WorldWideScience

Sample records for absorbed doses profiles

  1. An absorbed dose microcalorimeter

    A graphite microcalorimeter is described for use as a primary standard of ionising radiation absorbed dose; its place in the hierarchy of Australian ionising radiation standards is discussed. A disc shaped absorber is supported on pins within three nested graphite jackets and an insulated vacuum vessel. Calibration heating is by thermistor, the feasibility of this was verified by computer modelling. Adiabatic and heat-flow modes of operation are described, and calculations of heat transfer between the various graphite parts are summarised. Carbon and water phantoms were built for the evaluation of correction factors for the microcalorimeter, and for the calibration of radiotherapy dosemeters. The microcalorimeter will be used as a working standard for the calibration of dosemeters in terms of absorbed dose for the x-ray, gamma-ray and electron radiotherapy beams commonly used in Australia today

  2. Absorbed doses profiles vs Synovia tissue depth for the Y-90 and P-32 used in radiosynoviortesis treatment

    The radiosynoviortesis treatment has been used during more of 40 years as an alternative to the chemical and surgical synovectomy to alleviate the pain and to reduce the inflammation in suffered patients of rheumatic arthropathies, haemophilic arthropathies and other articulation disorders. It consists on the injection of radioactive isotopes inside a synovial cavity. For to evaluate the dosimetry of the radiosynoviortesis treatment is of great interest to know the absorbed dose in the volume of the target (synovia). The precise calculation of the absorbed dose in the inflamed synovia it is difficult, for numerous reasons, since the same one will depend on the thickness of the synovial membrane, the size of the articular space, the structure of the synovial membrane, the distribution in the articulation, the nature of the articular liquid, etc. Also the presence of the bone and the articular cartilage, components also of the articulation, it even complicated more the calculations. The method used to evaluate the dosimetry in radioactive synovectomy is known as the Monte Carlo method. The objective of our work consists on estimating with the Monte Carlo code MCNP4B the absorbed dose of the Y-90 and the P-32 in the depth of the synovial tissue. The results are presented as absorbed dose for injected millicurie (Gy/mCi) versus depth of synovial tissue. The simulation one carries out keeping in mind several synovia areas, of 50 cm2 to 250 cm2 keeping in mind three states of progression of the illness. Those obtained values of absorbed dose using the MCNP4B code will allow to introduce in our country an optimized method of dose prescription to the patient, to treat the rheumatic arthritis in medium and big articulations using the Y-90 and the P-32, eliminating the fixed doses and fixed radionuclides for each articulation like it happens in many clinics of Europe, as well as the empiric doses. (Author)

  3. [Absorbed doses in dental radiology].

    Bianchi, S D; Roccuzzo, M; Albrito, F; Ragona, R; Anglesio, S

    1996-01-01

    The growing use of dento-maxillo-facial radiographic examinations has been accompanied by the publication of a large number of studies on dosimetry. A thorough review of the literature is presented in this article. Most studies were carried out on tissue equivalent skull phantoms, while only a few were in vivo. The aim of the present study was to evaluate in vivo absorbed doses during Orthopantomography (OPT). Full Mouth Periapical Examination (FMPE) and Intraoral Tube Panoramic Radiography (ITPR). Measurements were made on 30 patients, reproducing clinical conditions, in 46 anatomical sites, with 24 intra- and 22 extra-oral thermoluminiscent dosimeters (TLDS). The highest doses were measured, in orthopantomography, at the right mandibular angle (1899 mu Gy) in FMPE on the right naso-labial fold (5640 mu Gy and in ITPR on the palatal surface of the left second upper molar (1936 mu Gy). Intraoral doses ranged from 21 mu Gy, in orthopantomography, to 4494 mu Gy in FMPE. Standard errors ranged from 142% in ITPR to 5% in orthopantomography. The highest rate of standard errors was found in FMPE and ITPR. The data collected in this trial are in agreement with others in major literature reports. Disagreements are probably due to different exam acquisition and data collections. Such differences, presented comparison in several sites, justify lower doses in FMPE and ITPR. Advantages and disadvantages of in vivo dosimetry of the maxillary region are discussed, the former being a close resemblance to clinical conditions of examination and the latter the impossibility of collecting values in depth of tissues. Finally, both ITPR and FMPE required lower doses than expected, and can be therefore reconsidered relative to their radiation risk. PMID:8966249

  4. The MIRD method of estimating absorbed dose

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine.

  5. Estimation of Absorbed Dose in Occlusal Radiography

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  6. Estimation of Absorbed Dose in Occlusal Radiography

    Yoo, Young Ah; Choi, Karp Shick [Dept. of Oral Radiology, College of Dentistry, Kyungpuk National University, Daegu (Korea, Republic of); Lee, Sang Han [Dept. of Oral and Maxillofacial Surgery, College of Dentistry, Kyungpook National University, Daegu (Korea, Republic of)

    1990-02-15

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  7. On the definition of absorbed dose

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  8. Determination of absorbed dose in water

    This report describes the experimental work carried out for the determination of absorbed dose in water in the energy of X-rays generated at potentials of 100 kV to 250 kV. Two small cavity ionization chambers were used for this experiment. The results of these measurements were compared with the results obtained by using NPL Secondary Standard Therapy level X-ray exposure meter. The related problems of converting an exposure quantity into absorbed dose in water an absorbed dose in water have also been discussed. (Orig./A.B.)

  9. Absorbed dose by a CMOS in radiotherapy

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  10. On the definition of absorbed dose

    Grusell, Erik

    2015-02-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before.

  11. Absorbed Doses to Patients in Nuclear Medicine

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: 11C- acetate, 11C- methionine, 18F-DOPA, whole antibody labelled with either 99mTc, 111In, 123I or 131I, fragment of antibody, F(ab')2 labelled with either 99mTc, 111In, 123I or 131I and fragment of antibody, Fab' labelled with either 99mTc, 111In, 123I or 131I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. 14C-urea (children age 3-6 years), 14C-glycocholic acid, 14C-xylose and 14C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested

  12. Absorbed doses from temporomandibular joint radiography

    Brooks, S.L.; Lanzetta, M.L.

    1985-06-01

    Thermoluminescent dosimeters were used in a tissue-equivalent phantom to measure doses of radiation absorbed by various structures in the head when the temporomandibular joint was examined by four different radiographic techniques--the transcranial, transorbital, and sigmoid notch (Parma) projections and the lateral tomograph. The highest doses of radiation occurred at the point of entry for the x-ray beam, ranging from 112 mrad for the transorbital view to 990 mrad for the sigmoid notch view. Only the transorbital projection a radiation dose to the lens of the eye. Of the four techniques evaluated, the lateral tomograph produced the highest doses to the pituitary gland and the bone marrow, while the sigmoid notch radiograph produced the highest doses to the parotid gland.

  13. Absorbed doses from temporomandibular joint radiography

    Thermoluminescent dosimeters were used in a tissue-equivalent phantom to measure doses of radiation absorbed by various structures in the head when the temporomandibular joint was examined by four different radiographic techniques--the transcranial, transorbital, and sigmoid notch (Parma) projections and the lateral tomograph. The highest doses of radiation occurred at the point of entry for the x-ray beam, ranging from 112 mrad for the transorbital view to 990 mrad for the sigmoid notch view. Only the transorbital projection a radiation dose to the lens of the eye. Of the four techniques evaluated, the lateral tomograph produced the highest doses to the pituitary gland and the bone marrow, while the sigmoid notch radiograph produced the highest doses to the parotid gland

  14. Photon absorbed dose: the UK standard

    Since 1988, the primary standard for megavoltage photon dosimetry in the UK has been a graphite calorimeter. The routine calibration of secondary standard ionisation chambers has been provided by NPL directly in terms of absorbed dose to water since then, with users following the 1990 IPSM Code of Practice. Comparisons of the primary standard with NPL's reference ionisation chambers have been carried out annually, and the calibration service has been offered in the spring and autumn each year, for 60Co γ-rays and 4 MV to 19 MV X-rays. The data generated have been analysed and the results of this analysis are presented here. The long-term stability of the NE 2561 chamber, and its value in maintaining the standard of absorbed dose is demonstrated. The utility of TPR as a beam quality parameter is discussed, and the resulting ambiguity in chamber calibration is quantified. The conversion of dose from graphite to water is summarized, and changes in the basis of the NPL absorbed dose standard over the last seven years are described

  15. Absorbed dose evaluation by SISCODES code, kerma and fluence deviations

    Radiotherapy is a common treatment of cancer. Radiotherapy exposes the patient to a radiation field, producing ionization, and absorbed dose. A precise dose calculation and the ability to execute the irradiation on the patient are necessary in order to avoid serious injuries on the surrounding health tissue, thus, the maximum acceptable absorbed dose error from the prescribed and applied is about 5%. The doses on radiotherapy are usually calculated by superimposition experimental dose profile, namely PDP, which is experimentally measured in a water simulator. Moreover, the radiation interaction with human body tissues depends on the chemical composition and the tissue density, which means the anthropomorphism and anthropometric of the human being. This paper evaluates the deviation of calculated value of kerma, induced by human body heterogeneities. To do this job two thorax voxel models created on SISCODES (one filled with various tissues other filled with water) were applied. The result of simulations permits two different comparisons. One is the ratio between tissues kermas and water kerma. Another is the ratio between human phantom fluence, where exists radiation scatter and reflection, and water phantom fluence. The reconstructed pictures of studied regions showing the calculated ratios, and graphs of the ratios versus energy of each tissue are shown. The dose ratio deviations obtained are, in some situations, larger than the acceptable 5% point out serious miscalculation of doses for some spatial regions on the human body. (author)

  16. Determination of absorbed dose in reactors

    There are many areas in the use and operation of research reactors where the absorbed dose and the neutron fluence are required. These include work on the determination of the radiolytic stability of the coolant and moderator and on the determination of radiation damage in structural materials, and reactor experiments involving radiation chemistry and radiation biology. The requirements range from rough estimates of the total heating due to radiation to precise values specifying the contributions of gamma rays, thermal neutrons and fast neutrons. To meet all these requirements a variety of experimental measurements and calculations as well as a knowledge of reactor radiations and their interactions is necessary. Realizing the complexity and importance of this field, its development at widely separated laboratories and the need to bring the experts in this work together, the IAEA has convened three panel meetings. These were: 'In-pile dosimetry', held in July 1964 (published by the Agency as Technical Reports Series No. 46); 'Neutron fluence measurements', in October 1965; and 'In-pile dosimetry', in November 1966. The recommendations of these three panels led the Agency to form a Working Group on Reactor Radiation Measurements and to commission the writing of this book and a book on Neutron Fluence Measurements. The latter was published in May 1970 (Technical Reports Series No. 107). The material on neutron fluence and absorbed dose measurements is widely scattered in reports and reviews. It was considered that it was time for all relevant information to be evaluated and put together in the form of a practical guide that would be valuable both to experienced workers and beginners in the field

  17. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    McLaughlin, W. L.; Miller, Arne; Fidan, S.;

    1977-01-01

    Thin radiochromic dye films are useful for measuring large radiation absorbed doses (105–108 rads) and for high-resolution imaging of dose patterns produced by penetrating radiation beams passing through non-homogeneous media. Certain types of amino-substituted triarylmethane cyanides dissolved in...... polymeric solutions can be cast into flexible free-standing thin films of uniform thickness and reproducible response to ultraviolet and ionizing radiation. The increase in optical density versus energy deposited by radiation is linear over a wide range of doses and is for practical purposes independent of...... dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods of at...

  18. Determination of Absorbed Dose Using a Dosimetric Film

    This paper presents the absorbed dose measurements by means of the irradiated dosimetric reference films. The dose distributions were made by MULTIDATA film densitometer using RTD-4 software, in INFLPR Linear Accelerator Department

  19. Specification of absorbed dose for reporting a therapeutic irradiation

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  20. Evaluation of absorbed dose in Gadolinium neutron capture therapy

    Abdullaeva Gayane; Djuraeva Gulnara; Kim Andrey; Koblik Yuriy; Kulabdullaev Gairatulla; Rakhmonov Turdimukhammad; Saytjanov Shavkat

    2015-01-01

    Gadolinium neutron capture therapy (GdNCT) is used for treatment of radioresistant malignant tumors. The absorbed dose in GdNCT can be divided into four primary dose components: thermal neutron, fast neutron, photon and natural gadolinium doses. The most significant is the dose created by natural gadolinium. The amount of gadolinium at the irradiated region is changeable and depends on the gadolinium delivery agent and on the structure of the location where the agent i...

  1. An international intercomparison of absorbed dose measurements for radiation therapy

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  2. Absorbed doses to patients from angioradiology

    The aim of study was to know patients doses exposes when three different procedures of angioradiology were carried out. The explorations considered were drainage biliary, varicocele embolization and dacriocistography made in the Radiodiagnostic Service at the University Hospital of Canary Islands, Tenerife (Spain). In total 14 patients were studied. The measurements were made using large area transmission ionisation chamber which gives the values of Dose Area Product (DAP). In addition, thermoluminescent dosimeters type TLD-100 were used in anthropomorphic phantom in order to obtain values of organ doses when the phantom was submitted to the same procedures rather than the actual patients. Furthermore, the Effdose program was used to estimate the effective doses in the procedures conditions. The values for DAP were in the range of 70-300 for drainage biliary, 43-180 for varicocele embolization and 1.4-9 for dacriocistography. The organ doses measured with TLD-100 were higher than the corresponding values estimated by Effdose program. The results for varicocele embolization were higher than other published data. In the case of drainage biliary procedure, the values were closed to other published results. It was not possible to find data for dacriocistography from other authors. (author)

  3. Direct MC conversion of absorbed dose to graphite to absorbed dose to water for 60Co radiation.

    Lye, J E; Butler, D J; Franich, R D; Harty, P D; Oliver, C P; Ramanathan, G; Webb, D V; Wright, T

    2013-06-01

    The ARPANSA calibration service for (60)Co gamma rays is based on a primary standard graphite calorimeter that measures absorbed dose to graphite. Measurements with the calorimeter are converted to the absorbed dose to water using the calculation of the ratio of the absorbed dose in the calorimeter to the absorbed dose in a water phantom. ARPANSA has recently changed the basis of this calculation from a photon fluence scaling method to a direct Monte Carlo (MC) calculation. The MC conversion uses an EGSnrc model of the cobalt source that has been validated against water tank and graphite phantom measurements, a step that is required to quantify uncertainties in the underlying interaction coefficients in the MC code. A comparison with the Bureau International des Poids et Mesures (BIPM) as part of the key comparison BIPM.RI(I)-K4 showed an agreement of 0.9973 (53). PMID:23152147

  4. In vivo dosimetry for head and neck carcinoma: determination of target absorbed dose from entrance and exit absorbed dose measurements

    Farhat, L.; Daoud, J. [Service de radiotherapie carcinologique, CHU Habib-Bourguiba, 3029 Sfax (Tunisia); Besbes, M. [Service de radiotherapie carcinologique, Institut Salah-Azaiz, Boulevard du 9-avril-Bab-Saadoun, 1006 Tunis (Tunisia); Bridier, A. [Service de radiophysique, Institut Gustave-Roussy, 39 rue Camille-Desmoulins, 94805 Villejuif Cedex (France)

    2011-04-15

    The aims of this work were to measure the entrance and exit dose for patient treated for head and neck tumors. The target absorbed dose was determined from the exit and entrance dose measurement. Twenty patients were evaluated. The results were compared to the calculated values and the midline dose was determinate and compared with the prescribed dose. 80 entrance doses and 80 exit doses measurements were performed. The average difference from expected values was 1.93% for entrance dose (SD 1.92%) and -0.34% for exit dose (SD 4.1%). The target absorbed dose differed from prescribed dose values by 2.94% (1.97%) for the results using the Noel method and 3.34% (SD: 2.29%) with the Rizzotti method. The total uncertainty budget in the measurement of the absorbed entrance and exit dose with diode, including diode reading, correction factors and diode calibration coefficient, is determined as 3.02% (1 s). Simple in vivo dose measurements are an additional safeguard against major setup errors and calculation or transcription errors that were missed during pre-treatment chart check. (authors)

  5. Absorbed doses profiles vs Synovia tissue depth for the Y-90 and P-32 used in radiosynoviortesis treatment; Perfiles de dosis absorbida vs profundidad de tejido sinovial para el Y-90 y el P-32 empleados en tratamiento de radiosinoviortesis

    Torres B, M.B.; Ayra P, F.E. [Centro de Isotopos (Cuba); Garcia R, E. [Hospital General Docente Enrique Cabrera (Cuba); Cornejo D, N. [CPHR, (Cuba); Yoriyaz, H. [IPEN, (Brazil)]. e-mail: nestor@cphr.edu.cu

    2006-07-01

    The radiosynoviortesis treatment has been used during more of 40 years as an alternative to the chemical and surgical synovectomy to alleviate the pain and to reduce the inflammation in suffered patients of rheumatic arthropathies, haemophilic arthropathies and other articulation disorders. It consists on the injection of radioactive isotopes inside a synovial cavity. For to evaluate the dosimetry of the radiosynoviortesis treatment is of great interest to know the absorbed dose in the volume of the target (synovia). The precise calculation of the absorbed dose in the inflamed synovia it is difficult, for numerous reasons, since the same one will depend on the thickness of the synovial membrane, the size of the articular space, the structure of the synovial membrane, the distribution in the articulation, the nature of the articular liquid, etc. Also the presence of the bone and the articular cartilage, components also of the articulation, it even complicated more the calculations. The method used to evaluate the dosimetry in radioactive synovectomy is known as the Monte Carlo method. The objective of our work consists on estimating with the Monte Carlo code MCNP4B the absorbed dose of the Y-90 and the P-32 in the depth of the synovial tissue. The results are presented as absorbed dose for injected millicurie (Gy/mCi) versus depth of synovial tissue. The simulation one carries out keeping in mind several synovia areas, of 50 cm{sup 2} to 250 cm{sup 2} keeping in mind three states of progression of the illness. Those obtained values of absorbed dose using the MCNP4B code will allow to introduce in our country an optimized method of dose prescription to the patient, to treat the rheumatic arthritis in medium and big articulations using the Y-90 and the P-32, eliminating the fixed doses and fixed radionuclides for each articulation like it happens in many clinics of Europe, as well as the empiric doses. (Author)

  6. Evaluation of the absorbed dose in odontological computerized tomography

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  7. Phantoms for calculations of absorbed organ dose

    We have developed a computer code IDES (Internal Dose Estimation System). In this code, MIRD Transformation Method is used and photon simulation by Monte Carlo method is also possible. We have studied Japanese phantoms in two procedures, mathematical phantom and 'symbol phantoms'. Our mathematical phantoms realize their height and body weights but does not hold some of organ weights, which were measured by TANAKA and KAWAMURA. The symbol phantom can solve this discrepancy and realize a realistic phantom, although it remains problems of authorization and normalization. Errors were estimated for internal dose calculations and it was pointed out that to use realistic organ weights and parameters of kinetics was important competitively to reduce uncertainty of the results. (author)

  8. Thyroid absorbed dose using TLDs during mammography

    Gonzalez A, M.; Melendez L, M. [IPN, Centro de Investigacion y de Estudios Avanzados, Av. IPN 2508, Col. San Pedro Zacatenco, 07360 Mexico D. F. (Mexico); Davila M, P., E-mail: biomedica.sst@gmail.com [UNEME-DEDICAM de Ciudad Victoria, Circuito Medico s/n, 87087 Ciudad Victoria, Tamaulipas (Mexico)

    2015-10-15

    Full text: In this study, the mean glandular dose (MGD) and the thyroid dose (D Thy) were measured in 200 women screened with mammography in Cranio caudal (Cc) and mediolateral oblique projections. All mammograms were performed with Giotto-Ims (6000-14-M2 Model) equipment, which was verified to meet the criteria of quality of NOM-229-Ssa-2002. During audits performance and HVL, for each anode filter combinations was measured with the camera Radcal mammography equipment 10 X 6-6M (HVL = 0.26 mm Al). D Thy measurements were performed with TLD dosimeters (LiF:Mn) , that were read with the Harshaw 3500 TLD reader. The MGD, was obtained according to the UK and European protocols for mammographic dosimetry using a plane parallel chamber (Standard Imaging, Model A-600) calibrated by a radiation beam UW-23-Mo (= 0.279 mm Al HVL). A comparative statistical analysis was carried out with the measured MGD and D thy. The thyroid mean dose was 0.063 mGy and 0.078 mGy for Cc and mediolateral oblique respectively. There is a linear correlation between the MGD and the D Thy slightly influenced by the anode-filter combination. Using a 95% for the confidence interval in MGD (1.07 mGy), the 90% of measurements are in agreement with the established uncertainty limits. The D Thy are lower than the MGD. There is no risk for cancer induction in thyroid in women due to mammography screening. (Author)

  9. Thyroid absorbed dose using TLDs during mammography

    Full text: In this study, the mean glandular dose (MGD) and the thyroid dose (D Thy) were measured in 200 women screened with mammography in Cranio caudal (Cc) and mediolateral oblique projections. All mammograms were performed with Giotto-Ims (6000-14-M2 Model) equipment, which was verified to meet the criteria of quality of NOM-229-Ssa-2002. During audits performance and HVL, for each anode filter combinations was measured with the camera Radcal mammography equipment 10 X 6-6M (HVL = 0.26 mm Al). D Thy measurements were performed with TLD dosimeters (LiF:Mn) , that were read with the Harshaw 3500 TLD reader. The MGD, was obtained according to the UK and European protocols for mammographic dosimetry using a plane parallel chamber (Standard Imaging, Model A-600) calibrated by a radiation beam UW-23-Mo (= 0.279 mm Al HVL). A comparative statistical analysis was carried out with the measured MGD and D thy. The thyroid mean dose was 0.063 mGy and 0.078 mGy for Cc and mediolateral oblique respectively. There is a linear correlation between the MGD and the D Thy slightly influenced by the anode-filter combination. Using a 95% for the confidence interval in MGD (1.07 mGy), the 90% of measurements are in agreement with the established uncertainty limits. The D Thy are lower than the MGD. There is no risk for cancer induction in thyroid in women due to mammography screening. (Author)

  10. Electron absorbed dose measurements in LINACs by thermoluminescent dosimeters

    In this work, electron absorbed doses measurements in radiation therapy (RT) were obtained. Radiation measurements were made using thermoluminescent dosimeters of calcium sulfate doped with dysprosium (CaSO4:Dy) and zirconium oxide (ZrO2). TL response calibration was obtained by irradiating TLDs and a Farmer cylindrical ionization chamber PTW 30013 at the same time. Each TL material showed a typical glow curve according to each material. Both calcium sulfate doped with dysprosium and zirconium oxide exhibited better light intensity to high energy electron beam compared with lithium fluoride. TL response as a function of absorbed dose was analyzed. TL response as a function of high energy electron beam was also studied. - Highlights: • Experimental results of ZrO2 irradiated by high energy electron beam. • Dosimetric characteristics of CaSO4:Dy were obtained under high energy electron effect. • Absorbed dose in electron beam was determined by TL phosphors. • Absorbed dose could be measured by TL phosphors and the results suggest that phosphors are good candidate for absorbed dose determining

  11. Patient absorbed radiation doses estimation related to irradiation anatomy

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector

  12. Absorbed dose to water reference dosimetry using solid phantoms in the context of absorbed-dose protocols

    For reasons of phantom material reproducibility, the absorbed dose protocols of the American Association of Physicists in Medicine (AAPM) (TG-51) and the International Atomic Energy Agency (IAEA) (TRS-398) have made the use of liquid water as a phantom material for reference dosimetry mandatory. In this work we provide a formal framework for the measurement of absorbed dose to water using ionization chambers calibrated in terms of absorbed dose to water but irradiated in solid phantoms. Such a framework is useful when there is a desire to put dose measurements using solid phantoms on an absolute basis. Putting solid phantom measurements on an absolute basis has distinct advantages in verification measurements and quality assurance. We introduce a phantom dose conversion factor that converts a measurement made in a solid phantom and analyzed using an absorbed dose calibration protocol into absorbed dose to water under reference conditions. We provide techniques to measure and calculate the dose transfer from solid phantom to water. For an Exradin A12 ionization chamber, we measured and calculated the phantom dose conversion factor for six Solid WaterTM phantoms and for a single Lucite phantom for photon energies between 60Co and 18 MV photons. For Solid WaterTM of certified grade, the difference between measured and calculated factors varied between 0.0% and 0.7% with the average dose conversion factor being low by 0.4% compared with the calculation whereas for Lucite, the agreement was within 0.2% for the one phantom examined. The composition of commercial plastic phantoms and their homogeneity may not always be reproducible and consistent with assumed composition. By comparing measured and calculated phantom conversion factors, our work provides methods to verify the consistency of a given plastic for the purpose of clinical reference dosimetry

  13. Application of cytogenetic methods for estimation of absorbed dose

    Accumulated data on the practical application of cytogenetic technique to evaluate the absorbed dose for men involved in activities to eliminate the effects of the Chernobyl NPP accident were analyzed. Those data were compared with the results of cytogenetic studies conducted in other Russia regions affected by radiation impacts (Muslyumovo settle., Chelyabinsk Region, the Altay Territory settlements near the Semipalatinsk test range) and with the examination results of population of the territory of the Three Mile Island NPP (Island, Pennsylvania, USA) where in 1975 the nuclear accident took place. The cytogenetic studies were carried out using the standard analysis technique evaluating the frequency of unstable aberrations of chromosomes (UA) and using FISH-technique designed to evaluate the frequency of stable aberrations of chromosomes. It was pointed out that UA-technique could not be used efficiently for the retrospective evaluation of the absorbed doses with no clear idea correlating the nature and the rate of elimination with cell life time, especially, in case of small doses of irradiation. Analysis of the stable translocation using FISH-technique enabled to evaluate the absorbed dose within 8-9 years following the accident. The range of the absorbed doses of the examined persons varied from the background ones up to 1 Gy

  14. Standardization of high-dose measurement of electron and gamma ray absorbed doses and dose rates

    Intense electron beams and gamma radiation fields are used for sterilizing medical devices, treating municipal wastes, processing industrial goods, controlling parasites and pathogens, and extending the shelf-life of foods. Quality control of such radiation processes depends largely on maintaining measurement quality assurance through sound dosimetry procedures in the research leading to each process, in the commissioning of that process, and in the routine dose monitoring practices. This affords documentation as to whether satisfactory dose uniformity is maintained throughout the product and throughout the process. Therefore, dosimetry at high doses and dose rates must in many radiation processes be standardized carefully, so that 'dosimetry release' of a product is verified. This standardization is initiated through preliminary dosimetry intercomparison studies such as those sponsored recently by the IAEA. This is followed by establishing periodic exercises in traceability to national or international standards of absorbed dose and dose rate. Traceability is achieved by careful selection of dosimetry methods and proven reference dosimeters capable of giving sufficiently accurate and precise 'transfer' dose assessments: (1) they must be calibrated or have well-established radiation-yield indices; (2) their radiation response characteristics must be reproducible and cover the dose range of interest; (3) they must withstand the rigours of back-and-forth mailing between a central standardizing laboratory and radiation processing facilities, without excessive errors arising due to instabilities, dosimeter batch non-uniformities, and environmental and handling stresses. (author)

  15. Sensors of absorbed dose of ionizing radiation based on mosfet

    Perevertaylo V. L.

    2010-01-01

    The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  16. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Nosslin, Bertil [Universitetssjukhuset MAS, Malmoe (Sweden). Avd. foer radiofysik; Johansson, Lennart [Norrlands Universitetssjukhus, Umeaa (Sweden). Avd. foer radiofysik

    2004-09-01

    The work with a Swedish catalogue of radiation absorbed doses to patients undergoing nuclear medicine investigations has continued. After the previous report in 1999, biokinetic data and dose estimates (mean absorbed dose to various organs and tissues and effective dose) have been produced for a number of substances: {sup 11}C- acetate, {sup 11}C- methionine, {sup 18}F-DOPA, whole antibody labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I, fragment of antibody, F(ab'){sub 2} labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I and fragment of antibody, Fab' labelled with either {sup 99m}Tc, {sup 111}In, {sup 123}I or {sup 131}I. The absorbed dose estimates for these substances have been made from published biokinetic information. For other substances of interest, e.g. {sup 14}C-urea (children age 3-6 years), {sup 14}C-glycocholic acid, {sup 14}C-xylose and {sup 14}C-triolein, sufficient literature data have not been available. Therefore, a large number of measurements on patients and volunteers have been carried out, in order to determine the biokinetics and dosimetry for these substances. Samples of breast milk from 50 mothers, who had been subject to nuclear medicine investigations, have been collected at various times after administration of the radiopharmaceutical to the mother. The activity concentration in the breast milk samples has been measured. The absorbed dose to various organs and tissues and the effective dose to the child who ingests the milk have been determined for 17 different radiopharmaceuticals. Based on these results revised recommendations for interruption of breast-feeding after nuclear medicine investigations are suggested.

  17. Problems in radiation absorbed dose estimation from positron emitters

    The positron emitters commonly used in clinical imaging studies for the most part are short-lived, so that when they are distributed in the body the radiation absorbed dose is low even though most of the energy absorbed is from the positrons themselves rather than the annihilation radiation. These considerations do not apply to the administration pathway for a radiopharmaceutical where the activity may be highly concentrated for a brief period rather than distributed in the body. Thus, high local radiation absorbed doses to the vein for an intravenous administration and to the upper airways during administration by inhalation can be expected. For these geometries, beta point source functions (FPS's) have been employed to estimate the radiation absorbed dose in the present study. Physiologic measurements were done to determine other exposure parameters for intravenous administration of O-15 and Rb-82 and for administration of O-15-CO2 by continuous breathing. Using FPS's to calculate dose rates to the vein wall from O-15 and Rb-82 injected into a vein having an internal radius of 1.5 mm yielded dose rates of 0.51 and 0.46 (rad x g/μCi x h), respectively. The dose gradient in the vein wall and surrounding tissues was also determined using FPS's. Administration of O-15-CO2 by continuous breathing was also investigated. Using ultra-thin thermoluninescent dosimeters (TLD's) having the effective thickness of normal tracheal mucosa, experiments were performed in which 6 dosimeters were exposed to known concentrations of O-15 positrons in a hemicylindrical tracheal phantom having an internal radius of 0.96 cm and an effective length of 14 cm. The dose rate for these conditions was 3.4 (rads/h)/(μCi/cm3). 15 references, 7 figures, 6 tables

  18. Three dimensional measurements of absorbed dose in BNCT by Fricke-gel imaging

    A method has been studied for absorbed dose imaging and profiling in a phantom exposed to thermal or epithermal neutron fields, also discriminating between various contributions to the absorbed dose. The proposed technique is based on optical imaging of FriXy-gel phantoms, which are proper tissue-equivalent phantoms acting as continuous dosimeters. Convenient modifications in phantom composition allow, from differential measurements, the discrimination of various contributions to the absorbed dose. The dosimetry technique is based on a chemical dosimeter incorporated in a tissue-equivalent gel (Agarose). The chemical dosimeter is a ferrous sulphate solution (which is the main component of the standard Fricke dosimeter) added with a metal ion indicator (Xylenol Orange). The absorbed dose is measured by analysing the variation of gel optical absorption in the visible spectrum, imaged by means of a CCD camera provided with a suitable filter. The technique validity has been tested by irradiating and analysing phantoms in the thermal facility of the fast research reactor TAPIRO (ENEA, Casaccia, Italy). In a cylindrical phantom simulating a head, we have imaged the therapy dose from thermal neutron reactions with 10B and the dose in healthy tissue not containing boron. In tissue without boron, we have discriminated between the two main contributions to the absorbed dose, which comes from the 1H(n,γ)2H and 14N(n,p)14C reactions. The comparison with the results of other experimental techniques and of simulations reveals that the technique is very promising. A method for the discrimination of fast neutron contribution to the absorbed dose, still in an experimental stage, is proposed too. (author)

  19. New absorbed dose measurement with cylindrical water phantoms for multidetector CT

    The aim of this study was to develop new dosimetry with cylindrical water phantoms for multidetector computed tomography (MDCT). The ionization measurement was performed with a Farmer ionization chamber at the center and four peripheral points in the body-type and head-type cylindrical water phantoms. The ionization was converted to the absorbed dose using a 60Co absorbed-dose-to-water calibration factor and Monte Carlo (MC) -calculated correction factors. The correction factors were calculated from MDCT (Brilliance iCT, 64-slice, Philips Electronics) modeled with GMctdospp (IMPS, Germany) software based on the EGSnrc MC code. The spectrum of incident x-ray beams and the configuration of a bowtie filter for MDCT were determined so that calculated photon intensity attenuation curves for aluminum (Al) and calculated off-center ratio (OCR) profiles in air coincided with those measured. The MC-calculated doses were calibrated by the absorbed dose measured at the center in both cylindrical water phantoms. Calculated doses were compared with measured doses at four peripheral points and the center in the phantom for various beam pitches and beam collimations. The calibration factors and the uncertainty of the absorbed dose determined using this method were also compared with those obtained by CTDIair (CT dose index in air). Calculated Al half-value layers and OCRs in air were within 0.3% and 3% agreement with the measured values, respectively. Calculated doses at four peripheral points and the centers for various beam pitches and beam collimations were within 5% and 2% agreement with measured values, respectively. The MC-calibration factors by our method were 44–50% lower than values by CTDIair due to the overbeaming effect. However, the calibration factors for CTDIair agreed within 5% with those of our method after correction for the overbeaming effect. Our method makes it possible to directly measure the absorbed dose for MDCT and is more robust and accurate than the

  20. New absorbed dose measurement with cylindrical water phantoms for multidetector CT

    Ohno, Takeshi; Araki, Fujio; Onizuka, Ryota; Hioki, Kazunari; Tomiyama, Yuuki; Yamashita, Yusuke

    2015-06-01

    The aim of this study was to develop new dosimetry with cylindrical water phantoms for multidetector computed tomography (MDCT). The ionization measurement was performed with a Farmer ionization chamber at the center and four peripheral points in the body-type and head-type cylindrical water phantoms. The ionization was converted to the absorbed dose using a 60Co absorbed-dose-to-water calibration factor and Monte Carlo (MC) -calculated correction factors. The correction factors were calculated from MDCT (Brilliance iCT, 64-slice, Philips Electronics) modeled with GMctdospp (IMPS, Germany) software based on the EGSnrc MC code. The spectrum of incident x-ray beams and the configuration of a bowtie filter for MDCT were determined so that calculated photon intensity attenuation curves for aluminum (Al) and calculated off-center ratio (OCR) profiles in air coincided with those measured. The MC-calculated doses were calibrated by the absorbed dose measured at the center in both cylindrical water phantoms. Calculated doses were compared with measured doses at four peripheral points and the center in the phantom for various beam pitches and beam collimations. The calibration factors and the uncertainty of the absorbed dose determined using this method were also compared with those obtained by CTDIair (CT dose index in air). Calculated Al half-value layers and OCRs in air were within 0.3% and 3% agreement with the measured values, respectively. Calculated doses at four peripheral points and the centers for various beam pitches and beam collimations were within 5% and 2% agreement with measured values, respectively. The MC-calibration factors by our method were 44-50% lower than values by CTDIair due to the overbeaming effect. However, the calibration factors for CTDIair agreed within 5% with those of our method after correction for the overbeaming effect. Our method makes it possible to directly measure the absorbed dose for MDCT and is more robust and accurate than the

  1. Study of absorbed dose distribution to high energy electron beams

    The depth absorbed dose distribution by electron beams was studied. The influence of the beam energy, the energy spread, field size and design characteristics of the accelerator was relieved. Three accelerators with different scattering and collimation systems were studied leading todifferent depth dose distributions. A theoretical model was constructed in order to explain the increase in the depth dose in the build-up region with the increase of the energy. The model utilizes a three-dimensional formalism based on the Fermi-Eyges multiple scattering theory, with the introduction of modifications that takes into account the criation of secondary electrons. (Author)

  2. Photon spectrum and absorbed dose in brain tumor

    Silva S, A. [General Electric Healthcare, Antonio Dovali Jaime 70, Torre A 3er. piso, Col. Santa Fe, 01210 Mexico D. F. (Mexico); Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Rivera M, T. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  3. Bone marrow and thyroid absorbed doses from mammography

    Breast dose from mammography has been estimated by various investigators, because of the established effectiveness of mammography in early screening for breast cancer and the relatively high sensitivity of the breast to radiation carcinogenesis. Nevertheless, to our knowledge, there is no available information in the literature about absorbed doses from mammography to organs other than the breast. The absorbed doses to the red bone marrow in the sternum and to the thyroid, due to scattered radiation from mammographic examinations, have been measured using a Plexiglas upper-body phantom and thermoluminescent dosemeters. Their dependence on several parameters has also been examined. It is necessary to emphasize that this work is still in progress. (author)

  4. Photon spectrum and absorbed dose in brain tumor

    Using Monte Carlo methods a BOMAB phantom inside a treatment hall with a brain tumor nearby the pituitary gland was treated with photons produced by a Varian 6 MV linac. The photon spectrum and the absorbed dose were calculated in the tumor, pituitary gland and the head. The treatment beam was collimated to illuminate only the tumor volume; however photons were noticed in the gland. Photon fluence reaching the tumor is 78.1 times larger than the fluence in the pituitary gland, on the other hand the absorbed dose in the tumor is 188 times larger than the dose in the gland because photons that reach the pituitary gland are scattered, by the head and the tumor, through Compton effect. (Author)

  5. Space radiation absorbed dose distribution in a human phantom.

    Badhwar, G D; Atwell, W; Badavi, F F; Yang, T C; Cleghorn, T F

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  6. Space radiation absorbed dose distribution in a human phantom

    Badhwar, G. D.; Atwell, W.; Badavi, F. F.; Yang, T. C.; Cleghorn, T. F.

    2002-01-01

    The radiation risk to astronauts has always been based on measurements using passive thermoluminescent dosimeters (TLDs). The skin dose is converted to dose equivalent using an average radiation quality factor based on model calculations. The radiological risk estimates, however, are based on organ and tissue doses. This paper describes results from the first space flight (STS-91, 51.65 degrees inclination and approximately 380 km altitude) of a fully instrumented Alderson Rando phantom torso (with head) to relate the skin dose to organ doses. Spatial distributions of absorbed dose in 34 1-inch-thick sections measured using TLDs are described. There is about a 30% change in dose as one moves from the front to the back of the phantom body. Small active dosimeters were developed specifically to provide time-resolved measurements of absorbed dose rates and quality factors at five organ locations (brain, thyroid, heart/lung, stomach and colon) inside the phantom. Using these dosimeters, it was possible to separate the trapped-proton and the galactic cosmic radiation components of the doses. A tissue-equivalent proportional counter (TEPC) and a charged-particle directional spectrometer (CPDS) were flown next to the phantom torso to provide data on the incident internal radiation environment. Accurate models of the shielding distributions at the site of the TEPC, the CPDS and a scalable Computerized Anatomical Male (CAM) model of the phantom torso were developed. These measurements provided a comprehensive data set to map the dose distribution inside a human phantom, and to assess the accuracy and validity of radiation transport models throughout the human body. The results show that for the conditions in the International Space Station (ISS) orbit during periods near the solar minimum, the ratio of the blood-forming organ dose rate to the skin absorbed dose rate is about 80%, and the ratio of the dose equivalents is almost one. The results show that the GCR model dose

  7. Broadband ultrathin low-profile metamaterial microwave absorber

    Sood, Deepak; Tripathi, Chandra Charu

    2016-04-01

    In this paper, a single-layer broadband low-profile ultrathin metamaterial microwave absorber is proposed for wide angle of incidence. The proposed absorber provides triple-band absorption under normal incidence of electromagnetic wave with two peaks lying in X-band and one in Ku-band. The unit cell is designed by using parametric optimization in such a way that the three peaks merge together to give broadband absorption. The absorber exhibits full width at half maxima bandwidth (FWHM) of 7.75 GHz from 7.55 to 15.30 GHz for wide angle of incidence up to 60° for both TE and TM polarizations. The mechanism of absorption of the absorber has been analyzed by field and surface current distributions. The proposed absorber has been fabricated and experimentally tested for different angles of incidence and polarization of the incident wave. The absorber is low profile with unit cell dimension of the order of 0.168 λ 0, and it is ultrathin with a thickness of ~ λ 0/17 at the center frequency of 11.43 GHz corresponding to the FWHM absorption bandwidth. This proposed absorber can be used for many potential applications such as stealth technology, cloaking and in antenna systems.

  8. Some comments on the concept of absorbed dose

    The main physical quantity for the evaluation of the induced effects by radiation ionizing is absorbed dose. ICRU report 51 defines this concept as quantity dε divided by dm, where dε is the mean energy imparted by radiation ionizing to matter of mass dm. However, nothing is said about the average operation concerning the stochastic energy imparted ε. Nevertheless, because considers the sum of all changes of rest mass of the involved nuclei and elementary particles in all interactions which occur within the mass (i.e. nuclear reactions and transformations of elementary particles), the average operation can not be done with an equilibrium statistical operator, rather, this has to be defined with a non-equilibrium statistical operator, therefore, absorbed dose is a function dependent on time. Furthermore, we present a discussion to clarify the equilibrium radiation and charged particle equilibrium within the context of thermodynamic equilibrium. (Author)

  9. The Monte Carlo simulation of the absorbed dose in quartz

    Chen Shaowen [School of Physics Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275 (China) and Electron Engineering Department, Dongguan University of Technology, Dongguan 523808 (China)], E-mail: siumon@163.com; Liu Xiaowei; Zhang Chunxiang; Tang Qiang [School of Physics Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275 (China)

    2009-05-15

    Regeneration irradiation is a necessary procedure in TL or OSL dating protocol. The accuracy of measuring the absorbed dose is one of the important factors in dating. Since a beta source is often used in the regeneration irradiation process, the size of the quartz sample, pressure of nitrogen gas and the material of the sample holder may cause significant uncertainties in delivering the absorbed dose. In this work, the effects of the size of the quartz sample, the pressure of nitrogen gas and the material of the sample holder are simulated using the Monte Carlo method, and the uncertainties are discussed in these cases. The results show that they need to be considered in the dating.

  10. Specific absorbed fractions and S-factors for calculating absorbed dose to embryo and fetus

    The variation of specific absorbed fractions from maternal tissues to embryo/fetus is investigated for four different target masses and geometries. S-factors are calculated for selected radionuclides assumed to be distributed uniformly in fetal tissues represented by spheres from 1 mg to 4 kg. As an example, the dose to fetal tissues for iodine-131 and iron-59 is estimated based on human biokinetic data for various stages of pregnancy. 24 references, 4 tables

  11. Sensors of absorbed dose of ionizing radiation based on mosfet

    Perevertaylo V. L.

    2010-10-01

    Full Text Available The requirements to technology and design of p-channel and n-channel MOS transistors with a thick oxide layer designed for use in the capacity of integral dosimeters of absorbed dose of ionizing radiation are defined. The technology of radiation-sensitive MOS transistors with a thick oxide in the p-channel and n-channel version is created.

  12. Absorbed Dose Distribution in a Pulse Radiolysis Optical Cell

    Miller, Arne; McLaughlin, W. L.

    1975-01-01

    When a liquid solution in an optical cell is irradiated by an intense pulsed electron beam, it may be important in the chemical analysis of the solution to know the distribution of energy deposited throughout the cell. For the present work, absorbed dose distributions were measured by thin...... radiochromic dye film dosimeters placed at various depths in a quartz glass pulse radiolysis cell. The cell was irradiated with 30 ns pulses from a field-emission electron accelerator having a broad spectrum with a maximum energy of ≈MeV. The measured three-dimensional dose distributions showed sharp gradients...

  13. 1D non-uniform dose delivery by a single dynamic absorber

    A new technique for 1D non-uniform dose delivery has been recently proposed, using a single computer-controlled dynamic absorber, which is driven within the beam during irradiation. Analytical-iterative and convolution algorithms have been developed in order to optimize the movement of the absorber in creating wished beam modulations. The technique has been demonstrated to be suitable for many applications in the fields of dynamic wedging, tissue-deficit compensation and, in some cases, conformal therapy by non-uniform dose delivery. A first non-focused prototype has been shown to be able to reproduce a number of modulated beams with an acceptable accuracy (Phys.Med. Biol. 40: 221-240, 1995). A new focused prototype has been carried out at our Institute and it is under investigation: preliminary tests (by diodes array and film dosimetry) confirm the wide possibilities of clinical application. The apparatus, which can be inserted in the tray holder of our Clinac Varian 6/100, is connected through a mechanical transmission system to a computer where absorber's speed profiles (corresponding to wished fluence profiles) are stored. The operator can recall the wished profile and move the absorber in the due way, when the irradiation starts. The single-absorber dynamic modulation technique cannot modulate the beam fluence in any way one wishes, due to the physical constraint that the absorber can stay in the irradiation field for a time not larger than the total irradiation time: however it can create a large number of dynamically modulated beams clinically interesting. For this reason it should be considered as a valid 'low-cost' technique for dynamic beam modulation (also on Linacs which do not have complex computer-controlled options for non-uniform dose delivery such as dynamic collimators and multi leaves)

  14. Determination of absorbed dose in the experimental animal irradiated on the Leksell gamma knife

    The purpose of this study was to evaluate and quantify inaccuracy of Leksell GammaPlan relative and absolute dose calculations for the experimental animal and to determine necessary corrections that must be applied. Both TLD and semiconductor detectors appeared to be suitable for measurement of absorbed dose in the rat brain irradiated on the Leksell gamma knife. Both detectors, due to their size, measured mean doses, nay doses to maximum. The Leksell GammaPlan treatment planning system can be employed for the calculation of absorbed doses even in such an extreme condition like irradiation of experimental animals. However, in our concrete case, it was necessary to apply correction factor of 1.0779 for the absolute absorbed dose to obtain reliable results. Comparison of dose profiles in all three axis calculated by the treatment planning system and measured ones by polymer gel dosimeter showed acceptable agreement. Results presented in this study are strictly related to the Leksell GammaPlan treatment planning system and the special fixation device developed in Na Homolce Hospital. (authors)

  15. Variations in absorbed doses from 59Fe in different diseases

    The biokinetics of radiopharmaceuticals administered in vivo may vary considerably with changes in organ functions. They studied the variations in absorbed doses from 59Fe in 207 patients with different diseases, in whom ferrokinetic investigations were performed for diagnostic purposes. Radiation doses to the bone marrow were highest in patients with deserythropoietic anemias (mean 38 nSv/Bq, range 19 - 57 nSv/Bq) and in hemolytic anemias (mean 21 nSv/Bq, range 7 - 35 nSv/Bq), whereas lower and rather constant values were found in other diseases (mean values between 9 and 13 nSv/Bq). The highest organ doses, the greatest differences with respect to diagnosis and also the largest variations within each group of patients were found for liver and spleen (e. g. in aplastic anemia; liver: 66 nSv/Bq, range 29 - 104 nSv/Bq; spleen: 57 nSv/Bq, range 34 - 98 nSv/Bq. In iron deficiency; liver: 13 nSv/Bq range 12 - 14 nSv/q; spleen: 19 nSv/Bq, range 18 - 20 nSv/Bq). Lower organ doses and smaller variations within and between the groups of patients were found for the gonads (means 3 - 7 nSv/Bq), the kidneys (means 10 - 13 nSv/Bq), the bone (means 4 - 7 nSv/Bq), the lung (means 8 - 12 nSv/Bq), and the total body (means 6 - 8 nSv/Bq). In patients with chronic bleeding absorbed doses decrease concomitantly to the extent of blood loss. The D/sub E/ is not markedly affected by the variations in organ doses but is fairly constant for different diseases. 16 references, 1 figure, 3 tables

  16. Diamond detector in absorbed dose measurements in high-energy linear accelerator photon and electron beams.

    Ravichandran, Ramamoorthy; Binukumar, John Pichy; Al Amri, Iqbal; Davis, Cheriyathmanjiyil Antony

    2016-01-01

    Diamond detectors (DD) are preferred in small field dosimetry of radiation beams because of small dose profile penumbras, better spatial resolution, and tissue-equivalent properties. We investigated a commercially available 'microdiamond' detector in realizing absorbed dose from first principles. A microdiamond detector, type TM 60019 with tandem electrometer is used to measure absorbed doses in water, nylon, and PMMA phantoms. With sensitive volume 0.004 mm3, radius 1.1mm, thickness 1 x10(-3) mm, the nominal response is 1 nC/Gy. It is assumed that the diamond detector could collect total electric charge (nC) developed during irradiation at 0 V bias. We found that dose rate effect is less than 0.7% for changing dose rate by 500 MU/min. The reproducibility in obtaining readings with diamond detector is found to be ± 0.17% (1 SD) (n = 11). The measured absorbed doses for 6 MV and 15 MV photons arrived at using mass energy absorption coefficients and stop-ping power ratios compared well with Nd, water calibrated ion chamber measured absorbed doses within 3% in water, PMMA, and nylon media. The calibration factor obtained for diamond detector confirmed response variation is due to sensitivity due to difference in manufacturing process. For electron beams, we had to apply ratio of electron densities of water to carbon. Our results qualify diamond dosimeter as a transfer standard, based on long-term stability and reproducibility. Based on micro-dimensions, we recommend these detectors for pretreatment dose verifications in small field irradiations like stereotactic treatments with image guidance. PMID:27074452

  17. Estimation of absorbed organ doses and effective dose based on body mass index in digital radiography

    With the introduction of digital radiography, patients undergoing radiographic procedures are subject to being overexposed to radiation. Therefore, it is necessary to estimate the absorbed organ dose and the effective dose, which are significant for patient health, along with body type. During chest radiographic examinations conducted in 899 patients for screening, the absorbed dose of the 13 major organs, the average whole-body dose, and two effective doses weighted by factors published in ICRP 60 and ICRP 103 were calculated on the basis of patient information such as height, weight and examination condition, including kilovolt potential, focus-skin distance and entrance surface dose (ESD), using a PC-based Monte Carlo program simulation. It was found that dose per unit ESD had a tendency to decrease with body mass index (BMI). In particular, the absorbed dose for most organs was larger at high voltages (140 kVp) than at low voltages (120 kVp, 100 kVp). In addition, the effective dose which was based on ICRP 60 and ICRP 103 also represented the same tendency in respect of BMI and tube voltage. (authors)

  18. Testing of the IAEA code: Absorbed dose determination at Co 60 gamma radiation

    At several Primary Standard Dosimetry Laboratories measurements of absorbed dose to water have been performed with ionization chambers of different types. These ionization chambers are calibrated against both, primary standards of air kerma and water absorbed dose. Using the formalism of the IAEA Code of Practice the absorbed dose to water in Co 60 gamma beams was derived and compared with direct measurements of water absorbed dose. This yields a very valid test of the IAEA Code. (author). 18 refs, 7 tabs

  19. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy

  20. Red bone marrow doses, integral absorbed doses, and somatically effective dose equivalent from four maxillary occlusal projections

    Berge, T.I.; Wohni, T.

    1984-02-01

    Phantom measurements of red bone marrow (RBM) doses, integral absorbed doses, and somatically effective dose equivalent (SEDE) from four different maxillary occlusal projections are presented. For each projection, different combinations of focus-skin distances and tube potentials were compared with regard to the patient's radiation load. The axial incisal view produced the highest patient exposures, with a maximum red bone marrow dose of 122.5 microGy/exposure, integral absorbed dose of 8.6 mJ/exposure, and SEDE values of 39.6 microSv/exposure. The corresponding values from the frontal, lateral occlusal, and tuber views ranged between 4% and 44% of the axial incisal view values for the integral absorbed dose and SEDE values, and between 0.3% and 3% for the red bone marrow doses. Increasing the focus-skin distance from 17.5 cm to 27 cm is accompanied by a 24% to 30% reduction in integral absorbed dose. Increasing the tube potential from 50 kV to 65 kV likewise results in a 23% reduction in absorbed energy.

  1. Absorbed dose determination in photon fields using the tandem method

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF2: Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with 90Sr-90Y, calibrated with the energy of 60Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than 5%. The reason of the answers of the CaF2: Dy and LiF: Mg, Ti, according to the energy of the radiation, allows us to establish the effective energy of photons and the absorbed dose, with a margin of error of less than 10% and 20% respectively

  2. Influence of radioactive contaminants on absorbed dose estimates for radiopharmaceuticals

    Several popular radiopharmaceutical products contain low levels of radioactive contaminants. These contaminants increase the radiation absorbed dose to the patient without any increased benefit and, in some cases, with a decrease in image quality. The importance of a contaminant to the radiation dosimetry picture is a function of 1) the contaminant level, 2) the physical half-life of the contaminant, 3) the organ uptake and the biological half-time of the contaminant in the various body systems, and 4) the decay mode, energy, etc. of the contaminant. The general influence of these parameters is discussed in this paper; families of curves are included that reflect the changing importance of contaminant dosimetry with respect to the primary radionuclide as a function of these variables. Several specific examples are also given of currently used radiopharmaceutical products which can contain radioactive contaminants (I-123, In-111, Tl-201, Ir-191m, Rb-82, Au-195m). 7 references, 8 figures, 4 tables

  3. Implementation of an absorbed dose postal QA programme for radiosurgery

    Radiosurgery is becoming a well accepted method for the treatment of small intra cranial benign lesions and neoplasic tumours. It can be delivered using multiple sources of 60Co gamma rays (i.e. Gamma knife) or using high energy photons, typically 6 MV, produced by clinical linear accelerators. The main objective of this work was to develop, test, and implement a Postal System of Quality Assurance of the absorbed dose applicable specifically to radiosurgery. Due to the specificity of the radiation field including the steep dose gradients, several measuring systems were necessary in order to guarantee the required dose accuracy. The ionization chamber (0,125 cm3/ PTW-Model 31010), thermoluminescent mini dosimeters (TLD), film, and mini Alanina dosimeters were selected. The dosimeters were calibrated against a PTW ionization dosimeter previously calibrated at the PTW secondary standards. The postal evaluation system consist of a main cylindrical acrylic phantom, with 16 cm of length and 21 cm of diameter, and four smaller cylindrical (C1-C4) inserts with 10 cm of length and 7 cm of diameter with the following specific characteristics: - C1 contains a small air volume with 2 cm of diameter that simulates the target with 3 air micro spheres with a diameter of 3 mm; - C2 contains five cylindrical rods where the mini TLDs with 2 mm of diameter and 0,5 mm of length were inserted and placed 5, 15, and 35 mm from the centre; - C3 contains five cylindrical rods where the alanine dosimeters with 1 mm of diameter and 2 mm of length were inserted at distances similar to those of the TLDs; - C4 contains an oncology film (X Omat-V) placed inside. In addition, a set of forms for data register and written procedures were sent to the participating institutions. A total dose of 25 Gy is requested to be delivered at the target. The overall management procedure is described, and the three main phases of the procedure are as follows: 1) An evaluation was made of the coordinate system of

  4. Scaling neutron absorbed dose distributions from one medium to another

    Central axis depth dose (CADD) and off-axis absorbed dose ratio (OAR) measurements were made in water, muscle and whole skeletal bone TE-solutions, mineral oil and glycerin with a clinical neutron therapy beam. These measurements show that, for a given neutron beam quality and field size, there is a universal CADD distribution at infinity if the depth in the phantom is expressed in terms of appropriate scaling lengths. These are essentially the kerma-weighted neutron mean free paths in the media. The method used in ICRU No. 26 to scale the CADD by the ratio of the densities is shown to give incorrect results. the OAR's measured in different media at depths proportional to the respective mean free paths were also found to be independent of the media to a good approximation. It is recommended that relative CADD and OAR measurements be performed in water because of its universality and convenience. A table of calculated scaling lengths is given for various neutron energy spectra and for various tissues and materials of practical importance in neutron dosimetry

  5. Radiochromic Plastic Films for Accurate Measurement of Radiation Absorbed Dose and Dose Distributions

    McLaughlin, W. L.; Miller, Arne; Fidan, S.; Pejtersen, K.; Pedersen, Walther Batsberg

    1977-01-01

    dose rate (1–1014 rad s−1). Upon irradiation of the film, the profile of the radiation field is registered as a permanent colored image of the dose distribution. Unlike most other types of dyed plastic dose meters, the optical density produced by irradiation is in most cases stable for periods of at...... of many polymeric systems in industrial radiation processing. The result is that errors due to energy dependence of response of the radiation sensor are effectively reduced, since the spectral sensitivity of the dose meter matches that of the polymer of interest, over a wide range of photon and...

  6. Assessment of population absorbed dose from external penetrating radiation in Beijing

    Gonad mean annual absorbed dose from external penetrating radiation for Beijing residents is 73.4 mrad/y of which the annual absorbed dose from cosmic ray is 27.1 mrad/y and that from natural radioactivity in building materials is 37.6 mrad/y. The construction of buildings and roads makes the annual absorbed dose change. The construction of buildings brings about an increase of 19.7 per cent in the annual absorbed dose. The construction of roads results in a reduction of 2.4%

  7. Absorbed dose determination in photon fields using the tandem method

    Marques-Pachas, J F

    1999-01-01

    The purpose of this work is to develop an alternative method to determine the absorbed dose and effective energy of photons with unknown spectral distributions. It includes a 'tandem' system that consists of two thermoluminescent dosemeters with different energetic dependence. LiF: Mg, Ti, CaF sub 2 : Dy thermoluminescent dosemeters and a Harshaw 3500 reading system are employed. Dosemeters are characterized with sup 9 sup 0 Sr- sup 9 sup 0 Y, calibrated with the energy of sup 6 sup 0 Co and irradiated with seven different qualities of x-ray beams, suggested by ANSI No. 13 and ISO 4037. The answers of each type of dosemeter are adjusted to a function that depends on the effective energy of photons. The adjustment is carried out by means of the Rosenbrock minimization algorithm. The mathematical model used for this function includes five parameters and has a gauss and a straight line. Results show that the analytical functions reproduce the experimental data of the answers, with a margin of error of less than ...

  8. Calibration procedure for thermoluminescent dosemeters in water absorbed doses for Iridium-192 high dose rate sources

    Thermoluminescent dosimeters are used in brachytherapy services quality assurance programs, with the aim of guaranteeing the correct radiation dose supplied to cancer patients, as well as with the purpose of evaluating new clinical procedures. This work describes a methodology for thermoluminescent dosimeters calibration in terms of absorbed dose to water for 192Ir high dose rate sources. The reference dose used is measured with an ionization chamber previously calibrated for 192Ir energy quality, applying the methodology proposed by Toelli. This methodology aims to standardizing the procedure, in a similar form to that used for external radiotherapy. The work evolves the adaptation of the TRS-277 Code of the International Atomic Energy Agency, for small and big cavities, through the introduction for non-uniform experimental factor, for the absorbed dose in the neighborhood of small brachytherapy sources. In order to simulate a water medium around the source during the experimental work, an acrylic phantom was used. It guarantees the reproducibility of the ionization chamber and the thermoluminescent dosimeter's location in relation to the radiation source. The values obtained with the ionization chamber and the thermoluminescent dosimeters, exposed to a 192Ir high dose rate source, were compared and correction factors for different source-detector distances were determined for the thermoluminescent dosimeters. A numeric function was generated relating the correction factors and the source-detector distance. These correction factors are in fact the thermoluminescent dosimeter calibration factors for the 192Ir source considered. As a possible application of this calibration methodology for thermoluminescent dosimeters, a practical range of source-detector distances is proposed for quality control of 192Ir high dose rate sources. (author)

  9. Measurements of 2D distributions of absorbed dose in protontherapy with Gafchromic EBT3 films

    A study of the response of EBT3 films to protons has been carried out with the aim of finding a simple modality to achieve dose images in which the effect of the film sensitivity dependence on radiation LET is amended. Light transmittance images (around 630 nm) were acquired by means of a CCD camera and the difference of optical density was assumed as dosimeter response. The calibration of EBT3 film was performed by means of protons of 173.61 MeV. Some EBT3 films were exposed, in a solid-water phantom, to proton beams of three different energies (89.17 MeV, 110.96 MeV and 130.57 MeV) and the obtained depth-dose profiles were compared with the calculated profiles. From the ratios of calculated and measured Bragg peaks, a trend of the decrease in EBT3 sensitivity with increasing peak depth has been deduced. A method for correcting the data measured with EBT3 films, utilizing the file of irradiation planning data, has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. - Highlights: • EBT3 films were calibrated with a proton pencil beam of 173.61 MeV. • In-phantom depth-dose image in the SOBP region was measured with EBT3. • A method to compensate for the EBT3 under-response, utilizing the file of irradiation planning data, was tested. • The central depth-dose profile extracted from the image was compared with that calculated by the TPS. • The inter-comparison of measured and calculated profiles has proven that satisfactory correction can be achieved with the proposed methods

  10. Blood compounds irradiation process: assessment of absorbed dose using Fricke and Thermoluminescent dosimetric systems

    The assessment of gamma absorbed doses in irradiation facilities allows the quality assurance and control of the irradiation process. The liability of dose measurements is assign to the metrological procedures adopted including the uncertainty evaluation. Fricke and TLD 800 dosimetric systems were used to measure absorbed dose in the blood compounds using the methodology presented in this paper. The measured absorbed doses were used for evaluating the effectiveness of the irradiation procedure and the gamma dose absorption inside the irradiation room of a gamma irradiation facility. The radiation eliminates the functional and proliferative capacities of donor T-lymphocytes, preventing Transfusion associated graft-versus-host disease (TA-GVHD), a possible complication of blood transfusions. The results show the applicability of such dosimetric systems in quality assurance programs, assessment of absorbed doses in blood compounds and dose uniformity assign to the blood compounds irradiation process by dose measurements in a range between 25 Gy and 100 Gy. (author)

  11. Absorbed XFEL dose in the components of the LCLS X-Ray Optics

    Hau-Riege, S

    2005-09-27

    We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  12. Absorbed dose rate in air in metropolitan Tokyo before the Fukushima Daiichi Nuclear Power Plant accident

    The monitoring of absorbed dose rate in air has been carried out continually at various locations in metropolitan Tokyo after the accident of the Fukushima Daiichi Nuclear Power Plant. While the data obtained before the accident are needed to more accurately assess the effects of radionuclide contamination from the accident, detailed data for metropolitan Tokyo obtained before the accident have not been reported. A car-borne survey of the absorbed dose rate in air in metropolitan Tokyo was carried out during August to September 2003. The average absorbed dose rate in air in metropolitan Tokyo was 49±6 nGy h-1. The absorbed dose rate in air in western Tokyo was higher compared with that in central Tokyo. Here, if the absorbed dose rate indoors in Tokyo is equivalent to that outdoors, the annual effective dose would be calculated as 0.32 mSv y-1. (authors)

  13. Uncertainty analysis for absorbed dose from a brain receptor imaging agent

    Aydogan, B.; Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States). Nuclear Engineering Dept.; Sparks, R.B. [Oak Ridge Inst. for Science and Education, TN (United States); Stubbs, J.B. [Radiation Dosimetry Systems of Oak Ridge, Inc., Knoxville, TN (United States)

    1999-01-01

    Absorbed dose estimates are known to contain uncertainties. A recent literature search indicates that prior to this study no rigorous investigation of uncertainty associated with absorbed dose has been undertaken. A method of uncertainty analysis for absorbed dose calculations has been developed and implemented for the brain receptor imaging agent {sup 123}I-IPT. The two major sources of uncertainty considered were the uncertainty associated with the determination of residence time and that associated with the determination of the S values. There are many sources of uncertainty in the determination of the S values, but only the inter-patient organ mass variation was considered in this work. The absorbed dose uncertainties were determined for lung, liver, heart and brain. Ninety-five percent confidence intervals of the organ absorbed dose distributions for each patient and for a seven-patient population group were determined by the ``Latin Hypercube Sampling`` method. For an individual patient, the upper bound of the 95% confidence interval of the absorbed dose was found to be about 2.5 times larger than the estimated mean absorbed dose. For the seven-patient population the upper bound of the 95% confidence interval of the absorbed dose distribution was around 45% more than the estimated population mean. For example, the 95% confidence interval of the population liver dose distribution was found to be between 1.49E+0.7 Gy/MBq and 4.65E+07 Gy/MBq with a mean of 2.52E+07 Gy/MBq. This study concluded that patients in a population receiving {sup 123}I-IPT could receive absorbed doses as much as twice as large as the standard estimated absorbed dose due to these uncertainties.

  14. Simultaneous measurements of absorbed dose and linear energy transfer in therapeutic proton beams

    Granville, Dal A.; Sahoo, Narayan; Sawakuchi, Gabriel O.

