, Zhifeng

    2013-01-01

    Spectrally selective solar absorbers harvest solar energy in the form of heat. Solar absorbers using cermet-based coatings demonstrate a high absorptance of the solar spectrum and a low emittance in the infrared (IR) regime. Extensive work has been done to optimize cermet-based solar absorbers to achieve high performance by exploring different cermet (ceramic–metal composite) materials and film configurations through different preparation techniques such as electrodeposition, sputtering, puls...

  16. IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties.

    Wang, Jingjing; Hu, Hongkai; Yang, Zhonglin; Wei, Jun; Li, Juan

    2016-04-01

    Nanocomposite hydrogels with interpenetrating polymer network (IPN) structure based on poly(ethylene glycol) methyl ether methacrylate modified ZnO (ZnO-PEGMA) and 4-azidobenzoic agarose (AG-N3) were prepared by a one-pot strategy under UV irradiation. The hydrogels exhibited a highly macroporous spongelike structure, and the pore size decreased with the increase of the ZnO-PEGMA content. Due to the entanglement and favorable interactions between the two crosslinked networks, the IPN hydrogels exhibited excellent mechanical strength and light transmittance. The maximum compressive and tensile strengths of the IPN hydrogels reached 24.8 and 1.98MPa respectively. The transparent IPN hydrogels transmitted more than 85% of visible light at all wavelengths (400-800nm). The IPN hydrogels exhibited anti-adhesive property towards Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus), and the bactericidal activity increased with the ZnO-PEGMA content. The incorporation of ZnO-PEGMA did not reduce the biocompatibility of the IPN hydrogels and all the IPN nanocomposites showed negligible cytotoxicity. The present study not only provided a facile method for preparing hydrogel nanocomposites with IPN structure but also developed a new hydrogel material which might be an excellent candidate for wound dressings. PMID:26838864

  17. Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan

    Soares, Paulo A.G. [Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE (Brazil); Laboratório de Imunopatologia Keizo Asami-LIKA, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, PE (Brazil); Bourbon, Ana I.; Vicente, António A. [Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho (UMINHO), Campus de Gualtar, 4710-057 Braga (Portugal); Andrade, Cesar A.S. [Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE (Brazil); Barros, Wilson [Departamento de Física, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE (Brazil); Correia, Maria T.S. [Departamento de Bioquímica, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE (Brazil); Pessoa, Adalberto [Faculdade de Ciências Farmacêuticas, Universidade de São Paulo (USP), Av. Lineu Prestes, 580, Butantã, 05508-000 São Paulo, SP (Brazil); and others

    2014-09-01

    The development of hydrogels based on natural polysaccharides was investigated by preparing mixtures of policaju/chitosan at weight ratios of 1:4 and 2:3. Utilizing dynamic light scattering (DLS) techniques for these mixtures, an increase on the hydrodynamic particle radius was observed varying their pH from 3.0 to 12.0. Furthermore, a reduction of ζ-potential was also observed for the same pH interval. Following rounds of drying/hydration cycles at a specific pH value, hydrogel matrices were formed. The pore size distribution of these formed hydrogels was examined using scanning electron microscopy. Further FT-IR analyses confirmed a physical interaction between the polysaccharides policaju and chitosan. Swelling experiments revealed water uptake values, after 24 h of immersion in water, close to 270% for 1:4, and 320% for 2:3 hydrogels. Finally, rheological measurements were then conducted in order to confirm hydrogel viscoelastic features. These results indicate a promising road to biomaterials fabrication and biomedical applications. - Highlights: • POLI–CHI hydrogels were obtained by direct injection and extrusion. • POLI–CHI hydrated hydrogels have 4.2 times their dry weight. • Due to the high water absorption POLI–CHI hydrogels are extremely soft. • POLI–CHI hydrogels can be used in cosmetic and medical industry.

  18. Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan

    The development of hydrogels based on natural polysaccharides was investigated by preparing mixtures of policaju/chitosan at weight ratios of 1:4 and 2:3. Utilizing dynamic light scattering (DLS) techniques for these mixtures, an increase on the hydrodynamic particle radius was observed varying their pH from 3.0 to 12.0. Furthermore, a reduction of ζ-potential was also observed for the same pH interval. Following rounds of drying/hydration cycles at a specific pH value, hydrogel matrices were formed. The pore size distribution of these formed hydrogels was examined using scanning electron microscopy. Further FT-IR analyses confirmed a physical interaction between the polysaccharides policaju and chitosan. Swelling experiments revealed water uptake values, after 24 h of immersion in water, close to 270% for 1:4, and 320% for 2:3 hydrogels. Finally, rheological measurements were then conducted in order to confirm hydrogel viscoelastic features. These results indicate a promising road to biomaterials fabrication and biomedical applications. - Highlights: • POLI–CHI hydrogels were obtained by direct injection and extrusion. • POLI–CHI hydrated hydrogels have 4.2 times their dry weight. • Due to the high water absorption POLI–CHI hydrogels are extremely soft. • POLI–CHI hydrogels can be used in cosmetic and medical industry

  19. Hydrogel-based reinforcement of 3D bioprinted constructs.

    Melchels, Ferry P W; Blokzijl, Maarten M; Levato, Riccardo; Peiffer, Quentin C; Ruijter, Mylène de; Hennink, Wim E; Vermonden, Tina; Malda, Jos

    2016-01-01

    Progress within the field of biofabrication is hindered by a lack of suitable hydrogel formulations. Here, we present a novel approach based on a hybrid printing technique to create cellularized 3D printed constructs. The hybrid bioprinting strategy combines a reinforcing gel for mechanical support with a bioink to provide a cytocompatible environment. In comparison with thermoplastics such as [Formula: see text]-polycaprolactone, the hydrogel-based reinforcing gel platform enables printing at cell-friendly temperatures, targets the bioprinting of softer tissues and allows for improved control over degradation kinetics. We prepared amphiphilic macromonomers based on poloxamer that form hydrolysable, covalently cross-linked polymer networks. Dissolved at a concentration of 28.6%w/w in water, it functions as reinforcing gel, while a 5%w/w gelatin-methacryloyl based gel is utilized as bioink. This strategy allows for the creation of complex structures, where the bioink provides a cytocompatible environment for encapsulated cells. Cell viability of equine chondrocytes encapsulated within printed constructs remained largely unaffected by the printing process. The versatility of the system is further demonstrated by the ability to tune the stiffness of printed constructs between 138 and 263 kPa, as well as to tailor the degradation kinetics of the reinforcing gel from several weeks up to more than a year. PMID:27431861

  20. Characterization of Network Structure of Polyacrylamide Based Hydrogels Prepared By Radiation Induced Polymerization

    In this study network structure of polyacrylamide based hydrogels prepared by radiation induced polymerization has been investigated. Polyacrylamide based hydrogels in the rod form were prepared by copolymerization of acrylamide(AAm) with hydroxyl ethyl methacrylate(HEMA) and methyl acrylamide(MAAm) in the presence of cross-linking agent and water by gamma rays at ambient temperature. Molecular weight between cross-links and effective cross-link density of hydrogels were calculated from swelling as well as shear modulus data obtained from compression tests. The results have shown that simple compression analyses can be used for the determination of effective cross-link density of hydrogels without any need to some polymer-solvent based parameters as in the case of swelling based determinations. Diffusion of water into hydrogels was examined by analyzing water absorption kinetics and the effect of network, structure on the diffusion type and coefficient was discussed

  1. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    Hakam, Adil; Lazim, Azwan Mat [UKM-MIMOS Laboratory, School of Chemical Sciences and Food Technology, National University of Malaysia (UKM) (Malaysia); Abdul Rahman, I. Irman [Laboratory of Gamma Radiation Instrument, Science Nuclear Program, School of Applied Physics, National University of Malaysia (UKM) (Malaysia)

    2013-11-27

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  2. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution

  3. Preparation and characterization of hydrogels based on clay and synthetic polymers formed by electron beam irradiation

    Hydrophilic hydrogels were prepared by electron irradiation based on different ratios of poly (viny alcohol) and acrylamide monomer (AM). The hydrogels were compounded with different contents of sodium montmorillonite clay (MMT) or organo-montmorillonite clay. The composites were characterized by (XRD) spectroscopy and thermogravimetric analysis (TGA). The effect of temperature and ph on the degree of swelling of composites was also studies.

  4. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    Hakam, Adil; Lazim, Azwan Mat; Abdul Rahman, I. Irman

    2013-11-01

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  5. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.

    Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-11-01

    The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering

  6. Colorimetric logic response based on aptamer functionalized colloidal crystal hydrogels

    Ye, Baofen; Wang, Huan; Ding, Haibo; Zhao, Yuanjin; Pu, Yuepu; Gu, Zhongze

    2015-04-01

    A novel colorimetric logic system based on the aptamer-cross-linked colloidal crystal hydrogel (CCH) was developed. With the input stimuli of Hg2+ and Ag+, the CCH displayed shrinking response and colour change corresponding to the logical ``OR'' and ``AND'' gate. The visualization of the logic output signals is realized.A novel colorimetric logic system based on the aptamer-cross-linked colloidal crystal hydrogel (CCH) was developed. With the input stimuli of Hg2+ and Ag+, the CCH displayed shrinking response and colour change corresponding to the logical ``OR'' and ``AND'' gate. The visualization of the logic output signals is realized. Electronic supplementary information (ESI) available: I. Experimental section. II. Photograph of the aptamer functionalized CCH in the presence of different targets. III. The specificity of the aptamer functionalized CCH. IV. Relationship between the input ion concentration and the reflection wavelength blue shift. V. The logic swelling kinetics of CCH. See DOI: 10.1039/c5nr00586h

  7. Hydrogel-Based Nanocomposites and Mesenchymal Stem Cells: A Promising Synergistic Strategy for Neurodegenerative Disorders Therapy

    Diego Albani

    2013-01-01

    Full Text Available Hydrogel-based materials are widely employed in the biomedical field. With regard to central nervous system (CNS neurodegenerative disorders, the design of injectable nanocomposite hydrogels for in situ drug or cell release represents an interesting and minimally invasive solution that might play a key role in the development of successful treatments. In particular, biocompatible and biodegradable hydrogels can be designed as specific injectable tools and loaded with nanoparticles (NPs, to improve and to tailor their viscoelastic properties upon injection and release profile. An intriguing application is hydrogel loading with mesenchymal stem cells (MSCs that are a very promising therapeutic tool for neurodegenerative or traumatic disorders of the CNS. This multidisciplinary review will focus on the basic concepts to design acellular and cell-loaded materials with specific and tunable rheological and functional properties. The use of hydrogel-based nanocomposites and mesenchymal stem cells as a synergistic strategy for nervous tissue applications will be then discussed.

  8. Self-Healing Hydrogels Based on Carboxymethyl Chitosan and Acryloyl-6-aminocaproic Acid

    Jiufang Duan

    2015-01-01

    Full Text Available Once cracks have formed within hydrogel materials, the integrity of the structure is signifcantly compromised, regardless of the application. Here, we demonstrate cross-linked CMCS hydrogels can be engineered to exhibit self-healing under mild conditions. CMCS hydrogels based on CMCS and acryloyl-6-aminocaproic acid (A6ACA were synthesized by free radical aqueous copolymerization using ammonium persulfate as initiator. A series of hydrogels was synthesized varying the percentage of A6ACA. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR techniques and their morphologies were investigated by scanning electron microscope (SEM images. When the proportion of A6ACA was increased, the compressive strength, stress, and strain of hydrogels were increased. The cross-linked hydrogel based on CMCS that can autonomously heal between cut surfaces after 1 h was formed under mild conditions. The increase of A6ACA content in the hydrogels will lead to increased mechanical properties and mechanical healing efficiencies for highly cross-linked polymeric networks. Hydrogen bond is the main reason for self-healing ability, and the covalent cross-linkss and noncovalent cross-links both bear loads in the hyrogel. Polymers with the ability to self-repair after sustaining damage could extend the lifetime of materials used in many applications.

  9. Design of multiband metamaterial absorber based on artificial magnetic conductor

    Dang, Kezheng; He, Zijian; Li, Zhigang; Miao, Lei; Liu, Hao

    2015-10-01

    We present a general method to design multiband absorber by replacing the ground plane in a conventional metamaterial absorber with an artificial magnetic conductor. Due to its unique property of in-phase reflection at some specific frequency, the artificial magnetic conductor is used to introduce new absorption in the operation band. Meanwhile, out of the in-phase reflection band, the original absorbing capability of the absorber is reserved. To demonstrate it, we design a metamaterial absorber comprising three layers which are grids patterned resistive frequency selective surface, dielectric layer and the ground plane respectively. With an appropriate design, the absorber performs an absorbing peak at about 10 GHz. Then, we utilize a single band artificial magnetic conductor at 6.25 GHz and a dual-band one at 6.27 GHz and 8.17 GHz, which are both lossy and comprised of patches array varying in periodic size with a thickness of 0.6 mm, to replace the ground plane in the metamaterial absorber separately. The reflectivity of these multiband absorbers are simulated, and experiments are carried out later. Experimental results agree well with the simulations. All results verified that the method presented at the beginning is effective. The results show that additional absorptions exist at the frequencies where microwaves are nearly reflected in phase on the artificial magnetic conductor. Meanwhile the original absorbing capability of the metamaterial absorber has been preserved mostly. Based on the artificial magnetic conductor, the multiband absorber performs better with an increasing absorption bandwidth from 8.5 GHz to 10 GHz compared to the metamaterial absorber.

  10. Recommended method for measurement of absorbency of superabsorbent polymers in cement-based materials

    Esteves, Luis Pedro

    2015-01-01

    The application of superabsorbent polymers in concrete technology is now becoming a reality in several places in the world. Independently of the specific technical application involving any of the hydrogels, the design of cement-based materials requires that the knowledge on the absorbency of...... superabsorbent polymers in cementitious environments is well determined. It is vital that a generalized agreement over which method should be utilized with this regard is obtained, so large-scale industrial applications can be developed with sufficient quality and safeguards. There ought to be a standard method...... so that the properties of concrete with superabsorbent polymers can be better controlled in practice. In this paper, a technique that can be potentially used as a standard method is developed. The method is based on a measurement technique validated through an international standard procedure...

  11. A new water absorbable mechanical Epidermal skin equivalent: the combination of hydrophobic PDMS and hydrophilic PVA hydrogel.

    Morales-Hurtado, M; Zeng, X; Gonzalez-Rodriguez, P; Ten Elshof, J E; van der Heide, E

    2015-06-01

    Research on human skin interactions with healthcare and lifestyle products is a topic continuously attracting scientific studies over the past years. It is possible to evaluate skin mechanical properties based on human or animal experimentation, yet in addition to possible ethical issues, these samples are hard to obtain, expensive and give rise to highly variable results. Therefore, the design of a skin equivalent is essential. This paper describes the design and characterization of a new Epidermal Skin Equivalent (ESE). The material resembles the properties of epidermis and is a first approach to mimic the mechanical properties of the human skin structure, variable with the length scale. The ESE is based on a mixture of Polydimethyl Siloxane (PDMS) and Polyvinyl Alcohol (PVA) hydrogel cross-linked with Glutaraldehyde (GA). It was chemically characterized by XPS and FTIR measurements and its cross section was observed by macroscopy and cryoSEM. Confocal Microscope analysis on the surface of the ESE showed an arithmetic roughness (Ra) between 14-16 μm and contact angle (CA) values between 50-60°, both of which are close to the values of in vivo human skins reported in the literature. The Equilibrium Water Content (ECW) was around 33.8% and Thermo Gravimetric Analysis (TGA) confirmed the composition of the ESE samples. Moreover, the mechanical performance was determined by indentation tests and Dynamo Thermo Mechanical Analysis (DTMA) shear measurements. The indentation results were in good agreement with that of the target epidermis reported in the literature with an elastic modulus between 0.1-1.5 MPa and it showed dependency on the water content. According to the DTMA measurements, the ESE exhibits a viscoelastic behavior, with a shear modulus between 1-2.5MPa variable with temperature, frequency and the hydration of the samples. PMID:25840121

  12. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".

    Liu, Xiaoming; Lan, Chuwen; Li, Bo; Zhao, Qian; Zhou, Ji

    2016-01-01

    Dual band metamaterial perfect absorbers with two absorption bands are highly desirable because of their potential application areas such as detectors, transceiver system, and spectroscopic imagers. However, most of these dual band metamaterial absorbers proposed were based on resonances of metal patterns. Here, we numerically and experimentally demonstrate a dual band metamaterial perfect absorber composed of artificial dielectric "molecules" with high symmetry. The artificial dielectric "molecule" consists of four "atoms" of two different sizes corresponding to two absorption bands with near unity absorptivity. Numerical and experimental absorptivity verify that the dual-band metamaterial absorber is polarization insensitive and can operate in wide-angle incidence. PMID:27406699

  13. Preparation and characterization of keratin-based biocomposite hydrogels prepared by electron beam irradiation

    Park, Mira; Kim, Byoung-Suhk [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Shin, Hye Kyoung [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.kr [Department of Chemistry, Inha University, 100 Inharo, Incheon 402-751 (Korea, Republic of); Kim, Hak-Yong, E-mail: khy@jbnu.ac.kr [Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2013-12-01

    The biocompatible and highly porous keratin-based hydrogels were prepared using electron beam irradiation (EBI). The conditions for keratin-based hydrogel formation were investigated depending on several conditions, including the presence of poly(vinyl alcohol) (PVA), concentration of keratin solution, EBI dose, and poly(ethylene imine) (PEI) additives. The pure keratin (human hair and wool) aqueous solution was not gelled by EBI, while the aqueous keratin solutions blended with PVA were gelled at an EBI dose of more than 90 kGy. Furthermore, in the presence of PEI, the aqueous keratin solution blended with PVA could be gelled at a considerably lower EBI dose, even at 10 kGy. This finding suggests that the PEI additives significantly influence the rate of gelation and that PEIs function as an accelerator during gelation. The resulting keratin-based hydrogels were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), gel fraction, degree of swelling, gel strength, and kinetics of swelling analyses. - Highlights: • The biocompatible and highly porous keratin-based hydrogels were prepared using EBI. • The conditions for keratin-based hydrogel formation were examined. • PEI would play an accelerator role in the formation of keratin-based hydrogels. • The resulting keratin-based hydrogels are expected to be more environmentally friendly.

  14. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach

    Andryieuski, Andrei; Lavrinenko, Andrei

    2013-01-01

    In this paper we present the efficient design of functional thin-film metamaterial devices with the effective surface conductivity approach. As an example, we demonstrate a graphene based perfect absorber. After formulating the requirements to the perfect absorber in terms of surface conductivity...

  15. Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(L-glutamic acid).

    Li, Guifei; Wu, Jie; Wang, Bo; Yan, Shifeng; Zhang, Kunxi; Ding, Jianxun; Yin, Jingbo

    2015-11-01

    Self-healing polymeric hydrogels have the capability to recover their structures and functionalities upon injury, which are extremely attractive in emerging biomedical applications. This research reports a new kind of self-healing polypeptide hydrogels based on self-assembly between cholesterol (Chol)-modified triblock poly(L-glutamic acid)-block-poly(ethylene glycol)-block-poly(L-glutamic acid) ((PLGA-b-PEG-b-PLGA)-g-Chol) and β-cyclodextrin (β-CD)-modified poly(L-glutamic acid) (PLGA-g-β-CD). The hydrogel formation relied on the host and guest linkage between β-CD and Chol. This study demonstrates the influences of polymer concentration and β-CD/Chol molar ratio on viscoelastic behavior of the hydrogels. The results showed that storage modulus was highest at polymer concentration of 15% w/v and β-CD/Chol molar ratio of 1:1. The effect of the PLGA molecular weight in (PLGA-b-PEG-b-PLGA)-g-Chol on viscoelastic behavior, mechanical properties and in vitro degradation of the supramolecular hydrogels was also studied. The hydrogels showed outstanding self-healing capability and good cytocompatibility. The multilayer structure was constructed using hydrogels with self-healing ability. The developed hydrogels provide a fascinating glimpse for the applications in tissue engineering. PMID:26414083

  16. Synthesis and Characterization of Cellulose-Based Hydrogels to Be Used as Gel Electrolytes

    Maria Assunta Navarra

    2015-11-01

    Full Text Available Cellulose-based hydrogels, obtained by tuned, low-cost synthetic routes, are proposed as convenient gel electrolyte membranes. Hydrogels have been prepared from different types of cellulose by optimized solubilization and crosslinking steps. The obtained gel membranes have been characterized by infrared spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mechanical tests in order to investigate the crosslinking occurrence and modifications of cellulose resulting from the synthetic process, morphology of the hydrogels, their thermal stability, and viscoelastic-extensional properties, respectively. Hydrogels liquid uptake capability and ionic conductivity, derived from absorption of aqueous electrolytic solutions, have been evaluated, to assess the successful applicability of the proposed membranes as gel electrolytes for electrochemical devices. To this purpose, the redox behavior of electroactive species entrapped into the hydrogels has been investigated by cyclic voltammetry tests, revealing very high reversibility and ion diffusivity.

  17. Synthesis of Borohydride and Catalytic Dehydrogenation by Hydrogel Based Catalyst

    Boynuegri, Tugba Akkas; Karabulut, Ahmet F.; Guru, Metin

    2016-08-01

    This paper deals with the synthesis of calcium borohydride (Ca(BH4)2) as hydrogen storage material. Calcium chloride salt (CaCl2), magnesium hydride (MgH2), and boron oxide (B2O3) were used as reactants in the mechanochemical synthesis of Ca(BH4)2. The mechanochemical reaction was carried out by means of Spex type ball milling without applying high pressure and temperature. Parametric studies have been established at different reaction times and for different amounts of reactants at a constant ball to powder ratio (BPR) 4:1. The best combination was determined by Fourier Transform Infrared (FT-IR) analysis. According to the FT-IR analysis, reaction time, the first reaction parameter, was found as 1600 min. After the reaction time was fixed at 1600 min, the difference of the B-H peak areas was dependent on the amount of reactant MgH2 that was investigated. The amount of the reactant (MgH2), the second reaction parameter, was measured to be 2.85 times more than the stoichiometric amount of MgH2. According to our previous studies, BPR was selected as 4:1 for all experiments. Samples were prepared in a glove box under argon atmosphere but the time that elapsed for FT-IR analysis highly affected B-H bonds. B-H peak areas clearly decreased with time because of negative effect of ambient atmosphere. A catalyst was prepared by absorbing cobalt fluoride (CoF2) in poly (acrylamide-co-acrylic acid) hydrogel matrices type and its catalytic dehydrogenation performance that has been characterized by the catalytic reaction of sodium borohydride's known hydrogen capacity in an alkaline medium. The metal amount of hydrogel catalyst was determined as 135.82 mg Co by Atomic Absorption Spectroscopy (AAS). The specific dehydrogenation capacity of the Co active compound in the catalyst thanks to catalytic dehydrogenation of commercial sodium borohydride was measured as 1.66 mL H2/mg Co.

  18. Formulation and characterization of poloxamine-based hydrogels as tissue sealants.

    Cho, Eunhee; Lee, Jeoung Soo; Webb, Ken

    2012-07-01

    In situ cross linkable polyethylene glycol (PEG)-based polymers play an increasing role in surgical practice as sealants that provide a barrier to fluid/gas leakage and adhesion formation. This study investigated the gelation behavior and physical properties of hydrogels formed from homogeneous and blended solutions of two acrylated poloxamines (Tetronics® T1107 and T904) of various molecular weights and hydrophilic/lipophilic balances relative to a PEG control. Hydrogels were formed by reverse thermal gelation at physiological temperature (T1107-containing formulations) and covalent crosslinking by Michael-type addition with dithiothreitol. All poloxamine-based hydrogels exhibited thermosensitive behavior and achieved significantly reduced swelling, increased tensile properties and increased tissue bond strength relative to the PEG hydrogel at physiological temperature. Swelling and tensile properties of all poloxamine-based hydrogels were significantly greater at 37°C relative to 4°C, suggesting that their improved physical properties derive from cooperative crosslinking by both noncovalent and covalent mechanisms. Poloxamine-based hydrogels were cytocompatible and underwent hydrolytic degradation over 2-5weeks, depending on their T1107/T904 composition. In conclusion, select poloxamine-based hydrogels possess a number of properties potentially beneficial to tissue sealant applications, including a substantial increase in viscosity between room/physiological temperatures, resistance to cell adhesion and maintenance of a stable volume during equilibration. PMID:22406506

  19. Macroporous hydrogels based on 2-hydroxyethyl methacrylate. Part 3. Hydrogels as carriers for immobilization of proteins

    Michálek, Jiří; Přádný, Martin; Artyukhov, A.; Šlouf, Miroslav; Smetana Jr., K.