    2016-02-01

    The biological response resulting from proton therapy depends on both the absorbed dose in the irradiated tissue and the linear energy transfer (LET) of the beam. Currently, optimization of proton therapy treatment plans is based only on absorbed dose. However, recent advances in proton therapy delivery have made it possible to vary the LET distribution for potential therapeutic gain, leading to investigations of using LET as an additional parameter in plan optimization. Having a method to measure and verify both absorbed dose and LET as part of a quality assurance program would be ideal for the safe delivery of such plans. Here we demonstrated the potential of an optically stimulated luminescence (OSL) technique to simultaneously measure absorbed dose and LET. We calibrated the ratio of ultraviolet (UV) to blue emission intensities from Al2O3:C OSL detectors as a function of LET to facilitate LET measurements. We also calibrated the intensity of the blue OSL emission for absorbed dose measurements and introduced a technique to correct for the LET-dependent dose response of OSL detectors exposed to therapeutic proton beams. We demonstrated the potential of our OSL technique by using it to measure LET and absorbed dose under new irradiation conditions, including patient-specific proton therapy treatment plans. In the beams investigated, we found the OSL technique to measure dose-weighted LET within 7.9% of Monte Carlo-simulated values and absorbed dose within 2.5% of ionization chamber measurements.

  15. Assessment of out-of-field absorbed dose and equivalent dose in proton fields

    Clasie, Ben; Wroe, Andrew; Kooy, Hanne; Depauw, Nicolas; Flanz, Jay; Paganetti, Harald; Rosenfeld, Anatoly [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, California 92354 (United States) and Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, 2522 (Australia); Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, 2522 (Australia)

    2010-01-15

    Purpose: In proton therapy, as in other forms of radiation therapy, scattered and secondary particles produce undesired dose outside the target volume that may increase the risk of radiation-induced secondary cancer and interact with electronic devices in the treatment room. The authors implement a Monte Carlo model of this dose deposited outside passively scattered fields and compare it to measurements, determine the out-of-field equivalent dose, and estimate the change in the dose if the same target volumes were treated with an active beam scanning technique. Methods: Measurements are done with a thimble ionization chamber and the Wellhofer MatriXX detector inside a Lucite phantom with field configurations based on the treatment of prostate cancer and medulloblastoma. The authors use a GEANT4 Monte Carlo simulation, demonstrated to agree well with measurements inside the primary field, to simulate fields delivered in the measurements. The partial contributions to the dose are separated in the simulation by particle type and origin. Results: The agreement between experiment and simulation in the out-of-field absorbed dose is within 30% at 10-20 cm from the field edge and 90% of the data agrees within 2 standard deviations. In passive scattering, the neutron contribution to the total dose dominates in the region downstream of the Bragg peak (65%-80% due to internally produced neutrons) and inside the phantom at distances more than 10-15 cm from the field edge. The equivalent doses using 10 for the neutron weighting factor at the entrance to the phantom and at 20 cm from the field edge are 2.2 and 2.6 mSv/Gy for the prostate cancer and cranial medulloblastoma fields, respectively. The equivalent dose at 15-20 cm from the field edge decreases with depth in passive scattering and increases with depth in active scanning. Therefore, active scanning has smaller out-of-field equivalent dose by factors of 30-45 in the entrance region and this factor decreases with depth

  16. Status of air kerma and absorbed dose standards in India

    Exradin A2, NE 2571, NE2577, Victoreen 415 B, Victoreen 415, Exradin A3 and NE 2581 are maintained. These chambers have been calibrated against the primary standards and have been used in the international intercomparison experiments. The future programme of development of standards include i) Development of graphite/water calorimeters as absorbed dose standards, ii) Establishment of extrapolation chamber as primary standard for absorbed dose for beta and soft x-ray beams and iii) Development of energy-independent plastic scintillators as reference standard for low energy low activity brachytherapy sources. (author)

  17. Measurements of spatial distribution of absorbed dose in proton therapy with Gafchromic EBT3

    Gambarini, G.; Regazzoni, V.; Grisotto, S.; Artuso, E.; Giove, D. [Universita degli Studi di Milano, Department of Physics, via Celoria 16, 20133 Milano (Italy); Borroni, M.; Carrara, M.; Pignoli, E. [Fondazione IRCCS, Istituto Nazionale dei Tumori di Milano, Medical Physics Unit, via Giacomo Venezian 16, 20133 Milano (Italy); Mirandola, A.; Ciocca, M., E-mail: grazia.gambarini@mi.infn.it [Centro Nazionale Adroterapia Oncologica, Medical Physics Unit, Strada Campeggi 53, 27100 Pavia (Italy)

    2014-08-15

    A study of the response of EBT3 films has been carried out. Light transmittance images (around 630 nm) were acquired by means of a Ccd camera. The difference of optical density was assumed as dosimeter response. Calibration was performed by means of {sup 60}Co photons, at a radiotherapy facility. A study of the response variation during the time after exposure has been carried out. EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with those measured with a ionization chamber. As expected, in the Bragg peak region the values obtained with EBT3 films were lower than those obtained with the ionization chamber. The ratio of such values was evaluated, along dose profiles, for each utilized energy. A method for correcting the data measured with EBT3 has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. (author)

  18. Measurements of 2D distributions of absorbed dose in protontherapy with Gafchromic EBT3 films.

    Gambarini, G; Regazzoni, V; Artuso, E; Giove, D; Mirandola, A; Ciocca, M

    2015-10-01

    A study of the response of EBT3 films to protons has been carried out with the aim of finding a simple modality to achieve dose images in which the effect of the film sensitivity dependence on radiation LET is amended. Light transmittance images (around 630 nm) were acquired by means of a CCD camera and the difference of optical density was assumed as dosimeter response. The calibration of EBT3 film was performed by means of protons of 173.61 MeV. Some EBT3 films were exposed, in a solid-water phantom, to proton beams of three different energies (89.17 MeV, 110.96 MeV and 130.57 MeV) and the obtained depth-dose profiles were compared with the calculated profiles. From the ratios of calculated and measured Bragg peaks, a trend of the decrease in EBT3 sensitivity with increasing peak depth has been deduced. A method for correcting the data measured with EBT3 films, utilizing the file of irradiation planning data, has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. PMID:26188464

  19. Measurements of spatial distribution of absorbed dose in proton therapy with Gafchromic EBT3

    A study of the response of EBT3 films has been carried out. Light transmittance images (around 630 nm) were acquired by means of a Ccd camera. The difference of optical density was assumed as dosimeter response. Calibration was performed by means of 60Co photons, at a radiotherapy facility. A study of the response variation during the time after exposure has been carried out. EBT3 films were exposed, in a solid-water phantom, to proton beams of various energies and the obtained depth-dose profiles were compared with those measured with a ionization chamber. As expected, in the Bragg peak region the values obtained with EBT3 films were lower than those obtained with the ionization chamber. The ratio of such values was evaluated, along dose profiles, for each utilized energy. A method for correcting the data measured with EBT3 has been proposed and tested. The results confirm that the method can be advantageously applied for obtaining spatial distribution of the absorbed dose in proton therapy. (author)

  20. Predicting absorbed doses and risks from some inspection x-ray machines

    To facilitate absorbed dose estimates for risk assessment purposes, a calibrated Radcal CT chamber was used to obtain beam profiles, effective energies and central axis exposure rates for some Linescan System (LS) I and II machines employed for material inspections. The LS machines were operated at nominal settings of 0.6 mA at 136(±3%) kVp. Beam profiles show off-axis intensity decreases of ∼2% and 0.5% per cm from the central axis for the LS I and II models, respectively. Overall the effective energy was 57.4 ± 2.2 keV. Exposure rates at 50 cm from the source were in the range of 2.5-5.4 μC kg-1 s-1 and 3.5-6.7 μC kg-1 S-1 on the LS I and II models, respectively. A power law fit of the exposure data revealed an inverse square relationship between exposure rate and distance from the source. Central axis depth dose data, drawn from the equivalent square method in BJR Suppl. 11 as suggested by previous work, correspond to a 2.4-cm-square field at 50 cm SSD and 0.5 mm Cu HVL. Surface absorbed dose calculations have an uncertainty estimated at ∼ ±25%. For an irradiation incident, the predicted and measured values differ by a factor of 3; risk considerations reveal no deterministic effect and an extremely small stochastic effect. Poisson statistics can be applied to predict cancer risks in a hypothetical exposed group. The data presented apply to >85% of LS I and II x-ray machines when operated at the nominal settings indicated above. (author)

  1. Absorbed dose to the skin in radiological examinations of upper and lower gastrointestinal tract

    Absorbed doses to the skin in radiological examinations of the upper and lower gastronintestinal tract in conventional and digital radiology are evaluated and compared. Absorbed doses were measured with LiF thermoluminescence dosemeters placed on the lower pelvis, umbilicus and forehead of the patient to evaluate the absorbed dose in and outside the primary beam. On 10 patients a reduction in absorbed dose of about 34% for double contrast barium enema and of 66% for upper gastrointestinal tract examinations was revealed with digital radiography equipment. In our working conditions the lower dose requirement for digital radiography is mainly due to image intensifiers and television chains and also, due to our equipment settings, to the dose reduction with digital spot fluorography compared with conventional spot film radiography. (Author)

  2. Absorbed doses on patients undergoing tomographic exams for pre-surgery planning of dental implants

    The thermoluminescent (TL) dosimetry was used to measure entrance skin absorbed doses at anatomical points close to critical organs of patients undergoing tomographic techniques as part of a pre-surgery planning for dental implants. The dosimetric procedure was applied in 19 patients, and absorbed doses could be measured with a combined uncertainty down to 14%. Results showed that patient doses may be increased by a factor of 20 in the helical computed tomography compared to panoramic and spiral conventional tomographic exams

  3. Determination of Absorbed Dose in Large 60-Co Fields Radiotherapy

    Radiation in radiotherapy has selective impact on ill and healthy tissue. During the therapy the healthy tissue receives certain amount of dose. Therefore dose calculations in outer radiotherapy must be accurate because too high doses produce damage in healthy tissue and too low doses cannot ensure efficient treatment of cancer cells. A requirement on accuracy in the dose calculations has lead to improvement of detectors, and development of absolute and relative dosimetry. Determination of the dose distribution with use of computer is based on data provided by the relative dosimetry. This paper compares the percentage depth doses in cubic water phantoms of various dimensions with percentage depth doses calculated with use of Mayneord factor from the experimental depth doses measured in water phantom of large dimension. Depth doses in water phantoms were calculated by the model of empirical dosimetrical functions. The calculations were based on the assumption that large 60Co photon field exceeds the phantom's limits. The experimental basis for dose calculations by the model of empirical dosimetrical functions were exposure doses measured in air and dose reduction factors because of finite phantom dimensions. Calculations were performed by fortran 90 software. It was found that the deviation of dosimetric model was small in comparison to the experimental data. (author)

  4. Isoeffective dose: a concept for biological weighting of absorbed dose in proton and heavier-ion therapies

    Wambersie, A; Menzel, H G; Gahbauer, R; DeLuca, P M; Hendry, J H; Jones, D T L

    2011-01-01

    When reporting radiation therapy procedures, International Commission on Radiation Units and Measurements (ICRU) recommends specifying absorbed dose at/in all clinically relevant points and/or volumes. In addition, treatment conditions should be reported as completely as possible in order to allow full understanding and interpretation of the treatment prescription. However, the clinical outcome does not only depend on absorbed dose but also on a number of other factors such as dose per fraction, overall treatment time and radiation quality radiation biology effectiveness (RBE). Therefore, weighting factors have to be applied when different types of treatments are to be compared or to be combined. This had led to the concept of `isoeffective absorbed dose', introduced by ICRU and International Atomic Energy Agency (IAEA). The isoeffective dose D(IsoE) is the dose of a treatment carried out under reference conditions producing the same clinical effects on the target volume as those of the actual treatment. It i...

  5. Direct absorbed dose to water determination based on water calorimetry in scanning proton beam delivery

    Purpose: The aim of this manuscript is to describe the direct measurement of absolute absorbed dose to water in a scanned proton radiotherapy beam using a water calorimeter primary standard. Methods: The McGill water calorimeter, which has been validated in photon and electron beams as well as in HDR 192Ir brachytherapy, was used to measure the absorbed dose to water in double scattering and scanning proton irradiations. The measurements were made at the Massachusetts General Hospital proton radiotherapy facility. The correction factors in water calorimetry were numerically calculated and various parameters affecting their magnitude and uncertainty were studied. The absorbed dose to water was compared to that obtained using an Exradin T1 Chamber based on the IAEA TRS-398 protocol. Results: The overall 1-sigma uncertainty on absorbed dose to water amounts to 0.4% and 0.6% in scattered and scanned proton water calorimetry, respectively. This compares to an overall uncertainty of 1.9% for currently accepted IAEA TRS-398 reference absorbed dose measurement protocol. The absorbed dose from water calorimetry agrees with the results from TRS-398 well to within 1-sigma uncertainty. Conclusions: This work demonstrates that a primary absorbed dose standard based on water calorimetry is feasible in scattered and scanned proton beams.

  6. Transcriptional Response in Mouse Thyroid Tissue after 211At Administration: Effects of Absorbed Dose, Initial Dose-Rate and Time after Administration.

    Nils Rudqvist

    Full Text Available 211At-labeled radiopharmaceuticals are potentially useful for tumor therapy. However, a limitation has been the preferential accumulation of released 211At in the thyroid gland, which is a critical organ for such therapy. The aim of this study was to determine the effect of absorbed dose, dose-rate, and time after 211At exposure on genome-wide transcriptional expression in mouse thyroid gland.BALB/c mice were i.v. injected with 1.7, 7.5 or 100 kBq 211At. Animals injected with 1.7 kBq were killed after 1, 6, or 168 h with mean thyroid absorbed doses of 0.023, 0.32, and 1.8 Gy, respectively. Animals injected with 7.5 and 100 kBq were killed after 6 and 1 h, respectively; mean thyroid absorbed dose was 1.4 Gy. Total RNA was extracted from pooled thyroids and the Illumina RNA microarray platform was used to determine mRNA levels. Differentially expressed transcripts and enriched GO terms were determined with adjusted p-value 1.5, and p-value <0.05, respectively.In total, 1232 differentially expressed transcripts were detected after 211At administration, demonstrating a profound effect on gene regulation. The number of regulated transcripts increased with higher initial dose-rate/absorbed dose at 1 or 6 h. However, the number of regulated transcripts decreased with mean absorbed dose/time after 1.7 kBq 211At administration. Furthermore, similar regulation profiles were seen for groups administered 1.7 kBq. Interestingly, few previously proposed radiation responsive genes were detected in the present study. Regulation of immunological processes were prevalent at 1, 6, and 168 h after 1.7 kBq administration (0.023, 0.32, 1.8 Gy.

  7. The changes in optical absorbance of ZrO2 thin film with the rise of the absorbed dose

    Abayli, D.; Baydogan, N.

    2016-03-01

    In this study, zirconium oxide (ZrO2) thin film samples prepared by sol-gel method were irradiated using Co-60 radioisotope as gamma source. Then, it was investigated the ionizing effect on optical properties of ZrO2 thin film samples with the rise of the absorbed dose. The changes in the optical absorbance of ZrO2 thin films were determined by using optical transmittance and the reflectance measurements in the range between 190 - 1100 nm obtained from PG Instruments T80 UV-Vis spectrophotometer.

  8. Dose profile in computed tomography chest scan

    For the optimization of the patient dose in computed tomography (CT), the Brazilian legislation only established the diagnostic reference levels (DRL's) in terms of Multiple Scan Average Dose (MSAD) in a typical adult as a parameter of quality control of CT scanners. Conformity to the DRL's can be verified by measuring the dose distribution in CT scans and MSAD determination. An analysis of the quality of CT scans of the metropolitan region of Belo Horizonte is necessary by conducting pertinent tests to the study that are presented in the ANVISA (National Agency of Sanitary Vigilance) Guide. The purpose of this study is to investigate, in a chest scan, the variation of dose in CT. To measure the dose profile are used lithium fluoride thermoluminescent dosimeters (TLD-100 Rod) distributed in cylinders positioned in peripheral and central regions of a phantom of polymethylmethacrylate (PMMA). The data obtained allow us to observe the variation of the dose profile inside the phantom. The peripheral region shows higher dose values than the central region. The longitudinal variation can be observed and the maximum dose was recorded at the edges of the phantom (41,58±5,10) mGy at the midpoint of the longitudinal axis. The results will contribute to disseminate the proper procedure and optimize the dosimetry and the tests of quality control in CT, as well as make a critical analysis of the DRL's. (author)

  9. Importance of pre-treatment radiation absorbed dose estimation for radioimmunotherapy of non-Hodgkin's lymphoma

    Non-Hodgkin's lymphoma I-131 radioimmunotherapy data were analyzed to determine whether a predictive relationship exists between radiation absorbed doses calculated from biodistribution studies and doses derived from patient size. Radioactivity treatment administrations scaled to patient size (MBq/kg or MBq/m2) or fixed MBq doses do not produce consistent radiation absorbed dose to critical organs. Treatment trials that do not provide dose estimates for critical normal organs are less likely to succeed in identifying a clinical role for radioimmunotherapy

  10. Absorbed dose evaluations in retrospective dosimetry: Methodological developments using quartz

    Bailiff, I.K.; Bøtter-Jensen, L.; Correcher, V.; Delgado, A.; Goksu, H.Y.; Jungner, H.; Petrov, S.A.

    Dose evaluation procedures based on luminescence techniques were applied to 50 quartz samples extracted from bricks that had been obtained from populated or partly populated settlements in Russia and Ukraine downwind of the Chernobyl NPP. Determinations of accrued dose in the range similar to 30......-300 mGy were obtained using TL (210 degreesC TL and pre-dose) and OSL (single and multiple aliquot) procedures. Overall, good inter-laboratory concordance of dose evaluations was achieved, with a variance (1 sigma) of similar to+/-10 mGy for the samples examined. (C) 2000 Elsevier Science Ltd. All...... rights reserved....

  11. Establishment of calorimetry based absorbed dose standard for newly installed Elekta Synergy accelerator at ARPANSA

    An Elekta Synergy Linear Accelerator providing 7 photon energies from 4 MeV to 25 MeV and 10 electron energies from 4MeV to 22 MeV was installed at the beginning of 2009 to provide calibration services to radiotherapy centres in the country.This accelerator is similar to the one that has been installed at NPL around the same time. After the acceptance testing and commissioning, calorimetry measurements of the photon beams at nominal energies of 6 MeV, 10 MeV and 18 MeV to establish the Australian Primary standard of absorbed dose have been done. This paper brings out the details of the measurements and the results of a bilateral intercomparison done with NPL. A graphite calorimeter procured from BEV, Austria has been established as primary standard in the '90s at the 60Co energy and a similar calorimeter loaned by IAEA has been compared giving good agreement in measurements with a 60Co source at ARPANSA. The IAEA calorimeter has been found to have better stability through a good medium control against the ambient temperature variations. This calorimeter has been used for measurements with the photon beams from the accelerator. Before the actual measurements, a study of the stability of thermistors and the electronic heater control circuitries was done through a series of electrical calibrations. The electrical calibration factor which gives the energy required to produce a fractional resistance change of the core thermistor has been found to have a constant value of -230 mJ/%R with a standard deviation of 0.4% similar to other results published for this type of calorimeter. The photon beams from the accelerator have an initial ramping dose-rate for 1-2 seconds before stabilising to a near constant value. The dose-rate profiles obtained through the output of the monitor chamber located inside the head of the accelerator is shown. The dose-rate variations are corrected in the data analysis program written in Matlab software. Calorimetry measurements have been done in

  12. Development of methodology for assessment of absorbed dose and stopping power for low energy conversion electrons

    The evaluation of absorbed dose in the case of external and internal contamination due to radionuclides is sometimes hard, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 KeV in mucous membrane. In this work, a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polivinyl chloride - acetate) absorbers, for the 62.5 KeV and 84-88 KeV energy 109 Cd conversion electrons, working with a 4 π proportional pressurized detector, is presented. In order to assure the reproducibility of measurement conditions, one of the detector halves has been used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses if absorber. The absorbed energy was obtained subtracting each spectrum with absorber from the spectrum without absorber, which were stored in a microcomputer connected to signal processing systems by ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  13. Estimation of terrestrial air-absorbed dose rate from the data of regional geochemistry database

    This paper presents an estimation of air-absorbed dose rate from the data of K2O, U and Th content from Chinese regional geochemical database. A total of 421 group original data of combined samples in Zhongshan City (ZSC), Guangdong Province and south China were extracted from the national geochemical database. Estimated average value of air-absorbed dose rate is 139.4 nGy h-1 in the granite area and 73.7 nGy h-1 in the sedimentary area. The level of air-absorbed dose rate is closely related with the surface lithology. Estimated mean air-absorbed dose rate approximates to the measured average value by a portable plastic scintillator dosemeter in Zhuhai City were bordered with ZSC. The results show that the pre-evaluation of ionizing radiation level using regional geochemical data is feasible. (author)

  14. Electron scattering effects on absorbed dose measurements with LiF-dosemeters

    The investigation deals with absorbed dose measurements with solid wall-less dosemeters. Electron scattering complicates both measurement of absorbed dose and its theoretical interpretation. The introduction of the dosemeter in a medium causes perturbations of the radiation field. This perturbation and its effect on the distribution of the absorbed dose inside the dosemeter is studied. Plane-parallel LiF-teflon dosemeters (0.005 - 0.1 g.cm-2) are irradiated by a photon beam (137Cs) in different media. The investigation shows that corrections must be made for perturbations caused by electron scattering phenomena. Correction factors are given for use in accurate absorbed dose determinations with thermoluminescent dosemeters. (Auth.)

  15. Advances in absorbed dose measurement standards at the australian radiation laboratory

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  16. Calculation of 131I-ortho-iodohippurate absorbed kidney dose: A literature review

    Extensive information has been made available relative to the physical aspects necessary for calculation of radiation absorbed dose from radiopharmaceuticals. A similar data base for the biological factors involved in these calculations has not been documented as thoroughly. The authors present an extensive literature review for the radiation absorbed dose of 131I-ortho-iodohippurate and discuss the rationale for adjusting previously accepted values with new biodistribution information

  17. Biological indicators for radiation absorbed dose: a review

    Biological dosimetry has an important role to play in assessing the cumulative radiation exposure of persons working with radiation and also in estimating the true dose received during accidents involving external and internal exposure. Various biodosimetric methods have been tried to estimate radiation dose for the above purposes. Biodosimetric methods include cytogenetic, immunological and mutational assays. Each technique has certain advantages and disadvantages. We present here a review of each technique, the actual method used for detection of dose, the sensitivity of detection and its use in long term studies. (author)

  18. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. A female anthropomorphic Alderson phantom was used and the absorbed dose to the fetus was evaluated protecting the patient's abdomen with a 7 cm lead layer and using no abdomen shielding. The target volume dose was 50 Gy. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and 0.88±0.052 cGy. - Highlights: • Head and neck radiotherapy simulation. • Head and neck radiotherapy procedures for pregnant patients. • Shielded and unshielded fetus absorbed dose evaluation

  19. Absorbed dose measurements in the build-up region of flattened versus unflattened megavoltage photon beams.

    De Puysseleyr, Annemieke; Lechner, Wolfgang; De Neve, Wilfried; Georg, Dietmar; De Wagter, Carlos

    2016-06-01

    This study evaluated absorbed dose measurements in the build-up region of conventional (FF) versus flattening filter-free (FFF) photon beams. The absorbed dose in the build-up region of static 6 and 10MV FF and FFF beams was measured using radiochromic film and extrapolation chamber dosimetry for single beams with a variety of field sizes, shapes and positions relative to the central axis. Removing the flattening filter generally resulted in slightly higher relative build-up doses. No considerable impact on the depth of maximum dose was found. PMID:27020966

  20. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used. - Highlights: ► A PMMA (polymethylmethacrylate) tube was used to surround the HDR Ir-192 to shield the beta particles. ► 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth. ► Near-surface treatments with Ir-192 HDR sources yields achievable measurements

  1. Evaluation of the absorbed dose in odontological computerized tomography; Avaliacao da dose absorvida em tomografia computadorizada odontologica

    Legnani, Adriano; Schelin, Hugo R.; Rocha, Anna Silvia P.S. da, E-mail: schelin@utfpr.edu.b, E-mail: anna@utfpr.edu.b [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Khoury, Helen J., E-mail: khoury@ufpe.b [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil)

    2011-10-26

    This paper evaluated the absorbed dose at the surface entry known as 'cone beam computed tomography' (CBCT) in odontological computerized tomography. Examination were simulated with CBCT for measurements of dose. A phantom were filled with water, becoming scatter object of radiation. Thermoluminescent dosemeters were positioned on points correspondent to eyes and salivary glands

  2. Estimation of the absorbed dose in gamma irradiated food containing bone by electron spin resonance spectroscopy

    The use of electron spin resonance (ESR) spectroscopy to accurately evaluate the absorbed dose to radiationprocessed bones (and thus meats) is examined. The exposure of foodstuffs containing bone to a dose of ionizing radiation results in the formation of long lived free radicals which give rise to characteristics ESR signals. The yield of radicals was found to be proportional to absorbed dose. Additive re-irradiation of previously irradiated bone was used to estimate the absorbed dose in the irradiated chicken bone. Simple non-linear rational equation was found to fit to the data and yields good dose estimates for irradiated bone in the range of doses (1.0 - 5.0 kGy). Decay of the ESR signal intensity was monitored at different dose levels (2.0 and 7.0 kGy) up to 22 days. The absorbed dose in irradiated chicken (2.Om 3.0 and 6.0 kGy) was assessed at 2, 6 and 12 days after irradiation. Relatively good results were obtained when measurements were made within the following days (up to 12 days) after irradiation. The ability of the dose additive method to provide accurate dose assessments is tested here

  3. Evaluation of the absorbed dose to the lungs due to Xe133 and Tc99m (MAA)

    The absorbed dose in lungs of an adult patient has been evaluated using the biokinetics of radiopharmaceuticals containing Xe133 or Tc99m (MAA). The absorbed dose was calculated using the MIRD formalism, and the Cristy-and Eckerman lungs model. The absorbed dose in the lungs due to 133Xe is 0.00104 mGy/MBq. Here, the absorbed dose due to remaining tissue, included in the 133Xe biokinetics is not significant. The absorbed dose in the lungs, due Tc99m (MAA), is 0.065 mGy/MBq. Approximately, 4.6% of the absorbed dose is due to organs like liver, kidneys, bladder, and the rest of tissues, included in the Tc99m biokinetics. Here, the absorbed dose is very significant to be overlooked. The dose contribution is mainly due to photons emitted by the liver. (Author)

  4. Effects of body and organ size on absorbed dose: there is no standard patient

    The problem of estimating the absorbed dose to organs and tissues of the human body due to the presence of a radiopharmaceutical in one or more organs is discussed. Complications are introduced by the fact that the body is not homogeneous and in many cases the organ shapes are not regular. Publications of the MIRD Committee have provided a direct means of estimating the absorbed dose (or absorbed fraction) for a number of radioisotopes. These estimates are based on Monte Carlo calculations for monoenergetic photons distributed uniformly in organs of an adult phantom. The medical physicist finds that his patient does not resemble the adult phantom. In addition, the absorbed fractions for the adult are not reasonable values for the child. This paper examines how these absorbed fraction estimates apply to a nonstandard patient

  5. Determination of Superficial Dose Profile in Z-Line for Each Slice in CT.Scan Machines

    V Changizi

    2004-10-01

    Full Text Available CT.Scan examinations cause high patient absorbed dose from x-ray ionizing radiation. Therefore it is necessary to obtain superficial dose profile in Z-line. In this research 11 thermoluminecent dosimeter (TLD, after calibration were located on Z line perpendicular to slice thickness. CT.Scan machines did X-ray exposures. The resultant dose profiles showed gussian shape apperience, which has severed dose reduction off the slice thickness. By attention to high patient absorbed dose in CT.Scan machines, it is better to referre that patients towards any other diagnostic methods with lower risk and reasonable quality.

  6. Eye lens dosimetry for interventional procedures – Relation between the absorbed dose to the lens and dose at measurement positions

    This study investigated the relationship between the absorbed dose to the lens of the eye and the absorbed dose at different measurement positions near the eye of interventional radiologists. It also visualised the dose distribution inside the head, both when protective eyewear were used and without such protection. The best position for an eye lens dosimeter was found to be at the side of the head nearest to the radiation source, close to the eye. Positioning the dosimeter at the eyebrow could lead to an underestimation of the lens dose of as much as 45%. The measured dose distribution showed that the absorbed dose to the eye lenses was high compared to the other parts of the head, which stresses the importance of wearing protective eyewear. However, many models of eyewear were found to be deficient as the radiation could slip through at several places, e.g. at the cheek. The relationship between the absorbed dose to the lens and the kerma-area-product (PKA) delivered to the patient was also studied.

  7. Dose profile of a dental facilities

    The determination of the dose profile is important to classify the level of danger which the individuals are exposed (considering their positioning) in dental facilities. From this, this paper aims to present a methodology capable of mapping the dose within dental rooms in three dimensions. The methodology used for dose mapping in conjunction with techniques for calculating shielding for dental facilities, provided by the National Council on Radiation Protection and Measurements (NCRP), form a complete system able to generate meaningful data on the safety of occupationally Exposed Individuals (IOEs) and of the public. As the dose is strongly dependent on the distance, the estimated value of the initial dose was made in the isocenter of the source. This value was adopted because the model of dose calculus tends to infinity when it is desired to analyze points very close of the source. The model of room to be presented, as a case of illustration of the methodology, was arbitrarily constructed to generate better understanding of the problem. Its inclusion in the calculus was made through discretizations performed with the aid of high-performance computers. This discretizations allowed the obtain of dose values for an infinitesimal distance after the start point. (authors)

  8. Absorbed dose measurement on disprin tablets by ESR technique

    In this investigation an attempt has been made to measure the dose from free radicals induced in medicine tables by ESR. About 60mg of powdered irradiated Disprin tablets (acetyl salicylic acid 72% calcium carbonate 21% anhydrous citric acid 7%) was loaded into quartz tube and free radical density was measured using Bruker ESP-300 spectrometer. A linear response of dose with peak to peak height was obtained in the range of 1Gy to 700Gy at g=1.9975. (author). 5 refs., 1 fig

  9. Plastic film materials for dosimetry of very large absorbed doses

    McLaughlin, W.L.; Miller, Arne; Abdel-Rahim, F.;

    1985-01-01

    Most plastic films have limited response ranges for dosimetry because of radiation-induced brittleness, degradation, or saturation of the signal used for analysis (e.g. spectrophotometry) at high doses. There are, however, a few types of thin plastic films showing linearity of response even up to...

  10. measurement of absorbed dose in mix-dp phantom irradiated by x and gamma rays

    It has been done of x-rays dan gamma rays absorbed dose measurement of mix-dp phantom of 70 kVp.90kvp and 110 kvp x rays kxo-12 medical exposure and cobalt-60 gamma (50 ci) by UD-170A BeO-TLD. Ionization chamber 12 cc NIRS-R2 as reference dosemeter, which was calibrated on primer dosemeter. In X-rays energy used, it was done of absorbed dose measurement on Mix-Dp phantom surface and depth (d= 10cm) beam field area 10 x 10 cm, focus distance (FSD), s=80 cm dose measurement of 90 kvp X-rays on Mix-Dp phantom surface, depth and scattering (d=15 cm) beam field area 12 x 12 cm, focus distance (FSD),s=79 cm and measurement of absorbed dose Co-60 gamma: 5 R, 10R, 20 R, 30R, 40R and 50R by dose rate 0.434 R/min. It was shown that in clinical, effective energy range of X-rays relative lower than dose range Co-60 gamma. BeO-TLD characteristic on energy dependence is low based on TI sensitivity ± 1.3 for energy below 100 keV. Relation between absorbed dose and TL response to 90 kVp X-rays shown that rperm=0.990, r ber=0.995 and r sact=0.962. In measurement of Co-60 gamma absorbed dose by BeO-TLD shown TI sensitivity decrease ± 0.900. The result still needed corrections to achieve optimum measurement of absorbed dose X-rays and gamma by UD-170A BeO-TLD, which were performed optimum fading time and anealling temperature

  11. Radiation absorbed dose estimate for rubidium-82 determined from in vivo measurements in human subjects

    Radiation absorbed doses from rubidium-82 injected intravenously were determined in two young men, aged 23 and 27, using a dynamic conjugate counting technique to provide data for the net organ integrated time-activity curves in five organs: kidneys, lungs, liver, heart, and testes. This technique utilized a tungsten collimated Anger camera and the accuracy was validated in a prestwood phantom. The data for each organ were compared with conjugate count rates of a reference Ge-68/Ga-68 standard which had been calibrated against the Rb-82 injected. The effects of attenuation in the body were eliminated. The MIRD method was used to calculate the organ self absorbed doses and the total organ absorbed doses. The mean total absorbed doses were as follows (mrads/mCi injected): kidneys 30.9, heart walls 7.5, lungs 6.0, liver 3.0, testes 2.0 (one subject only), red marrow 1.3, remainder of body 1.3 and, extrapolating to women, ovaries 1.2. This absorbed dose to the kidney is significantly less than the pessimistic estimate of 59.4 mrads/mCi, made assuming instantaneous uptake and complete extraction of activity with no excretion by the kidneys, which receive 20% of the cardiac output. Further, in a 68 year old man the renal self absorbed dose was approximately 40% less than the mean renal self absorbed dose of the younger men. This decrease is probably related to the decline in renal blood flow which occurs with advancing age but other factors may also contribute to the observed difference. 14 references, 4 figures, 2 tables

  12. Patient absorbed radiation doses estimation related to irradiation anatomy; Estimativa de dose absorvida pelo paciente relacionada a anatomia irradiada

    Soares, Flavio Augusto Penna; Soares, Amanda Anastacio; Kahl, Gabrielly Gomes, E-mail: prof.flavio@gmail.com, E-mail: amanda-a-soares@hotmail.com, E-mail: gabriellygkahl@gmail.com [Instituto Federal de Eduacao, Ciencia e Tecnologia de Santa Catarina (IFSC), Florianopolis, SC (Brazil)

    2014-07-01

    Developed a direct equation to estimate the absorbed dose to the patient in x-ray examinations, using electric, geometric parameters and filtering combined with data from irradiated anatomy. To determine the absorbed dose for each examination, the entrance skin dose (ESD) is adjusted to the thickness of the patient's specific anatomy. ESD is calculated from the estimated KERMA greatness in the air. Beer-Lambert equations derived from power data mass absorption coefficients obtained from the NIST / USA, were developed for each tissue: bone, muscle, fat and skin. Skin thickness was set at 2 mm and the bone was estimated in the central ray of the site, in the anteroposterior view. Because they are similar in density and attenuation coefficients, muscle and fat are treated as a single tissue. For evaluation of the full equations, we chose three different anatomies: chest, hand and thigh. Although complex in its shape, the equations simplify direct determination of absorbed dose from the characteristics of the equipment and patient. The input data is inserted at a single time and total absorbed dose (mGy) is calculated instantly. The average error, when compared with available data, is less than 5% in any combination of device data and exams. In calculating the dose for an exam and patient, the operator can choose the variables that will deposit less radiation to the patient through the prior analysis of each combination of variables, using the ALARA principle in routine diagnostic radiology sector.

  13. Influence of gamma radiation of indoor radon decay products on absorbed dose

    A survey of absorbed dose rate and indoor radon concentration in multi storey houses was carried out. The main source of radon in such houses is construction materials. There is a relationship between absorbed dose rate and indoor radon concentration. This relationship is rather complicated and different for different premises. It depends on the geometry of premises and other characteristics which influence the distribution of indoor radon daughters. Increment of absorbed dose rate per unit of increment of indoor radon concentration depends on the concentration of indoor radon, floor where premises are situated, geometry of premises. The results of this study might help to assess the dose due to indoor radon which originates from construction materials. (author)

  14. DETERMINATION OF SUPERFICIAL ABSORBED DOSE FROM EXTERNAL EXPOSURE OF WEAKLY PENETRATING RADIATIONS

    陈丽姝

    1994-01-01

    The methods of determining the superficial absorbed dose distributions in a water phantom by means of the experiments and available theories have been reported.The distributions of beta dose were measured by an extrapolation ionization chamber at definite depthes corresponding to some superficial organs and tissues such as the radiosensitive layer of the skin,cornea,sclera,anterior chamber and lens of eyeball.The ratios among superficial absorbed dose D(0.07) and average absorbed doses at the depthes 1,2,3,4,5 and 6mm are also obtained with Cross's methods.They can be used for confining the deterministic effects of some superficial tissues and organs such as the skin and the components of eyeball for weakly penetrating radiations.

  15. Norwegian system for implementing the IAEA code of practice based on absorbed dose to water

    In 2001 the Nordic secondary standards dosimetry laboratories (SSDLs) recommended the use of absorbed dose to water as the quantity for the calibration standard and code of practice in radiotherapy.The code of practice adopted was IAEA Technical Reports Series No. 398. The Norwegian system for implementation includes the 60Co calibration of SSDL and hospital dosimeters in terms of absorbed dose to water at the Norwegian SSDL and on-site visits to every clinic teaching the new code and performing dose measurements. Comparisons of the Norwegian Radiation Protection Authority 60Co absorbed dose to water calibration at the Finnish SSDL with the French primary standards dosimetry laboratory showed agreement within 0.4%.The on-site visit measuring system compared with the Finnish on-site equipment agreed within 0.6%.The on-site visits were welcomed, and demonstrated the need for external dosimetry audits to improve the local implementation of the code of practice. (author)

  16. Absorbed dose simulations in near-surface regions using high dose rate Iridium-192 sources applied for brachytherapy

    Moura, E. S.; Zeituni, C. A.; Sakuraba, R. K.; Gonçalves, V. D.; Cruz, J. C.; Júnior, D. K.; Souza, C. D.; Rostelato, M. E. C. M.

    2014-02-01

    Brachytherapy treatment with Iridium-192 high dose rate (HDR) sources is widely used for various tumours and it could be developed in many anatomic regions. Iridium-192 sources are inserted inside or close to the region that will be treated. Usually, the treatment is performed in prostate, gynaecological, lung, breast and oral cavity regions for a better clinical dose coverage compared with other techniques, such as, high energy photons and Cobalt-60 machines. This work will evaluate absorbed dose distributions in near-surface regions around Ir-192 HDR sources. Near-surface dose measurements are a complex task, due to the contribution of beta particles in the near-surface regions. These dose distributions should be useful for non-tumour treatments, such as keloids, and other non-intracavitary technique. For the absorbed dose distribution simulations the Monte Carlo code PENELOPE with the general code penEasy was used. Ir-192 source geometry and a Polymethylmethacrylate (PMMA) tube, for beta particles shield were modelled to yield the percentage depth dose (PDD) on a cubic water phantom. Absorbed dose simulations were realized at the central axis to yield the Ir-192 dose fall-off along central axis. The results showed that more than 99.2% of the absorbed doses (relative to the surface) are deposited in 5 cm depth but with slower rate at higher distances. Near-surface treatments with Ir-192 HDR sources yields achievable measurements and with proper clinical technique and accessories should apply as an alternative for treatment of lesions where only beta sources were used.

  17. Data correction in ESR dosimetry for the average absorbed dose of teeth exposed to external photon

    A data-correction technique for the electron spin resonance (ESR) dosimetry was discussed in order to estimate an average absorbed dose of teeth exposed to external photon. Fourteen TLDs (thermoluminescent dosimeters) were used in the experiments to obtain the dose distribution in the human mouth. Each TLD was installed on the backside of the teeth in a female rando-phantom in order to estimate the absorbed dose of each tooth. The rando-phantom was exposed to photon beams of 137Cs (0.66 MeV) and 60Co (1.2/1.3 MeV) to investigate the influence of the energy on the dose distribution. The direction of the photons that hit the surface of the face could also affect the distribution of the dose in the phantom mouth. The incident angles of the photon beam were changed at 45-degree intervals around the longitudinal axis of the rando-phantom at the same height as the teeth. The largest difference among the measured doses, depending on the position of the teeth and photon energy, was in excess of 40% in the case of the exposure due to the beam direction from the backside of the phantom head at the energy of 662 keV. A sample of tooth enamel would be valuable for estimating the effective dose (Sv) calculated from the absorbed dose with ESR dosimetry. However, this study shows that the position of a tooth in the mouth affects the estimated value of an average absorbed dose of teeth. A simple technique to correct the ESR dosimetric results is suggested in this paper. The average absorbed dose of a tooth can be adequately estimated by using a simple formula that takes into consideration the position of the tooth, photon beam direction, and photon energy. (author)

  18. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms

  19. Evaluation of the distribution of absorbed dose in child phantoms exposed to diagnostic medical x rays

    Chen, W. L.; Poston, J. W.; Warner, G. G.

    1978-04-01

    The purpose of this study was to determine, by theoretical calculation and experimental measurement, the absorbed dose distributions in two heterogeneous phantoms representing one-year- and five-year-old children from typical radiographic examinations for those ages. Theoretical work included the modification of an existing internal dose code which uses Monte Carlo methods to determine doses within the Snyder-Fisher mathematical phantom. A Ge(Li) detector and a pinhole collimator were used to measure x-ray spectra which served as input to the modified Monte Carlo codes which were used to calculate organ doses in children. The calculated and measured tissue-air values were compared for a number of organs. For most organs, the results of the calculated absorbed doses agreed with the measured absorbed doses within twice the coefficient of variation of the calculated value. The absorbed dose to specific organs for several selected radiological examinations are given for one-year-old, five-year-old, and adult phantoms.

  20. Absorbed Doses to Patients in Nuclear Medicine; Doskatalogen foer nukleaermedicin

    Leide-Svegborn, Sigrid; Mattsson, Soeren; Johansson, Lennart; Fernlund, Per; Nosslin, Bertil

    2007-04-15

    The Swedish radiation protection authority, (SSI), has supported work on estimates of radiation doses to patients from nuclear medicine examinations since more than 20 years. A number of projects have been reported. The results are put together and published under the name 'Doskatalogen' which contains data on doses to different organs and tissues from radiopharmaceuticals used for diagnostics and research. This new report contains data on: {sup 11}C-labelled substances (realistic maximum model), amino acids labelled with {sup 11}C, {sup 18}F or {sup 75}Se, {sup 99m}Tc-apcitide, {sup 123}I-labelled fatty acids ({sup 123}I- BMIPP and {sup 123}I-IPPA) and revised models for previously reported {sup 15}O-labelled water, {sup 99m}Tc-tetrofosmin (rest as well as exercise) and {sup 201}Tl-ion Data for almost 200 substances and radionuclides are included in the 'Doskatalogen' today. Since the year 2001 the 'Doskatalogen' is available on the authority's home page (www.ssi.se)

  1. In-phantom measurement of absorbed dose to water in medium energy x-ray beams

    Absorbed dose values in a water phantom derived by the formalism of the IAEA Code of Practice of Absorbed Dose Determination in Photon and Electron Beams are a few per cent higher than those based on the procedure following e.g. ICRU Report 23. The maximum deviation exceeds 10% at 100 kV tube potential. The correction factor needed to take into account the differences at the calibration in terms of air kerma free in air and at the measurement in the water phantom can be determined in different ways: In comparing the result of the absorbed dose measurement by means of the ionization chambers with an other, preferably fundamental method of measurement of absorbed dose in the water phantom or by evaluating all component parts of the correction factor separately. The values of the perturbation correction factor in the IAEA Code were determined in the former way by comparing against a graphite extrapolation chamber. A review is given on a recent re-evaluation using former values of the extrapolation chamber measurements and on new determinations using an absorbed dose water calorimeter, a method based on calculated and measured air kerma values and a method of combining the component factors to the overall correction factor. Recent results achieved by the different methods are compared and a change of the data of the IAEA Code is recommended. (author). 31 refs, 14 figs, 3 tabs

  2. Monte Carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds

    The purpose of this study was to calculate internal absorbed dose distribution in mice from preclinical small animal PET imaging procedures with fluorine-18 labeled compounds (18FDG, 18FLT, and fluoride ion). The GATE Monte Carlo software and a realistic, voxel-based mouse phantom that included a subcutaneous tumor were used to perform simulations. Discretized time-activity curves obtained from dynamic in vivo studies with each of the compounds were used to set the activity concentration in the simulations. For 18FDG, a realistic range of uptake ratios was considered for the heart and tumor. For each simulated time frame, the biodistribution of the radionuclide in the phantom was considered constant, and a sufficient number of decays were simulated to achieve low statistical uncertainty. Absorbed dose, which was scaled to take into account radioactive decay, integration with time, and changes in biological distribution was reported in mGy per MBq of administered activity for several organs and uptake scenarios. The mean absorbed dose ranged from a few mGy/MBq to hundreds of mGy/MBq. Major organs receive an absorbed dose in a range for which biological effects have been reported. The effects on a given investigation are hard to predict; however, investigators should be aware of potential perturbations especially when the studied organ receives high absorbed dose and when longitudinal imaging protocols are considered

  3. National absorbed dose to water references for radiotherapy medium energy X-rays by water calorimetry

    LNE-LNHB current references for medium energy X-rays are established in terms of air kerma. Absorbed dose to water, which is the quantity of interest for radiotherapy, is obtained by transfer dosimetric techniques following a methodology described in international protocols. The aim of the thesis is to establish standards in terms of absorbed dose to water in the reference protocol conditions by water calorimetry. The basic principle of water calorimetry is to measure the absorbed dose from the rise in temperature of water under irradiation. A calorimeter was developed to perform measurements at a 2 cm depth in water according to IAEA TRS-398 protocol for medium energy x-rays. Absorbed dose rates to water measured by calorimetry were compared to the values established using protocols based on references in terms of air kerma. A difference lower than 2.1% was reported. Standard uncertainty of water calorimetry being 0.8%, the one associated to the values from protocols being around 3.0%, results are consistent considering the uncertainties. Thanks to these new standards, it will be possible to use IAEA TRS-398 protocol to determine absorbed dose to water: a significant reduction of uncertainties is obtained (divided by 3 by comparison with the application of the IAEA TRS-277 protocol). Currently, none of the counterparts' laboratories own such an instrument allowing direct determination of standards in the reference conditions recommended by the international radiotherapy protocols. (author)

  4. The Norwegian system for implementing the IAEA code of practice based on absorbed dose to water

    The Norwegian Radiation Protection Authority (NRPA) SSDL recommended in 2000 the use of absorbed dose to water as the quality for calibration and code of practice in radiotherapy. The absorbed dose to water standard traceable to BIPM was established in Norway in 1995. The international code of practice, IAEA TRS 398 was under preparation. As a part of the implementation of the new dosimetry system the SSDL went to radiotherapy departments in Norway in 2001. The aim of the visit was to: Prepare and support the users in the implementation of TRS 398 by teaching, discussions and measurements on-site; Gain experience for NRPA in the practical implementation of TRS 398 and perform comparisons between TRS 277 and TRS 398 for different beam qualities; Report experience from implementation of TRS 398 to IAEA. The NRPA 30x30x30 cm3 water phantom is equal to the BIPM calibration phantom. This was used for the photon measurements in 16 different beams. NRPA used three chambers: NE 2571, NE 2611 and PR06C for the photon measurements. As a quality control the set-up was compared with the Finnish site-visit equipment at University Hospital of Helsinki, and the measured absorbed dose to water agreed within 0.6%. The Finnish SSDL calibrated the Norwegian chambers and the absorbed dose to water calibration factors given by the two SSDLs for the three chambers agreed within 0.3%. The local clinical dosimetry in Norway was based on TRS 277. For the site-visit the absorbed dose to water was determined by NRPA using own equipment including the three chambers and the hospitals reference chamber. The hospital determined the dose the same evening using their local equipment. For the 16 photon beams the deviations between the two absorbed dose to water determinations for TRS 277 were in the range -1,7% to +4.0%. The uncertainty in the measurements was 1% (k=1). The deviation was explained in local implementation of TRS 277, the use of plastic phantoms, no resent calibration of thermometers

  5. Independent absorbed-dose calculation using the Monte Carlo algorithm in volumetric modulated arc therapy

    To report the result of independent absorbed-dose calculations based on a Monte Carlo (MC) algorithm in volumetric modulated arc therapy (VMAT) for various treatment sites. All treatment plans were created by the superposition/convolution (SC) algorithm of SmartArc (Pinnacle V9.2, Philips). The beam information was converted into the format of the Monaco V3.3 (Elekta), which uses the X-ray voxel-based MC (XVMC) algorithm. The dose distribution was independently recalculated in the Monaco. The dose for the planning target volume (PTV) and the organ at risk (OAR) were analyzed via comparisons with those of the treatment plan. Before performing an independent absorbed-dose calculation, the validation was conducted via irradiation from 3 different gantry angles with a 10- × 10-cm2 field. For the independent absorbed-dose calculation, 15 patients with cancer (prostate, 5; lung, 5; head and neck, 3; rectal, 1; and esophageal, 1) who were treated with single-arc VMAT were selected. To classify the cause of the dose difference between the Pinnacle and Monaco TPSs, their calculations were also compared with the measurement data. In validation, the dose in Pinnacle agreed with that in Monaco within 1.5%. The agreement in VMAT calculations between Pinnacle and Monaco using phantoms was exceptional; at the isocenter, the difference was less than 1.5% for all the patients. For independent absorbed-dose calculations, the agreement was also extremely good. For the mean dose for the PTV in particular, the agreement was within 2.0% in all the patients; specifically, no large difference was observed for high-dose regions. Conversely, a significant difference was observed in the mean dose for the OAR. For patients with prostate cancer, the mean rectal dose calculated in Monaco was significantly smaller than that calculated in Pinnacle. There was no remarkable difference between the SC and XVMC calculations in the high-dose regions. The difference observed in the low-dose regions may

  6. A study on absorbed dose in the breast tissue using geant4 simulation for mammography

    As the breast cancer rate is increasing fast in Korean women, people pay more attention to mammography and number of mammography have been increasing dramatically over the last few years. Mammography is the only means to diagnose breast cancer early, but harms caused by radiation exposure shouldn't be overlooked. Therefore, it is important to calculate the radiation dose being absorbed into the breast tissue during the process of mammography for a protective measure against radiation exposure. Because it is impossible to directly measure the radiation dose being absorbed into the human body, statistical calculation methods are commonly used, and most of them are supposed to simulate the interaction between radiation and matter by describing the human body internal structure with anthropomorphic phantoms. However, a simulation using Geant4 Code of Monte Carlo Method, which is well-known as most accurate in calculating the absorbed dose inside the human body, helps calculate exact dose by recreating the anatomical human body structure as it is through the DICOM file of CT. To calculate the absorbed dose in the breast tissue, therefore, this study carried out a simulation using Geant4 Code, and by using the DICOM converted file provided by Geant4, this study changed the human body structure expressed on the CT image data into geometry needed for this simulation. Besides, this study attempted to verify if the dose calculation of Geant4 interlocking with the DICOM file is useful, by comparing the calculated dose provided by this simulation and the measured dose provided by the PTW ion chamber. As a result, under the condition of 28kVp/190mAs, the Difference(%) between the measured dose and the calculated dose was found to be 0.08 %∼0.33 %, and at 28 kVp/70 mAs, the Difference(%) of dose was 0.01 %∼0.16 %, both of which showed results within 2%, the effective difference range. Therefore, this study found out that calculation of the absorbed dose using Geant4

  7. Dose absorbed by technologists in positron emission tomography procedures with FDG

    The objective of this work was to evaluate radiation doses delivered to technologists engaged in different tasks involving positron emission tomography (PET) studies with FDG (fluorodeoxyglucose). This investigation was performed in two French nuclear medicine departments, which presented significant differences in their arrangements and radiation safety conditions. Both centers administered about 300 MBq per PET/CT study, although only one of them is a dedicated clinical PET center. Dose equivalent Hp(10) and skin dose Hp(0.07) were measured using Siemens electronic personnel dosimeters. For assessment dose absorbed by hands during drawing up of tracer and injection into the patient, a Polimaster wristwatch gamma dosimeter was employed. Absorbed dose and the time spent during each investigated task were recorded for a total of 180 whole-body PET studies. In this report, the methodology employed, the results and their radioprotection issues are presented as well as discussed. (author)

  8. Absorbed XFEL Dose in the Components of the LCLS X-Ray Optics

    Hau-Riege, Stefan

    2010-12-03

    There is great concern that the short, intense XFEL pulse of the LCLS will damage the optics that will be placed into the beam. We have analyzed the extent of the problem by considering the anticipated materials and position of the optical components in the beam path, calculated the absorbed dose as a function of photon energy, and compared these doses with the expected doses required (i) to observe rapid degradation due to thermal fatigue, (ii) to reach the melting temperature, or (iii) to actually melt the material. We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  9. The effect of latex maturity on the absorbed dose for preparing RVNRL of optimum tensile strength

    This paper present the results of the studies on the effects of using latex of different maturity periods, between 0 to 15 weeks on gamma irradiation dose require to prepare RVNRL of optimum tensile strength. Absorbed dose to prepare RVNRL of optimum tensile strength, molecular weight between cross-links and cross-link density were found to be influenced by the maturity of the latex used in the studies. With respect to optimum tensile strength and absorbed dose, latex of about six weeks maturity was found most suitable and economical for radiation vulcanization process. Using latex either with or without added secondary preservative the optimum tensile strength was determined at an absorbed of 8 kGy. However, the optimum tensile strength of RVNRL prepared from latex contained added secondary preservative was found to be higher than the optimum tensile strength of RVNRL prepared from latex without secondary preservative

  10. Peculiarities of absorbed dose forming in some wild animals in Chornobyl,y exclusion zone

    Based on field researches conducted in the exclusion zone of the Chernobyl nuclear power plant in the years after the accident, identified the peculiarities of formation absorbed doses in animals of different taxonomic and ecological groups that live in conditions of radioactive contamination of ecosystems. Was shown importance of consideration of radiation features on wild animals according to their life cycle, conditions and ways of life. Was displayed data about the importance of different types of irradiation according to the period of stay the animals in the ground, in burrows and nests. Was reviewed the questions about value of external and internal radiation in absorbed dose of different types of wildlife. Was shown the results of the calculation of the absorbed dose of bird embryos from egg shell

  11. Absorbed dose in the full-mouth periapical radiography, panoramic radiography, and zonography

    The objective of this study was to evaluate the possibility of substitution of the zonography for the full-mouth periapical radiography in aspect of radiation protection. Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses at brain, skin above the TMJ, parotid gland, bone marrow in the mandibular body, and thyroid gland during the full-mouth periapical radiography, panoramic radiography, and zonography were measured. From the zonography, the absorbed doses to the brain, the skin over the TMJ, and the parotid gland were relatively high, but the absorbed doses to the bone marrow in the mandibular body and, especially, the thyroid gland were very low. The zonography can be an alternative to the full-mouth periapical radiography in aspect of radiation protection.

  12. On the Influence of Patient Posture on Organ and Tissue Absorbed Doses Caused by Radiodiagnostic Examinations

    Virtual human phantoms, frequently used for organ and tissue absorbed dose assessment in radiology, normally represent the human body either in standing or in supine posture. This raises the question as to whether it matters dosimetrically if the postures of the patient and of the phantom do not match. This study uses the recently developed FASH2sta (Female Adult meSH) and FASH2sup phantoms which represent female adult persons in standing and supine posture. The effect of the posture on organ and tissue absorbed doses will be studied using the EGSnrc Monte Carlo code for simulating abdominal radiographs and special attention will be directed to the influence of body mass on the results. For the exposure conditions considered here, posture-dependent absorbed dose differences by up to a factor of two were found. (author)

  13. Absorbed dose distribution analyses in irradiation with adjacent fields

    Because the special irradiation technique with adjacent fields is the most used in the case of medulloblastoma treatment, we consider very important to specify some general information about medulloblastoma. This malignant disease has a large incidence in children with age between 5-7 years. This tumor usually originates in the cerebellum and is referred to as primitive undifferentiated tumor. It may spread contiguously to the cerebellar peduncle, floor of the fourth ventricle, into the cervical spine. In addition, it may spread via the cerebrospinal fluid intracranially and/or to the spinal cord. For this purpose it is necessary to perform a treatment technique with cranial tangential fields combined with adjacent fields for the entire spinal cord to achieve a perfect coverage of the zones with malignant cells. The treatment in this case is an association between surgery-radio-chemotherapy, where the radiotherapy has a very important roll and a curative purpose. This is due to the fact that the migration of malignant cells in the body can't be controlled by surgery. Because of this special irradiation technique used in medulloblastoma treatment, we chase to describe in this paper this complex type of irradiation where the implications of the beams divergence in doses distribution are essentials

  14. The accuracy of absorbed dose estimates in tumours determined by Quantitative SPECT: A Monte Carlo study

    Background. Dosimetry in radionuclide therapy estimates delivered absorbed doses to tumours and ensures that absorbed dose levels to normal organs are below tolerance levels. One procedure is to determine time-activity curves in volumes-of-interests from which the absorbed dose is estimated using SPECT with appropriate corrections for attenuation, scatter and collimator response. From corrected SPECT images the absorbed energy can be calculated by (a) assuming kinetic energy deposited in the same voxel where particles were emitted, (b) convolve with point-dose kernels or (c) use full Monte Carlo (MC) methods. A question arises which dosimetry method is optimal given the limitations in reconstruction- and quantification procedures. Methods. Dosimetry methods (a) and (c) were evaluated by comparing dose-rate volume histograms (DrVHs) from simulated SPECT of 111In, 177Lu, 131I and Bremsstrahlung from 90Y to match true dose rate images. The study used a voxel-based phantom with different tumours in the liver. SPECT reconstruction was made using an iterative OSEM method and MC dosimetry was performed using a charged-particle EGS4 program that also was used to determined true absorbed dose rate distributions for the same phantom geometry but without camera limitations. Results. The DrVHs obtained from SPECT differed from true DrVH mainly due to limited spatial resolution. MC dosimetry had a marginal effect because the SPECT spatial resolution is in the same order as the energy distribution caused by the electron track ranges. For 131I, full MC dosimetry made a difference due to the additional contribution from high-energy photons. SPECT-based DrVHs differ significantly from true DrVHs unless the tumours are considerable larger than the spatial resolution. Conclusion. It is important to understand limitations in quantitative SPECT images and the reasons for apparent heterogeneities since these have an impact on dose-volume histograms. A MC-based dosimetry calculation from

  15. The standard absorbed dose in a medium ''M'' as a quantity to replace exposure

    In order to replace exposure, at least as a calibration value, a more general dosimetric quantity is here proposed, namely the standard dose absorbed in a medium M, defined at any point in a photon field as 'the dose absorbed at the centre of a sphere filled with a material M, having its centre at the point under consideration and a radius equal to the maximum range of any electron brought into motion within it or incident upon it, and corrected for perturbation, by the sphere, of the energy fluence of the photons present at the point under consideration.' From the practical point of view, the absorbed dose thus specified possesses the following main advantages: its definition does not fix the reference material and leaves the choice thereof free depending on the field of application (for purposes of biomedical dosimetry this material would, of course, be water and the concept then concerns the 'standard dose in water'); the close and simple relationship with exposure would make it possible for metrology laboratories to establish calibration services in terms of standard dose unambiguously linked to the present exposure standards; calibration of a dose meter in terms of standard dose, for example in a cobalt-60 photon beam, would make it possible - for purposes of proceeding to mean dose calibration in the cavity - to apply a procedure fully analogous to that at present based on exposure calibration. (author)

  16. Relationship between biologic tissue heterogeneity and absorbed dose distribution in therapy of oncologic patients with cyclotron U-120 fast neutrons

    Effect of biological tissue heterogeneity on the absorbed dose distribution of U-120 cyclotron fast neutron beam was studied by estimation and experimental method. It was found that adipose and bone tissues significantly changes the pattern of neutron absorbed dose distribution in patient body. Absorbed dose in adipose layer increase by 20% as compared to the dose in soft biological tissue. Approximation method for estimation of the absorbed dose distribution of fast neutrons in heterogeneities was proposed which could be applied in the dosimetric planning of U-120 cyclotron neutron therapy of neoplasms

  17. Measuring the absorbed dose in critical organs during low rate dose brachytherapy with 137 Cs using thermoluminescent dosemeters

    Intracavitary Brachytherapy is one of the most used methods for the treatment of the cervical-uterine cancer. This treatment consists in the insertion of low rate dose 137Cs sources into the patient. The most used system for the treatment dose planning is that of Manchester. This planning is based on sources, which are considered fixed during the treatment. However, the experience has shown that, during the treatment, the sources could be displaced from its initial position, changing the dose from that previously prescribed. For this reason, it is necessary to make measurements of the absorbed dose to the surrounding organs (mainly bladder and rectum). This paper presents the results of measuring the absorbed dose using home-made LiF: Mg, Cu, P + Ptfe thermoluminescent dosimeters (TLD). Measurements were carried out in-vivo during 20 minutes at the beginning and at the end of the treatments. Results showed that the absorbed dose to the critical organs vary significantly due to the movement of the patient during the treatment. (Author)

  18. A study on the absolute measurement of β-ray absorbed dose in the skin depth

    The absolute measurement of β ray absorbed dose in the skin depth located at the certain distance from the radiation source (90Sr + 90Y, 204TI, 147Pm) recommended by the International Standardization Organization is performed by using an extrapolation chamber in the range of several mGy/h. Since one of critical points in measuring of absorbed dose is to make the environment in chamber similar to tissue, a new approach to the measurement of absorbed dose is proposed. The attenuation difference is minimized by deciding a window thickness such as the attenuation effect in chamber window becomes similar to that in the skin depth. A-150 tissue equivalent plastic, whose structure and density is very similar to tissue, is used for back material. The back scattering effect of both media is measured using the proposed method to calibrate the difference in back scattering effect between back material and tissue. For the measurement of back scattering effect of each material, an ionization chamber, whose structure is very similar to the extrapolation chamber and back material is replaceable, is made. Based on the results, β ray absorbed dose in the skin depth of 70 μm was measured as follows : 0.759 μGy/s (±3.78% ) for 90Sr + 90Y, 0.173 μGy/s (±4.17%) for 204TI and 0.088 μGy/s (±7.70%) for 147Pm. In order to evaluate the reliability of the proposed method, the absorbed dose measured in this study is compared to that measured in PTB (Physikalisch Technische Bundesanstalt) for the same β ray source. Although the proposed method gives slightly higher value, the difference is within 1%. In conclusion, the proposed method seems to make the measuring environment closer to tissue, even though the calibration factor yielded by the proposed method has a little effect on evaluation of absorbed dose

  19. Determination of maximum/minimum ratio of absorbed dose of dried figs

    In the framework of an FAO/IAEA project, the ECB dosimeter and STERIN-125 and STERIN-300 dosimeters have been used for dose measurement in the dried figs packs. They were irradiated in our Gamma Irradiation Plant and were given 6 kGy dose. It was observed that all Sterin label dose indicators became very dark after a 6 kGy dose and the absorbance could not be measured with UV spectrophotometer. Therefore these label dose indicators were separately irradiated between 10-700 Gy doses by gamma rays to establish the dose sensitive curve of these indicators. After the irradiation of ECB dosimeter which is located in dried fig packs, we found the Dose Uniformity Ratio as 1.4 according to bulk density of 0.62 gr/cc. (author)

  20. The 1997 determination of the Australian standards of exposure and absorbed dose at {sup 60}Co

    Huntley, R.B.; Boas, J.F. [Australian Radiation Laboratory, Yallambie, VIC (Australia); Van der Gaast, H. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-05-01

    The arrangements for the maintenance of the Australian standards for {sup 60}Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding {sup 90}Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) {sup 90}Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of {sup 90}Sr is confirmed. The usefulness of {sup 90}Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with

  1. Optical fibre temperature sensor technology and potential application in absorbed dose calorimetry

    Optical fibre based sensors are proposed as a potential alternative to the thermistors traditionally used as temperature sensors in absorbed dose calorimetry. The development of optical fibre temperature sensor technology over the last ten years is reviewed. The potential resolution of various optical techniques is assessed with particular reference to the requirements of absorbed dose calorimetry. Attention is drawn to other issues which would require investigation before the development of practical optical fibre sensors for this purpose could occur. 192 refs., 5 tabs., 4 figs

  2. The 1997 determination of the Australian standards of exposure and absorbed dose at 60Co

    The arrangements for the maintenance of the Australian standards for 60Co are described in detail. The primary standards are a graphite cavity chamber for exposure/air kerma and a graphite calorimeter for absorbed dose. These secondary standards are described and their responses in corresponding 90Sr reference sources are reported. Accurate ratios between the Australian Radiation Laboratory (ARL) and Australian Nuclear Science and Technology (ANSTO) 90Sr reference sources are derived for use in future calibrations. The value of 28.8 years for the half-life of 90Sr is confirmed. The usefulness of 90Sr reference source measurements in quality assurance is discussed. The charge sensitivity and linearity of the ANSTO electrometers are reported by two different methods and are compared with previous results. Calibration factors for all the secondary standard ionization chambers are given, in terms of exposure, air kerma and absorbed dose to water. Calibration factors are also given for most of the chambers in terms of absorbed dose to graphite. The methods of deriving the calibration factors are explained in detail, including all the corrections applied to both the primary and secondary standard measurements. Three alternative methods of deriving the absorbed dose to water calibration factors are compared. The reported calibration factors are compared with previous results. Changes in the Australian units of exposure, air kerma and absorbed dose to graphite and water are derived from changes in the corresponding calibration factors. The Australian units of exposure and air kerma have not changed significantly since 1990. The Australian unit of absorbed dose to graphite is now 1.1 % smaller than in 1993 and 1.3 % smaller than in 1990. The Australian unit of absorbed dose to water is now 1.4 % smaller than in 1993, but is only 0.9 % smaller than in 1990. Comparisons of the Australian standards of exposure/air kerma and absorbed dose with those of the Bureau International