    2005-01-01

    Roč. 16, č. 8 (2005), s. 783-786. ISSN 0957-4530 R&D Projects: GA ČR GA203/01/0737; GA AV ČR IBS4050005; GA MŠk LN00A065 Keywords : macroporous hydrogels * hydroxyethyl methacrylate * crosslinked copolymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.248, year: 2005

  20. Drug release into hydrogel-based subcutaneous surrogates studied by UV imaging

    Ye, Fengbin; Larsen, Susan Weng; Yaghmur, Anan; Jensen, Henrik; Larsen, Claus Selch; Ostergaard, Jesper

    2012-01-01

    triglyceride (MCT) into 0.5% (w/v) agarose or 25% (w/v) F127-based hydrogels was investigated by monitoring the concentration profiles of the drug in the gels. The effect of pH on piroxicam distribution and diffusion coefficients was studied. For both hydrogel systems, the diffusion of piroxicam in the gels...... of piroxicam upon the injection of aqueous or MCT solutions into an agarose-based hydrogel were investigated by UV imaging. The spatial distribution of piroxicam around the injection site in the gel matrix was monitored in real-time. The disappearance profiles of piroxicam from the injected aqueous...

  1. Xylan-based temperature/pH sensitive hydrogels for drug controlled release.

    Gao, Cundian; Ren, Junli; Zhao, Cui; Kong, Weiqing; Dai, Qingqing; Chen, Qifeng; Liu, Chuanfu; Sun, Runcang

    2016-10-20

    Xylan-based temperature/pH sensitive hydrogels were prepared by the crosslinking copolymerization of xylan with N-isopropylacrylamide (NIPAm) and acrylic acid (AA) using N,Ń-methylenebis-acrylamide (MBA) as a cross-linker and 2,2-dimethoxy-2-phenylacetophenone as a photoinitiator via ultraviolet irradiation. The influence of the NIPAm, AA and MBA amount on properties of xylan-based hydrogels was discussed. The morphology and interactions of hydrogels were characterized by SEM and FTIR. The lower critical solution temperature (LCST) of hydrogels was investigated by DSC. The results indicated that the LCST of hydrogels emerged at around 34°C and increased with increasing the AA content. The drug encapsulation efficiency of as-prepared hydrogels reached to 97.60% and the cumulative release rate of acetylsalicylic acid was 90.12% and 26.35% in the intestinal and gastric fluid, respectively. Xylan-based hydrogels were proved to be biocompatible with NIH3T3 cell by MTT assay and showed the promising application as drug carriers for the intestinal-targeted oral drug delivery. PMID:27474557

  2. Characterization of pH-sensitive Poly (acrylic acid-co-N-vinyl-2-pyrrolidone) Hydrogels Prepared by Gamma Radiation

    YANG Ming-cheng; HE Su-qin; LIU Wen-tao; SONG Hong-yan; ZHU Cheng-shen

    2007-01-01

    The pH-sensitive copolymer hydrogels were prepared with the monomers of acrylic acid and N-vinyl-2-pyrrolidone based on gamma radiation technique. The morphology of the hydrogels was monitored by using scanning electron microscope. The influence of absorbed dose, monomer compasition and concentration on the swelling ratio (SR) of the hydrogels were investigated in detail. The effect of pH and temperature of the swelling medium on the swelling behavior of the hydrogels were also examined. The results show that the SR of the copolymer hydrogels decreases with the monomer concentration and absorbed dose increasing. The copolymer hydrogels show a better pH-sensitive behavior. In alkaline solution, the SR of the hydrogels is much higher than in acid solution.

  3. A Hydrogel-Based Epirubicin Delivery System for Intravesical Chemotherapy

    Ching-Wen Liu

    2016-06-01

    Full Text Available This study aimed to examine the efficacy of epirubicin-loaded gelatin hydrogel (EPI-H in the treatment of superficial urothelium carcinoma. Hydrogel was prepared by Schiff base-crosslinking of gelatin with glutaraldehyde. EPI-H exhibited high entrapment efficiency (59.87% ± 0.51%. EPI-H also increased epirubicin accumulation in AY-27 cells when compared with the effect of aqueous solutions of epirubicin (EPI-AQ; respective epirubicin-positive cell counts were 69.0% ± 7.6% and 38.3% ± 5.8%. EPI-H also exhibited greater cytotoxicity against AY-27 cells than that of EPI-AQ; IC50 values were 13.1 ± 1.1 and 7.5 ± 0.3 μg/mL, respectively. Cystometrograms showed that EPI-H reduced peak micturition, threshold pressures, and micturition duration, and that it increased bladder compliance more so than EPI-AQ. EPI-H enhanced epirubicin penetration into basal cells of urothelium in vivo, whereas EPI-AQ did so only to the umbrella cells. EPI-H inhibited tumor growth upon intravesical instillation to tumor-bearing bladder of F344 rats, inducing higher levels of caspase-3 expression than that observed with EPI-AQ treatment; the number of caspase-3 positive cells in treated urothelium carcinoma was 13.9% ± 4.0% (EPI-AQ and 34.1% ± 1.0%, (EPI-H. EPI-H has value as an improved means to administer epirubicin in intravesical instillation treatments for bladder cancer.

  4. Economic benefit of a polyacrylate-based hydrogel compared to an amorphous hydrogel in wound bed preparation of venous leg ulcers

    Kaspar D

    2015-04-01

    Full Text Available Daniela Kaspar,1 Jörg Linder,1 Petra Zöllner,1 Ulrich Simon,2 Hans Smola1,31Medical Competence Centre, Paul Hartmann AG, Heidenheim, Germany; 2Scientific Computing Centre, Ulm University, Ulm, Germany; 3Department of Dermatology, University of Cologne, Cologne, GermanyObjective: To assess the cost-effectiveness of a polyacrylate (PA-based hydrogel compared to an amorphous hydrogel in wound bed preparation for venous leg ulcers.Method: A cost-effectiveness analysis was undertaken alongside a multicenter, randomized controlled trial performed in France. A total of 75 patients with venous leg ulcers extensively covered with fibrin and necrotic tissue were randomized to a PA-containing hydrogel or an amorphous hydrogel. Wounds were treated for 14 days and costs were estimated from the German payer's perspective. Medical costs included study treatment, wound treatment supply, and labor time. The clinical benefit was expressed as the number of patients with wounds >50% covered with granulation tissue within 14 days. The incremental cost-effectiveness ratio (ICER was expressed as the additional cost spent with >50% granulation tissue per day per patient within 14 days of leg ulcer care.Results: Because of individual pricing of wound dressings in hospitals, cost data were derived from the outpatient sector. A total of 33 patients were treated using the PA-based hydrogel and 37 patients using the amorphous hydrogel. The estimated total direct costs per patient and per 14 days of therapy were €306 for both treatment groups. However, with the PA-based hydrogel, 2.5 additional days with wounds covered >50% with granulation tissues were gained within 14 days of leg ulcer care compared to the comparator. The ICER was €0 per additional day spent with >50% granulation tissue.Conclusion: Although there were a greater number of dressing changes in the PA-based hydrogel treatment, the total treatment cost for 14 days of leg ulcer care was the same for both

  5. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application

    Vuković, Jovana S.; Babić, Marija M.; Antić, Katarina M.; Miljković, Miona G.; Perić-Grujić, Aleksandra A.; Filipović, Jovanka M.; Tomić, Simonida Lj., E-mail: simonida@tmf.bg.ac.rs

    2015-08-15

    In this study, three series of hydrogels based on 2-hydroxyethyl acrylate and itaconic acid, unloaded, with incorporated copper(II) ions and reduced copper, were successfully prepared, characterized and evaluated as novel wound healing materials. Fourier transform infrared spectroscopy (FTIR) confirmed the expected structure of obtained hydrogels. Scanning electron microscopy (SEM) revealed porous morphology of unloaded hydrogels, and the morphological modifications in case of loaded hydrogels. Thermal characteristics were examined by differential scanning calorimetry (DSC) and the glass transition temperatures were observed in range of 12–50 °C. Swelling study was conducted in wide range of pHs at 37 °C, confirming pH sensitive behaviour for all three series of hydrogels. The in vitro copper release was investigated and the experimental data were analysed using several models in order to elucidate the transport mechanism. The antimicrobial assay revealed excellent antimicrobial activity, over 99% against Escherichia coli, Staphylococcus aureus and Candida albicans, as well as good correlation with the copper release experiments. In accordance with potential application, water vapour transmission rate, oxygen penetration, dispersion characteristics, fluid retention were observed and the suitability of the hydrogels for wound healing application was discussed. - Graphical abstract: Display Omitted - Highlights: • Design and evaluation of novel pH responsive hydrogel series. • Structural, morphological, thermal characterization and controlled copper release. • Antibacterial activity against Escherichia coli and Staphylococcus aureus over 99%. • Antifungal activity against Candida albicans over 99%. • In vitro evaluation studies revealed great potential for wound healing application.

  6. A drug delivery hydrogel system based on activin B for Parkinson's disease.

    Li, Juan; Darabi, Mohammadali; Gu, Jingjing; Shi, Junbin; Xue, Jinhua; Huang, Lu; Liu, Yutong; Zhang, Lei; Liu, N; Zhong, Wen; Zhang, Lin; Xing, Malcolm; Zhang, Lu

    2016-09-01

    Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Activins are members of the superfamily of transforming growth factors and have many potential neuroprotective effects. Herein, at the first place, we verified activin B's neuroprotective role in a PD model, and revealed that activin B's fast release has limited function in the PD therapy. To this end, we developed a multi-functional crosslinker based thermosensitive injectable hydrogels to deliver activin B, and stereotactically injected the activin B-loaded hydrogel into the striatum of a mouse model of PD. The histological evaluation showed that activin B can be detected even 5 weeks post-surgery in PD mice implanted with activin B-loaded hydrogels, and activin B-loaded hydrogels can significantly increase the density of tyrosine hydroxylase positive (TH(+)) nerve fibers and reduce inflammatory responses. The behavioral evaluation demonstrated that activin B-loaded hydrogels significantly improved the performance of the mice in the PD model. Meanwhile, we found that hydrogels can slightly induce the activation of microglia cells and astrocytes, while cannot induce apoptosis in the striatum. Overall, our data demonstrated that the developed activin B-loaded hydrogels provide sustained release of activin B for over 5 weeks and contribute to substantial cellular protection and behavioral improvement, suggesting their potential as a therapeutic strategy for PD. PMID:27322960

  7. A high efficacy antimicrobial acrylate based hydrogels with incorporated copper for wound healing application

    In this study, three series of hydrogels based on 2-hydroxyethyl acrylate and itaconic acid, unloaded, with incorporated copper(II) ions and reduced copper, were successfully prepared, characterized and evaluated as novel wound healing materials. Fourier transform infrared spectroscopy (FTIR) confirmed the expected structure of obtained hydrogels. Scanning electron microscopy (SEM) revealed porous morphology of unloaded hydrogels, and the morphological modifications in case of loaded hydrogels. Thermal characteristics were examined by differential scanning calorimetry (DSC) and the glass transition temperatures were observed in range of 12–50 °C. Swelling study was conducted in wide range of pHs at 37 °C, confirming pH sensitive behaviour for all three series of hydrogels. The in vitro copper release was investigated and the experimental data were analysed using several models in order to elucidate the transport mechanism. The antimicrobial assay revealed excellent antimicrobial activity, over 99% against Escherichia coli, Staphylococcus aureus and Candida albicans, as well as good correlation with the copper release experiments. In accordance with potential application, water vapour transmission rate, oxygen penetration, dispersion characteristics, fluid retention were observed and the suitability of the hydrogels for wound healing application was discussed. - Graphical abstract: Display Omitted - Highlights: • Design and evaluation of novel pH responsive hydrogel series. • Structural, morphological, thermal characterization and controlled copper release. • Antibacterial activity against Escherichia coli and Staphylococcus aureus over 99%. • Antifungal activity against Candida albicans over 99%. • In vitro evaluation studies revealed great potential for wound healing application

  8. Hydrogel-Based Platforms for the Regeneration of Osteochondral Tissue and Intervertebral Disc

    Luigi Ambrosio

    2012-09-01

    Full Text Available Hydrogels currently represent a powerful solution to promote the regeneration of soft and hard tissues. Primarily, they assure efficient bio-molecular interactions with cells, also regulating their basic functions, guiding the spatially and temporally complex multi-cellular processes of tissue formation, and ultimately facilitating the restoration of structure and function of damaged or dysfunctional tissues. In order to overcome basic drawbacks of traditional synthesized hydrogels, many recent strategies have been implemented to realize multi-component hydrogels based on natural and/or synthetic materials with tailored chemistries and different degradation kinetics. Here, a critical review of main strategies has been proposed based on the use of hydrogels-based devices for the regeneration of complex tissues, i.e., osteo-chondral tissues and intervertebral disc.

  9. Infrared perfect absorber based on nanowire metamaterial cavities

    He, Yingran; Jiao, Xiangyang; He, Sailing; Gao, Jie; Yang, Xiaodong

    2012-01-01

    An infrared perfect absorber based on gold nanowire metamaterial cavities array on a gold ground plane is designed. The metamaterial made of gold nanowires embedded in alumina host exhibits an effective permittivity with strong anisotropy, which supports cavity resonant modes of both electric dipole and magnetic dipole. The impedance of the cavity modes matches the incident plane wave in free space, leading to nearly perfect light absorption. The incident optical energy is efficiently converted into heat so that the local temperature of the absorber will increase. Simulation results show that the designed metamaterial absorber is polarization-insensitive and nearly omnidirectional for the incident angle.

  10. The design of conductimetric biosensors based on environmentally responsive hydrogels

    Lesho, Matthew Jerome

    Responsive hydrogels are hydrophilic, crosslinked polymers that undergo large changes in hydration in response to environmental stimuli such as changing temperature, pH, electric field, and ionic strength. Accompanying this change in hydration are changes in material properties of the hydrogel, which has led to their application in controlled drug delivery, separations, and as superabsorbants. The present study investigated the hydration-dependent electrical conductivity of a pH-responsive hydrogel and its application as a transduction layer for microfabricated, conductimetric pH and glucose sensors. The investigation was divided into four parts. First, the material properties of a copolymer of 2-hydroxyethyl methacrylate (HEMA) and N,N-dimethylaminoethyl methacrylate (DMA), crosslinked with tetraethylene glycol diacrylate (TEGDA), were examined with respect to its ability to detect changes in pH. It was determined that the electrical conductivity of the hydrogel was a sensitive measure of hydration and was a function of pH, hydrogel composition, buffer concentration, buffer identity, and ionic strength. Second, a method was developed for reproducibly depositing thin (1-25 mum), adherent hydrogel layers by photolithographic patterning techniques. Third, sensors were developed that utilized planar interdigitated electrode arrays to probe the change in electrical conductivity of hydrogel membranes. The sensitivity, response time, operating range and lifetime of pH sensors were functions of pH, hydrogel composition, buffer concentration, buffer identity, and ionic strength. Glucose sensors were developed by incorporating glucose oxidase into the pH-responsive hydrogel and measuring the decrease in pH that accompanies the enzymatic generation of protons. Finally, a model was formulated to relate the measured sensor responses to the measured material properties. Information from model simulations was incorporated into the design of next-generation sensors.

  11. Fabrication of Amino Acid Based Silver Nanocomposite Hydrogels from PVA-Poly(Acrylamide-co-Acryloyl phenylalanine) and Their Antimicrobial Studies

    Cha, Hyeongrae; Babu, V. Ramesh; Rao, K. S. V. Krishna; Kim, Yonghyun; Mei, Surong; Lee, Yongill; Joo, Woo Hong [Changwon National Univ., Changwon (Korea, Republic of)

    2012-10-15

    New silver nanoparticle (AgNP)-loaded amino acid based hydrogels were synthesized successfully from poly (vinyl alcohol) (PVA) and poly(acryl amide-co-acryloyl phenyl alanine) (PAA) by redox polymerization. The formation of AgNP in hydrogels was confirmed by using a UV-Vis spectrophotometer and XRD. The structure and morphology of silver nanocomposite hydrogels were studied by using a scanning electron microscopy (SEM), which demonstrated scattered nanoparticles, ca. 10-20 nm. Thermogravimetric analysis revealed large differences of weight loss (i. e., 48%) between the prestine hydrogel and silver nanocomposite. The antibacterial studies of AgNP-loaded PAA (Ag-PAA) hydrogels was evaluated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. These Ag-PAA hydrogels showed significant activities against all the test bacteria. Newly developed hydrogels could be used for medical applications, such as artificial burn dressings.

  12. Facile synthesis of magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan hydrogel as MTX carriers for controlled drug release.

    Wu, Juan; Jiang, Wei; Tian, Renbing; Shen, Yewen; Jiang, Wei

    2016-10-01

    In the present study, methotrexate (MTX)-encapsulated magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan were successfully prepared through a one-step gelation process, which is a very facile, economic and environmentally friendly route. The developed hydrogel beads exhibited homogeneous porous structure and super-paramagnetic responsibility. MTX can be successfully encapsulated into magnetic chitosan hydrogel beads, and the drug encapsulation efficiency (%) and encapsulation content (%) were 93.8 and 6.28%, respectively. In addition, the drug release studies in vitro indicated that the MTX-encapsulated magnetic chitosan hydrogel beads had excellent pH-sensitivity, 90.6% MTX was released from the magnetic chitosan hydrogel beads within 48 h at pH 4.0. WST-1 assays in human liver hepatocellular carcinoma cells (HepG2) demonstrated that the MTX-encapsulated magnetic chitosan hydrogel beads had good cytocompatibility and high anti-tumor activity. Therefore, our results revealed that the MTX-encapsulated magnetic chitosan hydrogel beads would be a competitive candidate for controlled drug release in the area of targeted cancer therapy in the near future. PMID:27464586

  13. An in situ forming biodegradable hydrogel-based embolic agent for interventional therapies.

    Weng, Lihui; Rostambeigi, Nassir; Zantek, Nicole D; Rostamzadeh, Parinaz; Bravo, Mike; Carey, John; Golzarian, Jafar

    2013-09-01

    We present here the characteristics of an in situ forming hydrogel prepared from carboxymethyl chitosan and oxidized carboxymethyl cellulose for interventional therapies. Gelation, owing to the formation of Schiff bases, occurred both with and without the presence of a radiographic contrast agent. The hydrogel exhibited a highly porous internal structure (pore diameter 17±4 μm), no cytotoxicity to human umbilical vein endothelial cells, hemocompatibility with human blood, and degradability in lysozyme solutions. Drug release from hydrogels loaded with a sclerosant, tetracycline, was measured at pH 7.4, 6 and 2 at 37°C. The results showed that tetracycline was more stable under acidic conditions, with a lower release rate observed at pH 6. An anticancer drug, doxorubicin, was loaded into the hydrogel and a cumulative release of 30% was observed over 78 h in phosphate-buffered saline at 37°C. Injection of the hydrogel precursor through a 5-F catheter into a fusiform aneurysm model was feasible, leading to complete filling of the aneurysmal sac, which was visualized by fluoroscopy. The levels of occlusion by hydrogel precursors (1.8% and 2.1%) and calibrated microspheres (100-300 μm) in a rabbit renal model were compared. Embolization with hydrogel precursors was performed without clogging and the hydrogel achieved effective occlusion in more distal arteries than calibrated microspheres. In conclusion, this hydrogel possesses promising characteristics potentially beneficial for a wide range of vascular intervention procedures that involve embolization and drug delivery. PMID:23791672

  14. Elastin based cell-laden injectable hydrogels with tunable gelation, mechanical and biodegradation properties.

    Fathi, Ali; Mithieux, Suzanne M; Wei, Hua; Chrzanowski, Wojciech; Valtchev, Peter; Weiss, Anthony S; Dehghani, Fariba

    2014-07-01

    Injectable hydrogels made from extracellular matrix proteins such as elastin show great promise for various biomedical applications. Use of cytotoxic reagents, fixed gelling behavior, and lack of mechanical strength in these hydrogels are the main associated drawbacks. The aim of this study was to develop highly cytocompatible and injectable elastin-based hydrogels with alterable gelation characteristics, favorable mechanical properties and structural stability for load bearing applications. A thermoresponsive copolymer, poly(N-isopropylacrylamide-co-polylactide-2-hydroxyethyl methacrylate-co-oligo(ethylene glycol)monomethyl ether methacrylate, was functionalized with succinimide ester groups by incorporating N-acryloxysuccinimide monomer. These ester groups were exploited to covalently bond this polymer, denoted as PNPHO, to different proteins with primary amine groups such as α-elastin in aqueous media. The incorporation of elastin through covalent bond formation with PNPHO promotes the structural stability, mechanical properties and live cell proliferation within the structure of hydrogels. Our results demonstrated that elastin-co-PNPHO solutions were injectable through fine gauge needles and converted to hydrogels in situ at 37 °C in the absence of any crosslinking reagent. By altering PNPHO content, the gelling time of these hydrogels can be finely tuned within the range of 2-15 min to ensure compatibility with surgical requirements. In addition, these hydrogels exhibited compression moduli in the range of 40-145 kPa, which are substantially higher than those of previously developed elastin-based hydrogels. These hydrogels were highly stable in the physiological environment with the evidence of 10 wt% mass loss in 30 days of incubation in a simulated environment. This class of hydrogels is in vivo bioabsorbable due to the gradual increase of the lower critical solution temperature of the copolymer to above 37 °C due to the cleavage of polylactide from

  15. Design of integration-ready metasurface-based infrared absorbers

    Ogando, Karim, E-mail: karim@cab.cnea.gov.ar; Pastoriza, Hernán [Laboratorio de Bajas Temperaturas, Instituto Balseiro and Centro Atómico Bariloche, Bariloche 8400 (Argentina)

    2015-07-28

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region.

  16. Design of integration-ready metasurface-based infrared absorbers

    We introduce an integration ready design of metamaterial infrared absorber, highly compatible with many kinds of fabrication processes. We present the results of an exhaustive experimental characterization, including an analysis of the effects of single meta-atom geometrical parameters and collective arrangement. We confront the results with the theoretical interpretations proposed in the literature. Based on the results, we develop a set of practical design rules for metamaterial absorbers in the infrared region

  17. Light-guiding hydrogels for cell-based sensing and optogenetic synthesis in vivo

    Choi, Myunghwan; Choi, Jin Woo; Kim, Seonghoon; Nizamoglu, Sedat; Hahn, Sei Kwang; Yun, Seok Hyun

    2013-12-01

    Polymer hydrogels are widely used as cell scaffolds for biomedical applications. Although the biochemical and biophysical properties of hydrogels have been investigated extensively, little attention has been paid to their potential photonic functionalities. Here, we report cell-integrated polyethylene glycol-based hydrogels for in vivo optical-sensing and therapy applications. Hydrogel patches containing cells were implanted in awake, freely moving mice for several days and shown to offer long-term transparency, biocompatibility, cell viability and light-guiding properties (loss of improved glucose homeostasis. Furthermore, real-time optical readout of encapsulated heat-shock-protein-coupled fluorescent reporter cells made it possible to measure the nanotoxicity of cadmium-based bare and shelled quantum dots (CdTe; CdSe/ZnS) in vivo.

  18. Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture

    Demitri, C.; F. Scalera; M. Madaghiele; A. Sannino; Maffezzoli, A.

    2013-01-01

    The present work deals with the development of a biodegradable superabsorbent hydrogel, based on cellulose derivatives, for the optimization of water resources in agriculture, horticulture and, more in general, for instilling a wiser and savvier approach to water consumption. The sorption capability of the proposed hydrogel was firstly assessed, with specific regard to two variables that might play a key role in the soil environment, that is, ionic strength and pH. Moreover, a preliminary eva...

  19. Biocompatibility Evaluation of a New Hydrogel Dressing Based on Polyvinylpyrrolidone/Polyethylene Glycol

    Esmaeil Biazar; Ziba Roveimiab; Gholamreza Shahhosseini; Mohammadreza Khataminezhad; Mandana Zafari; Ali Majdi

    2012-01-01

    The composition of the dressings is based on polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and agar. The electron beam irradiation technique has been used to prepare hydrogel wound dressings. The in vitro biocompatibility of the hydrogel was investigated by check samples (hydrocolloid Comfeel), antibacterial test (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia Coli k12), anti fungal test (Candida Albicans) and cytotoxicity test (Fibroblast L929...

  20. New starch-based thermoplastic hydrogels for use as bone cements or drug-delivery carriers

    C.S. Pereira; Vásquez, Blanca; A.M. Cunha; Reis, R.L.; San Román, J.

    1998-01-01

    The development of new biodegradable hydrogels, based on corn starch/cellulose acetate blends, produced by free-radical polymerization with methyl methacrylate monomer (MMA) and/or an acrylic acid monomer (AA), is reported. The polymerization was initiated by a redox system consisting of a benzoyl peroxide and 4-dimethlyaminobenzyl alcohol at low temperature. These hydrogels may constitute an alternative to the materials currently used as bone cements or drug-delivery carriers. Swelling studi...