  3. Model of the absorbed dose on a small sphere into a gamma irradiation field

    Several models of the absorbed dose calculated as the energy deposited by the secondary electrons on a small volume sphere are presented. The calculations use the Compton scattering of a uniform photon beam in water, the photon attenuation and the electron stopping power are included. The sphere total absorbed dose is due to the stopping of the electrons generated in three regions: into the sphere volume, ahead and behind the sphere volume. Calculations are performed for spheres of different radius and placed at various depth of the vacuum - water interface. (author)

  4. Dose calculation and dosimetry tests for clinical implementation of 1D tissue-deficit compensation by a single dynamic absorber

    Background and purpose: In this study the possibilities for implementing 1D tissue-deficit compensation techniques by a dynamic single absorber were investigated. This research firstly involved a preliminary examination on the accuracy of a pencil beam-based algorithm, implemented for irregularly shaped photon beams in our 3D treatment planning system (TPS) (Cadplan 2.7, Varian-Dosetek Oy), in calculating dose distributions delivered in 1D non-uniform fields. Once the reliability of the pencil beam (PB) algorithm for dose calculations in non-uniform beams was verified, we proceeded to test the feasibility of tissue-deficit compensation using our single absorber modulator. As an example, we considered a mantle field technique. Materials and methods: To evaluate the accuracy of the method employed in calculating dose distributions delivered in 1D non-uniform fields, three different fluence profiles, which could be considered as a small sample representative of clinically relevant applications, were selected. The incident non-uniform fluences were simulated by the sum of simple blocked fields (i.e. with rectangular 'strip' blocks, one per beam) properly weighed by the 'modulation factors' Fi, defined in each interval of the subdivided profile as the ratio between the desired fluence and the open field fluence. Depth dose distributions in a cubic phantom were then calculated by the TPS and compared with the corresponding doses (at 5 and 10 cm acrylic depths) delivered by the single absorber modulation system. In the present application, the absorber speed profile able to compensate for the tissue deficit along the cranio-caudal direction and then homogenizing the dose distribution on a 'midline' isocentric plane with sufficient accuracy can be directly derived from anatomic data, such as the SSDs (source-skin distances) along the patient contour. The compensation can be verified through portal dosimetry techniques (using a traditional port film system). Results: The

  5. Absorbed dose in molecular radiotherapy: a comparison study of Monte Carlo, dose voxel kernels and phantom based dosimetry

    Full text of publication follows. Aim: the aim of this study was to perform a critical comparison of 3 dosimetric approaches in Molecular Radiotherapy: phantom based dosimetry, Dose Voxel Kernels (DVKs) and full Monte Carlo (MC) dosimetry. The objective was to establish the impact of the absorbed dose calculation algorithm on the final result. Materials and Methods: we calculated the absorbed dose to various organs in six healthy volunteers injected with a novel 18F-labelled PET radiotracer from GE Healthcare. Each patient underwent from 8 to 10 whole body 3D PET/CT scans. The first 8 scans were acquired dynamically in order to limit co-registration issues. Eleven organs were segmented on the first PET/CT scan by a physician. We analysed this dataset using the OLINDA/EXM software taking into account actual patient's organ masses; the commercial software Stratos by Philips implementing a DVK approach; and performing full MC dosimetry on the basis of a custom application developed with Gate. The calculations performed with these three techniques were based on the cumulated activities calculated at the voxel level by Stratos. Results: all the absorbed doses calculated with Gate were higher than those calculated with OLINDA. The average ratios between the Gate absorbed dose and OLINDA's was 1.38±0.34 σ (from 0.93 to 2.23) considering all patients. The discrepancy was particularly high for the thyroid, with an average Gate/OLINDA ratio of 1.97±0.83 σ for the 6 patients. The lower absorbed doses in OLINDA may be explained considering the inter-organ distances in the MIRD phantom. These are in general overestimated, leading to lower absorbed doses in target organs. The differences between Stratos and Gate resulted to be the highest. The average ratios between Gate and Stratos absorbed doses were 2.51±1.21 σ (from 1.09 to 6.06). The highest differences were found for lungs (average ratio 4.76±2.13 σ), as expected, since Stratos considers unit density

  6. Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy

    Model-based dose calculation algorithms (MBDCAs), recently introduced in treatment planning systems (TPS) for brachytherapy, calculate tissue absorbed doses. In the TPS framework, doses have hereto been reported as dose to water and water may still be preferred as a dose specification medium. Dose to tissue medium Dmed then needs to be converted into dose to water in tissue Dw,med. Methods to calculate absorbed dose to differently sized water compartments/cavities inside tissue, infinitesimal (used for definition of absorbed dose), small, large or intermediate, are reviewed. Burlin theory is applied to estimate photon energies at which cavity sizes in the range 1 nm–10 mm can be considered small or large. Photon and electron energy spectra are calculated at 1 cm distance from the central axis in cylindrical phantoms of bone, muscle and adipose tissue for 20, 50, 300 keV photons and photons from 125I, 169Yb and 192Ir sources; ratios of mass-collision-stopping powers and mass energy absorption coefficients are calculated as applicable to convert Dmed into Dw,med for small and large cavities. Results show that 1–10 nm sized cavities are small at all investigated photon energies; 100 µm cavities are large only at photon energies w,med/Dmed is discussed in terms of the cavity size in relation to the size of important cellular targets. Free radicals from DNA bound water of nanometre dimensions contribute to DNA damage and cell killing and may be the most important water compartment in cells implying use of ratios of mass-collision-stopping powers for converting Dmed into Dw,med. (paper)

  7. Identification and absorbed dose determination in irradiated kiwi by electron paramagnetic resonance

    A methodology for identification and absorbed dose determination in irradiated Kiwi with doses between 200 and 1000 Gy is present. Measurement are performed by Electron Paramagetic Resonance (ESR) in the flesh of the fruit after alcohol extration that removes water and soluble substances. The signal used is the radial produced in cellulose by radiation that shows to be stable during the usefull life of the fruit and that is not present in non-irradiated samples. Reference samples are not necessary to dose determination and the results shows that 85% of the calculated values are found to be within ± 15% of the applied initial dose. (author). 9 refs., 5 figs., 2 tabs

  8. Absorbed dose estimation and prediction irradiation effects in tumor-bearing mice under radionuclide therapy

    Full text: As the sizes of mouse organ are comparable with the range of the high-energy beta particles emitted by the radionuclides commonly used in radionuclide therapy a significant amount of beta radiation emitted could be imparted to the adjacent tissues. The often assumption that beta particles are fully-absorbed at the emission site is not satisfied and cross-irradiation should be included into the dose estimation formulas. Keeping in mind that the radiation effects are correlated with the absorbed dose in the target the inclusion of cross-irradiation in the dose estimation must be evaluated. The MIRD's formulation was used to perform absorbed dose calculation in mice using absorbed fractions previously reported for 131I, 90Y and 177Lu. Two approaches were considered: a) cross irradiation when a fraction of beta particles emitted can escape from the organ source and, b) full self- irradiation when the beta particles are considered fully absorbed at the emission site. The formulation of linear-quadratic model was readapted to be used in the radionuclide therapy. Treatment with a single administration in mice was simulated and radiation effects on tumor, bone marrow and kidneys under the assumption of cross-irradiation were predicted. A biphasic repair kinetics was considered in the calculation of irradiation effects on kidneys. Typical published biokinetic data for radiopharmaceutical assayed in mice and radiobiological parameters were used in the calculations. The influence of cross irradiation condition was diverse for the tissues analyzed here. The absorbed dose values in kidneys calculated for both methods were no significantly different for low energies, but variations around to 40-50% (over or under-estimation) in absorbed dose were obtained for high energies. Approximately a 30% of the beta radiation emitted from bone will cross irradiates the bone marrow. For injected activities values higher than 10MBq (300μCi), as a single injection, the

  9. Methods to verify absorbed dose of irradiated containers and evaluation of dosimeters

    The research on dose distribution in irradiated food containers and evaluation of several methods to verify absorbed dose were carried out. The minimum absorbed dose of treated five orange containers was in the top of the highest or in the bottom of lowest container. Dmax/Dmin in this study was 1.45 irradiated in a commercial 60Co facility. The density of orange containers was about 0.391g/cm3. The evaluation of dosimeters showed that the PMMA-YL and clear PMMA dosimeters have linear relationship with dose response, and the word NOT in STERIN-125 and STERIN-300 indicators were covered completely at the dosage of 125 and 300 Gy respectively. (author)

  10. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Alonso, T. C.; Mourao, A. P.; Santana, P. C.; Silva, T. A. [Federal University of Minas Gerais, Program of Nuclear Science and Techniques, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  11. Evaluation of bismuth shielding effectiveness in reducing breast absorbed dose during thoracic CT scan

    Computed Tomography (CT) is an essential method for tracking neoplasia and efficiently diagnosing a wide variety of thoracic diseases. CT is generally considered the most accurate choice for lung examination. Due to the growing use of CT, breast and other superficial and radiosensitive organs are unnecessarily irradiated during radiological procedures, thus requiring the development of strategies appropriate to optimize and, if possible, to reduce the radiation dose. The use of bismuth shielding to reduce radiation dose absorbed by breast during thoracic CT examinations has been the subject of many studies recently published by Brazilian and foreign authors of various fields. The purpose of this paper is both to accurately determine the glandular dose when breast is exposed to radiation and to assess the reduction in absorbed dose during thoracic CT examinations, using a set of Thermoluminescent Dosimeters, an anthropomorphic phantom and bismuth shielding. (Author)

  12. Estimation of eye absorbed doses in head & neck radiotherapy practices using thermoluminescent detectors

    Gh Bagheri

    2011-09-01

    Full Text Available  Determination of eye absorbed dose during head & neck radiotherapy is essential to estimate the risk of cataract. Dose measurements were made in 20 head & neck cancer patients undergoing 60Co radiotherapy using LiF(MCP thermoluminescent dosimeters. Head & neck cancer radiotherapy was delivered by fields using SAD & SSD techniques. For each patient, 3 TLD chips were placed on each eye. Head & neck dose was about 700-6000 cGy in 8-28 equal fractions. The range of eye dose is estimated to be (3.49-639.1 mGy with a mean of maximum dose (98.114 mGy, which is about 3 % of head & neck dose. Maximum eye dose was observed for distsnces of about 3 cm from edge of the field to eye.

  13. A system for 3-D absorbed dose measurements with tissue-equivalence for thermal neutrons

    A ferrous sulphate gel with a proper composition to thermalise epithermal neutrons with tissue equivalence with brain tissue gives the possibility of making phantoms which act as a continuous dosimeter for the gamma radiation, with the possibility of 3-D dose determination. If in the phantom a volume of gel containing 10B (in the amount typical for BNCT) is set, information on the absorbed dose in the tumour site may also be drawn. ((orig.))

  14. Radiation-Induced Color Centers in LiF for Dosimetry at High Absorbed Dose Rates

    McLaughlin, W. L.; Miller, Arne; Ellis, S. C.;

    1980-01-01

    Color centers formed by irradiation of optically clear crystals of pure LiF may be analyzed spectrophotometrically for dosimetry in the absorbed dose range from 102 to 107 Gy. Routine monitoring of intense electron beams is an important application. Both 6LiF and 7LiF forms are commercially avail...... available, and when used with filters as albedo dosimeters in pairs, they provide discrimination of neutron and gamma-ray doses....

  15. Recent improvements in chemical dosimetric protocols for accurate measurements of absorbed dose in pulse radiolysis experiments

    This report describes recent improvements made in chemical dosimetric protocols for the Radiation and Photochemistry Division LINAC based pulse radiolysis (PR) experiments, keeping into perspective the current objectives and related machine parameters. In PR studies, accurate measure of absorbed dose based on free radicals' chemistry remains the backbone of all quantitative analyses. Therein, for promptness and convenience, precalibrated secondary chemical dosimeters consisting of aqueous solution of either H2 in alkali, (H2/OH-) or ferrocyanide (Fe(CN)64-), or thiocyanate (CNS-) are employed. Concentration of the free radical species produced as a result (e.g. hydrated electron, eaq-, ferricyanide anion, Fe(CN)63- or thiocyanate dimer radical anion, (SCN)2-) following respective set of chemical reactions is monitored. Amongst these the (SCN)2-) system is in use in RPCD since the machine installation in 1987, due to its sensitivity and ease of use. However, it was realized that rapid partial and variable disappearance of the transient (SCN)2-) species may occur prior to its estimation, introducing significant errors in some cases. Such deviations were searched, analyzed and then quantified, first by mapping the specific time-resolved output electron pulse profiles and the microscopic, random energy variations within each. Secondly, by incorporating such physical irregularities into the opposing set of (SCN)2- radical fast formation and decay chemical reactions, detailed time resolved kinetic analyses of the dosimetric reactions were made separately under all possible scenario. This exercise revealed the varied natures and extents of the hidden inaccuracies in different cases, and consequently also allowed their reduction to negligible levels, by their integration with a user-friendly dosimetry software that was developed in-house, resulting in substantial improvements in the measured dose. (author)

  16. Dynamic dose-shaping by gravity-oriented absorbers for total lymph node irradiation

    Rotational therapy with gravity-oriented absorbers is proposed for better total lymph node irradiation (TLI). Two metal semicylinders are joined coaxially (face to face) to form a radiation absorber that is centrally suspended in the beam. During rotation this absorber is kept parallel to itself by gravity, like the riders of a Ferris wheel. The vertebrae remain continuously protected under the absorber's shadow. The circular full-dose region, achieved by ordinary rotation, is now transformed into a horse-shoe region embracing the spine anteriorly. The abdominal lymph nodes are thus irradiated while the spine and most of the normal tissue around the spine are protected. A similar technique is applied for the selective irradiation of the pelvic lymph nodes, which are confined in the two legs of an inverted V region

  17. A method to efficiently simulate absorbed dose in radio-sensitive instrumentation components

    Components installed in tunnels of high-power accelerators are prone to radiation-induced damage and malfunction. Such machines are usually modeled in detail and the radiation cascades are transported through the three-dimensional models in Monte Carlo codes. Very often those codes are used to compute energy deposition in beam components or radiation fields to the public and the environment. However, sensitive components such as electronic boards or insulator cables are less easily simulated, as their small size makes dose scoring a (statistically) inefficient process. Moreover the process to decide their location is iterative, as in order to define where these will be safely installed, the dose needs to be computed, but to do so the location needs to be known. This note presents a different approach to indirectly asses the potential absorbed dose by certain components when those are installed within a given radiation field. The method consists first in finding the energy and particle-dependent absorbed dose to fluence response function, and then programming those in a radiation transport Monte Carlo code, so that fluences in vacuum/air can be automatically converted real-time into potential absorbed doses and then mapped in the same way as fluences or dose equivalent magnitudes

  18. Absorbed neutron doses in air holes of fast neutron fields at the RB reactor

    Different experimental fast neutron fields are created at the RB reactor. The absorbed neutron doses in their air holes are determined on the basis of intermediate and fast neutron spectra measurements. The obtained results are analyzed in connection with application of these fields. (author)

  19. Exposure distribution, absorbed doses, and energy imparted for panoramic radiography using Orthopantomograph model OP 5

    The absorbed doses and energy imparted for the Orthopantomograph model OP 5 using two different collimators (0.9-1.3 X 33 mm2 and 0.6-0.9 X 39.5 mm2, respectively) were examined at 70 and 75 kV. The absorbed doses were estimated by thermoluminescence dosimetry in a sectioned phantom and by the energy imparted from measurements of areal exposure using a plane parallel transmission ionization chamber. The exposure distribution was surveyed on radiographic film. The anterior part of the parotid glands received the highest absorbed doses (2.4-3.2 mGy) when the wider collimator was used, with a decrease of two to three times when the narrower collimator was used. Other areas received absorbed doses of about 1.0 to 1.5 mGy or below. An increase of the kV from 70 to 75 had a minor influence. The energy imparted for the wider collimator was 0.6-0.8 and for the narrower collimator, 0.4-0.6 mJ

  20. Internal radiation absorbed dose estimation in human brain due to technetium-99m and iodine-131

    Internal dosimetry is a branch of medical physics that deals with the measurement of the internally absorbed dose by an organ after applying isotopes. In this study, internal radiation absorbed dose has been calculated for 99mTc and 131I, which are frequently used for functioning tests and therapeutic treatments of thyroid, respectively in these cases, some amount of isotopes are accumulated in other tissues like brain, which are very soft and cannot be regenerated if they are damaged. Using ionizing radiation inside the body and to ensure the safety of brain, the internal radiation absorbed dose has been calculated applying direct counting measurement. Accumulation of isotopes to target organ has been measured and this target organ is considered as primary target organ; also this organ is considered as source with respect to other organs. These organ counts have, been measured by computer-based scintillation system. The amount of exposure in brain has been measured with the help of the data obtained from the special set-up equipment, including NaI detector, radiation survey meter and water phantoms of various sizes. Absorbed dose in brain for each isotope has been calculated by applying time-activity curve analysis. Finally, these results have been compared with the data in ICRP l Reports 53 and 71. (author)

  1. Aquatic ecosystems of the Chernobyl NPP exclusion zone: dynamics of contamination, radiation absorbed doses, radiation effects

    The results of radioactive contamination dynamics in the main components of aquatic ecosystems and absorbed dose rate for hydrobionts within the Chernobyl accident exclusion zone has been analysed. Some cytogenetic and haematological effects of long-term irradiation on aquatic organisms as well as damage of higher aquatic plants by parasitic fungi and gall-producing arthropods have been considered. (authors)

  2. Axial distribution of absorbed doses in fast neutron field at the RB reactor

    The coupled fast thermal system CFTS at the RB reactor is created for obtaining fast neutron fields. The axial distribution of fast neutron flux density in its second configuration (CFTS-2) is measured. The axial distribution of absorbed doses is computed on the basis of mentioned experimental results. At the end these experimental and computed results are given. (Author)

  3. Simulation of absorbed dose in human blood with MCNP 4C code

    Biological dosimetry, based on the analysis of solid stained dicentric chromosomes, has been used since the mid 1960s. The intervening years have seen great improvements bringing the technique to a point where dicentric analysis has become a routine component of the radiological protection programs of many countries. Experience of its application in thousands of cases of actual or suspected overexposures has proved the worth of the method. The aberrations scored in the lymphocytes are interpreted in terms of absorbed dose by reference to a dose response calibration curve. This curve will have been produced by exposure of blood in vitro to doses of the appropriate quality of radiation. The doses given to the specimens should be traceable via a physical instrument such as an ionization chamber, to a primary or secondary standard. An alternative to obtain the information about absorbed dose in a specific blood volume is through the Monte Carlo method. The use of such technique is worldwide when physical measurements are inconvenient or impossible, and particularly useful for the solution of complex problems that cannot be modeled by codes that use deterministic methods. It is applied to particle systems as neutrons and electrons, as well as photons or still in mixed systems. Due to difficulties that involve the use of neutrons, this technique has shown extreme importance for preliminary research and experimental arrangements with neutron sources. In this study, the main objective was to simulate the dose absorbed by a blood sample in an experimental arrangement through the irradiation with sources of 241AmBe. It was used the code Monte Carlo N-Particle version 4C (MCNP 4C) whose data had been processed parallel in a computational structure in a cluster. This method allowed estimating the absorbed dose in a specific blood volume, making possible the experimental setup arrangement. (author)

  4. Measurement of absorbed dose with a bone-equivalent extrapolation chamber

    A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water trade mark sign and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to ∼2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water trade mark sign PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams

  5. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    Full text: The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters using 60Co γ radiation, ten X-ray beam qualities between TPR20,10=0.639 and 0.802 and ten electron beam qualities between R50=1.75 gcm-2 and 8.54 gcm-2. A 22 MeV microtron accelerator with a conventional treatment head is used as radiation source for the high energy photon and electron beams. The treatment head produces clinical beams. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter of the Domen type, that is used to calibrate several METAS transfer standards of type NE2611A and NE2571A in terms of absorbed dose to water in the energy range from 60Co to TPR20,10 = 0.802. User reference dosimeters are compared with the transfer standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60Co γ radiation and 1.4% for higher energies (coverage factor k=2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the Code of Practice of the International Atomic Energy Agency using the calculated kQ factors listed in table 14. The comparison showed a maximum difference of 0.8% for the NE25611A and NE 2571A chambers. At 60Co γ radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau International des Poids et Mesures BIPM (Sevres) as well as of the National Research Council NRC (Canada). In either case the standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of precisely known particle energy and beam charge is totally absorbed in Fricke solution (ferrous ammonium sulphate) of a given mass. This

  6. Absorbed 18F-FDG Dose to the Fetus During Early Pregnancy

    We describe a rare case of a woman who underwent 18F-FDG PET/CT during early pregnancy (fetus age, 10 wk). The fetal absorbed dose was calculated by taking into account the 18F-FDG fetal self-dose, photon dose coming from the maternal tissues, and CT dose received by both mother and fetus. Methods: The patient (weight, 71 kg) had received 296 MBq of 18F-FDG. Imaging started at 1 h, with unenhanced CT acquisition, followed by PET acquisition. From the standardized uptake value measured in fetal tissues, we calculated the total number of disintegrations per unit of injected activity. Monte Carlo analysis was then used to derive the fetal 18F-FDG self-dose, including positrons and self-absorbed photons. Photon dose from maternal tissues and CT dose were added to obtain the final dose. Results: The maximum standardized uptake value in fetal tissues was 4.5. Monte Carlo simulation showed that the fetal self-dose was 3.0 * 10-2 mGy/MBq (2.7 * 10-2 mGy/MBq from positrons and 0.3 * 10-2 mGy/MBq from photons). The estimated photon dose to the fetus from maternal tissues was 1.04*10-2 mGy/MBq. Accordingly, the specific 18F-FDG dose to the fetus was about 4.0 *10-2 mGy/MBq (11.8 mGy in this patient). The CT scan added a further 10 mGy. Conclusion: The dose to the fetus during early pregnancy can be as high as 4.0*10-2 mGy/MBq of 18F-FDG. Current dosimetric standards in early pregnancy may need to be revised. (authors)

  7. Skin Absorbed Doses from Full Mouth Standard Intraoral Radiography in Bisecting Angle and Paralleling techniques

    This study was performed to measure the skin absorbed doses from full mouth standard intraoral radiography(14 exposures) in bisecting angle and paralleling techniques. Thermoluminescent dosimeters were used in a phantom. Circular tube collimator (60 mm in diameter, 20 cm in length) and rectangular collimator (35 mm X 44 mm, 40 cm in length) were set for bisecting angle and paralleling techniques respectively. All measurement sites were classified into 8 groups according to distance from each point of central rays. The results were as follows: 1. The skin absorbed doses from the paralleling technique were significantly decreased than those from the bisecting technique in both points at central ray and points away from central ray. The percentage rats of decrease were greater at points away from central ray than those at central ray. 2. The skin absorbed doses at the lens of eye, parotid gland, submandibular gland and thyroid region were significantly decreased in paralleling technique, but those of the midline of palate remained similar in both techniques. 3. The highest doses were measured at the site 20 mm above the point of central ray for the mandibular premolars in bisecting angle technique and at the point of central ray for the mandibular premolars in paralleling techniques. The lowest doses were measured at the thyroid region in both techniques.

  8. The Effect of Diagnostic Absorbed Doses from 131I on Human Thyrocytes in Vitro

    Zbigniew Adamczewski

    2015-06-01

    Full Text Available Background: Administration of diagnostic activities of 131I, performed in order to detect thyroid remnants after surgery and/or thyroid cancer recurrence/metastases, may lead to reduction of iodine uptake. This phenomenon is called “thyroid stunning”. We estimated radiation absorbed dose-dependent changes in genetic material, in particular in sodium iodide symporter (NIS gene promoter, and NIS protein level in human thyrocytes (HT. Materials and Methods: We used unmodified HT isolated from patients subjected to thyroidectomy exposed to 131I in culture. The different 131I activities applied were calculated to result in absorbed doses of 5, 10, and 20 Gy. Results: According to flow cytometry analysis and comet assay, 131I did not influence the HT viability in culture. Temporary increase of 8-oxo-dG concentration in HT directly after 24 h (p < 0.05 and increase in the number of AP-sites 72 h after termination of exposition to 20 Gy dose (p < 0.0001 were observed. The signs of dose-dependent DNA damage were not associated with essential changes in the NIS expression on mRNA and protein levels. Conclusions: Our observation constitutes a first attempt to evaluate the effect of the absorbed dose of 131I on HT. The results have not confirmed the theory that the “thyroid stunning” reduces the NIS protein synthesis.

  9. The METAS absorbed dose to water calibration service for high energy photon and electron beam radiotherapy

    The Swiss Federal Office of Metrology and Accreditation (METAS) provides an absorbed dose to water calibration service for reference dosimeters. The calibration service uses 60Co gamma radiation, ten high energy photon beam qualities between TPR20,10 = 0.639 and 0.802 and ten electron beam qualities between R50 = 1.75 g/cm2 and 8.54 g/cm2. The METAS absorbed dose calibration service for high energy photons is based on a primary standard sealed water calorimeter used to calibrate several METAS NE 2611A and NE 2571A type ionization chamber working standards in terms of absorbed dose to water in the energy range of 60Co to TPR20,10 = 0.802. The users' reference dosimeters are compared with the working standards to give calibration factors in absorbed dose to water with an uncertainty of 1.0% for 60Co radiation and 1.4% for higher energies (coverage factor k = 2). The calibration service was launched in 1997. The calibration factors measured by METAS have been compared with those derived from the IAEA Technical Reports Series No. 398 (TRS 398) code of practice and from Recommendations No. 4 of the Swiss Society of Radiobiology and Medical Physics (SSRMP). The comparisons showed a maximum difference of 1.2% for the NE 2561A and NE 2571A chambers. At 60Co gamma radiation the METAS primary standard of absorbed dose to water was bilaterally compared with the primary standards of the Bureau international des poids et mesures.The standards were in agreement within the comparison uncertainties. The METAS absorbed dose calibration service for high energy electron beams is based on a primary standard chemical dosimeter. A monoenergetic electron beam of known particle energy and beam charge is totally absorbed in Fricke solution. The experiment was carried out in the energy range of 5.3 MeV to 22.4 MeV, which allows the determination of the response of the Fricke dosimeter. Finally, the users' dosimeters are compared with the METAS working standards. The overall uncertainty in

  10. Adiabatic calorimeter for measuring absorbed dose of IHEP synchrotron secondary radiation

    An adiabatic calorimeter for measuring the value of absorbed dose of mixed radiation generated by 70 GeV proton synchrotron is described. The calorimetric system consists of a working body (a core) and a shell (a screen). The calorimeter adiabaticity is provided by the absence of the core-shell heat exchange by maintaining the shell temperature equal to the core temperature and, consequently, the whole energy generated in the core goes for its heating. The work showed the possibility of carrying out the adiabatic calorimetric measurements of absorbed dose of secondary radiation generated by un accelerated proton beam under the conditions of alternating magnetic and electric fields at the IHEP proton synchrotron at the average dose rate not less than 5x10-3 Wxkg-1

  11. Absorbed doses received by infants subjected to panoramic dental and cephalic radiographs

    The IAEA Report No. 115 recommends that each country or region can establish levels of absorbed doses for each radiographic technique employed in diagnostic. assuming the extended and expensive of this purpose, we have been to begin in a first step with the dentistry area, in order to estimate the dose levels received at crystalline and thyroid level in infants that go to an important public institution in our country to realize panoramic and cephalic radiographs. This work will serve to justify and impel a quality assurance program in Venezuela on the dentistry area which includes aspects such as training for the medical lap referring the justification of the radiological practice, optimization of X-ray units to produce an adequate image quality that delivers to patient an absorbed dose as much lower as reasonably it can be reached without diagnostic detriment. (Author)

  12. Absorbed dose measurements on external surface of Kosmos-satellites with glass thermoluminescent detectors.

    Akatov YuA; Arkhangelsky, V V; Kovalev, E E; Spurny, F; Votochkova, I

    1989-01-01

    In this paper we present absorbed dose measurements with glass thermoluminescent detectors on external surface of satellites of Kosmos-serie flying in 1983-87. Experiments were performed with thermoluminescent aluminophosphate glasses of thicknesses 0.1, 0.3, 0.4, 0.5, and 1 mm. They were exposed in sets of total thickness between 5 and 20 mm, which were protected against sunlight with thin aluminized foils. In all missions, extremely high absorbed dose values were observed in the first layers of detectors, up to the thickness of 0.2 to 0.5 gcm-2. These experimental results confirm that, during flights at 250 to 400 km, doses on the surface of the satellites are very high, due to the low energy component of the proton and electron radiation. PMID:11537297

  13. Calculation of absorbed dose of anchorage-dependent cells from internal beta-rays irradiation

    Objective: To elicit the formula of internal dosimetry in anchorage-dependent cells by beta-emitting radionuclides from uniformly distributed volume sources. Methods: By means of the definition of absorbed dose and the MIRD (Medical International Radiation Dose) scheme the formula of internal dosimetry was reasonably deduced. Firstly, studying the systems of suspension culture cells. Then, taking account of the speciality of the systems of the anchorage-dependent cells and the directions of irradiation, the absorbed dose of anchorage -dependent cells was calculated by the accumulated radioactivity, beta-ray energy, and the volume of the cultured systems. Results: The formula of internal dosimetry of suspension culture cells and anchorage-dependent cells were achieved. At the same time, the formula of internal dosimetry of suspension culture cells was compared with that of MIRD and was confirmed accurate. Conclusion: The formula of internal dosimetry is concise, reliable and accurate

  14. Absorbed radiation dose in plants of natural complexes in Belarus over the past 10 years following the Chernobyl accident

    An absorbed radiation dose in plant of the natural complexes in Belarus for 10 years following the Chernobyl accident was calculated. The data on dynamics of the exposure dose rate in the area for 10 years were used for calculating the absorbed dose due to external irradiation and the data on the specific activity of the plants due to incorporation of cesium 137 and strontium 90 were taken into consideration when calculating the absorbed dose due to internal irradiation. Maximal absorbed doses in plants (to 40 Gy) were fixed in the zone with the high density of contamination. It resulted in visible somatic damages of separated plant organs. The highest contribution to formation of absorbed doses of ionizing radiation in plants in the contaminated zones belongs to internal irradiation of plant organisms due to incorporated radionuclides, in particular cesium 137

  15. Fetus absorbed dose evaluation in head and neck radiotherapy procedures of pregnant patients

    Camargo da C, E.; Ribeiro da R, L. A.; Santos B, D. V., E-mail: etieli@ird.gov.br [Instituto de Radioprotecao e Dosimetria / CNEN, Av. Salvador Allende s/n, Barra de Tijuca, 22783-127 Rio de Janeiro (Brazil)

    2014-08-15

    Each year a considerable amount of pregnant women needs to be submitted to radiotherapeutic procedures to combat malignant tumors. Radiation therapy is often a treatment of choice for these patients. It is possible to use shielding and beam positioning such that the potential dose to the fetus can be minimized. In this work the head and neck cancer treatment of a pregnant patient was experimentally simulated. The patient was simulated by an anthropomorphic Alderson phantom and the absorbed dose to the fetus was evaluated using micro-rod TLD-100 detectors in two conditions, namely protecting the patients abdomen with a 7 cm lead layer and using no abdomen shielding. The aim of this experiment was to evaluate the efficiency of the abdomen protection in reducing the fetus absorbed dose. Irradiations were performed with a Trilogy linear accelerator using x-rays of 6 MV. A total dose of 50 Gy to the target volume was delivered. The fetus doses evaluated with and without the lead shielding were, respectively, 0.52±0.039 and (0.88±0.052) c Gy, corresponding to a dose reduction of 59%. The dose (0.52±0.039) c Gy is within the zone of biological tolerance for the fetus. (Author)

  16. Radiation absorbed doses from iron-52, iron-55, and iron-59 used to study ferrokinetics

    Robertson, J.S.; Price, R.R.; Budinger, T.F.; Fairbanks, V.F.; Pollycove, M.

    1983-04-01

    Biological data obtained principally with Fe-59 citrate are used with physical data to calculate radiation absorbed doses for ionic or weak chelate forms of Fe-52, Fe-55, and Fe-59, administered by intravenous injection. Doses are calculated for normal subjects, primary hemochromatosis (also called idiopathic or hereditary hemochromatosis), pernicious anemia in relapse, iron-deficiency anemia, and polycythemia vera. The Fe-52 doses include the dose from the Mn-52m daughter generated after injection of Fe-52. Special attention has been given to the dose to the spleen, which has a relatively high concentration of RBCs and therefore of radioiron, and which varies significantly in size in both health and disease.

  17. Absorbed radiation doses in women undergone to PET-CT exams for cancer diagnosis

    The absorbed dose in several organs and the effective dose in patients submitted to PET-CT exams with the radiopharmaceutical 18F-FDG were assessed. The ICRP-106 biokinetic model and thermoluminescent detectors in a anthropomorphic phantom were used. The use of the PET-CT image acquisition protocol, with the CT protocol for anatomical mapping, showed that 60% of effective dose was from the radiotracer administration, being the effective dose values for a female patient of (5.80 ± 1.57) mSv. In conclusion, patient doses can be reduced by using appropriate imaging acquisition in 18F-FDG PET-CT examinations and promoting the compliance with the radiation protection principles. (author)

  18. Radiation absorbed doses from iron-52, iron-55, and iron-59 used to study ferrokinetics.

    Robertson, J S; Price, R R; Budinger, T F; Fairbanks, V F; Pollycove, M

    1983-04-01

    Biological data obtained principally with Fe-59 citrate are used with physical data to calculate radiation absorbed doses for ionic or weak chelate forms of Fe-52, Fe-55, and Fe-59, administered by intravenous injection. Doses are calculated for normal subjects, primary hemochromatosis (also called idiopathic or hereditary hemochromatosis), pernicious anemia in relapse, iron-deficiency anemia, and polycythemia vera. The Fe-52 doses include the dose from the Mn-52m daughter generated after injection of Fe-52. Special attention has been given to the dose to the spleen, which has a relatively high concentration of RBCs and therefore of radioiron, and which varies significantly in size in both health and disease. PMID:6339690

  19. Graves' disease radioiodine-therapy: Choosing target absorbed doses for therapy planning

    Willegaignon, J., E-mail: j.willegaignon@gmail.com; Sapienza, M. T.; Coura-Filho, G. B.; Buchpiguel, C. A. [Cancer Institute of São Paulo State (ICESP), Clinical Hospital, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Watanabe, T. [Nuclear Medicine Service, Department of Radiology, School of Medicine, University of São Paulo, Sao Paulo 01246-000 (Brazil); Traino, A. C. [Unit of Medical Physics, Azienda Ospedaliero-Universitaria Pisana, Pisa 56126 (Italy)

    2014-01-15

    Purpose: The precise determination of organ mass (m{sub th}) and total number of disintegrations within the thyroid gland (A{sup ~}) are essential for thyroid absorbed-dose calculations for radioiodine therapy. Nevertheless, these parameters may vary according to the method employed for their estimation, thus introducing uncertainty in the estimated thyroid absorbed dose and in any dose–response relationship derived using such estimates. In consideration of these points, thyroid absorbed doses for Graves’ disease (GD) treatment planning were calculated using different approaches to estimating the m{sub th} and the A{sup ~}. Methods: Fifty patients were included in the study. Thyroid{sup 131}I uptake measurements were performed at 2, 6, 24, 48, 96, and 220 h postadministration of a tracer activity in order to estimate the effective half-time (T{sub eff}) of {sup 131}I in the thyroid; the thyroid cumulated activity was then estimated using the T{sub eff} thus determined or, alternatively, calculated by numeric integration of the measured time-activity data. Thyroid mass was estimated by ultrasonography (USG) and scintigraphy (SCTG). Absorbed doses were calculated with the OLINDA/EXM software. The relationships between thyroid absorbed dose and therapy response were evaluated at 3 months and 1 year after therapy. Results: The average ratio (±1 standard deviation) betweenm{sub th} estimated by SCTG and USG was 1.74 (±0.64) and that between A{sup ~} obtained by T{sub eff} and the integration of measured activity in the gland was 1.71 (±0.14). These differences affect the calculated absorbed dose. Overall, therapeutic success, corresponding to induction of durable hypothyroidism or euthyroidism, was achieved in 72% of all patients at 3 months and in 90% at 1 year. A therapeutic success rate of at least 95% was found in the group of patients receiving doses of 200 Gy (p = 0.0483) and 330 Gy (p = 0.0131) when m{sub th} was measured by either USG or SCTG and A

  20. Comparison of the standards of absorbed dose to water of the OMH and the BIPM for 60Co γ rays

    A comparison of the standards of absorbed dose to water of the Orszagos Meresugyi Hivatal (OMH), Budapest, Hungary and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co radiation. The results show that the OMH and the BIPM standards for absorbed dose to water are in close agreement, the difference being within the estimated uncertainty. (authors)

  1. Analysis of surface absorbed dose in X-ray grating interferometry

    Highlights: • Theoretical framework for dose estimation in X-ray grating interferometry. • Potential dose reduction of X-ray grating interferometry compared to conventional radiography. • Guidelines for optimization of X-ray grating interferometry for dose-sensitive applications. • Measure to compare various existing X-ray phase contrast imaging techniques. - Abstract: X-ray phase contrast imaging using grating interferometry has shown increased contrast over conventional absorption imaging, and therefore the great potential of dose reduction. The extent of the dose reduction depends on the geometry of grating interferometry, the photon energy, the properties of the sample under investigation and the utilized detector. These factors also determine the capability of grating interferometry to distinguish between different tissues with a specified statistical certainty in a single raw image. In this contribution, the required photon number for imaging and the resulting surface absorbed dose are determined in X-ray grating interferometry, using a two-component imaging object model. The presented results confirm that compared to conventional radiography, phase contrast imaging using grating interferometry indeed has the potential of dose reduction. And the extent of dose reduction is strongly dependent on the imaging conditions. Those results provide a theoretical framework for dose estimation under given imaging conditions before experimental trials, and general guidelines for optimization of grating interferometry for those dose-sensitive applications

  2. External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities

    Choi, Chang Heon; Kim, Jung In; Park, Jong Min; Park, Yang Kyun; Ye, Sung Joon [Medical Research Center, Seoul National University College of Medicine, Seoul (Korea, Republic of); Cho, Kun Woo; Cho, Woon Kap [Radiation Research, Korean Institute of Nuclear Safety, Daejeon (Korea, Republic of); Lim, Chun Il [Korea Food and Drug Administration, Seoul (Korea, Republic of)

    2010-11-15

    We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party's American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Most of the beams (74%) were within {+-}2% of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance ({+-}3%), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be {+-}1.5%. The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

  3. An international dosimetry exchange for boron neutron capture therapy. Part I: Absorbed dose measurements.

    Binns, P J; Riley, K J; Harling, O K; Kiger, W S; Munck af Rosenschöld, P M; Giusti, V; Capala, J; Sköld, K; Auterinen, I; Serén, T; Kotiluoto, P; Uusi-Simola, J; Marek, M; Viererbl, L; Spurny, F

    2005-12-01

    An international collaboration was organized to undertake a dosimetry exchange to enable the future combination of clinical data from different centers conducting neutron capture therapy trials. As a first step (Part I) the dosimetry group from the Americas, represented by MIT, visited the clinical centers at Studsvik (Sweden), VTT Espoo (Finland), and the Nuclear Research Institute (NRI) at Rez (Czech Republic). A combined VTT/NRI group reciprocated with a visit to MIT. Each participant performed a series of dosimetry measurements under equivalent irradiation conditions using methods appropriate to their clinical protocols. This entailed in-air measurements and dose versus depth measurements in a large water phantom. Thermal neutron flux as well as fast neutron and photon absorbed dose rates were measured. Satisfactory agreement in determining absorbed dose within the experimental uncertainties was obtained between the different groups although the measurement uncertainties are large, ranging between 3% and 30% depending upon the dose component and the depth of measurement. To improve the precision in the specification of absorbed dose amongst the participants, the individually measured dose components were normalized to the results from a single method. Assuming a boron concentration of 15 microg g(-1) that is typical of concentrations realized clinically with the boron delivery compound boronophenylalanine-fructose, systematic discrepancies in the specification of the total biologically weighted dose of up to 10% were apparent between the different groups. The results from these measurements will be used in future to normalize treatment plan calculations between the different clinical dosimetry protocols as Part II of this study. PMID:16475772

  4. External Auditing on Absorbed Dose Using a Solid Water Phantom for Domestic Radiotherapy Facilities

    We report the results of an external audit on the absorbed dose of radiotherapy beams independently performed by third parties. For this effort, we developed a method to measure the absorbed dose to water in an easy and convenient setup of solid water phantom. In 2008, 12 radiotherapy centers voluntarily participated in the external auditing program and 47 beams of X-ray and electron were independently calibrated by the third party's American Association of Physicists in Medicine (AAPM) task group (TG)-51 protocol. Even though the AAPM TG-51 protocol recommended the use of water, water as a phantom has a few disadvantages, especially in a busy clinic. Instead, we used solid water phantom due to its reproducibility and convenience in terms of setup and transport. Dose conversion factors between solid water and water were determined for photon and electron beams of various energies by using a scaling method and experimental measurements. Most of the beams (74%) were within ±2% of the deviation from the third party's protocol. However, two of 20 X-ray beams and three of 27 electron beams were out of the tolerance (±3%), including two beams with a >10% deviation. X-ray beams of higher than 6 MV had no conversion factors, while a 6 MV absorbed dose to a solid water phantom was 0.4% less than the dose to water. The electron dose conversion factors between the solid water phantom and water were determined: The higher the electron energy, the less is the conversion factor. The total uncertainty of the TG-51 protocol measurement using a solid water phantom was determined to be ±1.5%. The developed method was successfully applied for the external auditing program, which could be evolved into a credential program of multi-institutional clinical trials. This dosimetry saved time for measuring doses as well as decreased the uncertainty of measurement possibly resulting from the reference setup in water.

  5. Physiologically based pharmacokinetic modeling of inhaled radon to calculate absorbed doses in mice, rats, and humans

    This is the first report to provide radiation doses, arising from inhalation of radon itself, in mice and rats. To quantify absorbed doses to organs and tissues in mice, rats, and humans, we computed the behavior of inhaled radon in their bodies on the basis of a physiologically based pharmacokinetic (PBPK) model. It was assumed that radon dissolved in blood entering the gas exchange compartment is transported to any tissue by the blood circulation to be instantaneously distributed according to a tissue/blood partition coefficient. The calculated concentrations of radon in the adipose tissue and red bone marrow following its inhalation were much higher than those in the others, because of the higher partition coefficients. Compared with a previous experimental data for rats and model calculation for humans, the present calculation was proved to be valid. Absorbed dose rates to organs and tissues were estimated to be within the range of 0.04-1.4 nGy (Bqm-3)-1 day-1 for all the species. Although the dose rates are not so high, it may be better to pay attention to the dose to the red bone marrow from the perspective of radiation protection. For more accurate dose assessment, it is necessary to update tissue/blood partition coefficients of radon that strongly govern the result of the PBPK modeling. (author)

  6. The therapeutic effects and absorbed dose of I-131 MIBG in patients with malignant pheochromocytoma

    High selective tumor uptake and retention of I-131 MIBG (MIBG) is known as a prerequisite for successful treatment of pheochromocytoma. We evaluated the relationship of absorbed dose of MIBG in tumor and therapeutic effects in twelve selected patients gained over a period of more than 5 years. All patients were diagnosed as malignant adrenal or extra-adrenal pheochromocytoma clinically. The metastases were identified in 10 patients on tracer dose images prior to therapy. Except for 4 patients, all others were symptomatic and had raised hormones indicative of tumor hyper-secretion at the time of enrolment. The number of doses of MIBG ranged from 1 to 3 times with 3.7 GBq per course and a cumulative activity from 3.7 to 11.1 GBq. The estimation of the therapeutic MIBG absorbed dose was performed on the basis of measurement after a therapy by using SPECT on day 1,3,and 5. The absorbed dose was calculated from MIRD data. None of the patients had a complete remission to I-131 MIBG therapy. In one patient, died with DIC 4 months after therapy. Of the 11 patients evaluated, a partial remission (PR) and stable disease was observed in one case individually. A dramatic improvement of the symptoms was noticed in this PR patient and maintained well condition now, 12.0 years after initial MIBG therapy. The cumulated absorbed dose with 11.1 GBq of MIBG calculated in lung and lymph node metastases was exceeded over 150Gy. MIBG uptake in each tumor was thought to be homogeneous. The other nine patients, however, showed little effects, and five were died with disease in 2.6 to 4.1 years after therapy. MIBG therapy is an effective palliative treatment for malignant pheochromocytoma, although a complete tumor response rate is low. It is sufficient in the therapy of these difficult tumors that response of tumors is partial remission or the tumor arrest. Criteria of patient selection with therapeutic modalities should be estimated including the absorbed dose and also the distribution

  7. The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy

    El Gamal, Islam; Cojocaru, Claudiu; Mainegra-Hing, Ernesto; McEwen, Malcolm

    2015-06-01

    The aim of this project was to develop an absorbed dose to water primary standard for Ir-192 brachytherapy based on the Fricke dosimeter. To achieve this within the framework of the existing TG-43 protocol, a determination of the absorbed dose to water at the reference position, D(r0,θ0), was undertaken. Prior to this investigation, the radiation chemical yield of the ferric ions (G-value) at the Ir-192 equivalent photon energy (0.380 MeV) was established by interpolating between G-values obtained for Co-60 and 250 kV x-rays. An irradiation geometry was developed with a cylindrical holder to contain the Fricke solution and allow irradiations in a water phantom to be conducted using a standard Nucletron microSelectron V2 HDR Ir-192 afterloader. Once the geometry and holder were optimized, the dose obtained with the Fricke system was compared to the standard method used in North America, based on air-kerma strength. Initial investigations focused on reproducible positioning of the ring-shaped holder for the Fricke solution with respect to the Ir-192 source and obtaining an acceptable type A uncertainty in the optical density measurements required to yield the absorbed dose. Source positioning was found to be reproducible to better than 0.3 mm, and a careful cleaning and control procedure reduced the variation in optical density reading due to contamination of the Fricke solution by the PMMA holder. It was found that fewer than 10 irradiations were required to yield a type A standard uncertainty of less than 0.5%. Correction factors to take account of the non-water components of the geometry and the volume averaging effect of the Fricke solution volume were obtained from Monte Carlo calculations. A sensitivity analysis showed that the dependence on the input data used (e.g. interaction cross-sections) was small with a type B uncertainty for these corrections estimated to be 0.2%. The combined standard uncertainty in the determination of absorbed dose to water

  8. The Fricke dosimeter as an absorbed dose to water primary standard for Ir-192 brachytherapy

    The aim of this project was to develop an absorbed dose to water primary standard for Ir-192 brachytherapy based on the Fricke dosimeter. To achieve this within the framework of the existing TG-43 protocol, a determination of the absorbed dose to water at the reference position, D(r0,θ0), was undertaken. Prior to this investigation, the radiation chemical yield of the ferric ions (G-value) at the Ir-192 equivalent photon energy (0.380 MeV) was established by interpolating between G-values obtained for Co-60 and 250 kV x-rays.An irradiation geometry was developed with a cylindrical holder to contain the Fricke solution and allow irradiations in a water phantom to be conducted using a standard Nucletron microSelectron V2 HDR Ir-192 afterloader. Once the geometry and holder were optimized, the dose obtained with the Fricke system was compared to the standard method used in North America, based on air-kerma strength.Initial investigations focused on reproducible positioning of the ring-shaped holder for the Fricke solution with respect to the Ir-192 source and obtaining an acceptable type A uncertainty in the optical density measurements required to yield the absorbed dose. Source positioning was found to be reproducible to better than 0.3 mm, and a careful cleaning and control procedure reduced the variation in optical density reading due to contamination of the Fricke solution by the PMMA holder. It was found that fewer than 10 irradiations were required to yield a type A standard uncertainty of less than 0.5%.Correction factors to take account of the non-water components of the geometry and the volume averaging effect of the Fricke solution volume were obtained from Monte Carlo calculations. A sensitivity analysis showed that the dependence on the input data used (e.g. interaction cross-sections) was small with a type B uncertainty for these corrections estimated to be 0.2%.The combined standard uncertainty in the determination of absorbed dose to water at

  9. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    Norris, Edward T.; Liu, Xin, E-mail: xinliu@mst.edu [Nuclear Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Hsieh, Jiang [GE Healthcare, Waukesha, Wisconsin 53188 (United States)

    2015-07-15

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  10. Deterministic absorbed dose estimation in computed tomography using a discrete ordinates method

    Purpose: Organ dose estimation for a patient undergoing computed tomography (CT) scanning is very important. Although Monte Carlo methods are considered gold-standard in patient dose estimation, the computation time required is formidable for routine clinical calculations. Here, the authors instigate a deterministic method for estimating an absorbed dose more efficiently. Methods: Compared with current Monte Carlo methods, a more efficient approach to estimating the absorbed dose is to solve the linear Boltzmann equation numerically. In this study, an axial CT scan was modeled with a software package, Denovo, which solved the linear Boltzmann equation using the discrete ordinates method. The CT scanning configuration included 16 x-ray source positions, beam collimators, flat filters, and bowtie filters. The phantom was the standard 32 cm CT dose index (CTDI) phantom. Four different Denovo simulations were performed with different simulation parameters, including the number of quadrature sets and the order of Legendre polynomial expansions. A Monte Carlo simulation was also performed for benchmarking the Denovo simulations. A quantitative comparison was made of the simulation results obtained by the Denovo and the Monte Carlo methods. Results: The difference in the simulation results of the discrete ordinates method and those of the Monte Carlo methods was found to be small, with a root-mean-square difference of around 2.4%. It was found that the discrete ordinates method, with a higher order of Legendre polynomial expansions, underestimated the absorbed dose near the center of the phantom (i.e., low dose region). Simulations of the quadrature set 8 and the first order of the Legendre polynomial expansions proved to be the most efficient computation method in the authors’ study. The single-thread computation time of the deterministic simulation of the quadrature set 8 and the first order of the Legendre polynomial expansions was 21 min on a personal computer

  11. The Effect of the Size of Radiotherapy Photon Beams on the Absorbed Dose to an Al2O3 Dosimeter

    陈少文; 张文澜; 范丽仙; 唐强; 刘小伟

    2012-01-01

    The effect of the size of radiotherapy photon beams on the absorbed dose to an Al2O3 dosimeter was investigated using the Monte Carlo method. The EGSnrc/DOSRZnrc program code was used to simulate the absorbed dose to the Al2O3 dosimeter, as well as the absorbed dose to water at the corresponding position in the absence of the dosimeter. The incident beams were 60Co γ and 6 MV with a different beam radius ranging from 0.1 cm to 2 cm. Results revealed that the absorbed dose ratio factor depends on the size of the incident photon beam. When the radius of the incident beam is smaller than that of the dosimeter, the absorbed dose ratio factor decreases as the incident beam size increases. The absorbed dose ratio factor reaches its minimum when the radius of the incident beam is almost the same as that of the dosimeter. When the radius of the incident beam is larger than that of the dosimeter, the absorbed dose ratio factor increases as the incident beam size increases. The maximum difference among these absorbed dose ratio factors can be up to 14% in 60Co γ beams and 23% in 6 MV beams. However, when the size of the incident beam is much larger than that of the dosimeter, the effect of the incident beam size on the absorbed dose ratio factor becomes quite small. The maximum discrepancy between the absorbed dose ratio factors and the average value is not more than 1%.

  12. Development of an absorbed dose calorimeter for use in IMRT and small field external beam radiotherapy

    A calorimeter is in development for the absolute measurement of absorbed dose in small fields and complex fields such as those used to deliver intensity modulated radiation therapy. The probe consists of a spherical graphite core surrounded by and separated from a spherical graphite jacket, enclosed in water-equivalent plastic envelope. A spherical geometry was chosen to give approximately isotropic response and sensitivity to dose gradients. Temperature sensing and electrical heating are provided via small thermistors embedded in the graphite, and the temperatures of each component are actively controlled at a set value. Energy absorbed from radiation is measured by substitution, using the electrical heaters. The basic measurement is one of absorbed dose rate rather than absorbed dose. The device is calibrated in terms of absorbed dose to water under standard reference conditions and corrections to its response, in smaller and irregular non-reference fields, are calculated using EGSnrc Monte Carlo and Comsol MultiPhysics to perform finite element analysis of the heat transfer equation. Linearity of the heat equation plays a critical role in analysing measurement uncertainty and the limits on calorimeter performance. In measurements on the central axis of a small field, volume averaging effects make the correction for beam non-uniformity become dominant when the field size is comparable to the core diameter which, in the initial prototype, is 5 mm. The jacket diameter is 7 mm. Absorbed dose in the target volume of an IMRT treatment is measured as a time integral of dose rate, summed over the component fields in a multi-field plan, or integrated over the whole arc in an arc therapy treatment. Although the IMRT planned dose is uniform over the target volume, the instantaneous dose rate (i.e. the dose within a component field, or the dose rate during the arc delivery) is spatially non-uniform. Such variations in dose rate drive heat transfers within the calorimeter

  13. Evaluation and comparison of absorbed dose for electron beams by LiF and diamond dosimeters

    The absorbed dose response of LiF and diamond thermoluminescent dosimeters (TLDs), calibrated in 60Co γ-rays, has been determined using the MCNP4B Monte Carlo code system in mono-energetic megavoltage electron beams from 5 to 20 MeV. Evaluation of the dose responses was done against the dose responses of published works by other investigators. Dose responses of both dosimeters were compared to establish if any relation exists between them. The dosimeters were irradiated in a water phantom with the centre of their top surfaces (0.32x0.32 cm2), placed at dmax perpendicular to the radiation beam on the central axis. For LiF TLD, dose responses ranged from 0.945±0.017 to 0.997±0.011. For the diamond TLD, the dose response ranged from 0.940±0.017 to 1.018±0.011. To correct for dose responses by both dosimeters, energy correction factors were generated from dose response results of both TLDs. For LiF TLD, these correction factors ranged from 1.003 up to 1.058 and for diamond TLD the factors ranged from 0.982 up to 1.064. The results show that diamond TLDs can be used in the place of the well-established LiF TLDs and that Monte Carlo code systems can be used in dose determinations for radiotherapy treatment planning

  14. Method for determination of ratio of absorbed doses created by different radiations from two sources

    The proposed method involves determination of ratio of absorbed doses in a mixed radiation field due to radiations from two different sources, provided that both radiations are of different LET, hence of a different quality factor. A detector used in the method is a tissue-equivalent recombination chamber. Shape of saturation curve of such a chamber depends on LET (on radiation quality). If the shapes of saturation curves are known for the radiations from two sources or for both components of a two-component radiation, then the actual ratio of absorbed dose components created simultaneously by these radiations in the mixed radiation field can be determined, performing relatively simple measurements of the ionization current at two different polarizing voltages applied to the chamber.

  15. Method for determination of ratio of absorbed doses created by different radiations from two sources

    Gryzinski, Michal A., E-mail: m.gryzinski@cyf.gov.p [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland); Zielczynski, Mieczyslaw [Institute of Atomic Energy, 05-400 Otwock-Swierk (Poland); Golnik, Natalia [Institute of Metrology and Biomedical Engineering, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw (Poland)

    2010-12-15

    The proposed method involves determination of ratio of absorbed doses in a mixed radiation field due to radiations from two different sources, provided that both radiations are of different LET, hence of a different quality factor. A detector used in the method is a tissue-equivalent recombination chamber. Shape of saturation curve of such a chamber depends on LET (on radiation quality). If the shapes of saturation curves are known for the radiations from two sources or for both components of a two-component radiation, then the actual ratio of absorbed dose components created simultaneously by these radiations in the mixed radiation field can be determined, performing relatively simple measurements of the ionization current at two different polarizing voltages applied to the chamber.

  16. Fundamental relationships between linear energy transfer, absorbed dose, kerma, and exposure. Application to changes of mediums

    After briefly defining the quantities used in dosimetry and presenting them with a view to their simple adaptation to health physics problems, the authors establish simple mathematical relationships to express the absorbed dose, kerma and exposure in the case of electrons and photons, and also relationships between these various quantities considered in air. They then proceed to study the variations in these quantities at the interface between the air and the soft tissues of the organism and in depth in the tissues. They give the numerical values of the discontinuities liable to appear at the interface and the values obtained, relative to air, after electronic equilibrium is established in depth in the tissues. An example of application to dosimetry is also given in the case of an aluminium-walled ionization chamber. To conclude, the conditions to be fulfilled in order to make a direct measurement of the absorbed dose in the tissues are presented and discussed. (authors)

  17. Measurement of absorbed dose by 7-GeV bremsstrahlung in a PMMA phantom

    Job, P K; Semones, E

    1999-01-01

    High-energy electron storage rings generate energetic bremsstrahlung photons through radiative interaction of the particle beam with the residual gas molecules and other components inside the storage ring. At synchrotron radiation facilities, where beamlines are channeled out of the storage ring, a continuous bremsstrahlung spectrum, with a maximum energy of the stored particle beam, will be present. At the advanced photon source (APS), where the stored beam energy is 7 GeV, bremsstrahlung generated in the straight sections of the insertion device beamlines, which are a total of 15.38 m in length, can be significant. The contribution from each bremsstrahlung interaction adds up to produce a narrow mono-directional bremsstrahlung beam that comes down through the insertion device beamlines. The resulting absorbed dose distributions by this radiation in a 300 mmx300 mmx300 mm tissue substitute cube phantom were measured with LiF:Mg,Ti (TLD-700) thermoluminescent dosemeters. The normalized absorbed dose, in a cro...

  18. Energy backscattering of electron beams and absorbed dose in thin layer

    Recent research development in this laboratory concerning radiation effects on the thin layer specimens of organic polymers and p-n junction of semiconductors requires the accurate evaluation of backscattered energy which is especially important for low energy electrons below 1.0 MeV and gives rise to errors of up to some 60 % depending on the materials of backing substrates. The present report describes the past studies on backscattering phenomena on backing substances of various elements and summarizes the experimental results of the measurements of the dose rate absorbed by the thin layer substance on backing substances of various elements as numerical tables which allow convenient determination of dose absorbed by the thin layer specimens on the backing substances. (author)

  19. Absorbed dose assessment in particle-beam irradiated metal-oxide and metal-nonmetal memristors

    Knežević Ivan D.

    2012-01-01

    Full Text Available Absorbed dose was estimated after Monte Carlo simulation of proton and ion beam irradiation on metal-oxide and metal-nonmetal memristors. A memristive device comprises two electrodes, each of a nanoscale width, and a double-layer active region disposed between and in electrical contact with electrodes. Following materials were considered for the active region: titanium dioxide, zirconium dioxide, hafnium dioxide, strontium titanium trioxide and galium nitride. Obtained results show that significant amount of oxygen ion - oxygen and nonmetal ion - nonmetal vacancy pairs is to be generated. The loss of such vacancies from the device is believed to deteriorate the device performance over time. Estimated absorbed dose values in the memristor for different constituting materials are of the same order of magnitude because of the close values of treshold displacement energies for the investigated materials.

  20. The specific absorbed dose constant: comparison of values published for 60Co photons

    For the specific absorbed dose constant for 60Co photons, three values quoted directly in the literature and two derived indirectly from published information are reported. The three publications giving the direct values mention no medium of absorption, whereas the other two specify tissue. A database of the specific absorbed dose constant is generated for each of 14 media namely air, water, bone and 11 types of soft tissue. These values are consistent with the three directly quoted values plus one of the indirectly obtained values. Air is found to be unlikely as the medium for the first three; and appropriate media for these are suggested. For the other two values, the generated database suggests that one is too small to be accurate; while the other is correct for tissue (as stated in the publication). An apparent error of 103 is identified in one of the values directly quoted. (author)

  1. Estimation of skin absorbed doses due to subcutaneous leakage of radioactive pharmaceuticals

    Skin absorbed doses due to subcutaneous leakage of radioactive pharmaceuticals were estimated by three calculating methods. The radioactive pharmaceuticals used in calculation were 67Ga-citrate, 99mTc-HMDP, 111In-Cl, 123I-IMP, 131I-Adosterol, 201Tl-Chloride which are used frequently and in large amount in the daily examination. Time taken to remove contamination, range of contamination and ratio of leakage were assumed to be 30 minutes, 10 cm2 and 30% respectively. The skin absorbed doses calculated on this assumption were less than the threshold value that is found to cause skin disorders by Yamaguchi method. We confirmed the misprints of ICRU report 56 in the process of this calculation. (author)

  2. The influence of the patient's posture on organ and tissue absorbed doses caused by radiodiagnostic examinations

    Due to the gravitational force, organ positions and subcutaneous fat distribution change when a standing person lies down on her/his back, which is called 'supine posture'. Both postures, standing and supine, are very common in X-ray diagnosis, however, phantoms used for the simulation of patients for organ and tissue absorbed dose assessments normally represent humans either in standing or in supine posture. Consequently, the exposure scenario simulated sometimes does not match the real X-ray examination with respect to the patient's posture. Using standing and supine versions of mesh-based female and male adult phantoms, this study investigates the 'posture-effect' on organ and tissue absorbed doses for radiographs of the pelvis and the lumbar spine in order to find out if the errors from simulating the false posture are significant. (author)

  3. Calorimeter measurements of absorbed doses at the heavy water enriched uranium reactor

    Application of calorimetry measurements of absorbed doses was imposed by the need of good knowledge of the absorbed dose values in the reactor experimental channels. Other methods are considered less reliable. The work was done in two phases: calorimetry measurements at lower reactor power (13-80 kW) by isothermal calorimeter, and differential calorimeter constructions for measurements at higher power levels (up to 1 MW). This report includes the following four annexes, papers: Isothermal calorimeter for reactor radiation monitoring, to be published; Calorimeter dosimetry of reactor radiation, presented at the Symposium about nuclear fuel held in april 1961; Radiation dosimetry of the reactor RA at Vinca, published in the Bull. Inst. Nucl. Sci. 1961; Differential calorimeter for reactor radiation dosimetry

  4. Description and evaluation of a calibration procedure for the quantity absorbed dose to water

    A working standard for the quantity absorbed dose to water in a 60Co gamma radiation field has been established at the National Laboratory at the Swedish Radiation Protection Institute. In this report a description is given of the measurement set up and results from an evaluation of the calibration procedure are presented. Repeated measurements indicate a very good reproducibility in the measurement set up used for calibration. The combined uncertainty in the calibration factor for a therapy ionization chamber for the quantity absorbed dose to water at a water depth of 5 g·cm-2 in a 60Co gamma radiation field is estimated to be 0,50% (one standard deviation)

  5. Influence of elemental weight of human tissues estimated by ICCT software in absorbed dose calculation

    Massicano, Felipe; Possani, Rafael G.; Yoriyaz, Helio [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Cintra, Felipe B.; Massicano, Adriana V.F., E-mail: massicano@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (DIRF/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Diretoria de Radiofarmacia

    2011-07-01

    Therapeutic use of radiopharmaceuticals in Nuclear Medicine has been well established and presented good success rates against many forms of cancer. The biologic effects of radionuclide therapy are measured via a physical quantity, the absorbed dose, which is defined as per unit mass of tissue. Therefore, it is of great important an accurate dosimetry to assess the potential effects of treatment and to confirm or contradict the treatment predictions. The most common method used to estimate the absorbed dose at organ level was developed by Medical Internal Radiation Dose (MIRD) Committee, called MIRD system. However, this method does not have adequate patient data to obtain a dose estimate accurate in therapy. In recent years, internal radionuclide radiation dosimetry system evaluated spatial dose distribution. This system is based in Monte Carlo radiation transport codes with anatomical and functional information of the patient. The high accuracy is, at least in part, due to the Monte Carlo method allows human tissues to be characterized by elemental composition and mass density. Thus, a reliable estimation of human tissues (elemental composition and mass density) must be obtained. According to Schneider, Bortfield and Schlegel, the tissue parameters (mass densities ({rho}) and elemental weights ({omega}{sub i})) can be obtained using Hounsfield units provided from Computed Tomography (CT) images. Based on this, the Nuclear Engineer Center of IPEN developed the ICCT software (Image Converter Computed Tomography). It converts CT images in tissue parameters (mass densities ({rho}) and elemental weights ({omega}{sub i}). This work intended to verify if the estimate values by software ICCT of the tissue parameter and elemental weights ({omega}{sub i}) are plausible to estimate the absorbed dose with reasonable accuracy. (author)

  6. The design of a calorimetric standard of ionising radiation absorbed dose

    The design of a calorimetric working standard of ionising radiation absorbed dose is discussed. A brief history of the appropriate quantities and units of measurement is given. Detailed design considerations follow a summary of the relevant literature. The methods to be used to relate results to national standards of measurement are indicated, including the need for various correction factors. A status report is given on the construction and testing program

  7. Preliminary results from a polymer gel dosimeter for absorbed dose imaging in radiotherapy

    Mariani, M. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milan (Italy); Vanossi, E. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, Via Ponzio 34/3, 20133 Milan (Italy); INFN-Istituto Nazionale di Fisica Nucleare, Via Celoria 16, 20133 Milan (Italy); Gambarini, G. [INFN-Istituto Nazionale di Fisica Nucleare, Via Celoria 16, 20133 Milan (Italy) and Dipartimento di Fisica, Universita di Milano, Via Celoria 16, 20133 Milan (Italy)]. E-mail: grazia.gambarini@mi.infn.it; Carrara, M. [Unita di Fisica Sanitaria, Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan (Italy); Valente, M. [INFN-Istituto Nazionale di Fisica Nucleare, Via Celoria 16, 20133 Milan (Italy); Dipartimento di Fisica, Universita di Milano, Via Celoria 16, 20133 Milan (Italy)

    2007-08-15

    The reliability for radiotherapy applications of a normoxic-polymer gel dosimeter, analysed by means of optical methods, was studied. The optical transmittance was measured with a spectrophotometer and imaged with a CCD camera. The characteristics of sensitivity, spatial resolution, image stability, linearity of the response and reproducibility were investigated and analysed. Radiation induces a radical polymerisation in the gel matrix and the resulting macromolecules remain fixed in space making therefore possible the absorbed dose imaging.