  1. Experiments with hydrogel pearls

    Pavlin, Jerneja

    2015-01-01

    Hydrogels are very attractive materials since they can absorb large quantities of water. They also have very interesting optical properties which can be easily shown. The experiments with hydrogel pearls related to the absorption of water, density, optical properties and influence of pH are presented in the contribution.

  2. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91–93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability. - Highlights: • HA/CS/PAAc hydrogels were synthesized by gamma-ray irradiation. • HA/CS/PAAc hydrogels exhibited 91–93% gel fractions under 15 kGy radiation. • All of the HA/CS/PAAc hydrogels exhibited high water contents of over 90%. • The hydrogel samples showed relatively high cell viabilities of more than

  3. Metamaterial-based perfect absorber: polarization insensitivity and broadband

    We report the design and simulation of a microwave metamaterials-based perfect absorber using a simple and highly symmetric structure. The basic structure consists of three functional layers: the middle is a dielectric, the back is a metallic plane and the front is a ring of metal. The influence of structural parameters on the absorbance and absorption frequency were investigated. The results show an exceptional absorption performance of near unity around 16 GHz. In addition, the absorption is insensitive to the polarization of the incident beam due to the highly symmetric structure. Finally, four and nine rings with different sizes are arranged appropriately in a unit cell in order to construct a broadband absorber. A polarization-insensitive absorbance of above 90% is achieved over a bandwidth of 15%. (papers)

  4. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D2O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10−5 cm2/sec

  5. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    Prabhudesai, S. A., E-mail: swapnil@barc.gov.in; Mitra, S.; Mukhopadhyay, R. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 40085 (India); Lawrence, Mathias B. [Department of Physics, St. Xavier’s College, Mapusa, Goa 403507 (India); Desa, J. A. E. [Department of Physics, Goa University, Taleigao Plateau, Goa 403206 (India)

    2015-06-24

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D{sub 2}O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10{sup −5} cm{sup 2}/sec.

  6. Crosslinked hydrogels based on biological macromolecules with potential use in skin tissue engineering.

    Vulpe, Raluca; Popa, Marcel; Picton, Luc; Balan, Vera; Dulong, Virginie; Butnaru, Maria; Verestiuc, Liliana

    2016-03-01

    Zero-length crosslinked hydrogels have been synthesized by covalent linking of three natural polymers (collagen, hyaluronic acid and sericin), in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. The hydrogels have been investigated by FT-IR spectroscopy, microcalorimetry, in vitro swelling, enzymatic degradation, and in vitro cell viability studies. The obtained crosslinked hydrogels showed a macroporous structure, high swelling degree and in vitro enzymatic resistance compared to uncrosslinked collagen. The in vitro cell viability studies performed on normal human dermal fibroblasts assessed the sericin proliferation properties indicating a potential use of the hydrogels based on collagen, hyaluronic acid and sericin in skin tissue engineering. PMID:26704998

  7. Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells.

    Zhou, Mi; Smith, Andrew M; Das, Apurba K; Hodson, Nigel W; Collins, Richard F; Ulijn, Rein V; Gough, Julie E

    2009-05-01

    We report here the design of a biomimetic nanofibrous hydrogel as a 3D-scaffold for anchorage-dependent cells. The peptide-based bioactive hydrogel is formed through molecular self-assembly and the building blocks are a mixture of two aromatic short peptide derivatives: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine-glycine-aspartate) as the simplest self-assembling moieties reported so far for the construction of small-molecule-based bioactive hydrogels. This hydrogel provides a highly hydrated, stiff and nanofibrous hydrogel network that uniquely presents bioactive ligands at the fibre surface; therefore it mimics certain essential features of the extracellular matrix. The RGD sequence as part of the Fmoc-RGD building block plays a dual role of a structural component and a biological ligand. Spectroscopic and imaging analysis using CD, FTIR, fluorescence, TEM and AFM confirmed that FF and RGD peptide sequences self-assemble into beta-sheets interlocked by pi-pi stacking of the Fmoc groups. This generates the cylindrical nanofibres interwoven within the hydrogel with the presence of RGDs in tunable densities on the fibre surfaces. This rapid gelling material was observed to promote adhesion of encapsulated dermal fibroblasts through specific RGD-integrin binding, with subsequent cell spreading and proliferation; therefore it may offer an economical model scaffold to 3D-culture other anchorage-dependent cells for in-vitro tissue regeneration. PMID:19201459

  8. Nanocomposite hydrogels based on water soluble polymer and montmorillonite-Na+

    Fatiha Reguieg

    2015-09-01

    Full Text Available A series of composites hydrogels based on Poly (1,3-dioxolane (PDXL,water soluble polymer, were synthesized directly in water by free-radical homopolymerization of a,w-methacryloyloxy PDXL macromonomers using hydrophilic sodium Montmorillonite clay: Maghnite-Na+ (Mag-Na+ and potassium persulfate as an initiator. These materials were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermogravimetric analysis (ATG and their equilibrium swelling behavior in water and were compared with those of pure hydrogels prepared without Mag-Na+. X-ray diffraction and Infrared spectroscopy confirmed insertion of clay into polymer. The thermal decomposition temperature of the hydrogels based on maghnite-Na+ was found to be higher than of pure hydrogels. At the same time, the influence of the macromonomer precursor molar mass value, its concentration and the quantities of Mag-Na+, on the values of the volume degree of equilibrium swelling were studied. The results showed that the volume degree of equilibrium swelling was investigated as a function of the clay content. However, whether the concentration of macromonomer precursor increased, the volume or weight degree of equilibrium swelling of hydrogels all decreased. The addition of Mag-Na+ particles changed the crosslinking density of hydrogels.

  9. Protein composition alters in vivo resorption of PEG-based hydrogels as monitored by contrast-enhanced MRI.

    Berdichevski, Alexandra; Shachaf, Yonatan; Wechsler, Roni; Seliktar, Dror

    2015-02-01

    We report on the use of magnetic resonance imaging (MRI)-based non-invasive monitoring to document the role of protein adjuvants in hydrogel implant integration in vivo. Polyethylene glycol (PEG) hydrogels were formed with different protein constituents, including albumin, fibrinogen and gelatin. The hydrogels were designed to exhibit similar material properties, including modulus, swelling and hydrolytic degradation kinetics. The in vivo resorption properties of these PEG-based hydrogels, which contained a tethered gadolinium contrast agent, were characterized by MRI and histology, and compared to their in vitro characteristics. MRI data revealed that PEG-Albumin implants remained completely intact throughout the experiments, PEG-Fibrinogen implants lost about 10% of their volume and PEG-Gelatin implants underwent prominent swelling and returned to their initial volume by day 25. Fully synthetic PEG-diacrylate (PEG-DA) control hydrogels lost about half of their volume after 25 days in vivo. Transverse MRI cross-sections of the implants revealed distinct mechanisms of the hydrogel's biodegradation: PEG-Fibrinogen and PEG-Albumin underwent surface erosion, whereas PEG-Gelatin and PEG-DA hydrogels mainly underwent bulk degradation. Histological findings substantiated the MRI data and demonstrated significant cellular response towards PEG-DA and PEG-Gelatin scaffolds with relatively low reaction towards PEG-Fibrinogen and PEG-Albumin hydrogels. These findings demonstrate that PEG-protein hydrogels can degrade via a different mechanism than PEG hydrogels, and that this difference can be linked to a reduced foreign body response. PMID:25542788

  10. A Dendritic Thioester Hydrogel Based on Thiol-Thioester Exchange as a Dissolvable Sealant System for Wound Closure

    Ghobril, Cynthia; Charoen, Kristie; Rodriguez, Edward K.; Nazarian, Ara; Grinstaff, Mark W.

    2013-01-01

    A dissolvable dendritic thioester hydrogel based on thiol-thioester exchange for wound closure is reported. The hydrogel sealant adheres strongly to tissues, closes an ex vivo vein puncture, and withstands high pressures placed on a wound. The hydrogel sealant can be completely washed off upon exposure to thiolates based on thiol-thioester exchange and allow gradual wound re-exposure during definitive surgical care.

  11. Novel silicone hydrogel based on PDMS and PEGMA for contact lens application.

    Lin, Chien-Hong; Yeh, Yi-Hsing; Lin, Wen-Ching; Yang, Ming-Chien

    2014-11-01

    A silicone-based hydrogel was synthesized from poly(dimethylsiloxane) dialkanol (PDMS), isophorone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol) methacrylate (PEGMA). The hydrophilicity of the resulting block copolymer was adjustable by manipulating the ratio of PDMS and PEGMA. The results showed that higher PEGMA content led to a lower water contact angle, higher water content, lower elastic modulus and higher glucose permeability. At a PEGMA content of 20%, the protein adsorption decreased to 23% and 18% for lysozyme and human serum albumin (HSA), respectively, of those of the control (PDMS-PU). This indicated that the PDMS-PU-PEGMA hydrogels exhibited an ability to resist protein adsorption. The oxygen permeability (Dk) was 92 barrers for the hydrogel with 20% PEGMA. Furthermore, these hydrogels were non-cytotoxic according to an in vitro L929 fibroblast assay. Overall, the results demonstrated that the PDMS-PU-PEGMA hydrogels exhibited not only relatively high oxygen permeability and relative optical transparency, but also hydrophilicity and anti-protein adsorption; therefore, they would be applicable as a contact lens material. Furthermore, this study demonstrated a new approach to controlling the performance of silicone hydrogels. PMID:25465755

  12. SYNTHESIS AND CHARACTERIZATION OF AMPHOTERIC HYDROGELS BASED ON N-CARBOXYETHYLCHITOSAN

    Yan Li; Qiang Yin; Ming-yu Deng; Jun-jie Cui; Bo Jiang

    2009-01-01

    New amphoteric hydrogels based on carboxyethylchitosans (CECH) with various degrees of substitution (DS) were prepared using different amounts of epichlorohydrin (ECH) as the crosslinking agent. The equilibrium swelling ratio (SW) was determined as functions of pH and salt concentration. The hydrogels show typical amphoteric character responding to pH change of the external medium. At isoelectric point (IEP), the hydrogels shrink. The DS value has important effect on the swelling properties of the hydrogels. When the DS of N-carboxyethylchitosan increases from 0.32 to 0.72, the equilibrium swelling ratio (SW) of the hydrogel changes from 76 to 290 at pH 7.3 and from 117 to 499 at pH 11.3. A marked volume decrease was observed in hydrogels with increasing salt concentration in the surrounding solution. The viscoelastic properties of the hydrogeis were studied by oscillatory shear measurements under small-deformation conditions. The elastic modulus G' of all the samples has no dependence on frequency and is one order of magnitude larger than the loss modulus G", corresponding to a strong gel behavior.

  13. Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair.

    Klotz, Barbara J; Gawlitta, Debby; Rosenberg, Antoine J W P; Malda, Jos; Melchels, Ferry P W

    2016-05-01

    Research over the past decade on the cell-biomaterial interface has shifted to the third dimension. Besides mimicking the native extracellular environment by 3D cell culture, hydrogels offer the possibility to generate well-defined 3D biofabricated tissue analogs. In this context, gelatin-methacryloyl (gelMA) hydrogels have recently gained increased attention. This interest is sparked by the combination of the inherent bioactivity of gelatin and the physicochemical tailorability of photo-crosslinkable hydrogels. GelMA is a versatile matrix that can be used to engineer tissue analogs ranging from vasculature to cartilage and bone. Convergence of biological and biofabrication approaches is necessary to progress from merely proving cell functionality or construct shape fidelity towards regenerating tissues. GelMA has a critical pioneering role in this process and could be used to accelerate the development of clinically relevant applications. PMID:26867787

  14. Characterization of a Functional Hydrogel Layer on a Silicon-Based Grating Waveguide for a Biochemical Sensor

    Hong, Yoo-Seung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-01-01

    We numerically demonstrated the characteristics of a functional hydrogel layer on a silicon-based grating waveguide for a simple, cost-effective refractive index (RI) biochemical sensor. The RI of the functional hydrogel layer changes when a specific biochemical interaction occurs between the hydrogel-linked receptors and injected ligand molecules. The transmission spectral profile of the grating waveguide shifts depends on the amount of RI change caused by the functional layer. Our character...

  15. Chitosan-based hydrogel for dye removal from aqueous solutions: Optimization of the preparation procedure

    Gioiella, Lucia; Altobelli, Rosaria; de Luna, Martina Salzano; Filippone, Giovanni

    2016-05-01

    The efficacy of chitosan-based hydrogels in the removal of dyes from aqueous solutions has been investigated as a function of different parameters. Hydrogels were obtained by gelation of chitosan with a non-toxic gelling agent based on an aqueous basic solution. The preparation procedure has been optimized in terms of chitosan concentration in the starting solution, gelling agent concentration and chitosan-to-gelling agent ratio. The goal is to properly select the material- and process-related parameters in order to optimize the performances of the chitosan-based dye adsorbent. First, the influence of such factors on the gelling process has been studied from a kinetic point of view. Then, the effects on the adsorption capacity and kinetics of the chitosan hydrogels obtained in different conditions have been investigated. A common food dye (Indigo Carmine) has been used for this purpose. Noticeably, although the disk-shaped hydrogels are in the bulk form, their adsorption capacity is comparable to that reported in the literature for films and beads. In addition, the bulk samples can be easily separated from the liquid phase after the adsorption process, which is highly attractive from a practical point of view. Compression tests reveal that the samples do not breakup even after relatively large compressive strains. The obtained results suggest that the fine tuning of the process parameters allows the production of mechanical resistant and highly adsorbing chitosan-based hydrogels.

  16. Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing.

    Goh, MeeiChyn; Hwang, Youngmin; Tae, Giyoong

    2016-08-20

    A heparin-based hydrogel sheet composed of thiolated heparin and diacrylated poly (ethylene glycol) was prepared via photo polymerization and human epidermal growth factor (hEGF) were loaded into it for the purpose of wound healing. It showed a sustained release profile of hEGF in vitro. In order to evaluate its function on wound healing in vivo, full thickness wounds were created on the dorsal surface of mice. Application of hEGF loaded heparin-based hydrogel sheet accelerated the wound closure compared to the non-treated control group, hEGF solution, and hEGF loaded PEG hydrogel sheet. Histological and immunohistological examinations also demonstrated an advanced granulation tissue formation, capillary formation, and epithelialization in wounds treated by hEGF loaded heparin-based hydrogel compared to other groups, and no biocompatibility issue was observed. In conclusion, the delivery of hEGF using the heparin-based hydrogel could accelerate the skin wound healing process. PMID:27178931

  17. Polyethylene glycol (PEG)-Poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications.

    Alexander, Amit; Ajazuddin; Khan, Junaid; Saraf, Swarnlata; Saraf, Shailendra

    2014-11-01

    Protein and peptide delivery by the use of stimuli triggered polymers remains to be the area of interest among the scientist and innovators. In-situ forming gel for the parenteral route in the form of hydrogel and implants are being utilized for various biomedical applications. The formulation of gel depends upon factors such as temperature modulation, pH changes, the presence of ions and ultra-violet irradiation, from which drug is released in a sustained and controlled manner. Among various stimuli triggered factors, thermoresponsive is the most potential one for the delivery of protein and peptides. Poly(ethylene glycol) (PEG) based copolymers play a crucial role as a biomedical material for biomedical applications, because of its biocompatibility, biodegradability, thermosensitivity and easy controlled characters. This review, stresses on the physicochemical property, stability and compositions prospects of smart thermoresponsive polymer specifically, PEG/Poly(N-isopropylacrylamide) (PNIPAAm) based thermoresponsive injectable hydrogels, recently utilized for biomedical applications. PEG-PNIPAAm based hydrogel exhibits good gelling mechanical strength and minimizes the initial burst effect of the drug. In addition, upon changing the composition and proportion of the copolymer molecular weight and ratio, the gelling time can be reduced to a great extent providing better sol-gel transition. The hydrogel formed by the same is able to release the drug over a long duration of time, meanwhile is also biocompatible and biodegradable. Manuscript will give the new researchers an idea about the potential and benefits of PNIPAAm based thermoresponsive hydrogels for the biomedical application. PMID:25092423

  18. Investigation on a hydrogel based passive thermal management system for lithium ion batteries

    An appropriate operating temperature range is critical for the overall performance and safety of lithium-ion batteries. Considering the excellent performance of water in heat dissipation in industrial applications, in this paper, a water based PAAS (sodium polyacrylate) hydrogel thermal management system has been proposed to handle the heat surge during the operation of a Li-ion battery pack. A thermal model with constant heat generation rate is employed to simulate the high current discharge process (i.e., 10 A) on a 4S1P battery pack, which shows a good consistence with the corresponding experimental results. Further experiments on 4S1P and 5S1P battery packs validate the effectiveness of the hydrogel thermal management system in lowering the temperature increase rate of battery packs at different discharge rates and minimizing the temperature difference inside battery packs during operation, thereby enhancing the stability and safety in continuous charge and discharge process and decreasing the capacity fading rate during life cycle tests. This novel hydrogel based cooling system also possesses the characteristics of high energy efficiency, easy manufacturing process, compactness, and low cost. - Highlights: • A hydrogel thermal management system (TMS) is proposed for Li-ion battery. • It is found that the heat from internal resistance predominates at high discharge rate. • Effectiveness of hydrogel in controlling cell temperature is proved. • Battery equipped with hydrogel TMS is safer at continuous high rate cycle test. • The capacity fading rate of battery pack decreases when hydrogel TMS is implemented

  19. Optical Projection Tomography Technique for Image Texture and Mass Transport Studies in Hydrogels Based on Gellan Gum.

    Soto, Ana M; Koivisto, Janne T; Parraga, Jenny E; Silva-Correia, Joana; Oliveira, Joaquim M; Reis, Rui L; Kellomäki, Minna; Hyttinen, Jari; Figueiras, Edite

    2016-05-24

    The microstructure and permeability are crucial factors for the development of hydrogels for tissue engineering, since they influence cell nutrition, penetration, and proliferation. The currently available imaging methods able to characterize hydrogels have many limitations. They often require sample drying and other destructive processing, which can change hydrogel structure, or they have limited imaging penetration depth. In this work, we show for the first time an alternative nondestructive method, based on optical projection tomography (OPT) imaging, to characterize hydrated hydrogels without the need of sample processing. As proof of concept, we used gellan gum (GG) hydrogels obtained by several cross-linking methods. Transmission mode OPT was used to analyze image microtextures, and emission mode OPT to study mass transport. Differences in hydrogel structure related to different types of cross-linking and between modified and native GG were found through the acquired Haralick's image texture features followed by multiple discriminant analysis (MDA). In mass transport studies, the mobility of FITC-dextran (MW 20, 150, 2000 kDa) was analyzed through the macroscopic hydrogel. The FITC-dextran velocities were found to be inversely proportional to the size of the dextran as expected. Furthermore, the threshold size in which the transport is affected by the hydrogel mesh was found to be 150 kDa (Stokes' radii between 69 and 95 Å). On the other hand, the mass transport study allowed us to define an index of homogeneity to assess the cross-linking distribution, structure inside the hydrogel, and repeatability of hydrogel production. As a conclusion, we showed that the set of OPT imaging based material characterization methods presented here are useful for screening many characteristics of hydrogel compositions in relatively short time in an inexpensive manner, providing tools for improving the process of designing hydrogels for tissue engineering and drugs

  20. Achievements in design and synthesis of hydrogel-based supports

    Horák, Daniel; Hlídková, Helena

    Waretown : Apple Academic Press, 2014 - (Klodzinska, E.), s. 161-179 ISBN 978-1-77188-045-9 R&D Projects: GA ČR GAP304/11/0731 Institutional support: RVO:61389013 Keywords : 2-hydroxyethyl methacrylate * hydrogel * porosity Subject RIV: FH - Neurology http://www.crcnetbase.com/doi/abs/10.1201/b17786-16

  1. Morphology maps of ice-templated hydrogels based on chitosan

    Dinu, M. V.; Přádný, Martin; Dragan, E. S.; Michálek, Jiří

    Iasi : Faculty of Physics, Alexandru Ioan Cuza University, 2012. s. 115. [International Conference on Physics of Advanced Materials /9./ - ICPAM-9. 20.09.2012-23.09.2012, Iasi] R&D Projects: GA ČR GAP108/12/1538 Institutional support: RVO:61389013 Keywords : chitosan * porous hydrogel * 2-hydroxyethyl methacrylate Subject RIV: CD - Macromolecular Chemistry

  2. Formulation and Evaluation of Topical Hydrogel Patch Containing Amide Type Local Anaesthetic Agent

    Jayrajsinh Sarvaiya

    2012-09-01

    Full Text Available Hydrogel based drug delivery systems provides significant effect in designing sustained release topical dosage forms. Topical patch containing drug in hydrogel type polymer matrix provides not only targeted drug flux through the skin but also provides cooling effect on application site. Topical hydrogel patch containing lidocaine was prepared by using sodium poly acrylate as bioadhesive polymer. Effect of brij 30 and transcutol was also evaluated on topical flux of lidocaine base from hydrogel patch. Transcutol (10% w/w provides sufficient drug release in contrast to brij 30(4%w/w in prepared hydrogel patches. Maintenance of uniformity of weight is one of the critical task in preparation of hydrogel patch as polymers used are highly water absorbent. Excess amount of penetration enhancers leads to alter adhesive property of bioadhesive patch so formulation was optimized with Sodium polyacrylate (7%w/w as the desired concentration for necessary bioadhesiveness and zinc oxide as cross linking agent.

  3. Hydrogels Constructed from Engineered Proteins.

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed. PMID:26707834

  4. Development and characterization of a new hydrogel based on galactomannan and κ-carrageenan.

    Soares, Paulo A G; de Seixas, José R P C; Albuquerque, Priscilla B S; Santos, Gustavo R C; Mourão, Paulo A S; Barros, Wilson; Correia, Maria T S; Carneiro-da-Cunha, Maria G

    2015-12-10

    A new hydrogel based on two natural polysaccharides was prepared in aqueous medium with 1.7% (w/v) galactomannan (from Cassia grandis seeds) and different concentrations of κ-carrageenan (0.3, 0.4 and 0.5%w/v), CaCl2 (0.0, 0.1 and 0.2M) and pH (5.0, 5.5 and 6.0), using a full factorial design based on rheological parameters. The best formulation was obtained with 1.7% (w/v) galactomannan and 0.5% (w/v) κ-carrageenan, containing 0.2M CaCl2 at pH 5.0. Nuclear magnetic resonance and scanning electron microscopy where used in order to characterize the hydrogel formulation. A shelf life study was carried out with this formulation along 90 days-period of storage at 4 °C, evaluating pH, color, microbial contamination and rheology. This hydrogel showed no significant changes in pH, no microbial contamination and became more translucent along the aging. Analyses by nuclear magnetic resonance and rheology showed a larger organization of the polysaccharides in the hydrogel matrix. The results demonstrated that this hydrogel was stable with possible applications in medical and cosmetic fields. PMID:26428171

  5. ABSORBENT MATERIALS BASED ON KRAFT PULP: PREPARATION AND MATERIAL CHARACTERIZATION

    Fredrik Wernersson Brodin,

    2012-02-01

    Full Text Available Today, petroleum-based superabsorbents are widely used, but interest in renewable alternatives is on the rise. This study presents two wood-based absorbent materials suitable for various absorption applications as an alternative to petroleum-based products. Never-dried bleached kraft pulp was treated with TEMPO-oxidation, and new carboxylate and aldehyde groups were introduced. It was found that the aldehyde groups contributed to the wet integrity of the absorbent materials, possibly by the formation of hemiacetal bonds. After oxidation, the pulp fibers were gradually disintegrated, and size analysis showed that the disintegration rate was enhanced by an increase in the charge of the oxidant. Freeze drying produced a porous foam with a large surface area that enabled a rapid absorption rate as well as a reasonably high absorption capacity even for absorption under load. Air drying formed a compact film with a slow absorption rate but with a high final capacity for absorption.

  6. The fate of free radicals in a cellulose based hydrogel: detection by electron paramagnetic resonance spectroscopy.

    Basumallick, Lipika; Ji, J Andrea; Naber, Nariman; Wang, Y John

    2009-07-01

    Cellulose derivatives are commonly used as gelling agents in topical and ophthalmic drug formulations. During the course of manufacturing, cellulose derivatives are believed to generate free radicals. These free radicals may degrade the gelling agent, leading to lower viscosity. Free radicals also may react with the active ingredient in the product. The formation of radicals in a 3% hydrogel of hypromellose (hydroxypropyl methylcellulose) was monitored by electron paramagnetic resonance (EPR) spectroscopy and spin trapping techniques. Radicals were trapped with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and quantitated by comparing the EPR intensity with 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxy (TEMPOL), a stable free radical. Typically, the hydrogels showed an initial increase in the radical concentration within 2 days after autoclaving, followed by a drop in radical concentration in 7 days. EDTA prevented the formation of free radicals in the hypromellose (HPMC) hydrogel, suggesting the involvement of metal ions in the generation of free radicals. The oxidizing potential of the hydrogel was estimated by measuring the rate at which methionine (a model for the protein active pharmaceutical ingredient) was degraded, and was consistent with the amount of radicals present in the gel. This study is the first report investigating the application of EPR spectroscopy in detecting and estimating free radical concentration in cellulose based hydrogels. PMID:19090570

  7. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  8. Acoustic metasurface-based perfect absorber with deep subwavelength thickness

    Li, Yong; Assouar, Badreddine M.