  8. Distribution of absorbed dose in human eye simulated by SRNA-2KG computer code

    Rapidly increasing performances of personal computers and development of codes for proton transport based on Monte Carlo methods will allow, very soon, the introduction of the computer planning proton therapy as a normal activity in regular hospital procedures. A description of SRNA code used for such applications and results of calculated distributions of proton-absorbed dose in human eye are given in this paper. (author)

  9. Analyse of the international recommendations on the calculation of absorbed dose in the biota

    This paper evaluates the recommendations of ICRP which has as objective the environmental radioprotection. It was analysed the recommendations 26, 60, 91, 103 and 108 of the ICRP. The ICRP-103 defined the concept of animal and plant of reference (APR) to be used in the RAP based on the calculation of absorbed dose based on APR concept. This last view allows to build a legal framework of environmental protection with a etic, moral and scientific visualization, more defensible than the anthropomorphic concept

  10. Measurement of absorbed doses in a homogeneous β rays fields with an extrapolation chamber

    The main characteristics of a variable cavity ionization chamber are described. Using the ionization current of the detector irradiated in homogeneous β rays fields, the tissue absorbed dose is determined. The corrective factors required to compute this quantity are analysed. Finally, international recommandations (ISO standards) relating to β rays reference fields are given, with the characteristics of β sources required for the energy response study of radiation protection instruments

  11. Retrospective evaluation of absorbed doses in polluted landscapes of the Middlerussian height

    Retrospective analysis of absorbed dose at low-grade level of contamination of the area by fission-produced radionuclides of the ChNPP was conducted. The mathematical model of gamma field was developed where form, sizes, power of raditing matter, radioisotope composition and gamma spectrum feature were taken into consideration. Leading role of the solid effluence in primary radionuclide migration on contaminated areas was revealed

  12. Measurement of absorbed dose rate of gamma radiation for lead compounds

    Rudraswamy, B.; Dhananjaya, N.; Manjunatha, H. C.

    2010-07-01

    An attempt has been made to estimate the absorbed dose rate using both theoretical and measured mass energy attenuation coefficient of gamma for the lead compounds such as PbNO 3, PbCl 2, PbO 2 and PbO using various gamma sources such as 22Na (511, 1274), 137Cs (661.6), 54Mn (835) and 60Co (1173, 1332 keV).

  13. On the absorbed dose determination method in high energy electrons beams

    The absorbed dose determination method in water for electron beams with energies in the range from 1 MeV to 50 MeV is presented herein. The dosimetry equipment for measurements is composed of an UNIDOS.PTW electrometer and different ionization chambers calibrated in air kerma in a Co60 beam. Starting from the code of practice for high energy electron beams, this paper describes the method adopted by the secondary standard dosimetry laboratory (SSDL) in NILPRP - Bucharest

  14. Absorbed dose by thyroid in case of nuclear accidents; Dose absorvida pela tireoide em casos de acidentes nucleares

    Campos, Laelia; Attie, Marcia Regina Pereira [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Lima, Fernando Roberto de Andrade, E-mail: falima@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil); Amaral, Ademir [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Radioisotopes of iodine are produced in abundance in nuclear fission reactions, and great amounts of radioiodine may be released into the environment in case of a nuclear reactor accident. Thyroid gland is among the most radiosensitive organs due to its capacity to concentrate iodine. The aim of this work was to evaluate the importance of contributions of internally deposited iodines ({sup 131}I, {sup 132}I, {sup 133}I, {sup 134}I and {sup 135}I) to the dose absorbed to thyroid follicle and to the whole organ, after internal contamination by those isotopes. For internal dose calculation, the code of particles transport MCNP4C was employed. The results showed that, in case of nuclear accidents, the contribution of short-lived iodines for total dose is about 45% for thyroid of newborn and about 40% for thyroid of adult. Thus, these contributions should not be neglected in a prospective evaluation of risks associated to internal contamination by radioactive iodine. (author)

  15. Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

  16. Calculation of the internal radiation absorbed dose of 123I-Annexin V

    To estimate absorbed doses by 123I-Annexin V in human, 125I-Annexin V was used as a radiotracer for measuring the distribution of radiolabeled Annexin V in mice. The standard Medical Internal Radiation Dose (MIRD) method was used by Mirdose-3 software in dosimetry estimation. The results show that liver and kidney received 2.77 x 10-3 and 2.71 x 10-3 mGy/MBq, respectively. The red marrow received 1.78 x 10-5 mGy/MBq, and the other organs received doses between 1.5 x 10-4 and 10.5 x 10-4 mGy/MBq. The effective dose was estimated at 5.55 x 10-4 mSv/MBq. Human radiation dosimetry can be performed by the mice biodistribution data and important data for clinical safe trial of 123I-Annexin V are provided. (authors)

  17. Development of fluorescent, oscillometric and photometric methods to determine absorbed dose in irradiated fruits and nuts

    To ensure suitable quality control at food irradiation technologies and for quarantine authorities, simple routine dosimetry methods are needed for absorbed dose control. Taking into account the requirements at quarantine locations these methods would require nondestructive analysis for repeated measurements. Different dosimetry systems with different analytical evaluation methods have been tested and/or developed for absorbed dose measurements in the dose range of 0.1-10 kGy. In order to use the well accepted ethanolmonochlorobenzene dosimeter solution and the recently developed aqueous alanine solution in small volume sealed vials, a new portable, digital, and programmable oscillometric reader was developed. To make use of the availability of the very sensitive fluorimetric evaluation method, liquid and solid inorganic and organic dosimetry systems were developed for dose control using a new routine, portable, and computer controlled fluorimeter. Absorption or transmission photometric methods were also applied for dose measurements of solid or liquid phase dosimeter systems containing radiochromic dye agents, which change colour upon irradiation. (author)

  18. Basic evaluation of absorbed dose in the 'mantle' field in radiotherapy for Hodgkin's disease

    Hodgkin's disease is one of the radiocurable disease. Avoiding overlap of dose from adjacent fields, megavoltage beams can be utilized at a treatment distance of 100 to 160 cm, making in possible to encompass all of the lymph node chains above the diaphragm in a single treatment field-the 'mantle' field. In the mantle field, we use a set of lead blocks designed individually to spare lager parts of normal lung tissue. We made blocks with beam divergence from low melting lead alloy using lead shot. With these blocks, we measured the absorbed dose in the mantle field in a human phantom, using a thermoluminescent dosimetry system. The results demonstrate that the absorbed dose distribution calculated by the computer system in the axial slices at + 60, 0 and -70 mm from the middle of the radiation field were in good agreements with our dosimetric results in the same slices. An integral dose volume histogram (DVH) obtained from the axial slice in the middle of the radiation field showed quantitatively the irradiated normal lung tissue. In conclusion: first, a dose calculation system using a computer was available in the large irregular shaped field utilizing a long treatment distance such as the 'mantle' field. Second, the DVH may be useful in the quantitative evaluation of lung injury resulting from radiotherapy using the 'mantle' field. (author)

  19. Quantification of micronuclei in blood lymphocytes of patients exposed to gamma radiation for dose absorbed assessment

    Dose assessment in an important step to evaluate biological effects as a result of individual exposure to ionizing radiation. The use of cytogenetic dosimetry based on the quantification of micronuclei in lymphocytes is very important to complement physical dosimetry, since the measurement of absorbed dose cannot be always performed. In this research, the quantification of micronuclei was carried out in order to evaluate absorbed dose as a result of radiotherapy with 60Co, using peripheral blood samples from 5 patients with cervical uterine cancer. For this purpose, an aliquot of whole blood from the individual patients was added in culture medium RPMI 1640 supplemented with fetal calf serum and phytohaemagglutinin. The culture was incubated for 44 hours. Henceforth, cytochalasin B was added to block the dividing lymphocytes in cytokinesis. The culture was returned to the incubator for further of 28 hours. Thus, cells were harvested, processed and analyzed. Values obtained considering micronuclei frequency after pelvis irradiation with absorption of 0,08 Gy and 1,8 Gy were, respectively, 0,0021 and 0,052. These results are in agreement with some recent researches that provided some standard values related to micronuclei frequency induced by gamma radiation exposure in different exposed areas for the human body. The results presented in this report emphasizes biological dosimetry as an important tool for dose assessment of either total or partial-body exposure to ionizing radiation, mainly in retrospective dose investigation. (author)

  20. Regression models in the determination of the absorbed dose with extrapolation chamber for ophthalmological applicators

    The absorbed dose for equivalent soft tissue is determined,it is imparted by ophthalmologic applicators, (90 Sr/90 Y, 1850 MBq) using an extrapolation chamber of variable electrodes; when estimating the slope of the extrapolation curve using a simple lineal regression model is observed that the dose values are underestimated from 17.7 percent up to a 20.4 percent in relation to the estimate of this dose by means of a regression model polynomial two grade, at the same time are observed an improvement in the standard error for the quadratic model until in 50%. Finally the global uncertainty of the dose is presented, taking into account the reproducibility of the experimental arrangement. As conclusion it can infers that in experimental arrangements where the source is to contact with the extrapolation chamber, it was recommended to substitute the lineal regression model by the quadratic regression model, in the determination of the slope of the extrapolation curve, for more exact and accurate measurements of the absorbed dose. (Author)

  1. Investigation of magnevist pharmacokinetics for calculation of absorbed dose at neutron-capture therapy

    Full text: The neutron-capture therapy with use of gadolinium-containing pharmacological preparations is one of perspective and not enough investigated directions of application of neutron irradiation in medicine. At definition of the absorbed dose of neutron-capture therapy one of important questions is definition of concentration gadolinium and pharmacokinetics in irradiated tumour. In the given study has been investigated pharmacokinetics of gadolinium-containing preparation 'Magnevist' at intratumoral injection in inoculated tumours of sarcoma C180 at mice. For 'Magnevist' detection its property of radioopacity has been used. In experiments to mice with inoculated tumours C180 the various doses of 'Magnevist' (0.1, 0.2, 0.3 and 0.4 ml) were injected into tumour centre. X-ray images were made before 'Magnevist' injection (control) and after preparation injection every 5 minutes within one hour. It has been shown that at dose 0.1 ml 'Magnevist' eliminated from tumour within 10 minutes. At higher doses of preparation more slow elimination of 'Magnevist' from injection site was observed. Obtained results allow with sufficient accuracy to calculate the time of presence of optimum concentration of 'Magnevist' in tumour at intratumoral injection. It in turn gives the chance to calculate precisely the absorbed dose at irradiation by beam of epi-thermal neutrons. (author)

  2. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  3. The Australian Commonwealth standard of measurement for absorbed radiation dose. Part 1

    As an agent for the Commonwealth Scientific and Industrial Research Organisation, the Australian Nuclear Science and Technology Organisation is responsible for maintenance of the Australian Commonwealth standard of absorbed dose. This standard of measurement has application in radiation therapy dosimetry, which is required for the treatment of cancer patients. This report is the first in a series of reports documenting the absorbed dose standard for photon beams in the range from 1 to 25 MeV. The Urquhart graphite micro-calorimeters, which is used for the determination of absorbed dose under high energy photon beams, has been now placed under computer control. Accordingly, a complete upgrade of the calorimeter systems was performed to allow operation in the hospital. In this report, control and monitoring techniques have been described, with an assessment of the performance achieved being given for 6 and 18 MeV bremsstrahlung beams. Random errors have been reduced to near negligible proportions, while systematic errors have been minimized by achieving true quasi-adiabatic operation. 16 refs., 9 tabs., 11 figs

  4. Calculation of fluence and absorbed dose in head tissues due to different photon energies

    Calculations of fluence and absorbed dose in head tissues due to different photon energies were carried out using the MCNPX code, to simulate two models of a patient's head: one spherical and another more realistic ellipsoidal. Both head models had concentric shells to describe the scalp skin, the cranium and the brain. The tumor was located at the center of the head and it was a 1 cm-radius sphere. The MCNPX code was run for different energies. Results showed that the fluence decreases as the photons pass through the different head tissues. It can be observed that, although the fluence into the tumor is different for both head models, absorbed dose is the same. - Highlights: • A Monte Carlo algorithm to simulate the passage of photons through a homogeneous material was developed. • Two models of a patient's head, one spherical and another more realistic ellipsoidal model, were simulated using the Monte Carlo code. • The fluence into the tumor is different for both head models, but absorbed dose in the tumor is the same

  5. Utilization of radiation protection gear for absorbed dose reduction: an integrative literature review

    Soares, Flavio Augusto Penna; Flor, Rita de Cassia [Instituto Federal de Santa Catarina (IFSC), Florianopolis, SC (Brazil); Pereira, Aline Garcia, E-mail: aalinegp@gmail.co [Sinan Project - Sistema de Informacao de Agravos de Notificacao, Florianopolis, SC (Brazil)

    2011-03-15

    Objective: The present study was aimed at evaluating the relation between the use of radiation protection gear and the decrease in absorbed dose of ionizing radiation, thereby reinforcing the efficacy of its use by both the patients and occupationally exposed personnel. Materials and Methods: The integrative literature review method was utilized to analyze 21 articles, 2 books, 1 thesis, 1 monograph, 1 computer program, 4 pieces of database research (Instituto Brasileiro de Geografia e Estatistica and Departamento de Informatica do Sistema Unico de Saude) and 2 sets of radiological protection guidelines. Results: Theoretically, a reduction of 86% to 99% in the absorbed dose is observed with the use of radiation protection gear. In practice, however, the reduction may achieve 88% in patients submitted to conventional radiology, and 95% in patients submitted to computed tomography. In occupationally exposed individuals, the reduction is around 90% during cardiac catheterization, and 75% during orthopedic surgery. Conclusion: According to findings of several previous pieces of research, the use of radiation protection gear is a low-cost and effective way to reduce absorbed dose both for patients and occupationally exposed individuals. Thus, its use is necessary for the implementation of effective radioprotection programs in radiodiagnosis centers. (author)

  6. The effect of breast composition on absorbed dose and image contrast

    We have studied the effect of breast composition on the average whole breast dose, average glandular dose, and image contrast in mammography, using both computational and experimental methods. Three glandular/adipose compositions were considered: 30/70, 50/50, and 70/30 by weight, for both 3- and 5-cm breast thickness. Absorbed dose was found to increase with greater glandular content and this increase is more pronounced for thick breasts and softer beams. For typical screen-film x-ray beams, the average dose to a highly glandular breast is nearly twice the dose to a highly adipose breast and the average glandular dose about 40% higher. Dose was reduced when higher energy beams were employed. The use of a grid increased the dose by a factor of 2.0 to 2.6. Finally, the measured image contrast decreases with increasing breast glandularity, to a greater extent in small breasts and when low energy beams were employed

  7. Calculation of absorbed doses in sphere volumes around the Mammosite using the Monte Carlo simulation code MCNPX

    The objective of this study is to investigate the changes observed in the absorbed doses in mammary gland tissue when irradiated with a equipment of high dose rate known as Mammosite and introducing material resources contrary to the tissue that constitutes the mammary gland. The modeling study is performed with the code MCNPX, 2005 version, the equipment and the mammary gland and calculating the absorbed doses in tissue when introduced small volumes of air or calcium in the system. (Author)

  8. SU-E-I-85: Absorbed Dose Estimation for a Commercially Available MicroCT Scanner

    Purpose: To quantify the simulated absorbed dose delivered for a typical scan from a commercially available microCT scanner in order to aid in the dose estimation. Methods: The simulations were conducted using the Geant4 Monte Carlo Toolkit (version 10) with the standard electromagnetic classes. The Quantum FX microCT scanner (PerkinElmer, Waltham, MA) was modeled incorporating the energy fluence and angular distributions of generated photons, spatial dimensions of nominal source-to-object and source-to-detector distances. The energy distribution was measured using a spectrometer (X-123CdTe, Amptek Inc., Bedford, USA) with a 300 angular spread from the source for the 90 kVp X-ray beams with no additional filtration. The nominal distances from the source to object consisted of three setups: 154.0 mm, 104.0 mm, and 51.96 mm. Our simulations recorded the dose absorbed in a cylindrical phantom of PMMA with a fixed length of 2 cm and varying radii (10, 20, 30 and 40 mm) using 100 million incident photons. The averaged absorbed dose in the object was then quantified for all setups. An exposure measurement of 417 mR was taken using a Radcal 9095 system utilizing 10×9–180 ion chamber with the given technique of 90 kVp, 63 μA, and 12 s. The exposure rate was also simulated with same setup to calculate the conversion factor of the beam current and the number of incident photons. Results: For a typical cone-beam scan with non-filtered 90kVp, the dose coefficients (the absorbed dose per mAs) were 2.614, 2.549 and 2.467 μGy/mAs under source to object distance of 104 mm for the object diameters of 10 mm, 20 mm and 30 mm, respectively. Conclusion: A look-up table was developed where an investigator can estimate the delivered dose using this particular microCT given the scanning protocol (kVp and mAs) as well as the size of the scanned object

  9. Code of practice for absorbed dose determination in photon and electron beams

    An advisory group was set up by the IAEA to suggest measures to be taken for the production of a dosimetry protocol. The authors of the paper were chosen to be authors. The Agency was of the opinion that such a protocol would be of great value not only to the network of Secondary Standard Dosimetry Laboratories (SSDL) but also to hospitals providing radiation treatment for cancer patients. The report includes recommendations on the procedure for determining the absorbed dose at low and medium energy X-rays, and high energy photon and electron radiation. Advice on equipment, measurement geometry and quality assurance is given. It was decided that the symbols and formalism should follow the ICRU recommendations. The numerical data on interaction coefficients follow the recommendations of the standards laboratories (i.e. CCEMRI). Correction factors (i.e. katt and km) to be applied for about 40 types of commercial ionization chambers were computed as it was considered that it would be difficult to restrict the use to a few types of chambers, as in the NACP protocol, or advise the users on how to carry out complicated computations, as in the AAPM protocol. A part of the report is devoted to conventional X-rays. In this case a very general type of formalism is suggested. It was found that there is a lack of information on the correction factors to be applied for different types of chambers. Furthermore, it was found that conventional dosimetry procedures, often used in determining the absorbed dose at the medium energy range of X-rays, underestimate the absorbed dose by several per cent. More work is needed in this field. An independent evaluation of the dosimetry resulting from the application of this protocol has been carried out for high energy photon and electron radiation using the FeSO4 dosimeter as a reference. The agreement in absorbed dose values was generally within fractions of one per cent. The conclusion is, therefore, that use of this report can give an

  10. Preliminary Study on the Quantitative Value Transfer Method of Absorbed Dose to Water in 60Co γ Radiation

    SONG Ming-zhe

    2015-01-01

    Full Text Available Absorbed dose to water in 60Co γ radiation is the basic physics quantity in the quantitative value system of radiation therapy, it is very necessary for radiation therapy. The study on the quantitative value transfer method of absorbed dose to water in 60Co γ Radiation could provide important technical support to the establishment of Chinese absorbed dose to water quantity system. Based on PTW-30013 ionization chamber, PMMA water phantom and 3D mobile platform, quantitative value transfer standard instrument was established, combined with the requirement of IAEA-TRS398, developed preliminary study of 60Co absorbed dose to water quantity value transfer method. After the quantity value transfer, the expanded uncertainty of absorbed dose to water calibration factor of PTW-30013 was 0.90% (k=2, the expanded uncertainty of absorbed dose to water of 60Co γ reference radiation in Radiation Metrology Center (SSDL of IAEA was 1.4% (k=2. The results showed that, this value transfer method can reduce the uncertainty of 60Co absorbed dose to water effectively in Secondary Standard Dosimetry Laboratory.

  11. Graphite calorimeter, the primary standard of absorbed dose at BNM-LNHB

    The graphite calorimeter is the standard for absorbed dose to water at BNM-LNHB. The transfer from absorbed dose to graphite to absorbed dose to water is then performed by means of chemical dosimeters and ionisation chamber measurements. Therefore the quality of graphite calorimeter measurements is essential. The present graphite calorimeter is described. The characteristics of this calorimeter are pointed out. Special attention is given to the thermal feedback of the core, which is the main difference with the Domen-type calorimeter. The repeatability and reproducibility of the mean absorbed dose in the calorimeter core are presented in detail. As an example, individual measurements in the 20 MV photon beam from our Saturne 43 linac are given. The y-axis quantity is the mean absorbed dose in the core divided by the reference ionisation chamber charge. Both are normalised to the monitor ionisation chamber charge. The standard deviation (of the distribution itself) is 0.12 % for the first set of measurements performed in 1999. In 2002, for each different series, the standard deviation is 0.03%. The improvement on the 2002 standard deviation is mainly due to the change of the ionisation chamber used for the beam monitoring of the linac. Some benefit also comes from changes on the thermal control and measuring systems (nanovoltmeters, Wheatstone bridges, power supplies, determination of the measuring bridge sensitivity (V/Ω.) ). The maximum difference between the means of the three series is 0.08%. This difference is due to the variation of not only the calorimetric measurements but also of the reference ionisation chamber response, of the position of the assembly and of the monitoring of the beam. The stability of the linac (electron energy, photon beam shape) has to be very good too in order to obtain this global performance. The correction factors necessary to determine the absorbed dose to graphite at the reference point in an homogeneous phantom from the

  12. The estimation of absorbed dose rates for non-human biota: an extended intercomparison.

    Vives i Batlle, J; Beaugelin-Seiller, K; Beresford, N A; Copplestone, D; Horyna, J; Hosseini, A; Johansen, M; Kamboj, S; Keum, D-K; Kurosawa, N; Newsome, L; Olyslaegers, G; Vandenhove, H; Ryufuku, S; Vives Lynch, S; Wood, M D; Yu, C

    2011-05-01

    An exercise to compare 10 approaches for the calculation of unweighted whole-body absorbed dose rates was conducted for 74 radionuclides and five of the ICRP's Reference Animals and Plants, or RAPs (duck, frog, flatfish egg, rat and elongated earthworm), selected for this exercise to cover a range of body sizes, dimensions and exposure scenarios. Results were analysed using a non-parametric method requiring no specific hypotheses about the statistical distribution of data. The obtained unweighted absorbed dose rates for internal exposure compare well between the different approaches, with 70% of the results falling within a range of variation of ±20%. The variation is greater for external exposure, although 90% of the estimates are within an order of magnitude of one another. There are some discernible patterns where specific models over- or under-predicted. These are explained based on the methodological differences including number of daughter products included in the calculation of dose rate for a parent nuclide; source-target geometry; databases for discrete energy and yield of radionuclides; rounding errors in integration algorithms; and intrinsic differences in calculation methods. For certain radionuclides, these factors combine to generate systematic variations between approaches. Overall, the technique chosen to interpret the data enabled methodological differences in dosimetry calculations to be quantified and compared, allowing the identification of common issues between different approaches and providing greater assurance on the fundamental dose conversion coefficient approaches used in available models for assessing radiological effects to biota. PMID:21113609

  13. Determination of Absorbed and Effective Dose from Natural Background Radiation around a Nuclear Research Facility

    M. A. Musa

    2011-01-01

    Full Text Available Problem statement: This study presents result of outdoor absorbed dose rate and estimated effective dose from the naturally occurring radionuclides 232Th and 238U series 40K, around a Nuclear Research Reactor at the Centre for Energy Research and Training (CERT, Zaria, Nigeria. Approach: A high-resolution in situ ?-ray spectrometry was used to carry out the study. CERT houses a 30Kw Research Reactor and other neutron and gamma sources for Research and Training. Results: The values of absorbed dose rate in air for 232Th, 238U and 40K range from 8.2 ± 2.5-24.5 ± 3.6 nGy h?1, 1.9 ± 1.2-4.6 ± 2.5 nGy h?1 and 12.2 ± 5-38 ± 6.7n Gy h?1 respectively . The estimated total annual effective dose outdoor for the sites range from 27.3-79.9 ?Sv y?1.Conclusions: This showed that radiation exposure level for the public is lower than the recommended value of 1 mSv y?1.Hence, the extensive usage of radioactive materials within and around CERT does not appear to have any impact on the radiation burden of the environment.

  14. Quality assurance technique for absorbed dose distribution in external radiation therapy with non-physical wedges in consideration of the character of the imaging plate

    The film dose distribution method is used for profile measurements of non-physical wedges, because three-dimensional automatic control water phantoms cannot be used. Recently, many hospitals have adopted computed radiography (CR) systems in preference to automatic developing processors and films. This may allow use of automatic processors to be discontinued. In this study, a beam was irradiated to an Imaging Plate (IP), and then IP was exposed to a fixed amount of light with fading, and we then measured the off-center ratio (OCR) absorbed dose distribution in external radiation therapy with non-physical wedge. This was compared with the OCR measured with an ionization chamber dosimeter. It was consequently possible for IP to approximate the value measured by the ionization chamber dosimeter by using a metal filter. This method offers a simple quality assurance technique for absorbed dose distribution in external radiation therapy with non-physical wedges in consideration of the character of the IP. (author)

  15. Dose absorbed by technologists in positron emission tomography procedures with FDG

    Ademir Amaral

    2007-09-01

    Full Text Available The objective of this work was to evaluate radiation doses delivered to technologists engaged in different tasks involving positron emission tomography (PET studies with FDG (fluorodeoxyglucose. This investigation was performed in two French nuclear medicine departments, which presented significant differences in their arrangements and radiation safety conditions. Both centers administered about 300 MBq per PET/CT study, although only one of them is a dedicated clinical PET center. Dose equivalent Hp(10 and skin dose Hp(0.07 were measured using Siemens electronic personnel dosimeters. For assessment dose absorbed by hands during drawing up of tracer and injection into the patient, a Polimaster wristwatch gamma dosimeter was employed. Absorbed dose and the time spent during each investigated task were recorded for a total of 180 whole-body PET studies. In this report, the methodology employed, the results and their radioprotection issues are presented as well as discussed.O objetivo deste trabalho foi o de avaliar doses absorvidas por profissionais de saúde em diferentes tarefas relacionadas à tomografia por emissão de pósitrons com [18F]-FDG (fluordesoxiglicose. Esta pesquisa foi realizada em dois centros de medicina nuclear na França, os quais apresentavam diferenças significativas em sua organização e radioproteção. Esses centros aplicavam aproximadamente 300 MBq por exame PET/CT, embora apenas um deles correspondesse a um serviço de medicina nuclear dedicado a exames por PET. A dose equivalente (Hp(10 e a dose na pele Hp(0,07 foram medidas usando dosímetros eletrônicos (Siemens. Para avaliação da dose nas mãos do tecnologista durante a preparação do radiofármaco e durante injeção no paciente, um dosímetro tipo relógio de pulso (Polimaster foi empregado. A dose absorvida e o tempo empregado durante cada tarefa foram registrados para um total de 180 exames de corpo inteiro através da PET. Neste trabalho, a metodologia

  16. Evaluation of variation of voltage (kV) absorbed dose in chest CT scans

    Computed tomography (CT) is one of the most important diagnostic techniques images today. The increasing utilization of CT implies a significant increase of population exposure to ionizing radiation. Optimization of practice aims to reduce doses to patients because the image quality is directly related to the diagnosis. You can decrease the amount of dose to the patient, and maintain the quality of the image. There are several parameters that can be manipulated in a CT scan and these parameters can be used to reduce the energy deposited in the patient. Based on this, we analyzed the variation of dose deposited in the lungs, breasts and thyroid, by varying the supply voltage of the tube. Scans of the thorax were performed following the protocol of routine chest with constant and variable current for the same applied voltage. Moreover, a female phantom was used and thermoluminescent dosimeters (TLD-100), model bat, were used to record the specific organ doses. Scans were performed on a GE CT scanner, model 64 Discovery channels. Higher doses were recorded for the voltage of 120 kV with 200 mAs in the lungs (22.46 mGy) and thyroid (32.22 mGy). For scans with automatic mAs, variable between 100 and 440, this same tension contributed to the higher doses. The best examination in terms of the dose that was used with automatic 80 kV mAs, whose lungs and thyroid received lower dose. For the best breast exam was 100 kV. Since the increase in the 80 kV to 100 kV no impact so much the dose deposited in the lungs, it can be concluded that lowering the applied voltage to 100 kV resulted in a reduction in the dose absorbed by the patient. These results can contribute to optimizing scans of the chest computed tomography

  17. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism

    The dose absorbed by organs of patients with hyperthyroidism treated with 131 I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of 131 I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach

  18. Error in assessing the absorbed dose from the EPR signal from dental enamel

    Dose measurements from EPR signals from dental enamel were analyzed in a random sampling of 100 teeth extracted in liquidators of the Chernobyl accident aftermath and the EPR spectra of dental enamel of 80 intact teeth from children studied. The mean square deviation of enamel sensitivity to ionizing radiation in some teeth is approximately 0.3 of the mean sensitivity value. The variability of the nature EPR spectrum of dental enamel limits in principle the lower threshold of EPR-measured 60 mGy doses. When assessing the individual absorbed doses from the EPR signal from dental enamel without additional exposure it is necessary to bear in mind the extra error of approximately 6-% at a confidence probability P=0.95 caused by the variability of enamel sensitivity to radiation in some teeth. This additional error may be ruled out by graduated additional exposure of the examined enamel samples

  19. Influence of absorbed dose and deep traps on thermoluminescence response: A numerical simulation

    Numerical simulations based on standard rate equations are carried out to study the dependence of the thermoluminescence (TL) response on the absorbed dose. The model, which includes thermally stimulated exo-electronic emission (TSEE), uses three electron traps - two active and one thermally disconnected (TD) - and one deep hole trap acting as a recombination centre. After instantaneous creation of a given dose of electron-hole pairs, one first follows isothermal recombination and trap filling before simulating the TL readout. Influence of TD traps and specific effects due to trap saturation are illustrated. A systematic study of the TL response is performed in wide ranges of the determining parameters. The dose dependence is found to be quadratic, linear or intermediate according to their relative values. Results are explained in terms of recombination-trapping competition, trap occupancy and in relation with the presence of TSEE. (authors)

  20. The study on quality control for absorbed dose measurement in radiation therapy (II)

    This study concern the quality system of rod type 7LiF TLD for intercomparison by mail of absorbed doses from 60Co γ-radiation. The system employes 12 7LiF rods in a polystyrene capsule, which are placed at 5 cm depth in water and irradiated to doses to 2.0 Gy. The precision of the readout technique, using 24 capsules and the readout of 12 rods per capsule, is characterized by 1.2% standard error of resulting mean which are less than the EC criteria. By means of two-way TLD postal dose intercomparison with IAEA and IGR, the result of standard deviation are obtained less than 1.0% for each cases

  1. Quality control of diagnostic radiology to reduce absorbed dose of patients in Iran

    In order to reduce absorbed dose, to increase the image quality and to reduce the numbers of rejected films various quality control parameters were applied to X ray machines. These parameter are Kilo Volt peak, Milli Ampere, Exposure Time Focal Film Distance, Inherent Filters, Additional Filters Half Value Layer, Processor Condition, Cassettes. To evaluate and to apply these parameters in diagnostic radiological centers, ten hospitals were selected and a total number of 12 X ray machines were kept under quality control program. Considering different kinds of diagnostic radiology examination and to compare the dose before and after implementation of a quality control program, two kinds of examinations include in chest and abdomen examinations were considered. For each X ray machine, ten patients and for all selected centers, 120 patients were selected for chest examination and 120 patients for abdomen examinations; before and after implementation of quality control program, a total of 480 patients were selected randomly to be controlled. Base on different examinations carried out, it was concluded that both exposure conditions and general situations in radiological centers were not acceptable. The dosimetry results show that the average ski dose for chest and abdomen examinations were 0.28 m Gy and 4.23 Gy respectively. Before implementation of quality control step to reduce the surface skin dose, quality control parameters were applied and the exposure conditions were imposed. On average the absorbed doses for chest and abdomen examination were decreased to 79% and 61% respectively after the implementation of the program. From dose reduction point of view, the results of a part of this project which made by co-operation of International Atomic Energy Agency showed that Iran acquired the first grade for chest examination and second grade for abdomen examination. Base on the results obtained, the number of patients under chest and abdomen examination were 4041588 and

  2. Assessment of absorbed dose to the ovaries of patients undergoing pelvic CT examination

    Tavakoli, H.M.B. [Isfahan Univ. of Medical Sciences (Iran, Islamic Republic of)

    2006-07-01

    Full text of publication follows: Introduction: Although Computed Tomography (CT) procedures constitute about 5% of the total diagnostic radiology procedures but are responsible for about 40% of the total ionizing radiation dose to the general population. As the dose is high especially in the CT of female pelvis, genetic radiation risk is also considerable. Materials and Methods: Radiation doses to the ovaries of the patients undergoing CT examination of the pelvis were measured from 9 different CT scanners available in Isfahan city. For each CT scanner 20 patients were selected. Measurement of organ dose was performed using TLD method. Results and Discussions: Mean and S.D. of absorbed dose to the ovaries from Shimadzo 2500 were 56.6 2.8; from GE Max 640 were 36.8 1.7; from GE Sytec 3000 were 36.6 1.8; from GE Sytec 4000 were 36.6 2.6; from Piker were 38.4 2.1; from Shimadzo 4500 were 36.4 1.2 and from Shimadzo 7800TE 28.2 1.5. Associated risks due to the measured dose are discussed. (author)

  3. Assessment of absorbed dose to the ovaries of patients undergoing pelvic CT examination

    Full text of publication follows: Introduction: Although Computed Tomography (CT) procedures constitute about 5% of the total diagnostic radiology procedures but are responsible for about 40% of the total ionizing radiation dose to the general population. As the dose is high especially in the CT of female pelvis, genetic radiation risk is also considerable. Materials and Methods: Radiation doses to the ovaries of the patients undergoing CT examination of the pelvis were measured from 9 different CT scanners available in Isfahan city. For each CT scanner 20 patients were selected. Measurement of organ dose was performed using TLD method. Results and Discussions: Mean and S.D. of absorbed dose to the ovaries from Shimadzo 2500 were 56.6 2.8; from GE Max 640 were 36.8 1.7; from GE Sytec 3000 were 36.6 1.8; from GE Sytec 4000 were 36.6 2.6; from Piker were 38.4 2.1; from Shimadzo 4500 were 36.4 1.2 and from Shimadzo 7800TE 28.2 1.5. Associated risks due to the measured dose are discussed. (author)

  4. Radioiodine Therapy of Hyperthyroidism. Simplified patient-specific absorbed dose planning

    Radioiodine therapy of hyperthyroidism is the most frequently performed radiopharmaceutical therapy. To calculate the activity of 131I to be administered for giving a certain absorbed dose to the thyroid, the mass of the thyroid and the individual biokinetic data, normally in the form of uptake and biologic half-time, have to be determined. The biologic half-time is estimated from several uptake measurements and the first one is usually made 24 hours after the intake of the test activity. However, many hospitals consider it time-consuming since at least three visits of the patient to the hospital are required (administration of test activity, first uptake measurement, second uptake measurement plus treatment). Instead, many hospitals use a fixed effective half-time or even a fixed administered activity, only requiring two visits. However, none of these methods considers the absorbed dose to the thyroid of the individual patient. In this work a simplified patient-specific method for treating hyperthyroidism is proposed, based on one single uptake measurement, thus requiring only two visits to the hospital. The calculation is as accurate as using the individual biokinetic data. The simplified method is as patient-convenient and time effective as using a fixed effective half-time or a fixed administered activity. The simplified method is based upon a linear relation between the late uptake measurement 4-7 days after intake of the test activity and the product of the extrapolated initial uptake and the effective half-time. Treatments not considering individual biokinetics in the thyroid result in a distribution of administered absorbed dose to the thyroid, with a range of -50 % to +160 % compared to a protocol calculating the absorbed dose to the thyroid of the individual patient. Treatments with a fixed administered activity of 370 MBq will in general administer 250 % higher activity to the patient, with a range of -30 % to +770 %. The absorbed dose to other organs

  5. Selective fallopian tube catheterisation in female infertility: clinical results and absorbed radiation dose

    Clinical results of fluoroscopic fallopian tube catheterisation and absorbed radiation doses during the procedure were evaluated in 30 infertility patients with unilateral or bilateral tubal obstruction documented on hysterosalpingography. The staged technique consisted of contrast injection through an intrauterine catheter with a vacuum cup device, ostial salpingography with the wedged catheter, and selective salpingography with a coaxial microcatheter. Of 45 fallopian tubes examined, 35 (78 %) were demonstrated by the procedure, and at least one tube was newly demonstrated in 26 patients (87 %). Six of these patients conceived spontaneously in the follow-up period of 1-11 months. Four pregnancies were intrauterine and 2 were ectopic. This technique provided accurate and detailed information in the diagnosis and treatment of tubal obstruction in infertility patients. The absorbed radiation dose to the ovary in the average standardised procedure was estimated to be 0.9 cGy. Further improvement in the X-ray equipment and technique is required to reduce the radiation dose. (orig.). With 3 figs., 3 tabs

  6. Assessment of absorbed dose and stopping power for 109Cd conversion electrons using a pressurized 4π proportional counter

    The evaluation of the absorbed dose in external and internal contamination due to radionuclides is not easy, because of the difficulties in the assessment of the absorbed dose caused by electrons with energy less than 100 keV in skin and in mucous membrane. In this paper we work with a methodology for assessment of absorbed dose and stopping power in VYNS (co-polymer of polylvinyl chloride-acetate) absorbers, for the 32.5 keV and 84-88 keV energy 109 Cd conversion electrons, with a 4 φ proportional pressurized detector. In order to assure the reproducibility of measurement conditions, one of the detector halves was used to obtain a spectrum of a thin 109 Cd source, without absorber. The other half of the detector was used in concomitance to obtain spectra with different thicknesses of absorber. The absorbed energy was obtained subtracting each spectrum absorber from the spectrum without absorber and both were stored in a microcomputer connected to signal processing systems by a ACE type interface. The VYNS weight and thickness were evaluated using common radionuclide metrology procedures. As VYNS has characteristics similar to a tissue equivalent material, the results obtained are consistent with dosimetric concepts and have a good agreement with those of the literature. (author)

  7. Absorbed and effective dose from spiral and computed tomography for the dental implant planning

    Hong, Beong Hee; Han, Won Jeong; Kim, Eun Kyung [Dankook Univ. School of Dentistry, Seoul (Korea, Republic of)

    2001-09-15

    To evaluate the absorbed and effective doses of spiral and computed tomography for the dental implant planning. For radiographic projection. TLD chips were placed in 22 sites of humanoid phantom to record the exposure to skin and the mean absorbed dose to bone marrow, thyroid, pituitary, parotid and submandibular glands and nesophages. Effective dose was calculated, using the method suggested by Frederiksen at al.. Patient situations of a single tooth gap in upper and lower midline region, edentulous maxilla and mandible were simulated for spiral tomography. 35 axial slices (maxilla) and 40 axial slices (mandible) with low and standard dose setting were used for computed tomography. All the radiographic procedures were repeated three times. The mean effective dose in case of maxilla was 0.865 mSv, 0.452 mSv, 0.136 mSv and 0.025 mSv, in spiral tomography of complete edentulous maxilla, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). That in case of mandible was 0.614 mSv, 0.448 mSv, 0.137 mSv and 0.036 mSv, in spiral tomography of complete edentulous mandible, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). Based on these results, it can be concluded that low mAs computed tomography is recommended instead of spiral tomography for the complete edentulous maxilla and mandible dental implant treatment planning.

  8. Absorbed and effective dose from spiral and computed tomography for the dental implant planning

    To evaluate the absorbed and effective doses of spiral and computed tomography for the dental implant planning. For radiographic projection. TLD chips were placed in 22 sites of humanoid phantom to record the exposure to skin and the mean absorbed dose to bone marrow, thyroid, pituitary, parotid and submandibular glands and nesophages. Effective dose was calculated, using the method suggested by Frederiksen at al.. Patient situations of a single tooth gap in upper and lower midline region, edentulous maxilla and mandible were simulated for spiral tomography. 35 axial slices (maxilla) and 40 axial slices (mandible) with low and standard dose setting were used for computed tomography. All the radiographic procedures were repeated three times. The mean effective dose in case of maxilla was 0.865 mSv, 0.452 mSv, 0.136 mSv and 0.025 mSv, in spiral tomography of complete edentulous maxilla, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). That in case of mandible was 0.614 mSv, 0.448 mSv, 0.137 mSv and 0.036 mSv, in spiral tomography of complete edentulous mandible, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). Based on these results, it can be concluded that low mAs computed tomography is recommended instead of spiral tomography for the complete edentulous maxilla and mandible dental implant treatment planning

  9. Evaluation of the absorbed dose, half-thickness layer and the yield of X-ray an diagnostic equipment

    This work develops parametrization methods for evaluation the absorbed doses, the half-thickness and the effectiveness of a X-ray beams from a Shimadzu Radiotex and a SRO 2550 Philips models equipment

  10. Ionization current measurements using and extrapolation chamber for the determination of the absorbed dose from β emitters

    In order to obtain the beta response of survey instruments, the working group no.5 of the C.E.A. Radiation Offices has studied an extrapolation chamber as reference apparatus. The value of the different correcting factors which modify the number of ions pairs collected per mass of air, in other words, the absorbed dose in the air of the cavity is reported. Then, the physical constants (transmission, back-scattering...) which are necessary to pass from the absorbed dose in the air of the cavity, to the absorbed dose in the tissue for a semi-infinite medium below a thickness of 7.5mg/cm2 are given. The absorbed dose in tissue, to within an error of about 4%, can be estimated

  11. Standard Guide for Selection and Use of Mathematical Methods for Calculating Absorbed Dose in Radiation Processing Applications

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide describes different mathematical methods that may be used to calculate absorbed dose and criteria for their selection. Absorbed-dose calculations can determine the effectiveness of the radiation process, estimate the absorbed-dose distribution in product, or supplement or complement, or both, the measurement of absorbed dose. 1.2 Radiation processing is an evolving field and annotated examples are provided in Annex A6 to illustrate the applications where mathematical methods have been successfully applied. While not limited by the applications cited in these examples, applications specific to neutron transport, radiation therapy and shielding design are not addressed in this document. 1.3 This guide covers the calculation of radiation transport of electrons and photons with energies up to 25 MeV. 1.4 The mathematical methods described include Monte Carlo, point kernel, discrete ordinate, semi-empirical and empirical methods. 1.5 General purpose software packages are available for the calcul...

  12. Electron absorbed dose comparison between MCNP5 and Penelope Monte Carlo code for microdosimetry

    The objective of the present work was to compare electron absorbed dose results between two widespread used codes in international scientific community: MCNP5 and Penelope-2003. Individual water spheres with masses between 10-9 g up to 10-3 g immersed in an infinite water medium (density of 1g/cm3) and monoenergetic electron sources with energy from 0.002 MeV to 0.1 MeV have been considered. The absorbed dose in the spheres was evaluated by both codes and the relative differences have been quantified. The results shown that Penelope gives, in general, higher results that, in some cases saturate or reach a maximum point and then rapidly drops. Particularly, for the 40 keV electron source we have done additional tests in three different scenarios: more points in the region of lower masses to a better definition of the curve behavior; MCNP used 200 substeps and Penelope was set to a full detail history methodology, and almost same parameters of case B but with the density of exterior medium increased to 10 g/cm3. The three cases show the influence of the backscattering that contribute with an important fraction of absorbed dose, finally we can infer a range of reliability to use the codes in this kind of simulations: both codes can calculate close results for up to 10-4 g.Even though MCNP5 uses the condensed history method, if simulation parameters are chosen carefully it can reproduce results very close to those obtained using detailed history mode. In some cases, the use of higher number of electron substeps causes significant differences in the result. (author)

  13. Re-establishment of Australian absorbed dose primary standard at Co-60

    Full text: The Australian primary standard of absorbed dose is the graphite calorimeter which was established for the calibration of therapy level dosimeters in the mid I 990s. An intercomparison of the standard was performed with BIPM, France in 1997 and it showed good agreement. Subsequently, in 2003 the calorimeter underwent repairs and was restored in 2006-2007. Meanwhile, a calorimeter of the same type was obtained from the IAEA on a loan basis. When the ARPA SA calorimeter was restored, it was compared to the [AEA calorimeter. The calibration service on the therapy level ARPANSA cobalt-60 gamma-ray source facility was suspended late 2009 since the old source had decayed to below 14 TBq and was replaced in January 20 I 0 by a 145 TBq cobalt-60 source mounted in an Eldorado 78 therapy treatment head oriented vertically. This paper details the re-establishment of the primary standard through calorimetry measurements with the new cobalt-60 gammaray source facility. The measurements have been performed using a Labview program for data acquisition and data analysis using Matlab scripts. A comparison of measurements with both ARPANSA and IAEA calorimeters is presented. Conversion of the graphite absorbed dose measured by the calorimeter into water absorbed dose to enable calibration of therapy level dosimeters was achieved through the use of Monte Carlo simulation. An intercomparison of calibration factors of reference ionization chambers done at BIPM, France, and at ARPANSA based on the calorimetry results have shown good agreement. This provides confidence that the calibration service can be re-commenced reliably and consistently. (author)

  14. Measurement of absorbed doses near metal and dental material interfaces irradiated by x- and gamma-ray therapy beams

    Soft-tissue damage adjacent to dental restorations is a deleterious side effect of radiation therapy associated with low-energy electron scatter from dental materials of high electron density. This study was designed to investigate the enhancement of dose to soft tissue (or water) close to high electron-density materials and to measure the detailed lateral and depth-dose profiles in soft-tissue-simulating polymer adjacent to planar interfaces of several higher atomic-number materials: 18-carat gold dental casting alloy; Ag-Hg dental amalgam alloy; Ni-Cr dental casting alloy; and natural human tooth structure. Results indicate that the dose-enhancement in 'tissue' is as great as a factor of 2 on the backscatter side adjacent to gold and a factor of 1.2 adjacent to tooth tissue, but is insignificant on the forward-scatter side because of the predominant effect of attenuation by the high-density, high atomic-number absorbing material. (author)

  15. Measurement of absorbed dose to water for low and medium energy x-rays

    Full text: Over the last decade, the treatment of superficial or intercavitary malignancies with medium-energy x-rays has regained popularity. This development puts renewed and increased emphasis on the importance of accurate dosimetry in this energy range. An appreciable number of publications dealing with various aspects of dosimetry in medium-energy x-ray beams has appeared and several protocols for the dosimetry of medium-energy x-ray appeared which led to the publication of a comparison between the various protocols. Attempts were made to model x-ray radiotherapy units by Monte Carlo methods, a method originally developed for high-energy treatment systems. In-phantom dosimetry for medium-energy x-rays suffers from the lack of a primary standard which would allow direct determination of the water absorbed dose. Attempts at a direct measurement of the water absorbed dose were made employing water calorimetry. These attempts suffered from the unknown energy dependence of the chemical yield for ferrous sulfate dosimetry, or from insufficient knowledge of the calorimetric heat defect. In the absence of a direct method, two different approaches have mainly been made. In one of these an ionisation chamber calibrated in free air in terms of air kerma is positioned at reference depth inside the water phantom. The absorbed dose to water is obtained by conversion of the air kerma measured in the water phantom to water kerma or, which is essentially equivalent in this energy range, to absorbed dose to water. When this method is used, correction factors have to be applied, which have to take into account i) the differences in the properties of the radiation field used for calibration in free air and of that inside the phantom and ii) the modification of the in-phantom radiation field caused by the presence of the ionisation chamber with its air cavity and with non water-equivalent walls and chamber stem. The other approach is to start with the measurement of absorbed dose

  16. The 1998 calibration of Australian secondary standards of exposure and absorbed dose at 60Co

    New calibration factors are reported for several of the ionization chambers maintained at the Australian Radiation Laboratory (ARL) and at the Australian Nuclear Science and Technology Organisation (ANSTO) as Australian secondary standards of exposure/air kerma and absorbed dose at 60Co. These calibration factors supplement or replace the calibration factors given in earlier reports. Updated 90Sr reference source data are given for the ARL chambers, and for two of the ANSTO chambers. These results confirm the stability of the secondary standards. A re-calibration of the ANSTO reference electrometer is reported. This was carried out using an improved method, which is fully described

  17. Estimation of the absorbed dose in radiation-processed food. 4. EPR measurements on eggshell

    Fresh whole eggs were treated with ionizing radiation for Salmonellae control testing. The eggshell was then removed and examined by electron paramagnetic resonance (EPR) spectroscopy to determine if EPR could be used to (1) distinguish irradiated from unirradiated eggs and (2) assess the absorbed dose. No EPR signals were detected in unirradiated eggs, while strong signals were measurable for more than 200 days after irradiation. Although a number of OPR signals were measured,the most intense resonance (g = 2.0019) was used for dosimetry throughout the study. This signal was observed to increase linearly with dose (up to approximately 6 kGy), which decayed approximately 20 % within the first 5 days after irradiation and remained relatively constant thereafter. The standard added-dose method was used to assess, retrospectively, the dose to eggs processed at 0.2, 0.7, and 1.4 kGy. Relatively good results were obtained when measurement was made on the day the shell was reradiated; with this procedure estimates were better for shell processed at the lower doses

  18. FLUKA predictions of the absorbed dose in the HCAL Endcap scintillators using a Run1 (2012) CMS FLUKA model

    CMS Collaboration

    2016-01-01

    Estimates of absorbed dose in HCAL Endcap (HE) region as predicted by FLUKA Monte Carlo code. Dose is calculated in an R-phi-Z grid overlaying HE region, with resolution 1cm in R, 1mm in Z, and a single 360 degree bin in phi. This allows calculation of absorbed dose within a single 4mm thick scintillator layer without including other regions or materials. This note shows estimates of the cumulative dose in scintillator layers 1 and 7 during the 2012 run.

  19. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    Sudha Rana

    2010-01-01

    Full Text Available Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation.

  20. CALDoseX: a software tool for absorbed dose calculations in diagnostic radiology

    Conversion coefficients (CCs) between absorbed dose to organs and tissues at risk and measurable quantities commonly used in X-ray diagnosis have been calculated for the last 30 years mostly with mathematical MIRD5-type phantoms, in which organs are represented by simple geometrical bodies, like ellipsoids, tori, truncated cylinders, etc. In contrast, voxel-based phantoms are true to nature representations of human bodies. The purpose of this study is therefore to calculate CCs for common examinations in X-ray diagnosis with the recently developed MAX06 (Male Adult voXel) and FAX06 (Female Adult voXel) phantoms for various projections and different X-ray spectra and to make these CCs available to the public through a software tool, called CALDoseX (CALculation of Dose for X-ray diagnosis). (author)

  1. Radiobiologic risk estimation from dental radiology. Part I. Absorbed doses to critical organs

    The aim of the present study was to generate one consistent set of data for evaluating and comparing radiobiologic risks from different dental radiographic techniques. To accomplish this goal, absorbed doses were measured in fourteen anatomic sites from (1) five different panoramic machines with the use of rare-earth screens, (2) a twenty-film complete-mouth survey with E-speed film, long round cone, (3) a twenty-film complete-mouth survey with E-speed film, long rectangular cone, (4) a four-film interproximal survey with E-speed film, long round cone, and (5) a four-film interproximal survey with E-speed film, long rectangular cone. The dose to the thyroid gland, the active bone marrow, the brain, and the salivary glands was evaluated by means of exposure of a tissue-equivalent phantom, fitted with lithium fluoride thermoluminescent dosimeters (TLDs) at the relevant locations

  2. A Method of Biological Measurement of Thermal- and Fast-Neutron Doses Absorbed by Living Organisms

    After exposing young rats to a high thermal neutron flux the activated zones were determined by autoradiography at -195°C. The localization and nature of some of the activated elements were studied. Attention is drawn to the important role of P32 compared to other activation products. The authors compare the doses resulting from direct exposure to the neutron flux with those associated with local irradiation of bone and other tissue as a secondary effect of activation. The next step will be to study the possibility of using micro biopsy of bone tissue as a precise means of evaluating absorbed-neutron dose a posteriori in terms of different parts of the organism and different neutron energies. (Measurement of the samples specific P32 activity for thermal neutrons and calculation of the specific Si31 activity for fast neutrons). (author)

  3. Absorbed dose measurements in mammography using Monte Carlo method and ZrO2+PTFE dosemeters

    Mammography test is a central tool for breast cancer diagnostic. In addition, programs are conducted periodically to detect the asymptomatic women in certain age groups; these programs have shown a reduction on breast cancer mortality. Early detection of breast cancer is achieved through a mammography, which contrasts the glandular and adipose tissue with a probable calcification. The parameters used for mammography are based on the thickness and density of the breast, their values depend on the voltage, current, focal spot and anode-filter combination. To achieve an image clear and a minimum dose must be chosen appropriate irradiation conditions. Risk associated with mammography should not be ignored. This study was performed in the General Hospital No. 1 IMSS in Zacatecas. Was used a glucose phantom and measured air Kerma at the entrance of the breast that was calculated using Monte Carlo methods and ZrO2+PTFE thermoluminescent dosemeters, this calculation was completed with calculating the absorbed dose. (author)

  4. Study on the ferrous sulfate dosimeter used as the province grade-Guangdong standard of absorbed dose

    Ferrous sulfate dosimeter has been used as the province grade-Guangdong absorbed dose standard for 60Co-γ ray. The molar extinction coefficient for Fe3+ at 303 nm is precisely determined to be 2174.3 l·mol-1·cm-1 (25 degree C). The conversion factor for absorbance-absorbed dose is obtained to be 280.2 Gy/ABS, and the overall uncertainty within 2.7%. Major factor effecting ferrous sulfate dosimeter is also studied. Comparing the ferrous sulfate dosimeter with the national standard dosimeter and assurance dosimeter of IAEA, the test results contrasting are quite good

  5. Response Funtions for Computing Absorbed Dose to Skeletal Tissues from Photon Irradiation

    Eckerman, Keith F [ORNL; Bolch, W E [University of Florida, Gainesville; Zankl, M [Institute of Radiation Protection, GSF-National Reserach Center for Environ; Petoussi-Henss, N [Institute of Radiation Protection, GSF-National Reserach Center for Environ

    2007-01-01

    The calculation of absorbed dose in skeletal tissues at radiogenic risk has been a difficult problem because the relevant structures cannot be represented in conventional geometric terms nor can they be visualised in the tomographic image data used to define the computational models of the human body. The active marrow, the tissue of concern in leukaemia induction, is present within the spongiosa regions of trabecular bone, whereas the osteoprogenitor cells at risk for bone cancer induction are considered to be within the soft tissues adjacent to the mineral surfaces. The International Commission on Radiological Protection (ICRP) recommends averaging the absorbed energy over the active marrow within the spongiosa and over the soft tissues within 10 mm of the mineral surface for leukaemia and bone cancer induction, respectively. In its forthcoming recommendation, it is expected that the latter guidance will be changed to include soft tissues within 50 mm of the mineral surfaces. To address the computational problems, the skeleton of the proposed ICRP reference computational phantom has been subdivided to identify those voxels associated with cortical shell, spongiosa and the medullary cavity of the long bones. It is further proposed that the Monte Carlo calculations with these phantoms compute the energy deposition in the skeletal target tissues as the product of the particle fluence in the skeletal subdivisions and applicable fluence-to-dose response functions. This paper outlines the development of such response functions for photons.

  6. A Comparison of Model Calculation and Measurement of Absorbed Dose for Proton Irradiation. Chapter 5

    Zapp, N.; Semones, E.; Saganti, P.; Cucinotta, F.

    2003-01-01

    With the increase in the amount of time spent EVA that is necessary to complete the construction and subsequent maintenance of ISS, it will become increasingly important for ground support personnel to accurately characterize the radiation exposures incurred by EVA crewmembers. Since exposure measurements cannot be taken within the organs of interest, it is necessary to estimate these exposures by calculation. To validate the methods and tools used to develop these estimates, it is necessary to model experiments performed in a controlled environment. This work is such an effort. A human phantom was outfitted with detector equipment and then placed in American EMU and Orlan-M EVA space suits. The suited phantom was irradiated at the LLUPTF with proton beams of known energies. Absorbed dose measurements were made by the spaceflight operational dosimetrist from JSC at multiple sites in the skin, eye, brain, stomach, and small intestine locations in the phantom. These exposures are then modeled using the BRYNTRN radiation transport code developed at the NASA Langley Research Center, and the CAM (computerized anatomical male) human geometry model of Billings and Yucker. Comparisons of absorbed dose calculations with measurements show excellent agreement. This suggests that there is reason to be confident in the ability of both the transport code and the human body model to estimate proton exposure in ground-based laboratory experiments.

  7. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954

    A study was undertaken to reexamine thyroid absorbed dose estimates for people accidentally exposed to fallout at Rongelap, Sifo, and Utirik Islands from the Pacific weapon test known as Operation Castle BRAVO. The study included: (1) reevaluation of radiochemical analysis, to relate results from pooled urine to intake, retention, and excretion functions; (2) analysis of neutron-irradiation studies of archival soil samples, to estimate areal activities of the iodine isotopes; (3) analysis of source term, weather data, and meteorological functions used in predicting atmospheric diffusion and fallout deposition, to estimate airborne concentrations of the iodine isotopes; and (4) reevaluation of radioactive fallout, which contaminated a Japanese fishing vessel in the vicinity of Rongelap Island on March 1, 1954, to determine fallout components. The conclusions of the acute exposure study were that the population mean thyroid absorbed doses were 21 gray (2100 rad) at Rongelap, 6.7 gray (670 rad) at Sifo, and 2.8 gray (280 rad) at Utirik. The overall thyroid cancer risk we estimated was in agreement with results published on the Japanese exposed at Nagasaki and Hiroshima. We now postulate that the major route for intake of fallout was by direct ingestion of food prepared and consumed outdoors. 66 refs., 13 figs., 25 tabs

  8. Absorbed dose measurements of mixed pile radiation in aqueous radiation chemistry

    To use a nuclear reactor as a radiation source in the radiation chemistry of water and aqueous solutions, reliable routine dosimetry techniques are of basic importance. For this purpose we have tried to develop a calorimetric device and a chemical system. The differential calorimeter described here permits simultaneous measurements of energy absorption in different materials. From these values the relative contributions from gammas and non-thermalized neutrons to the total absorbed dose can be calculated. The possibility of inserting a liquid sample into the calorimeter makes it very convenient for radiation chemical studies of aqueous solutions or, generally, liquid systems. For a period of about two years, reliable values for the absorbed doses in different materials have been obtained, which are in good agreement with other physical measurements in the RA research reactor at Vinca. The chemical system described is an aqueous solution of oxalic acid. Its advantages are: the possibility of measurements in the multi-megarad region and negligible induced radioactivity. The results of calorimetric and chemical measurements are presented

  9. Thyroid absorbed dose for people at Rongelap, Utirik, and Sifo on March 1, 1954

    Lessard, E.T.; Miltenberger, R.P.; Conrad, R.A.; Musoline, S.V.; Naidu, J.R.; Moorthy, A.; Schopfer, C.J.

    1985-03-01

    A study was undertaken to reexamine thyroid absorbed dose estimates for people accidentally exposed to fallout at Rongelap, Sifo, and Utirik Islands from the Pacific weapon test known as Operation Castle BRAVO. The study included: (1) reevaluation of radiochemical analysis, to relate results from pooled urine to intake, retention, and excretion functions; (2) analysis of neutron-irradiation studies of archival soil samples, to estimate areal activities of the iodine isotopes; (3) analysis of source term, weather data, and meteorological functions used in predicting atmospheric diffusion and fallout deposition, to estimate airborne concentrations of the iodine isotopes; and (4) reevaluation of radioactive fallout, which contaminated a Japanese fishing vessel in the vicinity of Rongelap Island on March 1, 1954, to determine fallout components. The conclusions of the acute exposure study were that the population mean thyroid absorbed doses were 21 gray (2100 rad) at Rongelap, 6.7 gray (670 rad) at Sifo, and 2.8 gray (280 rad) at Utirik. The overall thyroid cancer risk we estimated was in agreement with results published on the Japanese exposed at Nagasaki and Hiroshima. We now postulate that the major route for intake of fallout was by direct ingestion of food prepared and consumed outdoors. 66 refs., 13 figs., 25 tabs.

  10. Assessment of the absorbed dose to organs from bone mineral density scan by using TLDS and the Monte Carlo method

    Karimian Alireza

    2014-01-01

    Full Text Available Nowadays, dual energy X-ray absorptiometry is used in bone mineral density systems to assess the amount of osteoporosis. The purpose of this research is to evaluate patient organ doses from dual X-ray absorptiometry by thermoluminescence dosimeters chips and Monte Carlo method. To achieve this goal, in the first step, the surface dose of the cervix, kidney, abdomen region, and thyroid were measured by using TLD-GR 200 at various organ locations. Then, to evaluate the absorbed dose by simulation, the BMD system, patient's body, X-ray source and radiosensitive tissues were simulated by the Monte Carlo method. The results showed, for the spine (left femur bone mineral density scan by using thermoluminescence dosimeters, the absorbed doses of the cervix and kidney were 4.5 (5.64 and 162.17 (3.99(mGy, respectively. For spine (left femur bone mineral density scan in simulation, the absorbed doses of the cervix and kidney were 4.19 (5.88 and 175 (3.68(mGy, respectively. The data obtained showed that the absorbed dose of the kidney in the spine scan is noticeable. Furthermore, because of the small relative difference between the simulation and experimental results, the radiation absorbed dose may be assessed by simulation and software, especially for internal organs, and at different depths of otherwise inaccessible organs which is not possible in experiments.

  11. Secondary absorbed doses from light ion irradiation in anthropomorphic phantoms representing an adult male and a 10 year old child

    Secondary organ absorbed doses were calculated by Monte Carlo simulations with the SHIELD-HIT07 code coupled with the mathematical anthropomorphic phantoms CHILD-HIT and ADAM-HIT. The simulated irradiations were performed with primary 1H, 4He, 7Li, 12C and 16O ion beams in the energy range 100-400 MeV/u which were directly impinging on the phantoms, i.e. approximating scanned beams, and with a simplified beamline for 12C irradiation. The evaluated absorbed doses to the out-of-field organs were in the range 10-6 to 10-1 mGy per target Gy and with standard deviations 0.5-20%. While the contribution to the organ absorbed doses from secondary neutrons dominated in the ion beams of low atomic number Z, the produced charged fragments and their subsequent charged secondaries of higher generations became increasingly important for the secondary dose delivery as Z of the primary ions increased. As compared to the simulated scanned 12C ion beam, the implementation of a simplified beamline for prostate irradiation with 12C ions resulted in an increase of 2-50 times in the organ absorbed doses depending on the distance from the target volume. Comparison of secondary organ absorbed doses delivered by 1H and 12C beams showed smaller differences when the RBE for local tumor control of the ions was considered and normalization to the RBE-weighted dose to the target was performed.

  12. Reconstruction of doses absorbed by radiotherapy patients by means of EPR dosimetry in tooth enamel

    Ciesielski, B. [Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk (Poland)], E-mail: bciesiel@amg.gda.pl; Karaszewska, A.; Penkowski, M.; Schultka, K. [Department of Physics and Biophysics, Medical University of Gdansk, Debinki 1, 80-211 Gdansk (Poland); Junczewska, M. [Clinic of Oral Surgery, Medical University of Gdansk, Debinki 1, 80-211 Gdansk (Poland); Nowak, R. [Department of Oncology and Radiotherapy, Medical University of Gdansk, Debinki 1, 80-211 Gdansk (Poland)

    2007-07-15

    The objective of this study was verification of actual doses absorbed by teeth enamel in patients undergoing radiotherapy treatment. The retrospective dosimetry was based on ex vivo measurements of electron paramagnetic resonance (EPR) signals in teeth extracted from six patients during dental treatment within a few years after radiotherapy with {sup 60}Co photons and high-energy photon and electron beams. The measured doses were compared to those calculated by radiotherapy treatment planning (RTP) algorithm (CadPlan 3.1). The total accuracy of dose reconstructions based on EPR measurements was 5-9%. The discrepancy between the planned and measured doses ranged from a few percent (for teeth positioned within the irradiated field) up to about 120% (for teeth located outside the primary beam). Such significant differences between results of RTP calculations and EPR measurement can be explained by changes in geometry of tissues within patient's oral cavity during the treatment, which cannot be accounted for by RTP based on radiotherapy simulation procedure preceding the treatment.