    2016-02-01

    Conventional acoustic absorbers are used to have a structure with a thickness comparable to the working wavelength, resulting in major obstacles in real applications in low frequency range. We present a metasurface-based perfect absorber capable of achieving the total absorption of acoustic wave in an extremely low frequency region. The metasurface possessing a deep subwavelength thickness down to a feature size of ˜ λ / 223 is composed of a perforated plate and a coiled coplanar air chamber. Simulations based on fully coupled acoustic with thermodynamic equations and theoretical impedance analysis are utilized to reveal the underlying physics and the acoustic performances, showing an excellent agreement. Our realization should have an high impact on amount of applications due to the extremely thin thickness, easy fabrication, and high efficiency of the proposed structure.

  9. The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells.

    Haile, Yohannes; Berski, Silke; Dräger, Gerald; Nobre, Andrè; Stummeyer, Katharina; Gerardy-Schahn, Rita; Grothe, Claudia

    2008-04-01

    In this study we present the enzymatic and biological analysis of polysialic acid (polySia) based hydrogel in terms of its degradation and cytocompatibility. PolySia based hydrogel is completely degradable by endosialidase enzyme which may avoid second surgery after tissue recovery. Viability assay showed that soluble components of polySia hydrogel did not cause any toxic effect on cultured Schwann cells. Moreover, green fluorescence protein transfected neonatal and adult Schwann cells, neural stem cells and dorsal root ganglionic cells (unlabelled) were seeded on polySia hydrogel modified with poly-L-lysine (Pll), poly-L-ornithine-laminin (porn-laminin) or collagen. Water soluble tetrazolium salt assay revealed that modification of the hydrogel significantly improved cell adhesion and viability. These results infer that polySia based scaffolds in combination with cell adhesion molecules and cells genetically modified to express growth factors would potentially be promising alternative in reconstructive therapeutic strategies. PMID:18255143

  10. Novel biosensing platform based on self-assembled supramolecular hydrogel.

    Ma, Dong; Zhang, Li-Ming

    2013-07-01

    The supramolecular hydrogel self-assembled from α-cyclodextrin (α-CD) and an amphiphilic triblock copolymer was used for the first time as a biosensing platform by the in-situ incorporation of horseradish peroxidase and polyaniline (PANI) nanoparticles. It was found that the used triblock copolymer could disperse well PANI nanoparticles in aqueous system and then interact with α-CD in the presence of horseradish peroxidase for the formation of supramolecular hydrogel composite. The content of PANI nanoparticles was found to affect the gelation time and gel strength. The circular dichroism analyses showed that the entrapped horseradish peroxidase could retain its native conformation. By electrochemical experiments, the incorporated PANI nanoparticles were confirmed to improve the current response and enzymatic activity, and the fabricated biosensor was found to provide a fast amperometric response to hydrogen peroxide. PMID:23623078

  11. Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions

    Satu Strandman

    2016-04-01

    Full Text Available Dynamic and reversible polymer networks capable of self-healing, i.e., restoring their mechanical properties after deformation and failure, are gaining increasing research interest, as there is a continuous need towards extending the lifetime and improving the safety and performance of materials particularly in biomedical applications. Hydrogels are versatile materials that may allow self-healing through a variety of covalent and non-covalent bonding strategies. The structural recovery of physical gels has long been a topic of interest in soft materials physics and various supramolecular interactions can induce this kind of recovery. This review highlights the non-covalent strategies of building self-repairing hydrogels and the characterization of their mechanical properties. Potential applications and future prospects of these materials are also discussed.

  12. Novel hydrogel-based preparation-free EEG electrode.

    Alba, Nicolas Alexander; Sclabassi, Robert J; Sun, Mingui; Cui, Xinyan Tracy

    2010-08-01

    The largest obstacles to signal transduction for electroencephalography (EEG) recording are the hair and the epidermal stratum corneum of the skin. In typical clinical situations, hair is parted or removed, and the stratum corneum is either abraded or punctured using invasive penetration devices. These steps increase preparation time, discomfort, and the risk of infection. Cross-linked sodium polyacrylate gel swelled with electrolyte was explored as a possible skin contact element for a prototype preparation-free EEG electrode. As a superabsorbent hydrogel, polyacrylate can swell with electrolyte solution to a degree far beyond typical contemporary electrode materials, delivering a strong hydrating effect to the skin surface. This hydrating power allows the material to increase the effective skin contact surface area through wetting, and noninvasively decrease or bypass the highly resistive barrier of the stratum corneum, allowing for reduced impedance and improved electrode performance. For the purposes of the tests performed in this study, the polyacrylate was prepared both as a solid elastic gel and as a flowable paste designed to penetrate dense scalp hair. The gel can hold 99.2% DI water or 91% electrolyte solution, and the water content remains high after 29 h of air exposure. The electrical impedance of the gel electrode on unprepared human forearm is significantly lower than a number of commercial ECG and EEG electrodes. This low impedance was maintained for at least 8 h (the longest time period measured). When a paste form of the electrode was applied directly onto scalp hair, the impedance was found to be lower than that measured with commercially available EEG paste applied in the same manner. Time-frequency transformation analysis of frontal lobe EEG recordings indicated comparable frequency response between the polyacrylate-based electrode on unprepared skin and the commercial EEG electrode on abraded skin. Evoked potential recordings demonstrated

  13. Self-Healing Supramolecular Hydrogels Based on Reversible Physical Interactions

    Satu Strandman; Zhu, X.X

    2016-01-01

    Dynamic and reversible polymer networks capable of self-healing, i.e., restoring their mechanical properties after deformation and failure, are gaining increasing research interest, as there is a continuous need towards extending the lifetime and improving the safety and performance of materials particularly in biomedical applications. Hydrogels are versatile materials that may allow self-healing through a variety of covalent and non-covalent bonding strategies. The structural recovery of phy...

  14. New hydrogels based on maleilated collagen with potential applications in tissue engineering

    New hydrogels based on maleic anhydride (MA) modified collagen were prepared with the aim of overcoming the high degradation rate displayed by collagen that is not otherwise chemically crosslinked. Semi-interpenetrated matrices were obtained by free radical polymerization of maleilated collagen (CM) and 2-hydroxyethyl methacrylate (HEMA) in the presence of ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED) as initiating system. The resulting matrices (CMH) had a sharp decrease in degradation, when compared to pure collagen. FTIR and H1 NMR spectroscopies were used to confirm the incorporation of MA on the collagen peptide chains. The final composition of CMH was found to be strongly dependent by the concentration of maleilated collagen. The morphology of the hydrogels was studied by Scanning electron microscopy (SEM) and the macro-gel structure was confirmed. Water uptake of the synthetised hydrogels is influenced by both composition and the porosity of the matrices.

  15. Study on swelling behaviour of hydrogel based on acrylic acid and pectin from dragon fruit

    Abdullah, Mohd Fadzlanor; Lazim, Azwani Mat

    2014-09-01

    Biocompatible hydrogel based on acrylic acid (AA) and pectin was synthesized using gamma irradiation technique. AA was grafted onto pectin backbone that was extracted from dragon fruit under pH 3.5 and extracts and ethanol ratios (ER) 1:0.5. The optimum hydrogel system with high swelling capacity was obtained by varying the dose of radiation and ratio of pectin:AA. FTIR-ATR spectroscopy was used to verify the interaction while thermal properties were analyzed by TGA and DSC. Swelling studies was carried out in aqueous solutions with different pH values as to determine the pH sensitivity. The results show that the hydrogel with a ratio of 2:3 (pectin:AA) and 30 kGy radiation dose has the highest swelling properties at pH of 10.

  16. Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel

    Microsensors based on carbon fiber microelectrodes coated with enzyme-entrapping redox hydrogels facilitate the in vivo detection of substances of interest within the central nervous system, including hydrogen peroxide, glucose, choline and glutamate. The hydrogel, formed by cross-linking a redox polymer, entraps the enzymes and mediates electron transfer between the enzymes and the electrode. It is important that the enzymes are entrapped in their enzymatically active state. Should entrapment cause enzyme denaturation, the sensitivity and the selectivity of the sensor may be compromised. Synthesis of the redox polymer according to published procedures may yield a product that precipitates when added to aqueous enzyme solutions. Casting hydrogels from solutions that contain the precipitate produces microsensors with low sensitivity and selectivity, suggesting that the precipitation disrupts the structure of the enzymes. Herein, we show that a surfactant, sodium dodecyl sulfate (SDS), can prevent the precipitation and improve the sensitivity and selectivity of the sensors

  17. New hydrogels based on maleilated collagen with potential applications in tissue engineering

    Potorac, Simona; Popa, Marcel [' Gheorghe Asachi' Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, 71 Dimitrie Mangeron, 700050 Iasi (Romania); Maier, Vasilica [' Gheorghe Asachi' Technical University, Faculty of Textile, Leather and Industrial Management, Department of Chemical Technology of Leather and Substitutes, 71 Dimitrie Mangeron, 700050, Iasi (Romania); Lisa, Gabriela [' Gheorghe Asachi' Technical University, Faculty of Chemical Engineering and Environmental Protection, Department of Natural and Synthetic Polymers, 71 Dimitrie Mangeron, 700050 Iasi (Romania); Verestiuc, Liliana, E-mail: liliana.verestiuc@bioinginerie.ro [' Gr.T.Popa' University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Department of Biological Sciences, 9-13 Kogalniceanu Street, 700454, Iasi (Romania)

    2012-02-01

    New hydrogels based on maleic anhydride (MA) modified collagen were prepared with the aim of overcoming the high degradation rate displayed by collagen that is not otherwise chemically crosslinked. Semi-interpenetrated matrices were obtained by free radical polymerization of maleilated collagen (CM) and 2-hydroxyethyl methacrylate (HEMA) in the presence of ammonium persulfate (APS) and N,N,N Prime ,N Prime -tetramethylethylenediamine (TEMED) as initiating system. The resulting matrices (CMH) had a sharp decrease in degradation, when compared to pure collagen. FTIR and H{sup 1} NMR spectroscopies were used to confirm the incorporation of MA on the collagen peptide chains. The final composition of CMH was found to be strongly dependent by the concentration of maleilated collagen. The morphology of the hydrogels was studied by Scanning electron microscopy (SEM) and the macro-gel structure was confirmed. Water uptake of the synthetised hydrogels is influenced by both composition and the porosity of the matrices.

  18. Characterization of a Functional Hydrogel Layer on a Silicon-Based Grating Waveguide for a Biochemical Sensor

    Hong, Yoo-Seung; Kim, Jongseong; Sung, Hyuk-Kee

    2016-01-01

    We numerically demonstrated the characteristics of a functional hydrogel layer on a silicon-based grating waveguide for a simple, cost-effective refractive index (RI) biochemical sensor. The RI of the functional hydrogel layer changes when a specific biochemical interaction occurs between the hydrogel-linked receptors and injected ligand molecules. The transmission spectral profile of the grating waveguide shifts depends on the amount of RI change caused by the functional layer. Our characterization includes the effective RI change caused by the thickness, functional volume ratio, and functional strength of the hydrogel layer. The results confirm the feasibility of, and set design rules for, hydrogel-assisted silicon-based grating waveguides. PMID:27322286

  19. Single-photon absorber based on strongly interacting Rydberg atoms

    Tresp, Christoph; Mirgorodskiy, Ivan; Gorniaczyk, Hannes; Paris-Mandoki, Asaf; Hofferberth, Sebastian

    2016-01-01

    Removing exactly one photon from an arbitrary input pulse is an elementary operation in quantum optics and enables applications in quantum information processing and quantum simulation. Here we demonstrate a deterministic single-photon absorber based on the saturation of an optically thick free-space medium by a single photon due to Rydberg blockade. Single-photon subtraction adds a new component to the Rydberg quantum optics toolbox, which already contains photonic logic building-blocks such as single-photon sources, switches, transistors, and conditional $\\pi$-phase shifts. Our approach is scalable to multiple cascaded absorbers, essential for preparation of non-classical light states for quantum information and metrology applications, and, in combination with the single-photon transistor, high-fidelity number-resolved photon detection.

  20. A Hydrogel-Based Hybrid Theranostic Contact Lens for Fungal Keratitis.

    Huang, Jian-Fei; Zhong, Jing; Chen, Guo-Pu; Lin, Zuan-Tao; Deng, Yuqing; Liu, Yong-Lin; Cao, Piao-Yang; Wang, Bowen; Wei, Yantao; Wu, Tianfu; Yuan, Jin; Jiang, Gang-Biao

    2016-07-26

    Fungal keratitis, a severe ocular disease, is one of the leading causes of ocular morbidity and blindness, yet it is often neglected, especially in developing countries. Therapeutic efficacy of traditional treatment such as eye drops is very limited due to poor bioavailability, whereas intraocular injection might cause serious side effects. Herein, we designed and fabricated a hybrid hydrogel-based contact lens which comprises quaternized chitosan (HTCC), silver nanoparticles, and graphene oxide (GO) with a combination of antibacterial and antifungal functions. The hydrogel is cross-linked through electrostatic interactions between GO and HTCC, resulting in strong mechanical properties. Voriconazole (Vor), an antifungal drug, can be loaded onto GO which retains the drug and promotes its sustained release from the hydrogel-based contact lenses. The contact lenses also exhibited good antimicrobial functions in view of glycidyltrimethylammonium chloride and silver nanoparticles. The results from in vitro and in vivo experiments demonstrate that contact lenses loaded with Vor have excellent efficacy in antifungal activity in vitro and could significantly enhance the therapeutic effects on a fungus-infected mouse model. The results indicate that this hydrogel contact lenses-based drug delivery system might be a promising therapeutic approach for a rapid and effective treatment of fungal keratitis. PMID:27244244

  1. Stimulus-responsive hydrogels based on associative polymers

    Hietala, Sami; Hvilsted, Søren; Jankova Atanasova, Katja;

    2008-01-01

    associative behaviour with stimuli-responsiveness. Suitable stimuli include for example temperature, pH, ionic strength or variation of polymer or additive concentration. Developments in the controlled radical polymerization methods has enabled versatile modification of polymer structures, which in tum...... enables design of novel associating polymers. Two different stimuli-responsive hydrogel systems will be discussed. Poly(N-isopropylacrylamide) (PNIPAM) has attracted attention due to its sharp and reversible transition behavior and well-defined demixing temperature in aqueous medium. This however only...

  2. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    Tifeng Jiao; Haiying Guo; Qingrui Zhang; Qiuming Peng; Yongfu Tang; Xuehai Yan; Bingbing Li

    2015-01-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also ach...

  3. Hydrogel-laden paper scaffold system for origami-based tissue engineering.

    Kim, Su-Hwan; Lee, Hak Rae; Yu, Seung Jung; Han, Min-Eui; Lee, Doh Young; Kim, Soo Yeon; Ahn, Hee-Jin; Han, Mi-Jung; Lee, Tae-Ik; Kim, Taek-Soo; Kwon, Seong Keun; Im, Sung Gap; Hwang, Nathaniel S

    2015-12-15

    In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs. PMID:26621717

  4. A versatile fluorescent biosensor based on target-responsive graphene oxide hydrogel for antibiotic detection.

    Tan, Bing; Zhao, Huimin; Du, Lei; Gan, Xiaorong; Quan, Xie

    2016-09-15

    A fluorescent sensing platform based on graphene oxide (GO) hydrogel was developed through a fast and facile gelation, immersion and fluorescence determination process, in which the adenosine and aptamer worked as the co-crosslinkers to connect the GO sheets and then form the three-dimensional (3D) macrostructures. The as-prepared hydrogel showed high mechanical strength and thermal stability. The optimal hydrogel had a linear response for oxytetracycline (OTC) of 25-1000μg/L and a limit of quantitation (LOQ) of 25μg/L. Moreover, together with the high affinity of the aptamer for its target, this assay exhibited excellent sensitivity and selectivity. According to its design principle, the as-designed hydrogel was also tested to possess the generic detection function for other molecules by simply replacing its recognition element, which is expected to lay a foundation to realize the assembly of functionalized hierarchical graphene-based materials for practical applications in analytical field. PMID:27132000

  5. Graphene-based perfect optical absorbers harnessing guided mode resonances

    Grande, M; Stomeo, T; Bianco, G V; de Ceglia, D; Akozbek, N; Petruzzelli, V; Bruno, G; De Vittorio, M; Scalora, M; Orazio, A D

    2015-01-01

    We numerically and experimentally investigate graphene-based optical absorbers that exploit guided mode resonances (GMRs) achieving perfect absorption over a bandwidth of few nanometers (over the visible and near-infrared ranges) with a 40-fold increase of the monolayer graphene absorption. We analyze the influence of the geometrical parameters on the absorption rate and the angular response for oblique incidence. Finally, we experimentally verify the theoretical predictions in a one-dimensional, dielectric grating and placing it near either a metallic or a dielectric mirror.

  6. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  7. Genotoxicity and molecular response of silver nanoparticle (NP-based hydrogel

    Xu Liming

    2012-05-01

    Full Text Available Abstract Background Since silver-nanoparticles (NPs possess an antibacterial activity, they were commonly used in medical products and devices, food storage materials, cosmetics, various health care products, and industrial products. Various silver-NP based medical devices are available for clinical uses, such as silver-NP based dressing and silver-NP based hydrogel (silver-NP-hydrogel for medical applications. Although the previous data have suggested silver-NPs induced toxicity in vivo and in vitro, there is lack information about the mechanisms of biological response and potential toxicity of silver-NP-hydrogel. Methods In this study, the genotoxicity of silver-NP-hydrogel was assayed using cytokinesis-block micronucleus (CBMN. The molecular response was studied using DNA microarray and GO pathway analysis. Results and discussion The results of global gene expression analysis in HeLa cells showed that thousands of genes were up- or down-regulated at 48 h of silver-NP-hydrogel exposure. Further GO pathway analysis suggested that fourteen theoretical activating signaling pathways were attributed to up-regulated genes; and three signal pathways were attributed to down-regulated genes. It was discussed that the cells protect themselves against silver NP-mediated toxicity through up-regulating metallothionein genes and anti-oxidative stress genes. The changes in DNA damage, apoptosis and mitosis pathway were closely related to silver-NP-induced cytotoxicity and chromosome damage. The down-regulation of CDC14A via mitosis pathway might play a role in potential genotoxicity induced by silver-NPs. Conclusions The silver-NP-hydrogel induced micronuclei formation in cellular level and broad spectrum molecular responses in gene expression level. The results of signal pathway analysis suggested that the balances between anti-ROS response and DNA damage, chromosome instability, mitosis inhibition might play important roles in silver-NP induced toxicity

  8. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels

    Thomas Lawyer

    2012-01-01

    Full Text Available To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA- based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S, modified gelatin (Gtn-S, and a crosslinker (PEGda. By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs. In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application.

  9. A protein-based hydrogel for in vitro expansion of mesenchymal stem cells.

    Jingyu Wang

    Full Text Available Hydrogels are widely used as scaffolds in tissue engineering because they can provide excellent environments for bioactive components including growth factors and cells. We reported in this study on a physical hydrogel formed by a specific protein-peptide interaction, which could be used for the three dimensional (3D cell culture of murine mesenchymal stem cells (mMSC. The mMSC kept dividing during the 7-day culture period and the metabolic-active cell number at day 7 was 359% more than that at day 1. This kind of physical hydrogel could be converted to a homogeneous solution by firstly adding an equal volume of culture medium and then pipeting for several times. Therefore, mMSC post culture could be easily separated from cell-gel constructs. We believed that the protein-based hydrogel system in this study could be developed into a promising scaffold for in vitro expansion of stem cells and cell therapy. This work would be in the general interests of researchers in the fields of biomaterials and supramolecular chemistry.

  10. Thermo-responsive hydrogels from cellulose-based polyelectrolytes and catanionic vesicles for biomedical application.

    Milcovich, Gesmi; Antunes, Filipe; Golob, Samuel; Farra, Rossella; Grassi, Mario; Voinovich, Dario; Grassi, Gabriele; Asaro, Fioretta

    2016-07-01

    In this study, negatively charged catanionic vesicles/hydrophobically modified hydroxyethylcellulose polymers thermo-responsive hydrogels have been fabricated. Vesicular aggregates were found to act as multifunctional junctions for networking of modified-cellulose water solutions. The contributions of the electrostatic and hydrophobic interactions were evaluated by changing either vesicles composition or the polymer hydrophobic substitution. Thermal-induced size and lamellarity of hydrogel-enclosed vesicles were detected, with further polygonal shape changes induced by cellulose-based polymer addition. The thermal transition was also found to tune hydrogel mechanical behaviour. The network formation was further assessed through molecular insights, which allow to determine the arrangement of the polymer chains on the vesicles' surface. The examined systems exhibited interesting thermo-responsive characteristics. Thus, vesicularly cross-linked hydrogels herein presented can offer a wide variety of applications, i.e. in biomedical field, as multi-drug delivery systems, thanks to their ability to provide for different environments to guest molecules, comprising bulk water, vesicles' interior and bilayers, sites on polymeric chains. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1668-1679, 2016. PMID:26939864

  11. Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue.

    Thakur, Sourbh; Pandey, Sadanand; Arotiba, Omotayo A

    2016-11-20

    Batch adsorption experiments were carried out for the removal of methylene blue (MB) cationic dye from aqueous solution using organic/inorganic hydrogel nanocomposite of titania incorporated sodium alginate crosslinked polyacrylic acid (SA-cl-poly(AA)-TiO2). The hydrogel was prepared by graft copolymerization of acrylic acid (AA) onto sodium alginate (SA) biopolymer in the presence of a crosslinking agent, a free radical initiator and TiO2 nanoparticles. The hydrogel exhibited a high swelling capacity of 412.98g/g. The factors influencing adsorption capacity of the absorbents such as pH of the dye solutions, initial concentration of the dye, amount of absorbents, and temperature were investigated and used to propose a possible mechanism of adsorption. The adsorption process concurs with a pseudo-second-order kinetics and with Langmuir isotherm equation. A very high adsorption capacity (Qmax=2257.36 (mg/g)) and a correlation coefficient of 0.998 calculated from isotherm equations show the high efficiency of the absorbent and thus expected to be a good candidate as an absorbent for water treatment. PMID:27561469

  12. [The study of quality characteristics of the hydrogel ointments and films based on copolymers divinyl esters of diethylene glycol].

    Bakirova, R E; Tazhbaeva, E M; Muravleva, L E; Fazylov, S D; Akhmetova, S B

    2014-12-01

    The possibility of using a hydrogel based on divinyl ether co- and terpolymer of diethylene glycol as the backbone polymer for incorporating water-soluble medicinal substances was examined. The character of the influence of emulsifiers, plasticizers, high-boiling liquids and bioactive substances is defined within the changes of physical-chemical properties of obtained hydrogels. The obtained polyelectrolyte hydrogels by their homogeneity, dehydration and rheological characteristics may be of concern in function of matrices to create external prolonged-action dosage forms. PMID:25617104

  13. Removal of Cu{sup 2+} and Pb{sup 2+} ions using CMC based thermoresponsive nanocomposite hydrogel

    Oezkahraman, Bengi [Faculty of Engineering, Chemical Engineering Department, Hitit University, Corum (Turkey); Acar, Isil; Emik, Serkan [Faculty of Engineering, Chemical Engineering Department, Istanbul University, Avcilar-Istanbul (Turkey)

    2011-07-15

    In this study, carboxymethylcellulose (CMC) based thermoresponsive nanocomposite hydrogel was synthesized for the removal of Cu{sup 2+} and Pb{sup 2+} ions from aqueous solutions. To prepare nanocomposite hydrogel, graft copolymerization of N-isopropyl acrylamide (NIPAm) and acrylic acid (AA) onto CMC was carried out in Na-montmorillonite (MMT)/water suspension media and ammonium persulfate (APS) used as initiator. The chemical structures of hydrogels were characterized by Fourier transform infrared (FT-IR) and X-ray diffraction spectroscopy (XRD). Lower critical solution temperature (LCST), pH responsivity, swelling, and deswelling properties of the hydrogels were also examined. In addition competitive and non-competitive removal of Cu{sup 2+} and Pb{sup 2+} studies were carried out. According to heavy metal sorption studies results, removal capacities of nanocomposite hydrogel for both metal ions were found to be higher than those of pure hydrogel. The analyzed adsorption data showed that the adsorption process of Cu{sup 2+} and Pb{sup 2+} could be explained by pseudo-second order kinetic model. Moreover, according to competitive sorption studies, it is found to be that both hydrogels are more selective to Cu{sup 2+} ion rather than Pb{sup 2+}. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. A multiband perfect absorber based on hyperbolic metamaterials.

    Sreekanth, Kandammathe Valiyaveedu; ElKabbash, Mohamed; Alapan, Yunus; Rashed, Alireza R; Gurkan, Umut A; Strangi, Giuseppe

    2016-01-01

    In recent years, considerable research efforts have been focused on near-perfect and perfect light absorption using metamaterials spanning frequency ranges from microwaves to visible frequencies. This relatively young field is currently facing many challenges that hampers its possible practical applications. In this paper, we present grating coupled-hyperbolic metamaterials (GC-HMM) as multiband perfect absorber that can offer extremely high flexibility in engineering the properties of electromagnetic absorption. The fabricated GC-HMMs exhibit several highly desirable features for technological applications such as polarization independence, wide angle range, broad- and narrow- band modes, multiband perfect and near perfect absorption in the visible to near-IR and mid-IR spectral range. In addition, we report a direct application of the presented system as an absorption based plasmonic sensor with a record figure of merit for this class of sensors. PMID:27188789

  15. Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles

    ZHOU, MI; Ulijn, Rein V.; Gough, Julie E

    2014-01-01

    The hitherto inconsistency in clinical performance for engineered skin drives the current development of novel cell-scaffolding materials; one challenge is to only extract essential characteristics from the complex native ECM (extracellular matrix) and incorporate them into a scaffold with minimal complexity to support normal cell functions. This study involved small-molecule-based bioactive hydrogels produced by the co-assembly of two aromatic peptide amphiphiles: Fmoc-FF (Fluorenylmethoxyca...

  16. Effect of particle size and charge on the network properties of microsphere-based hydrogels

    van Tomme, S.R.; van Nostrum, C.F.; Dijkstra, M.; de Smedt, S.C.; Hennink, W.E.

    2008-01-01

    This work describes the tailorability of the network properties of self-assembling hydrogels, based on ionic crosslinking between dextran microspheres. Copolymerization of hydroxyethyl methacrylate-derivatized dextran (dex-HEMA), emulsified in an aqueous poly(ethylene glycol) (PEG) solution, with methacrylic acid (MAA) or dimethylaminoethyl methacrylate (DMAEMA) resulted in negatively or positively charged microspheres, respectively, at physiological pH. The monomer/HEMA ratio ranged between ...

  17. Development of novel microemulsion-based hydrogel for topical delivery of sinomenium

    Gui, Shuangyin; Pan, Enyuan; Liu, Peng; Lu, Chuanhua; Peng, Daiyin

    2011-01-01

    The objective of the present investigation was to develop and evaluate microemulsion-based hydrogel (MBH) for the topical delivery of sinomenium. The solubility of sinomenium in oils and surfactants was evaluated to identify components of the microemulsion, the pseudo-ternary phase diagrams were developed to identify the area of microemulsion existence and obtain the optimization Km (the weight ratio of surfactant to cosurfactant). The transdermal ability of various microemulsion formulations...

  18. Impedimetric quantification of cells encapsulated in hydrogel cultured in a paper-based microchamber.

    Lei, Kin Fong; Huang, Chia-Hao; Tsang, Ngan-Ming

    2016-01-15

    Recently, 3D cell culture technique was proposed to provide a more physiologically-meaningful environment for cell-based assays. With the development of microfluidics technology, cellular response can be quantified by impedance measurement technique in a real-time and non-invasive manner. However, handling of these microfluidic systems requires a trained engineering personnel and the operation is not compatible to traditional biological research laboratories. In this work, we incorporated the impedance measurement technique to paper-based 3D cell culture model and demonstrated non-invasive quantification of cells encapsulated in hydrogel during the culture course. A cellulose filter paper was patterned with an array of circular microchambers. Cells were encapsulated in hydrogel and loaded to the microchambers for culturing cells in 3D environment. At the preset schedule during the culture course, the paper was placed on a glass substrate with measurement electrodes for the impedance measurement. Cells in each microchamber was represented by impedance magnitude and cell proliferation could be studied over time. Also, conventional bio-assay was performed to further confirm the feasibility of the impedimetric quantification of cells encapsulated in hydrogel cultured in the paper-based microchamber. This technique provides a convenient, fast, and non-invasive approach to monitor cells cultured in 3D environment. It has potential to be developed for routine 3D cell culture protocol in biological research laboratories. PMID:26592655

  19. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  20. Small-angle neutron scattering from polymer hydrogels with memory effect for medicine immobilization

    Hydrogels synthesized based on cross-linked copolymers of 2-hydroxyethyl methacrylate and functional monomers (acrylic acid or dimethylaminoethyl methacrylate), having a memory effect with respect to target medicine (cefazolin), have been investigated by small-angle neutron scattering. The hydrogels are found to have a two-level structural organization: large (up to 100 nm) aggregates filled with network cells (4–7 nm in size). The structural differences in the anionic, cationic, and amphiphilic hydrogels and the relationship between their structure and the ability of hydrogels to absorb moisture are shown. A relationship between the memory effect during cefazolin immobilization and the internal structure of hydrogels, depending on their composition and type of functional groups, is established.

  1. Synthesis of new greener biopolymer chitosan based hydrogel and its application for separation of 152Eu and 137Cs

    A chitosan based hydrogel has been synthesised followed by its characterization by IR, swelling study and TGA. The hydrogel was used for separation of long-lived radionuclides such as 152Eu and 137Cs using solid liquid extraction (SLX) technique. Separation of 152Eu and 137Cs was carried out using various concentration of HCl (10-5 to 1 M) against 0.1 g of hydrogel as solid phase. At typical experimental condition maximum adsorption of 152Eu into the solid phase was 87% without any contamination of 137Cs. In desorption study of solid phase containing 152Eu, about 72% of 152Eu was extracted into liquid phase from solid hydrogel phase in a single run. (author)

  2. Effect of Sodium Salicylate on the Viscoelastic Properties and Stability of Polyacrylate-Based Hydrogels for Medical Applications

    Zuzana Kolarova Raskova

    2016-01-01

    Full Text Available Investigation was made into the effect exerted by the presence of sodium salicylate (0–2 wt.%, in Carbomer-based hydrogel systems, on processing conditions, rheological and antimicrobial properties in tests against Gram-positive (Staphylococcus aureus and Gram-negative (Escherichia coli bacterial strains, and examples of yeast (Candida albicans and mould (Aspergillus niger. In addition, the work presents an examination of long-term stability by means of aging over one year the given hydrogels at 8°C and 25°C. The results show that 0.5 wt.% NaSal demonstrated a noticeable effect on the hydrogel neutralization process, viscosity, and antimicrobial properties against all of the tested microorganisms. The long-term stability studies revealed that hydrogels can maintain antimicrobial activity as well as viscosity to a degree that would be sufficient for practical use.

  3. Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for biomedical applications.

    Travan, Andrea; Scognamiglio, Francesca; Borgogna, Massimiliano; Marsich, Eleonora; Donati, Ivan; Tarusha, Lorena; Grassi, Mario; Paoletti, Sergio

    2016-10-01

    Alginate-based membranes containing hyaluronic acid (HA) were manufactured by freeze-drying calcium-reticulated hydrogels. The study of the distribution of the two macromolecules within the hydrogel enabled to highlight a polymer demixing mechanism that tends to segregate HA in the external parts of the constructs. Resistance and pliability of the membranes were tuned, while release and degradation studies enabled to quantify the diffusion of both polysaccharides in physiological solution and to measure the viable lifetime of the membranes. Biological studies in vitro proved that the liquid extracts from the HA-containing membranes stimulate wound healing and that fibroblasts are able to colonize the membranes. Overall, such novel alginate-HA membranes represent a promising solution for several medical needs, in particular for wound treatment, giving the possibility to provide an in situ administration of HA from a resorbable device. PMID:27312652

  4. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn–Hilliard equation

    We use the stochastic Cahn–Hilliard equation to simulate the phase transitions of the macromolecular microsphere composite (MMC) hydrogels under a random disturbance. Based on the Flory–Huggins lattice model and the Boltzmann entropy theorem, we develop a reticular free energy suit for the network structure of MMC hydrogels. Taking the random factor into account, with the time-dependent Ginzburg-Landau (TDGL) mesoscopic simulation method, we set up a stochastic Cahn–Hilliard equation, designated herein as the MMC-TDGL equation. The stochastic term in the equation is constructed appropriately to satisfy the fluctuation-dissipation theorem and is discretized on a spatial grid for the simulation. A semi-implicit difference scheme is adopted to numerically solve the MMC-TDGL equation. Some numerical experiments are performed with different parameters. The results are consistent with the physical phenomenon, which verifies the good simulation of the stochastic term

  5. “A novel highly stable and injectable hydrogel based on a conformationally restricted ultrashort peptide”

    Thota, Chaitanya Kumar; Yadav, Nitin; Chauhan, Virander Singh

    2016-01-01

    Nanostructures including hydrogels based on peptides containing non protein amino acids are being considered as platform for drug delivery because of their inherent biocompatibility and additional proteolytic stability. Here we describe instantaneous self-assembly of a conformationally restricted dipeptide, LeuΔPhe, containing an α,β-dehydrophenylalanine residue into a highly stable and mechanically strong hydrogel, under mild physiological aqueous conditions. The gel successfully entrapped several hydrophobic and hydrophilic drug molecules and released them in a controlled manner. LeuΔPhe was highly biocompatible and easily injectable. Administration of an antineoplastic drug entrapped in the gel in tumor bearing mice significantly controlled growth of tumors. These characteristics make LeuΔPhe an attractive candidate for further development as a delivery platform for various biomedical applications. PMID:27507432

  6. Phase transitions of macromolecular microsphere composite hydrogels based on the stochastic Cahn–Hilliard equation

    Li, Xiao, E-mail: lixiao1228@163.com; Ji, Guanghua, E-mail: ghji@bnu.edu.cn; Zhang, Hui, E-mail: hzhang@bnu.edu.cn

    2015-02-15

    We use the stochastic Cahn–Hilliard equation to simulate the phase transitions of the macromolecular microsphere composite (MMC) hydrogels under a random disturbance. Based on the Flory–Huggins lattice model and the Boltzmann entropy theorem, we develop a reticular free energy suit for the network structure of MMC hydrogels. Taking the random factor into account, with the time-dependent Ginzburg-Landau (TDGL) mesoscopic simulation method, we set up a stochastic Cahn–Hilliard equation, designated herein as the MMC-TDGL equation. The stochastic term in the equation is constructed appropriately to satisfy the fluctuation-dissipation theorem and is discretized on a spatial grid for the simulation. A semi-implicit difference scheme is adopted to numerically solve the MMC-TDGL equation. Some numerical experiments are performed with different parameters. The results are consistent with the physical phenomenon, which verifies the good simulation of the stochastic term.

  7. Nanographene-Based Saturable Absorbers for Ultrafast Fiber Lasers

    Hsin-Hui Kuo

    2014-01-01

    Full Text Available The generation of femtosecond pulse laser in the erbium-doped fiber laser system is presented by integrating of the nanographene-based saturable absorbers (SAs. A simplified method of dispersed nanographene-based SAs side-polished fiber device with controllable polished length and depth was also developed. The dependence of geometry of a graphene-deposited side-polished fiber device on optical nonlinear characteristics and on the performance of the MLFL was screened. We found that the 10 mm polished length with 1.68 dB insertion loss had the highest modulation depth (MD of 1.2%. A stable MLFL with graphene-based SAs employing the optimized side-polished fiber device showed a pulse width, a 3 dB bandwidth, a time-bandwidth product (TBP, a repetition rate, and pulse energy of 523 fs, 5.4 nm, 0.347, 16.7 MHz, and 0.18 nJ, respectively, at fundamental soliton-like operation. The femtosecond pulse laser is achieved by evanescent field coupling through graphene-deposited side-polished fiber devices in the laser cavity. This study demonstrates that the polished depth is the key fabrication geometric parameter affecting the overall optical performance and better results exist within the certain polished range.

  8. Absorbance characterization of microsphere-based ion-selective optodes

    Ye Nan [Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Wygladacz, Katarzyna [Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States); Bakker, Eric [Department of Chemistry, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: bakkere@purdue.edu

    2007-07-23

    Ionophore-based microsphere sensors are characterized here in transmission mode. These sensors contain a lipophilic ionophore for the analyte cation, a chromoionophore for recognizing H{sup +}, and a lipophilic cation-exchanger. They function on the basis of an ion-exchange equilibration step where an increased concentration of analyte ion leads to increased level of extraction into the bulk of the microsphere, expelling protons in return and deprotonating the chromoionophore. Since the path length is variable across the microsphere, such bead-based sensors are normally characterized in fluorescence mode. In this paper, the response of the sensing microspheres is calculated from the ratio of transmitted light intensities at the absorbance peak maxima of the protonated and unprotonated forms of the chromoionophore. At a fixed position of the particle, the resulting responses are found to be independent of light scattering, incident light intensity and the shape or size of the microsphere. The responses of potassium-selective microspheres obtained by this method agree quantitatively with corresponding fluorescence-based data.

  9. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation.

    Song, Seh Hyon; Lee, Kyung Min; Kang, Jong Boo; Lee, Sang Gon; Kang, Myung Joo; Choi, Young Wook

    2014-01-01

    In order to develop topical preparations of voriconazole (VRC) for the treatment of mycotic infections of the skin, a nanostructured lipid carrier-based hydrogel (NLC-gel) formulation was developed and its physical characteristics, in vitro skin permeation, and retention profiles were examined. A VRC-loaded NLC dispersion, consisting of Precirol ATO 5, Labrafil 1944 CS, and Tween 80, was prepared by high-pressure homogenization and embedded into Carbopol 940 hydrogel. The lipid nanoparticles in the hydrogel were approximately 210 nm in size, with a spherical shape and zeta potential of -30 mV. In a skin permeation study using a Franz diffusion cell mounted with depilated mouse skin, the NLC-gel was superior to conventional cream and microemulsion-based gel formulations, showing 2.8- and 1.7-fold greater flux values, respectively. In addition, the NLC-gel led to markedly greater accumulation of VRC in deeper skin layers as compared with the reference formulations. In conclusion, the novel topical formulation reported here represents an alternative treatment for skin infections such as candidiasis, with less potential for systemic adverse effects than oral therapy. PMID:25087631

  10. Versatile hydrogel-based nanocrystal microreactors towards uniform fluorescent photonic crystal supraballs

    Versatile hydrogel-based nanocrystal (NC) microreactors were designed in this work for the construction of uniform fluorescence colloidal photonic crystal (CPC) supraballs. The hydrogel-based microspheres with sizes ranging from 150 to 300 nm were prepared by seeded copolymerization of acrylic acid and 2-hydroxyethyl methacrylate with micrometer-sized PS seed particles. As an independent NC microreactor, the as-synthesized hydrogel microsphere can effectively capture the guest cadmium ions due to the abundant carboxyl groups inside. Followed by the introduction of chalcogenides, in situ generation of higher-uptake NCs with sizes less than 5 nm was finally realized. Additionally, with the aid of the microfluidic device, the as-obtained NC–latex hybrids can be further self-assembled to bi-functional CPC supraballs bearing brilliant structural colors and uniform fluorescence. This research offers an alternative way to finely bind CPCs with NCs, which will facilitate progress in fields of self-assembled functional colloids and photonic materials

  11. Versatile hydrogel-based nanocrystal microreactors towards uniform fluorescent photonic crystal supraballs

    Zhang, Jing; Tian, Yu; Ling, Lu-Ting; Yin, Su-Na; Wang, Cai-Feng; Chen, Su, E-mail: chensu-njut@163.com, E-mail: chensu@njtech.edu.cn [Nanjing Tech University, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering (China)

    2014-12-15

    Versatile hydrogel-based nanocrystal (NC) microreactors were designed in this work for the construction of uniform fluorescence colloidal photonic crystal (CPC) supraballs. The hydrogel-based microspheres with sizes ranging from 150 to 300 nm were prepared by seeded copolymerization of acrylic acid and 2-hydroxyethyl methacrylate with micrometer-sized PS seed particles. As an independent NC microreactor, the as-synthesized hydrogel microsphere can effectively capture the guest cadmium ions due to the abundant carboxyl groups inside. Followed by the introduction of chalcogenides, in situ generation of higher-uptake NCs with sizes less than 5 nm was finally realized. Additionally, with the aid of the microfluidic device, the as-obtained NC–latex hybrids can be further self-assembled to bi-functional CPC supraballs bearing brilliant structural colors and uniform fluorescence. This research offers an alternative way to finely bind CPCs with NCs, which will facilitate progress in fields of self-assembled functional colloids and photonic materials.

  12. The biocompatibility of PluronicF127 fibrinogen-based hydrogels.

    Shachaf, Yonatan; Gonen-Wadmany, Maya; Seliktar, Dror

    2010-04-01

    Our research is focused on the design of hydrogel biomaterials that can be used for 3-D cell encapsulation and tissue engineering. In this study, our goal was to engineer a temperature-responsive biomaterial to possess bioactive properties using polymer and protein chemistry, and at the same time provide the biomaterial with susceptibility to cell-mediated remodeling. Toward this goal, we developed a biomimetic material that can harness the bioactive properties of fibrinogen and the unique structural properties of PluronicF127. PluronicF127 is a synthetic block copolymer that exhibits reverse thermal gelation (RTG) in response to small changes in ambient temperature. We conjugated fibrinogen to Pluronic)F127 to create a biosynthetic precursor with tunable physicochemical properties based on the relationship between the two constituents. A hydrogel matrix was formed from the fibrinogen-F127 adducts by free-radical polymerization using light activation (photo-polymerization). These materials displayed a reversible temperature-induced physical sol-gel transition and an irreversible light-activated chemical cross-linking. The susceptibility of this hydrogel biomaterial to protease degradation and consequent cell-mediated remodeling was controlled by the PluronicF127 constituent. The protein-based material also conveyed inductive signals to cells through bioactive sites on the fibrinogen backbone, as well as through structural properties such as the matrix modulus. We apply these materials as a tissue engineering hydrogel scaffold for 3-D in vitro culture of dermal fibroblasts in order to gain a better understanding of how the material bioactivity and matrix properties can independently affect cell morphology and remodeling. PMID:20092890

  13. Chitosan-Based Thermosensitive Hydrogel for Controlled Drug Delivery to the Temporomandibular Joint.

    Talaat, Wael M; Haider, Mohamed; Kawas, Sausan Al; Kandil, Nadia G; Harding, David R K

    2016-05-01

    Intra-articular injections of hyaluronic acid (HA) and corticosteroids have been extensively used in treating temporomandibular disorders. However, rapid clearance from the site of injection is a major concern that is commonly managed by frequent dosing, which is not without complications. This study aimed to determine the suitability of thermosensitive chitosan-based hydrogels for intra-articular controlled release of drugs in the rabbit temporomandibular joint (TMJ). A series of hydrogels were prepared using different chitosan (Ch) to β-glycerophosphate (β-GP) ratios. The gelation time, swelling ratio, the shape, and surface morphology of the prepared gels were investigated to select the formulation with optimum characteristics. The left TMJ in 13 adult male New Zealand white rabbits was injected with 0.2 mL of Chitosan/β-glycerophosphate/HA while the right TMJ was injected with 0.2 mL of control solution of HA. Hyaluronic acid concentrations in experimental and control groups were measured using Hyaluronan Quantikine Enzyme-Linked Immunosorbent Assay Kit. In vitro characterization showed that both the Ch:β-GP ratio and incorporation of HA had a significant effect on gelation time, degree of swelling, and surface morphology of the hydrogels. No morphological changes were observed in the joints in both groups. The mean concentration of HA in the experimental joints after 7 days (1339.79 ± 244.98 μg/g) was significantly higher than that in the control (474.52 ± 79.36 μg/g). In conclusion, the chitosan-based thermosensitive hydrogel can be considered as a promising controlled drug release system to the TMJ in a rabbit model that would potentially overcome many of the current limitations of intra-articular formulations. PMID:27100649

  14. In vivo bioengineered ovarian tumors based on collagen, matrigel, alginate and agarose hydrogels: a comparative study

    Scaffold-based tumor engineering is rapidly evolving the study of cancer progression. However, the effects of scaffolds and environment on tumor formation have seldom been investigated. In this study, four types of injectable hydrogels, namely, collagen type I, Matrigel, alginate and agarose gels, were loaded with human ovarian cancer SKOV3 cells and then injected into nude mice subcutaneously. The growth of the tumors in vitro was also investigated. After four weeks, the specimens were harvested and analyzed. We found that tumor formation by SKOV3 cells was best supported by collagen, followed by Matrigel, alginate, control (without scaffold) and agarose in vivo. The collagen I group exhibited a larger tumor volume with increased neovascularization and increased necrosis compared with the other materials. Further, increased MMP activity, upregulated expression of laminin and fibronectin and higher levels of HIF-1α and VEGF-A in the collagen group revealed that the engineered tumor is closer to human ovarian carcinoma. In order, collagen, Matrigel, alginate, control (without scaffold) and agarose exhibited decreases in tumor formation. All evidence indicated that the in vivo engineered tumor is scaffold-dependent. Bioactive hydrogels are superior to inert hydrogels at promoting tumor regeneration. In particular, biomimetic hydrogels are advantageous because they provide a microenvironment that mimics the ECM of natural tumors. On the other hand, typical features of cancer cells and the expression of genes related to cancer malignancy were far less similar to the natural tumor in vitro, which indicated the importance of culture environment in vivo. Superior to the in vitro culture, nude mice can be considered satisfactory in vivo ‘bioreactors’ for the screening of favorable cell vehicles for tumor engineering in vitro. (paper)

  15. Energy Recovery from Solutions with Different Salinities Based on Swelling and Shrinking of Hydrogels

    Zhu, Xiuping

    2014-06-17

    Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.

  16. pH- and Metal Ion- Sensitive Hydrogels based on N-[2-(dimethylaminoethylacrylamide

    Leena Nebhani

    2016-06-01

    Full Text Available Smart hydrogels are promising materials for actuators and sensors, as they can respond to small changes in their environment with a large property change. Hydrogels can respond to a variety of stimuli, for example temperature, pH, metal ions, etc. In this article, the synthesis and characterization of polyampholyte hydrogels based on open chain ligands showing pH and metal ion sensitivity are described. Copolymer and terpolymer gels using different mixtures of monomers i.e., N-[2-(dimethylaminoethylacrylamide] (DMAEAAm, N,N-dimethylacrylamide (DMAAm, acrylic acid (AA and 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS, have been synthesized. The effect of copolymer composition, i.e., the ratio and amount of ionic monomers and the degree of crosslinking on the swelling characteristics, was evaluated as a function of pH. On this basis, metal ion sensitivity measurements were performed at selected pH values. The metal ion sensitivity was measured by varying the concentration of Cu2+, Zn2+ and Ag+ ions under acidic pH conditions.

  17. Self-Healing and Thermoresponsive Dual-Cross-Linked Alginate Hydrogels Based on Supramolecular Inclusion Complexes.

    Miao, Tianxin; Fenn, Spencer L; Charron, Patrick N; Oldinski, Rachael A

    2015-12-14

    β-Cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of nonpolar guest molecules to form noncovalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically cross-linked hydrogel networks upon mixing with a guest molecule. Herein, the development and characterization of self-healing, thermoresponsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)), are described. The mechanics, flow characteristics, and thermal response were contingent on the polymer concentration and the host-guest molar ratio. Transient and reversible physical cross-linking between host and guest polymers governed self-assembly, allowing flow to occur under shear stress and facilitating complete recovery of the material's properties within a few seconds of unloading. The mechanical properties of the dual-cross-linked, multi-stimuli-responsive hydrogels were tuned as high as 30 kPa at body temperature and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214

  18. Thermal behavior of water in the selected starch- and cellulose-based polymeric hydrogels.

    Faroongsarng, Damrongsak; Sukonrat, Patchara

    2008-03-20

    In a polymer-water matrix, freezable water is depressed due to either porosity confinement or interaction. The aim of the study was to examine water crystallization/melting depression by sub-ambient differential scanning calorimetry. The selected starch- and cellulose-based polymers including pre-gelatinized starch (PS), sodium alginate, sodium starch glycolate, hydroxypropylmethyl cellulose (HPMC), sodium carboxymethyl cellulose, and croscarmellose sodium were employed. The pre-treated with ambient humidity (85-100% relative humidity, at 30.0+/-0.2 degrees C for 10 days) and with excess water (hydrogels) samples were subjected to between 25 and -150 degrees C cooling-heating cycle at 5.00 degrees C/min rate. The volume fractions of hydrogels were measured by light scattering technique. It was observed that all polymers but PS and HPMC with ambient humidity presented freezable water in two distinct fractions namely bound water where crystallizing/melting temperature was depressed and bulk water. The water transition in samples with various contents exhibited the pattern as a polymer solution, thus rather than confinement, the depression was due to interaction. The volume fraction-melting temperature data derived from endotherms of hydrogels were successfully fitted to Flory's model (r(2): 0.934-0.999). The Flory's interaction parameters (chi(1)) were found to vary between 0.520 and 0.847. In addition, the smaller the value of chi(1), the larger melting was depressed, i.e., stronger affinity for water. PMID:18061379

  19. Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel.