  13. Control letters and uncertainties of the kerma patterns in air, dose absorbed in water and dose absorbed in air of the LSCD

    With the purpose of characterizing the component of uncertainty of long term of the patron ionization chambers of the LSCD, for the magnitudes: speed of kerma in air Κα·, dose speed absorbed in water Dα·, and speed absorbed dose in air Dα·, it use the technique of letters of control l-MR/S. This statistical technique it estimates the component of uncertainty of short term by means of the deviation standard inside groups σω and that of long term by means of the standard deviation among groups σβ, being this it finishes an estimator of the stability of the patterns.The letters of control l-MR/S it construct for: i) Κα·, in radiation field of 60Co for patterns: primary CC01 series 131, secondary NE 2611 series 176, secondary PTW TN30031 series 578 and Third PTW W30001 series 365. ii) Dα),en radiation field of 60Co for patterns: primary CC01 series 131, Secondary PTW TN30031 series 578 and tertiary PTW W30001 series 365. iii) I-MR/S with extrapolation chamber PTW primary pattern, measurement realizes in secondary patron fields of 90Sr-90Y. The expanded uncertainty U it is calculated of agreement with the Guide of the ISO/BIPM being observed the following thing: a. In some the cases σβ, is the component of the U that more contributed to this. Therefore, it is necessary to settle down technical of sampling in those mensurations that allow to reduce the value of σβ. For example with sizes of subgroup η∼ 30 data, or with a number of subgroups κ≥. That which is achieved automating the mensuration processes. b.The component of the temperature is also one of those that but they contribute to the U, of there the necessity of: to recover the tracking for this magnitude of it influences and to increase the precision in the determinations of the temperature to diminish their influence in the U. c. The percentage difference of the magnitudes dosemeters carried out by it patterns are consistent with U certain. However, it is necessary to diminish the

  14. Absorbed dose-to-water protocol applied to synchrotron-generated x-rays at very high dose rates

    Fournier, P.; Crosbie, J. C.; Cornelius, I.; Berkvens, P.; Donzelli, M.; Clavel, A. H.; Rosenfeld, A. B.; Petasecca, M.; Lerch, M. L. F.; Bräuer-Krisch, E.

    2016-07-01

    Microbeam radiation therapy (MRT) is a new radiation treatment modality in the pre-clinical stage of development at the ID17 Biomedical Beamline of the European synchrotron radiation facility (ESRF) in Grenoble, France. MRT exploits the dose volume effect that is made possible through the spatial fractionation of the high dose rate synchrotron-generated x-ray beam into an array of microbeams. As an important step towards the development of a dosimetry protocol for MRT, we have applied the International Atomic Energy Agency’s TRS 398 absorbed dose-to-water protocol to the synchrotron x-ray beam in the case of the broad beam irradiation geometry (i.e. prior to spatial fractionation into microbeams). The very high dose rates observed here mean the ion recombination correction factor, k s , is the most challenging to quantify of all the necessary corrections to apply for ionization chamber based absolute dosimetry. In the course of this study, we have developed a new method, the so called ‘current ramping’ method, to determine k s for the specific irradiation and filtering conditions typically utilized throughout the development of MRT. Using the new approach we deduced an ion recombination correction factor of 1.047 for the maximum ESRF storage ring current (200 mA) under typical beam spectral filtering conditions in MRT. MRT trials are currently underway with veterinary patients at the ESRF that require additional filtering, and we have estimated a correction factor of 1.025 for these filtration conditions for the same ESRF storage ring current. The protocol described herein provides reference dosimetry data for the associated Treatment Planning System utilized in the current veterinary trials and anticipated future human clinical trials.

  15. Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies

    Radiation absorbed doses due to intravenous administration of fluorine-18-fluorodeoxyglucose in positron emission tomography (PET) studies were estimated in normal volunteers. The time-activity curves were obtained for seven human organs (brain, heart, kidney, liver, lung, pancreas, and spleen) by using dynamic PET scans and for bladder content by using a single detector. These time-activity curves were used for the calculation of the cumulative activity in these organs. Absorbed doses were calculated by the MIRD method using the absorbed dose per unit of cumulated activity, 'S' value, transformed for the Japanese physique and the organ masses of the Japanese reference man. The bladder wall and the heart were the organs receiving higher doses of 1.2 x 10(-1) and 4.5 x 10(-2) mGy/MBq, respectively. The brain received a dose of 2.9 x 10(-2) mGy/MBq, and other organs received doses between 1.0 x 10(-2) and 3.0 x 10(-2) mGy/MBq. The effective dose equivalent was estimated to be 2.4 x 10(-2) mSv/MBq. These results were comparable to values of absorbed doses reported by other authors on the radiation dosimetry of this radiopharmaceutical

  16. Experimental investigation of a nanofluid absorber employed in a low-profile, concentrated solar thermal collector

    Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.

    2015-12-01

    Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency

  17. Absorbed dose rates in air due to U, Th and K in soils in parts of South-Western Nigeria

    The absorbed dose rates in air due to the presence of radioisotopes 40K, 238U and 252Th in soils in Ondo State, South Western Nigeria have been determined by first estimating the concentration of these radionuclides in the soils of the area. The concentrations of the radionuclide were measured using a multichannel pulse-height analyser connected to a 7.6 cm. x 7.6 cm. NaI(TI) detector and by the use of appropriate conversion factors, the absorbed dose rates in air, at a height of 1.0 m. above the ground were computed from the concentrations. The concentrations of the radioisotopes are expressed in BqKg1 of dry weight and the corresponding absorbed dose rates in air are expressed in nGyh-1 with mean of the acceptable International Commission on Radiological Protection (ICRP) dose limit

  18. Determination of human absorbed dose of cocktail of 153Sm/177Lu-EDTMP, based on biodistribution data in rats

    The aim of this work was to estimate the absorbed dose due to compositional radiopharmaceutical of 153Sm/177Lu-EDTMP in human organs based on biodistribution data of rats by using OLINDA/EXM software. The absorbed dose was determined by the Radiation Dose Assessment Resource (RADAR) formulation after calculating cumulated activities in each organ. The results show that the organs that received the highest absorbed dose were the bone surface and red marrow (1.51 and 7.99 mGy/ MBq for 153Sm, and 1.98 and 10.76 mGy/MBq for 177Lu, respectively). According to the results, using of cocktail of 153Sm/177Lu-EDTMP has considerable characteristics as compared to 153Sm-EDTMP and 177Lu-EDTMP alone. (author)

  19. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark

    There is a need to verify the accuracy of general purpose Monte Carlo codes like EGSnrc, which are commonly employed for investigations of dosimetric problems in radiation therapy. A number of experimental benchmarks have been published to compare calculated values of absorbed dose to experimentally determined values. However, there is a lack of absolute benchmarks, i.e. benchmarks without involved normalization which may cause some quantities to be cancelled. Therefore, at the Physikalisch-Technische Bundesanstalt a benchmark experiment was performed, which aimed at the absolute verification of radiation transport calculations for dosimetry in radiation therapy. A thimble-type ionization chamber in a solid phantom was irradiated by high-energy bremsstrahlung and the mean absorbed dose in the sensitive volume was measured per incident electron of the target. The characteristics of the accelerator and experimental setup were precisely determined and the results of a corresponding Monte Carlo simulation with EGSnrc are presented within this study. For a meaningful comparison, an analysis of the uncertainty of the Monte Carlo simulation is necessary. In this study uncertainties with regard to the simulation geometry, the radiation source, transport options of the Monte Carlo code and specific interaction cross sections are investigated, applying the general methodology of the Guide to the expression of uncertainty in measurement. Besides studying the general influence of changes in transport options of the EGSnrc code, uncertainties are analyzed by estimating the sensitivity coefficients of various input quantities in a first step. Secondly, standard uncertainties are assigned to each quantity which are known from the experiment, e.g. uncertainties for geometric dimensions. Data for more fundamental quantities such as photon cross sections and the I-value of electron stopping powers are taken from literature. The significant uncertainty contributions are identified as

  20. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark

    Renner, F.; Wulff, J.; Kapsch, R.-P.; Zink, K.

    2015-10-01

    There is a need to verify the accuracy of general purpose Monte Carlo codes like EGSnrc, which are commonly employed for investigations of dosimetric problems in radiation therapy. A number of experimental benchmarks have been published to compare calculated values of absorbed dose to experimentally determined values. However, there is a lack of absolute benchmarks, i.e. benchmarks without involved normalization which may cause some quantities to be cancelled. Therefore, at the Physikalisch-Technische Bundesanstalt a benchmark experiment was performed, which aimed at the absolute verification of radiation transport calculations for dosimetry in radiation therapy. A thimble-type ionization chamber in a solid phantom was irradiated by high-energy bremsstrahlung and the mean absorbed dose in the sensitive volume was measured per incident electron of the target. The characteristics of the accelerator and experimental setup were precisely determined and the results of a corresponding Monte Carlo simulation with EGSnrc are presented within this study. For a meaningful comparison, an analysis of the uncertainty of the Monte Carlo simulation is necessary. In this study uncertainties with regard to the simulation geometry, the radiation source, transport options of the Monte Carlo code and specific interaction cross sections are investigated, applying the general methodology of the Guide to the expression of uncertainty in measurement. Besides studying the general influence of changes in transport options of the EGSnrc code, uncertainties are analyzed by estimating the sensitivity coefficients of various input quantities in a first step. Secondly, standard uncertainties are assigned to each quantity which are known from the experiment, e.g. uncertainties for geometric dimensions. Data for more fundamental quantities such as photon cross sections and the I-value of electron stopping powers are taken from literature. The significant uncertainty contributions are identified as

  1. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies <60 and >80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. (authors)

  2. Validation of a MOSFET dosemeter system for determining the absorbed and effective radiation doses in diagnostic radiology.

    Manninen, A-L; Kotiaho, A; Nikkinen, J; Nieminen, M T

    2015-04-01

    This study aimed to validate a MOSFET dosemeter system for determining absorbed and effective doses (EDs) in the dose and energy range used in diagnostic radiology. Energy dependence, dose linearity and repeatability of the dosemeter were examined. The absorbed doses (ADs) were compared at anterior-posterior projection and the EDs were determined at posterior-anterior, anterior-posterior and lateral projections of thoracic imaging using an anthropomorphic phantom. The radiation exposures were made using digital radiography systems. This study revealed that the MOSFET system with high sensitivity bias supply set-up is sufficiently accurate for AD and ED determination. The dosemeter is recommended to be calibrated for energies 80 kVp. The entrance skin dose level should be at least 5 mGy to minimise the deviation of the individual dosemeter dose. For ED determination, dosemeters should be implanted perpendicular to the surface of the phantom to prevent the angular dependence error. PMID:25213263

  3. The sensitivity analysis of tooth enamel to the absorbed dose for the application to EPR dosimetry

    Hong, Dae Seok; Lee, Kun Jai [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Cho, Young Hwan [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    Electron Paramagnetic Resonance (EPR) spectroscopy is one of the methods applicable to retrospective dosimetry. The retrospective dosimetry is a process that is a part of dose reconstruction for estimation of exposed dose occurred years before the estimation. Many techniques can be used to the retrospective dosimetry. As a physical method, EPR analysis of biological material measures the quantity of free radicals generated in the material from the interaction of radiation and material. Since the later 80s, in many countries, EPR dosimetry with tooth enamel has been studied and applied for the retrospective dosimetry. In the consideration of the biological materials for EPR dosimetry, human fingernail, hair, bone and tooth are generally considered. The tooth can be separated as enamel, dentine and cementum. Among the three parts, enamel shows the best sensitivity to the absorbed dose and is most widely used. In this study, the characteristics of tooth enamel for EPR dosimetry is examined and experimented. At the experiment, for easy separation, tooth was cut into 4 parts and then each part is treated by ultrasonic vibration in NaOH liquid to reduce mechanically induced noise in the corresponding signal. After the separation of the enamel from dentine, background EPR signal is measured and then radiation-induced EPR spectrum is estimated.

  4. Absorbed dose distributions in a tissue-equivalent absorber for Bremsstrahlung produced at the beamlines of the European Synchrotron Radiation Facility

    Pisharody, M; Berkvens, P; Colomp, P

    2000-01-01

    The absorbed-dose distributions for Bremsstrahlung, incident on a tissue-equivalent phantom, were measured with LiF : Mg,Ti thermoluminescent dosimeters at two insertion device beamlines of the European Synchrotron Radiation Facility (ESRF). The measurements were carried out for two different electron beam energies of 4 and 6 GeV. The corresponding Bremsstrahlung spectra and power were measured using a high-resolution lead glass total absorption calorimeter. The results are compared with similar measurements carried out at other facilities. The normalized Bremsstrahlung absorbed dose in a cross-sectional area of 100 mm sup sup 2 , at a depth of 150 mm of the phantom, was measured as 6.1 and 3.6 kGy h sup sup - sup sup 1 W sup sup - sup sup 1 for the corresponding Bremsstrahlung spectra of 4 and 6 GeV.

  5. Comparison of skin absorbed radiation dose in thyroid gland area during panoramic radiography and spiral tomography techniques

    Najmeh Akhlaghi

    2011-01-01

    Full Text Available Introduction: Thyroid gland is one of the critical organs during radiation in the head and neck region. The aim of this study was to compare absorbed radiation dose by skin in the thyroid area during spiral tomography and panoramic radiography by means of thermoluminance dosimetry (TLD.Materials and Methods: Thirty-six LiF (TLD-100 thermoluminescence dosimetry chips were utilized in this experimental in vitro study. One TLD chip was placed on the tube side and another was placed on the opposite side of the thyroid gland of a sliced anatomic Alderson head and neck phantom during panoramic radiography and spiral tomography. The dosimeters were read by a SOLARO 2A TLD reader twice followed by calculation of the absorbed dose. The results were analyzed by Wilcoxon’s test at a confidence interval of 95%.Results: The mean dose for screen-film panoramic radiographs was 34 µGy in the left thyroid and 39 on the right side. With spiral tomography the thyroid gland received a mean dose of 30‒71 µGy. There were no statistically significant differences in the mean thyroid doses between anterior and posterior spiral tomography and panoramic examination (p value > 0.05.Conclusion: Skin absorbed radiation dose of a tomographic examination, which includes four sections with a specific thickness, are almost comparable to that with a panoramic radiographic technique. Key words: Absorbed dose, Spiral tomography, Panoramic radiography.

  6. Research on the determination of 235U fission number by delayed γ-rays absorbed dose rates

    Background: The determination method of 235U fission number by detecting fission products using HPGe detector has been established before. But in some special cases, we need to get the fission number in-time in high intensity radiation environment. HPGe detector has its limitation due to the complex y spectrum accompany with high flux. Purpose: To get rid of the limitation mentioned above, a new method is introduced by detecting the delayed γ-rays absorbed dose rates. Methods: By using independent fission yield together with radioactive decay dates from CENDL 3.0 and ENDF BVII.1, dynamic calculation for total absorbed dose rate in air 1 meter from the source whose compositions were thermal neutron-induced fission products of 235U has been done. Results: A set of absorbed dose rate data of 235U fission products irradiated through fast rabbit irradiation system on Xi'an pulse reactor was recorded. The deviation of the fission neutron number between method by γ-rays absorbed dose rates and method by HPGe detector is 7%. Conclusion: It's feasible to determine the fission neutron number of 235U using delayed γ-rays absorbed dose rates in a high intensity radiated environment. (authors)

  7. Absorbed dose response of Al2O3 dosimeter irradiated by 60Co γ spectrum source capture and collimators

    Objective: To investigated the absorbed dose response of Al2O3 dosimeter in water phantom irradiated by 60Co γ spectrum source. Methods: The EGSnrc simulation program code DOSRZnrc was used to calculate the absorbed dose of the Al2O3 dosimeter and that of the equivalent volume of water in the corresponding position, as well as the absorbed dose conversion factor, irradiated by 60Co photon beams in a water phantom. Simulations were done for a cylindrical geometry dosimeter (diameter 0.4 cm and height 0.1 cm) and the dosimeter was placed at the centre of the water phantom at different depths. Results: The average absorbed dose conversion factor is 1.143±0.006 and changes little with the depth of the dosimeter in the water phantom, and the deviation is less than 1.0%. Conclusion: The absorbed dose response of Al2O3 dosimeter irradiated by 60Co γ spectrum source is steady and is independent on the depth of the dosimeter in water phantom in this research. (authors)

  8. Influence analysis of the variations on quality control parameters in determination of absorbed dose in water

    The reference condition established to determine the absorbed dose in water of a linear accelerator, according to TRS-398, depends on some electro-mechanics parameters. Furthermore, in principle, uncertainties in the parameters settings may results in dosimetry variations. The goal of this study is to analyze the influence in quality control parameters changes, which tolerance limits are established by TECDOC-1151, in the dosimetry result of photon beam. For this, some parameters (gantry and collimator angle, field size and source to surface distance) and chamber position were changed. The results of these changes were evaluated. For the variation range of quality control items (that went beyond the tolerance limits established by TECDOC-1151), the deviations got less than 1 % of reference for all analyzed parameters; the deviations for the ionization chamber position variation were less than 0,2 % for lateral and longitudinal variations although almost got to 3 % for depth alterations. (author)

  9. Influence analysis of the variations on quality control parameters in determination of absorbed dose in water

    The reference condition established to determine the absorbed dose in water of a linear accelerator, according to Tars-398, depends on some electro-mechanics parameters. Furthermore, in principle, uncertainties in the parameters settings may results in dosimetry variations. The goal of this study is to analyze the influence in quality control parameters changes, which tolerance limits are established by TECDOC-1151, in the dosimetry result of photon beam. For this, some parameters (gantry and collimator angle, field size and source to surface distance) and chamber position were changed. The results of these changes were evaluated. For the variation range of quality control items (that went beyond the tolerance limits established by TECDOC-1151), the deviations got less than 1 % of reference for all analyzed parameters; the deviations for the ionization chamber position variation were less than 0,2 % for lateral and longitudinal variations although almost got to 3% for depth alterations. (author)

  10. Study of the formalism used to determine the absorbed dose for X ray beams

    The most common codes of practice (IPEMB, Klevenhagen et al 1996; DIN 1996; NCS 1997; AAPM, Ma et al 2001; TRS-277, IAEA 1987) recommend to use the half-value layer (HVL1) to characterize x-ray beams generated with potentials up to 400 kVp. In a previous work (Chica et al 2008), we have estimated, for low-energy x-ray beams, the uncertainty in the absorbed dose in water due to the use of HVL1 as quality index. We found that this uncertainty can be above 11% in some cases. These values are, by far, larger than the uncertainties stated by the dosimetry protocols above mentioned

  11. Traceability of metrologic references of dose absorbed to water used in a Dosimetry Quality Assurance Program

    Objective: to present the solidly established traceability structure for ionometric standards and for thermoluminescent dosimetry system that ensures reliability of the Dosimetry Quality Assurance Program and is aimed to certify the highest level of accuracy of the measurements. Materials and methods: thermoluminescent powder dosimeters (DTL 937) placed into plastic capsules and packed in specific kits for each intended application were mailed to the participant centers. Results: the results of the intercomparisons performed between 'Laboratorio de Ciencias Radiologicas da Universidade do Estado do Rio de Janeiro' and EQUAL-ESTRO for the beam of 60Co gamma rays, expressed for (1σ), and the results of the dose absorbed measurements obtained with the chambers of the Program EQUAL and the chambers of the Dosimetry Quality Assurance Program were lower than 0.5%. Conclusion: based on these results we concluded that the Dosimetry Quality Assurance Program reached the desired level of reliability to allow its implementation. (author)

  12. Concentration activities of natural radionuclides in three fish species in Brazilian coast and their contributions to the absorbed doses

    Activity concentrations of U-238, Ra-226, Pb-210, Th-232 e Ra-228 were analysed in three fish species at the Brasilian Coast. The fish 'Cubera snapper' (Lutjanus cyanopterus, Cuvier, 1828), in the region of Ceara and 'Whitemouth croaker' (Micropogonias furnieri, Desmarest, 1823) and 'Lebranche mullet' (Mugil liza, Valenciennes, 1836) in the region of Rio de Janeiro. These concentrations were transformed in absorbed dose rate using a dose conversion factor in unit of gray per year (μGy y-1), per becquerel per kilogram (Bq kg-1). Only the absorbed dose due to intake of radionuclides was examined, and the contributions due to radionuclides present in water and sediment were disregarded. The radionuclides were considered to be uniformly distributed in the fish body. The limit of the dose rate used, proposed by the Department of Energy of the USA, is equal to 3.65 1003 mGy y-1. The average dose rate due to the studied radionuclides is equal to 6.09 1000 μGy y-1, a value minor than 0.1% than the limits indicated by DOE, and quite similar to that found in the literature for 'benthic' fish. The most important radionuclides were the alpha emitters Ra-226 having 61 % of absorbed dose rate. U-238 and Th-232, each contributes with approximately 20 % of the absorbed dose rate. These three radionuclides are responsible for almost 100% of the dose rate received by the studied organisms. The beta emitters Ra-228 and Pb-210 account for approximately 1 % of the absorbed dose rate. (author)

  13. Absorbed dose in ion beams: comparison of ionisation- and fluence-based measurements

    A direct comparison measurement of fluorescent nuclear track detectors (FNTDs) and a thimble ionisation chamber is presented. Irradiations were performed using monoenergetic protons (142.66 MeV, φ=3x106 cm-2) and carbon ions (270.55 MeV u-1, φ=3x106 cm-2). It was found that absorbed dose to water values as determined by fluence measurements using FNTDs are, in case of protons, in good agreement (2.4 %) with ionisation chamber measurements, if slower protons and Helium secondaries were accounted for by an effective stopping power. For carbon, however, a significant discrepancy of 4.5 % was seen, which could not be explained by fragmentation, uncertainties or experimental design. The results rather suggest a W-value of 32.10 eV±2.6 %. Additionally, the abundance of secondary protons expected from Monte-Carlo transport simulation was not observed. FNTDs are able to yield correct dose estimation for protons. The assumption of a monoenergetic beam, even in the entrance channel, is invalid since slower protons and secondaries contribute significantly and an effective stopping power has to be employed. These corrections account for the discrepancies seen in the authors' previous experiments. Since the FNTD fluorescent track amplitude depends on the particle species and energy, the effective stopping power might be estimated from the intensity histogram of the particle tracks. For carbon ions, however, secondary particles did not fully account for the discrepancies found. Considering the detection efficiency of FNTD technology, it seems unlikely that a significant portion of tracks were not registered. This might stimulate discussions on the accuracy of the kQ,Q0 factor for carbon beams. Since the stopping power in this energy range is known quite accurately (1-2 %), one might question the currently used constant Wair value of 34.50 ± 0.52 eV (1.5 %)(14). The presented findings would imply a Wair value of 32.10±0.83 eV (2.6 %). This uncertainty includes all

  14. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of {sup 166}Ho Microspheres in Liver Radioembolization

    Seevinck, Peter R., E-mail: p.seevinck@umcutrecht.nl [Image Sciences Institute, University Medical Center Utrecht, Utrecht (Netherlands); Maat, Gerrit H. van de [Image Sciences Institute, University Medical Center Utrecht, Utrecht (Netherlands); Wit, Tim C. de [Department of Nuclear Medicine, Amsterdam Medical Centre, Amsterdam (Netherlands); Vente, Maarten A.D.; Nijsen, Johannes F.W. [Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht (Netherlands); Bakker, Chris J.G. [Image Sciences Institute, University Medical Center Utrecht, Utrecht (Netherlands); Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht (Netherlands)

    2012-07-01

    Purpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional {sup 166}Ho activity distribution to estimate radiation-absorbed dose distributions in {sup 166}Ho-loaded poly (L-lactic acid) microsphere ({sup 166}Ho-PLLA-MS) liver radioembolization. Methods and Materials: MRI, computed tomography (CT), and single photon emission CT (SPECT) experiments were conducted on an anthropomorphic gel phantom with tumor-simulating gel samples and on an excised human tumor-bearing liver, both containing known amounts of {sup 166}Ho-PLLA-MS. Three-dimensional radiation-absorbed dose distributions were estimated at the voxel level by convolving the {sup 166}Ho activity distribution, derived from quantitative MRI data, with a {sup 166}Ho dose point-kernel generated by MCNP (Monte Carlo N-Particle transport code) and from Medical Internal Radiation Dose Pamphlet 17. MRI-based radiation-absorbed dose distributions were qualitatively compared with CT and autoradiography images and quantitatively compared with SPECT-based dose distributions. Both MRI- and SPECT-based activity estimations were validated against dose calibrator measurements. Results: Evaluation on an anthropomorphic phantom showed that MRI enables accurate assessment of local {sup 166}Ho-PLLA-MS mass and activity distributions, as supported by a regression coefficient of 1.05 and a correlation coefficient of 0.99, relating local MRI-based mass and activity calculations to reference values obtained with a dose calibrator. Estimated MRI-based radiation-absorbed dose distributions of {sup 166}Ho-PLLA-MS in an ex vivo human liver visually showed high correspondence to SPECT-based radiation-absorbed dose distributions. Quantitative analysis revealed that the differences in local and total amounts of {sup 166}Ho-PLLA-MS estimated by MRI, SPECT, and the dose calibrator were within 10%. Excellent agreement was observed between MRI- and SPECT-based dose

  15. Absorbed dose measurements using TLDS in biological samples from beta radiation

    José Eduardo Manzoli

    2006-01-01

    Full Text Available Irradiation of samples in peculiar experimental apparatus, subject to radiation spread, requires a special evaluation of absorbed dose implanted to the sample. Indirect calibration of the irradiation source, obtained in a different apparatus, and the spread, usually of very difficult theoretical evaluation, can cause very serious measurement errors, sometimes reaching 50%. In this work, the procedure for dose evaluation in an apparatus for beta irradiation of samples, usually biological ones,is presented, making use of calibration curves, obtained by irradiation in advance of thermoluminescent detectors in air, and so irradiating them in the same position of the sample. An application in blood sample irradiation is also presented.A irradiação de amostras em arranjos experimentais peculiares sujeitos a espalhamento necessita de uma determinação própria da dose absorvida que a amostra irá receber. A calibração indireta da fonte de irradiação, que ocorre em arranjo diferente, e o espalhamento, geralmente de difícil estimativa teórica, podem causar erros de medição muito elevados, não raro atingindo 50%. Neste trabalho é apresentado o procedimento para determinação da dose absorvida em um arranjo para irradiação beta de amostras, normalmente biológicas, utilizando curvas de calibração obtidas pela irradiação de dosímetros termoluminescentes no ar, e os irradiando na mesma posição das amostras. É apresentado um exemplo de aplicação para amostra irradiada de sangue.

  16. Magnetic Resonance Imaging-Based Radiation-Absorbed Dose Estimation of 166Ho Microspheres in Liver Radioembolization

    Purpose: To investigate the potential of magnetic resonance imaging (MRI) for accurate assessment of the three-dimensional 166Ho activity distribution to estimate radiation-absorbed dose distributions in 166Ho-loaded poly (L-lactic acid) microsphere (166Ho-PLLA-MS) liver radioembolization. Methods and Materials: MRI, computed tomography (CT), and single photon emission CT (SPECT) experiments were conducted on an anthropomorphic gel phantom with tumor-simulating gel samples and on an excised human tumor-bearing liver, both containing known amounts of 166Ho-PLLA-MS. Three-dimensional radiation-absorbed dose distributions were estimated at the voxel level by convolving the 166Ho activity distribution, derived from quantitative MRI data, with a 166Ho dose point-kernel generated by MCNP (Monte Carlo N-Particle transport code) and from Medical Internal Radiation Dose Pamphlet 17. MRI-based radiation-absorbed dose distributions were qualitatively compared with CT and autoradiography images and quantitatively compared with SPECT-based dose distributions. Both MRI- and SPECT-based activity estimations were validated against dose calibrator measurements. Results: Evaluation on an anthropomorphic phantom showed that MRI enables accurate assessment of local 166Ho-PLLA-MS mass and activity distributions, as supported by a regression coefficient of 1.05 and a correlation coefficient of 0.99, relating local MRI-based mass and activity calculations to reference values obtained with a dose calibrator. Estimated MRI-based radiation-absorbed dose distributions of 166Ho-PLLA-MS in an ex vivo human liver visually showed high correspondence to SPECT-based radiation-absorbed dose distributions. Quantitative analysis revealed that the differences in local and total amounts of 166Ho-PLLA-MS estimated by MRI, SPECT, and the dose calibrator were within 10%. Excellent agreement was observed between MRI- and SPECT-based dose–volume histograms. Conclusions: Quantitative MRI was demonstrated

  17. The analyses of the absorbed dose by the red marrow brain of wild hunting hoofed animals from incorporated 90Sr

    After research work has been valued the absorbed dose by the red marrow brain of wild hunting hoofed animals on the territory with different level of radioactive pollution was shown that the absorbed annual doses of incorporated Sr 90 by the red marrow brain on the territory of eviction and alienation zones formed for wild boar 19,5-28,3 mGy/year, roe deer european 8,0-24,2 mGy/year, and for elk 16,1-55,0 mGy/year. The absorber doses by the red marrow brain of wild hunting hoofed taken in the control regions fluctuated from 0,6 mGy/year roe deer european to 1,4 mGy/year wild boar. (authors)

  18. Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber

    We measured and assessed ways to reduce the secondary neutron dose from a system for proton eye treatment. Proton beams of 60.30 MeV were delivered through an eye-treatment snout in passive scattering mode. Allyl diglycol carbonate (CR-39) etch detectors were used to measure the neutron dose in the external field at 0.00, 1.64, and 6.00 cm depths in a water phantom. Secondary neutron doses were measured and compared between those with and without a high-hydrogen–boron-containing block. In addition, the neutron energy and vertices distribution were obtained by using a Geant4 Monte Carlo simulation. The ratio of the maximum neutron dose equivalent to the proton absorbed dose (H(10)/D) at 2.00 cm from the beam field edge was 8.79 ± 1.28 mSv/Gy. The ratio of the neutron dose equivalent to the proton absorbed dose with and without a high hydrogen-boron containing block was 0.63 ± 0.06 to 1.15 ± 0.13 mSv/Gy at 2.00 cm from the edge of the field at depths of 0.00, 1.64, and 6.00 cm. We found that the out-of-field secondary neutron dose in proton eye treatment with an eye snout is relatively small, and it can be further reduced by installing a borated neutron absorbing material

  19. Study of natural radionuclide and absorbed gamma dose in Ukhimath area of Garhwal Himalaya, India.

    Rautela, B S; Yadav, M; Bourai, A A; Joshi, V; Gusain, G S; Ramola, R C

    2012-11-01

    Natural radiation is the largest contributor to the collective radiation dose of the world population. It is widely distributed in different geological formations such as soil, rocks, air and groundwater. In the present investigation, (226)Ra, (232)Th and (40)K were measured in soil samples of the Ukhimath region of Garhwal Himalaya, India using NaI(Tl) gamma-ray spectrometry. The activity concentrations of naturally occurring radionuclides (226)Ra, (232)Th and (40)K were found to vary from 38.4 ± 6.1 to 141.7 ± 11.9 Bq kg(-1) with an average of 80.5 Bq kg(-1), 57.0 ± 7.5 to 155.9 ± 12.4 Bq kg(-1) with an average of 118.9 Bq kg(-1) and 9.0 ± 3.0 to 672.8 ± 25.9 Bq kg(-1) with an average of 341 Bq kg(-1), respectively. The total absorbed gamma dose rate varies from 70.4 to 169.1 nGy h(-1) with an average of 123.4 nGy h(-1). This study is important to generate a baseline data of radiation exposure in the area. Health hazard effects due to natural radiation exposure are discussed in details. PMID:22908360

  20. Influence of high absorbed irradiation doses on conversion of CO2-H2S mixtures

    It was investigated the CO2-H2S mixture radiolysis at large absorbed irradiation doses. The observed high yield of final products in this system (Gpr.≥10.0) gives the possibility to consider the radiolytic hydrogen sulphide decomposition as one of the variants of purification of hydrogen sulphide containing residues of natural gas with a simultaneous production of sulphur and synthesis-gas (CO2). It has been show that at dose MGy∼16 % of initial product convert into synthesis-gas and sulfur. The mechanism of radiolytic conversion is discussed and the observed yield of hydrogen made G0(H2)=11.0±0.8 that considerably excesses G0(H2) at radiolysis of pure H2S(G0(H2)=7.5±0.5). Accumulation of carbon monoxide is described with 5 % accuracy with parabola of the second order: [CO] (-0.00082+0.359D-0.0013D2)·1019 mol/cm3 the initial yield of CO production for the given mixture is equal 3.59 which is G0(CO) = 4.5 in recalculation upon pure carbon dioxide. It has been established that the radiolytic reprocessing of acidic components of natural gas (CO2, H2S) gives the possibility to product sulphur and synthesis gas with yield to 30 vol.% (D=10 MGy), and the opportunity of simultaneous decision of ecological problems

  1. Dependence of TLD thermoluminescence yield on absorbed dose in a thermal neutron field.

    Gambarini, G; Roy, M S

    1997-01-01

    The emission from 6LiF and 7LiF thermoluminescence dosimeters (TLDs) exposed to the mixed field of thermal neutrons and gamma-rays of the thermal facility of a TRIGA MARK II nuclear reactor has been investigated for various thermal neutron fluences of the order of magnitude of those utilised in radiotherapy, with the purpose of investigating the reliability of TLD readouts in such radiation fields and of giving some information for better obtainment of the absorbed dose values. The emission after exposure in this mixed field is compared with the emission after gamma-rays only. The glow curves have been deconvoluted into gaussian peaks, and the differences in the characteristics of the peaks observed for the two radiation fields, having different linear energy transfers, and for different doses are shown. Irreversible radiation damage in dosimeters having high sensitivity to thermal neutrons is also reported, showing a memory effect of the previous thermal neutron irradiation history which is not restored by anneal treatment. PMID:9463872

  2. Study of natural radionuclide and absorbed gamma dose in Ukhimath area of Garhwal Himalaya (India))

    Natural radiation is the largest contributor to the collective radiation dose of the world population. It is widely distributed in different geological formations such as soil, rocks, air and groundwater. In the present investigation, 226Ra, 232Th and 40K were measured in soil samples of the Ukhimath region of Garhwal Himalaya (India)) using NaI(Tl) gamma-ray spectrometry. The activity concentrations of naturally occurring radionuclides 226Ra, 232Th and 40K were found to vary from 38.4±6.1 to 141.7±11.9 Bq kg-1 with an average of 80.5 Bq kg-1, 57.0±7.5 to 155.9±12.4 Bq kg-1 with an average of 118.9 Bq kg-1 and 9.0±3.0 to 672.8±25.9 Bq kg-1 with an average of 341 Bq kg-1, respectively. The total absorbed gamma dose rate varies from 70.4 to 169.1 nGy h-1 with an average of 123.4 nGy h-1. This study is important to generate a baseline data of radiation exposure in the area. Health hazard effects due to natural radiation exposure are discussed in details. (authors)

  3. Boundary Electron and Beta Dosimetry-Quantification of the Effects of Dissimilar Media on Absorbed Dose

    Nunes, Josane C.

    1991-02-01

    This work quantifies the changes effected in electron absorbed dose to a soft-tissue equivalent medium when part of this medium is replaced by a material that is not soft -tissue equivalent. That is, heterogeneous dosimetry is addressed. Radionuclides which emit beta particles are the electron sources of primary interest. They are used in brachytherapy and in nuclear medicine: for example, beta -ray applicators made with strontium-90 are employed in certain ophthalmic treatments and iodine-131 is used to test thyroid function. More recent medical procedures under development and which involve beta radionuclides include radioimmunotherapy and radiation synovectomy; the first is a cancer modality and the second deals with the treatment of rheumatoid arthritis. In addition, the possibility of skin surface contamination exists whenever there is handling of radioactive material. Determination of absorbed doses in the examples of the preceding paragraph requires considering boundaries of interfaces. Whilst the Monte Carlo method can be applied to boundary calculations, for routine work such as in clinical situations, or in other circumstances where doses need to be determined quickly, analytical dosimetry would be invaluable. Unfortunately, few analytical methods for boundary beta dosimetry exist. Furthermore, the accuracy of results from both Monte Carlo and analytical methods has to be assessed. Although restricted to one radionuclide, phosphorus -32, the experimental data obtained in this work serve several purposes, one of which is to provide standards against which calculated results can be tested. The experimental data also contribute to the relatively sparse set of published boundary dosimetry data. At the same time, they may be useful in developing analytical boundary dosimetry methodology. The first application of the experimental data is demonstrated. Results from two Monte Carlo codes and two analytical methods, which were developed elsewhere, are compared

  4. Long-term stability of liquid ionization chambers with regard to their qualification as local reference dosimeters for low dose-rate absorbed dose measurements in water

    The long-term sensitivity and calibration stability of liquid ionization chambers (LICs) has been studied at a local and a secondary standards dosimetry laboratory over a period of 3 years. The chambers were transported several times by mail between the two laboratories for measurements. The LICs used in this work are designed for absorbed dose measurements in the dose rate region of 0.1-100 mGy min-1 and have a liquid layer thickness of 1 mm and a sensitive volume of 16.2 mm3. The liquids used as sensitive media in the chambers are mixtures of isooctane (C8H18) and tetramethylsilane (Si(CH3)4) in different proportions (about 2 to 1). Operating at a polarizing voltage of 300 V the leakage current of the chambers was stable and never exceeded 3% of the observable current at a dose rate of about 1 mGy min-1. The volume sensitivity of the chambers was measured to be of the order of 10-9 C Gy-1 mm-3. No systematic changes in the absorbed dose to water calibration was observed for any of the chambers during the test period (σ<0.2%). Variations in chamber dose response with small changes in the polarizing voltage as well as sensitivity changes with accumulated absorbed dose were also investigated. Measurements showed that the LIC response varies by 0.15% per 1% change in applied voltage around 300 V. No significant change could be observed in the LIC sensitivity after a single absorbed dose of 15 kGy. The results indicate that the LIC can be made to serve as a calibration transfer instrument and a reference detector for absorbed dose to water determinations providing good precision and long-term reproducibility. (author)

  5. Decomposition of the absorbed dose by LET in tissue-equivalent materials within the SHIELD-HIT transport code

    Sobolevsky, N; Buyukcizmeci, N; Ergun, A; Latysheva, L; Ogul, R

    2015-01-01

    The SHIELD-HIT transport code, in several versions, has been used for modeling the interaction of therapeutic beams of light nuclei with tissue-equivalent materials for a long time. All versions of the code include useful option of decomposition of the absorbed dose by the linear energy transfer (LET), but this option has not been described and published so far. In this work the procedure of decomposition of the absorbed dose by LET is described and illustrated by using the decomposition of the Bragg curve in water phantom, irradiated by beams of protons, alpha particles, and of ions lithium, carbon and oxygen.

  6. Comparison of the standards of absorbed dose to water of the METAS and the BIPM for 60Co gamma radiation

    A comparison of the standards of absorbed dose to water of the Swiss Federal Office of Metrology and Accreditation (METAS), Switzerland and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation. The results show that the METAS and the BIPM standards for absorbed dose to water are in agreement, yielding a comparison result of 1.0001 for the mean ratio of the calibration coefficients for the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0054). (authors)

  7. Absorbed dose calibration factors for parallel-plate chambers in high energy photon beams

    An investigation was carried out into the performance of parallel-plate chambers in 60Co and MV photon beams. The aim was to derive calibration factors, investigate chamber-to-chamber variability and provide much-needed information on the use of parallel-plate chambers in high-energy X-ray beams. A set of NE2561/NE2611 reference chambers, calibrated against the primary standard graphite calorimeter is used for the dissemination of absorbed dose to water. The parallel-plate chambers were calibrated by comparison with the NPL reference chambers in a water phantom. Two types of parallel-plate chamber were investigated - the NACP -02 and Roos and measurements were made at 60C0 and 6 linac photon energies (6-19 MV). Calibration factors were derived together with polarity corrections. The standard uncertainty in the calibration of a chamber in terms of absorbed dose to water is estimated to be ±0.75%. The results of the polarity measurements were somewhat confusing. One would expect the correction to be small and previous measurements in electron beams have indicated that there is little variation between chambers of these types. However, some chambers gave unexpectedly large polarity corrections, up to 0.8%. By contrast the measured polarity correction for a NE2611 chamber was less than 0.13% at all energies. The reason for these large polarity corrections is not clear, but experimental error and linac variations have been ruled out. By combining the calibration data for the different chambers it was possible to obtain experimental kQ factors for the two chamber types. It would appear from the data that the variations between chambers of the same type are random and one can therefore define a generic curve for each chamber type. These are presented in Figure 1, together with equivalent data for two cylindrical chamber types - NE2561/NE2611 and NE2571. As can be seen, there is a clear difference between the curves for the cylindrical chambers and those for the parallel

  8. Identification and absorbed dose determination in irradiated kiwi by electron paramagnetic resonance; Identificacao e medida de dose absorvida em kiwi irradiado utilizando ressonancia paramagnetica eletronica

    Jesus, Edgar F.O. de; Lopes, Ricardo T. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Rossi, Alexandre M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1997-12-01

    A methodology for identification and absorbed dose determination in irradiated Kiwi with doses between 200 and 1000 Gy is present. Measurement are performed by Electron Paramagetic Resonance (ESR) in the flesh of the fruit after alcohol extration that removes water and soluble substances. The signal used is the radial produced in cellulose by radiation that shows to be stable during the usefull life of the fruit and that is not present in non-irradiated samples. Reference samples are not necessary to dose determination and the results shows that 85% of the calculated values are found to be within {+-} 15% of the applied initial dose. (author). 9 refs., 5 figs., 2 tabs.

  9. Study of the influence of gold particles on the absorbed dose in soft tissue using polymer gel dosimetry

    The presence of high-Z material adjacent to soft tissue, when submitted to irradiation, enhances locally the absorbed dose in these soft tissues. Such effect occurs due to the outscattering of photoelectrons from the high-Z material. Polymer gel dosimeters have been used to investigate this effect. Analytic calculations to estimate the dose enhancement and Monte Carlo simulations have been performed. Samples containing polymer gel (PG) with 0.005 gAu/gPG and pure polymer gel have been irradiated using an X-rays beam produced by 150 kV, filtered with 4 mm Al and 5 mm Cu, which resulted in an approximately 20% higher absorbed dose in the samples with gold in comparison to those with pure polymer gel. The analytic calculations and the Monte Carlo simulation resulted in a dose enhancement factor of approximately 30%. (author)

  10. The provision of national standards of absorbed dose for radiation processing. The role of NPL in the United Kingdom

    The system of national and international standardization is examined, particularly with respect to the problems of standardizing high absorbed dose measurements required in processing with photons from cobalt-60 and electrons. The need for development of primary standards specifically dedicated to this application versus the possibility of extrapolation from standards in use at lower dose levels is considered together with means for dissemination and intercomparison. The present status of standards at NPL and the future programme are outlined. (author)

  11. Evaluation of absorbed dose rate and annual effective dose equivalent due to terrestrial gamma radiation in rocks in a part of Southwestern Nigeria

    The average outdoor absorbed dose rate in air and the average annual effective dose equivalent due to terrestrial gamma radiation from 40K, 238U and 232Th in rocks in Ondo and Ekiti States, Southwestern Nigeria have been evaluated from measurements of the concentrations of these radionuclides in this environmental material. The concentration measurements were obtained using a very sensitive gamma spectroscopic system consisting of a 7.6x7.6 cm NaI(Tl) scintillation detector coupled to a computerised ACCUSPEC installation. The average absorbed dose rate and average annual effective dose equivalent was found to be 8.33±2.76 nGy.h-1 and 8.7±2.9 μSv.y-1 respectively. (author)

  12. Evaluation of absorbed dose rate and annual effective dose equivalent due to terrestrial gamma radiation in rocks in a part of Southwestern Nigeria

    Ajayi, O.S

    2002-07-01

    The average outdoor absorbed dose rate in air and the average annual effective dose equivalent due to terrestrial gamma radiation from {sup 40}K, {sup 238}U and {sup 232}Th in rocks in Ondo and Ekiti States, Southwestern Nigeria have been evaluated from measurements of the concentrations of these radionuclides in this environmental material. The concentration measurements were obtained using a very sensitive gamma spectroscopic system consisting of a 7.6x7.6 cm NaI(Tl) scintillation detector coupled to a computerised ACCUSPEC installation. The average absorbed dose rate and average annual effective dose equivalent was found to be 8.33{+-}2.76 nGy.h{sup -1} and 8.7{+-}2.9 {mu}Sv.y{sup -1} respectively. (author)

  13. Preclinical Studies of 68Ga-DOTATOC: Biodistribution Assessment in Syrian Rats and Evaluation of Absorbed Dose in Human Organs

    mojdeh naderi

    2016-01-01

    Full Text Available Objective(s: Gallium-68 DOTA-DPhe1-Tyr3-Octreotide (68Ga-DOTATOC has been applied by several European centers for the treatment of a variety of human malignancies. Nevertheless, definitive dosimetric data are yet unavailable. According to the Society of Nuclear Medicine and Molecular Imaging, researchers are investigating the safety and efficacy of this radiotracer to meet Food and Drug Administration requirements. The aim of this study was to introduce the optimized procedure for 68Ga-DOTATOC preparation, using a novel germanium-68 (68Ge/68Ga generator in Iran and evaluate the absorbed doses in numerous organs with high accuracy. Methods: The optimized conditions for preparing the radiolabeled complex were determined via several experiments by changing the ligand concentration, pH, temperature and incubation time. Radiochemical purity of the complex was assessed, using high-performance liquid chromatography and instant thin-layer chromatography. The absorbed dose of human organs was evaluated, based on biodistribution studies on Syrian rats via Radiation Absorbed Dose Assessment Resource Method. Results: 68Ga-DOTATOC was prepared with radiochemical purity of >98% and specific activity of 39.6 MBq/nmol. The complex demonstrated great stability at room temperature and in human serum at 37°C at least two hours after preparation. Significant uptake was observed in somatostatin receptor-positive tissues such as pancreatic and adrenal tissues (12.83 %ID/g and 0.91 %ID/g, respectively. Dose estimations in human organs showed that the pancreas, kidneys and adrenal glands received the maximum absorbed doses (0.105, 0.074 and 0.010 mGy/MBq, respectively. Also, the effective absorbed dose was estimated at 0.026 mSv/MBq for 68Ga-DOTATOC. Conclusion: The obtained results showed that 68Ga-DOTATOC can be considered as an effective agent for clinical PET imaging in Iran.

  14. Simulation of absorbed dose rate due to synchrotron radiation and shielding thickness for radiation safety at Indus-2 using FLUKA

    Indus-2 is a 2.5 GeV electron synchrotron radiation source at Raja Ramanna Centre for Advanced Technology (RRCAT), India. 26 synchrotron radiation (SR) beam lines are planned in Indus-2 for various research applications, of several are in operation and many are in installation stage. For experiments SR beam is brought in air. Due to intense flux of SR and low energy, the dose rate in the direct beam is high and there is a potential for radiation exposure. Appropriate shielding hutches are needed to house the beamlines and protect the workers from the radiation hazard. Simulations were carried out using computer code FLUKA to find out the absorbed dose in water due to SR and required shielding thickness in the forward direction to reduce dose within acceptable limits. SR spectrum from Indus-2 in the range 4-100 keV was used for simulating the absorbed dose and shielding thickness. It was found that the absorbed dose rate is of the order of 105 Gy/h for the design parameters of Indus-2 (2.5 GeV and 300 mA). Forward shielding thickness of 3 mm lead was found to be sufficient to reduce the dose rate to acceptable level for continuously occupied area (<1μSv/h). The details of the simulation and results are presented in the paper. (author)

  15. Radiation-absorbed doses and energy imparted from panoramic tomography, cephalometric radiography, and occlusal film radiography in children

    The absorbed doses and energy imparted from radiographic examinations of children, using panoramic tomography (PTG), cephalometric radiography (CPR), and maxillary frontal occlusal overview (FOO), were examined. The absorbed dose at various sites of the head were measured with TL dosimeters in a phantom and in patients. The energy imparted was calculated from measurements of areal exposure using a planparallel ionization chamber. The maximum absorbed doses for panoramic tomography were located around the lateral rotation center, for cephalometric radiography in the left (tube side) parotid region, and for frontal occlusal radiography in the nose. The absorbed doses in the eyes, thyroid gland, and skin are discussed and compared with previous reports and, for the most part, are found to be in agreement. The mean energy imparted from all three examination methods is 5 mJ with about 57 percent from panoramic, 33 percent from cephalometric, and 10 percent from frontal occlusal examinations. The energy imparted from cephalometric radiography can be reduced to about 10 percent with the use of an improved examination technique, leaving panoramic tomography responsible for contributing about 80 percent of the total energy imparted

  16. On the implementation of new versions of the algorithms of calculation of dose absorbed in radiotherapy external

    The changes of version of the algorithms of calculation of dose absorbed in radiotherapy external should implement in a time reduced due to the pressure care. A set reduced of checks could pass by high discrepancies significant between the stones and the measures experimental, as illustrate in this work. (Author)

  17. Estimated human absorbed dose of 177Lu–BPAMD based on mice data: Comparison with 177Lu–EDTMP

    In this work, the absorbed dose of human organs for 177Lu–BPAMD was evaluated based on biodistribution studies into the Syrian mice by RADAR method and was compared with 177Lu–EDTMP as the only clinically used Lu-177 bone-seeking agent. The highest absorbed dose for both 177Lu–BPAMD and 177Lu–EDTMP is observed on the bone surface with 8.007 and 4.802 mSv/MBq. Generally, 177Lu–BPAMD has considerable characteristics compared with 177Lu–EDTMP and can be considered as a promising agent for the bone pain palliation therapy. - Highlights: • 177Lu–BPAMD complex was prepared in high radiochemical purity (>93%, ITLC). • The highest absorbed dose for 177Lu–BPAMD is observed in the bone (8.007 mSv/MBq). • All tissues receive insignificant absorbed dose in comparison with bone tissue. • 177Lu–BPAMD has considerable characteristics compared to 177Lu–EDTMP. • 177Lu–BPAMD can be considered as a promising agent for bone pain palliation therapy

  18. Absorbed dose distribution patterns in the beagle thorax after inhalation of 90Sr--90Y fused clay particles. II

    This experiment was designed to examine absorbed dose patterns in the Beagle dog thorax after inhalation of polydisperse fused montmorillonite clay particles labeled with 90Sr-90Y. Sixteen dogs were exposed nose-only to achieve initial lung burdens of 91 to 200 μCi. Dogs are being serially sacrificed and photographic data and autoradiographic data produced for a series of parallel planes approximately 1 cm apart through the thorax. Data analysis will include definition of absorbed dose patterns in the Beagle thorax at 8 days, 64 days, 1 year, 2 years, and 3 years post-exposure. To date, 8-day, 64-day, and 1-year animals have been sacrificed and partially analyzed. The result of this experiment will be a better understanding of deposition and absorbed dose patterns and allow a better correlation between absorbed dose and biological response for Beagle dogs exposed to relatively insoluble aerosols contaminated by energetic beta-emitting radionuclides. In addition, results will allow quantitating anomalies in deposition patterns, such as the striated pattern near ribs previously observed in this laboratory. (U.S.)

  19. ESR Evaluation of stable free radicals produced by ionizing radiation in multifunctional substances. Application for absorbed dose measurements in radiotherapy

    Electron Spin Resonance dosimetry is a useful system for measuring absorbed dose in radiotherapy. This work describes the results obtained at the University of Palermo regarding an experimental study aimed to optimize the properties of alanine based dosimeters and to analyze other materials, that could be alternatives to alanine

  20. Verification of absorbed dose rates in reference beta radiation fields: measurements with an extrapolation chamber and radiochromic film

    Reynaldo, S. R. [Development Centre of Nuclear Technology, Posgraduate Course in Science and Technology of Radiations, Minerals and Materials / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil); Benavente C, J. A.; Da Silva, T. A., E-mail: sirr@cdtn.br [Development Centre of Nuclear Technology / CNEN, Av. Pte. Antonio Carlos 6627, 31270-901 Belo Horizonte, Minas Gerais (Brazil)

    2015-10-15

    Beta Secondary Standard 2 (Bss 2) provides beta radiation fields with certified values of absorbed dose to tissue and the derived operational radiation protection quantities. As part of the quality assurance, metrology laboratories are required to verify the reliability of the Bss-2 system by performing additional verification measurements. In the CDTN Calibration Laboratory, the absorbed dose rates and their angular variation in the {sup 90}Sr/{sup 90}Y and {sup 85}Kr beta radiation fields were studied. Measurements were done with a 23392 model PTW extrapolation chamber and with Gafchromic radiochromic films on a PMMA slab phantom. In comparison to the certificate values provided by the Bss-2, absorbed dose rates measured with the extrapolation chamber differed from -1.4 to 2.9% for the {sup 90}Sr/{sup 90}Y and -0.3% for the {sup 85}Kr fields; their angular variation showed differences lower than 2% for incidence angles up to 40-degrees and it reached 11% for higher angles, when compared to ISO values. Measurements with the radiochromic film showed an asymmetry of the radiation field that is caused by a misalignment. Differences between the angular variations of absorbed dose rates determined by both dosimetry systems suggested that some correction factors for the extrapolation chamber that were not considered should be determined. (Author)

  1. Absorbed Dose in Ion Beams: Comparison of Ionization and Fluence-based Measurements

    Osinga, Julia-Maria; Bartz, James A; Akselrod, Mark S; Jäkel, Oliver; Greilich, Steffen

    2013-01-01

    We present a direct comparison measurement of fluorescent nuclear track detectors (FNTDs) and a thimble ionization chamber. Irradiations were performed at the Heidelberg Ion-Beam Therapy Center (HIT) using monoenergetic protons (142.66 MeV, 3x10^6 1/cm2) and carbon ions (270.55 MeV/u, 3x10^6 1/cm2) in the entrance channel of the ion beam. We found that absorbed dose to water values as determined by fluence measurements using FNTDs are in case of protons in good agreement (2.2 %) with ionization chamber measurements when including slower protons and Helium secondaries by an effective stopping power. For carbon, however, we found a discrepancy of 4.6 %. This deviation is significant considering both the uncertainties for ionization chambers as given in the TRS 398 and from experimental design (e.g. inhomogeneous irradiation, machine stability, beam direction). Additionally, the abundance of secondary protons expected from Monte-Carlo transport simulation was not seen.

  2. Gamma-Absorbed Dose Rate and Distribution of Natural Radionuclides in Songkhla Beach Sands

    Full text: Specific activities and distribution of natural radionuclide γ-ray activities, produced by 40K, 226Ra and 232Th, were determined in 80 sand samples collected along Chalatat and Samila beaches in Songkhla province. The derivation of 40K, 226Ra and 232Th gamma-ray specific activities of sand samples was performed using the high-purity germanium (HPGe) detector, gamma spectroscopy analysis system and the Eu-152 radioactive standard source at the Office of Atoms for Peace (OAP) laboratory. The beach sand specific activity ranges from 89 to 963 Bq/kg for 40K, 0 to 120 Bq/kg for 226Ra and 0 to 319 Bq/kg for 232Th with mean values of 248 ± 44 Bq/kg, 41 ± 5 Bq/kg and 64 ± 7 Bq/kg, respectively. The specific activities of these radionuclides were compared with some global radioactivity measurements and evaluations. Moreover, gamma to absorbed dose rates and radium equivalent activities were calculated for the analyzed samples to assess the radiation hazards arising. All the beach sand samples had the mean value of radium equivalent activities lower than 370 Bq/kg, which is the limit set by OECD

  3. Absorbed dose evaluation based on a computational voxel model incorporating distinct cerebral structures

    Brandao, Samia de Freitas; Trindade, Bruno; Campos, Tarcisio P.R. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)]. E-mail: samiabrandao@gmail.com; bmtrindade@yahoo.com; campos@nuclear.ufmg.br

    2007-07-01

    Brain tumors are quite difficult to treat due to the collateral radiation damages produced on the patients. Despite of the improvements in the therapeutics protocols for this kind of tumor, involving surgery and radiotherapy, the failure rate is still extremely high. This fact occurs because tumors can not often be totally removed by surgery since it may produce some type of deficit in the cerebral functions. Radiotherapy is applied after the surgery, and both are palliative treatments. During radiotherapy the brain does not absorb the radiation dose in homogeneous way, because the various density and chemical composition of tissues involved. With the intention of evaluating better the harmful effects caused by radiotherapy it was developed an elaborated cerebral voxel model to be used in computational simulation of the irradiation protocols of brain tumors. This paper presents some structures function of the central nervous system and a detailed cerebral voxel model, created in the SISCODES program, considering meninges, cortex, gray matter, white matter, corpus callosum, limbic system, ventricles, hypophysis, cerebellum, brain stem and spinal cord. The irradiation protocol simulation was running in the MCNP5 code. The model was irradiated with photons beam whose spectrum simulates a linear accelerator of 6 MV. The dosimetric results were exported to SISCODES, which generated the isodose curves for the protocol. The percentage isodose curves in the brain are present in this paper. (author)

  4. Calculation of absorbed glandular dose using a Fortran program based on Monte Carlo X-ray spectra in mammography

    Average glandular dose calculation in mammography with Mo-Rh target-filter and dose calculation for different situations is accurate and fast. Material and Methods: In this research, first of all, x-ray spectra of a Mo target bombarded by a 28 keV electron beam with and without a Rh filter were calculated using the MCNP code. Then, we used the Sobol-Wu parameters to write a FORTRAN code to calculate average glandular dose. Results: Average glandular dose variation was calculated against the voltage of the mammographic x-ray tube for d = 5 cm, HVL= 0.35 mm Al, and different value of g. Also, the results related to average glandular absorbed dose variation per unit roentgen radiation against the glandular fraction of breast tissue for kV = 28 and HVL = 0.400 mmAl and different values of d are presented. Finally, average glandular dose against d for g = 60% and three values of kV (23, 27,35 kV) with corresponding HVLs have been calculated. Discussion and Conclusion: The absorbed dose computational program is accurate, complete, fast and user friendly. This program can be used for optimization of exposure dose in mammography. Also, the results of this research are in good agreement with the computational results of others.

  5. About some aspects of absorbed and effective ionizing radiation dose computation of population under external and internal radiation influence

    The purpose of the investigation is to develop methods of dose assessment, absorbed by individual human organs, or effective dose of population, as well as to study factors effecting on uncertainties in their computation. The dose assessment for the Thyroid or other organ is based on retrospective information obtained from radioecological monitoring and according to the information about radioactive fallout's on the surface after each nuclear test, as well as the information about concrete living conditions of local population. The main parameter in proposed algorithms is gamma-radiation dose rate at open area, which is a result of direct measurements. When assessing internal radiation dose, in the course of inhalation, the whole period of local fallout's is taken into consideration. The developed method allows obtaining a systematic information describing irradiation of people by means of the radioactive traces, as well as tabulated information for model computations of internal and external radiation dose

  6. Estimation of absorbed doses from paediatric cone-beam CT scans: MOSFET measurements and Monte Carlo simulations.

    Kim, Sangroh; Yoshizumi, Terry T; Toncheva, Greta; Frush, Donald P; Yin, Fang-Fang

    2010-03-01

    The purpose of this study was to establish a dose estimation tool with Monte Carlo (MC) simulations. A 5-y-old paediatric anthropomorphic phantom was computed tomography (CT) scanned to create a voxelised phantom and used as an input for the abdominal cone-beam CT in a BEAMnrc/EGSnrc MC system. An X-ray tube model of the Varian On-Board Imager((R)) was built in the MC system. To validate the model, the absorbed doses at each organ location for standard-dose and low-dose modes were measured in the physical phantom with MOSFET detectors; effective doses were also calculated. In the results, the MC simulations were comparable to the MOSFET measurements. This voxelised phantom approach could produce a more accurate dose estimation than the stylised phantom method. This model can be easily applied to multi-detector CT dosimetry. PMID:19889800

  7. Absorbed dose distributions in patients with bone metastases from hormone refractory prostate cancer treated with Re-186 HEDP

    Full text of publication follows. Aim: intravenous administration of Re-186 hydroxyethylidene-diphosphonate (HEDP) is used for metastatic bone pain palliation in hormone refractory prostate cancer patients. Dosimetry for bone seeking radionuclides is challenging due to the complex structure with osteoblastic, osteolytic and mixed lesions. The aim of this study was to perform image-based patient-specific 3D convolution dosimetry to obtain a distribution of the absorbed doses to each lesion and estimate inter- and intra-patient variations. Materials and methods: 28 patients received a fixed 5 GBq activity of Re-186 HEDP followed by peripheral blood stem cell rescue at 14 days in a phase II trial. A FORTE dual-headed gamma camera was used to acquire sequential Single-Photon-Emission Computed Tomography (SPECT) data of the thorax and pelvis area at 1, 4, 24, 48 and 72 hours following administration. The projection data were reconstructed using filtered-back projection and were corrected for attenuation and scatter. Voxelised cumulated activity distributions were obtained with two different methods. First, the scans were co-registered and the time-activity curves were obtained on a voxel-by-voxel basis. Second, the clearance curve was obtained from the mean number of counts in each individual lesion and used to scale the uptake distribution taken at 24 hours. The calibration factors required for image quantification were obtained from a phantom experiment. An in-house developed EGSnrc Monte Carlo code was used for the calculation of dose voxel kernels for soft-tissue and cortical/trabecular bone used to perform convolution dosimetry. Cumulative dose-volume histograms were produced and mean absorbed doses calculated for each spinal and pelvic lesion. Results: preliminary results show that the lesion mean absorbed doses ranged from 25 to 55 Gy when the medium was soft tissue and decreased by 40% if bone was considered. The use of the cumulated activity distribution

  8. Obtaining the real profile of self-absorbed copper spectral line by regularization method

    Vučeljić, M.; Brajović, S.; Šćepanović, M.; Mijović, S.

    2016-03-01

    Spectroscopic methods, as non-invasive, offer many possibilities to diagnose plasmas in the laboratory and in the space. Spectral line shapes carry information about plasma characteristics and deriving these parameters of line shapes with sufficient accuracy is the primary task in this work. The intrinsic problem in these methods is, the derivation of plasma characteristics from the measured spectrum: a characteristic of plasma plays a role of "cause", and the observed data-"effect". Therefore, to obtain the characteristic from the experimental data is an inverse and ill posed problem from the point of mathematical physics. The spectroscopic studies of the low voltage DC arc, used for excitation of free-burning cuprum-vapor plasmas at atmospheric pressure, were conducted. The true profile of Cu I 324.754 nm, self-absorbed spectral line, was obtained by deconvolution from experimental results by Tikhonov regularization method. Accuracy, reproducibility and limitation of the method were analyzed. Satisfactory results are obtained.