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-10-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms. PMID:24865937

  20. [The effect of various types of Carbopol and different neutralizing bases on pharmaceutical availability of morphine hydrochloride from hydrogel preparations].

    Samczewska, Grazyna

    2009-01-01

    In the second half of the 20th century a heterogenic group of opioid receptors was discovered and identified in the central nervous system and in peripheral tissues. However, micro-type opioid receptors, responsible for analgesic effect of endogenic and egzogenic opioids, were not found on majority of peripheral neurons. They appear in skin or mucous membranes with active inflammatory or neoplastic process due to intensive migration to peripheral nerve efferent fibres. These discoveries made it possible to apply opioid analgesics topically (ointments, hydrogels) on pathologically changed skin or mucous membranes. This study presents the results of tests on two batches of hydrogel preparations produced according to own prescription on the base of acrylic acid polymers (Carbopol Ultrez 10 and Carbopol 980 NF). The polymer carboxyl groups were neutralized with different bases: sodium hydroxide, potasium hydroxide, triethanolamine, sodium tetraborate. The obtained hydrogel preparations were subjected to rheological tests. Extensibility was determined by extensometric method, whereas viscosity, yield stress and thixotropy were determined with the use of cone-plate digital rheometer. The activity of hydrogels hydrogen ions (pH) and the rate of their loss of volatile components at human body temperature were also tested. Using modified Mutimer apparatus morphine hydrochloride (MCl) diffusion was performed from the surface of the produced hydrogels through model stratum corneum (Tomofan) to acceptor fluid (water). The quantity of the released therapeutic agent in time function was determined by spectrophotometric method. The carried out studies have demonstrated that the produced hydrogels are non-Newtonian, viscoelastic, thixotropic systems of similar yield stress. The obtained results do not allow to determine unequivocally the effect of MCl, the kind of Carbopol and cross-linking base on hydrogel viscosity. The inversely proportional dependence between hydrogel

  1. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery.

    Oss-Ronen, Liat; Seliktar, Dror

    2011-01-01

    Serum albumin was conjugated to poly-(ethylene glycol) (PEG) and cross-linked to form mono-PEGylated albumin hydrogels. These hydrogels were used as a basis for drug carrying tissue engineering scaffold materials, based on the natural affinity of various drugs and compounds for the tethered albumin in the polymer network. The results of the drug release validation experiments showed that the release kinetics of the drugs from the mono-PEGylated albumin hydrogels were controlled by the molecular weight (MW) of PEG conjugated to the albumin protein, the drug MW and its inherent affinity for albumin. Composite hydrogels containing both mono-PEGylated albumin and PEGylated fibrinogen were used specifically for three-dimensional (3D) cell culture scaffolds, with inherent bioactivity, proteolytic biodegradability and controlled drug release properties. The specific characteristics of these complex hydrogels were governed by the ratio between the concentrations of each protein, the addition of free PEG diacrylate (PEG DA) molecules to the hydrogel matrix and the MW of the PEG conjugated to each protein. Comprehensive characterization of the drug release and degradation properties, as well as 3D cell culture experiments using these composite materials, demonstrated the effectiveness of this combined approach in creating a tissue engineering scaffold material with controlled drug release features. PMID:20643230

  2. Enzyme responsive GAG-based natural-synthetic hybrid hydrogel for tunable growth factor delivery and stem cell differentiation.

    Anjum, Fraz; Lienemann, Philipp S; Metzger, Stéphanie; Biernaskie, Jeff; Kallos, Michael S; Ehrbar, Martin

    2016-05-01

    We describe an enzymatically formed chondroitin sulfate (CS) and poly(ethylene glycol) (PEG) based hybrid hydrogel system, which by tuning the architecture and composition of modular building blocks, allows the application-specific tailoring of growth factor delivery and cellular responses. CS, a negatively charged sulfate-rich glycosaminoglycan of the extracellular matrix (ECM), known for its growth factor binding and stem cell regulatory functions, is used as a starting material for the engineering of this biomimetic materials platform. The functionalization of CS with transglutaminase factor XIII specific substrate sequences is utilized to allow cross-linking of CS with previously described fibrin-mimetic TG-PEG hydrogel precursors. We show that the hydrogel network properties can be tuned by varying the degree of functionalization of CS as well as the ratio and concentrations of PEG and CS precursors. Taking advantage of TG-PEG hydrogel, compatible tagged bio-functional building blocks, including RGD peptides or matrix metalloproteinase sensitive domains, can be incorporated on demand allowing the three-dimensional culture and expansion of human bone marrow mesenchymal stem cells (BM-MSCs). The binding of bone morphogenetic protein-2 (BMP-2) in a CS concentration dependent manner and the BMP-2 release mediated osteogenic differentiation of BM-MSCs indicate the potential of CS-PEG hybrid hydrogels to promote regeneration of bone tissue. Their modular design allows facile incorporation of additional signaling elements, rendering CS-PEG hydrogels a highly flexible platform with potential for multiple biomedical applications. PMID:26914701

  3. Reduced Graphene Oxide-Based Silver Nanoparticle-Containing Composite Hydrogel as Highly Efficient Dye Catalysts for Wastewater Treatment

    Jiao, Tifeng; Guo, Haiying; Zhang, Qingrui; Peng, Qiuming; Tang, Yongfu; Yan, Xuehai; Li, Bingbing

    2015-07-01

    New reduced graphene oxide-based silver nanoparticle-containing composite hydrogels were successfully prepared in situ through the simultaneous reduction of GO and noble metal precursors within the GO gel matrix. The as-formed hydrogels are composed of a network structure of cross-linked nanosheets. The reported method is based on the in situ co-reduction of GO and silver acetate within the hydrogel matrix to form RGO-based composite gel. The stabilization of silver nanoparticles was also achieved simultaneously within the gel composite system. The as-formed silver nanoparticles were found to be homogeneously and uniformly dispersed on the surface of the RGO nanosheets within the composite gel. More importantly, this RGO-based silver nanoparticle-containing composite hydrogel matrix acts as a potential catalyst for removing organic dye pollutants from an aqueous environment. Interestingly, the as-prepared catalytic composite matrix structure can be conveniently separated from an aqueous environment after the reaction, suggesting the potentially large-scale applications of the reduced graphene oxide-based nanoparticle-containing composite hydrogels for organic dye removal and wastewater treatment.

  4. Rapid Synthesis of Superabsorbent Smart-Swelling Bacterial Cellulose/Acrylamide-Based Hydrogels for Drug Delivery

    Manisha Pandey

    2013-01-01

    Full Text Available This study evaluated the effect of solubilized and dispersed bacterial cellulose (BC on the physicochemical characteristics and drug release profile of hydrogels synthesized using biopolymers. Superabsorbent hydrogels were synthesized by graft polymerization of acrylamide on BC solubilized in an NaOH/urea solvent system and on dispersed BC by using N,N′-methylenebisacrylamide as a crosslinker under microwave irradiation. Fourier transform infrared spectroscopy analysis of the resulting hydrogels confirmed the grafting, and an X-ray diffraction pattern showed a decrease in the crystallinity of BC after the grafting process. The hydrogels exhibited pH and ionic responsive swelling behavior, with hydrogels prepared using solubilized BC (SH having higher swelling ratios. Furthermore, compared to the hydrogels synthesized using dispersed BC, the hydrogels synthesized using solubilized BC showed higher porosity, drug loading efficiency, and release. These results suggest the superiority of the hydrogels prepared using solubilized BC and that they should be explored further for oral drug delivery.

  5. Enhancement mechanism of the additional absorbent on the absorption of the absorbing composite using a type-based mixing rule

    Xu, Yonggang; Yuan, Liming; Zhang, Deyuan

    2016-04-01

    A silicone rubber composite filled with carbonyl iron particles and four different carbonous materials (carbon black, graphite, carbon fiber or multi-walled carbon nanotubes) was prepared using a two-roller mixture. The complex permittivity and permeability were measured using a vector network analyzer at the frequency of 2-18 GHz. Then a type-based mixing rule based on the dielectric absorbent and magnetic absorbent was proposed to reveal the enhancing mechanism on the permittivity and permeability. The enforcement effect lies in the decreased percolation threshold and the changing pending parameter as the carbonous materials were added. The reflection loss (RL) result showed the added carbonous materials enhanced the absorption in the lower frequency range, the RL decrement value being about 2 dB at 4-5 GHz with a thickness of 1 mm. All the added carbonous materials reinforced the shielding effectiveness (SE) of the composites. The maximum increment value of the SE was about 3.23 dB at 0.5 mm and 4.65 dB at 1 mm, respectively. The added carbonous materials could be effective additives for enforcing the absorption and shielding property of the absorbers.

  6. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness.

    Lee, Bae Hoon; Kim, Myung Hee; Lee, Jae Ho; Seliktar, Dror; Cho, Nam-Joon; Tan, Lay Poh

    2015-01-01

    Physical cues, such as cell microenvironment stiffness, are known to be important factors in modulating cellular behaviors such as differentiation, viability, and proliferation. Apart from being able to trigger these effects, mechanical stiffness tuning is a very convenient approach that could be implemented readily into smart scaffold designs. In this study, fibrinogen-modified poly(ethylene glycol)-diacrylate (PEG-DA) based hydrogels with tunable mechanical properties were synthesized and applied to control the spheroid formation and liver-like function of encapsulated Huh7.5 cells in an engineered, three-dimensional liver tissue model. By controlling hydrogel stiffness (0.1-6 kPa) as a cue for mechanotransduction representing different stiffness of a normal liver and a diseased cirrhotic liver, spheroids ranging from 50 to 200 μm were formed over a three week time-span. Hydrogels with better compliance (i.e. lower stiffness) promoted formation of larger spheroids. The highest rates of cell proliferation, albumin secretion, and CYP450 expression were all observed for spheroids in less stiff hydrogels like a normal liver in a healthy state. We also identified that the hydrogel modification by incorporation of PEGylated-fibrinogen within the hydrogel matrix enhanced cell survival and functionality possibly owing to more binding of autocrine fibronectin. Taken together, our findings establish guidelines to control the formation of Huh7.5 cell spheroids in modified PEGDA based hydrogels. These spheroids may serve as models for applications such as screening of pharmacological drug candidates. PMID:25692976

  7. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness.

    Bae Hoon Lee

    Full Text Available Physical cues, such as cell microenvironment stiffness, are known to be important factors in modulating cellular behaviors such as differentiation, viability, and proliferation. Apart from being able to trigger these effects, mechanical stiffness tuning is a very convenient approach that could be implemented readily into smart scaffold designs. In this study, fibrinogen-modified poly(ethylene glycol-diacrylate (PEG-DA based hydrogels with tunable mechanical properties were synthesized and applied to control the spheroid formation and liver-like function of encapsulated Huh7.5 cells in an engineered, three-dimensional liver tissue model. By controlling hydrogel stiffness (0.1-6 kPa as a cue for mechanotransduction representing different stiffness of a normal liver and a diseased cirrhotic liver, spheroids ranging from 50 to 200 μm were formed over a three week time-span. Hydrogels with better compliance (i.e. lower stiffness promoted formation of larger spheroids. The highest rates of cell proliferation, albumin secretion, and CYP450 expression were all observed for spheroids in less stiff hydrogels like a normal liver in a healthy state. We also identified that the hydrogel modification by incorporation of PEGylated-fibrinogen within the hydrogel matrix enhanced cell survival and functionality possibly owing to more binding of autocrine fibronectin. Taken together, our findings establish guidelines to control the formation of Huh7.5 cell spheroids in modified PEGDA based hydrogels. These spheroids may serve as models for applications such as screening of pharmacological drug candidates.

  8. Highly effective metal vapor absorbents based on carbon nanotubes

    Liu, Zongwen; Gao, Yihua; Bando, Yoshio

    2002-12-01

    It was shown that, when filled with gallium, carbon nanotubes can absorb copper vapor with extraordinarily high efficiency. The copper vapor generated from the supporting copper grid upon heating to 800 °C in an electron microscope under a pressure of 1.0×10-5 Pa quickly deposited into the carbon nanotubes and formed an alloy with gallium where the vapor pressure is up to 500 times higher (5×10-3 Pa). These filled carbon nanotubes may be used as highly sensitive toxic or radioactive metal vapor absorbents since gallium also tends to form alloys with metals like mercury and uranium.

  9. Polymer hydrogels as optimized delivery systems

    Batista, Jorge G.S.; Varca, Gustavo H.C.; Ferraz, Caroline C.; Garrido, Gabriela P.; Diniz, Bruna M.; Carvalho, Vinicius S.; Lugao, Ademar B., E-mail: jorgegabriel@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Hydrogels are formed by polymers capable of absorbing large quantities of water. They consist of one or more three-dimensionally structured polymer networks formed by macromolecular chains linked by covalent bonds-crosslinks - and physical interactions. The application of hydrogels, has been widely studied. Biodegradable synthetic or natural polymers such as chitosan, starch and poly-lactic-co-glycolic acid, have properties that allow the development of biodegradable systems for drug and nutraceutics delivery. This study aimed to develop polymeric hydrogels based on polyvinyl alcohol, polyacrylamide and polyvinylpyrrolidone using ionizing radiation in order to develop hydrogels for improved loading and release of compounds. Polymer solutions were solubilized in water and poured into thermoformed packages. After sealing, the material was subjected to γ-irradiation at 25kGy. The samples were assayed by means of mechanical properties, gel fraction and swelling degree. Nanostructure characterization was performed using Flory's equation to determine crosslinking density. The systems developed showed swelling degree and adequate mechanical resistance. The nanostructure evaluation showed different results for each system demonstrating the need of choosing the polymer based on the specific properties of each material. (author)

  10. Sensors of absorbed dose of ionizing radiation based on mosfet

    Perevertaylo V. L.

    2010-01-01

    The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  11. Hyaluronic acid based hydrogel system for soft tissue regeneration and drug delivery

    Jha, Amit Kumar

    We have developed hyaluronic acid (HA)-based, biomimetic hydrogel matrices that are hierarchically structured, mechanically robust and biologically active. Specifically, HA-based hydrogel particles (HGPs) with controlled sizes, defined porosity, and improved stability were synthesized using different inverse emulsion systems and crosslinking chemistries. The resultant particles either contained residual functional groups or were rendered reactive by subsequent chemical modifications. HA-based doubly crosslinked networks (DXNs) were synthesized via covalent crosslinking of HA HGPs with soluble HA macromers carrying mutually reactive functional groups. These hybrid matrices are hierarchical in nature, consisting of densely crosslinked HGPs integrated in a loosely connected secondary matrix. Their mechanical properties and degradation kinetics can be readily tuned by varying the particle size, functional group density, intra- and interparticle crosslinking. To improve the biological functions of HA HGPs, perlecan domain I (PlnDI), a basement membrane proteoglycan that has strong affinity for various heparin binding growth factors (HBGFs), was successfully conjugated to the particles through the core protein via a flexible poly(ethylene glycol) (PEG) linker. The immobilized PlnDI maintains its ability to bind bone morphogenetic proteins (BMP-2) and modulates its in vitro release. A similar, sustained release of BMP-2 was achieved by encapsulating BMP-2-loaded HGPs within a photocrosslinked HA matrix. When encapsulated in HA DXNs, primary bovine chondrocytes were able to maintain their phenotype, proliferate readily and produce abundant glycosaminoglycan. Finally, cell-adhesive HA DXNs were fabricated by encapsulating gelatin-decorated HA HGPs in a secondary HA matrix. Human MSCs were shown to adhere to the composite matrix through the focal adhesion sites clustered on particle surface. The cell-adhesive composite matrices supported hMSC proliferation and migration into

  12. Effects of bound versus soluble pentosan polysulphate in PEG/HA-based hydrogels tailored for intervertebral disc regeneration.

    Frith, Jessica E; Menzies, Donna J; Cameron, Andrew R; Ghosh, P; Whitehead, Darryl L; Gronthos, S; Zannettino, Andrew C W; Cooper-White, Justin J

    2014-01-01

    Previous reports in the literature investigating chondrogenesis in mesenchymal progenitor cell (MPC) cultures have confirmed the chondro-inductive potential of pentosan polysulphate (PPS), a highly sulphated semi-synthetic polysaccharide, when added as a soluble component to culture media under standard aggregate-assay conditions or to poly(ethylene glycol)/hyaluronic acid (PEG/HA)-based hydrogels, even in the absence of inductive factors (e.g. TGFβ). In this present study, we aimed to assess whether a 'bound' PPS would have greater activity and availability over a soluble PPS, as a media additive or when incorporated into PEG/HA-based hydrogels. We achieved this by covalently pre-binding the PPS to the HA component of the gel (forming a new molecule, HA-PPS). We firstly investigated the activity of HA-PPS compared to free PPS, when added as a soluble factor to culture media. Cell proliferation, as determined by CCK8 and EdU assay, was decreased in the presence of either bound or free PPS whilst chondrogenic differentiation, as determined by DMMB assay and histology, was enhanced. In all cases, the effect of the bound PPS (HA-PPS) was more potent than that of the unbound form. These results alone suggest wider applications for this new molecule, either as a culture supplement or as a coating for scaffolds targeted at chondrogenic differentiation or maturation. We then investigated the incorporation of HA-PPS into a PEG/HA-based hydrogel system, by simply substituting some of the HA for HA-PPS. Rheological testing confirmed that incorporation of either HA-PPS or PPS did not significantly affect gelation kinetics, final hydrogel modulus or degradation rate but had a small, but significant, effect on swelling. When encapsulated in the hydrogels, MPCs retained good viability and rapidly adopted a rounded morphology. Histological analysis of both GAG and collagen deposition after 21 days showed that the incorporation of the bound-PPS into the hydrogel resulted in

  13. Hydrogel-based ultra-moisturizing cream formulation for skin hydration and enhanced dermal drug delivery.

    Lee, Sang Gon; Kim, Sung Rae; Cho, Hye In; Kang, Mean Hyung; Yeom, Dong Woo; Lee, Seo Hyun; Lee, Sangkil; Choi, Young Wook

    2014-01-01

    To develop an external vehicle for skin hydration and enhanced dermal drug delivery, a hydrogel-based ultra-moisturizing cream (HUMC) was successfully formulated with carbopol 934P, urea, Tinocare GL, grape seed oil, and other excipients. The HUMC showed plastic flow behavior due to a gel structure with a cream base. Different types of drug-free vehicles such as a hydrogel, conventional cream (CC), and three HUMCs were prepared and subjected to an in vivo skin hydration test on a hairless mouse using a corneometer. Hydration effect (∆AU) was in the order of HUMC2>HUMC1 ≥ CC>HUMC3>hydrogel. Using nile red (NR) and 5-carboxyfluorescein (5-CF) as lipophilic and hydrophilic fluorescent probes, respectively, in vitro skin permeation and accumulation studies were conducted using Franz diffusion cells. The values of steady-state flux (Jss, ng/h/cm(2)) were obtained: 74.8 (CC), 145.6 (HUMC1), and 161.9 (HUMC2) for NR delivery; 6.8 (CC), 8.3 (HUMC1), and 10.9 (HUMC2) for 5-CF delivery. The amounts retained in the skin at 12 h (Qr, ng/cm(2)) were determined: 86.4 (CC) and 102.0 (HUMC2) for NR; and 70.1 (CC) and 195.6 (HUMC2) for 5-CF. Confocal microscopy was used to visualize the distribution of the fluorescent probes. NR tended to be localized into the deeper part of the skin with adipose tissue whereas 5-CF localized in the upper layer of the skin. Thus we propose that HUMC2 is an efficacious vehicle for skin hydration and enhances dermal delivery of lipophilic and hydrophilic drugs. PMID:25273390

  14. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

    Peng, Sydney; Yang, Shu-Rui; Ko, Chao-Yin; Peng, Yu-Shiang; Chu, I-Ming

    2013-11-01

    Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering. PMID:24039062

  15. SOLAR ABSORBING COOLING SYSTEMS BASED ON MULTISTAGE HEAT-MASS-TRANSFER DEVICES

    Doroshenko A.V.; Ludnitsky K.V.

    2014-01-01

    The article presents the worked out schematics for the alternative refrigeration systems and of air-conditioning systems, based on the use of absorbing cycle and of the sunny energy for the regeneration (renewals) of absorbent solution. We use here the cascade principle of construction of all heat-mass-transfer apparatus with variation of both the temperature level and the growth of absorbent concentration on the cascade stages. The heat-mass-transfer equipment as a part of the drying and coo...

  16. SOLAR REFRIGERATION SYSTEMS BASED ON THE ABSORBER WITH INTERNAL EVAPORATIVE COOLING

    Дорошенко, O.В.; Людницький, К.В.

    2015-01-01

    The paper presents the developed schematics for alternative refrigeration systems and air conditioning systems based on the use of heat-absorption cycle and solar energy for regeneration (recovery) of the absorbent solution. Cascade principle of construction of the drying and cooling circuits with absorbent concentration increasing on the steps of the cascade is used. The absorber with internal evaporative cooling that eliminates a separate evaporative cooler, typically comprised after the co...

  17. Self-healable mussel-mimetic nanocomposite hydrogel based on catechol-containing polyaspartamide and graphene oxide.

    Wang, Bo; Jeon, Young Sil; Park, Ho Seok; Kim, Ji-Heung

    2016-12-01

    Stimuli-responsive and self-healing materials have a wide range of potential uses, and some significant research has focused on cross-linking of hydrogel materials by means of reversible coordination bonding. The resulting materials, however, tend to have poor mechanical properties with pronounced weakness and brittleness. In this work, we present a novel mussel-inspired graphene oxide(GO)-containing hydrogel based on modified polyaspartamide with γ-amino butyric acid (GABA), 3.4-dihydroxyphenethylamine (DOPA), and ethanolamine (EA), termed PolyAspAm(GABA/DOPA/EA). Here both GO nanosheets and boric acid (H3BO3) act as cross-linkers, interacting with polar functional groups of the PolyAspAm(GABA/DOPA/EA). Compared to PolyAspAm(GABA/DOPA/EA)/B(3+) gel without GO, the same containing 5wt% of GO yielded a 10-fold increase in both the storage and loss moduli, as well as 134% and 104% increases in the tensile and compressive strengths, respectively. In addition, the GO-containing polyaspartamide hydrogel exhibited rapid and autonomous self-healing property. Two types of bonding, boron-catechol coordination and strong hydrogen bonding interactions between PolyAspAm side chains and GO nanosheets, would impart the enhanced mechanical strength and good reversible gelation behavior upon pH stimulation to the hydrogel, making this biocompatible hydrogel a promising soft matter for biomedical applications. PMID:27612701

  18. Adsorption of crude oil from aqueous solution by hydrogel of chitosan based polyacrylamide prepared by radiation induced graft polymerization

    The adsorption of crude oil (initial concentration 0.5-30 g/L) from aqueous solution using hydrogel of chitosan based polyacrylamide (PAM) prepared by radiation induced graft polymerization has been investigated. The prepared hydrogel was characterized by FTIR and SEM micrographs. The experiments were carried out as a function of different initial concentrations of oil residue, acrylamide concentration, contact time and pH to determine the optimum condition for the adsorption of residue oil from aqueous solution and sea water. The results obtained showed that the hydrogel prepared at concentration of 40% acrylamide (AAm) and at a radiation dose of 5 kGy has high removal efficiency of crude oil 2.3 g/g at pH 3. Equilibrium studies have been carried out to determine the capacity of the hydrogel for adsorption of crude oil, Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherms constants. Equilibrium data were found to fit very well with both Freundlich and Langmuir models. Also the adsorption of oil onto the hydrogel behaves as a pseudo-second-order kinetic models rather than the pseudo-first-order kinetic model.

  19. Microwave metamaterial absorber based on multiple square ring structures

    Weicheng Zhou

    2015-11-01

    Full Text Available In this paper, we report the design, analysis, and simulation of quintuple-band metamaterial absorber (MMA in the microwave region. The absorber is constructed of a delicate periodic patterned structures and a metallic background plane, separated by a dielectric substrate. By manipulating the periodic patterned structures, high absorption can be obtained at five specific resonance frequencies. Moreover, the significantly high absorptions of quintuple-peaks are persistent with polarization independence, and the influence of angle of incidence for both TE and TM modes was also elucidated. For explaining the absorption mechanism of proposed structures, the electric and magnetic field distributions and resistance matching principal were given. Importantly, the design idea has the ability to be extended to other frequencies, like terahertz, infrared and optical frequencies.

  20. Sensors of absorbed dose of ionizing radiation based on mosfet

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  1. Strong and Robust Polyaniline-Based Supramolecular Hydrogels for Flexible Supercapacitors.