  9. Comparisons of Monte Carlo calculations with absorbed dose determinations in flat materials using high-current, energetic electron beams

    International standards and guidelines for calibrating high-dose dosimetry systems to be used in industrial radiation processing recommend that dose-rate effects on dosimeters be evaluated under conditions of use. This is important when the irradiation relies on high-current electron accelerators, which usually provide very high dose-rates. However, most dosimeter calibration facilities use low-intensity gamma radiation or low-current electron accelerators, which deliver comparatively low dose-rates. Because of issues of thermal conductivity and response, portable calorimeters cannot be practically used with high-current accelerators, where product conveyor speeds under an electron beam can exceed several meters per second and the calorimeter is not suitable for use with product handling systems. As an alternative, Monte Carlo calculations can give theoretical estimates of the absorbed dose in materials with flat or complex configurations such that the results are independent of dose-rate. Monte Carlo results can then be compared to experimental dose determinations to see whether dose-rate effects in the dosimeters are significant. A Monte Carlo code has been used in this study to calculate the absorbed doses in alanine film dosimeters supported by flat sheets of plywood irradiated with electrons using incident energies extending from 1.0 MeV to 10 MeV with beam currents up to 30 mA. The same process conditions have been used for dose determinations with high-current electron beams using low dose-rate gamma calibrated alanine film dosimeters. The close agreement between these calculations and the dosimeter determinations indicates that the response of this type of dosimeter system is independent of the dose-rate, and provides assurance that Monte Carlo calculations can yield results with sufficient accuracy for many industrial applications

  10. Study of dose profile in TC scanning of cranium

    In this paper it was obtained a dose distribution profile in computerized tomography, when a head simulator object, cylindrical and manufactured in PMMA, were swiped by using the clinical protocol or this device routine. The doses were determined with radiochromic films placed at the four cardinal points and the Center, taking as reference one of object faces. The films were calibrated with pencil ionization chamber in a independent experiment where the obtained doses in the chamber, when a unique central cut or the object were obtained, were confronted with the gray scales on the irradiated films in a similar manner, revealing he factors of conversion mGy.Gray tones-1 which made possible the determination of doses in all the scanning

  11. Measurements of X ray absorbed doses to dental patients in two dental X ray units in Nigeria

    Measurements of absorbed doses from radiographic examinations to various anatomical sites in the head and neck of patients with an average age of 45 years using intra-oral dental radiography have been carried out. LiF (TLD-100) dosemeters were used for the measurements of the absorbed dose. The measured absorbed doses to the various anatomical sites in the two units are reported, discussed and compared with results from the literature. Quality control measurements were also performed using a Victoreen quality control test device on the X ray units. The tube voltage accuracies for the two units were found to be within acceptable limits (less than ±10%). On the other hand the exposure time accuracies for these units have large deviations (>20%). These results and those that have been reported in the literature may be an indication that high patient doses are common in most dental X ray centres and countries. As a result of this, regular compliance and performance checks of dental diagnostic X ray equipment are essential in order to ensure proper performance and to minimise unnecessary patient and operator doses. (author)

  12. Measurement of absorbed dose for high energy electron using CaSO4: Tm-PTFE TLD

    In this study, the highly sensitive CaSO4: Tm-PTFE TLDs has been fabricated for the purpose of measurement of high energy electron. CaSO4: Tm phosphor powder was mixed with polytetrafluoroethylene(PTFE) powder and moulded in a disk type(diameter 8.5mm, thickness 90mg/cm2) by cold pressing. The absorbed dose distribution and ranges for high energy electron were measured by using the CaSO4: Tm-PTFE TLDs. The ranges determined were R100=3D14.5mm, R50=3D24.1mm and Rp=3D31.8mm, respectively and the beam flatness, the variation of relative dose in 80% of the field size, was 4.5%. The fabricated CaSO4: Tm-PTFE TLDs may be utilized in radiation dosimetry for personal, absorbed dose and environmental monitoring.=20

  13. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several northern Marshall Islands

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. Current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. External exposures and 137Cs Soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout. 30 refs., 2 figs., 10 tabs

  14. An estimate by two methods of thyroid absorbed doses due to BRAVO fallout in several Northern Marshall Islands.

    Musolino, S V; Greenhouse, N A; Hull, A P

    1997-10-01

    Estimates of the thyroid absorbed doses due to fallout originating from the 1 March 1954 BRAVO thermonuclear test on Bikini Atoll have been made for several inhabited locations in the Northern Marshall Islands. Rongelap, Utirik, Rongerik and Ailinginae Atolls were also inhabited on 1 March 1954, where retrospective thyroid absorbed doses have previously been reconstructed. The current estimates are based primarily on external exposure data, which were recorded shortly after each nuclear test in the Castle Series, and secondarily on soil concentrations of 137Cs in samples collected in 1978 and 1988, along with aerial monitoring done in 1978. The external exposures and 137Cs soil concentrations were representative of the atmospheric transport and deposition patterns of the entire Castle Series tests and show that the BRAVO test was the major contributor to fallout exposure during the Castle series and other test series which were carried out in the Marshall Islands. These data have been used as surrogates for fission product radioiodines and telluriums in order to estimate the range of thyroid absorbed doses that may have occurred throughout the Marshall Islands. Dosimetry based on these two sets of estimates agreed within a factor of 4 at the locations where BRAVO was the dominant contributor to the total exposure and deposition. Both methods indicate that thyroid absorbed doses in the range of 1 Gy (100 rad) may have been incurred in some of the northern locations, whereas the doses at southern locations did not significantly exceed levels comparable to those from worldwide fallout. The results of these estimates indicate that a systematic medical survey for thyroid disease should be conducted, and that a more definitive dose reconstruction should be made for all the populated atolls and islands in the Northern Marshall Islands beyond Rongelap, Utirik, Rongerik and Ailinginae, which were significantly contaminated by BRAVO fallout. PMID:9314227

  15. Characterization of an absorbed dose standard in water through ionometric methods

    In this work the unit of absorbed dose at the Secondary Standard Dosimetry Laboratory (SSDL) of Mexico, is characterized by means of the development of a primary standard of absorbed dose to water, Dagua. The main purpose is to diminish the uncertainty in the service of dosimetric calibration of ionization chambers (employed in radiotherapy of extemal beams) that offers this laboratory. This thesis is composed of seven chapters: In Chapter 1 the position and justification of the problem is described, as well as the general and specific objectives. In Chapter 2, a presentation of the main quantities and units used in dosimetry is made, in accordance with the recommendations of the International Commission on Radiation Units and Measurements (ICRU) that establish the necessity to have a coherent system with the international system of units and dosimetric quantities. The concepts of equilibrium and transient equilibrium of charged particles (TCPE) are also presented, which are used later in the quantitative determination of Dagua. Finally, since the proposed standard of Dagua is of ionometric type, an explanation of the Bragg-Gray and Spencer-Attix cavity theories is made. These theories are the foundation of this type of standards. On the other hand, to guarantee the complete validity of the conditions demanded by these theories it is necessary to introduce correction factors. These factors are determined in Chapters 5 and 6. Since for the calculation of the correction factors Monte Carlo (MC) method is used in an important way, in Chapter 3 the fundamental concepts of this method are presented; in particular the principles of the code MCNP4C [Briesmeister 2000] are detailed, making emphasis on the basis of electron transport and variance reduction techniques used in this thesis. Because a phenomenological approach is carried out in the development of the standard of Dagua, in Chapter 4 the characteristics of the Picker C/9 unit, the ionization chamber type CC01

  16. Estimation of absorbed doses in high energy photon and electron beams from a clinical linear accelerator using extrapolation chamber

    Calibration of photon and electron beams from a medical linear accelerator is carried out using absorbed dose calibrated gas cavity chambers in water phantoms and applying different international protocols. Bohm and Schneider developed extrapolation chamber (EC), which are specially designed parallel plate ionization chambers capable of measuring accurately the differential specific charge (dq/dm) by varying air mass in cavity by precise control of electrode separation. Zankowski and Podgorsak reported the efficacy of specially built extrapolation chambers as an integral part of po-lystyrene and solid water phantom to measure absorbed in cobalt-60 gamma beam, 4 to 18 MV x-rays and for 6 to 22 MeV electron beams. Mehenna Arib3 reported their experience in performing absolute dosimetry with high energy photon beams using a commercially available Perspex embedded extrapolation chamber and compared with water measurements. If realization of absorbed dose using these chambers is achieved from first principles, this chamber could become a departmental standard. In our institution we do not have standard cobalt-60 machine for determination of Nd, water factors for thimble chambers and no secondary standards laboratory in this country for traceability of our beam level dosimeters. Therefore we investigated the role of extrapolation chamber (EC) for measurement of absorbed doses with clinical radiotherapy beams

  17. Comparison of absorbed dose in the cervix carcinoma therapy by brachytherapy of high dose rate using the conventional planning and Monte Carlo simulation

    This study aims to compare the doses received for patients submitted to brachytherapy High Dose Rate (HDR) brachytherapy, a method of treatment of the cervix carcinoma, performed in the planning system PLATO BPS with the doses obtained by Monte Carlo simulation using the radiation transport code MCNP 5 and one female anthropomorphic phantom based on voxel, the FAX. The implementation of HDR brachytherapy treatment for the cervix carcinoma consists of the insertion of an intrauterine probe and an intravaginal probe (ring or ovoid) and then two radiographs are obtained, anteroposterior (AP) and lateral (LAT) to confirm the position of the applicators in the patient and to allow the treatment planning and the determination of the absorbed dose at points of interest: rectum, bladder, sigmoid and point A, which corresponds anatomically to the crossings of the uterine arteries with ureters The absorbed doses obtained with the code MCNP 5, with the exception of the absorbed dose in the rectum and sigmoid for the simulation considering a point source of 192Ir, are lower than the absorbed doses from PLATO BPS calculations because the MCNP 5 considers the chemical compositions and densities of FAX body, not considering the medium as water. When considering the Monte Carlo simulation for a source with dimensions equal to that used in the brachytherapy irradiator used in this study, the values of calculated absorbed dose to the bladder, to the rectum, to the right point A and to the left point A were respectively lower than those determined by the treatment planning system in 33.29, 5.01, 22.93 and 19.04%. These values are almost all larger than the maximum acceptable deviation between patient planned and administered doses (5 %). With regard to the rectum and bladder, which are organs that must be protected, the present results are in favor of the radiological protection of patients. The point A, that is on the isodose of 100%, used to tumor treatment, the results indicate an

  18. Calculation of Absorbed Dose in Target Tissue and Equivalent Dose in Sensitive Tissues of Patients Treated by BNCT Using MCNP4C

    Zamani, M.; Kasesaz, Y.; Khalafi, H.; Pooya, S. M. Hosseini

    Boron Neutron Capture Therapy (BNCT) is used for treatment of many diseases, including brain tumors, in many medical centers. In this method, a target area (e.g., head of patient) is irradiated by some optimized and suitable neutron fields such as research nuclear reactors. Aiming at protection of healthy tissues which are located in the vicinity of irradiated tissue, and based on the ALARA principle, it is required to prevent unnecessary exposure of these vital organs. In this study, by using numerical simulation method (MCNP4C Code), the absorbed dose in target tissue and the equiavalent dose in different sensitive tissues of a patiant treated by BNCT, are calculated. For this purpose, we have used the parameters of MIRD Standard Phantom. Equiavelent dose in 11 sensitive organs, located in the vicinity of target, and total equivalent dose in whole body, have been calculated. The results show that the absorbed dose in tumor and normal tissue of brain equal to 30.35 Gy and 0.19 Gy, respectively. Also, total equivalent dose in 11 sensitive organs, other than tumor and normal tissue of brain, is equal to 14 mGy. The maximum equivalent doses in organs, other than brain and tumor, appear to the tissues of lungs and thyroid and are equal to 7.35 mSv and 3.00 mSv, respectively.

  19. Estimation of kidney depth effective renal plasmatic flux and absorbed dose, from a radio isotopic renogram

    A technique for the estimation of kidney depth is described. It is based on a comparison between the measurements obtained in a radioisotopic renogram carried out for two specific energies and the same measurements made with a phanto-kidney at different depths. Experiments performed with kidney and abdomen phantoms provide calibration curves which are obtained by plotting the photopeak to scatter ratio for 131I pulse height spectrum against depth. Through this technique it is possible to obtain the Hippuran-131I kidney uptake with external measurements only. In fact it introduces a correction in the measurements for the depth itself and for the attenuation and scattering effects due to the tissues interposed between the kidney and the detector. When the two kidneys are not equidistant from the detector, their respective renograms are different and it is therefore very important to introduce a correction to the measurements according to the organ depth in order to obtain the exact information on Hippuran partition between the kidneys. The significative influence of the extrarenal activity is analyzed in the renogram by monitoring the praecordial region after 131I-human serum albumin injection and establishing a calibration factor relating the radioactivity level of this area to that present in each kidney area. It is shown that it is possible to obtain the values for the clearance of each kidney from the renogram once the alteration in efficiency due to the organ depth and to non-renal tissue interference in the renal area is considered. This way, values for the effective renal plasma flow were obtained, which are comparable to those obtained with other techniques, estimating the total flow of the kidneys. Finally the mean absorbed dose of the kidneys in a renography is also estimated. (Author)

  20. GD-OES and XPS coupling: A new way for the chemical profiling of photovoltaic absorbers

    Highlights: • The coupling between GD-OES and XPS analysis is a promising way for fine characterization of thin layers. • Crater surface modifications obtained after GD-OES sputtering depend to the plasma gas. • Inversion of the gas flow improves the surface of the crater. • The modified layer is totally eliminated a few seconds after restarting GD-OES sputtering. - Abstract: In this paper, we examine the complementarity of Glow Discharge Optical Emission Spectroscopy (GD-OES) and X Ray Photoelectron Spectroscopy (XPS) for the realization of fine chemical depth profiling of photovoltaic absorbers using Cu(In,Ga)Se2 (CIGS) materials. The possibility to use sequentially these two techniques is discussed in this paper. We have evaluated the chemical modifications of the crater after GD-OES analyses which depend on the manner of finishing the plasma etching sequence; and we propose different ways to limit or eliminate this effect. For the moment, an intermediate step (wet chemical etching or weak sputtering) is required to obtain a CIGS phase in the crater. Finally, we have demonstrated the possibility to restart the GD-OES analyses of the materials after XPS quantification or GD-OES breaking without modifying the profile shape

  1. GD-OES and XPS coupling: A new way for the chemical profiling of photovoltaic absorbers

    Mercier, Dimitri, E-mail: dimitri.mercier@uvsq.fr [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Bouttemy, Muriel; Vigneron, Jackie [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France); Chapon, Patrick [HORIBA Jobin Yvon SAS, F-91165 Longjumeau (France); Etcheberry, Arnaud [Institut Lavoisier de Versailles, 45 av. des Etats-Unis, 78035 Versailles Cedex (France)

    2015-08-30

    Highlights: • The coupling between GD-OES and XPS analysis is a promising way for fine characterization of thin layers. • Crater surface modifications obtained after GD-OES sputtering depend to the plasma gas. • Inversion of the gas flow improves the surface of the crater. • The modified layer is totally eliminated a few seconds after restarting GD-OES sputtering. - Abstract: In this paper, we examine the complementarity of Glow Discharge Optical Emission Spectroscopy (GD-OES) and X Ray Photoelectron Spectroscopy (XPS) for the realization of fine chemical depth profiling of photovoltaic absorbers using Cu(In,Ga)Se{sub 2} (CIGS) materials. The possibility to use sequentially these two techniques is discussed in this paper. We have evaluated the chemical modifications of the crater after GD-OES analyses which depend on the manner of finishing the plasma etching sequence; and we propose different ways to limit or eliminate this effect. For the moment, an intermediate step (wet chemical etching or weak sputtering) is required to obtain a CIGS phase in the crater. Finally, we have demonstrated the possibility to restart the GD-OES analyses of the materials after XPS quantification or GD-OES breaking without modifying the profile shape.

  2. SU-F-18C-08: A Validation Study of a Commercially Available Software Package's Absorbed Dose Estimates in a Physical Phantom

    Purpose: This study assesses the accuracy of the absorbed dose estimates from CT scans generated by Monte Carlo (MC) simulation using a commercially available radiation dose monitoring software program. Methods: Axial CT studies of an anthropomorphic abdomen phantom with dose bores at a central location and 4 peripheral locations were conducted using a fixed tube current at 120 kV. A 100 mm ion chamber and a 0.6 cc ion chamber calibrated at diagnostic energy levels were used to measure dose in the phantom at each of the 5 dose bore locations. Simulations using the software program's Monte Carlo engine were run using a mathematical model of the anthropomorphic phantom to determine conversion coefficients between the CTDIvol used for the study and the dose at the location of the dose bores. Simulations were conducted using both the software's generic CT beam model and a refined model generated using HVL and bow tie filter profile measurements made on the scanner used for the study. Results: Monte Carlo simulations completed using the generalized beam model differed from the measured conversion factors by an absolute value average of 13.0% and 13.8% for the 100 mm and 0.6 cc ion chamber studies, respectively. The MC simulations using the scanner specific beam model generated conversion coefficients that differed from the CTDIvol to measured dose conversion coefficients by an absolute value average of 7.3% and 7.8% for the 100 mm and 0.6 cc ion chamber cases, respectively. Conclusion: A scanner specific beam model used in MC simulations generates more accurate dose conversion coefficients in an anthropomorphic phantom than those generated with a generalized beam model. Agreement between measured conversion coefficients and simulated values were less than 20% for all positions using the universal beam model

  3. SU-F-18C-08: A Validation Study of a Commercially Available Software Package's Absorbed Dose Estimates in a Physical Phantom

    Supanich, M [Rush University Medical Center, Chicago, IL (United States); Siegelman, J [Brigham and Women' s Hospital Harvard Medical School, Boston, MA (United States)

    2014-06-15

    Purpose: This study assesses the accuracy of the absorbed dose estimates from CT scans generated by Monte Carlo (MC) simulation using a commercially available radiation dose monitoring software program. Methods: Axial CT studies of an anthropomorphic abdomen phantom with dose bores at a central location and 4 peripheral locations were conducted using a fixed tube current at 120 kV. A 100 mm ion chamber and a 0.6 cc ion chamber calibrated at diagnostic energy levels were used to measure dose in the phantom at each of the 5 dose bore locations. Simulations using the software program's Monte Carlo engine were run using a mathematical model of the anthropomorphic phantom to determine conversion coefficients between the CTDIvol used for the study and the dose at the location of the dose bores. Simulations were conducted using both the software's generic CT beam model and a refined model generated using HVL and bow tie filter profile measurements made on the scanner used for the study. Results: Monte Carlo simulations completed using the generalized beam model differed from the measured conversion factors by an absolute value average of 13.0% and 13.8% for the 100 mm and 0.6 cc ion chamber studies, respectively. The MC simulations using the scanner specific beam model generated conversion coefficients that differed from the CTDIvol to measured dose conversion coefficients by an absolute value average of 7.3% and 7.8% for the 100 mm and 0.6 cc ion chamber cases, respectively. Conclusion: A scanner specific beam model used in MC simulations generates more accurate dose conversion coefficients in an anthropomorphic phantom than those generated with a generalized beam model. Agreement between measured conversion coefficients and simulated values were less than 20% for all positions using the universal beam model.

  4. Renal function affects absorbed dose to the kidneys and haematological toxicity during {sup 177}Lu-DOTATATE treatment

    Svensson, Johanna; Berg, Gertrud [Sahlgrenska University Hospital, Department of Oncology, Goeteborg (Sweden); Waengberg, Bo [Sahlgrenska University Hospital, Department of Surgery, Goeteborg (Sweden); Larsson, Maria [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Forssell-Aronsson, Eva; Bernhardt, Peter [University of Gothenburg, Department of Radiation Physics, Institute of Clinical Sciences, The Sahlgrenska Academy, Goeteborg (Sweden); Sahlgrenska University Hospital, Department of Medical Physics and Medical Bioengineering, Goeteborg (Sweden)

    2015-05-01

    Peptide receptor radionuclide therapy (PRRT) has become an important treatment option in the management of advanced neuroendocrine tumours. Long-lasting responses are reported for a majority of treated patients, with good tolerability and a favourable impact on quality of life. The treatment is usually limited by the cumulative absorbed dose to the kidneys, where the radiopharmaceutical is reabsorbed and retained, or by evident haematological toxicity. The aim of this study was to evaluate how renal function affects (1) absorbed dose to the kidneys, and (2) the development of haematological toxicity during PRRT treatment. The study included 51 patients with an advanced neuroendocrine tumour who received {sup 177}Lu-DOTATATE treatment during 2006 - 2011 at Sahlgrenska University Hospital in Gothenburg. An average activity of 7.5 GBq (3.5 - 8.2 GBq) was given at intervals of 6 - 8 weeks on one to five occasions. Patient baseline characteristics according to renal and bone marrow function, tumour burden and medical history including prior treatment were recorded. Renal and bone marrow function were then monitored during treatment. Renal dosimetry was performed according to the conjugate view method, and the residence time for the radiopharmaceutical in the whole body was calculated. A significant correlation between inferior renal function before treatment and higher received renal absorbed dose per administered activity was found (p < 0.01). Patients with inferior renal function also experienced a higher grade of haematological toxicity during treatment (p = 0.01). The residence time of {sup 177}Lu in the whole body (range 0.89 - 3.0 days) was correlated with grade of haematological toxicity (p = 0.04) but not with renal absorbed dose (p = 0.53). Patients with inferior renal function were exposed to higher renal absorbed dose per administered activity and developed a higher grade of haematological toxicity during {sup 177}Lu-DOTATATE treatment. The study confirms the

  5. The absorbed dose in air of photons generated from secondary cosmic rays at sea level at Nagoya, Japan

    Investigations have been carried out to determine the absorbed dose in air of photons generated from secondary cosmic radiation at sea level at Nagoya, Japan. To isolate the contribution from cosmic photons, the pulse-height distributions due to μ particles and electrons were eliminated from the observed pulse-height distribution of a measurement with a 3'' diam. spherical NaI(Tl) detector. The pulse height due to μ particles and electrons was inferred from the coincidence technique using two types of scintillation detectors with different sensitivities to photons. To obtain the photon fluence rate for further dose calculation, the pulse-height distribution of cosmic photons was unfolded by the iterative method. The mean and its standard deviation of the absorbed dose in air and fluence rate due to cosmic photons calculated from a one year observation are 2.86±0.05 nGy.h-1 and 0.1342±0.0015 photons.cm-2.s-1, respectively. The absorbed dose in air from cosmic photons was 0.5% lower during autumn to winter and 0.6% higher during spring to summer than the mean taken over the year. (author)

  6. Development of a water calorimetry-based standard for absorbed dose to water in HDR 192Ir brachytherapy

    Purpose: The aim of this article is to develop and evaluate a primary standard for HDR 192Ir brachytherapy based on 4 deg. C stagnant water calorimetry. Methods: The absolute absorbed dose to water was directly measured for several different Nucletron microSelectron 192Ir sources of air kerma strength ranging between 21 000 and 38 000 U and for source-to-detector separations ranging between 25 and 70 mm. The COMSOL MULTIPHYSICS software was used to accurately calculate the heat transport in a detailed model geometry. Through a coupling of the ''conduction and convection'' module with the ''Navier-Stokes incompressible fluid'' module in the software, both the conductive and convective effects were modeled. Results: A detailed uncertainty analysis resulted in an overall uncertainty in the absorbed dose of 1.90%(1σ). However, this includes a 1.5% uncertainty associated with a nonlinear predrift correction which can be substantially reduced if sufficient time is provided for the system to come to a new equilibrium in between successive calorimetric runs, an opportunity not available to the authors in their clinical setting due to time constraints on the machine. An average normalized dose rate of 361±7 μGy/(h U) at a source-to-detector separation of 55 mm was measured for the microSelectron 192Ir source based on water calorimetry. The measured absorbed dose per air kerma strength agreed to better than 0.8%(1σ) with independent ionization chamber and EBT-1 Gafchromic film reference dosimetry as well as with the currently accepted AAPM TG-43 protocol measurements. Conclusions: This work paves the way toward a primary absorbed dose to water standard in 192Ir brachytherapy.

  7. DOSE-Analyzer. A computer program with graphical user interface to analyze absorbed dose inside a body of mouse and human upon external neutron exposure

    DOSE-Analyzer is a computer program to retrieve the dose information from a database and generate a graph through a graphical user interface (GUI). The database is constructed for absorbed dose, fluence, and energy distribution inside a body of mouse and human exposed upon external neutrons, which is calculated by our developed Monte-Carlo simulation method using voxel-based phantom and particle transport code PHITS. The input configurations of irradiation geometry, subject, and energy are set by GUI. The results are tabulated at particle types, i.e. electron, proton, deuteron, triton, and alpha particle, and target organs on a data sheet of Microsoft Office ExcelTM. Simple analysis to compare the output values for two subjects is also performed on DOSE-Analyzer. This report is a user manual of DOSE-Analyzer. (author)

  8. Development of standardized methods to verify absorbed dose of irradiated fresh and dried fruits, tree nuts in trade

    Investigations were carried out on standardization of desired process control parameters such as dose distribution in trade containers, container standardization and development of 'label' dosimeters. A prototype 'label' dose indicators Sterins for threshold doses of 125 Gy and 300 Gy was studied. Dose distribution was studied using fresh fruits and tree nuts in trade and standardized containers with varying product densities. The distribution of absorbed doses was measured by Fricke, Gammachrome YR, clear Polymethylmethacrylate (PMMA), EthanolChlorobenzene (ECB) and Sterin 300. These values are given as Dmax/Dmin ratios in relation to product bulk densities. It was observed that bulk densities varied greatly among different products depending on the types of fruits, containers and pattern of loading which also affected dose distribution. Dmax/Dmin obtained by proper dose mapping could be kept low by arranging proper irradiation conditions which ensured uniform dose distribution. Prototype 'label' dose indicators like Sterins and clear PMMA were used for dose mapping along with the standard primary and secondary dosimeters. Sterins and clear PMMA were also studied for their dosimetric properties, particularly for use in label dosimetry. Sterins 125 and 300 evaluated visually showed their integrity at their threshold doses. The word NOT on Sterin 125 eclipsed after 115 Gy and on Sterin 300 after 270 Gy dose. Clear PMMA samples of 410 mm thickness irradiated at 200-1000 Gy showed linear response and had postirradiation stability for over a month storage at normal temperatures (21-35 deg. C) and humidities. These could be investigated further for developing as 'label' dosimeters in insect control quarantine treatment. Other low dose indicators studied such as coloured perspex, dye solutions were not found useful at quarantine dose levels. Further investigations are required for developing a 'label' dosimeter for commercial use. (author)

  9. SMT bipolar phototransistor to evaluate dose profile and computed tomography dose index

    The increasing use of computed tomography (CT) in clinical practice and the relatively high dose delivered to the patient make CT a significant contributor to the population dose from radiodiagnostic. Therefore, there is a need to assess and optimize CT radiation doses for patients undergoing this type of examination. The current dosimetry is based on the measurement of the single slice profile integral using a 100 mm long ion chamber. However, an alternative system has been suggested which involves smaller detectors. In this work, a commercially available SMT (Surface-Mount Technology) phototransistor was proposed for dosimetry in tomography X-rays. The phototransistor was used in the CT scanner to measure free-in-air and in head phantom single slice dose profile. The results indicated that this electronic device could be used for determining the details of a CT single-scan dose distribution. Furthermore, using 150 mm scan length instead of usual 100 mm, it was observed that there is a certain dose beyond the length of the CT ion chamber which suggests, in agreement with some authors, that the present methodology may no longer be suitable. (author)

  10. Assessment of Absorbed Dose in Persons close to the Patients during 192Ir brachytherapy for Cervical Cancer

    According to the 2007 Annual Report of the National Cancer Registry, cervical cancer showed an occurring frequency of 7th in female cancers and 4rd in females with an age of 35-64 years. Both radiotherapy and chemotherapy are mainly used for the treatment of cervical cancer. In case of radiotherapy, brachytherapy using radioisotopes in conjunction with external-beam radiation therapy (EBRT) using a linear accelerator is used in most cases to improve the outcome of cancer treatment. Brachytherapy, one of the cervical cancer radiotherapies, is a method that can minimize the damage of normal tissues restricting absorbed dose to uterus. It is, however, necessary to conduct a quantitative assessment on brachytherapy because it may cause radiation exposure to medical care providers during the radiotherapy. Therefore, the study provides the basic research data regarding brachytherapy for cervical cancer, estimating the absorbed dose in persons close to the patients using a mathematical phantom during 192Ir brachytherapy for cervical cancer

  11. {sup 99m}Tc-MAA overestimates the absorbed dose to the lungs in radioembolization: a quantitative evaluation in patients treated with {sup 166}Ho-microspheres

    Elschot, Mattijs; Nijsen, Johannes F.W.; Lam, Marnix G.E.H.; Smits, Maarten L.J.; Prince, Jip F.; Bosch, Maurice A.A.J. van den; Zonnenberg, Bernard A.; Jong, Hugo W.A.M. de [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); Viergever, Max A. [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine, Utrecht (Netherlands); University Medical Center Utrecht, Image Sciences Institute, Utrecht (Netherlands)

    2014-10-15

    Radiation pneumonitis is a rare but serious complication of radioembolic therapy of liver tumours. Estimation of the mean absorbed dose to the lungs based on pretreatment diagnostic {sup 99m}Tc-macroaggregated albumin ({sup 99m}Tc-MAA) imaging should prevent this, with administered activities adjusted accordingly. The accuracy of {sup 99m}Tc-MAA-based lung absorbed dose estimates was evaluated and compared to absorbed dose estimates based on pretreatment diagnostic {sup 166}Ho-microsphere imaging and to the actual lung absorbed doses after {sup 166}Ho radioembolization. This prospective clinical study included 14 patients with chemorefractory, unresectable liver metastases treated with {sup 166}Ho radioembolization. {sup 99m}Tc-MAA-based and {sup 166}Ho-microsphere-based estimation of lung absorbed doses was performed on pretreatment diagnostic planar scintigraphic and SPECT/CT images. The clinical analysis was preceded by an anthropomorphic torso phantom study with simulated lung shunt fractions of 0 to 30 % to determine the accuracy of the image-based lung absorbed dose estimates after {sup 166}Ho radioembolization. In the phantom study, {sup 166}Ho SPECT/CT-based lung absorbed dose estimates were more accurate (absolute error range 0.1 to -4.4 Gy) than {sup 166}Ho planar scintigraphy-based lung absorbed dose estimates (absolute error range 9.5 to 12.1 Gy). Clinically, the actual median lung absorbed dose was 0.02 Gy (range 0.0 to 0.7 Gy) based on posttreatment {sup 166}Ho-microsphere SPECT/CT imaging. Lung absorbed doses estimated on the basis of pretreatment diagnostic {sup 166}Ho-microsphere SPECT/CT imaging (median 0.02 Gy, range 0.0 to 0.4 Gy) were significantly better predictors of the actual lung absorbed doses than doses estimated on the basis of {sup 166}Ho-microsphere planar scintigraphy (median 10.4 Gy, range 4.0 to 17.3 Gy; p < 0.001), {sup 99m}Tc-MAA SPECT/CT imaging (median 2.5 Gy, range 1.2 to 12.3 Gy; p < 0.001), and {sup 99m}Tc-MAA planar

  12. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities

    Bueno Vizcarra, Marta; Carrasco, P. (Paula); Jornet, N.; Muñoz Montplet, C.; Duch Guillen, María Amor

    2014-01-01

    Purpose: The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone.; Methods: Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs) two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a Li-7-enriched LiF:Mg,Ti-based (MTS-7s)-as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of f...

  13. Comparison in the determination of absorbed dose by biological and physical methods to patients in treatment of cardiac intervention

    The use of less invasive procedures, lower risk and quick recovery as cardiac intervention have proven to be an efficient alternative to reestablish the correct bloodstream of the patient. In this case the patient is subjected to values of absorbed dose above to which is subjected in a study with X-rays for medical diagnosis, and this can cause radiation injuries to the skin. The target organ, in this case can be exposed to doses of 2 Gy above. Different methods to estimate the dose were use, physical by Radiochromic film, as biological by dicentric analysis. Both methods provided additional information demonstrating thus the risk in the target organ and the patient. The most reliable biological indicator of exposure to ionizing radiation is the study of chromosomal aberrations, specifically dicentric in human lymphocytes. This test allowed establishing the exposure dose depending of the damage. (Author)

  14. Ion chamber absorbed dose calibration coefficients, ND,w, measured at ADCLs: Distribution analysis and stability

    Purpose: To analyze absorbed dose calibration coefficients, ND,w, measured at accredited dosimetry calibration laboratories (ADCLs) for client ionization chambers to study (i) variability among ND,w coefficients for chambers of the same type calibrated at each ADCL to investigate ion chamber volume fluctuations and chamber manufacturing tolerances; (ii) equivalency of ion chamber calibration coefficients measured at different ADCLs by intercomparing ND,w coefficients for chambers of the same type; and (iii) the long-term stability of ND,w coefficients for different chamber types by investigating repeated chamber calibrations. Methods: Large samples of ND,w coefficients for several chamber types measured over the time period between 1998 and 2014 were obtained from the three ADCLs operating in the United States. These are analyzed using various graphical and numerical statistical tests for the four chamber types with the largest samples of calibration coefficients to investigate (i) and (ii) above. Ratios of calibration coefficients for the same chamber, typically obtained two years apart, are calculated to investigate (iii) above and chambers with standard deviations of old/new ratios less than 0.3% meet stability requirements for accurate reference dosimetry recommended in dosimetry protocols. Results: It is found that ND,w coefficients for a given chamber type compared among different ADCLs may arise from differing probability distributions potentially due to slight differences in calibration procedures and/or the transfer of the primary standard. However, average ND,w coefficients from different ADCLs for given chamber types are very close with percent differences generally less than 0.2% for Farmer-type chambers and are well within reported uncertainties. Conclusions: The close agreement among calibrations performed at different ADCLs reaffirms the Calibration Laboratory Accreditation Subcommittee process of ensuring ADCL conformance with National Institute of

  15. Measurement of patient skin absorbed dose in ablation of paroxysmal atrial fibrillation, and examination of treatment protocol

    The ablation for atrial fibrillation minute movement done in our hospital is 250 minutes or less, within an average time of 150 minutes during a fluoroscopic time of about 7 hours, with very large average inspection times numerical values. However, the skin-absorbed dose could be understood only from the numerical value of the area dosimeter. It was considered that the total dose that reached the threshold was sufficient, although radiation injury would not be reported from the ablation currently done at our hospital. Therefore, we aimed to examine the inspection protocol in this hospital, and to request the patient be given an inspection dose that was the average skin-absorbed dose by using the acryl board. The amount of a total dose for an inspection of 150 minutes of fluoroscopic time was about 2.7 Gy. Moreover, a value of 1.5 Gy was indicated in the hot spot as a result of repetition in some exposure fields. However, it was thought that the possibility of exceeding the threshold of 2 Gy depending on the inspection situation in the future and other factors was tolerable because these measurements were done so as not to overvalue it more than the necessary. (author)

  16. Evaluation of natural gamma radiation and absorbed gamma dose in soil and rocks of Perambalur district (Tamil Nadu, India)

    The activity concentrations and absorbed gamma dose of primordial radionuclides 238U, 232Th and 40K were determined employing γ-ray spectrometry in 31 soil samples from the land area earmarked for house construction in Perambalur district and 14 rock samples from quarries that supply stones for the entire district. The soil samples registered relatively a higher mean value of 13.2 Bq kg-1 for 238U, 66 Bq kg-1 for 232Th and 340.3 Bq kg-1 for 40K as compared to mean values for rock samples (238U-8.0 Bq kg-1; 232Th-65.1 Bq kg-1; 40K-199.1 Bq kg-1). The mean absorbed gamma dose rate for soil (61.4 nGy h-1) marginally exceeded the prescribed limit of 55 nGy h-1 while, rocks registered the mean absorbed gamma dose rate of 10.4 nGy h-1. The mean radium equivalent activity was distinctly higher in soil (130.6 Bq kg-1) than in rock (20.0 Bq kg-1). However, these values were lower than the limit (370 Bq kg-1) set by OECD for building materials. It is evident from the data that the soil and rocks do not pose any radiological risk for house constructions in Perambalur district. (author)

  17. Monte Carlo evaluations of the absorbed dose and quality dependence of Al2O3 in radiotherapy photon beams

    Purpose: The purpose of this work was to evaluate the absorbed dose to Al2O3 dosimeter at various depths of water phantom in radiotherapy photon beams by Monte Carlo simulation and evaluate the beam quality dependence. Methods: The simulations were done using EGSnrc. The cylindrical Al2O3 dosimeter (Φ4 mmx1 mm) was placed at the central axis of the water phantom (Φ16 cmx16 cm) at depths between 0.5 and 8 cm. The incident beams included monoenergetic photon beams ranging from 1 to 18 MeV, 60Co γ beams, Varian 6 MV beams using phase space files based on a full simulation of the linac, and Varian beams between 4 and 24 MV using Mohan's spectra. The absorbed dose to the dosimeter and the water at the corresponding position in the absence of the dosimeter, as well as absorbed dose ratio factor fmd, was calculated. Results: The results show that fmd depends obviously on the photon energy at the shallow depths. However, as the depth increases, the change in fmd becomes small, beyond the buildup region, the maximum discrepancy of fmd to the average value is not more than 1%. Conclusions: These simulation results confirm the use of Al2O3 dosimeter in radiotherapy photon beams and clearly indicate that more attention should be paid when using such a dosimeter in the buildup region of high-energy radiotherapy photon beams.

  18. Analyse of the international recommendations on the calculation of absorbed dose in the biota; Analise das recomendacoes internacionais sobre calculo de dose absorvida na biota

    Pereira, Wagner de S.; Py Junior, Delcy de A., E-mail: wspereira@inb.gov.b, E-mail: delcy@inb.gov.b [Industrias Nucleares do Brasil (UTM/INB), Pocos de Caldas, MG (Brazil). Unidade de Tratamento de Minerios; Universidade Federal Fluminense (LARARA/UFF), Niteroi, RJ (Brazil). Lab. de Radiobiologia e Radiometria; Kelecom, Alphonse [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Ciencia Ambiental

    2011-10-26

    This paper evaluates the recommendations of ICRP which has as objective the environmental radioprotection. It was analysed the recommendations 26, 60, 91, 103 and 108 of the ICRP. The ICRP-103 defined the concept of animal and plant of reference (APR) to be used in the RAP based on the calculation of absorbed dose based on APR concept. This last view allows to build a legal framework of environmental protection with a etic, moral and scientific visualization, more defensible than the anthropomorphic concept

  19. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging

    Kristina Hellén-Halme; Mats Nilsson

    2013-01-01

    ABSTRACT Objectives Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in ...

  20. Absorbed doses received by patients submitted to chest radiographs in hospitals of the city of Sao Paulo, Brazil

    Medical irradiation contributes with a significant amount to the dose received by the population. Here, this contribution was evaluated in a survey of absorbed doses received by patients submitted to chest radiological examinations (postero-anterior (PA) and lateral (LAT) projections) in hospitals of the city of Sao Paulo. Due to the variety of equipment and procedures used in radiological examinations, a selection of hospitals was made (12, totalizing 27 X-ray facilities), taking into account their representativeness as medical institutions in the city, in terms of characteristics and number of radiographs carried out. An anthropomorphic phantom, provided with thermoluminescent dosemeters (TLD-1 00), was irradiated simulating the patient, and the radiographic image quality was evaluated. Absorbed doses were determined to the thoracic region (entrance and exit skin and lung doses), and to some important organs from the radiation protection point of view (lens of the eye, thyroid and gonads). The great variation on the exposure parameters (kV, mA.s, beam size) leads to a large interval of entrance skin doses-ESD (coefficients of variation, CV, of 60% and 76%, for PA and LAT projections, respectively, were found) and of organ doses (CV of 60% and 46%. for thyroid and lung respectively). Mean values of ESD for LAT and PA projections were 0.22 and 0.98 mGy, respectively. The average absorbed doses per exam (PA and LAT) to thyroid and lung, 0.15 and 0.24 mGy respectively,showed that the thyroid was irradiated by the primary beam in many cases. Values of lens of the eye and gonad absorbed doses were below 30 μGy. Comparison of the lung doses obtained in this study with values in the literature, calculated by Monte Carlo simulation, showed good agreement. On the other hand, the comparison shows significant differences in the dose values to organs outside the chest region (thyroid, lens of eye and gonads). The effective dose calculated for a chest examination, PA and LAT

  1. Absorbed dose to active red bone marrow from diagnostic and therapeutic uses of radiation

    The bone-marrow dose arising from radiological procedures as carried out in Australia have been determined as part of a survey of population doses. This paper describes the method of calculation of the radiation doses to the active bone marrow from diagnostic radiography, fluoroscopy and radiotherapy. The results of the calculations are compared with the results of other models of bone-marrow dose for a number of diagnostic X-ray procedures

  2. Pre-therapeutic radiobiological experiments performed at Cyclone with d(50)-Be neutrons. Comparison of RBE/absorbed dose relationships obtained for several biological criteria

    The RBE/absorbed dose relationships for d(50)-Be neutrons were determined for several biological criteria. Irradiations were performed with the isochronous cyclotron Cyclone at Louvain-la-Neuve. Neutrons are produced by bombarding a thick beryllium target with 50MeV deuterons. This energy is to be used for the clinical applications. As first biological criterion, early intestinal tolerance was assessed in BALB/c mice from LD50 determination. Abdomen only was irradiated in order to avoid interference from the bone marrow syndrome. For single fraction irradiation, an RBE value of 1.8+-0.2 was observed (LD50 neutron absorbed dose: 525 rad). Fractionated irradiation had to be used to study smaller doses per fraction. The RBE increases progressively with decreasing dose and reaches 2.8 for a neutron absorbed dose of 80 rad (i.e. for a gamma absorbed dose of about 225 rad). A further RBE increase is unlikely since, for smaller absorbed doses, the survival curve for gamma rays nearly coincides with its initial tangent. The RBE/absorbed dose relationships observed for several mammalian cell lines in vitro, although they have a rather similar shape, show significant differences. For a neutron absorbed dose of 100 rad, the RBE is about 3 for EMT6 mouse cancer cells and 2 for HF19 human fibroblasts. For chromosome aberrations in Allium cepa onion roots, observed RBE values are much higher than for mammalian cell lethality. The RBE increases regularly from 7 to 12 with decreasing neutron dose from 40 to 10 rad. Two criteria were selected: (i) the mean number of aberrations (mainly breaks) per cell in anaphase and telophase, and (ii) the fraction of cells in anaphase and telophase having at least one aberration. For growth delay in Vicia faba, the RBE increases from 2.8 to 4.4 when the neutron absorbed dose decreases from 90 to 20 rad. (author)

  3. Estimation of absorbed dose in clinical radiotherapy linear accelerator beams: effect of ion chamber calibration and long-term stability

    The measured dose in water at reference point in phantom is a primary parameter for planning the treatment monitor units (MU); both in conventional and intensity modulated/image guided treatments. Traceability of dose accuracy therefore still depends mainly on the calibration factor of the ion chamber/dosimeter provided by the accredited Secondary Standard Dosimetry Laboratories (SSDLs), under International Atomic Energy Agency (IAEA) network of laboratories. The data related to Nd,water calibrations, thermoluminescent dosimetry (TLD) postal dose validation, inter-comparison of different dosimeter/electrometers, and validity of Nd,water calibrations obtained from different calibration laboratories were analyzed to find out the extent of accuracy achievable. Nd,w factors in Gray/Coulomb calibrated at IBA, GmBH, Germany showed a mean variation of about 0.2% increase per year in three Farmer chambers, in three subsequent calibrations. Another ion chamber calibrated in different accredited laboratory (PTW, Germany) showed consistent Nd,w for 9 years period. The Strontium-90 beta check source response indicated long-term stability of the ion chambers within 1% for three chambers. Results of IAEA postal TL 'dose intercomparison' for three photon beams, 6 MV (two) and 15 MV (one), agreed well within our reported doses, with mean deviation of 0.03% (SD 0.87%) (n = 9). All the chamber/electrometer calibrated by a single SSDL realized absorbed doses in water within 0.13% standard deviations. However, about 1-2% differences in absorbed dose estimates observed when dosimeters calibrated from different calibration laboratories are compared in solid phantoms. Our data therefore imply that the dosimetry level maintained for clinical use of linear accelerator photon beams are within recommended levels of accuracy and uncertainities are within reported values. (author)

  4. Dose profile analysis of small fields in intensity modulated radiotherapy

    Medel B, E. [IMSS, Centro Medico Nacional Manuel Avila Camacho, Calle 2 Nte. 2004, Barrio de San Francisco, 72090 Puebla, Pue. (Mexico); Tejeda M, G.; Romero S, K., E-mail: romsakaren@gmail.com [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Fisico Matematicas, Av. San Claudio y 18 Sur, Ciudad Universitaria, 72570 Puebla, Pue.(Mexico)

    2015-10-15

    Full text: Small field dosimetry is getting a very important worldwide task nowadays. The use of fields of few centimeters is more common with the introduction of sophisticated techniques of radiation therapy, as Intensity Modulated Radiotherapy (IMRT). In our country the implementation of such techniques is just getting started and whit it the need of baseline data acquisition. The dosimetry under small field conditions represents a challenge for the physicists community. In this work, a dose profile analysis was done, using various types of dosimeters for further comparisons. This analysis includes the study of quality parameters as flatness, symmetry, penumbra, and other in-axis measurements. (Author)

  5. Dose profile analysis of small fields in intensity modulated radiotherapy

    Full text: Small field dosimetry is getting a very important worldwide task nowadays. The use of fields of few centimeters is more common with the introduction of sophisticated techniques of radiation therapy, as Intensity Modulated Radiotherapy (IMRT). In our country the implementation of such techniques is just getting started and whit it the need of baseline data acquisition. The dosimetry under small field conditions represents a challenge for the physicists community. In this work, a dose profile analysis was done, using various types of dosimeters for further comparisons. This analysis includes the study of quality parameters as flatness, symmetry, penumbra, and other in-axis measurements. (Author)

  6. On the suitability of ultrathin detectors for absorbed dose assessment in the presence of high-density heterogeneities

    Bueno, M., E-mail: marta.bueno@upc.edu; Duch, M. A. [Institut de Tècniques Energètiques, Universitat Politècnica de Catalunya, 08028 Barcelona (Spain); Carrasco, P.; Jornet, N. [Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i de Sant Pau, 08025 Barcelona (Spain); Muñoz-Montplet, C. [Servei de Física Mèdica i Protecció Radiològica, Institut Català d’Oncologia—Girona, 17007 Girona (Spain)

    2014-08-15

    Purpose: The aim of this study was to evaluate the suitability of several detectors for the determination of absorbed dose in bone. Methods: Three types of ultrathin LiF-based thermoluminescent dosimeters (TLDs)—two LiF:Mg,Cu,P-based (MCP-Ns and TLD-2000F) and a{sup 7}Li-enriched LiF:Mg,Ti-based (MTS-7s)—as well as EBT2 Gafchromic films were used to measure percentage depth-dose distributions (PDDs) in a water-equivalent phantom with a bone-equivalent heterogeneity for 6 and 18 MV and a set of field sizes ranging from 5×5 cm{sup 2} to 20×20 cm{sup 2}. MCP-Ns, TLD-2000F, MTS-7s, and EBT2 have active layers of 50, 20, 50, and 30 μm, respectively. Monte Carlo (MC) dose calculations (PENELOPE code) were used as the reference and helped to understand the experimental results and to evaluate the potential perturbation of the fluence in bone caused by the presence of the detectors. The energy dependence and linearity of the TLDs’ response was evaluated. Results: TLDs exhibited flat energy responses (within 2.5%) and linearity with dose (within 1.1%) within the range of interest for the selected beams. The results revealed that all considered detectors perturb the electron fluence with respect to the energy inside the bone-equivalent material. MCP-Ns and MTS-7s underestimated the absorbed dose in bone by 4%–5%. EBT2 exhibited comparable accuracy to MTS-7s and MCP-Ns. TLD-2000F was able to determine the dose within 2% accuracy. No dependence on the beam energy or field size was observed. The MC calculations showed that a50 μm thick detector can provide reliable dose estimations in bone regardless of whether it is made of LiF, water or EBT’s active layer material. Conclusions: TLD-2000F was found to be suitable for providing reliable absorbed dose measurements in the presence of bone for high-energy x-ray beams.

  7. Comparison between Radiology Science Laboratory, Brazil (LCR) and National Research Council, Canada (NRC) of the absorbed dose in water using Fricke dosimetry

    The absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiology Science Laboratory, Brazil (LCR) and the National Research Council, Canada (NRC), were compared. The two institutions have developed absorbed dose standards based on the Fricke dosimetry system. There are significant differences between the two standards as far as the preparation and readout of the Fricke solution and irradiation geometry of the holder. Measurements were done at the NRC laboratory using a single Ir-192 source. The comparison of absorbed dose measurements was expressed as the ratio Dw(NRC)/Dw(LCR), which was found to be 1.026. (author)

  8. Evaluation of factors to convert absorbed dose calibrations in graphite to water for mega-voltage photon beams

    The National Physical Laboratory (NPL) provides a high-energy (4-19 MV) X-ray calibration service for secondary standard dosemeters, in terms of absorbed dose to water. As the primary standard that is used for this calibration service is a graphite calorimeter absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the commencement of this service. Since this time it has been identified that clinical LINACs have more inherent filtration than the NPL LINAC and so calibrations are now carried out for heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of TPR (tissue phantom ratio). This work aims to evaluate these factors for all megavoltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities in two ways. The first method involves the use of the photon fluence scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water to graphite determined in these two ways agreed with each other to within 0.2% (1 σ uncertainty). The best fit to both sets of results agrees with values determined in previous work to within 0.4% (2 σ uncertainty). (author)

  9. Absorbed dose estimations of 131I for critical organs using the GEANT4 Monte Carlo simulation code

    Ziaur Rahman; Shakeel ur Rehman; Waheed Arshed; Nasir M Mirza; Abdul Rashid; Jahan Zeb

    2012-01-01

    The aim of this study is to compare the absorbed doses of critical organs of 131I using the MIRD (Medical Internal Radiation Dose) with the corresponding predictions made by GEANT4 simulations.S-values (mean absorbed dose rate per unit activity) and energy deposition per decay for critical organs of 131I for various ages,using standard cylindrical phantom comprising water and ICRP soft-tissue material,have also been estimated.In this study the effect of volume reduction of thyroid,during radiation therapy,on the calculation of absorbed dose is also being estimated using GEANT4.Photon specific energy deposition in the other organs of the neck,due to 131I decay in the thyroid organ,has also been estimated.The maximum relative difference of MIRD with the GEANT4 simulated results is 5.64% for an adult's critical organs of 131I.Excellent agreement was found between the results of water and ICRP soft tissue using the cylindrical model.S-values are tabulated for critical organs of 131I,using 1,5,10,15 and 18 years (adults) individuals.S-values for a cylindrical thyroid of different sizes,having 3.07% relative differences of GEANT4 with Siegel & Stabin results.Comparison of the experimentally measured values at 0.5 and 1 m away from neck of the ionization chamber with GEANT4 based Monte Carlo simulations results show good agreement.This study shows that GEANT4 code is an important tool for the internal dosimetry calculations.

  10. Dose absorbed in adults and children thyroid due to the I123 using the dosimetry MIRD and Marinelli

    Using the dosimetry MIRD, and representation Cristy-Eckerman in the thyroid gland and organs of their bio-kinetics when I123 (Iodine) is used, the study demonstrates that the absorbed dose by the gland of an adult, children, and newly born, is their auto-dose, independent of the compartments number of their bio-kinetics. The dosimetric contributions of the organs of their bio-kinetics are insignificant. Their results are not significantly different to those obtained by the formalism MARINELLI (auto-dose) when it uses a sphere like glandular representation. In consequence, the kinetic model corresponding to the glandular representation decreases to a compartment, where the gland can also be represented like a sphere. (Author)

  11. Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950-76: relationship to radiation dose absorbed by marrow

    The relationship between atomic bomb exposure and the incidence of multiple myeloma has been examined in a fixed cohort of atomic bomb survivors and controls in the life-span study sample for Hiroshima and Nagasaki. From October 1950 to December 1976, 29 cases of multiple myeloma were confirmed in this sample. Our analysis shows that the standardized relative risk (RR) adjusted for city, sex, and age at the time of bombings (ATB) increased with marrow-absorbed radiation dose. The increased RR does not appear to differ between cities or sexes and is demonstrable only for those survivors whose age ATB was between 20 and 59 years. The estimated risk in these individuals is approximately 0.48 cases/million person-years/rad for bone marrow total dose. This excess risk did not become apparent in individuals receiving 50 rad or more in marrow total dose until 20 years or more after exposure

  12. Multiple myeloma among atomic bomb survivors in Hiroshima and Nagasaki, 1950-76: relationship to radiation dose absorbed by marrow

    The relationship between atomic bomb exposure and the incidence of multiple myeloma has been examined in a fixed cohort of atomic bomb survivors and controls in the life-span study sample for Hiroshima and Nagasaki. From October 1950 to December 1976, 29 cases of multiple myeloma were confirmed in this sample. Our analysis shows that the standardized relative risk (RR) adjusted for city, sex, and age at the time of bombings (ATB) increased with marrow-absorbed radiation dose. The increased RR does not appear to differ between cities or sexes and is demonstrable only for those survivors whose age ATB was between 20 and 59 years. The estimaged risk in these individuals is approximately 0.48 cases/million person-years/rad for bone marrow total dose. This excess risk did not become apparent in individuals receiving 50 rad or more in marrow total dose until 20 years or more after exposure

  13. Study of the spatial distribution of the absorbed dose in blood volumes irradiated using a teletherapy unit

    Blood irradiation can be performed using a dedicated blood irradiator or a teletherapy unit. A thermal device providing appropriate storage conditions during blood components irradiation with a teletherapy unit has been recently proposed. However, the most appropriated volume of the thermal device was not indicated. The goal of this study was to indicate the most appropriated blood volume for irradiation using a teletherapy unit in order to minimize both the dose heterogeneity in the volume and the blood irradiation time using these equipments. Theoretical and experimental methods were used to study the dose distribution in the blood volume irradiated using a linear accelerator and a cobalt-60 therapy machine. The calculation of absorbed doses in the middle plane of cylindrical acrylic volumes was accomplished by a treatment planning system. Experimentally, we also used cylindrical acrylic phantoms and thermoluminescent dosimeters to confirm the calculated doses. The data obtained were represented by isodose curves. We observed that an irradiation volume should have a height of 28 cm and a diameter of 28 cm and a height of 35 cm and a diameter of 35 cm, when the irradiation is to be performed by a linear accelerator and a cobalt-60 teletherapy unit, respectively. Calculated values of relative doses varied from 93% to 100% in the smaller volume, and from 66% to 100% in the largest one. A difference of 5.0%, approximately, was observed between calculated and experimental data. The size of these volumes permits the irradiation of blood bags in only one bath without compromising the homogeneity of the absorbed dose over the irradiated volume. Thus, these irradiation volumes can be recommend to minimize the irradiation time when a teletherapy unit is used to irradiate blood.

  14. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature. (note)

  15. A fibre optic scintillator dosemeter for absorbed dose measurements of low-energy X-ray-emitting brachytherapy sources

    A newly developed dosemeter using a 0.5 mm diameter x 0.5 mm thick cylindrical plastic scintillator coupled to the end of a fibre optic cable is capable of measuring the absorbed dose rate in water around low-activity, low-energy X-ray emitters typically used in prostate brachytherapy. Recent tests of this dosemeter showed that it is possible to measure the dose rate as a function of distance in water from 2 to 30 mm of a 103Pd source of air-kerma strength 3.4 U (1 U = 1 μGy m2h-1), or 97 MBq (2.6 mCi) apparent activity, with good signal-to-noise ratio. The signal-to-noise ratio is only dependent on the integration time and background subtraction. The detector volume is enclosed in optically opaque, nearly water-equivalent materials so that there is no polar response other than that due to the shape of the scintillator volume chosen, in this case cylindrical. The absorbed dose rate very close to commercial brachytherapy sources can be mapped in an automated water phantom, providing a 3-D dose distribution with sub-millimeter spatial resolution. The sensitive volume of the detector is 0.5 mm from the end of the optically opaque waterproof housing, enabling measurements at very close distances to sources. The sensitive detector electronics allow the measurement of very low dose rates, as exist at centimeter distances from these sources. The detector is also applicable to mapping dose distributions from more complex source geometries such as eye applicators for treating macular degeneration. (authors)

  16. Absorbed dose due to radioiodine therapy by organs of patients with hyperthyroidism; Dose absorvida em orgaos de pacientes com hipertiroidismo devido a radioiodoterapia

    Lima, F.F.; Khoury, H.J.; Bertelli Neto, L. [Pernambuco Univ., Recife, PE (Brazil); Laboratorios CERPE, Recife, PE (Brazil); Bertelli Neto, L. [Instituto de Radioprotecao e Dosimetria (IRD), Rio de Janeiro, RJ (Brazil)

    1999-07-01

    The dose absorbed by organs of patients with hyperthyroidism treated with {sup 131} I was estimated by using the MIRDOSE computer program and data from ICRP-53. The calculation were performed using effective half-life and uptake average values, which were determined for 17 patients treated with 370 MBq and 555MBq of {sup 131} I. The results shown that the dose in the thyroid, for a 370 MBq administrated activity, was of 99 Gy and 49.5 Gy for 60 g and 80 g thyroid respectively. The average dose estimated in other organs were relatively low, presenting values lower than 0.1 Gy in the kidneys, bone marrow and ovaries and 0.19 Gy in the stomach.

  17. Estimation of Absorbed Dose Rate and Collective Effective Dose Equivalent Due to Gamma Radiation from Selected Radionuclides in Soil in Ondo and Ekiti State, South-Western Nigeria

    The concentrations of natural radionuclides, namely 40K, 238U and 232Th, in surface soils in Ondo and Ekiti States, south-western Nigeria have been measured using a very sensitive gamma ray spectroscopic system consisting of a 760 mm x 760 mm NaI(Tl) scintillation detector coupled to a Canberra Series 10 Plus multichannel analyser. The mean absorbed dose rate, annual effective dose equivalent and the collective effective dose equivalent in these states have been estimated from the measured concentrations of the radionuclides, which are 0.015 ± 0.008 μGy.h-1, 18.4 μSv.y-1 and 73.6 man.Sv.y-1 respectively. (author)

  18. Estimation of Absorbed Dose Rate and Collective Effective Dose Equivalent Due to Gamma Radiation from Selected Radionuclides in Soil in Ondo and Ekiti State, South-Western Nigeria

    Ajayi, I.R.; Ajayi, O.S

    1999-07-01

    The concentrations of natural radionuclides, namely {sup 40}K, {sup 238}U and {sup 232}Th, in surface soils in Ondo and Ekiti States, south-western Nigeria have been measured using a very sensitive gamma ray spectroscopic system consisting of a 760 mm x 760 mm NaI(Tl) scintillation detector coupled to a Canberra Series 10 Plus multichannel analyser. The mean absorbed dose rate, annual effective dose equivalent and the collective effective dose equivalent in these states have been estimated from the measured concentrations of the radionuclides, which are 0.015 {+-} 0.008 {mu}Gy.h{sup -1}, 18.4 {mu}Sv.y{sup -1} and 73.6 man.Sv.y{sup -1} respectively. (author)

  19. Absorbed dose at subcellular level by Monte Carlo simulation for a 99mTc-peptide with nuclear internalization

    The utility of radiolabeled peptides for the early and specific diagnosis of cancer is being investigated around the world. Recent investigations have demonstrated the specificity of 99mTc-bombesin conjugates to target breast and prostate cancer cells. The novel idea of adding the Tat (49-57) peptide to the radiopharmaceutical in order to penetrate the cell nucleus is a new proposal for therapy at cellular level. 99mTc radionuclide produces Auger energy of 0.9 keV/decay and internal conversion electron energy of 15.4 keV/decay, which represent 11.4% of the total 99mTc energy released per decay. It is expected that the dose delivered at specific microscopic levels in cancer cells induce a therapeutic effect. The aim of this research was to assess in vitro internalization kinetics in breast and prostate cancer cells of 99mTc-Tat(49-57)-bombesin and to evaluate the radiation absorbed dose at subcellular level simulating the electron transport. The pen main program from the 2006 version of the Penelope code was used to simulate and calculate the absorbed dose by Auger and internal conversion electron contribution in the membrane, cytoplasm and nucleus of Pc-3 prostate cancer and MCF7 and MDA human breast cancer cell lines. Nuclear data were obtained from the 2002 BNM-LNHB 99mTc decay scheme. The spatial distribution of the absorbed doses to the membrane, cytoplasm and nucleus were calculated using a geometric model built from real images of cancer cells. The elemental cell composition was taken from the literature. The biokinetic data were obtained evaluating total disintegrations in each subcellular compartment by integration of the time-activity curves acquired from experimental data. Results showed that 61, 63 and 46% of total disintegrations per cell-bound 99mTc-Tat-Bn activity unit occurred in the nucleus of Pc-3, MCF7 and MDA-MB231 respectively. 99mTc--Tat-Bn absorbed doses were 1.78, 5.76 and 2.59 Gy/Bq in the nucleus of Pc-3, MCF7 and MDA-MB231 correspondingly

  20. Measurement and modeling of gamma-absorbed doses due to atmospheric releases from Los Alamos Meson Physics Facility

    Short-term gamma-absorbed doses were measured by one high-pressure ionization chamber (HPIC) at an azimuth of 120 from the Los Alamos Meson Physics Facility (LAMPF) stack during the January 1 through February 8 operating cycle. Two HPICs were in the field during the September 8 through December 31 operating cycle, one north and the other north-northeast of the LAMPF stack, but they did not provide reliable data. Meteorological data were also measured at both East Gate and LAMPF. Airborne emission data were taken at the stack. Daily model predictions, based on the integration of modeled 15-min periods, were made for the first LAMPF operating cycle and were compared with the measured data. A comparison of the predicted and measured daily gamma doses due to LAMPF emissions is presented. There is very good correlation between measured and predicted values. During 39-day operating cycles, the model predicted an absorbed dose of 10.3 mrad compared with the 8.8 mrad that was measured, an overprediction of 17%

  1. Clinicodiagnostic particularities of microcarcinomas at children who has thyroid cancer in dependence on absorbed doses

    The study showed that microcarcinomas are characterized by long latent development period under comparison with tumors of more than 1 cm. There was marked statistically significant increase of TTG concentration level comparing with low dose at children in high dose group which can be the evidence of possibility of a thyroid functional status decrease during further period of time. (authors)

  2. Absorbed Doses and Risk Estimates of (211)At-MX35 F(ab')2 in Intraperitoneal Therapy of Ovarian Cancer Patients

    Cederkrantz, Elin; Andersson, Håkan; Bernhardt, Peter;

    2015-01-01

    , intraperitoneal (i.p.) targeted α therapy has been proposed as an adjuvant treatment for minimal residual disease after successful primary treatment. In the present study, we calculated absorbed and relative biological effect (RBE)-weighted (equivalent) doses in relevant normal tissues and estimated the effective...... infused therapy solution. RESULTS: The urinary bladder, thyroid, and kidneys (1.9, 1.8, and 1.7 mGy per MBq/L) received the 3 highest estimated absorbed doses. When the tissue-weighting factors were applied, the largest contributors to the effective dose were the lungs, stomach, and urinary bladder. Using...... 100 MBq/L, organ equivalent doses were less than 10% of the estimated tolerance dose. CONCLUSION: Intraperitoneal (211)At-MX35 F(ab')2 treatment is potentially a well-tolerated therapy for locally confined microscopic ovarian cancer. Absorbed doses to normal organs are low, but because the effective...