    Li, Wanwan; Gao, Fengxian; Wang, Xiaoqian; Zhang, Ning; Ma, Mingming

    2016-08-01

    We report a supramolecular strategy to prepare conductive hydrogels with outstanding mechanical and electrochemical properties, which are utilized for flexible solid-state supercapacitors (SCs) with high performance. The supramolecular assembly of polyaniline and polyvinyl alcohol through dynamic boronate bond yields the polyaniline-polyvinyl alcohol hydrogel (PPH), which shows remarkable tensile strength (5.3 MPa) and electrochemical capacitance (928 F g(-1) ). The flexible solid-state supercapacitor based on PPH provides a large capacitance (306 mF cm(-2) and 153 F g(-1) ) and a high energy density of 13.6 Wh kg(-1) , superior to other flexible supercapacitors. The robustness of the PPH-based supercapacitor is demonstrated by the 100 % capacitance retention after 1000 mechanical folding cycles, and the 90 % capacitance retention after 1000 galvanostatic charge-discharge cycles. The high activity and robustness enable the PPH-based supercapacitor as a promising power device for flexible electronics. PMID:27328742

  2. New absorbent material acoustic based on kenaf’s fibre

    Ramis, J.

    2010-09-01

    Full Text Available Acoustic Standards in the building are responsible for, companies and individuals, propose new acoustic materials for the sound isolation. This paper presents a new sound-absorbent material, it is based on natural fibres, particularly fibres of kenaf. It also proposes an empirical model for this material, this models depends on the frequency. There are accepted models from the scientific community about mineral wool, glass wool, rock wool, foam or polyester fibre. Several of these models are empirical. They are obtained from the equation adjustments about the acoustic impedance and propagation constant behaviour, depending upon the flow resistivity, fibre’s diameter and density. There are even standards like UNE-EN 12354-6 where these models are accepted under certain limitations like the fundamental basis as in the materials’ acoustics behaviour prediction. From the various tests conducted in the laboratory, empirical equations are proposed for this new acoustic material. In addition, there has been a first approach to validate this model in combination with a micro-structural model, based on the steps taken by Bies-Hansen (1, which allows us to obtain the value of the resistance to flow.

    El carácter marcadamente prestacional de las normativas acústicas en la edificación abre el camino a la propuesta, por parte de empresas y particulares, de nuevos materiales acústicos susceptibles de ser utilizados en el ámbito de la acústica de la edificación. Éste es el caso que nos ocupa en el presente trabajo en el que se presenta un nuevo material acústico absorbente basado en fibras vegetales, concretamente el kenaf. Además se propone un modelo empírico de modelización del comportamiento absorbente de varias composiciones de este material en función de la frecuencia. Existen modelos de diferentes lanas minerales, lanas de roca, lanas de vidrio, espumas o lanas de poliéster. Algunos de estos modelos —llamados empíricos— se

  3. A Wide-Band Metamaterial Absorber Based on Loaded Magnetic Resonators

    GU Chao; QU Shao-Bo; PEI Zhi-Bin; MA Hua; XU Zhuo; BAI Peng; PENG Wei-Dong; LIN Bao-Qin

    2011-01-01

    @@ A wide-band polarization-insensitive and wide-angle metamaterial absorber based on loaded magnetic resonators is presented.The unit cell of this absorber consists of a magnetic resonator loaded with lumped resistances, a dielectric substrate and a back metal film.Theoretical and simulated results show that this absorber has a wide- band strong absorption for the incident wave from 3.87 GHz to 21.09 GHz.Simulated absorbance values under loading and unloading conditions indicate that electrocircuit's resonances are more stable than electromagnetic resonances and thus can be used to realize wide-band absorption.Simulated absorbance values under different polarization angles and different angles of incidence indicate that this absorber is polarization-insensitive and wide-angle.It may have potential applications in military fields.

  4. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins.

    Seck, Tetsu M; Melchels, Ferry P W; Feijen, Jan; Grijpma, Dirk W

    2010-11-20

    Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials. PMID:20659509

  5. Raman-based imaging uncovers the effects of alginate hydrogel implants in spinal cord injury

    Galli, Roberta; Tamosaityte, Sandra; Koch, Maria; Sitoci-Ficici, Kerim H.; Later, Robert; Uckermann, Ortrud; Beiermeister, Rudolf; Gelinsky, Michael; Schackert, Gabriele; Kirsch, Matthias; Koch, Edmund; Steiner, Gerald

    2015-07-01

    The treatment of spinal cord injury by using implants that provide a permissive environment for axonal growth is in the focus of the research for regenerative therapies. Here, Raman-based label-free techniques were applied for the characterization of morphochemical properties of surgically induced spinal cord injury in the rat that received an implant of soft unfunctionalized alginate hydrogel. Raman microspectroscopy followed by chemometrics allowed mapping the different degenerative areas, while multimodal multiphoton microscopy (e.g. the combination of coherent anti-Stokes Raman scattering (CARS), endogenous two-photon fluorescence and second harmonic generation on the same platform) enabled to address the morphochemistry of the tissue at cellular level. The regions of injury, characterized by demyelination and scarring, were retrieved and the distribution of key tissue components was evaluated by Raman mapping. The alginate hydrogel was detected in the lesion up to six months after implantation and had positive effects on the nervous tissue. For instance, multimodal multiphoton microscopy complemented the results of Raman mapping, providing the micromorphology of lipid-rich tissue structures by CARS and enabling to discern lipid-rich regions that contained myelinated axons from degenerative regions characterized by myelin fragmentation and presence of foam cells. These findings demonstrate that Raman-based imaging methods provide useful information for the evaluation of alginate implant effects and have therefore the potential to contribute to new strategies for monitoring degenerative and regenerative processes induced in SCI, thereby improving the effectiveness of therapies.

  6. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres

    Tai, Yanlong

    2015-01-01

    Wearable pressure sensing solutions have promising future for practical applications in health monitoring and human/machine interfaces. Here, a highly sensitive, low-cost, wearable pressure sensor based on conductive single-walled carbon nanotube (SWCNT)/alginate hydrogel spheres is reported. Conductive and piezoresistive spheres are embedded between conductive electrodes (indium tin oxide-coated polyethylene terephthalate films) and subjected to environmental pressure. The detection mechanism is based on the piezoresistivity of the SWCNT/alginate conductive spheres and on the sphere-electrode contact. Step-by-step, we optimized the design parameters to maximize the sensitivity of the sensor. The optimized hydrogel sensor exhibited a satisfactory sensitivity (0.176 ΔR/R0/kPa-1) and a low detectable limit (10 Pa). Moreover, a brief response time (a few milliseconds) and successful repeatability were also demonstrated. Finally, the efficiency of this strategy was verified through a series of practical tests such as monitoring human wrist pulse, detecting throat muscle motion or identifying the location and the distribution of an external pressure using an array sensor (4 × 4). © 2015 The Royal Society of Chemistry.

  7. Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics

    Aydın, Derya; Kızılel, Seda

    2016-06-01

    Poly(ethylene glycol) (PEG) micro/nanospheres have several unique advantages as polymer based drug delivery systems (DDS) such as tunable size, large surface area to volume ratio, and colloidal stability. Emulsification is one of the widely used methods for facile synthesis of micro/nanospheres. Two-phase aqueous system based on polymer-polymer immiscibility is a novel approach for preparation of water-in-water (w/w) emulsions. This method is promising for the synthesis of PEG micro/nanospheres for biological systems, since the emulsion is aqueous and do not require organic solvents or surfactants. Here, we report the synthesis of nano-scale PEG hydrogel particles using w/w emulsions using phase separation of dextran and PEG prepolymer. Dynamic light scattering (DLS) and scaning electron microscopy (SEM) results demonstrated that nano-scale hydrogel spheres could be obtained with this approach. We investigated the release kinetics of a model drug, pregabalin (PGB) from PEG nanospheres and demonstrated the influence of polymerization conditions on loading and release of the drug as well as the morphology and size distribution of PEG nanospheres. The experimental drug release data was fitted to a stretched exponential function which suggested high correlation with experimental results to predict half-time and drug release rates from the model equation. The biocompatibility of nanospheres on human dermal fibroblasts using cell-survival assay suggested that PEG nanospheres with altered concentrations are non-toxic, and can be considered for controlled drug/molecule delivery.

  8. 21 CFR 878.4022 - Hydrogel wound dressing and burn dressing.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hydrogel wound dressing and burn dressing. 878... Hydrogel wound dressing and burn dressing. (a) Identification. A hydrogel wound dressing is a sterile or... percent) and capable of absorbing exudate. This classification does not include a hydrogel wound...

  9. PRAGMATIC HYDROGELS

    Patil S.A.; Rane B.R.; Bakliwal S.R.; Pawar S.P.

    2011-01-01

    Man has always been plagued with many ailments and diseases. The field of pharmaceutical science has today become more invaluable in helping to keep us healthy and prevent disease. The availability of large molecular weight protein and peptide-based drugs due to the recent advances has given us a new ways to treat a number of diseases. I wish to present new and promising techniques for the production of drug and protein delivery formulations that have been developed that is Hydrogel. These ar...

  10. Self-Healing and Thermo-Responsive Dual-Crosslinked Alginate Hydrogels based on Supramolecular Inclusion Complexes

    Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.

    2015-01-01

    β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® ...

  11. Optical absorbers based on strong interference in ultra-thin films

    Kats, Mikhail A

    2016-01-01

    Optical absorbers find uses in a wide array of applications across the electromagnetic spectrum, including photovoltaic and photochemical cells, photodetectors, optical filters, stealth technology, and thermal light sources. Recent efforts have sought to reduce the footprint of optical absorbers, conventionally based on graded structures or Fabry-Perot-type cavities, by using the emerging concepts of plasmonics, metamaterials, and metasurfaces. Unfortunately, these new absorber designs require patterning on subwavelength length scales, and are therefore impractical for many large-scale optical and optoelectronic devices. In this article, we summarize recent progress in the development of optical absorbers based on lossy films with thicknesses significantly smaller than the incident optical wavelength. These structures have a small footprint and require no nanoscale patterning. We outline the theoretical foundation of these absorbers based on "ultra-thin-film interference", including the concepts of loss-induc...

  12. Improve Cloud Temperature of Radiation Prepared Hydrogels Based on Poly(N-Isopropylacrylamide) by Addition of N,N-Dimethylacrylamide Monomer

    The poly(N-isopropylacrylamide) (PNIPAM) based hydrogels are typical thermosensitive material, which can be successfully synthesized from aqueous solution of NIPAM by radiation polymerization and cross-linking. Adding of N,N dimethylacrylamide (DMA) a hydrophilic monomer into the solution of reactant before irradiation much improved the cloud temperature of the created hydrogels. The phase transition temperature as well as swelling degree of hydrogel based on PNIPAM-DMA copolymer also depended on the ratio of DMA. Chemical structure of hydrogel P(NIPAM-co-DMA) were verified by proton spectroscopy (1H-NMR). The themosensivity of hydrogels was also investigated and the results showed that the low cloud temperature (Tp) is around of 37-40 oC. (author)

  13. Nanoslit-microcavity-based narrow band absorber for sensing applications.

    Lu, Xiaoyuan; Zhang, Lingxuan; Zhang, Tongyi

    2015-08-10

    We propose an ultranarrow bandwidth perfect infrared absorber consisting of a metal periodic structured surface with nanoslits, a spacer dielectric, and a metal back plate. Its bandwidth and aborption are respectively about 8 nm and 95%. The thickness of the nanobars and the spacer, and the width of the nanoslits are primary factors determining the absorption performance. This structure not only has narrow bandwidth but also can obtain the giant electric field enhancement in the tiny volume of the nanoslits. Operated as a refractive index sensor, this structure has figure of merit as high as 25. It has potential in biomedical and sensing applications. PMID:26367923

  14. Dextran based highly conductive hydrogel polysulfide electrolyte for efficient quasi-solid-state quantum dot-sensitized solar cells

    Highlights: ► Dextran based hydrogel is first used to prepare quasi-solid-state polysulfide electrolyte for quantum dot-sensitized solar cells. ► The ion conductivity of hydrogel electrolyte shows almost the same value as the liquid electrolyte. ► The liquid state at elevated temperature of hydrogel electrolyte allows for a good contact between electrolyte and CdS/CdSe co-sensitized TiO2 photoanode. ► The hydrogel electrolyte based cell exhibits slightly lower power conversion efficiency than that of liquid electrolyte based cell. ► The dynamic electron transfer mechanism in hydrogel electrolyte based cell is examined in detail by EIS and CIMPS/IMVS. -- Abstract: Highly conductive hydrogel polysulfide electrolyte is first fabricated using dextran as gelator and used as quasi-solid-state electrolyte for quantum dot-sensitized solar cells (QDSSCs). The hydrogel electrolyte with gelator concentration of 15 wt% shows almost the same conductivity as the liquid one. Moreover, its liquid state at elevated temperature allow for the well penetration into the pores in electrodeposited CdS/CdSe co-sensitized TiO2 photoanode. This gel electrolyte based QDSSC exhibits power conversion efficiency (η) of 3.23% under AG 1.5 G one sun (100 mW cm−2) illumination, slightly lower than that of liquid electrolyte based cell (3.69%). The dynamic electron transfer mechanism of the gel and liquid electrolyte based QDSSC are examined by electrochemical impedance spectroscopy (EIS) and controlled intensity modulated photocurrent/photovoltage spectroscopy (CIMPS/IMVS). It is found that the electron transport in gel electrolyte based cell is much faster than the liquid electrolyte based cell but it tends to recombine more easily than the latter. However, these differences fade away with increasing the light intensity, showing declining electron collection efficiency at higher light intensity illumination. As a result, a conversion efficiency of 4.58% is obtained for the gel

  15. Extracellular matrix formation in self-assembled minimalistic bioactive hydrogels based on aromatic peptide amphiphiles.

    Zhou, Mi; Ulijn, Rein V; Gough, Julie E

    2014-01-01

    The hitherto inconsistency in clinical performance for engineered skin drives the current development of novel cell-scaffolding materials; one challenge is to only extract essential characteristics from the complex native ECM (extracellular matrix) and incorporate them into a scaffold with minimal complexity to support normal cell functions. This study involved small-molecule-based bioactive hydrogels produced by the co-assembly of two aromatic peptide amphiphiles: Fmoc-FF (Fluorenylmethoxycarbonyl-diphenylalanine) and Fmoc-RGD (arginine-glycine-aspartic acid). Three-dimensionally cultured human dermal fibroblasts deposited dense ECM networks including fibronectin and collagen I within the hydrogels in a 14-day culture. The fibroblasts organized the fibrous ECM and contracted the gel without differentiating into myofibroblasts. The stiffness of the cell-gel constructs increased dramatically due to ECM formation and gel contraction. This created an economical biomimetic model-scaffold to further understand skin reconstruction in vitro and supplied a design pathway to create versatile cell-scaffolds with varied bioactivities and simplicity. PMID:24812581

  16. Smart Hydrogel-Based Valves Inspired by the Stomata in Plants.

    Gargava, Ankit; Arya, Chandamany; Raghavan, Srinivasa R

    2016-07-20

    We report the design of hydrogels that can act as "smart" valves or membranes. Each hydrogel is engineered with a pore (about 1 cm long and chemistry of this gel. For example, if the active gel is made from N-isopropylacrylamide (NIPA), the actuation of the pore depends on the temperature of water relative to 32 °C, which is the lower-critical solution temperature (LCST) of NIPA. The concentric design of our hybrid provides directionality to the volumetric transition of the active gel, i.e., it ensures that the pore opens as the active gel shrinks. In turn, contact with hot water (T > 32 °C) opens the pore and allows the water to pass through the gel. Conversely, the pore remains closed when the water is cold (T < 32 °C). The gel thereby acts as a "smart" valve that is able to regulate the flow of solvent depending on its properties. We have extended the concept to other stimuli that can cause gel-swelling transitions including solvent composition, pH, and light. Additionally, when two different gel-based valves are arranged in series, the assembly acts as a logical "AND" gate, i.e., water flows through the valve-combination only if it simultaneously satisfies two distinct conditions (such as its pH being below a critical value and its temperature being above a critical value). PMID:27400459

  17. In situ gelling polyvalerolactone-based thermosensitive hydrogel for sustained drug delivery.

    Mishra, Gyan P; Kinser, Reid; Wierzbicki, Igor H; Alany, Raid G; Alani, Adam W G

    2014-10-01

    Biodegradable poly(ethyleneglycol)-poly(valerolactone)-poly(ethyleneglycol) [PEG-PVL-PEG] copolymers were synthesized through ring opening polymerization of δ-valerolactone (VL) followed by the coupling of monomethoxy poly(ethyleneglycol-poly(valerolactone) (mPEG-PVL) with hexamethylene diisocyanate (HDI). The copolymers were characterized by (1)H NMR, FT-IR, and GPC. Block copolymers of PEG and PVL with different VL/PEG molar ratios were successfully synthesized. One of the copolymers (Copolymer 2, PEG550-PVL6768-PEG550) displayed a sol-gel transition at a physiological temperature based on the test tube inverting method and rheological studies. The thermogelling copolymer demonstrated a characteristic crystalline peak for PVL block as determined by DSC and XRD analysis. In vitro release from the copolymer hydrogel matrix indicated that dexamethasone (DEX), a hydrophobic model drug, released comparatively slower than 5-fluoruracil (5-FU), a hydrophilic model drug, due to the potential partitioning of DEX into the PVL core. 5-FU in vitro release from copolymer 2 was 86% in 22 h, whereas only 14% of DEX was released in 24h. Cell viability studies confirmed that hydrogels composed of block copolymers are biocompatible. Copolymer 2 showed more than 80% relative cell viability at all concentrations, including concentrations greater than 200 fold CMC. In vivo gel formation studies indicate that gel integrity was maintained for 7 days upon subcutaneous injection into mice. These results indicate that PEG-PVL-PEG copolymers are suitable for drug delivery applications. PMID:24931340

  18. Triptolide-loaded microemulsion-based hydrogels: physical properties and percutaneous permeability

    Lihua Chen

    2013-05-01

    Full Text Available Triptolide is a diterpenoid compound that inhibits the inflammation of rheumatoid arthritis (RA. However, the use of triptolide is limited due to its strong gastrointestinal toxicity. The purpose of this work was to develop a transdermal delivery system for triptolide to reduce this toxicity. A microemulsion-based hydrogel (MBH was prepared from the combination of Gemseal 40-oleic acid as oil phase, Tween 80-labrasol as surfactant, anhydrous ethanol as co-surfactant, water as aqueous phase and Poloxamer 407 as hydrogel matrix. Rheological measurements, environmental scanning electron microscopy (ESEM and transdermal experiments in vitro were used to characterize triptolide-loaded and blank MBH preparations. The effects of Poloxamer 407 and triptolide on the rheological properties and microstructures of the MBH were determined. Transparent and homogeneous MBH could only be formed when the concentration of Poloxamer 407 in the selected O/W microemulsion was in the range of 14.0–16.0% (w/w. When the concentration of Poloxamer 407 increased, the rheological properties such as the yield stresses (σy, storage and loss moduli (G′, G″ of the formulations increased, and the network structures became more compact. The addition of triptolide did not change the interconnected network structures of the MBH preparations. MBH preparations afford a better sustained release profile when compared to microemulsions, a finding confirmed by an in vitro permeation test in mice. MBH appears to be a promising vehicle for transdermal delivery of triptolide.

  19. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  20. Synthesis and properties of collagen-g-poly(sodium acrylate-co-2-hydroxyethylacrylate superabsorbent hydrogels

    M. Sadeghi

    2013-06-01

    Full Text Available Novel biopolymer-based superabsorbent hydrogels were prepared by grafting crosslinked poly(acrylic acid-co-2-hydroxyethyl acrylate (PAA-co-PHEA chains onto collagen backbones through a free radical polymerization method. The graft copolymerization reaction was carried out in a homogeneous medium and in the presence of ammonium persulfate (APS as initiator and N,N '-methylene bisacrylamide (MBA as crosslinker. A proposed mechanism for collagen-g-(PAA-co-PHEA formation was suggested and the hydrogel structure was confirmed using FTIR spectroscopy and TGA thermal analysis. Moreover, the morphology of the samples was examined by scanning electron microscopy (SEM. The effect of concentration of MBA as well as AA/HEA weight ratio on the swelling capacity of the hydrogel was also studied. Furthermore, the water absorbency of hydrogels was measured in solutions with pH ranging 1 to 13. The collagen-based hydrogel exhibited a pH-responsive character, so that a swelling-deswelling pulsatile behavior was recorded at pHs 2 and 8. Preliminary swelling and deswelling behaviors of the hydrogels were also studied. Additionally, the hydrogels exhibited salt-sensitivity and cation exchange properties.

  1. Smart hydrogel-functionalized textile system with moisture management property for skin application

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ϵ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world. (paper)

  2. Smart hydrogel-functionalized textile system with moisture management property for skin application

    Wang, Xiaowen; Hu, Huawen; Yang, Zongyue; He, Liang; Kong, Yeeyee; Fei, Bin; Xin, John H.

    2014-12-01

    In this study, a functional textile-based material for topical skin application was fabricated by coating a thermoresponsive hydrogel onto one side of absorbent nonwoven fabric. The thermoresponsive hydrogel was synthesized easily through coupling of poly (ethylene glycol) (PEG) and poly (ɛ-caprolactone) (PCL) with hexamethylene diisocyanate (HMDI) as a chemical linker. The chemical structure of the as-prepared triblock copolymer hydrogel was unraveled by FTIR and 1H NMR analysis. The hydrogel showed a temperature-triggered sol-gel transition behavior and high potential for use as drug controlled release. When the surrounding temperature was close to the skin temperature of around 34 °C, it became a moisture management system where the liquids including sweat, blood, and other body fluids can be transported unidirectionally from one fabric side with the hydrophobic hydrogel coating to the untreated opposite side. This thereby showed that the thermoresponsive hydrogel-coated textile materials had a function to keep topical skin area clean, breathable, and comfortable, thus suggesting a great potential and significance for long-term skin treatment application. The structure and surface morphology of the thermoresponsive hydrogel, in vitro drug release behavior, and the mechanism of unidirectional water transport were investigated in detail. Our success in preparation of the functional textile composites will pave the way for development of various polymer- or textile-based functional materials that are applicable in the real world.

  3. Perfect absorbers for electromagnetic wave, based on metamaterials

    Yoo, Young Joon; Kim, Young Ju; Lee, YoungPak

    2015-10-01

    Metamaterials (MMs), which are not existing in nature, but artificially-engineered materials for controlling electromagnetic wave. MMs have attracted more and more research attentions, since they have shown greatly novel properties such as left-handed behavior, negative refractive index, classical analog of electromagnetically-induced transparency, and extraordinary transmission. Among MMs, MM perfect absorbers (MMPAs), which are useful to enhance the efficiency in capturing solar energy and applied to various application areas, have been rapidly developed. In general, the structure of MMPAs is very simple, which consist of three layers: patterned conductor layer, which is used for minimizing the reflection by impedance matching, dielectric layer and continuous conductor layer for blocking the transmission. In addition, the unit-cell size of general MM absorbers is only 1/3-1/5 of the working wavelength of incident electromagnetic wave. Nevertheless, the properties of general MMPAs are in problems of the absorption only at specific frequency, the narrow absorption band, the polarization sensitivity and so on. In this review paper, the introduction of recent researches in the field of MMPAs operating in different frequency ranges is presented. Moreover, the researches on the improved electromagnetic properties are discussed, which comprise multi-band, broadband, tunable, polarization-insensitive, and wide-incident-angle MMPAs. The perspectives and the future works for the further investigations and the various real applications of MMPAs are also presented.

  4. Injectable Hydrogel Composite Based Gelatin-PEG and Biphasic Calcium Phosphate Nanoparticles for Bone Regeneration

    Van, Thuy Duong; Tran, Ngoc Quyen; Nguyen, Dai Hai; Nguyen, Cuu Khoa; Tran, Dai Lam; Nguyen, Phuong Thi

    2016-05-01

    Gelatin hydrogels have recently attracted much attention for tissue regeneration because of their biocompatibility. In this study, we introduce poly-ethylene glycol (PEG)—grafted gelatin containing tyramine moieties which have been utilized for in situ enzyme-mediated hydrogel preparation. The hydrogel can be used to load nanoparticles of biphasic calcium phosphate, a mixture of hydroxyapatite and β-tricalcium phosphate, and forming injectable bio-composites. Proton nuclear magnetic resonance (1H NMR) spectra indicated that tyramine-functionalized polyethylene glycol-nitrophenyl carbonate ester was conjugated to the gelatin. The hydrogel composite was rapidly formed in situ (within a few seconds) in the presence of horseradish peroxidase and hydrogen peroxide. In vitro experiments with bio-mineralization on the hydrogel composite surfaces was well-observed after 2 weeks soaking in simulated body fluid solution. The obtained results indicated that the hydrogel composite could be a potential injectable material for bone regeneration.

  5. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins

    Seck, Tetsu M.; Melchels, Ferry P. W.; Feijen, Jan; Grijpma, Dirk W.