  3. EPR evaluation of absorbed doses in γ-irradiated animal bone tissues

    By the ESR method accumulation of CO2- radicals in γ-irradiated bone tissues of swine, chicken, cattle, navaga and other small fish of the cod family, hen's eggs shell was studied to reveal the fact of radiation exposure and to evaluate exposure dose received during radiation treatment of food stuffs. It is shown that in the range of doses 0-10 kGy dependence of the radicals concentration on dose is of linear character, while coefficient of the radicals radiation-chemical yield variation for diverse biological types of bone tissue does not exceed 30 %. Potentiality of using the method of additive doses for the ESR dosimetry of radiation-treated beef was considered. It is shown that the linear model used in the additive doses method provides overrated results compared to the exponential model

  4. The international protocol for the dosimetry of external radiotherapy beams based on standards of absorbed dose to water

    An International Code of Practice (CoP, or dosimetry protocol) for external beam radiotherapy dosimetry based on standards of absorbed dose to water has been published by the IAEA on behalf of IAEA, WHO, PAHO and ESTRO. The CoP provides a systematic and internationally unified approach for the determination of the absorbed dose to water in reference conditions with radiotherapy beams. The development of absorbed-dose-to-water standards for high-energy photons and electrons offers the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. Many laboratories already provide calibrations at the radiation quality of 60Co gamma-rays and some have extended calibrations to high-energy photon and electron beams. The dosimetry of kilovoltage x-rays, as well as that of proton and ion beams can also be based on these standards. Thus, a coherent dosimetry system based on the same formalism is achieved for practically all radiotherapy beams. The practical use of the CoP as simple. The document is formed by a set of different CoPs for each radiation type, which include detailed procedures and worksheets. All CoPs are based on ND,w chamber calibrations at a reference beam quality Qo, together with radiation beam quality correction factors kQ preferably measured directly for the user's chamber in a standards laboratory. Calculated values of kQ are provided together with their uncertainty estimates. Beam quality specifiers are 60Co, TPR20,10 (high-energy photons), R50 (electrons), HVL and kV (x-rays) and Rres (protons and ions)

  5. Comparing calibration methods of electron beams using plane-parallel chambers with absorbed-dose to water based protocols

    Recent absorbed-dose-based protocols allow for two methods of calibrating electron beams using plane-parallel chambers, one using the ND,wCo for a plane-parallel chamber, and the other relying on cross-calibration of the plane-parallel chamber in a high-energy electron beam against a cylindrical chamber which has an ND,wCo factor. The second method is recommended as it avoids problems associated with the Pwall correction factors at 60Co for plane-parallel chambers which are used in the determination of the beam quality conversion factors. In this article we investigate the consistency of these two methods for the PTW Roos, Scanditronics NACP02, and PTW Markus chambers. We processed our data using both the AAPM TG-51 and the IAEA TRS-398 protocols. Wall correction factors in 60Co beams and absorbed-dose beam quality conversion factors for 20 MeV electrons were derived for these chambers by cross-calibration against a cylindrical ionization chamber. Systematic differences of up to 1.6% were found between our values of Pwall and those from the Monte Carlo calculations underlying AAPM TG-51, and up to 0.6% when comparing with the IAEA TRS-398 protocol. The differences in Pwall translate directly into differences in the beam quality conversion factors in the respective protocols. The relatively large spread in the experimental data of Pwall, and consequently the absorbed-dose beam quality conversion factor, confirms the importance of the cross-calibration technique when using plane-parallel chambers for calibrating clinical electron beams. We confirmed that for well-guarded plane-parallel chambers, the fluence perturbation correction factor at dmax is not significantly different from the value at dref. For the PTW Markus chamber the variation in the latter factor is consistent with published fits relating it to average energy at depth

  6. On the influence of the patient's posture on organ and tissue absorbed doses caused by radiodiagnostic examinations

    Standing and supine (=lying on one's back) postures are most frequently used positions for patients submitted to examinations in radiodiagnosis. When it comes to the assessment of organ and tissue absorbed doses, human phantoms connected to Monte Carlo (MC) codes are applied which usually represent individuals either in standing or in supine posture, i.e. that depending on the protocol of the examination to be simulated, some of the MC calculations are made using a phantom with the false posture. To find out if the posture has a significant impact on organ and tissue absorbed doses, one has to model phantoms to represent humans in different postures and to use them under exactly the same exposure conditions. FASH2sta, MASH2sta and FASH2sup, MASH2sup are pairs of female and male adult phantoms in standing and supine posture, respectively. The phantoms will be used for the simulation of X-ray examinations of the thorax and the abdomen and resulting organ and tissue absorbed doses will be compared for the two postures. This synopsis will show results for a thorax radiograph of the FASH2sta and the FASH2sup phantoms. Up to 50% of all examinations of the thorax are being made with lying patients in intensive care or simply because hospitalized patients cannot stand up and/or turn around. The tube voltage is 90 kV, the filtration 2.5 mm Al, the FDD = 105 cm and the field size in the image receptor plane 35 cm x 40 cm. Normally, the patient is in supine posture and the projection is AP (ventro-dorsal). The field is centred on the middle of the sternum

  7. Proton and electron deep dose profiles for retinoblastoma based on GEANT 4 code

    Braga, Flavia V., E-mail: flaviafisica@gmail.co [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares; Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Campos, Tarcisio P.R. de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares; Ribeiro, Kilder L., E-mail: kilderlr@gmail.co [Universidade Estadual de Feira de Santana (UEFS), BA (Brazil). Dept. de Fisica

    2009-07-01

    Herein, the dosimetry responses to a retinoblastoma proton and electron radiation therapy were investigated. The computational tool applied to this simulation was the Geant4 code, version 4.9.1. The code allows simulating the charge particle interaction with eyeball tissue. In the present simulation, a box of 4 cm side water filled had represented the human eye. The simulation was performed considering mono energetic beams of protons and electrons with spectra of 57 to 70 MeV for protons and 2 to 8 MeV for electrons. The simulation was guide by the advanced hadron therapy example distributed with the Geant4 code. The phantom was divided in voxels with 0.2 mm side. The energy deposited in each voxel was evaluated taken the direct beam at one face. The simulation results show the delivery energy and therefore the dose deposited in each voxel. The deep dose profiles to proton and electron were plotted. The well known Bragg peak was reproduced for protons. The maximum delivered dose defined the position at the proton stopped. However, to electrons, the absorbed energies were delivered along its path producing a more continuous distribution following the water depth, but also being stopped in the end of its path. (author)

  8. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine

    Mikell, Justin; Cheenu Kappadath, S.; Wareing, Todd; Erwin, William D.; Titt, Uwe; Mourtada, Firas

    2016-06-01

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA ® for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and 192Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as 131I and 90Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ({{M}0},{{M}1},{{M}2} ), energy group structures ({{E}0},{{E}1},{{E}2} ) for each radionuclide component, angular quadrature orders (≤ft. {{S}4},{{S}8},{{S}16}\\right) , and scattering order expansions ({{P}0} –{{P}6} ); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  ‑3% to  ‑20% with larger differences at lower energies (‑3% for 1 MeV electron in lung to  ‑20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for 90Y and 131I were  ‑6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a

  9. Comparison of the standards for absorbed dose to water of the NRC and the BIPM for accelerator photon beams

    Picard, S.; Burns, D.T.; Roger, P.; Allisy-Roberts, P.J. [Bureau International des Poids et Mesures (BIPM), 92 - Sevres (France); McEwen, M.R.; Cojocaru, C.D.; Ross, C.K. [National Research Council of Canada, Ionizing Radiation Standards, Ottawa, ON (Canada)

    2010-12-15

    A comparison of the dosimetry for high-energy accelerator photon beams was carried out between the National Research Council of Canada (NRC) and the Bureau International des Poids et Mesures (BIPM) in June 2009. The comparison was based on the determination of absorbed dose to water for three radiation qualities. The comparison result, reported as a ratio of the NRC and the BIPM evaluations, is 0.997 at 6 MV, 1.001 at 10 MV and 0.994 at 25 MV, each with a relative standard uncertainty of 6 * 10{sup -3}. This result is the first of the ongoing BIPM.RI(I)-K6 comparison. (authors)

  10. Evaluation of a deterministic grid-based Boltzmann solver (GBBS) for voxel-level absorbed dose calculations in nuclear medicine.

    Mikell, Justin; Cheenu Kappadath, S; Wareing, Todd; Erwin, William D; Titt, Uwe; Mourtada, Firas

    2016-06-21

    To evaluate the 3D Grid-based Boltzmann Solver (GBBS) code ATTILA (®) for coupled electron and photon transport in the nuclear medicine energy regime for electron (beta, Auger and internal conversion electrons) and photon (gamma, x-ray) sources. Codes rewritten based on ATTILA are used clinically for both high-energy photon teletherapy and (192)Ir sealed source brachytherapy; little information exists for using the GBBS to calculate voxel-level absorbed doses in nuclear medicine. We compared DOSXYZnrc Monte Carlo (MC) with published voxel-S-values to establish MC as truth. GBBS was investigated for mono-energetic 1.0, 0.1, and 0.01 MeV electron and photon sources as well as (131)I and (90)Y radionuclides. We investigated convergence of GBBS by analyzing different meshes ([Formula: see text]), energy group structures ([Formula: see text]) for each radionuclide component, angular quadrature orders ([Formula: see text], and scattering order expansions ([Formula: see text]-[Formula: see text]); higher indices imply finer discretization. We compared GBBS to MC in (1) voxel-S-value geometry for soft tissue, lung, and bone, and (2) a source at the interface between combinations of lung, soft tissue, and bone. Excluding Auger and conversion electrons, MC agreed within  ≈5% of published source voxel absorbed doses. For the finest discretization, most GBBS absorbed doses in the source voxel changed by less than 1% compared to the next finest discretization along each phase space variable indicating sufficient convergence. For the finest discretization, agreement with MC in the source voxel ranged from  -3% to  -20% with larger differences at lower energies (-3% for 1 MeV electron in lung to  -20% for 0.01 MeV photon in bone); similar agreement was found for the interface geometries. Differences between GBBS and MC in the source voxel for (90)Y and (131)I were  -6%. The GBBS ATTILA was benchmarked against MC in the nuclear medicine regime. GBBS can be a

  11. Spectra and absorbed dose by photo-neutrons in a solid water mannequin exposed to a Linac of 15 MV

    Using Monte Carlo methods was modeled a solid water mannequin; according to the ICRU 44 (1989), Tissue substitutes in radiation dosimetry and measurements, of the International Commission on Radiation Units and Measurements; Report 44. This material Wt 1 is made of H (8.1%), C (67.2%), N (2.4%), O (19.9%), Cl (0.1%), Ca (2.3%) and its density is of 1.02 gr/cm3. The mannequin was put instead of the patient, inside the treatment room and the spectra and absorbed dose were determined by photo-neutrons exposed to a Linac of 15 MV. (Author)

  12. The role of nuclear reactions in Monte Carlo calculations of absorbed and biological effective dose distributions in hadron therapy

    Brons, S; Elsässer, T; Ferrari, A; Gadioli, E; Mairani, A; Parodi, K; Sala, P; Scholz, M; Sommerer, F

    2010-01-01

    Monte Carlo codes are rapidly spreading among hadron therapy community due to their sophisticated nuclear/electromagnetic models which allow an improved description of the complex mixed radiation field produced by nuclear reactions in therapeutic irradiation. In this contribution results obtained with the Monte Carlo code FLUKA are presented focusing on the production of secondary fragments in carbon ion interaction with water and on CT-based calculations of absorbed and biological effective dose for typical clinical situations. The results of the simulations are compared with the available experimental data and with the predictions of the GSI analytical treatment planning code TRiP.

  13. The study of space and energy distribution of personal absorbed dose of neutron from H-bomb

    Nowadays, many work have been done on the measurement and calculation of the space and energy distribution of neutron from H-bomb explosion. However, the established air and soil medium models are rough in the study of theoretical calculation before. The author established three air-soil mediums, and chose explosion height and space radial distance which have military meaning. The results of space and energy distribution of neutron personal absorbed dose from H-bomb are obtained through calculation. Many conclusion on radiation protection and nuclear monitoring have made

  14. Simultaneos determination of absorbed doses due to beta and gamma radiations with CaSO4: Dy produced at Ipen

    Due to the Goiania radiological accident, it was necessary to develop urgently a dosimeter in order to evaluate, simultaneously, beta and gamma absorbed doses, due to 137Cs radiations. Therefore, the Dosimetric Material Production Laboratory of IPEN developed a simple, practical, light and low cost badge using small thickness (0,20mm) thermoluminescent CaSO4: Dy pellets produced by the same laboratory. This pellets are adequate for beta radiation detection. These dosimeters were worn by some IPEN technicians who worked in Goiania city, and were used to evaluate the external and internal contaminations presented by the accident victims interned at the Hospital Naval Marcilio Dias. (author)

  15. Hormone regulation system and cyclic nucleotids in the Chernobyl accident liquidators with doses absorbed less then 1 Gy

    During 6 years after the accident (1987-1992) a functional state of endocrine system that regulate the adaptation, reproduction, metabolism, vessels tonicity and water-electrolyte balance were investigated in 249 liquidators with doses absorbed less then 1 Gy. The changes of these systems activity in state of basal secretion and peculiarities of their reactions under influence of perturbation (adrenaline, insulin) were revealed. Post-irradiation endocrinopathy was characterized and its role in decrease of the organism's adaptation and in mechanism of sanogenesis and pathogenesis was found. (author)

  16. Estimate of the absorbed dose in the mouse organs and tissues after tritium administration

    Chronic and accidental release of tritium from future fusion facilities may cause some extent of hazardous effect to the public health. Various experiments using small animals such as mice have been performed to mimic the dose accumulation due to tritium intake by the human body. An difficulty in such animal experiments using small animals is that it is rather difficult to administer tritium orally and estimate the dose to small organs or tissues. In the course of our study, a simple method to administer THO and T-labeled amino acids orally to the mouse was dictated and dose accumulation in various organs and tissues was determined. The tritium retention in the bone marrow was also determined using the micro-centrifuge method. Throughout our experiment, colony-bred DDY mice were used. The 8-10 week old male mice were orally and intraperitoneally administered THO water or T-amino acids mixture solution. For the purpose of oral administration, a 10 μl aliquot of T-containing saline solution was placed on the tongue of the mice using an automatic micropipette. At various times after tritium administration, the animals were sacrificed and the amount of tritium in various tissues and organs including bone marrow was examined. Dose accumulation pattern after THO intake and T-amino acids was compared between intraperitoneal injection and oral administration. The accumulated dose after oral administration of THO exhibited a tendency to be 10-20% higher than after intraperitoneal injection. The bone marrow dose after oral intake of THO was found to be lower than the doses to urine, blood, liver and testis. In contrast, the blood dose gave a conservative estimate for the dose to the other tissues and organs. (author)

  17. 3D-personalized Monte Carlo dosimetry in 90Y-microspheres therapies of primary and secondary hepatic cancers: absorbed dose and biological effective dose considerations

    Full text of publication follows. Purpose: a 3D-Personalized Monte Carlo Dosimetry (PMCD) was developed for treatment planning in nuclear medicine. The method was applied to Selective Internal Radiation Therapy (SIRT) using 90Y-microspheres for unresectable hepatic cancers. Methods: The PMCD method was evaluated for 20 patients treated for hepatic metastases or hepatocellular carcinoma at the European Hospital Georges Pompidou (Paris). First, regions of interest were outlined on the patient CT images. Using the OEDIPE software, patient-specific voxel phantoms were created. 99mTc-MAA SPECT data were then used to generate 3D-matrices of cumulated activity. Absorbed doses and Biologically Effective Dose (BED) were calculated at the voxel scale using the MCNPX Monte Carlo transport code. Finally, OEDIPE was used to determine the maximum injectable activity (MIA) for tolerance criteria on organs at risk (OARs), i.e. the lungs and non tumoral liver (NTL). Tolerance criteria based on mean absorbed doses, mean BED, Dose-Volume Histograms (DVHs) or BED-Volume Histograms (BVHs) were considered. Those MIAs were compared to the Partition Model with tolerance criteria on mean absorbed doses, which is a conventional method applied in clinical practice. Results: compared to Partition Model recommendations, performing dosimetry using the PMCD method enables to increase the activity prescription while ensuring OARs' radiation protection. Moreover, tolerance criteria based on DVHs allow us to enhance treatment planning efficiency by taking advantage of the parallel characteristic of the liver and the lungs, whose functions are not impaired if the level of irradiation to a fraction of the organ is kept sufficiently low. Finally, multi-cycle treatments based on tolerance criteria on mean BED and BVHs, were considered to go further in the dose optimization, taking into account biological considerations such as cell repair or radiosensitivity. Conclusion: besides its feasibility

  18. Estimation of radiation absorbed doses for 6-18F-L-DOPA in human based on rats biodistribution

    To estimate the radiation absorbed doses in humans due to intravenous administration of 6-18F-L-DOPA (18F-DOPA) based on rats biodistribution data and appraise the security of 18F-DOPA in humans. At 5, 30, 60, 90, 120 and 150 min after 18F-DOPA is injected into rats through a tail vein, the rats are killed by cervical fracture and biodistribution in rats are determined. Radiation dosimetry in humans are calculated on the base of activity distribution in rats and the standard MIRD method using radioactivity-time curves for humans. The kidney is the organ receiving highest dose of 22.9 pGy/Bq, the brain receives a dose of 11.8 pGy/Bq, and other organs receive doses between 9 and 18 pGy/Bq. The effective dose is estimated to be 20.5 pSv/Bq. The results demonstrate that human radiation dosimetry can be estimated to be 20.5 pSv/Bq. The results demonstrate that human radiation dosimetry can be estimated by the rats biodistribution data and provide an important data for clinical safe trial of 18F-DOPA

  19. Distribution of absorbed dose rate in air because of terrestrial gamma radiation in Miyako-jima, Okinawa Prefecture, Japan

    The absorbed dose rate in air because of terrestrial gamma radiation in Miyako-jima, an island that is part of Okinawa Prefecture in the subtropical region of Japan, was estimated at 637 points by in situ measurements with spectrometers equipped with 3''φ x 3''NaI(Tl) and 1''φ x 2''NaI(TL) scintillation detectors. The mean, minimum, and maximum dose rates were calculated to be about 79 nGy/h, 3 nGy/h, and 165 nGy/h, respectively. The correlation of the dose rate and geology showed that the high-rate areas (>100 nGy/h) and the distribution of the Holocene red soils (Onokoshi Clay) overlap each other. On the other hand, the low dose rates (<30 nGy/h) were mainly found in an outcrop of the Pleistocene Ryukyu Limestone, the main geologic element in the foundation of the red soils. Recent studies (e.g., Inoue et al., 1993) concluded that most of the red soils were not residuals from the base rocks, but of eolian dust ''Kosa (Yellow Sand)'' origin. These results strongly indicate that the dose rate in Miyako-jima has been enhanced as a result of eolian deposits transported mainly from the arid region of China since the last glacial epoch. (author)

  20. Three-dimensional reciprocal space profile of an individual nanocrystallite inside a thin-film solar cell absorber layer

    The strain profile of an individual Cu(In,Ga)Se2 nanocrystallite in a solar cell absorber layer is accessed using synchrotron radiation. We find that the investigated crystallite is inhomogeneously strained. The strain is most likely produced by a combination of intergranular strain and composition variations in nanocrystals inside the polycrystalline semiconductor film and carries information about the intercrystalline interaction. The measurements are made nondestructively and without additional sample preparation or x-ray beam nanofocusing. This is the first step towards measurements of strain profiles of individual crystallites inside a working solar cell. (paper)

  1. Standard Practice for Application of Thermoluminescence-Dosimetry (TLD) Systems for Determining Absorbed Dose in Radiation-Hardness Testing of Electronic Devices

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for the use of thermoluminescence dosimeters (TLDs) to determine the absorbed dose in a material irradiated by ionizing radiation. Although some elements of the procedures have broader application, the specific area of concern is radiation-hardness testing of electronic devices. This practice is applicable to the measurement of absorbed dose in materials irradiated by gamma rays, X rays, and electrons of energies from 12 to 60 MeV. Specific energy limits are covered in appropriate sections describing specific applications of the procedures. The range of absorbed dose covered is approximately from 10−2 to 104 Gy (1 to 106 rad), and the range of absorbed dose rates is approximately from 10−2 to 1010 Gy/s (1 to 1012 rad/s). Absorbed dose and absorbed dose-rate measurements in materials subjected to neutron irradiation are not covered in this practice. Further, the portion of these procedures that deal with electron irradiation are primarily intended for use in parts testin...

  2. Evaluation of the absorbed dose to the kidneys due to Tc99m (DTPA) / Tc99m (Mag3) and Tc99m (Dmsa)

    The absorbed dose in the kidneys of adult patients has been assessed using the biokinetics of radiopharmaceuticals containing Tc99m (DTPA) / Tc99m (Mag3) or Tc99m (Dmsa).The absorbed dose was calculated using the formalism MIRD and the Cristy-Eckerman representation for the kidneys. The absorbed dose to the kidneys due to Tc99m (DTPA) / Tc99m (Mag3), are given by 0.00466 mGy.MBq-1 / 0.00339 mGy.MBq-1. Approximately 21.2% of the absorbed dose is due to the bladder (content) and the remaining tissue, included in biokinetics of Tc99m (DTPA) / Tc99m (Mag3). The absorbed dose to the kidneys due to Tc99m (Dmsa) is 0.17881 mGy.MBq-1. Here, 1.7% of the absorbed dose is due to the bladder, spleen, liver and the remaining tissue, included in biokinetics of Tc99m (Dmsa). (Author)

  3. Experimental determination of the absorbed dose to water in a scanned proton beam using a water calorimeter and an ionization chamber

    Gagnebin, Solange; Twerenbold, Damian; Pedroni, Eros; Meer, David; Zenklusen, Silvan; Bula, Christian

    2010-03-01

    The absorbed dose to water is the reference physical quantity for the energy absorbed in tissue when exposed to beams of ionizing radiation in radiotherapy. The SI unit of absorbed dose to water is the gray (Gy = 1 J/kg). Ionization chambers are used as the dosimeters of choice in the clinical environment because they show a high reproducibility and are easy to use. However, ionization chambers have to be calibrated in order to convert the measured electrical charge into absorbed dose to water. In addition, protocols require these conversion factors to be SI traceable to a primary standard of absorbed dose to water. We present experimental results where the ionization chamber used for the dosimetry for the scanned proton beam facility at PSI is compared with the direct determination of absorbed dose to water from the METAS primary standard water calorimeter. The agreement of 3.2% of the dose values measured by the two techniques are within their respective statistical uncertainties.

  4. Evaluation of absorbed dose in studies of renal function due to 123I/131I (hippuran) e 111In (DPTA)

    The absorbed dose of the kidneys during renal function studies of adult patients is estimated through biokinetics of radiopharmaceuticals containing the 123I/131I (hippuran) e 111In (DPTA). Using the methodology MIRD and representation Cristy-Eckerman for adult kidneys, it is shown that dosimetric contributions of organs of biokinetics 123I/131I (hippuran) e 111In (DPTA) are significant, in estimative of dose for renal function studies. Dosimetric contributions (body and whole bladder, kidneys excluding) are given by 11.90% (for 123I), 4.97% (for 131I) and 28.32% (for 111In). In all cases, the dosimetric contributions are mainly due to photons issued by the whole body

  5. Detection limits of absorbed dose of ionizing radiation in molluscan shells as determined by e.p.r. spectroscopy

    The exposure of waters to ionizing radiation from radionuclides imprisoned in dumped nuclear waste containers, freed in nuclear submarine accidents or released in underwater magma eruptions are difficult to be evaluated by conventional radiometric methods. Ionizing radiation evokes stable paramagnetic centers in crystalline lattice of mineral components in bone skeletons of mammals and fishes as well as in exoskeletons of mollusca. They give rise in e.p.r. to specific, extremely stable signals which are proposed to be applied as indicators of radiation exposure levels. In the present study the e.p.r. detection limits of the dose of ionizing radiation absorbed in shells of fresh water and marine mollusca (selected species) have been estimated. It has been found that with fresh water mollusca the dose of 1-2 Gy can be detected, while the sea water mollusca by one order of magnitude lower, i.e. about 0.1 Gy. (author)

  6. ON THE RELATIONSHIP BETWEEN AMBIENT DOSE EQUIVALENT AND ABSORBED DOSE IN AIR IN THE CASE OF LARGE-SCALE CONTAMINATION OF THE ENVIRONMENT BY RADIOACTIVE CESIUM

    V. P. Ramzaev

    2015-01-01

    Full Text Available One of the main aims of the study was an experimental determination of the conversion coefficient from ambient dose equivalent rate, Н*(10, to absorbed dose rate in air, D, in the case of radioactive contamination of the environment following the Chernobyl accident. More than 800 measurements of gamma-dose rates in air were performed at the typical locations (one-storey residential house, street, yard, kitchen-garden, ploughed field, undisturbed grassland, forest of rural settlements and their surroundings in the heavily contaminated areas of the Bryansk region, Russia in the period of 1996–2010. Five commercially available models of portable gamma-ray dosimeters were employed in the investigation. All tested dosimeters were included into the State register of approved measuring instruments of Russia. In all dosimeters, scintillation detectors are used as detection elements. A photon spectrometry technique is applied in the dosimeters to determine gamma dose rate in air. The dosimeters are calibrated in terms of exposure rate, X, absorbed dose rate in air, D, and ambient dose equivalent rate, Н*(10. A very good agreement was found between different dosimeters calibrated in the same units; the reading ratios were close to 1 and the correlation coefficients (Pearson’s or Spearman’s were higher than 0.99. The Н*(10/D ratio values were location-specific ranging from 1.23 Sv/Gy for undisturbed grasslands and forests to 1.47 Sv/Gy for wooden houses and asphalted streets. A statistically significant negative correlation (Spearman’s coefficient = -0.833; P<0.01; n=9 was found between the Н*(10/D ratio and the average energy of gamma-rays determined with a NaI(Tl-based gamma-ray monitor. For the whole area of a settlement and its surroundings, the average ratio of Н*(10 to D was calculated as 1.33 Sv/Gy. The overall conversion coefficient from ambient dose equivalent rate, Н*(10, to external effective dose rate, Ė, for adults was estimated

  7. Location of radiosensitive organs, measurement of absorbed dose to radiosensitive organs and use of bismuth shields in paediatric anthropomorphic phantoms

    thyroid organ dose was reduced to 46% (10-y-old). The combined use of single shield and AEC reduced the thyroid surface dose to a maximum of 70% (5-y-old); whilst the thyroid organ dose was reduced to 62% (10-y-old). The use of double shields and AEC activation further reduced the surface / organ dose to 76% / 65% (5-y-old). The maximum dose to the eye lenses due to neck CT was 7.0 mGy / 6.2 mGy (10-y-old) for FTC / AEC. The maximum breast dose attributable to neck CT was 0.6 mGy for 5-, and 10-y-old phantoms for all protocols. For thorax CT scans, the use of AEC induced a significant increase in the thyroid organ dose by a maximum value of 70% (1-y-old), and thyroid surface dose by 70% (newborn), and mean breast surface dose by 69% (newborn). The maximum increase of the effective dose as a result of application of AEC was 54% (newborn). In conclusion, the production of charts of radiosensitive organs inside paediatric anthropomorphic phantoms for dosimetric purposes was feasible. In-plane bismuth thyroid shielding decreases radiation dose in MDCT with/without deteriorating image quality. AEC was more effective in thyroid dose reduction than in-plane bismuth shields (head and neck CT, neck CT). AEC increased the absorbed dose to both the thyroid and the breast, as well as the effective dose in thorax CT. Thus, AEC should be abandoned as a dose optimisation tool during thoracic MDCT, especially in neonates, infants and children younger than 10-years-old. Placement of the spacer between shield and surface had no significant impact on the measured doses, but significantly decreased the image noise. (au)

  8. From Reference Air Kerma Rate to Nominal Absorbed Dose Rate to Water: Paradigm Shift in Photon Brachytherapy

    In brachytherapy (BT), photon radiation sources are presently calibrated in terms of the reference air kerma rate Kδ (or air kerma strength SK). By direct source calibration in terms of Dw,1, the nominal absorbed dose rate to water at the TG-43U1 reference position at 1 cm in water and with the ability to measure distributions of this quantity, the accuracy of clinical BT-dosimetry should increase due to decreased calibration uncertainties compared to present methods. Several Dw,1 primary standards are under development for high energy, high dose rate and low energy, low dose rate sources. To provide worldwide traceability and guidance for clinical medical physicists, an ISO standardization project, Clinical Dosimetry - Photon Radiation Sources Used in Brachytherapy, is considered, in continuation of ISO 21439 (2009) for beta sources. Clear terms and definitions are fundamental. Reclassification of BT-photon radiation qualities is also needed, introducing a range of medium energy photons with mean energies between 40 keV and 150 keV. Radionuclide BT-sources and electronic X ray BT-sources, BT-detectors and BT-phantoms should be characterized by sets of reference data, through which the clinical medical physicist could critically evaluate the data supplied by the manufacturer, prior to clinical application. Plastic scintillators have the potential for transfer standards of high accuracy and for verification measurements of BT-source output in phantoms. Based on and extending the AAPM TG-43U1 formalism, this planned ISO-standard will provide guidance for clinical BT-dosimetry in terms of absorbed dose to water and for estimating the uncertainties. (author)

  9. High-Dose 131I-Tositumomab (Anti-CD20) Radioimmunotherapy for Non-Hodgkin's Lymphoma: Adjusting Radiation Absorbed Dose to Actual Organ Volumes

    Radioimmunotherapy (RIT) using 131I-tositumomab has been used successfully to treat relapsed or refractory B-cell non-Hodgin's lymphoma (NHL). Our approach to treatment planning has been to determine limits on radiation absorbed close to critical nonhematopoietic organs. This study demonstrates the feasibility of using CT to adjust for actual organ volumes in calculating organ-specific absorbed dose estimates. Methods: Records of 84 patients who underwent biodistribution studies after a trace-labeled infusion of 131I-tositumomab for RIT (January 1990 and April 2003) were reviewed. Serial planar -camera images and whole-body Nal probe counts were obtained to estimate 131I-antibody source-organ residence times as recommended by the MIRD Committee. The source-organ residence times for standard man or woman were adjusted by the ratio of the MIRD phantom organ mass to the CT-derived organ mass. Results: The mean radiation absorbed doses (in mGy/MBq) for our data using the MIRD model were lungs= 1.67; liver= 1.03; kidneys= 1.08; spleen= 2.67; and whole body= 0.3; and for CT volume-adjusted organ volumes (in mGy/MBq) were lungs= 1.30; liver= 0.92; kidneys= 0.76; spleen= 1.40; and whole body= 0.22. We determined the following correlation coefficients between the 2 methods for the various organs; lungs, 0.49; (P= 0.0001); liver, 0.64 (P= 0.004); kidneys, 0.45 (P= 0.0001), for the residence times. For therapy, patients received mean 131I administered activities of 19.2 GBq (520 mCi) after adjustment for CT-derived organ mass compared with 16.0 GBq (433 mCi) that would otherwise have been given had therapy been based only using standard MIRD organ volumes--a statistically significant difference (P= 0.0001). Conclusion: We observed large variations in organ masses among our patients. Our treatments were planned to deliver the maximally tolerated radiation dose to the dose-limiting normal organ. This work provides a simplified method for calculating patient-specific radiation

  10. Standardisation and Validation of Cytogenetic Markers to Quantify Radiation Absorbed Dose

    Venkatachalam Perumal

    2011-02-01

    Full Text Available The amounts of radiation exposure received by radiation workers are monitored generally by physical dosimeters like thermoluminescence dosimeter (TLD and film badge. However, in practice the over-exposure recorded by physical dosimeters need to be confirmed with biological dosimeters. In addition to confirming the dose recorded by physical dosimeters, biological dosimeters play an important role in estimating the doses received during accidental exposures. Exposure to high levels of radiation induces certain  biochemical, biophysical, and immunological changes (biomarkers in a cell. Measurement of these changes are generally precise but cannot be effectively used to assess the dose, as the level of these changes return to normalcy within hours to months after exposure. Thus, among various biological indicators, cytogenetic indicators are considered practical and reliable for dose estimation. The paper highlights the importance and establishment of biodosimetry facility using genetic markers such as the sensitive dicentric chromosomes, rapid micronucleus assay and stable translocations measured using fluorescence in situ hybridisation and GTG banding for retrospective dose estimation. Finally, the development of gH2AX assay, as a potential marker of triage dosimeter, is discussed.Defence Science Journal, 2011, 61(2, pp.125-132, DOI:http://dx.doi.org/10.14429/dsj.61.832

  11. Variations in absorbed doses from 51Cr in investigations with labelled erythrocytes

    In nuclear medicine 51Cr labelled red blood cells are used to determine erythrocyte volume, red cell survival, or the site of red cell destruction. The author examined the variations in adsorbed doses from 51Cr in 77 patients with various diseases in whom erythrokinetic investigations were performed for diagnostic purposes. Autologous erythrocytes were incubated with Na2CrO4 (37 kBq (1.0 uCi) 51Cr/kg body weight) and injected intravenously. 51Cr activity in blood was then followed for 10 weeks. 51Cr activity over liver, spleen, and sacrum and whole-body retention of 51Cr were measured for the same period. A compartmental model was assumed to describe the kinetics of 51Cr tagged to red blood cells. It is a noncirculating linear model with the compartments represented by organs (spleen, liver, bone, residual body) rather than physiological compartments. The computer program SAAM-25 was used to provide the kinetic parameters and the organ retention functions. From the cumulated activities of the source regions, organ doses and effective dose equivalents were calculated according to the MIRD concepts. The highest organ doses were found for spleen, liver, and red marrow. The calculated dose values for 51Cr found in this study confirm only partly the values reported in ICRP Publication 17, but are higher up to a factor of 9 for some organs. 16 references, 1 figure, 3 tables

  12. A model study on the absorbed dose of radiation following respiratory intake of 238U3O8 aerosols

    Aerosols of depleted uranium oxides, formed upon high-energy impact of shells on hard targets during military operations, are able to disperse, reach the alveolar region of the lungs and be absorbed and distributed throughout various parts of the body. The absorbed particles are subjected to clearance in the upper respiratory tract, distribution to other body districts, dissolution and excretion. While the soluble forms of uranium are known to deliver a small dose of radiation to the body due to their homogeneous distribution and the low specific activity of 238U, ceramic particles exhibit a low dissolution rate and irradiate a limited volume of tissue for a long time with alpha particles with an energy of 4.267 MeV. The extent of the irradiated tissues depends on the radius of the particles and the total intake of uranium oxides. For the measured intake of U3O8 of a war veteran (15.51 μg) the number of particles ranges from 5.56x104 to 6.95x106 for sizes of 0.4-2.0 μm. Modelling the distribution of the particles between two compartments of the body, the averaged dose absorbed in 20 y by tissues surrounding the particles and within the range of the alpha particles varies from 6.8 mGy to 0.85 Gy for lungs and 8.1 mGy to 1.0 Gy for the lymph nodes, respectively. Correspondingly, due to the clearance and redistribution, the mass irradiated by 2.0-mm particles falls in 20 y from 6.06 mg to 0.94 μg in the lungs and grows from 0 to 1.0 mg in the lymph nodes. The estimated rate of formation of hydroxyl radicals upon radiolysis of water in the lungs and lymph nodes is 5.17x104 d-1 per cell after 1 y. (authors)

  13. Thyroid dose of I-131 absorbed by the internal organs of a pregnant woman

    The use of nuclear techniques, for diagnosis or treatment, generates stress in the patient and its relatives. During the pregnancy some sufferings related with the thyroid gland can be presented. If the patient is pregnant, OEP or NOEP, the stress comes from the fear to that the product can it turns affected. The dose is calculated that the Iodine 131, captured by the thyroid of a woman with three months of pregnancy, it deposits in the brain, stomach, heart, kidneys, liver, lungs, ovaries, pancreas, thymus, spleen and in the uterus. The thymus is the organ that receives the biggest dose. (Author)

  14. Calorimetry for absorbed dose measurement at 1-4 MeV electron accelerators

    Calorimeters are used for dose measurement, calibration and intercomparisons at industrial electron accelerators, and their use at 10 MeV electron accelerators is well documented. The work under this research agreement concerns development of calorimeters for use at electron accelerators with energies in the range of 2-4 MeV. The dose range of the calorimeters is 3-40 kGy, and their temperature stability after irradiation was found to be sufficient for practical use in an industrial environment. Measurement uncertainties were determined to be 5% at k = 2. (author)

  15. The Effects on Absorbed Dose Distribution in Intraoral X-ray Imaging When Using Tube Voltages of 60 and 70 kV for Bitewing Imaging

    Kristina Hellén-Halme

    2013-10-01

    Full Text Available Objectives: Efforts are made in radiographic examinations to obtain the best image quality with the lowest possible absorbed dose to the patient. In dental radiography, the absorbed dose to patients is very low, but exposures are relatively frequent. It has been suggested that frequent low-dose exposures can pose a risk for development of future cancer. It has previously been reported that there was no significant difference in the diagnostic accuracy of approximal carious lesions in radiographs obtained using tube voltages of 60 and 70 kV. The aim of this study was, therefore, to evaluate the patient dose resulting from exposures at these tube voltages to obtain intraoral bitewing radiographs.Material and Methods: The absorbed dose distributions resulting from two bitewing exposures were measured at tube voltages of 60 and 70 kV using Gafchromic® film and an anatomical head phantom. The dose was measured in the occlusal plane, and ± 50 mm cranially and caudally to evaluate the amount of scattered radiation. The same entrance dose to the phantom was used. The absorbed dose was expressed as the ratio of the maximal doses, the mean doses and the integral doses at tube voltages of 70 and 60 kV.Results: The patient receives approximately 40 - 50% higher (mean and integral absorbed dose when a tube voltage of 70 kV is used.Conclusions: The results of this study clearly indicate that 60 kV should be used for dental intraoral radiographic examinations for approximal caries detection.

  16. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Garnica-Garza, H M [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional Unidad Monterrey, Via del Conocimiento 201 Parque de Investigacion e Innovacion Tecnologica, Apodaca NL C.P. 66600 (Mexico)], E-mail: hgarnica@cinvestav.mx

    2009-09-21

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 deg. arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  17. Reduction of Absorbed Dose in Storage Phosphor Urography by Significant Lowering of Tube Voltage and Adjustment of Image Display Parameters

    Purpose: To investigate whether image quality in storage phosphor urography can be maintained when the X-ray tube voltage is significantly lowered to give a lower patient dose. Material and Methods: Initial phantom studies were used to establish exposure settings at 53 kV that gave signal-to-noise ratios for contrast media structures equivalent to those obtained at the reference kilovoltage of 69 kV. Dose area product and image quality, assessed by image quality criteria and visual grading, were then recorded for 44 patients drawn at random to be examined by either the standard or modified technique. Results: Absorbed dose could be reduced by more than 30% without any significant change in image quality in manually controlled exposures and by 3% in exposures controlled by AEC. Conclusion: It might be possible to lower the tube voltage in digital examinations involving contrast media as a means of lowering patient dose. The image display parameters need to be adjusted to maintain image quality

  18. Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors

    Radiotherapy using kilovoltage x-rays in conjunction with contrast agents incorporated into the tumor, gold nanoparticles in particular, could represent a potential alternative to current techniques based on high-energy linear accelerators. In this paper, using the voxelized Zubal phantom in conjunction with the Monte Carlo code PENELOPE to model a prostate cancer treatment, it is shown that in combination with a 360 deg. arc delivery technique, tumoricidal doses of radiation can be delivered to deep-seated tumors while still providing acceptable doses to the skin and other organs at risk for gold concentrations in the tumor within the range of 7-10 mg-Au per gram of tissue. Under these conditions and using a x-ray beam with 90% of the fluence within the range of 80-200 keV, a 72 Gy physical absorbed dose to the prostate can be delivered, while keeping the rectal wall, bladder, skin and femoral heads below 65 Gy, 55 Gy, 40 Gy and 30 Gy, respectively. However, it is also shown that non-uniformities in the contrast agent concentration lead to a severe degradation of the dose distribution and that, therefore, techniques to locally quantify the presence of the contrast agent would be necessary in order to determine the incident x-ray fluence that best reproduces the dosimetry obtained under conditions of uniform contrast agent distribution.

  19. TLD estimation of absorbed dose for 131I on the surface of biological organs of REMCAL phantom

    In nuclear medicine, the accuracy of absorbed dose of an internally distributed radiopharmaceuticals estimated by the MIRD (medical internal radiation dose) method depends on the cumulated activity of the source organs and their mass. The usual method for obtaining the cumulated activities are: 1) direct measurements by a) positron emission tomography (PET) and b) single photon emission computed tomography (SPECT) 2) extrapolation from animal data and 3) calculations based on the mathematical biokinetic model. Among these methods, extrapolation of animal data to humans includes inevitable inaccuracy due to large interspecies metabolic differences with regard to the administered radiochemical. Biokinetic modeling requires adequate knowledge of various kinetic parameters, which is based on some biological assumptions. Direct measurements can provide cumulated distributions with fewer biological assumptions. But direct measurements of PET/SPECT are difficult to perform routinely. A method has been developed to obtain the surface dose of different biological organs by using TLDs. Here, a number of TLDs are placed just above the surface of the biological organs of the REMCAL Alderson human phantom filled with water. Firstly, investigation of the accuracy of this method by calibration studies using the said phantom, which is having the entire biological organ intact and simulate the organs as human body is done. These organs are filled with the known activity of the radioisotope. In the present study, estimation of radiation dose received by fifteen different target organs, when the known activity was filled in the three major organs of interest was carried out

  20. Dose determination with nitro blue tetrazolium containing radiochromic dye films by measuring absorbed and reflected light

    Kovács, A.; Baranyai, M.; Wojnárovits, L.;

    2000-01-01

    Tetrazolium salts as heterocyclic organic compounds are known to form highly coloured, water insoluble formazans by reduction, which can be utilized in radiation processing dosimetry. Radiochromic films containing nitro blue tetrazolium dissolved in a polymer matrix were found suitable for dose...

  1. Measurement of multi-slice computed tomography dose profile with the Dose Magnifying Glass and the MOSkin radiation dosimeter

    This study describes the application of two in-house developed dosimeters, the Dose Magnifying Glass (DMG) and the MOSkin dosimeter at the Centre for Medical Radiation Physics, University of Wollongong, Australia, for the measurement of CT dose profiles for a clinical diagnostic 16-slice MSCT scanner. Two scanner modes were used; axial mode and helical mode, and the effect of varying beam collimation and pitch was studied. With an increase in beam collimation in axial mode and an increase of CT pitch in helical mode, cumulative point dose at scanner isocentre decreased while FWHM increased. There was generally good agreement to within 3% between the acquired dose profiles obtained by the DMG and the film except at dose profile tails, where film over-responded by up to 30% due to its intrinsic depth dose dependence at low doses. -- Highlights: ► This study shows the CT beam profiles acquired with our institution's detectors. ► The DMG is a relative dosimeter calibrated to absolute MOSkin readings. ► There was good agreement between dose profiles acquired by the DMG and the film

  2. Determination of an Absorbed Dose of MOSFET Dosimeter using Monte Carlo N-Particle Simulation with Different Tallies and Response Functions

    Hyun, Hae Ri; Hong, Ser Gi [Kyung Hee University, Yongin (Korea, Republic of); Kim, Yong Nam; Kim, Soo Kon [Kangwon National University Hospital, Chuncheon (Korea, Republic of)

    2015-05-15

    In this paper, we performed MOSFET dosimeter simulation using the latest MCNP version code (MCNP 6). In order to determine the absorbed dose, we set the four source positions of 0 .deg. , 90 .deg. , 180 .deg. and 270 .deg. directions as in the previous study2. And, the absorbed dose traversed by electrons in the sensitive volume of extremely thin layer (1..m) was determined by both F4 tally (i.e., track length estimator) and F8 tally (i.e., energy deposition tally). However, the accurate determination of the absorbed dose in the very small volume is quite difficult due to the extremely small sensitive volume, which results a large variance in the tally with the typical number of source particles. To resolve this difficulty, we used MCNP [ESTEP] option and F4 tally. In this paper, we performed Monte Carlo simulation of MOSFET dosimeter using MCNP6. In particular, the F4 track length and*F8 energy deposition estimators coupled with the ESTEP option in MCNP [Material data card] were used to accurately estimate the absorbed doses in the extremely small sensitive volume. In order to calculate the absorbed dose in the sensitive volume, we used MCNP F4 tally which is referred to the track length estimator and F8 tally. The ESTEP option in MCNP accommodates enough number of sub-steps for an accurate simulation of the electron's trajectory. Also, MCNP [DE card] and [DF card] are used in the track length estimator to determine the absorbed dose over the sensitive volume. Also, we considered two different response functions in the F4 track length tally to calculate the absorbed doses. The first one is calculated with the formulations suggested by Schaart et al and the second one is the mass electronic collision stopping power which was extracted from MCNP output.

  3. Simulations of absorbed dose on the phantom surface of MATROSHKA-R experiment at the ISS

    Kolísková, Zlata; Sihver, L.; Ambrožová, Iva; Sato, T.; Spurný, František; Shurshakov, V. A.

    2012-01-01

    Roč. 49, č. 2 (2012), s. 230-236. ISSN 0273-1177 R&D Projects: GA ČR GA205/09/0171; GA AV ČR KJB100480901; GA ČR GD202/09/H086 Institutional research plan: CEZ:AV0Z10480505 Keywords : MATROSHKA-R * PHITS * Simulations * Space radiation * Dose estimation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.183, year: 2012

  4. Detector photon response and absorbed dose and their applications to rapid triage techniques

    Voss, Shannon Prentice

    As radiation specialists, one of our primary objectives in the Navy is protecting people and the environment from the effects of ionizing and non-ionizing radiation. Focusing on radiological dispersal devices (RDD) will provide increased personnel protection as well as optimize emergency response assets for the general public. An attack involving an RDD has been of particular concern because it is intended to spread contamination over a wide area and cause massive panic within the general population. A rapid method of triage will be necessary to segregate the unexposed and slightly exposed from those needing immediate medical treatment. Because of the aerosol dispersal of the radioactive material, inhalation of the radioactive material may be the primary exposure route. The primary radionuclides likely to be used in a RDD attack are Co-60, Cs-137, Ir-192, Sr-90 and Am-241. Through the use of a MAX phantom along with a few Simulink MATLAB programs, a good anthropomorphic phantom was created for use in MCNPX simulations that would provide organ doses from internally deposited radionuclides. Ludlum model 44-9 and 44-2 detectors were used to verify the simulated dose from the MCNPX code. Based on the results, acute dose rate limits were developed for emergency response personnel that would assist in patient triage.

  5. Tumoral fibrosis effect on the radiation absorbed dose of 177Lu–Tyr3-octreotate and 177Lu–Tyr3-octreotate conjugated to gold nanoparticles

    The aim of this work was to evaluate the tumoral fibrosis effect on the radiation absorbed dose of the radiopharmaceuticals 177Lu–Tyr3-octreotate (monomeric) and 177Lu–Tyr3-octreotate–gold nanoparticles (multimeric) using an experimental HeLa cells tumoral model and the Monte Carlo PENELOPE code. Experimental and computer micro-environment models with or without fibrosis were constructed. Results showed that fibrosis increases up to 33% the tumor radiation absorbed dose, although the major effect on the dose was produced by the type of radiopharmaceutical (112 Gy-multimeric vs. 43 Gy-monomeric). - Highlights: • Fibrosis increases the radiation absorbed dose to the tumor. • Fibrosis increases the radiopharmaceutical residence time in the tumor. • The multimeric nature of the radiopharmaceuticals enhances the radiopharmaceutical retention

  6. Evaluation of absorbed doses in voxel-based and simplified models for small animals

    Internal dosimetry in non-human biota is desirable from the viewpoint of radiation protection of the environment. The International Commission on Radiological Protection (ICRP) proposed Reference Animals and Plants using simplified models, such as ellipsoids and spheres and calculated absorbed fractions (AFs) for whole bodies. In this study, photon and electron AFs in whole bodies of voxel-based rat and frog models have been calculated and compared with AFs in the reference models. It was found that the voxel-based and the reference frog (or rat) models can be consistent for the whole-body AFs within a discrepancy of 25 %, as the source was uniformly distributed in the whole body. The specific absorbed fractions (SAFs) and S values were also evaluated in whole bodies and all organs of the voxel-based frog and rat models as the source was distributed in the whole body or skeleton. The results demonstrated that the whole-body SAFs reflect SAFs of all individual organs as the source was uniformly distributed per mass within the whole body by about 30 % uncertainties with exceptions for body contour (up to -40 %) for both electrons and photons due to enhanced radiation leakages, and for the skeleton for photons only (up to +185 %) due to differences in the mass attenuation coefficients. For nuclides such as 90Y and 90Sr, which were concentrated in the skeleton, there were large differences between S values in the whole body and those in individual organs, however the whole-body S values for the reference models with the whole body as the source were remarkably similar to those for the voxel-based models with the skeleton as the source, within about 4 and 0.3 %, respectively. It can be stated that whole-body SAFs or S values in simplified models without internal organs are not sufficient for accurate internal dosimetry because they do not reflect SAFs or S values of all individual organs as the source was not distributed uniformly in whole body. Thus, voxel-based models

  7. Rigorous modelling of light's intensity angular-profile in Abbe refractometers with absorbing homogeneous fluids

    We derive an optical model for the light intensity distribution around the critical angle in a standard Abbe refractometer when used on absorbing homogenous fluids. The model is developed using rigorous electromagnetic optics. The obtained formula is very simple and can be used suitably in the analysis and design of optical sensors relying on Abbe type refractometry.

  8. Determination of absorbed dose in body inhomogeneities such as lung, bone and fat tissue for neutron therapy

    Dose distribution calculations for an 'inhomogeneous' patient have been performed for cyclotron and 14 MeV neutron therapy facilities using radiation transport programs. Precise dose determination in the patient is very important for the success of neutron therapy. The results were evaluated and transformed into inhomogeneity correction factors appropriate for treatment-planning code systems. The kerma distribution is represented by an analytical formula. For each kind of tissue two inhomogeneity correction factors are needed; these transform the neutron and gamma dose measured in a homogeneous water phantom by a tissue-equivalent detector to the specific values of the patient. The first correction factor adjusts the water attenuation coefficient in the exponential part of the dose formula to that of the patient, and the second factor corrects the kerma from TE gas to the particular human tissue being considered. It is the second factor that is responsible for the jump or discontinuity in the absorbed dose of about 25% between soft tissue and bone or for the 14% increase of kerma in fat tissue. Various sets of inhomogeneity factors were provided, and these are stored in tabular form in the code. The external and internal contours of a patient can be derived from CT images. The user of the code has to identify the kind of tissue for each inhomogeneity volume using a specified code name. Additionally, individual CT numbers can be supplied to characterize, for example, the density and mineral content of bone, the density and water content of the lung, or the density and fat content of critical skin regions. According to the CT number given, fine adjustments of the correction factors can be used to describe the inhomogeneity effects individually for each patient. (author)

  9. Study of the heterogeneity effects of lung in the evaluation of absorbed dose in radiotherapy

    The main objective of radiotherapy is to deliver the highest possible dose to the tumour, in order to destroy it, reducing as much as possible the doses to healthy tissues adjacent to the target volume. Therefore, it is necessary to do a planning of the treatment. The more complex is the treatment, the more difficult the planning will be, demanding computation sophisticated methods in its execution, in order to consider the heterogeneities present in the human body. Additionally, with the appearing of new radiotherapeutic techniques, that used irradiation fields of small area, for instance, the intensity modulated radiotherapy, the difficulties for the execution of a reliable treatment planning, became still larger. In this work it was studied the influence of the lung heterogeneity in the planning of the curves of percentage depth dose, PDP, obtained with the EclipseR planning system for different sizes of irradiation fields, using the correction algorithms for heterogeneities available in the planning system: modified Batho, general Batho and equivalent tissue-air ratio. A thorax phantom, manufactured in acrylic, containing a region made of cork to simulate the lung tissue, was used. The PDP curves generated by the planning system were compared to those obtained by Monte Carlo simulation and with the use of thermoluminescent, TL, dosimetry. It was verified that the algorithms used by the EclipseR system for the correction of heterogeneity effects are not able to generate correct results for PDP curves in the case of small fields, occurring differences of up to 100%, when the 1x1 cm2 treatment field is considered. These differences can cause a considerable subdosage in the lung tissue, reducing the possibility of the patient cure. (author)

  10. Monte Carlo Simulation Of Absorbed Dose From LINAC On VOXEL Phantom By Using MCNP5 Code

    In this work, we use MCNP5 code for simulating dose distribution calculation from LINAC on phantom CT. CT images obtained from cancer treatment cases at Cho Ray hospital. In order to transform CT images into data of MCNP5 input file we also build a program CODIM by using MATLAB programming software. The results show that there is a difference of 5% in comparison to DSS program - a semi-empirical simulation program which is being used for treatment planning in Cho Ray hospital. (author)

  11. Use of PET Images in Assessment of Brain Absorbed Dose of Patients Undergoing [C-11] Raclopride Positron Emission Tomography

    The positron emission tomography (PET) in combination with [C-11] raclopride is commonly used for early detection of the Parkinson's disease. Injection of considerable amount of radioactivity, typically 300∼500 MBq of [C-11] at a time, for the examination calls for attention to doses to tissues of the patient, particularly to the brain. Since [C-11] raclopride is not a common radiopharmaceutical, dosimetric data for internal dose evaluation are rare yet. In this study, an attempt was made to determine doses to the brain and the striatum of patients by use of the PET images obtained for the clinical purposes. Four informed patients suffering Parkinson's disease participated in this study. Time series of 18 frames, 35 slices in each frame, of PET images of the head were obtained. By transforming the pixel intensity in the assigned region of interests into radioactivity contents, the retention curves were constructed to evaluate the residence times. Absorbed doses to the target tissues were calculated by applying the S-values given in the MIRDOSE3.1 code. The resulting dose coefficients for the whole brain and the striatum were 0.0110±0.0016 mGy/MBq and 0.0664±0.0238 mGy/MBq, respectively. The brain dose coefficient is considerably higher than the corresponding values in other studies employing healthy subjects. This may be attributed to probable enhanced capture of [C-11] raclopride by the dopamine D2 receptors in case of subjects with Parkinson's disease. The transcrianial magnetic stimulation (TMS) procedures are often used in treatment of Parkinson's disease. If the procedure stimulates secretion of dopamine, less retention of [C-11] raclopride is expected due to competition. So the similar assessments were made for the same patients after TMS treatments. Disappointingly, the ratios of residence time without TMS to that with TMS were 0.943±0.074 and 0.98±0.14 for the brain and the striatum, respectively. For the striatum, the ratios for three patients were

  12. Evaluation and comparison of human absorbed dose of 90Y-DOTA-Cetuximab in various age groups based on distribution data in rats

    The organ radiation-absorbed doses have been evaluated for humans in six age groups and both genders based on animal data. After intravenous administration of 90Y-DOTA-Cetuximab to five groups of rats, they were sacrificed at exact time intervals (2, 24, 48, 72, and 96 h) and the percentage of injected dose per gram of each organ was calculated by direct counting from rat data. By using the formulation that Medical Internal Radiation Dose suggests, radiation-absorbed doses for all organs were calculated and extrapolated from rat to human. The total body absorbed dose for all groups was >22 mGy due to pure β-emission of the applied radiopharmaceutical. The effective dose resulting from an intravenously injected activity of 100 MBq is 56.7 mSv for a 60-kg female adult and 60.3 mSv for a 73-kg male adult. The results demonstrated the usefulness of this method for estimation of β-absorbed dose in humans. (author)

  13. The distribution of absorbed dose from x-rays as a function of depth

    Cummings, Frederick

    2000-08-01

    Organizations responsible for monitoring the occupational exposure to radiation workers in the U.S. are directed to measure the dose to specific depths in tissue. The knowledge of the depth distribution of energy deposited by radiation in materials is essential to the interpretation of devices used to measure occupational exposure In this work, the quantities used to convert the reference transfer quantity for x-ray fields, air kerma, to the regulatory quantity, dose equivalent, for mono- energetic x-ray fields and poly-energetic x-ray fields specified by the National Institute of Standards and Technology are cogenerated for European x-ray fields are indicated and consistent conversion factors for use in the U.S. are recommended. For the mono-energetic x-ray beams conversion factors ranged from 0.9 to 1.7 at the 7 mg/cm2 depth and from 0.03 to 1.9 at the 1000 mg/cm2 depth in tissue specified by the International Commission of Radiation Units and Measurements. The conversion factors for the NIST x-ray fields were reasonably consistent with values in an unpublished draft standard by the American National Standards Institute, but exhibited sufficient disagreement to warrant a re-evaluation of the factors in that document prior to publication.

  14. Human absorbed dose calculations for 123I labeled phenyl pentadecanoic acid

    I-123 labeled fatty acids have been proposed for studying myocardial metabolism by scintigraphic methods. With the availability of clean I-123 and the advent of single photon emission tomography, I-123 labeled fatty acids would be well suited to study regional myocardial viability or metabolism in humans. The authors have studied I-125 and I-123 labeled iodophenyl pentadecanoic acid (IPPA) in rats and dogs. Clinical studies are in progress with I-123 (IPPA). They have studied the pharmacokinetics of this tracer in male Sprague-Dawley rats at 0.25, 0.5, 1, 3, 6, and 24 hours postinjection. The cumulated doses, due to both pure I-123 and a version contaminated with 1.4% I-125, in various organs and the total body in humans are estimated. The average dose to organs for humans injected with I-123 IPPA with pure I-123 and contaminated I-123 respectively, are (rads to organ per mCi injected): heart wall (0.0507, 0.0514), liver (0.0792, 0.0875), kidneys (0.0479, 0.0561), thyroid (0.0517, 0.0638), ovaries (0.0427, 0.0561), testes (0.0307, 0.0309), total body (0.0386, 0.0392). 12 references, 9 figures, 5 tables

  15. The use of the TL and OSL phenomena for determination of absorbed dose rates of 90Sr + 90Y sources by a postal method

    International recommendations establish that 90Sr + 90Y clinical applicators have to be calibrated in order to determine the absorbed dose rates in the case of the sources that do not have original calibration certificates, or to update the absorbed dose rates presented in the source certificates. Following these recommendations, a postal dosimetric system was developed to calibrate clinical applicators using two luminescent techniques: thermoluminescence (TL) and optically stimulated luminescence (OSL). In this work, Al2O3:C commercial detectors were characterized and their TL and OSL responses were analyzed. The results showed the efficiency and the optimal behavior of this material in beta radiation beams. After characterization, the system was sent to the Federal University of Sergipe (UFS), Brazil, for calibration of five 90Sr + 90Y clinical applicators, where the detectors were irradiated and returned to IPEN, for their evaluation and determination of the absorbed dose rates. A comparison between these absorbed dose rates and those adopted by the UFS as original was made; the differences obtained were within those of other studies, and they demonstrated the usefulness of the system. - Highlights: • A postal dosimetric system was developed to calibrate clinical applicators. • Al2O3:C samples were characterized in relation to their TL and OSL response. • The clinical applicators from UFS were calibrated. • The absorbed dose rates were compared with those provided on the certificates

  16. Absorbed body dose simulation in Thyroid cancer therapy using MCNP4Cand ITScodes and comparison to experimental results

    Two standard particle transport codes of MCNP4C and integrated tiger series were used to estimate the total body dose in a thyroid cancer therapy study, with I-131 as the radionuclide source. Human body was modeled by water and soft tissue ellipsoids. Phantoms' dimensions were selected according to Brow nell recommendation. Absorbed fractions were calculated by both codes for different phantoms and for gammas with 0.364 MeV energy, which has the highest fraction in I-131 emitting gammas. Results were compared to the data published by Brow nell et.al.. Figure 1 shows the results of MCNP4C and Integrated Tiger Series with results published by Brow nell et. al.

  17. Application of cavity theories for electrons to the derivation of absorbed dose conversion factor Csub(E)

    The cavity theories of Burlin et al., Almond and McCray, Holt et al., and Fregene for electron beams have been used to obtain values of absorbed dose conversion factor Csub(E) for high energy electrons, using a general expression for an air walled ionization thimble chamber. All four theories yield consistent values of Csub(E) except for Burlin et al.'s at low energies. Values obtained from Holt et al.'s and Fregene's expressions are very much in agreement with those already presented by ICRU and Nahum and Greening. With appropriate conditions previous expressions for Csub(E) could be obtained from at least one of the theories. (author)

  18. A dosimetric evaluation of tissue equivalent phantom prepared using 270 Bloom gelatin for absorbed dose imaging in Gamma knife radiosurgery

    Tissue equivalent gel phantoms have been widely studied in radiation therapy for both relative and reference dosimetry. A Fricke xylenol gel (FXG) spherical phantom was evaluated by means of magnetic resonance image method (MRI) to measure absorbed dose distribution resulted from gamma knife irradiation. The FXG phantom was prepared using 270 Bloom gelatin. The gelatin is a tissue equivalent material, of easy preparation, can be used to mold phantoms into different shapes and volumes, is commercially available and inexpensive. The results show that the Fricke gel phantom prepared with 270 Bloom gelatin satisfy the requirements to be used for the quality control in stereotactic radiosurgery using Gamma Knife technique and may constitute one more option of dosimeter in radiation therapy applications.

  19. A dosimetric evaluation of tissue equivalent phantom prepared using 270 Bloom gelatin for absorbed dose imaging in Gamma knife radiosurgery

    Cavinato, C. C.; Rodrigues, O., Jr.; Cervantes, J. H.; Rabbani, S. R.; Campos, L. L.

    2009-05-01

    Tissue equivalent gel phantoms have been widely studied in radiation therapy for both relative and reference dosimetry. A Fricke xylenol gel (FXG) spherical phantom was evaluated by means of magnetic resonance image method (MRI) to measure absorbed dose distribution resulted from gamma knife irradiation. The FXG phantom was prepared using 270 Bloom gelatin. The gelatin is a tissue equivalent material, of easy preparation, can be used to mold phantoms into different shapes and volumes, is commercially available and inexpensive. The results show that the Fricke gel phantom prepared with 270 Bloom gelatin satisfy the requirements to be used for the quality control in stereotactic radiosurgery using Gamma Knife technique and may constitute one more option of dosimeter in radiation therapy applications.

  20. Estimation of absorbed radiation dose rates in wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi nuclear power plant accident

    The dose rates of radiation absorbed by wild rodents inhabiting a site severely contaminated by the Fukushima Dai-ichi Nuclear Power Plant accident were estimated. The large Japanese field mouse (Apodemus speciosus), also called the wood mouse, was the major rodent species captured in the sampling area, although other species of rodents, such as small field mice (Apodemus argenteus) and Japanese grass voles (Microtus montebelli), were also collected. The external exposure of rodents calculated from the activity concentrations of radiocesium (134Cs and 137Cs) in litter and soil samples using the ERICA (Environmental Risk from Ionizing Contaminants: Assessment and Management) tool under the assumption that radionuclides existed as the infinite plane isotropic source was almost the same as those measured directly with glass dosimeters embedded in rodent abdomens. Our findings suggest that the ERICA tool is useful for estimating external dose rates to small animals inhabiting forest floors; however, the estimated dose rates showed large standard deviations. This could be an indication of the inhomogeneous distribution of radionuclides in the sampled litter and soil. There was a 50-fold difference between minimum and maximum whole-body activity concentrations measured in rodents at the time of capture. The radionuclides retained in rodents after capture decreased exponentially over time. Regression equations indicated that the biological half-life of radiocesium after capture was 3.31 d. At the time of capture, the lowest activity concentration was measured in the lung and was approximately half of the highest concentration measured in the mixture of muscle and bone. The average internal absorbed dose rate was markedly smaller than the average external dose rate (<10% of the total absorbed dose rate). The average total absorbed dose rate to wild rodents inhabiting the sampling area was estimated to be approximately 52 μGy h−1 (1.2 mGy d−1), even 3 years after

  1. Soil radioactivity and radiation absorbed dose rates at roadsides in high-traffic density areas in Ibadan metropolis, southwestern Nigeria

    The effect of ionising of ionising radiation on biological systems depends among other factors on time and place of exposure and population involved. Socio-economic factors in human daily activities have subjected humans to certain environmental health risks. In most cases the risk appears to be higher outdoors than indoors. In order to quantify the radiation exposure levels to individuals in the outdoors in areas with high human and vehicular densities, roadside soil samples were collected from major bus stops and round-about in the metropolis of Ibadan and were analysed for their activity concentration levels using gamma-ray spectrometry. The 40K activity concentration ranged between 96.1 and 336.5 Bq kg-1 with a mean of 219.8 ± 71.4 Bq kg-1; 238U was in the range of 10.2-40.7 Bq kg-1 with a mean of 20.3 ± 6.9 Bq kg-1 while that of 232Th ranged between 13.3 and 29.7 Bq kg-1 with a mean of 21.2 ± 5.3 Bq kg-1. The total gamma absorbed dose rates in air ranged between 17.2 and 41.8 nGy h-1 with an average of 32.0 ± 5.8 nGy h-1. The gamma absorbed dose rates at the roadsides in traffic density areas were found to be lower when compared with previously reported values in natural and undisturbed locations in non-traffic density areas in the city. (authors)

  2. Calculation of factors to convert from air kerma to absorbed dose to water for medium energy photons

    The IPEMB code of practice for the determination of absorbed dose for X-rays below 300 kV generating potential is a dedicated dosimetry protocol for the determination of absorbed dose based on the air kerma evaluation method for medium energy X-rays. Three separate energy ranges are dealt with in the code of practice, however, this report is only attempting to reproduce the factors in one particular range (0.5 - 4.0 nun Cu HVL) for X-rays generated at 135 and 280 kV. These X-ray qualities are used in the NPL therapy level calibration service. This new method includes the use of an air kerma calibration factor, NK, for the ionisation chamber, and the ratio of the mass-energy absorption coefficients of water to air and factors that account for the change in the response of a NE2561 ionisation chamber between calibration in air and measurement in a water phantom, kch, instead of the old F factor. This report describes the work that was undertaken to reproduce the product of the ratio of the mass-energy absorption coefficients of water to air and the kch factors. The majority of this work was carried out using Monte Carlo techniques based on the EGS4 code system. The factors calculated in this report were found to agree with values quoted in the IPEMB code of practice to within 4.2%. The quoted uncertainty for this work is 1.4% and the uncertainties for the factors quoted in the EPEMB code of practice are 3%. Hence this is reasonable agreement. Possible discrepancies in the values may be due either to limitations in the EGS4 code system, simplifications made in the chamber geometry or on the reliance on experimental data which is not quite applicable to its' use in this work. (author)

  3. Radon concentration, absorbed dose rate in air and concentration of natural radionuclides in soil in the Osaka district of Japan

    Radon concentrations in outdoor air at 18 sites in the Osaka district, in the central part of Japan's main island, were measured with electrostatic integrating radon monitors which were developed by Y Ikebe et al of the Osaka survey centre as part of a nationwide survey of radon indoors and outdoors in Japan conducted by the National Institute of Radiological Science. The mean radon concentration in outdoor air during 2-month periods was measured over a period of a year and a half. In addition, the absorbed dose rate in air and the concentration of natural radionuclides in soil were measured at 40 sites in Osaka Prefecture which is located in the central part of the Osaka district using thermoluminescence dosemeters and with gamma ray spectrometry, respectively. Radon concentration in outdoor air showed a seasonal pattern, reaching its maximum during the winter and its minimum during the summer, but this variation was not significant at the coastal sites. It was concluded that this variation is correlated with a seasonal wind which blows from the continental interior to the ocean in winter and in the opposite direction in summer, as well as with geographical factors. Radon concentration in outdoor air in the Osaka district ranged from 0.6 to 17.9 Bq.m-3 and mean annual radon concentration in outdoor air at the 18 sites ranged from 2.7 to 6.9 Bq.m-3. It was discovered that radon concentration in outdoor air decreased with wind speed in both winter and summer. The absorbed dose rate in air ranged from 66 to 114 nGy.h-1, and the concentration of 226Ra in soil ranged from 20 to 60 Bq.kg-1 respectively. (author)

  4. CALCULATION STUDIES OF SPATIAL DISTRIBUTION OF THE ABSORBED DOSE RATE FOR VARIOUS SEEDS

    N. A. Nerozin

    2015-01-01

    Full Text Available Purpose. Conducting computational studies of dosimetric characteristics of microsources with the radionuclide I‑125, pilot production of which is established in the research and production complex of isotope and radiopharmaceuticals, JSC “State Scientific Centre of the Russian Federation — Institute for Physics and Power Engineering named after A. I. Leypunsky” (SSC RF IPPE. Sources of production IPPE are similar to the model 6711 of the company Nicomed Amersham, dosimetric characteristics of which are standardized in accordance with the TG43 AAPM formalism.Materials and methods. Microsourse «SEED No. 6711» (model of the company Nicomed Amersham is hermetically sealed in a titanium capsule silver rod covered with a thin layer of radioactive I‑125. The half-life of iodine‑125 is 59,43 days. In the process of decay of I‑125 is converted into the Te‑125.Calculation of parameters of microsources and their comparison with the standard model 6711 is carried out with use of the computer code MCNP.Results. The method of calculation of the basic dosimetric characteristics of the microsourse SSC RF-IPPE in accordance with the TG43 formalism is developed. A comparative analysis of experimental data and calculated results by MCNP code, which allowed to identify possible reasons for differences, is performed. The estimated dose characteristics and recommended standard data for dose characteristics of micro «SEED No. 6711» are compared.Conclusions. There are two possible reasons for the differences between experimental and calculated results. The first one may be the roughness of the surface of a silver rod or diffusion of radioactive iodine in silver. The second reason might be the difference of the cross sections of the characteristic radiation of silver used in MCNP code. In the comparison of calculated dose characteristics and recommended standard the role of the application activity is very important. In compliance with the standard

  5. Modeling the absorbed dose to the common carotid arteries following radioiodine treatment of benign thyroid disease

    la Cour, Jeppe Lerche; Hedemann-Jensen, Per; Søgaard-Hansen, Jens;

    2013-01-01

    External fractionated radiotherapy of cancer increases the risk of cardio- and cerebrovascular events, but less attention has been paid to the potential side effects on the arteries following internal radiotherapy with radioactive iodine (RAI), i.e. 131-iodine. About 279 per million citizens in the...... western countries are treated each year with RAI for benign thyroid disorders (about 140,000 a year in the EU), stressing that it is of clinical importance to be aware of even rare radiation-induced side effects. In order to induce or accelerate atherosclerosis, the dose to the carotid arteries has to...... exceed 2 Gy which is the known lower limit of ionizing radiation to affect the endothelial cells and thereby to induce atherosclerosis....