    2010-01-01

    Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibi

  6. Preparation and In Vitro Evaluation of a Stomach Specific Drug Delivery System based on Superporous Hydrogel Composite

    Chavda, H.V.; Patel, C. N.

    2011-01-01

    This study discusses efforts made to design drug-delivery system based on superporous hydrogel composite for sustained delivery of ranitidine hydrochloride. The characterization studies involve measurement of apparent density, porosity, swelling studies, mechanical strength studies, and scanning electron microscopy. Scanning electron microscopic images clearly showed the formation of interconnected pores, capillary channels, and the cross-linked sodium carboxymethylcellulose molecules around ...

  7. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  8. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment

    Guo, Haiying; Jiao, Tifeng; Zhang, Qingrui; Guo, Wenfeng; Peng, Qiuming; Yan, Xuehai

    2015-01-01

    Graphene oxide (GO) sheets exhibit superior adsorption capacity for removing organic dye pollutants from an aqueous environment. In this paper, the facile preparation of GO/polyethylenimine (PEI) hydrogels as efficient dye adsorbents has been reported. The GO/PEI hydrogels were achieved through both hydrogen bonding and electrostatic interactions between amine-rich PEI and GO sheets. For both methylene blue (MB) and rhodamine B (RhB), the as-prepared hydrogels exhibit removal rates within abo...

  9. Gelam (Melaleuca spp.) Honey-Based Hydrogel as Burn Wound Dressing

    Rozaini Mohd Zohdi; Zuki Abu Bakar Zakaria; Norimah Yusof; Noordin Mohamed Mustapha; Muhammad Nazrul Hakim Abdullah

    2012-01-01

    A novel cross-linked honey hydrogel dressing was developed by incorporating Malaysian honey into hydrogel dressing formulation, cross-linked and sterilized using electron beam irradiation (25 kGy). In this study, the physical properties of the prepared honey hydrogel and its wound healing efficacy on deep partial thickness burn wounds in rats were assessed. Skin samples were taken at 7, 14, 21, and 28 days after burn for histopathological and molecular evaluations. Application of honey hydrog...

  10. Hydrogel based sensor arrays (2 × 2) with perforated piezoresistive diaphragms for metabolic monitoring (in vitro)

    Orthner, M. P.; Lin, G.; Avula, M.; Buetefisch, S.; Magda, J.; Rieth, L. W.; Solzbacher, F.

    2010-01-01

    This report details the first experimental results from novel hydrogel sensor array (2 × 2) which incorporates analyte diffusion pores into a piezoresistive diaphragm for the detection of hydrogel swelling pressures and hence chemical concentrations. The sensor assembly was comprised of three components, the active four sensors, HPMA/DMA/TEGDMA (hydroxypropyl methacrylate (HPMA), N,N-dimethylaminoethyl methacrylate (DMA) and crosslinker tetra-ethyleneglycol dimethacrylate (TEGDMA)) hydrogel, ...

  11. Reducing the Oxidation Level of Dextran Aldehyde in a Chitosan/Dextran-Based Surgical Hydrogel Increases Biocompatibility and Decreases Antimicrobial Efficacy

    Maggie Chan

    2015-06-01

    Full Text Available A highly oxidized form of a chitosan/dextran-based hydrogel (CD-100 containing 80% oxidized dextran aldehyde (DA-100 was developed as a post-operative aid, and found to significantly prevent adhesion formation in endoscopic sinus surgery (ESS. However, the CD-100 hydrogel showed moderate in vitro cytotoxicity to mammalian cell lines, with the DA-100 found to be the cytotoxic component. In order to extend the use of the hydrogel to abdominal surgeries, reformulation using a lower oxidized DA (DA-25 was pursued. The aim of the present study was to compare the antimicrobial efficacy, in vitro biocompatibility and wound healing capacity of the highly oxidized CD-100 hydrogel with the CD-25 hydrogel. Antimicrobial studies were performed against a range of clinically relevant abdominal microorganisms using the micro-broth dilution method. Biocompatibility testing using human dermal fibroblasts was assessed via a tetrazolium reduction assay (MTT and a wound healing model. In contrast to the original DA-100 formulation, DA-25 was found to be non-cytotoxic, and showed no overall impairment of cell migration, with wound closure occurring at 72 h. However, the lower oxidation level negatively affected the antimicrobial efficacy of the hydrogel (CD-25. Although the CD-25 hydrogel’s antimicrobial efficacy and anti-fibroblast activity is decreased when compared to the original CD-100 hydrogel formulation, previous in vivo studies show that the CD-25 hydrogel remains an effective, biocompatible barrier agent in the prevention of postoperative adhesions.

  12. Nanometer-scale ionic reservoir based on ion-responsive hydrogels

    Kazakov, Sergey V.; Kaholek, Marian; Levon, Kalle

    2002-07-01

    The applicability of the concept of ionic reservoir for the description of hydrogel behavior was demonstrated by potentiometric titration of poly(N-isopropylacrylamide-co-1- vinylimidazole) hydrogel suspension. Four different regions of pH-changes of the microgel suspensions were identified on the titration curve in comparison with pure water. Particularly, at 10.5>pH>6.5 a hydrogel accumulates or releases H+ and Cl- ions without significant swelling/deswelling whereas at 6.5>pH>4 the storage of the ions occurs both due to their binding with ionizable groups on polymer network and due to strong swelling. The mechanical response of hydrogel (swelling/deswelling) is assumed to be a faster process than the electrochemical response (equilibration of ion concentrations interior and exterior to the hydrogel). The size of hydrogel spheres should be diminished to fasten an ionic reservoir response of the hydrogel. A novel protocol for preparation of polymer hydrogel spherical particles on a nanometer scale (nanogels) has been developed. Temperature- and pH-sensitive nanogels were detected and characterized by the dynamic light scattering technique and atomic force microscopy. Ptoentiometric titration of the obtained nanogels shows that the decrease in the ionic reservoir size gains the efficiency and, presumably, the rate of the electrochemical response. These findings indicate the necessity of time-resolved pH-measurements of the hydrogel suspensions for the characterization of the rate of the solute diffusion through the gel/water surface.

  13. Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim;

    flexible and ultrastrong mechanically, transparent for optical radiation, with high electrical conductivity that can be tuned by electrochemical potential. Structured graphene layers constitute metamaterials that can provide tunable and very unusual electromagnetic properties. In this contribution we......Young field of terahertz (THz) science and technology demands new materials and devices, such as filters, modulators, polarization converters and absorbers. Graphene, a recently discovered single-atom-thick material, provides exciting properties for functional terahertz applications. Graphene is...... present the description of graphene metamaterial properties through the effective surface conductivity. Such description is very convenient, as it simplifies the design of THz devices, and very natural, since surface conductivity can be measured directly in experiment. We show how to extract the effective...

  14. Absorbable hydrogel spacer use in men undergoing prostate cancer radiotherapy: 12 month toxicity and proctoscopy results of a prospective multicenter phase II trial

    Radiation therapy is one of the recommended treatment options for localized prostate cancer. In randomized trials, dose escalation was correlated with better biochemical control but also with higher rectal toxicity. A prospective multicenter phase II study was carried out to evaluate the safety, clinical and dosimetric effects of the hydrogel prostate-rectum spacer. Here we present the 12 months toxicity results of this trial. Fifty two patients with localized prostate cancer received a transperineal PEG hydrogel injection between the prostate and rectum, and then received IMRT to a dose of 78 Gy. Gastrointestinal and genitourinary toxicity were recorded during treatment and at 3, 6 and 12 months following irradiation by using the RTOG/EORTC criteria. Additionally, proctoscopy was performed 12 months after treatment and the results were scored using the Vienna Rectoscopy Scale (VRS). Of the patients treated 39.6% and 12.5% experienced acute Grade 1 and Grade 2 GI toxicity, respectively. There was no Grade 3 or Grade 4 acute GI toxicity experienced in the study. Only 4.3% showed late Grade 1 GI toxicity, and there was no late Grade 2 or greater GI toxicity experienced in the study. A total of 41.7%, 35.4% and 2.1% of the men experienced acute Grade 1, Grade 2 and Grade 3 GU toxicity, respectively. There was no Grade 4 acute GU toxicity experienced in the study. Late Grade 1 and Grade 2 GU toxicity was experienced in 17.0% and 2.1% of the patients, respectively. There was no late Grade 3 or greater GU toxicity experienced in the study. Seventy one percent of the patients had a VRS score of 0, and one patient (2%) had Grade 3 teleangiectasia. There was no evidence of ulceration, stricture or necrosis at 12 months. The use of PEG spacer gel is a safe and effective method to spare the rectum from higher dose and toxicity

  15. Hydrogel-based encapsulation of biological, functional tissue: fundamentals, technologies and applications

    Zimmermann, H.; Ehrhart, F.; Zimmermann, D.; Müller, K.; Katsen-Globa, A.; Behringer, M.; Feilen, P. J.; Gessner, P.; Zimmermann, G.; Shirley, S. G.; Weber, M. M.; Metze, J.; Zimmermann, U.

    2007-12-01

    Replacing dysfunctional endocrine cells or tissues (e.g. islets, parathyroid tissue) by functional, foreign material without using immunosuppressives could soon become reality. Immunological reactions are avoided by encapsulating cells/tissues in hydrogel (e.g. alginate) microcapsules, preventing interaction of the enclosed material with the host’s immune system while permitting the unhindered passage of nutrients, oxygen and secreted therapeutic factors. Detailed investigations of the physical, physico-chemical and immunological parameters of alginate-based microcapsules have led recently to the development of a novel class of cell-entrapping microcapsules that meet the demands of biocompatibility, long-term integrity and function. This together with the development of ‘good medical practice’ microfluidic chip technology and of advanced cryopreservation technology for generation and storage of immunoisolated transplants will bring cell-based therapy to clinics and the market.

  16. Phantoms for diffuse optical imaging based on totally absorbing objects, part 2: experimental implementation

    Martelli, Fabrizio; Ninni, Paola Di; Zaccanti, Giovanni; Contini, Davide; Spinelli, Lorenzo; Torricelli, Alessandro; Cubeddu, Rinaldo; Wabnitz, Heidrun; Mazurenka, Mikhail; Macdonald, Rainer; Sassaroli, Angelo; Pifferi, Antonio

    2014-07-01

    We present the experimental implementation and validation of a phantom for diffuse optical imaging based on totally absorbing objects for which, in the previous paper [J. Biomed. Opt. 18(6), 066014, (2013)], we have provided the basic theory. Totally absorbing objects have been manufactured as black polyvinyl chloride (PVC) cylinders and the phantom is a water dilution of intralipid-20% as the diffusive medium and India ink as the absorber, filled into a black scattering cell made of PVC. By means of time-domain measurements and of Monte Carlo simulations, we have shown the reliability, the accuracy, and the robustness of such a phantom in mimicking typical absorbing perturbations of diffuse optical imaging. In particular, we show that such a phantom can be used to generate any absorption perturbation by changing the volume and position of the totally absorbing inclusion.

  17. Property-based design: optimization and characterization of polyvinyl alcohol (PVA) hydrogel and PVA-matrix composite for artificial cornea.

    Jiang, Hong; Zuo, Yi; Zhang, Li; Li, Jidong; Zhang, Aiming; Li, Yubao; Yang, Xiaochao

    2014-03-01

    Each approach for artificial cornea design is toward the same goal: to develop a material that best mimics the important properties of natural cornea. Accordingly, the selection and optimization of corneal substitute should be based on their physicochemical properties. In this study, three types of polyvinyl alcohol (PVA) hydrogels with different polymerization degree (PVA1799, PVA2499 and PVA2699) were prepared by freeze-thawing techniques. After characterization in terms of transparency, water content, water contact angle, mechanical property, root-mean-square roughness and protein adsorption behavior, the optimized PVA2499 hydrogel with similar properties of natural cornea was selected as a matrix material for artificial cornea. Based on this, a biomimetic artificial cornea was fabricated with core-and-skirt structure: a transparent PVA hydrogel core, surrounding by a ringed PVA-matrix composite skirt that composed of graphite, Fe-doped nano hydroxyapatite (n-Fe-HA) and PVA hydrogel. Different ratio of graphite/n-Fe-HA can tune the skirt color from dark brown to light brown, which well simulates the iris color of Oriental eyes. Moreover, morphologic and mechanical examination showed that an integrated core-and-skirt artificial cornea was formed from an interpenetrating polymer network, no phase separation appeared on the interface between the core and the skirt. PMID:24464723

  18. Development, characterization, and applications of self-assembling, photocrosslinkable collagen-based hydrogels

    Gaudet, Ian Daniel

    Development of functional soft-tissue engineered constructs for use in regenerative medicine is currently limited by homogeneity within scaffolds that fails to recapitulate the complex architecture that supports normal function in healthy tissues. Additionally, recent breakthroughs in our understanding the biomechanical cell-matrix interface have provided insight into the role of substrate compliance during development and in the pathophysiological environment. This thesis is the result of investigation into using type-I collagen as a base material for creating dynamic, self-assembling, mechanically and biochemically tunable 3D hydrogel scaffolds into which instructive cellular cues can be imparted anisotropically via the directed application of light. This overarching goal was approached by (1) evaluating extant methods for photonically manipulating type I collagen mechanical properties, which led us to the conclusion that published methods were inadequate for our purposes. Following this realization, we (2) developed a novel process for derivatizing free amines on collagen amino acid residues to reactive methacrylamide moieties, allowing robust spatiotemporal control of mechanical properties through photocrosslinking with long-wave UV light and the water-soluble photoinitiator Irgacure 2959. Thorough characterization of this material, collagen methacrylamide (CMA), provided the basis for multiple applications in the field of soft tissue engineering. Additionally, (3) CMA was used in conjunction with synthetic photopolymers in an effort to create a hybrid natural/synthetic hydrogel material. CMA was also (4) employed as a dynamic hydrogel scaffold which we showed could be used to culture a number of neurogenic stem and progenitor cell types with a focus on using photomodulation to impart instructive heterogeneity to the mechanical and biochemical microenvironment. Finally, (5) we used a computational modeling approach to explain interesting yet poorly understood

  19. Development of carboxymethyl cellulose-based hydrogel and nanosilver composite as antimicrobial agents for UTI pathogens.

    Alshehri, Saad M; Aldalbahi, Ali; Al-Hajji, Abdullah Baker; Chaudhary, Anis Ahmad; Panhuis, Marc In Het; Alhokbany, Norah; Ahamad, Tansir

    2016-03-15

    Silver nanoparticles (AgNPs) containing hydrogel composite were first synthesized by preparing a new hydrogel from carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA), and the cross-linker ethylene glycol diglycidyl ether (EGDE), followed by the incorporation of AgNPs by microwave radiation. The resulting neat hydrogels and AgNPs-hydrogel composites were characterized using spectral, thermal, microscopic analysis and X-ray diffraction (XRD) analyses. The SEM and TEM results demonstrated that the synthesized AgNPs were spherical with diameters ranging from 8 to 14nm. In addition, the XRD analysis confirmed the nanocrystalline phase of silver with face-centered cubic (FCC) crystal structure. Energy dispersive spectroscopy (EDS) analysis of the AgNPs confirmed the presence of an elemental silver signal, and no peaks of any other impurities were detected. Additionally, the antibacterial activities of the neat hydrogel and AgNPs-hydrogel composites were measured by Kirby-Bauer method against urinary tract infection (UTI) pathogens. The rheology measurement revealed that the values of storage modulus (G') were higher than that of loss modulus (G″). The AgNPs-hydrogel composites exhibited higher antibacterial activity against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus vulgaris, Staphylococcus aureus and Proteus mirabilis compared to the corresponding neat hydrogel. PMID:26794757

  20. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. PMID:24702940

  1. Thermo-Responsive Hydrogels Based on Branched Poly(L-lactide)-poly(ethylene glycol) Copolymers

    Velthoen, Ingrid W.; Tijsma, Edze J.; Dijkstra, Pieter J.; Feijen, Jan

    2008-01-01

    Branched poly(L-lactide)-poly(ethylene glycol) (PLLA-PEG) block copolymers were synthesized from trifunctional PLLA and amine functionalized methoxy poly(ethylene glycol)s. The copolymers in water formed hydrogels that showed thermo-responsive behavior. The hydrogels underwent a gel to sol transitio

  2. Preparation of dual-sensitive graft copolymer hydrogel based on N-maleoyl-chitosan and poly(N-isopropylacrylamide) by electron beam radiation

    Jinchen Fan; Jie Chen; Liming Yang; Han Lin; Fangqi Cao

    2009-10-01

    Organic solvent-soluble N-maleoyl-chitosan (NMCS) was synthesized by reaction of chitosan with maleic anhydride (MAH) in N,N-dimethylformamide (DMF). N-maleoyl-chitosan-graft-poly(N-isopropylacrylamide) (NMCS-g-PNIPAAm) copolymer hydrogel was prepared via free radical polymerization by electron beam (EB) irradiation. The copolymer obtained was analysed by FT–IR, XRD and thermal gravimetric analysis (TGA). It was found that the grafting yield and grafting efficiency increased with increasing radiation absorbed dose and monomer amount, and then decreased. The swelling ratio of the copolymer hydrogel was low at pH 4–5, and LCST of the hydrogel was around 32°C.

  3. WOOD HEMICELLULOSE/CHITOSAN-BASED SEMI-INTERPENETRATING NETWORK HYDROGELS: MECHANICAL, SWELLING AND CONTROLLED DRUG RELEASE PROPERTIES

    Muzaffer Ahmet Karaaslan

    2010-04-01

    Full Text Available The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose, and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose, and glucose. The effects of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study, and the ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid.

  4. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery.

    Singh, Baljit; Sharma, Vikrant

    2014-01-30

    The present article deals with design of tragacanth gum-based pH responsive hydrogel drug delivery systems. The characterization of hydrogels has been carried out by SEMs, EDAX, FTIR, (13)C NMR, XRD, TGA/DTA/DTG and swelling studies. The correlation between reaction conditions and structural parameters of polymer networks such as polymer volume fraction in the swollen state (ϕ), Flory-Huggins interaction parameter (χ), molecular weight of the polymer chain between two neighboring cross links (M¯c), crosslink density (ρ) and mesh size (ξ) has been determined. The different kinetic models such as zero order, first order, Higuchi square root law, Korsmeyer-Peppas model and Hixson-Crowell cube root model were applied and it has been observed that release profile of amoxicillin best followed the first order model for the release of drug from the polymer matrix. The swelling of the hydrogels and release of drug from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism in pH 7.4 solution. PMID:24299858

  5. Radiation preparation and characterization of pH-sensitive hydrogel of acrylic acid/cyclodextrin based copolymer

    A β-cyclodextrin (β-CD) based monomer (MAH-β-CD) containing vinyl and carboxyl functional groups was synthesized by reaction of β-CD with maleic anhydride (MAH). A novel hydrogel, poly(AAc-co-MAH-β-CD) with pH and ionic strength sensitivities, was prepared by irradiating the aqueous solution mixture of acrylic acid (AAc) and MAH-β-CD with electron beam. The effect of the feed ratio of the components and irradiation dose on the swelling and deswelling properties of the hydrogel was studied, respectively, the effect of pH and ionic strength on the swelling ratio was determined. Experimental results showed that these copolymer hydrogels did not show any noticeable change in swelling ratio at lower pH range (pH 1-3). However they showed an abrupt increase in swelling ratio at the range of pH 3-6, due to the ionization of carboxyl groups. Fourier transform infrared (FT-IR) spectrometer was applied in the attenuated total reflectance (ATR) mode for analyzing the structure change of the hydrogels after the treatment of different pH buffer solutions. (author)

  6. Magnetic hydrogel beads based on PVA/sodium alginate/laponite RD and studying their BSA adsorption.

    Mahdavinia, Gholam Reza; Mousanezhad, Sedigheh; Hosseinzadeh, Hamed; Darvishi, Farshad; Sabzi, Mohammad

    2016-08-20

    In this study double physically crosslinked magnetic hydrogel beads were developed by a simple method including solution mixing of sodium alginate and poly(vinyl alcohol) (PVA) containing magnetic laponite RD (Rapid Dispersion). Sodium alginate and PVA were physically crosslinked by Ca(2+) and freezing-thawing cycles, respectively. Magnetic laponite RD nanoparticles were incorporated into the system to create magnetic response and strengthen the hydrogels. All hybrids double physically crosslinked hydrogel beads were stable under different pH values without any disintegration. Furthermore, adsorption of bovine serum albumin (BSA) on the hydrogel beads was investigated on the subject of pH, ion strength, initial BSA concentration, and temperature. Nanocomposite beads exhibited maximum adsorption capacity for BSA at pH=4.5. The experimental adsorption isotherm data were well followed Langmuir model and based on this model the maximum adsorption capacity was obtained 127.3mgg(-1) at 308K. Thermodynamic parameters revealed spontaneous and monolayer adsorption of BSA on magnetic nanocomposites beads. PMID:27178944

  7. Design, Simulation and Experimental Characteristics of Hydrogel-based Piezoresistive pH Sensors

    Trinh, Thong Quang; Sorber, Jorge; Gerlach, Gerald

    This paper presents the investigations of a novel type of piezoresistive pH sensors exploiting the chemo-mechanical energy conversion due to hydrogel swelling. pH-sensitive poly(vinyl alcohol)-poly(acrylic acid) (PVA-PAA) hydrogel is used for this aim. The pH sensor has been designed including a commercial piezoresistive pressure sensor chip, a hydrogel layer, and a rigid grid. Behaviour of pH sensor under swelling of polymer hydrogel has been simulated using finite element method (ANSYS). The sensor simulations have been performed using the experimental material parameters of PVA-PAA hydrogel. The sensor characteristics including the silicon diaphragm deflection and output voltage have been measured. There were good relative agreements between simulations and experimental results.

  8. Modified maltodextrin-based hydrogel as a potential device for magnetic bio material

    A magnetic hydrogel was synthesized by a cross-linking/co-polymerization reaction of modified malto-dextrin and acrylamide in the presence of magnetite nanoparticles and persulfate as an initiator. The characterization of the formed hydrogel was accomplished by means of Fourier transform infrared spectroscopy (FT-IR), Moessbauer spectroscopy (MS), X-ray diffraction (XRD), and swelling rate (WR). The FT-IR analysis revealed that the malto-dextrin modification and the gelling process were efficient. From the MS and XRD analyses, it was concluded that the magnetite nanoparticles were efficiently embedded into the hydrogel structure and that the crystalline planes were different from those of the start material. WR decreased with the use of increasing amounts of magnetite in the hydrogel synthesis. In this sense, the electrostatic interactions decreased for increasing amounts of magnetite because the Fe3+ ions neutralized the negative charges of the hydrogel structure. (author)

  9. Multi-responsive supramolecular hydrogels based on merocyanine-peptide conjugates.

    Wang, Wei; Hu, Jing; Zheng, Mengmeng; Zheng, Li; Wang, Huan; Zhang, Yan

    2015-12-21

    Stimuli-responsive hydrogels are "smart" materials with diverse applications. We now report short peptide conjugates with merocyanine (MC) that are able to form stimuli-responsive hydrogels. Systematic investigation reveals that merocyanine is a highly effective promoter for the self-assembly of its oligopeptide conjugates. Hydrogels formed by MC-peptide conjugates showed responses towards light and heat, and their sol-gel phase transition could be manipulated by the reverse photochromism of the corresponding spiropyran moiety. Impressively, a MCI-RGD conjugate formed a supramolecular hydrogel with responses to multiple stimuli, including visible light irradiation, pH change and the presence of Ca(2+) ions. An erasable photo-lithograph on the MCI-RGD hydrogel was demonstrated using visible light to write and heat-and-cool treatment to erase for multiple rounds without significant loss of sensitivity. PMID:26456175

  10. Direct absorbed dose to water determination based on water calorimetry in scanning proton beam delivery

    Purpose: The aim of this manuscript is to describe the direct measurement of absolute absorbed dose to water in a scanned proton radiotherapy beam using a water calorimeter primary standard. Methods: The McGill water calorimeter, which has been validated in photon and electron beams as well as in HDR 192Ir brachytherapy, was used to measure the absorbed dose to water in double scattering and scanning proton irradiations. The measurements were made at the Massachusetts General Hospital proton radiotherapy facility. The correction factors in water calorimetry were numerically calculated and various parameters affecting their magnitude and uncertainty were studied. The absorbed dose to water was compared to that obtained using an Exradin T1 Chamber based on the IAEA TRS-398 protocol. Results: The overall 1-sigma uncertainty on absorbed dose to water amounts to 0.4% and 0.6% in scattered and scanned proton water calorimetry, respectively. This compares to an overall uncertainty of 1.9% for currently accepted IAEA TRS-398 reference absorbed dose measurement protocol. The absorbed dose from water calorimetry agrees with the results from TRS-398 well to within 1-sigma uncertainty. Conclusions: This work demonstrates that a primary absorbed dose standard based on water calorimetry is feasible in scattered and scanned proton beams.