  6. Influence of post-harvest irradiation time and absorbed dose to potatoes and onions

    Post harvest losses of potatoes and onions were mainly due to sprouting and rotting. Irradiation dose of 50 Gy for onions and of 100 Gy for potatoes applied within the dormancy period effectively inhibited sprouting. In Vietnam conditions the optimal irradiation time after harvest is 3 - 6 weeks for potatoes, within 4 weeks for onions. Irradiated potatoes and onions stored under ambient conditions tend to be more spoiled in comparison with unirradiated ones.Irradiation caused a slight decrease of vitamin C content and an increase of reduced sugars and total sugars for potatoes and onions stored under room temperature. There are no changes in main nutritional properties of irradiated onions, no after-cooking discoloration in irradiated potatoes. (author). 8 refs, 4 tabs, 9 figs

  7. Study of dose levels absorbed by members of the public in the nuclear medicine departments

    In nuclear Medicine, radioisotopes are bound to various compounds (called radiopharmaceuticals) for use in various diagnostic and therapeutic applications. These unsealed sources are administered in various forms to patients, who remain radioactive for hours or days, and represent a source of potential radiation exposure for others. Thus, in nuclear medicine departments, radiation protection of workers and members of the public, especially persons accompanying patients, must consider, this exposure. In Brazil, the Comissao Nacional de Energia Nuclear (CNEN) establishes that, in nuclear medicine departments, the patients and persons accompanying should be separated each other. However, this rule is not always followed due to many factors such as physical and emotional conditions of patients. In this context, the aim of this study was the investigation of dose levels, which the persons accompanying patients are exposed to. For monitoring, thermoluminescent dosimeters were employed. The dosimeters were given to 380 persons who were accompanying patients in nuclear medicine departments. Exposure results were lower than 1 mSv. On the basis of CNEN rules, issues regarding stay conditions for members of the public in these departments are discussed. (author)

  8. The analysis of impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources

    N. A. Nerosin

    2015-01-01

    Full Text Available The impact of irregularity in radionuclide coating of scaffold on the distribution of absorbed dose produced by grid of microsources was analyzed. On engineering software MATHCAD the program for calculation of absorbed dose produced by grid of microsources was created. To verify this algorithm the calculation model for MCNP code was established and represented the area consisted of soft biological tissue or any other tissue in which the grid of microsources was incorporated. Using the developed system the value of possible systematic irregular coating of radioactivity on the microsource’s core was analyzed. The distribution of activity along the surface of microsource was simulated to create distribution of absorbed dose rate corresponding to experimental data on radiation injury. The obtained model of microsource with irregular distribution of activity was compared to conventional microsource with core coated regularly along the entire area of the silver stem by main dosimetry characteristics. The results showed that even for extremely irregular distribution of activity the distribution of dose rate produced by microsource in the tumor area was not substantially different from dose-rate field obtained for microsource with regularly coated activity. The differences in dose rates (up to 10% in areas which were the nearest to the center of the grid were significantly lower than its decline from center to periphery of the grid. For spatial distribution of absorbed dose for specific configuration of microsource set and tracing of curves of equal level by selected cut-off the program SEEDPLAN was developed. The developed program represents precisely enough the spatial distribution of selected configuration set of microsources using results of calculation data for absorbed dose around the single microsource as basic data and may be used for optimal planning of brachytherapy with microsources. 

  9. Effect of absorbed dose and storage length on electron paramagnetic resonance (EPR) signal strength in irradiated alfalfa seeds

    2006-01-01

    A kind of alfalfa seeds was irradiated by 1, 2, 3, 4 and 5 kGy at a dose rate of 6.288 kGy. h-1 in a self-shielded irradiator of 137Cs gamma rays. The EPR spectra, which were measured subsequently between 0.3401and 0.3501 T, showed that there was a direct proportional relationship between the EPR signal strength of free radicals produced by gamma irradiation in the alfalfa seeds and absorbed dose. The first derivative EPR spectra of the alfalfa seeds were very clear and easy to identify. However, the EPR signal strength of the peak-to-peak amplitude decreased rapidly and most of them decayed beyond 50% within 3 days after the seeds were irradiated. It tended to stabilize after half a month since the seeds were irradiated. The differences of the EPR signal strength between the irradiated and unirradiated alfalfa seeds still remained. All seeds were stored at ambient temperature for more than 3months. Therefore, using EPR spectrometry technique to measure free radicals in alfalfa seeds as a means to determine whether the seeds have been irradiated or not is feasible, relatively fast and simple.

  10. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    Bakar, Khomsaton Abu; Zulkafli,; Hashim, Siti A' aisah [Malaysian Nuclear Agency (Nuclear Malaysia), Bangi 43000 Kajang Selangor (Malaysia); Ahmad, Pauzi [Universiti Kebangsaan Malaysia, 43600 UKM, Bangi Selangor (Malaysia)

    2014-09-03

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD{sub 5}, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively.

  11. Effect of absorbed dose and storage length on electron paramagnetic resonance (EPR) signal strength in irradiated alfalfa seeds

    A kind of alfalfa seeds was irradiated by 1, 2, 3, 4 and 5 kGy at a dose rate of 6.288 kGy·h-1 in a self-shielded irradiator of 137Cs gamma rays. The EPR spectra, which were measured subsequently between 0.3401 and 0.3501 T, showed that there was a direct proportional relationship between the EPR signal strength of free radicals produced by gamma irradiation in the alfalfa seeds and absorbed dose. The first derivative EPR spectra of the alfalfa seeds were very clear and easy to identify. However, the EPR signal strength of the peak-to-peak amplitude decreased rapidly and most of them decayed beyond 50% within 3 days after the seeds were irradiated. It tended to stabilize after half a month since the seeds were irradiated. the differences of the EPR signal strength between the irradiated and unirradiated alfalfa seeds still remained. All seeds were stored at ambient temperature for more than 3 months. Therefore, using EPR spectrometry technique to measure free radicals in alfalfa seeds as a means to determine whether the seeds have been irradiated or not is feasible, relatively fast and simple. (authors)

  12. Degradation and decoloration of textiles wastewater by electron beam irradiation: Effect of energy, current and absorbed dose

    In this study, electron beam accelerator (EB) was used to treat textiles wastewater from Rawang Industrial Park, Selangor. The objectives were to determine effective energy, beam current and absorbed dose required for decoloration and degradation of the textiles effluent. The textiles effluent was irradiated in a batch with various energy of 1MeV to 3MeV at constant beam current of 30mA. It was observed that removal of color and COD increases with higher beam energy. The EB energy of 1MeV effectively to removed 58% color and 19% COD. For textile effluent sample irradiated at fix energy of 1MeV and 3Mev but at different beam current 10mA, 20mA and 30mA. It was observed that removal of color and COD increases with the increased of beam current at each energy. However removal of color was significantly better at 1Mev as compared to 3Mev. In the case of textiles effluent, irradiated at doses of 17, 20,25,30, 35, 100 and 200kGy using 30 kW power of EB (1Mev, 30mA), results shows removal of BOD5, COD and color were in the range 9%-33%, 14%-38% and 43%-78% respectively

  13. Comparison of the standards of absorbed dose to water of the VNIIFTRI, Russia and the BIPM for 60Co γ rays

    A comparison of the standards of absorbed dose to water of the All-Russian Scientific Research Institute for Physical-Technical and Radio-technical Measurements (VNIIFTRI), Russia and of the Bureau International des Poids et Mesures (BIPM) has been made in 60Co gamma radiation. The results show that the VNIIFTRI and the BIPM standards for absorbed dose to water are in agreement, yielding a mean ratio of 0.9967 for the calibration factors of the transfer chambers, the difference from unity being within the combined standard uncertainty (0.0043) for this result. (authors)

  14. CIGS absorber layer with double grading Ga profile for highly efficient solar cells

    Saadat, M.; Moradi, M.; Zahedifar, M.

    2016-04-01

    It is well-known that the band gap grading in CIGS solar cells is crucial for achieving highly efficient solar cells. We stimulate a CIGS solar cell and investigate the effects of the band gap grading on performance of the CIGS solar cell, where Ga/(Ga + In) ratio (GGI) at back (Cb) and front (Cf) of the absorber layer are considered constant. Our simulations show that by increasing the GGI at middle of CIGS absorber layer (Cm), the JSC decreases and VOC increases independent of the distance of the Cm from the back contact (Xm). For Cm lower than Cf, JSC increases and VOC decreases when the Xm shifts to the front of the CIGS layer. The behavior of JSC and VOC became reverse for the case of Cm greater than Cf. Almost in all of the structures, efficiency and FF have same behaviors. Our simulations show that the highest efficiency is obtained at Cm = 0.8 and Xm = 200 nm.

  15. Exploring methods to prioritise concentration ratios when estimating weighted absorbed dose rates to terrestrial Reference Animals and Plants

    The ICRP and IAEA have recently reported Concentration Ratio values (CRwo-media – equilibrium radionuclide activity concentration in whole organism divided by that in media) for Reference Animals and Plants (RAPs) and a wide range of organism groups, respectively, based on a common online database. Given the large number of data gaps in both publications, there is a need to develop methods for identifying the relative importance of improving currently available CRwo-media values. A simple, transparent approach involving the derivation and comparison of predicted internal and external weighted absorbed dose rates for radionuclides considered by ICRP (2009) for terrestrial RAPs is presented. Using the approach of applying a reference value of CRwo-soil = 1 or using the maximum reported values where CRwo-soil >1, we provisionally identify terrestrial radionuclide RAP combinations which could be considered low priority, notably: Ca, Cr and Ni consistently; Mn for all RAPs except Deer and Pine Tree; and Tc for all RAPs but Wild Grass. Equally, we can systematically identify high priority elements and radioisotopes, which largely, but not exclusively, consist of alpha-emitters (especially isotopes of Ra and Th, but also consistently Am, Cf, Cm, Np, Pa, Po, Pu, U). The analysis highlights the importance of the radiation weighting factor default assumption of 10 for alpha-emitters in the ERICA Tool when comparing the magnitude of the internal dose and trying to identify high priority RAP-isotope combinations. If the unweighted Dose Conversion Coefficient (DCC) values are considered, those for alpha-emitters are often one order of magnitude higher than those due to some beta-gamma emitters for terrestrial RAPs, whereas with the radiation weighting factor applied they are two orders of magnitude higher

  16. Risk- and cost-benefit analyses of breast screening programs derived from absorbed dose measurements in the Netherlands

    Risk- and cost benefit analyses for breast screening programs are being performed, employing the risk-factors for induction of breast cancer from six extensive follow-up studies. For women of the age group above 35 years and for a risk period of 30 years after a 10-year latency period, a factor of extra cases of 20 x 10-6 mGy-1 can be estimated. Measurements are being performed in Dutch hospitals to determine the mean absorbed tissue dose. These doses vary from 0.6 to 4.4 mGy per radiography. For a dose of 1 mGy per radiograph and yearly screening of women between 35 and 75 years, the risk of radiogenic breast cancer is about 1% of the natural incidence (85,000 per 106 women) in this group. A recommended frequency of screening has to be based on medical, social and financial considerations. The gain in woman years and in completely cured women is being estimated for screening with intervals of 12 instead of 24 months. The medical and social benefit is 1,520 years life-time and 69 more cases completely cured per 1,000 breast cancer patients. The financial profit of a completely cured instead of an ultimately fatal cancer can be roughly estimated at 55,000 guilders. In addition the costs per gained woman-year are about 5,000 guilders. In consequence, the extra costs of annual additional rounds of mammographic screening are balanced by the benefit. (Auth.)

  17. Forecasting dose-time profiles of solar particle events using a dosimetry-based forecasting methodology

    Neal, John Stuart

    2001-10-01

    A dosimetery-based Bayesian methodology for forecasting astronaut radiation doses in deep space due to radiologically significant solar particle event proton fluences is developed. Three non-linear sigmoidal growth curves (Gompertz, Weibull, logistic) are used with hierarchical, non-linear, regression models to forecast solar particle event dose-time profiles from doses obtained early in the development of the event. Since there are no detailed measurements of dose versus time for actual events, surrogate dose data are provided by calculational methods. Proton fluence data are used as input to the deterministic, coupled neutron-proton space radiation computer code, BRYNTRN, for transporting protons and their reaction products (protons, neutrons, 2H, 3H, 3He, and 4He) through aluminum shielding material and water. Calculated doses and dose rates for ten historical solar particle events are used as the input data by grouping similar historical solar particle events, using asymptotic dose and maximum dose rate as the grouping criteria. These historical data are then used to lend strength to predictions of dose and dose rate-time profiles for new solar particle events. Bayesian inference techniques are used to make parameter estimates and predictive forecasts. Markov Chain Monte Carlo (MCMC) methods are used to sample from the posterior distributions. Hierarchical, non-linear regression models provide useful predictions of asymptotic dose and dose-time profiles for the November 8, 2000 and August 12, 1989 solar particle events. Predicted dose rate-time profiles are adequate for the November 8, 2000 solar particle event. Predictions of dose rate-time profiles for the August 12, 1989 solar particle event suffer due to a more complex dose rate-time profile. Forecasts provide a valuable tool to space operations planners when making recommendations concerning operations in which radiological exposure might jeopardize personal safety or mission completion. This work

  18. Comparison of radiation absorbed dose in target organs in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography and computed tomography

    Panjnoush M.

    2009-12-01

    Full Text Available "nBackground and Aim: The objective of this study was to measure and compare the tissue absorbed dose in thyroid gland, salivary glands, eye and skin in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography (CBCT and computed tomography (CT."nMaterials and Methods: Thermoluminescent dosimeters (TLD were implanted in 14 sites of RANDO phantom to measure average tissue absorbed dose in thyroid gland, parotid glands, submandibular glands, sublingual gland, lenses and buccal skin. The Promax (PLANMECA, Helsinki, Finland unit was selected for Panoramic, conventional linear tomography and cone beam computed tomography examinations and spiral Hispeed/Fxi (General Electric,USA was selected for CT examination. The average tissue absorbed doses were used for the calculation of the equivalent and effective doses in each organ."nResults: The average absorbed dose for Panoramic ranged from 0.038 mGY (Buccal skin to 0.308 mGY (submandibular gland, linear tomography ranged from 0.048 mGY (Lens to 0.510 mGY (submandibular gland,CBCT ranged from 0.322 mGY (thyroid glad to 1.144 mGY (Parotid gland and in CT ranged from 2.495 mGY (sublingual gland to 3.424 mGY (submandibular gland. Total effective dose in CBCT is 5 times greater than Panoramic and 4 times greater than linear tomography, and in CT, 30 and 22 times greater than Panoramic and linear tomography, respectively. Total effective dose in CT is 6 times greater than CBCT."nConclusion: For obtaining 3-dimensional (3D information in maxillofacial region, CBCT delivers the lower dose than CT, and should be preferred over a medical CT imaging. Furthermore, during maxillofacial imaging, salivary glands receive the highest dose of radiation.

  19. SU-E-CAMPUS-I-06: Y90 PET/CT for the Instantaneous Determination of Both Target and Non-Target Absorbed Doses Following Hepatic Radioembolization

    Purpose The process of converting Yttrium-90 (Y90) PET/CT images into 3D absorbed dose maps will be explained. The simple methods presented will allow the medical physicst to analyze Y90 PET images following radioembolization and determine the absorbed dose to tumor, normal liver parenchyma and other areas of interest, without application of Monte-Carlo radiation transport or dose-point-kernel (DPK) convolution. Methods Absorbed dose can be computed from Y90 PET/CT images based on the premise that radioembolization is a permanent implant with a constant relative activity distribution after infusion. Many Y90 PET/CT publications have used DPK convolution to obtain 3D absorbed dose maps. However, this method requires specialized software limiting clinical utility. The Local Deposition method, an alternative to DPK convolution, can be used to obtain absorbed dose and requires no additional computer processing. Pixel values from regions of interest drawn on Y90 PET/CT images can be converted to absorbed dose (Gy) by multiplication with a scalar constant. Results There is evidence that suggests the Local Deposition method may actually be more accurate than DPK convolution and it has been successfully used in a recent Y90 PET/CT publication. We have analytically compared dose-volume-histograms (DVH) for phantom hot-spheres to determine the difference between the DPK and Local Deposition methods, as a function of PET scanner point-spread-function for Y90. We have found that for PET/CT systems with a FWHM greater than 3.0 mm when imaging Y90, the Local Deposition Method provides a more accurate representation of DVH, regardless of target size than DPK convolution. Conclusion Using the Local Deposition Method, post-radioembolization Y90 PET/CT images can be transformed into 3D absorbed dose maps of the liver. An interventional radiologist or a Medical Physicist can perform this transformation in a clinical setting, allowing for rapid prediction of treatment efficacy by

  20. SU-E-CAMPUS-I-06: Y90 PET/CT for the Instantaneous Determination of Both Target and Non-Target Absorbed Doses Following Hepatic Radioembolization

    Pasciak, A; Kao, J [University of Tennessee Medical Center, Knoxville, TN (United States)

    2014-06-15

    Purpose The process of converting Yttrium-90 (Y90) PET/CT images into 3D absorbed dose maps will be explained. The simple methods presented will allow the medical physicst to analyze Y90 PET images following radioembolization and determine the absorbed dose to tumor, normal liver parenchyma and other areas of interest, without application of Monte-Carlo radiation transport or dose-point-kernel (DPK) convolution. Methods Absorbed dose can be computed from Y90 PET/CT images based on the premise that radioembolization is a permanent implant with a constant relative activity distribution after infusion. Many Y90 PET/CT publications have used DPK convolution to obtain 3D absorbed dose maps. However, this method requires specialized software limiting clinical utility. The Local Deposition method, an alternative to DPK convolution, can be used to obtain absorbed dose and requires no additional computer processing. Pixel values from regions of interest drawn on Y90 PET/CT images can be converted to absorbed dose (Gy) by multiplication with a scalar constant. Results There is evidence that suggests the Local Deposition method may actually be more accurate than DPK convolution and it has been successfully used in a recent Y90 PET/CT publication. We have analytically compared dose-volume-histograms (DVH) for phantom hot-spheres to determine the difference between the DPK and Local Deposition methods, as a function of PET scanner point-spread-function for Y90. We have found that for PET/CT systems with a FWHM greater than 3.0 mm when imaging Y90, the Local Deposition Method provides a more accurate representation of DVH, regardless of target size than DPK convolution. Conclusion Using the Local Deposition Method, post-radioembolization Y90 PET/CT images can be transformed into 3D absorbed dose maps of the liver. An interventional radiologist or a Medical Physicist can perform this transformation in a clinical setting, allowing for rapid prediction of treatment efficacy by

  1. First international comparison of primary absorbed dose to water standards in the medium-energy X-ray range

    Büermann, Ludwig; Guerra, Antonio Stefano; Pimpinella, Maria; Pinto, Massimo; de Pooter, Jacco; de Prez, Leon; Jansen, Bartel; Denoziere, Marc; Rapp, Benjamin

    2016-01-01

    This report presents the results of the first international comparison of primary measurement standards of absorbed dose to water for the medium-energy X-ray range. Three of the participants (VSL, PTB, LNE-LNHB) used their existing water calorimeter based standards and one participant (ENEA) recently developed a new standard based on a water-graphite calorimeter. The participants calibrated three transfer chambers of the same type in terms of absorbed dose to water (NDw) and in addition in terms of air kerma (NK) using the CCRI radiation qualities in the range 100 kV to 250 kV. The additional NK values were intended to be used for a physical analysis of the ratios NDw/NK. All participants had previously participated in the BIPM.RI(I)-K3 key comparison of air kerma standards. Ratios of pairs of NMI's NK results of the current comparison were found to be consistent with the corresponding key comparison results within the expanded uncertainties of 0.6 % - 1 %. The NDw results were analysed in terms of the degrees of equivalence with the comparison reference values which were calculated for each beam quality as the weighted means of all results. The participant's results were consistent with the reference value within the expanded uncertainties. However, these expanded uncertainties varied significantly and ranged between about 1-1.8 % for the water calorimeter based standards and were estimated at 3.7 % for the water-graphite calorimeter. It was shown previously that the ratios NDw/NK for the type of ionization chamber used as transfer chamber in this comparison were very close (within less than 1 %) to the calculated values of (bar muen/ρ)w,ad, the mean values of the water-to-air ratio of the mass-energy-absorption coefficients at the depth d in water. Some of the participant's results deviated significantly from the expected behavior. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of

  2. Análise da distribuição espacial de dose absorvida em próton terapia ocular Spatial distribution analysis of absorbed dose in ocular proton radiation therapy

    Marília Tavares Christóvão

    2010-08-01

    of proton therapy were performed based on preexisting facilities. RESULTS: Simulation data were integrated into SISCODES on the eye's model generating spatial dose distributions. Dose depth profiles reproducing the pure and modulated Bragg peaks are presented. Relevant aspects of proton beam radiotherapy planning are considered such as material absorber, modulation, collimator dimensions, incident proton energy and isodose generation. CONCLUSION: The conclusion is that proton therapy when properly modulated and directed can reproduce the ideal conditions for the dose deposition in the treatment of ocular tumors.

  3. Activity of natural radionuclides and their contribution to the absorbed dose in the fish cubera snapper (lutjanus cyanopterus, cuvier, 1828 on the coast of Ceara, Brazil

    Wagner de S. Pereira

    2010-01-01

    Full Text Available A methodology was developed for converting the activity concentration of radionuclides (Bq kg-1 into absorbed dose rate (Gy y-1, aiming an approach to environmental radioprotection based on the concept of standard dose limit. The model considers only the internal absorbed dose rate. This methodology was applied to the cubera snapper fish (Lutjanus cyanopterus, Cuvier, 1828 caught off the coast of Ceará. The natural radionuclides considered were uranium-238, radium-226, lead-210, thorium-232 and radium-228. The absorbed dose rates were calculated for individual radionuclides and the type of emitted radiation. The average dose rate due to these radionuclides was 5.36 µGy y-1, a value six orders of magnitude smaller than the threshold value of absorbed dose rate used in this study (3.65 10³ mGy y-1, and similar to that found in the literature for benthic fish. Ra-226 and U-238 contributed 67% and 22% of the absorbed dose rate, followed by Th-232 with 10%. Ra-228 and Pb-210, in turn, accounted for less than 1% of the absorbed dose rate. This distribution is somewhat different from that reported in the literature, where the Ra-226 accounts for 86% of the absorbed dose rate.Visando a radioproteção ambiental, baseada no conceito de limite de taxa de dose absorvida, foi desenvolvida uma metodologia de conversão da concentração de atividade de radionuclídeos (Bq kg-1 em taxa de dose absorvida (Gy a-1. O modelo considera apenas a taxa de dose absorvida interna. Essa metodologia foi aplicada ao peixe vermelho-caranho (Lutjanus cyanopterus, Cuvier, 1828 capturado na costa do Ceará e aos radionuclídeos naturais: urânio-238, rádio-226, chumbo-210, tório-232 e rádio-228. As taxas de dose absorvidas foram calculadas por radionuclídeo e por tipo de radiação emitida. A taxa de dose média devida a esses radionuclídeos foi de 5.36 µGy a-1, valor seis ordens de grandeza menor que o valor de limite de taxa de dose absorvida utilizada no presente

  4. SU-E-T-516: Measurement of the Absorbed Dose Rate in Water Under Reference Conditions in a CyberKnife Unit

    Aragon-Martinez, N; Hernandez-Guzman, A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico City, DF (Mexico); Gomez-Munoz, A [Centro Medico Nacional Siglo XXI, Mexico City, DF (Mexico); Massillon-JL, G

    2014-06-01

    Purpose: This paper aims to measure the absorbed-dose-rate in a CyberKnife unit reference-field (6cm diameter) using three ionization chambers (IC) following the new IAEA/AAPM formalism and Gafchromic film (MD-V3-55 and EBT3) protocol according to our work reported previously. Methods: The absorbed-dose-rates were measured at 90cm and 70cm SSD in a 10cmx10cm field and at 70cm SSD in a 5.4cmx5.4cm equivalent to 6cm diameter field using a linac Varian iX. All measurements were performed at 10cm depth in water. The correction factors that account for the difference between the IC response on the reference field and the CyberKnife reference field, k-(Q-msr,Q)^(f-msr,f-ref), were evaluated and Gafchromic film were calibrated using the results obtained above. Under the CyberKnife reference conditions, the factors were used to measure the absorbed-dose-rate with IC according to the new formalism and the calibrated film was irradiated in water. The film calibration curve was used to evaluate the absorbed-dose-rate in the CyberKnife unit. Results: Difference up to 2.56% is observed between dose-rate measured with IC in the reference 10cmx10cm field, depending where the chamber was calibrated, which was not reflected in the correction factor k-(Q-msr,Q)^(f-msr,f-ref ) where variations of ~0.15%-0.5% were obtained. Within measurements uncertainties, maximum difference of 1.8% on the absorbed-dose-rate in the CyberKnife reference field is observed between all IC and the films Conclusion: Absorbed-dose-rate to water was measured in a CyberKnife reference field with acceptable accuracy (combined uncertainties ~1.32%-1.73%, k=1) using three IC and films. The MD-V3-55 film as well as the new IAEA/AAPM formalism can be considered as a suitable dosimetric method to measure absorbed-dose-rate to water in small and non-standard CyberKnife fields used in clinical treatments However, the EBT3 film is not appropriated due to the high uncertainty provided (combined uncertainty ~9%, k=1

  5. Relative Importance of Hip and Sacral Pain Among Long-Term Gynecological Cancer Survivors Treated With Pelvic Radiotherapy and Their Relationships to Mean Absorbed Doses

    Purpose: To investigate the relative importance of patient-reported hip and sacral pain after pelvic radiotherapy (RT) for gynecological cancer and its relationship to the absorbed doses in these organs. Methods and Materials: We used data from a population-based study that included 650 long-term gynecological cancer survivors treated with pelvic RT in the Gothenburg and Stockholm areas in Sweden with a median follow-up of 6 years (range, 2–15) and 344 population controls. Symptoms were assessed through a study-specific postal questionnaire. We also analyzed the hip and sacral dose-volume histogram data for 358 of the survivors. Results: Of the survivors, one in three reported having or having had hip pain after completing RT. Daily pain when walking was four times as common among the survivors compared to controls. Symptoms increased in frequency with a mean absorbed dose >37.5 Gy. Also, two in five survivors reported pain in the sacrum. Sacral pain also affected their walking ability and tended to increase with a mean absorbed dose >42.5 Gy. Conclusions: Long-term survivors of gynecological cancer treated with pelvic RT experience hip and sacral pain when walking. The mean absorbed dose was significantly related to hip pain and was borderline significantly related to sacral pain. Keeping the total mean absorbed hip dose below 37.5 Gy during treatment might lower the occurrence of long-lasting pain. In relation to the controls, the survivors had a lower occurrence of pain and pain-related symptoms from the hips and sacrum compared with what has previously been reported for the pubic bone.

  6. Dose profile in computed tomography chest scan; Perfil de dose em varredura de torax em tomografia computadorizada

    Oliveira, Bruno B., E-mail: bbo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Pos-graduacao em Ciencias e Tecnologia das Radiacoes, Minerais e Materiais; Mourao, Arnaldo P. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET/MG), Belo Horizonte, MG (Brazil); Alonso, Thessa C.; Silva, Teogenes A. da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2010-07-01

    For the optimization of the patient dose in computed tomography (CT), the Brazilian legislation only established the diagnostic reference levels (DRL's) in terms of Multiple Scan Average Dose (MSAD) in a typical adult as a parameter of quality control of CT scanners. Conformity to the DRL's can be verified by measuring the dose distribution in CT scans and MSAD determination. An analysis of the quality of CT scans of the metropolitan region of Belo Horizonte is necessary by conducting pertinent tests to the study that are presented in the ANVISA (National Agency of Sanitary Vigilance) Guide. The purpose of this study is to investigate, in a chest scan, the variation of dose in CT. To measure the dose profile are used lithium fluoride thermoluminescent dosimeters (TLD-100 Rod) distributed in cylinders positioned in peripheral and central regions of a phantom of polymethylmethacrylate (PMMA). The data obtained allow us to observe the variation of the dose profile inside the phantom. The peripheral region shows higher dose values than the central region. The longitudinal variation can be observed and the maximum dose was recorded at the edges of the phantom (41,58{+-}5,10) mGy at the midpoint of the longitudinal axis. The results will contribute to disseminate the proper procedure and optimize the dosimetry and the tests of quality control in CT, as well as make a critical analysis of the DRL's. (author)

  7. Uncertainties on measurements of absorbed-dose-to-water, from clinical high-energy eletron beams: a comparison with the IAEA protocols

    A pilot study was performed to verify the troubles involved in the implementation of dosimetric protocol TRS 398 for absorbed-dose-to-water, using clinical high-energy electron beams and to accomplish an detailed evaluation of uncertainty chain components associated to the measurement, which ones were not treated in the IAEA protocols, aimed the standardization of technical procedures. (author)

  8. Human absorbed dose calculations for iodine-131 and iodine-123 labeled meta-iodobenzyl-guanidine (mIBG): a potential myocardial and adrenal medulla imaging agent

    Tissue distribution studies with radiolabeled meta-iodobenzyl-guanidine (mIBG), an analog of the adrenergic neuronal blocking agent-guanethidine, suggest that this radiotracer may be useful for both myocardial imaging (labeled with I-123) and adrenal medulla imaging (labeled with I-131). Total body elimination was determined by whole body counting (well-type ionization chamber) of rats administered 131I-mIBG and time-activity tissue distribution data was obtained in dogs using 125I-mIBG. Using the MIRD formalism, the human absorbed dose from 131I-mIBG, radionuclidically pure 123I-mIBG, and 123I-mIBG, and 123I-mIBG contaminated with 4.8% 125I-mIBG has been estimated. The largest absorbed dose from 131I-mIBG was delivered to the adrenals. For pure 123I-mIBG the largest absorbed dose was delivered to the thyroid (unblocked). The 125I contamination increased the absorbed dose to the adrenal medulla by a factor of 3.5

  9. Human absorbed dose calculations for iodine-131 and iodine-123 labeled meta-iodobenzyl-guanidine (mIBG): a potential myocardial and adrenal medulla imaging agent

    Tissue distribution studies with radiolabeled meta-iodobenzyl-guanidine (mIBG), an analog of the adrenergic neuronal blocking agent-guanethidine, suggest that this radiotracer may be useful for both myocardial imaging (labeled with I-123) and adrenal medulla imaging (labeled with I-131). Total body elimination was determined by whole body counting (well-type ionization chamber) of rats administered 131I-mIBG and time-activity tissue distribution data was obtained in dogs using 125I-mIBG. Using the MIRD formalism, researchers have estimated the human absorbed dose from 131I-mIBG, radionuclidically pure 123I-mIBG, and 1''3I-mIBG contaminated with 4.8% 125I-mIBG (based on 123I radionuclidic purity specification of 1.4% I-125 at calibration). The largest absorbed dose from 131I-mIBG was delivered to the adrenals. For pure 123I-mIBG the largest absorbed dose was delivered to the thyroid (unblocked). The 125I contamination increased the absorbed dose to the adrenal medulla by a factor of 3.5

  10. Uncertainties on measurements of absorbed-dose-to-water, from clinical high- energy electron beams: a comparison with the IAEA protocols

    A pilot study was performed to verify the troubles involved in the implementation of dosimetric protocol TRS 398 for absorbed-dose-to-water, using clinical high-energy electron beams and to accomplish an detailed evaluation of uncertainty chain components associated to the measurement, which ones were not treated in the IAEA protocols, aimed the standardization of technical procedures. (author)

  11. Deuterons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to deuterons (2H+) in the energy range 10 MeV-1 TeV (0.01-1000 GeV). Coefficients were calculated using the Monte Carlo transport code MCNPX 2.7.C and BodyBuilderTM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of the effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. Coefficients for the equivalent and effective dose incorporated a radiation weighting factor of 2. At 15 of 19 energies for which coefficients for the effective dose were calculated, coefficients based on ICRP 1990 and 2007 recommendations differed by < 3 %. The greatest difference, 47 %, occurred at 30 MeV. (authors)

  12. The Physical Conditions of Intermediate Redshift MgII Absorbing Clouds from Voigt Profile Analysis

    Churchill, C W; Charlton, J; Churchill, Chris; Vogt, Steven; Charlton, Jane

    2003-01-01

    [Slightly Abridged] We present a detailed statistical analysis of the column densities, N, and Doppler parameters, b, of MgII absorbing clouds at redshifts 0.4~5 km/s for MgII and FeII and ~7 km/s for MgI. The clouds are consistent with being thermally broadened, with temperatures in the 30-40,000K range. (4) A two-component Gaussian model to the velocity two-point correlation function yielded velocity dispersions of 54 km/s and 166 km/s. The narrow component has roughly twice the amplitude of the broader component. The width and amplitude of the broader component decreases as equivalent width increases. (5) From photoionization models we find that the column density ratios are most consistent with photoionization by the extragalactic background, as opposed to stars. Based upon N(MgI)/N(MgII), it appears that at least two-phase ionization models are required to explain the data.

  13. Relation between absorbed dose, charged particle equilibrium and nuclear transformations: a non-equilibrium thermodynamics point of view.

    Alvarez-Romero, J T

    2006-01-01

    We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms summation operator Q and Q that appear in the definitions of energy imparted epsilon and energy deposit epsilon(i), respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted epsilon, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the epsilon employed to get D cannot be performed with an equilibrium statistical operator rho(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator rho(r, t); therefore, D is a time-dependent function D(r,t). PMID:16731692

  14. Relation between absorbed dose, charged particle equilibrium and nuclear transformations: A non-equilibrium thermodynamics point of view

    We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms ΣQ and Q that appear in the definitions of energy imparted ε and energy deposit εi, respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted ε-bar, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the ε-bar employed to get D cannot be performed with an equilibrium statistical operator ρ(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator (r, t) therefore, D is a time-dependent function D(r, t). (authors)

  15. Evaluation of absorbed dose in irradiated sugar-containing plant material (peony roots) by an ESR method

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2015-12-01

    The relationship between electron spin resonance (ESR) signal intensity of irradiated plant materials and sugar content was investigated by spectral analysis using peony roots. A weak background signal near g=2.005 was observed in the roots. After a 10 kGy irradiation, the ESR line broadened and the intensity increased, and the spectral characteristics were similar to a typical spectrum of irradiated food containing crystalline sugars. The free radical concentration was nearly stable 30 days after irradiation. The spectrum of peony root 30 days after irradiation was simulated using the summation of the intensities of six assumed components: radical signals derived from (a) sucrose, (b) glucose, (c) fructose, (d) cellulose, (e) the background signal near g=2.005 and (f) unidentified component. The simulated spectra using the six components were in agreement with the observed sample spectra. The intensity of sucrose radical signal in irradiated samples increased proportionally up to 20 kGy. In addition, the intensity of sucrose radical signals was strongly correlated with the sucrose contents of the samples. The results showed that the radiation sensitivity of sucrose in peony roots was influenced little by other plant constituents. There was also a good correlation between the total area of the spectra and the sucrose content, because the sucrose content was higher than that of other sugars in the samples. In peony roots, estimation of the absorbed dose from the ESR signal intensity may be possible by a calibration method based on the sucrose content.

  16. Calculus of the fluence and the absorbed dose by the different head tissues before photons of distinct energies

    Two models were used, in the first one the head was built with the scalp that includes the skin and the adipose tissue, the skull, the brain and the tumor, it is modeled as a sphere of 1 cm of radius that be places in the center of the head pattern. The spherical models of the scalp, the skull and the brain were built respectively with spheres of 8.5, 8 and 7 cm of radius. The tumor was irradiated with an unidirectional beam of photons, the calculated cases were photons of 60Co and monoenergetic photons beams of 6, 8, 10 and 15 MeV. For each case be calculated the total photons fluence to 5, 10 and 15 cm in air and to 20.5 cm that is the interface between the air and head. This calculus included values of photons fluence halfway the scalp, halfway the skull, halfway the brain and in the tumor center. Also is calculated the total absorbed dose by the scalp, the skull, the brain and the tumor. (author)

  17. Direct reading measurement of absorbed dose with plastic scintillators--the general concept and applications to ophthalmic plaque dosimetry.

    Flühs, D; Heintz, M; Indenkämpen, F; Wieczorek, C

    1996-03-01

    We have developed dosemeters based on plastic scintillators for a variety of applications in radiation therapy. The dosemeters consist basically of a tissue-substituting scintillator probe, an optical fiber light guide, and a photomultiplier tube. The background light generated in the light guide can be compensated by a simultaneous measurement of the light from a blind fiber. Plastic scintillator dosemeters combine several advantageous properties which render them superior to other dosemeter types for many applications: minimal disturbance of the radiation field because of the homogeneous detector volume and the approximate water equivalence; no dependence on temperature and pressure (under standard clinical conditions) and angle of radiation incidence; no high voltage in the probe; high spatial resolution due to small detector volumes; direct reading of absorbed doses; and a large dynamical range. The high spatial resolution together with direct reading make these detectors suitable for real-time 3-D dosimetry using multi-channel detector systems. Such a system has been developed for eye plaque dosimetry and successfully employed for dosimetric treatment optimization. The plaque optimization can be performed by dosimetric measurements for the individual patient ("dosimetric treatment planning"). The time consumption for this procedure is less than for a physically correct computer-based therapy planning, e.g., by means of a Monte Carlo simulation. PMID:8815386

  18. Dependence of Yb-169 absorbed dose energy correction factors on self-attenuation in source material and photon buildup in water

    Purpose: Absorbed dose energy correction factors, used to convert the absorbed dose deposited in a LiF thermoluminescent dosimeter (TLD) into the clinically relevant absorbed dose to water, were obtained for both spherical volumetric sources and for the model 4140 HDR Yb-169 source. These correction factors have a strong energy dependence below 200 keV; therefore, spectral changes were quantified as Yb-169 photons traveled through both source material (Yb2O3) and water with the corresponding absorbed dose energy correction factors, f(r,θ), calculated as a function of location in a phantom. Methods: Using the MCNP5 Monte Carlo radiation transport simulation program, the Yb-169 spectrum emerging from spherical Yb2O3 sources (density 6.9 g/cm3) with radii between 0.2 and 0.9 mm were analyzed and their behavior compared against those for a point-source. The absorbed dose deposited to both LiF and H2O materials was analyzed at phantom depths of 0.1-10 cm for each source radius and the absorbed dose energy correction factor calculated as the ratio of the absorbed dose to water to that of LiF. Absorbed dose energy correction factors for the Model 4140 Yb-169 HDR brachytherapy source similarly were obtained and compared against those calculated for the Model M-19 Ir-192 HDR source. Results: The Yb-169 average spectral energy, emerging from Yb2O3 spherical sources 0.2-0.9 mm in radius, was observed to harden from 7% to 29%; as these photons traveled through the water phantom, the photon average energy softened by as much as 28% at a depth of 10 cm. Spectral softening was dependent on the measurement depth in the phantom. Energy correction factors were found to vary both as a function of source radius and phantom depth by as much as 10% for spherical Yb2O3 sources. The Model 4140 Yb-169 energy correction factors depended on both phantom depth and reference angle and were found to vary by more than 10% between depths of 1 and 10 cm and angles of 0 deg. and 180 deg. This was

  19. A comparative performance study of a photovoltaic concentrator system with discrete mirror and continuos profile for two different absorber shapes

    H, Saiful; Rezau, K.M [University of Dhaka, Dhaka (Bangladesh)

    2000-07-01

    Profiles of parabolic concentrators of discrete mirror and continuos surface mirror have been designed for combined electrical thermal photovoltaic systems. In the design the changes of concentration ratio, effect of reflection, angle of incidence over the absorber have been taken into account for maximum energy collection. The performances of the system are studied for solar cells of modified grid finger for illuminations from 1-10 sun. The local concentration ratio (LCR) distribution over the absorbers for both the concentrator, the optical efficiency, thermal efficiency, electrical and thermal power output and overall efficiency have been evaluated for different values of beam radiation concentration ratio and focal distance. [Spanish] Se han disenado perfiles de concentradores parabolicos de espejo discreto y de superficie continua para sistemas fotovoltaicos combinados electricos y termicos. En el diseno los cambios de la proporcion de concentracion, del efecto de la reflexion, del angulo de incidencia sobre el observador se han tenido en cuenta para una maxima recoleccion de energia. Los rendimientos del sistema se han estudiado para celdas solares de parrilla modificada para iluminaciones solares de 1-10. Han sido evaluados para diferentes valores de la proporcion de la concentracion de la radiacion en el rayo y la distancia focal la proporcion de concentracion local (LCR) de la distribucion en los absorbedores, para el concentrador la eficiencia optica, la eficiencia termica, electrica, la produccion de energia termica y electrica y la eficiencia total.

  20. Profile of CT scan output dose in axial and helical modes using convolution

    Anam, C.; Haryanto, F.; Widita, R.; Arif, I.; Dougherty, G.

    2016-03-01

    The profile of the CT scan output dose is crucial for establishing the patient dose profile. The purpose of this study is to investigate the profile of the CT scan output dose in both axial and helical modes using convolution. A single scan output dose profile (SSDP) in the center of a head phantom was measured using a solid-state detector. The multiple scan output dose profile (MSDP) in the axial mode was calculated using convolution between SSDP and delta function, whereas for the helical mode MSDP was calculated using convolution between SSDP and the rectangular function. MSDPs were calculated for a number of scans (5, 10, 15, 20 and 25). The multiple scan average dose (MSAD) for differing numbers of scans was compared to the value of CT dose index (CTDI). Finally, the edge values of MSDP for every scan number were compared to the corresponding MSAD values. MSDPs were successfully generated by using convolution between a SSDP and the appropriate function. We found that CTDI only accurately estimates MSAD when the number of scans was more than 10. We also found that the edge values of the profiles were 42% to 93% lower than that the corresponding MSADs.

  1. Relationship of tumor absorbed doses of 177Lu-DOTA-TATE treatment and uptake in pre-therapeutic Ga68 DOTA-TATE PET/CT imaging

    Full text of publication follows. Introduction/Background: Peptide Receptor Radionuclide Therapy (PRRT) with labeled Lu177 labeled peptide in patients with neuroendocrine tumors (NETs) aroused great interest. An estimation of actual radiation doses to tumors is very important for therapy planning. It is well known that uptake of Ga-68 DOTATATE very well correlated with sst2 expression. The uptake of radio-labelled peptides calculated from SUV max values may predict the radiation-absorbed dosimetry of lesions treated with PRRT. Aim: the aim of the study was to evaluate the relationship between the tumor absorbed doses and pre-therapeutic Ga68 DOTA-TATE PET/CT uptake calculated from SUV values. Materials and methods: PRRT results of patients (M/F: 8/5, mean age: 55.5 ± 12.5 years) with histologically proven inoperable NETs were retrospectively analyzed. Dosimetric calculations were performed using MIRD scheme and lesion doses were calculated using post therapy whole body images obtained at 4, 20, 44, and 68 hours after injection. Calculated tumor absorbed doses were compared with SUVmax of 68Ga-DOTA-TATE PET/CT, which were performed before the therapy. Tumor volumes were determined from CT images. Thirteen blood samples beginning from time zero to 4 days after injection were obtained for bone marrow and whole body dosimetry. Results: there were 38 lesions in 13 patients. Lesions were selected according to lesion delineation and superimposed lesions were excluded. Mean lesion volume was 19.58 ± 25 cm3. Median tumor dose for all lesions, bone lesions, lesions on other sites (lung, liver, lymph nodes) were 15.08 Gy, 19.34 Gy, 14.05 Gy per 370 MBq respectively. Median SUVmax values of those were 25.8, 13.7, 23.05, respectively. Correlation between calculated tumor dose and uptake of 68Ga-DOTA-TATE was moderate (R=0.42). Also a moderate correlation was found for radiation absorbed doses of bone metastases. A very low correlation was found for radiation absorbed doses of

  2. Absorbed doses received by infants subjected to panoramic dental and cephalic radiographs; Dosis absorbida recibida por infantes sometidos a radiografias dentales panoramicas y cefalicas

    Carrizales, L.; Carreno, S. [Instituto Venezolano de Investigaciones Cientificas. Laboratorio Secundario de Calibracion Dosimetrica. Carretera Panamericana Km. 11. Apartado Postal 21827, Caracas (Venezuela)

    1998-12-31

    The IAEA Report No. 115 recommends that each country or region can establish levels of absorbed doses for each radiographic technique employed in diagnostic. assuming the extended and expensive of this purpose, we have been to begin in a first step with the dentistry area, in order to estimate the dose levels received at crystalline and thyroid level in infants that go to an important public institution in our country to realize panoramic and cephalic radiographs. This work will serve to justify and impel a quality assurance program in Venezuela on the dentistry area which includes aspects such as training for the medical lap referring the justification of the radiological practice, optimization of X-ray units to produce an adequate image quality that delivers to patient an absorbed dose as much lower as reasonably it can be reached without diagnostic detriment. (Author)

  3. Helions at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent, for isotropic exposure of an adult male and an adult female to helions (3He2+) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Calculations were performed using Monte Carlo transport code MCNPX 2.7.C and BodyBuilderTM 1.3 anthropomorphic phantoms modified to allow calculation of effective dose using tissues and tissue weighting factors from either the 1990 or 2007 recommendations of the International Commission on Radiological Protection (ICRP), and gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 2%. The greatest difference, 62%, occurred at 100 MeV. Published by Oxford Univ. Press on behalf of the U.S. Government 2010. (authors)

  4. Tritons at energies of 10 MeV to 1 TeV: Conversion coefficients for fluence-to-absorbed dose, equivalent dose, effective dose, and gray equivalent, calculated using Monte Carlo radiation transport code MCNPX 2.7.C

    Conversion coefficients were calculated for fluence-to-absorbed dose, fluence-to-equivalent dose, fluence-to-effective dose and fluence-to-gray equivalent for isotropic exposure of an adult female and an adult male to tritons (3H+) in the energy range of 10 MeV to 1 TeV (0.01-1000 GeV). Coefficients were calculated using Monte Carlo transport code MCNPX 2.7.C and BodyBuilderTM 1.3 anthropomorphic phantoms. Phantoms were modified to allow calculation of effective dose to a Reference Person using tissues and tissue weighting factors from 1990 and 2007 recommendations of the International Commission on Radiological Protection (ICRP) and calculation of gray equivalent to selected tissues as recommended by the National Council on Radiation Protection and Measurements. At 15 of the 19 energies for which coefficients for effective dose were calculated, coefficients based on ICRP 2007 and 1990 recommendations differed by less than 3%. The greatest difference, 43%, occurred at 30 MeV. Published by Oxford Univ. Press on behalf of the US Government 2010. (authors)

  5. Performance evaluation of the QC-6PLUS quality control system in terms of photons and electrons absorbed doses to water

    The quality of the treatment in radiotherapy depends on the necessary knowledge of the liberated dose in the tumor and of several other physical parameters and dosimetric that characterize the profile of the radiation field. Worrying about the reliability of some commercial equipment that aim at determining the main parameters of a radiation field in a practical way for daily checks in an institution with radiotherapy service, in this work a study of the performance of the quality assurance system, QC6-Plus manufactured by PTW-Freiburg for daily checks, was developed, in order to assure the use of this equipment with larger reliability level in the routine of quality assurance of the hospitals as well as to make possible its use in the Program of Regulatory Inspections of the Services of Radiotherapy of the Country accomplished by IRD/CNEN. The found results indicate that the system QC6-Plus is perfectly adapted and practical for relative measures of daily and weekly control of the main parameters of clinical beans in agreement with reference values recommended in TECDOC 1151. However for measurements of absolute dose it should not be used because, for beams of electrons the system does not present the necessary characteristics to execute this measure type in agreement with the reference protocol, TRS 398, and for photons of energy 15 MV presented a deviation in relation to the conventional method of absolute dosimetry of 7,7%, that it is a lot above the expected in agreement with TRS 398. (author)

  6. Standardized methods to verify absorbed dose in irradiated food for insect control. Proceedings of a final research co-ordination meeting

    Irradiation to control insect infestation of food is increasingly accepted and applied, especially as a phytosanitary treatment of food as an alternative to fumigation. However, unlike other processes for insect control, irradiation does not always result in immediate insect death. Thus, it is conceivable that fresh and dried fruits and tree nuts, which have been correctly irradiated to meet insect disinfestation/quarantine requirements, may still contain live insects at the time of importation. There is, however, a movement by plant quarantine authorities away from inspecting to ensure the absence of live insects in imported consignments towards examining through administrative procedures that a treatment required by law has been given. Nevertheless, there is a need to provide plant quarantine inspectors with a reliable objective method to verify that a minimum absorbed dose of radiation was given to supplement administrative procedures. Such an objective method is expected to bolster the confidence of the inspectors in clearing the consignment without delay and to facilitate trade in irradiated commodities. The Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture initiated a co-ordinated research project (CRP) in 1994 to generate data on the verification of absorbed dose of irradiation in fresh, dried fruits and tree nuts for insect disinfestation/quarantine purposes. A standardized label dose indicator available commercially was used to verify the minimum/maximum absorbed dose of the irradiated commodities for these purposes as required by regulations in certain countries. It appears that such a label dose indicator with certain modifications could be made available to assist national authorities and the food industry to verify the absorbed dose of irradiation to facilitate trade in such irradiated commodities. This TECDOC reports on the accomplishments of this co-ordinated research project and includes the papers presented by the participants

  7. Direct measurement of absorbed dose to water in HDR 192Ir brachytherapy: Water calorimetry, ionization chamber, Gafchromic film, and TG-43

    Purpose: Gafchromic film and ionometric calibration procedures for HDR 192Ir brachytherapy sources in terms of dose rate to water are presented and the experimental results are compared to the TG-43 protocol as well as with the absolute dose measurement results from a water calorimetry-based primary standard. Methods: EBT-1 Gafchromic films, an A1SL Exradin miniature Shonka thimble type chamber, and an SI HDR 1000 Plus well-type chamber (Standard Imaging, Inc., Middleton, WI) with an ADCL traceable Sk calibration coefficient (following the AAPM TG-43 protocol) were used. The Farmer chamber and Gafchromic film measurements were performed directly in water. All results were compared to direct and absolute absorbed dose to water measurements from a 4 deg. C stagnant water calorimeter. Results: Based on water calorimetry, the authors measured the dose rate to water to be 361±7 μGy/(h U) at a 55 mm source-to-detector separation. The dose rate normalized to air-kerma strength for all the techniques agree with the water calorimetry results to within 0.83%. The overall 1-sigma uncertainty on water calorimetry, ionization chamber, Gafchromic film, and TG-43 dose rate measurement amounts to 1.90%, 1.44%, 1.78%, and 2.50%, respectively. Conclusions: This work allows us to build a more realistic uncertainty estimate for absorbed dose to water determination using the TG-43 protocol. Furthermore, it provides the framework necessary for a shift from indirect HDR 192Ir brachytherapy dosimetry to a more accurate, direct, and absolute measurement of absorbed dose to water.

  8. Transcriptome profiling of mice testes following low dose irradiation

    Belling, Kirstine C.; Tanaka, Masami; Dalgaard, Marlene Danner; Nielsen, John Erik; Nielsen, Henrik Bjørn; Brunak, Søren; Almstrup, Kristian; Leffers, Henrik

    2013-01-01

    ABSTRACT: BACKGROUND: Radiotherapy is used routinely to treat testicular cancer. Testicular cells vary in radio-sensitivity and the aim of this study was to investigate cellular and molecular changes caused by low dose irradiation of mice testis and to identify transcripts from different cell types...

  9. Correction factors for Farmer-type chambers for absorbed dose determination in 60Co and 192Ir brachytherapy dosimetry

    This paper presents experimentally determined correction factors for Farmer-type chambers for absorbed dose determination in 60Co and 192Ir brachytherapy dosimetry. The correction factors were determined from measurements made in a PMMA phantom and calculation of ratios of measured charges. The ratios were corrected for the different volumes of the ionization chambers, determined in external high-energy electron beams. The correction factors for the central electrode effect and the wall material dependency in 60Co brachytherapy dosimetry agree with those used in external 60Co beam dosimetry. In 192Ir dosimetry, the central aluminium electrode increases the response of an NE2571 chamber compared with that of a chamber with a central graphite electrode. The increase is 1.1 and 2.1% at 1.5 and 5.0 g cm-2 distance, respectively. Similar values are obtained with an NE2577 chamber. The wall correction factor in 192Ir dosimetry for a chamber with an A-150 wall has been determined to be 1.018, independent of the measurement distance. For a graphite walled chamber, the correction factor is 0.996 and 1.001 at 1.5 and 5.0 g cm-2 distance, respectively. The values of the wall correction factors are evaluated by a theory presented. If the chamber is used according to the 'large cavity' principle, the correction factor to account for the replacement of the phantom material by the ionization chamber was determined to be 0.982 for an NE2571 chamber when used with a Delrin cap, and 0.978 for an NE2581 when used with a polystyrene cap. The correction factors for the 'large cavity' principle are valid at both 60Co and 192Ir qualities. (author)

  10. Calculation of absorbed dose for skin contamination imparted by beta radiation through the VARSKIN modified code for 122 interesting isotopes for nuclear medicine, nuclear power plants and research

    In this work the implementation of a modification of the VARSKIN code for calculation of absorbed dose for contamination in skin imparted by external radiation fields generated by Beta emitting is presented. The modification consists on the inclusion of 47 isotopes of interest even Nuclear Plants for the dose evaluation in skin generated by 'hot particles'. The approach for to add these isotopes is the correlation parameter F and the average energy of the Beta particle, with relationship to those 75 isotopes of the original code. The methodology of the dose calculation of the VARSKIN code is based on the interpolation, (and integration of the interest geometries: punctual or plane sources), of the distribution functions scaled doses in water for beta and electrons punctual sources, tabulated by Berger. Finally a brief discussion of the results for their interpretation and use with purposes of radiological protection (dose insurance in relation to the considered biological effects) is presented

  11. A continuous OSL scanning method for analysis of radiation depth-dose profiles in bricks

    Bøtter-Jensen, L.; Jungner, H.; Poolton, N.R.J.

    1995-01-01

    This article describes the development of a method for directly measuring radiation depth-dose profiles from brick, tile and porcelain cores, without the need for sample separation techniques. For the brick cores, examples are shown of the profiles generated by artificial irradiation using the...

  12. Verification of the dose from an Iridium-192 (192Ir) sealed source absorbed by an implantable cardioverter defibrillator (ICD) during uterine intracavitary brachytherapy

    The purpose of this study was to verify the dose absorbed by an implantable cardioverter defibrillator (ICD) from an 192Ir sealed source during uterine intracavitary brachytherapy, and to confirm its immunity to radiation effects. First, prior to treatment, the doses around the ICD position of an anthromorphic phantom were evaluated. Next, we also measured the dose at the ICD position using a fluorescent glass dosimeter and silicon diode dosimeter during the treatment of intracavitary brachytherapy of a patient implanted with an ICD. The results of the phantom study showed the dose percentage at the ICD location, 2 cm deep, to be 0.074% of the prescribed dose. The results of a treatment study similarly showed the dose, measured using a fluorescent glass dosimeter in the ICD position, to be 0.071% of the prescribed dose. During the application of the total prescribed dose, 30 Gy/5 fraction, the dose at the surface of the ICD position was estimated to be 21.2 mGy, well below the 1 Gy maximum recommended in the JASTRO guidelines. We regard dose verification and monitoring during treatment to be both necessary and useful in the treatment of individual cases. (author)

  13. An absorbed dose to water standard for HDR 192Ir brachytherapy sources based on water calorimetry: Numerical and experimental proof-of-principle

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 (192Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR 192Ir brachytherapy source was simulated using COMSOL MULTIPHYSICSTM software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction kc was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502±0.007) μGy/(s U) compares well with the TG-43 derived 0.505 μGy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR 192Ir brachytherapy

  14. An absorbed dose to water standard for HDR 192Ir brachytherapy sources based on water calorimetry: numerical and experimental proof-of-principle.

    Sarfehnia, Arman; Stewart, Kristin; Seuntjens, Jan

    2007-12-01

    Water calorimetry is an established technique for absorbed dose to water measurements in external beams. In this paper, the feasibility of direct absorbed dose measurements for high dose rate (HDR) iridium-192 (192Ir) sources using water calorimetry is established. Feasibility is determined primarily by a balance between the need to obtain sufficient signal to perform a reproducible measurement, the effect of heat loss on the measured signal, and the positioning uncertainty affecting the source-detector distance. The heat conduction pattern generated in water by the Nucletron microSelectron-HDR 192Ir brachytherapy source was simulated using COMSOL MULTIPHYSICS software. Source heating due to radiation self-absorption was calculated using EGSnrcMP. A heat-loss correction k(c) was calculated as the ratio of the temperature rise under ideal conditions to temperature rise under realistic conditions. The calorimeter setup used a parallel-plate calorimeter vessel of 79 mm diameter and 1.12 mm thick front and rear glass windows located 24 mm apart. Absorbed dose was measured with two sources with nominal air kerma strengths of 38 000 and 21 000 U, at source-detector separations ranging from 24.7 to 27.6 mm and irradiation times of 36.0 to 80.0 s. The preliminary measured dose rate per unit air kerma strength of (0.502 +/- 0.007) microGy/(s U) compares well with the TG-43 derived 0.505 microGy/(s U). This work shows that combined dose uncertainties of significantly less than 5% can be achieved with only modest modifications of current water calorimetry techniques and instruments. This work forms the basis of a potential future absolute dose to water standard for HDR 192Ir brachytherapy. PMID:18196821

  15. Study of dose profile in TC scanning of cranium; Estudo do perfil de dose em varredura de TC de cranio

    Goncalves Junior, R.L.; Oliveira, A.H., E-mail: heeren@nuclear.ufmg.b [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Dept. de Engenharia Nuclear; Mourao, A.P., E-mail: aprata@des.cefetmg.b [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET-MG), Belo Horizonte MG (Brazil). Nucleo de Engenharia Hospitalar

    2011-10-26

    In this paper it was obtained a dose distribution profile in computerized tomography, when a head simulator object, cylindrical and manufactured in PMMA, were swiped by using the clinical protocol or this device routine. The doses were determined with radiochromic films placed at the four cardinal points and the Center, taking as reference one of object faces. The films were calibrated with pencil ionization chamber in a independent experiment where the obtained doses in the chamber, when a unique central cut or the object were obtained, were confronted with the gray scales on the irradiated films in a similar manner, revealing he factors of conversion mGy.Gray tones{sup -1} which made possible the determination of doses in all the scanning

  16. Calorimetric determination of the absorbed dose to water for medium-energy x-rays with generating voltages from 70 to 280 kV

    For medium energy x-rays produced with tube voltages from 70 to 280 kV, the absorbed dose to water, Dw, has been determined by means of water calorimetry with relative standard uncertainties ranging from 0.45% to 0.98% at 280 and 70 kV. The results were confirmed by Monte Carlo calculations, in which the ratios of Dw at 5 cm depth in a reference water phantom to the air kerma free in air, Ka, at the same point in space were compared to the corresponding ratios determined experimentally. The general agreement between measurement and calculation was better than 1%. These results confirm earlier investigations in which the absorbed dose to graphite was determined by means of a graphite extrapolation chamber. For the Monte Carlo calculations, an attempt was made to present a complete uncertainty budget, taking into account type B contributions also. (paper)

  17. Estimation of absorbed dose rates in air based on flux densities of cosmic ray muons and electrons on the ground level in Japan

    Flux densities of cosmic ray muons and electrons were estimated from the pulse height spectra of cosmic ray charged particles observed using a spherical plastic scintillation detector. In order to obtain the pulse height spectrum of cosmic ray electrons separately from that of cosmic ray muons, the pulse height spectrum of cosmic ray electrons was derived by calculating the probability distribution of energy deposited in a plastic scintillator by electrons alone, utilizing the spectrum of cosmic ray electrons given in literature. Calculation was corroborated by measurement with spherical plastic scintillator detector of cosmic ray muons alone, obtained by passing the particles through a lead shield to eliminate electrons and photons. The aggregate absorbed dose rates in air imparted by cosmic ray muons and electrons thus derived proved upon further adding the contribution of cosmic ray photons to come quite close to the total absorbed dose rate given in literature from measurements performed in Japan. (author)

  18. Synthesis of poly (acrylamide-co-metacrylic acid) hydrogels By means of gamma irradiation techniques: influence of Absorbed dose on the swelling process

    In this report gamma radiation techniques were performed a double function of proceeding the processes of polymerization and crosslinking with the advantage of avoid the uses of chemicals crosslinks. The influence of absorbed dose on the swelling ratio as a function of pH have been presented. For these hydrogels, swelling studies indicated that swelling decrease with the increase of the absorbed dose from 10 to 50 kGy. It was confirmed that at the firsts stages (100-150 min) the diffusion studies were in accordance with Fickian behavior and the diffusion coefficients were obtained, whereas the latest stages were in good agreement with second-order diffusion kinetics proposed by Schott 1 .These news hydrogels exhibit a higher degree of swelling, a factor that, a priori, assures high biocompatibility because it increases the similarity with living tissues

  19. Calculations radiobiological using the quadratic lineal model in the use of the medium dose rate absorbed in brachytherapy. Pt. 3

    Calculations with the quadratic lineal model for medium rate using the equation dose-effect. Several calculations for system of low dose rate brachytherapy plus teletherapy, calculations for brachytherapy with medium dose rate together with teletherapy, dose for fraction and the one numbers of fractions in medium rate

  20. Absorbed dose assessment of 177Lu-zoledronate and 177Lu-EDTMP for human based on biodistribution data in rats

    Yousefnia, Hassan; Zolghadri, Samaneh; Jalilian, Amir Reza

    2015-01-01

    Over the past few decades, several bone-seeking radiopharmaceuticals including various bisphosphonate ligands and β-emitting radionuclides have been developed for bone pain palliation. Recently, 177Lu was successfully labeled with zoledronic acid (177Lu-ZLD) as a new generation potential bisphosphonate and demonstrated significant accumulation in bone tissue. In this work, the absorbed dose to each organ of human for 177Lu-ZLD and 177Lu-ethylenediaminetetramethylene phosphonic acid (177Lu-EDT...